Erewhon Demonstration
System Reference

VERSION 2022

5 Jade
platform Copyright©2024 Jade Software Corporation Limited. All rights reserved.

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2024 Jade Software Corporation Limited.
All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.

Contents

INtrOdUC I ON . 7
Part1 Setting Up the Erewhon Demo System 8
Batch Loading the Erewhon Schemas 9
Initializing the Erewhon Investments Database ... 9
Initializing the Database fromthe Command Line 9
Running the Administration Application (Standard Client) 10
Running the Shop Application (Standard Client) 10
Running the Tender Closure Application (Standard Client) 10
Running Jade in Thin CentMOde e 10
Running the Web Shop Application using Apache HTTP Server 12
Running the Web Shop Using Internet Information Server 13
CoNfiQUIING 1S 13

Step 1: Installing CGl and ISAPI EXteNSiONS 13

Step 2: Adding an Application Pool 14

Step 3: Adding an ApPpPliCatioN 16

Step 4: Configuring Handler Mappings for the Application .. 16

Step 5: Adding a Virtual Directory for Images ... 18

Running the Web Shop Application 19
Authorizing the WebShop Application for 11S ... 19

Part 2 User Guide 21
Administration AppliCation 21
L OgON 21

Main Administration Window — File MeNU 21

Main Administration Window — Edit Menu 21
Company Details 22

Agent Commission Rates (Company User Only)oooiiiiiii e 23

Locations (Company User Only) 24

Sale Item Categories (Company User Only) 25

Main Administration Window —View Menu 26
Agents and Clients (Company User Only) ... 27
ComMmMISSION RAtES 27

Sale ltems (by Category) ... 29

SIS 31

Jade Thin Client Shop Application 31
L OGON 32
Product SEarch 32
Viewing the Details of @ Product 33
Buying or Bidding fora ProdUCt 33
ShOPPING Cart 33
Product Details 34
CECKOUL .. 35

Web Shop AppliCation ... 35
L OGON 36
Product SEarch 37
Viewing the Details of @ Product 37
Buying or Bidding fora ProdUCt 37
Product Details/ Tender 38

G CKOUL ... 39
Tender Closure AppliCation 39
Part 3 Model Implementation 41
oGt ONS . 42
Agents and Commission Rates 43
Salesand ClIENTS 44
Jade Reference Diagram 44
e =T o | P 45

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part 4

Part 5

iv

Gl Nt 45
GO ANY 45
COMMISSION RatE 46
COUN Y 46
RO GION 46
Retail Sale 46
TONdEr Sale . 46
Retail Sale oM . 46
Tender Sale Hem .. 46
Sale EM Cale GOy . 47
T O Ur . 47
Design Considerations 48
CONV BNt ONS . 48
Models, Views, and Controllers 48
Model and View Separation 49
SO EMIAS . 49
COMMON S O M 50
ErewhonlnvestmentsModelSchema 50
ErewhonlnvestmentsViewSchema 50
SelfDocumMeNtOrS ChemMa . . 50

Wb S erVICEC ONS UMY . . 51
Transaction SeparatioN 51
Model OperatioNS 51
EXCeptioN Handling ... o 53
Cache SyNChIONIZatioN 54
HStC Ol ON . 55
CollectionListBoX Class 56
Object NOtIfiCatioONS ... 56
Edition CheCKing 56
Synchronization of ShOP VieWs 57
LOCKING 58
EXCIUSIVE LOCKS ... 58
Shared LOCKS 58
RESEIVE LOCKS 59
UNIOCKING O 0 S . 59
Inverses and Referential INtegrity 59
One-to-0Ne RelatioNSNiDS ... 60
One-to-Many RelationShips ... 60
Many-to-Many Relationship 60
Parent-Child Relationships 60
Multiple Inverse Relationships 60
Automatic Key Maintenance 60

Ky Patns 61
Server MethOas ... 61
SIS 62
Transaction Agent Framework 63
Best Practice GUIdeliNes 64
Transaction Agent Framework (TAF) OVerview 64
What is the Transaction Agent Framework (TAF) 2 65

Why is @ TAF Needed? o 66
Where Should the TAF ReSide? 66

How Does the TAF WOrK? 67
Manually Persisting an Object 68

Creating Objects usingthe BaseForm Class 69

Updating Objects usingthe BaseForm Classooiiiii i 70

Deleting Objects using the BaseForm Class 71

Reading Data 71

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

\%

LOCKING ObJECES e 73
Locking @ ColleCtioN 73
Locking Collection Objects Before a Create Action 73
Locking Collection Objects Before a Delete Action ... 73
Locking Collection Objects Before an Update ACtioNooii i 73
PersistentModel Class 73
PersistentModel Code Implementation Examples 75
PersistentModel Properties 75
PersistentModel Methods 76
GO T A C S ... 76

1SS0 LOCKEABY M .. 76

ON G A . 77

OND It 77
OOy 77
ONUIDAatE 78
SetCOMMONPIOPEIIES . . 78
ModelTA Class (Transaction AQent) 79
ModelTA Class Diagrams 81
ModelTA Code Implementation Examples 83
MOl T A Prop e S . 89
MoOdelTA Methods 90
AU OT 92
addVarNING 93
CheCKEdItION ... 94
ClEaNE I OrS 94
clearErrorsOnSubordinate TAS ... 95
Clear N AN NS . 95
clearWarningsOnSubordinate TAS 96
COPY I O S 96
COPY W A NINGS 97
createE Nty 97
createEntityInTransState 98
createEntityWithTransactionlmplementor 98
createSubordinateObjects 99
AelO N Y 100
deleteEntitylnTransState 101
deleteEntityWithTransactionlmplementor 101
deleteSubordinate O eCts 102
dOADbOMTransactioNCleaNUD 103
doAbortTransactionCleanupForSubordinateObjects 103

O Ea .. . 104
doDlete 104

AOM O 105
doPreValidate 105
AOUDAate 106
doValidate 107
GetFUIEITOr D ailS . 108
getMOdelOb e Ct . . 108
getModelOb eCtClass 109

NS ETOrS 109
NASNOEITONS . 110
hasOnlySubordinatePersistentObjects 110
INIalZE 111
LOCKFOrCIate 112
OCKFOrDEIEte 113
I0CKFOrMOAifY ... 114
loCKFOrUpAate ... 114
MOy N Y 115
ModifyENtityINTrans S tate ... 115
modifyEntityWithTransactionlmplementor 116
modifySubordinateObjects 117

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Vi

PSS EN Y . 118
PersiStENtitYINTranS S tate ... 119
POPUIAtEFTOM O Gt 121
populateSubordinateObjects 121
tryLockingOb e Ct .. 122
UPAatE E N Y . 123
updateEntityINTrans S ate ... 123
updateEntityWithTransactionlmplementor 124
updateSubordinateObjects 125
TransactionImMpPlEemMeENtor Classo 126
Transactionlmplementor Class Diagram 128
Transactionlmplementor Abstract Class 128
doAbortTransaction (Abstract) 129
doBeginTransaction (ADStract) 129
doCommitTransaction (ADSIracCt) 129
dointermediateCommitl Due 129
AborTransactioN Tl Class 129
AOADOI T raNSACH ON . . 130
doOBeginTransaCtioN 130
doComMItTraNSaCHON .. 131
CommitTransactionTl Class ... 131
AOADOI T raNSACH ON . . 132
doOBeginTransaCtioN 132
doComMItTraNSaCHON .. 133
CommitTransactionOnIntervalTI Class 133
ClEat .l 134
dointermediateCommitifDue 134
MaXDUratioNM S 135
SEtMaXDUrAtiONM S . 135
NOTIANSACHONT | Class ... 135
dOADOM T raNSaCtiON ... 135
doBeginTransaction 136

doC oMMt TraNSaCHON . 136
SubordinateTransactionTl Class ... 136
BaseForm Class 137
BaseForm Class Diagram 138
EditClientForm Code Implementation Examples 139
AISPlaY Ot .. 139
GetCUITEN Ot . 140
GO T A 140

GO T A C S . 140
pPopUlate T AR OMIE O 141
PrOCESSAR O D IO e . 141
PrOCESS A O S AV . 142
BaseF Orm PrOperties . 142
BaseForm Methods 142
AISPIaY EITO S 143
AiSplay O Ct ... 144
dODElete 145

QO SaVE 146
FOMMILOad 147
formMUNIOad .. 148
getCUeNtOD e Ct . 149
GOUT A 149

GO T A C S S . 149
POPUlAtE T AR OMIE O 150
PrOCESSAI D I e ... 151
PrOCES S A O S AV . . 151

SE CONEEX O OOt . 152

WP_Erewhon - 2022.0.04

Introduction

The Jade Platform Erewhon demonstration system is an Internet-enabled online purchasing and tendering
application. It has been built to give you a good appreciation of Jade's features, including web deployment, Jade smart
client technology, and web services. You can also look at the code to see how a Jade system is built.

This document provides you with all of the information you need to install and run the Erewhon demonstration system.
It also looks at how some of Jade's key features are used.

This system is more than just a demonstration of Jade's capabilities. It is a resource that you can draw upon when
building your own Jade applications. You can also use it for your own Jade presentations in the public arena.

The demonstration system has been created to enable an imaginary company called Erewhon Investments Inc. to
trade internationally over the Internet.

Erewhon Investments Inc. is an online business specializing in the sale of high-value antiques, luxury homes, and
luxury holidays. With some of the world's wealthiest individuals as clients, Erewhon Investments caters to a steadily
growing niche market at the very top end. The company is based in New Zealand, yet operates in a global market
place, with suppliers and customers all around the world.

Erewhon Investments needed a web-based merchandising system that could support their two real-time sale
processes: retail purchases and a tendering process where clients can lodge date-constrained tenders to bid on an
item.

The application had to have the reliability to accommodate the numerous Erewhon agents, each of whom has multiple
items for sale, and provide facilities for these agents to access item and sale details from any location in the world, at
any time of the day.

Added to this was the complication of different agents using varying commission rates — the system had to be able to
define multiple commission rates per sale item category, with the ability for different rates to apply to different agents.

In terms of client user requirements, the system had to have a search capability, to enable clients to search the
database and create a list of items filtered from some or all of the following criteria: region, category, tender or retail,
and price range.

Having completed the search, the client then had to be able to step through the search results and view details about
each of the items filtered. The details had to include the name, description, price details, and a photograph.

From there, the client had to be able to make a retail purchase or bid on a tender item. Both orders had to be added to
the client's shopping cart for later confirmation. The shopping cart had to be able to maintain a current list of the items
selected for client query, confirmation, or deletion. Confirmation of the shopping cart processes the transactions.

As both agents and clients had to be able to access the system from geographically widespread locations, the system
had to provide both thin client and web deployment options.

WP_Erewhon - 2022.0.04

Part 1 Setting Up the Erewhon Demo
System

Before you install the Erewhon Investments demonstration system, make sure you have installed your Jade system.

The following describes how to load the Erewhon schemas from the development environment. This requires the
examples\erewhon folder to be local or visible via a file share from the machine on which you are running the
development environment. If this is not the case, you can get the latest version of the Erewhon files from
https://github.com/jadesoftwarenz/JADE-Erewhon, by following the instructions in the README.md Markdown
language document. If you do not want to use the Jade Platform development environment to load the Erewhon
schemas, you can load them in batch mode. For details, see "Batch Loading the Erewhon Schemas", later in this
document.

1. From the Schema menu, select Load.
2. Inthe Load Options dialog, check the Load Multiple Schemas check box.

3. Click the Browse button and find folder containing the Erewhon schema files. Select the
ErewhonlInvestments.mul file in this folder and then click Open.

4. Inthe Load Options dialog, click OK to load the demonstration system, or click Cancel to return to the main
window.

The following schemas are loaded into your environment.

o CommonSchema
o ErewhonInvestmentsModelSchema

o ErewhoninvestmentsViewSchema

=]

SelfDocumentorSchema

o

WebServiceConsumer.

If a message box about class numbers and property sublds (shown in the following image) is displayed, click OK
toignore it.

Schema Load |

jj) Campiler warning summaty {refer o jommsg.laog For details):

One ar more class numbers or property sublds could nok be preserved due ko clashes with existing numbers, This will
not affect the Functioning of your system unless wou intend to reuse existing database files containing instances of
these classes,

WP_Erewhon - 2022.0.04

https://github.com/jadesoftwarenz/JADE-Erewhon

jJadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 9

Batch Loading the Erewhon Schemas

The following describes how to batch-load the Erewhon schemas. Ensure that any Jade database and application
servers for this system are shut down before proceeding.

1.
2.

Start a command line session on the host where your database is located.
Change to the <install-dir> folder, where <install-dir> is the folder in which your Jade system is installed.
Enter the following command, where the Erewhon-dir value is the folder containing the Erewhon schema files.

bin\jadloadb ini=<install-dir>\system\jade.ini path=<install-dir>\system
scmFile=Erewhon-dir\ErewhonInvestments.mul

Initializing the Erewhon Investments Database

The following describes how to initialize the Erewhon Investments database from the development environment. This
requires the \erewhon folder to be local or visible via a file share from the machine on which you are running the
development environment. If you want to initialize the database from the command line, see "Initializing the Database
from the Command Line", later in this document.

1.

2
3.
4

In the Schema Browser window, select ErewhonlnvestmentsModelSchema.

From the Browse menu, select Classes.

In the Class Browser, select the JadeScript class in the top-left panel of the window.

In the top-right pane of the window, scroll down the list of methods and then select the initializeData method.
From the Jade menu, select Execute It (or alternatively, press F9). This will run the method.

In the Browse for Folder form, find the DataFiles folder in the <install-dir>\examples\erewhon folder (where
<install-dir> is the folder where you installed your Jade system). Select the DataFiles folder and then click OK.
Click Cancel to return to the Class Browser window.

Progress messages are displayed in the Jade Interpreter Output Viewer Window during the database
initialization. When the load completes, Database initialized is displayed in this window and Execution
complete is displayed in the Jade status line. Select Exit from the File menu of the Jade Interpreter Output
Viewer to close it.

The Erewhon demonstration system database is now initialized.

Initializing the Database from the Command Line

The following describes how to initialize the Erewhon Investments database from the command line. Ensure that any
Jade database and application servers for this system are shut down before proceeding.

1.
2.

Start a command line session on the host where your database is located.
Change to the <install-dir> folder, where <install-dir> is the folder in which your Jade system is installed.
Enter the following command, where the Erewhon-dir value is the folder containing the Erewhon schema files.

bin\jadclient server=singleUser ini=<install-dir>\system\jade.ini
path=<install-dir>\system schema= ErewhonInvestmentsModelSchema
app=Dataloader startAppParameters Erewhon-dir\DataFiles

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 10

4.

The database will now be initialized. You will see progress messages and when the load completes, a Database
initialized message.

Running the Administration Application (Standard Client)

Select the Schema Browser window. If this window is not visible, select Schema Browser from the Window menu to
set focus to it.

-

> L DN

In the Schema Browser window, select ErewhoninvestmentsViewSchema.

Click the Run Application toolbar button (this is the one with the arrow icon).

Select Administration in the Application Name combo box. Click OK to start this application.

Select a name from the User Name combo box. The Company Administrator is Erewhon Investments Inc.

Click OK to run the application.

For information about using the application, see "Part 2 — User Guide", later in this document.

Running the Shop Application (Standard Client)

1.

5.
6.

Select the Schema Browser window. If this window is not visible, select Schema Browser from the Window
menu to set focus to it.

In the Schema Browser window, select the ErewhonlnvestmentsViewSchema.

Click the Run Application toolbar button (this is the one with the arrow icon).

Select ErewhonShop in the Application Name combo box. Click OK to run this application.
Select a name from the User Name combo box.

Click OK to run the application.

For information about using the application, see "Part 2 — User Guide", later in this document.

Running the Tender Closure Application (Standard Client)

1.

2
3
4.
5

Select the Schema Browser window. If this window is not visible, select Schema Browser from the Window
menu to set focus to it.

In the Schema Browser window, select ErewhoninvestmentsViewSchema.
Click the Run Application toolbar button (this is the one with the arrow icon).
Select TenderClosureApp in the Application Name combo box.

Click OK to run the application.

For information about using the application, see "Part 2 — User Guide", later in this document.

Running Jade in Thin Client Mode

Note The Jade thin client communicates with the application server via TCP/IP. You must have TCP/IP installed
and configured to use the Jade thin client.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 11

To run Jade in thin client mode, you must create two shortcuts: one for the application server, and one for the thin
client.

1.

For the application server, create a shortcut with the following properties.
Target:

<install-dir>\bin\jadapp.exe
path=<install-dir>\system
server=singleUser
appserverport=60000
ini=<install-dir>\system\jade.ini

Start In:
<install-dir>\bin
The <install-dir> value is the folder in which you installed your Jade system.
For the Jade thin client, create a shortcut with the following properties.
Target:

<install-dir>\bin\jade.exe
schema=JadeSchema

app=Jdade
appserver=<computer-name>
appserverport=60000

Start In:
<install-dir>\bin

The <install-dir> value is the folder in which you installed your Jade system and <computer-name> is the
name or |IP address of your computer (or localhost, or the loop-back IP address 127.0.0.1). To find your
computer name or IP address, open a the Network and Sharing Center in Control Panel and then click Local
Area Connection to view the IP address.

You can now run Jade in thin client mode.

Note Ensure that you have shut down any open Jade sessions before running the application server. This
includes the Jade Platform development environment.

Start the application server from the application server shortcut. The application server will start and is now
waiting for thin client connections.

Run Jade as a thin client of the application server from the thin client shortcut. The connection is displayed in the
application server window. Log on to Jade as usual, and initiate applications using the standard client
instructions in an earlier section. Notice that the interface presented under the Jade thin client is identical to the
Jade standard client.

For information about using the application, see "Part 2 — User Guide", later in this document.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 12

Running the Web Shop Application using Apache HTTP

Server

See the Installation and Configuration Guide (which is also available from the Jade website at
https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation) for information about deploying

Jade web applications.

1.

Before running the web shop application, you must install the Jade HTTP driver for Apache, and define a virtual
directory for Jade in your Apache configuration files. Copy the Windows version of the

mod_jadehttp.so file to the Apache modules folder. Now edit the conf/httpd.conf file and at the end of the
Dynamic Shared Object (DSO) Support section, add the following lines.

LoadModule jadehttp module modules/mod jadehttp.so
<IfModule mod jadehttp.c>

Include conf/jadehttp.conf
</IfModule>

Now create a file called conf/jadehttp.conf with the following details.

<IfModule mod jadehttp.c>
<Location /jade-info>
SetHandler jadehttp-info
</Location>
<Location /JadeEval>
SetHandler jadehttp-handler
Application WebShop
TcpConnection 127.0.0.1 6107
</Location>
</IfModule>

<Directory>

require from all
</Directory>
Alias /images "C:\Temp"

Create the C:\Temp folder on your machine if it does not already exist, and then restart your Apache HTTP
Server.

Note Ensure that you have shut down any open Jade sessions before proceeding further. This includes the
Jade Platform development environment and the Jade application server.

Click the Jade icon from your Jade program folder in the Start menu. This will run the Jade Platform
development environment in single-user mode.

Log on, and select ErewhonInvestmentsViewSchema in the Schema Browser window.
Click the Run Application toolbar button (this is the one with the arrow icon).

Select WebShop in the Application Name combo box.

Click OK to run the application.

The WebShop application will start and will appear as a single window. The application is now waiting for users
to connect from a browser. If a warning message is displayed, advising you that you are running a web
application with an invalid web working directory, you should click the No button on the message box, create the
C:\Temp folder on your machine as stated in step 1 of this instruction, and then try again.

WP_Erewhon - 2022.0.04

InstallConfig.pdf
https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation

jJadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 13

8. Bring up your Internet browser and then enter the following URL.

<computer-name>/JadeEval?WebShop
The <computer-name> value is the name or IP address of your machine (or localhost or the loop-back IP

address 127.0.0.1), and JadeEval is the name of the virtual directory you created in your web server; for
example, a URL might be one of the following.

o erewhon/JadeEval?WebShop
o 192.168.1.100/JadeEval?WebShop
o localhost/JadeEval?WebShop

o 127.0.0.1/JadeEval?WebShop

Running the Web Shop Using Internet Information Server

See the Installation and Configuration Guide (which is also available from the Jade website at

https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation) for information about deploying
Jade web applications.

The following subsections contain instructions for running the WebShop application using Microsoft Internet
Information Server (11S).

= Configuring IIS
® Running the WebShop application

= Authorizing the WebShop application

Configuring IS
The configuration instructions are grouped into the following subsections.
m Check thatimportant IIS components are installed
® Add and configure an application (and application pool) for the WebShop application

= Add a virtual directory for WebShop image files

Step 1: Installing CGI and ISAPI Extensions

To install these optional components of IIS:
1. Select Programs and Features from the Control Panel.
2. Click the Turn Windows features on or off hyperlink on the left.

3. Expand Internet Information Services, then World Wide Web Services, and then Application
Development Features.

WP_Erewhon - 2022.0.04

InstallConfig.pdf
https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation

Jadeplatform

Erewhon Demonstration System Reference

Part 1

Setting Up the Erewhon Demo System

14
4. Check the boxes CGI and ISAPI Extensions and then click the OK button.
[EEIEE)
@Uv <« All Control Panel tems » Programs and Features - | 4 | | Search Programs ... 2 |
File Edit View Tools Help
Windows Featums_blﬂu
Control Panel Home
Turn Windows features on or off @
View installed updates
) To turn a feature on, select its check box. To turn a feature off, clear its
& T:frn Windows features on or check box. A filled box means that only part of the feature is turned on.
of
e Tt c =R]| ./ Internet Information Services - @
netwaork] .1 FTP Server
(=] . Web Managerent Tools | i
i = [H | World Wide Web Services 3
4 = [H . Application Development Features D
v [T] |, .NET Extensibility
=) Asp
G []) ASP.NET
1. CGl
o IRJISAPI Extensions |
=3 [l | ISAPI Filters |
[C1 1 Server-Side Includes il Z
4 3
| ok || canc

Step 2: Adding an Application Pool

To add an application pool to be used by Jade web applications:

1.

2
3.
4

Select Administrative Tools from the Control Panel.
Open Internet Information Services (IIS) Manager.
In the Connections panel on the left, select Application Pools.

Right-click and then select Add Application Pool.

WP_Erewhon - 2022.0.04

Jadeplatform

Erewhon Demonstration System Reference

Part 1

Setting Up the Erewhon Demo System

5.

6.

15

Configure the pool to use unmanaged (non-.NET) code and then set the Managed pipeline mode field to
Classic, as shown in the following image.

MName:

i
Add Application Po_ =

JADE

MET Framework version:

[Nu Managed Code

IManaged pipeline mode:

| Classic -

Start application pool immediately

Lo J|

If you are using a 32-bit version of Jade, right-click on the application pool and then select Advanced Settings.

In the Advanced Settings dialog, set Enable 32-Bit Applications to True.

,
et

[P |

B (General) I
MET Framework Version Nao Managed Code
Encbie32-5it Applcstion: R =
Managed Pipeline Mode Classic
MName JADE E
Queue Length 1000
Start Automatically True
= CPU R
Limit 0
Limit Action Mohction
Limit Interval {minutes) 5
Processor Affinity Enabled False
Processor Affinity Mask 4294967295
Bl Process Model
Identity ApplicationPoolldentity
Idle Time-out {minutes) 20
Load User Profile True
Maximum Worker Processes 1
Ping Enabled False 7
Enable 32-Bit Applications
[enable32BitAppOnWinb4] If set to true for an application pool on a 64-bit
operating systern, the worker process(es) serving the application pool will
be in WOWB4 (Windows on Windows64) mode. Processes in WOW6G4 mao...

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 16

Step 3: Adding an Application

To add an application:

1. Select the Default Web Site in the Connections panel.

Right-click and then select Add Application.

Enter the alias JadeEval. (This will be part of the URL for the WebShop application.)

Select the application pool that you created previously.

o M w0 BN

Enter the location of the Physical path, which is the bin folder for your Jade release; that is, replace
<install-dir> in the following image with the correct location.

r Bl
Add Application -2 [

Site name: Default Web Site
Path: !

Alias: Application pool:

et e

Example: sales

Physical path:

<install-dir>\bin E]

Pass-through authentication

Connect as...] ’ Test Settings...

0K l ’ Cancel

6. Click the OK button.

Step 4: Configuring Handler Mappings for the Application
To configure handler mappings for the application:

1. Select the application in the Connections panel.

2. Double-click the Handler Mappings icon in the central panel.

3. Right-click the CGl-exe handler mapping and select Edit Feature Permissions.

WP_Erewhon - 2022.0.04

Jade platform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 17

4. Enable all options, as shown in the following image.

,

Permissions:

Read
Script
Execute

5. Right-click the ISAPI-dIl handler mapping and then select Edit.

6. Setthe Executable text box to the path and file name of the jadehttp.dll file in the bin folder of your Jade
system.

,

Request path:
*dll

Example: *.bas, wsvc.axd

Module:
IsapiModule

Executable (optional):
<install-dir>bin'jadehttp.dll

Mame:
ISAPI-dII

Request Restrictions...

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 18

7. Ifthe following dialog is displayed, click the Yes button.

@ Do you want to allow this ISAPI extension? Click "Yes" to add the
ll WY extension with an "Allowed" entry to the ISAPI and CGI Restrictions list 1
i or to update an existing extension entry to "Allowed” in the ISAPI and 1
CGI Restrictions list.

Step 5: Adding a Virtual Directory for Images
To add a virtual directory for images:

1. Ensure that a C:\Temp folder exists on your machine.

Select Default Web Site in the Connections panel.

Right-click and then select Add Virtual Directory.

P LN

Complete the dialog as shown in the following image and then click the OK button.
i " b
saevemiecoy N el

Site name: Default Web Site
Path: !

Alias:
images
Example: images

Physical path:

ChTemp E]

Pass-through authentication

Connect as...] [Test Settings...]

5. Now start IIS for your website.

Note Ensure that you have shut down any open Jade sessions before proceeding further. This includes the Jade
Platform development environment and the Jade application server.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 19

Running the Web Shop Application

With the IIS configuration completed, you can now attempt to run the WebShop application.

1. Click the Jade icon from your Jade program folder in the Start menu. This will run the Jade Platform
development environment in single-user mode.

2. Logon andinthe Schema Browser window, select ErewhonlnvestmentsViewSchema.
3. Click the Run Application toolbar button (this is the one with the arrow icon).
Select WebShop in the Application Name combo box.

Click OK to run the application, or Cancel to return to the main window.

o o &

The WebShop application will start and will appear as a single window. The application is now waiting for users
to connect from a browser.

7. Open your Internet browser and then enter the following URL.
<computer-name>/JadeEval/jadehttp.dll?WebShop

The <computer-name> value is the name or IP address of your machine (or localhost or the loop-back IP
address 127.0.0.1), and JadeEval is the name of the virtual directory you created in your web server; for
example, a URL could be one of the following.

o erewhon/JadeEval/jadehttp.dl?WebShop

o 192.168.1.100/JadeEval/jadehttp.dlI?WebShop
o localhost/JadeEval/jadehttp.dl?WebShop

o 127.0.0.1/JadeEval/jadehttp.dli?WebShop

8. Atthis point, Jade's security features that protect against unauthorized running of applications via a web browser
will result in an error message (Service unavailable or similar) being displayed in your web browser.

We must now authorize the WebShop application for IIS. For details, see the following section.

Authorizing the WebShop Application for IIS

We now need to specifically allow the WebShop application to be accessed via IIS from a web browser.
Using Windows Explorer, you will find that Jade has created an additional four folders, as follows.

m <nstall-dir>\bin_jadehttp

® <jnstall-dir>\bin_jadehttp\ini

m <nstall-dir>\bin_jadehttp\logs

® <jnstall-dir>\bin_jadehttp\transfer

If these folders have not been created, ensure that IIS is running for your website. If it isn't, start it and then select the
refresh option in your web browser.

1. Using Notepad, open the <install-dir>\bin_jadehttp\ini\jadehttp.ini file.

The <install-dir> value is the folder in which you installed your Jade system.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part1 Setting Up the Erewhon Demo System 20

2. Add the following lines at the end of the file.

[WebShop]
TcpConnection=127.0.0.1
TcpPort=6107
ConnectionGroup=WebShopForms
MinInUse=1
MaxInUse=1
CloseDelay=600
ApplicationType=WebEnabledForms

Save the file and then close Notepad.
3. Now return to your web browser window and select the refresh option.

You should now be presented with the WebShop logon form, at which point you can log on and run the
application.

WP_Erewhon - 2022.0.04

Part 2 User Guide

The Jade Platform Erewhon Demo System consists of an Administration application (for Erewhon company and
agent users) and a Shop application (for clients).

The Administration application is delivered as either a Jade standard client or a Jade thin client. The Shop
application comprises two applications: one delivered as a Jade standard client or a Jade thin client, and the other as
a Jade HTML thin client. For more details, see the following subsections.

Administration Application

The Administration application allows company and agent users to maintain core system data. For details, see the
following subsections.

m | ogon
L Main Administration Window - File Menu
L] Main Administration Window - Edit Menu

L Main Administration Window - View Menu

Logon

To log on, select a user name from the drop-down list box on the Logon form then and click OK.

Note The list of user names includes the name of the Erewhon Investments Inc. company user and the names of
all agents.

To access the Administration application's full range of functionality and data, select the Erewhon Investments Inc.

user. Selecting an agent user name will mean that a limited subset of the Administration application's functionality
and data will be available.

Main Administration Window - File Menu

To exit from the application, select the File menu Exit command (Alt+F, X), or press Alt+F4.

To view copyright and version details, select the File menu About command (Alt+F, A).

Main Administration Window — Edit Menu

This section contains the following topics.

= Company Details
m Agent Commission Rates (Company User Only)
m | ocations (Company User Only)

m Sale Iltem Categories (Company User Only)

WP_Erewhon - 2022.0.04

Jadeplatform

Erewhon Demonstration System Reference

Part2 User Guide

Company Details

22

Use the Edit Company screen, shown in the following image, to maintain company user details.

Edit Company — *
—Mame

Mame IErewhn:nn |vestments [ho
—Address

Addrezz 17 IErewhl:nn Houze

Addreszs 2* Il:hristchurl:h

Addrezs 3¢ INEW Zealand

— Contact
Phare * I[Ed] ARER 4519 Fax I[Ed] A BER 1267
Email Idiscnver@iadewnrld.mm

~ Internet Web Site
JRL Iwww.iadewnrld.mm

Figlds marked with an * must be entered.

To edit the company details, select Edit

Cancel

Company Details (Alt+E, D) from the Edit menu. Make changes as necessary

and then click the OK button to update the database.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part2 User Guide 23

Agent Commission Rates (Company User Only)

Use the Agent Commission Rates screen, shown in the following image, to maintain a list of agents for each sale
item's range of commission rates. (Note that an agent can use one rate only per sale item.)

s

Agent Commission Rates EI [=] @

Sale Item Categony: Agents uzing this Fate: Agents not uzing thiz B ate:
|H0|ida_l,l$ - Ain Hamada, 145 Tokyo Road, Kyoto, Japan Angela Bettershield, 12b 5t Michael's Place, Lond.
Suzie W, 26b Colonial Plaza, Singapore, Singap: Hank williams, 9127 Bel Air Drive, Loz Angeles, U
o . Feter Smallzmith, 645 Gregan Road, Chiistchurch,
Enrr!mlssmn Az Petra Petrovski, 8765 The Parade, Moscow, Bus:
Holidays @ 2.00 Pierre Lafayette, 167 Rue Patizzere, Paris, France
Holidays @ 3.50 Tabai Tanivula, 14 Suva Street, Suva, Fi

Holidays @&

oo <

£

*r

Apply ak Undo Cloge

To modify the list of agents for a commission rate:

1.

After opening the form, select a sale item category. The list of commission rates for that category is then
displayed.

Select a commission rate from the list. This will populate two lists on the right: a list of all agents using the
selected commission rate, and a list of all agents who do not use the selected commission rate.

To remove an agent from the list of those who use the selected commission rate, select the agent from the list on
the left and then click the > button.

To remove all agents from the list of those who use the selected commission rate, click the >> button.

To add an agent to the list of those who use the selected commission rate, select the agent from the list on the
right and then click the < button.

To add all agents to the list of those who use the selected commission rate, click the << button.

Once you are satisfied with the list selections, click the Apply button to update the database or click the OK
button to update the database and close the form. If you do not want to save the changes, click the Undo button.

To exit the form, without changing details, click Close.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part2 User Guide 24

Locations (Company User Only)

Use the Locations screen, shown in the following image, to maintain country and region details. Note that country is
used to define a macro geographic area and region is used to define an associated micro geographic area. A form with
a folder showing two tabs is then displayed. (Note that a region must always belong to a country.)

i

Locations | — | =] |ﬁ|
Countries Regions
Country: Reaiaons:
Africa Auckland
Azia Canterbury
Europe t arlborough
T2 I (020
1k
5
Add Edit Bemove
Cloze

There are Add, Edit, and Remove buttons on both the Countries and Regions sheets.

® Toadd a new country or region, select the appropriate tab and then click the Add button. A form is then

displayed, in which to enter the name of the location. Type the name and then click the OK button to add the
location to the database.

To change a country or region, select the appropriate tab and then click the Edit button. A form is then displayed,
showing the current name. Change the name and then click the OK button to update the database.

To remove a country or region, select the appropriate item and then click the Remove button. Note that when a
country is removed, all of its regions are also removed.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part2 User Guide 25

Sale Item Categories (Company User Only)

Selecting the Edit menu Edit Sale Item command displays the Sale ltems Categories form with a list of sale item
categories. The right-hand panes display the sale item categories associated commission rates and sale items.

I)

Sale ltem Categories E = @
Cateqores: Comrmizzion B ates:
Antiques Properties (2 2.00

Huolidays Properties (2 3.50
E%M Properties @ 5.00
Properties (@ 8.00
Properties & 12.00

Sale [tems:

PROPOO0T Castle: $2.599,939.00 - Untendered
FROPOO0Z Casztle: $4.993,939.00 - Untendered
PROPOO03 Castle: $6.533,933.00 - Untendered
PROPOOD4 Castle: $8.599,939.00 - Untendered
PROP1005 Mangion: $3,500,000.00 - Untenderad
PROP100E6 kanzion: $4,993,9393.00 - zold to Christine Mar
PROP1007 Mansion: $4,533,995.00 - Untendered
PROP1008 Mangion: $5,500,000.00 - Untenderad
PROP1009 kManzion: $4,400,000.00 - Untendered

Add Edit Bemove LCloze

® Toadd a new category, click the Add button. A form will then be displayed, in which to enter the name and
description of the category. Type the name and description, then click the OK button to add the category to the
database.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part2 User Guide 26

®m Tochange a category, click the Edit button. A form will then be displayed, showing the current name and

description. Change the description and then click the OK button to update the database (note that the name of
the category cannot be changed).

Edlit Sale ltem Categary —

M ame |F'ru:u|:uerties

Description | The most exclusive properties available

ok, Cancel

= Toremove a category, click the Remove button. Note that when a category is removed, all of its commission
rates will also be removed.

Main Administration Window — View Menu
This section contains the following topics.
m Agents and Clients (Company User Only)
m Commission Rates

m Sale ltems (by Category)

= Sales

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part2 User Guide 27

Agents and Clients (Company User Only)

Use the Agents and Clients screen to display a form with a folder containing two tabs: one for a list of agents and the
other for a list of clients.

I =

Agents and Clients EI [=] @

Agents Clients
Country: Sale [bems:
P Tp——— oo Homestogs RIS
Angela Bettersfield Hong F.ong By Might
Hark Wiliamsz Southern France
Peter Smallzmith Loch ‘water Tours
Petra Petrovski Orbit Trips

Piere Lafapette Settes
Suzie Wu C ission Fates:
Tabai T anivula OMMIEEIAN Fiates.
12.00% [Antiques)
2.00% [Holidaps)

2.00% [Properties)

Add Edit Remove

Cloze

On each sheet there are Add, Edit, and Remove buttons.

® Toadd anew agent or client, select the required tab and then click the Add button. A form will be displayed, in
which to enter the agent's or client's details. Enter the details and then click the OK button to add the agent or
client to the database.

® Tochange an agent's or client's details, select the required tab and then click the Edit button. A form will be
displayed, showing the details. Make any changes and then click the OK button to update the database.

m Toremove an agent or client, select the required tab and then click the Remove button. Note that when a client is
removed, all of its retail sales, tender sales, and outstanding tenders will also be removed.

Commission Rates

Use the Commission Rates screen to add or maintain variable commission rates for each sale item category.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part2 User Guide

28

A form displays with a drop-down list of sale item categories. Upon selecting a sale item category, a list is displayed of
all commission rates for that category.

I

Commission Rates

Sale ltem Category |Gl Es

=N How >

Antiques @ 2 00
Antiques (2 3.50
Antigues (& 5.00
Antiques @ 800
Antigues @ 12.00

Add Edit Bemowve

Cloze

This form also has the following maintenance capabilities (company user only).

To add a new commission rate, select your required sale item category from the drop-down list box and then click
the Add button. A form will be displayed, in which to select the rate's category and enter the rate percentage.
Enter the category and percentage, and then click the OK button to add the new commission rate to the

database.

To change a commission rate, select your required sale item category from the drop-down list box and the
required commission rate and then click the Edit button. A form will be displayed, showing the current sale item
category and rate percentage. Change the details to met your requirements and then click the OK button to

update the database.

To remove a commission rate, select it and then click the Remove button.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System

Reference

Part2 User Guide

Sale Items (by Category)

29

Use the Sale Items (by Category) screen to add or maintain sale items. Note that only agents can add a new sale item.
This screen employs a hierarchical tree of sale item categories, which can be expanded by clicking the + icon or

collapsed by clicking the - icon.

As each sale item category's folder is opened, two subfolders are shown: one for the Items for Sale, and the other for
the Items for Tender. Opening either of the subfolders will display a list of their respective sale items.

i

Sale ltermns (by Category)

_1 Antiques

_1 Halidaps

[=F 3 Properties

[=FEA Items for Sale

21 PROP2001 Izland: $6.500,000.00 - Unsold

\—Bi PROFP2002 |zland Fesort $4,200,000.00 - Unsold
[5] PROPZ003 Jungle Hideaway: =old to Brian Olzen for $6,250,000.00
=1 PROPZ2004 Famed House: zald ta Sarah Baley for $3,200,000.00
[5] PROP2005 Colonial House: $4,500,000.00 - Unsald

1 Items far Tender

Edit Remove Cloze

Find

(=2 |msal

-

This form also has the following maintenance capabilities.

® Toadd anew sale item, open the folder of the sale item category to which the new sale item will belong, select
the Items for Sale or Iltems for Tender subfolder, and then click the Add button (note that the Add button can

also be clicked if a sale item leaf is selected).

A form will be displayed, in which to enter the details of the sale item (the sale item category will have been

preselected).

To load a photo of the sale item from a disk file, double-click the empty picture frame. Enter the remainder of the
details and then click the OK button to add the sale item to the database. Note that only agents can add sale

items.

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part2 User Guide 30

® Tochange a sale item, open the required sale item category folder and subfolder. Next, select the sale item that
you want to change, and then click the Edit button. A form will be displayed, showing the current sale item
details. Change the details to meet your requirements and then click the OK button to update the database.

Edit Tender Sale ltem — ot

— Agent
Air Hamada, 145 Tokpa Road, Kyoto, Japan

— Sale ltem Details — Picture

[tem Code I.i'-.NE!U Mumber |10

Cateqgary I.-'l'-.ntiques

Country INEW Zealand

KN KR EN

Reqion I.-’-'-.u::kland

— Description
Shaort ISiIver
Full Early 17th century tea caddy. -
— Tender Details
Rezemve |25EI.EIEI
v
Clozure Date I 2041241939
Mot yet zold ok Cancel

m Toremove a sale item, click the Remove button. Note that when a tender sale item is removed, all associated
tenders are also removed.

= While a sale item can be added only by an agent, it can be edited or removed by that agent or by the company
user.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part2 User Guide 31
Sales
Use the Sales screen to view sales summaries by agent, client, or for the whole company.
Sales ESR(EcH X
Show Sales for: (C)iagent | -
() Client | -
© Company [Erewhaon Investments [he)
M ame Product Frice Date Sold Bid Cornrmizzion
Elaine Lee DESTOO0O0T - Africa Diving 12595.00 2240142000 25,98
Andrew Fitzpatrick DESTOO004 - Bungy Jumping 3500.00 2/08/2000 F0.00
Christing M ontgomemn DESTOOOY - Mediterranean Cruise 123339.00 22411/1999 64995
Christopher Burke DESTOM D -*Wine Tours 9355.00 2740872000 49995
Sarah Bailey DESTOO 3 - Ancient Buing 75595.00 27404/2000 151,93
Elaine Lee DESTOME - Mew ok By Might |8355.00 2040242000 44975
Chriztine Fonaldo DESTO019 - Hong Kong By Might| 4555,00 29/06,/2000 91.98
Barbara Montenearo DESTOO0Z2Z - Hiking 3935.00 10412/1999 7490
Sean Hil DESTOO025 - Golf By The Sea 29595.00 22404/2000 23960
Andrew Fitzpatrick DESTO02E - Island Hideaway: | 73995.00 1/11.19499 32380
Lewi Muir AMGLA003 - Male Band Ring 19590.00 15402/2000 238,80
Peter Marrizzey AN 006 - Painting 1150.00 2241041999 138.00
Elaine Lee AMGIL3009 - Choker Mecklace |B500.00 15/09/2000 32500
Heather Bizzet DESTOO031 - Deer Hunting 7955.00 2040842000 399.75
Brian Olzen PROP2003 - Jungle Hideaway 625000000 11/12/1339 218750.00
Sarah Bailey FROP2004 - Famed House 3200000.00 |1706/2000 TR0000. 00
Sarah Bailey DESTOO34 - Beach Getaway 8555.00 340842000 179,98
Bary Ogen AMGILA002 - Rimu table £95.00 30121999 5h.92
Fauline 'W/ild AMGILA005 - Sikver Spurs 450,00 140972000 54.00
Total of Retall Sales: 49 540,238 95
Total of Tenders: $13.025,296.00
Total of Commizsion: 481714460 Close

To list the sales, select the agent, client, or company option using the radio buttons. If the agent or client option is
selected, one of those entities must be selected from the drop-down list box to display the sales summary specific to
that agent or client. To sort the results, click on any of the table column headers to sort by that column.

Notes When this summary is viewed by an agent user, only his or her sales appear in the list.

Total amounts are displayed at the bottom of the screen.

Jade Thin Client Shop Application

The Jade thin client shop application is the shop-front interface for clients to run over local or wide-area networks, or
the Internet. The ErewhonShop application can also be run as a standard Jade client application (that is, a two-tier or
fat client application). For details, see the following subsections.

m | ogon

® Product Search

WP_Erewhon - 2022.0.04

Jadeplatform

Erewhon Demonstration System Reference

Part 2

User Guide

® Viewing the Details of a Product

® Buying or Bidding for a Product

= Shopping Cart
® Product Details

m Checkout

Logon

32

On the logon form, select a user name from the drop-down list box and then click the OK button. To cancel the logon,

click the Cancel button.

Product Search

The Product Search form is the main form of the ErewhonShop application. To begin, search for a list of products by
selecting the required search criteria in the Search panel, and then click the Search button.

Erewhan Investments Inc

Search
Country:
|— Select — LI
Region:
| ~|
Product Category:
|— Select — LI
() Retail Items
(C Items for Tender
(@) All Ttems
Lower price range:

Upper price range:

Search I Reset

Selection
Product
Silver
COrnament
Wooden
Desk

Plate
Picture
Chalice

Cabinet

Water Jugs

Hutch

Outdoor Ornament
Fruit Bowl

Framed Portrait

Ceramic Servers

Clear Details

Cjade"

Select a product from the list and click Buy/Bid to either add a Retail tem to your shopping cart or lodge a bid for an tem for

Tender.

From
23f09/1993
6/11/1999
6/09/1999
25/09/1999
14/09/1993
6/10/1999
22(11/1999
8/09/1999
21/12/1999
30/09/1999
5/10/1999
2/10/1999
19/09/1999
8/10/1399
5/10/1999

Price
£250.00
£325.00
£225,00
£750.00
£150.00
£299.,00
£160,00
£225.00
£392.,00
£392.00
£4,999,00
§2,650.00
£299.00
£599.00
$495.00

Welcome, Sarah Bailey e I'ew h 0 n

~

- O bes

Shopping Cart
Product Price

Totalk: $0.00

Chedcoutl Empty I

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part2 User Guide 33

A new search list can be generated at any time by changing the search criteria and then clicking the Search button
again. Search criteria can also be reset by clicking the Reset button. The list of search results can be cleared at any
time by clicking the Clear button below the list of results (this will not affect any of the items currently in the shopping

cart).

Viewing the Details of a Product

To see more-detailed information about a product, select it in the search list and then click the Details button. This
button will then be replaced by a button with a caption of List and the search results are replaced with details of the
selected item. Clicking the List button while the item details are displayed returns to the list of search results.

Note If no product item is selected while viewing the list of search results, the Details button is disabled.

Buying or Bidding for a Product
Some products are retail sale items, while others are tender items for which you must enter a bid.

To buy a retail sale item, select it in the search results list and then click the Buy/Bid button, or click the Buy/Bid
button while the item details for that item are displayed.

If the product is a tender item (that is, it requires you to make a bid), you must first click the Details button to see the
item details for the item, and then enter a tender amount greater than or equal to the minimum price of the item.

After entering your offer, click the Buy/Bid button again and the tender will then be added to your shopping cart.
Alternatively, if you do not want to bid on the item, click the List button to return to the search results list.

Shopping Cart

The shopping cart list will be updated whenever a product item is bought or tendered for. A running total is also
displayed beneath the cart list. To empty the shopping cart, click the Empty button. To go to the checkout, click the
Checkout button.

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part2 User Guide 34

Product Details

When a product is selected in the search results list, the Details button is enabled. Click this button to display
more-detailed information about the product item.

Erewhan Investments Inc — m} ®
Welcome, Sarah Bailey e I'ew h o n

Search Sealection Shopping Cart
Country: Code: ANQUOD13 : Product Price
|- select — ~| Description:
Region: Pocket case made of silver and gold from the
| . _I early 17th century.
Product Category:
|— Select — LI

() Retail Ttems

() Ttems for Tender

(®) All Ttems
SOLETETER ETRE Available: 8/09/1333

| Close date: 5/01/2000
LaZeraiE = Price: $225.00
| | Agent: Angela Bettersfield
Enter the amount of your Tender :
Totak: $0.00

Search | Reset Clear List I Buy,Bid | CI'_1ed<out| Empty |

Tender.

‘ Select a product from the list and click Buy/Bid to either add a Retail tem to your shopping cart or lodge a bid for an tem for

If the product item is a tender item, the details of the product include a field in which to enter your offer (your tender
amount). The same product searching and shopping cart functions are available as when the search results list is
displayed (see above).

If the Clear button is clicked with the product details in view, the details will be replaced with an empty search results
list. Clicking the Reset button (in the Search panel) with a product's details displayed will have the same effect as the
Clear button, but the search criteria will also default to their original settings. If the Search button is clicked with a
product's details displayed, the details will be replaced with the (new) search results list.

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part2 User Guide 35

Checkout

The checkout is the final confirmation of your shopping cart before proceeding with the transaction of purchasing sale
items or submitting any bids for tender items, or both purchasing sale items and submitting any bids for tender items.

Erewhon Investments Inc - Checkout - O *
Welcome, Sarah Bailey e I'ew h 'o n
Tranzachion Code Product Frice Bid
Tender ANOUODS Caze 22500 $800.00
Tender ANQUOOZS Framed Partrait $599.00 $765.00
Retail DESTOCO21 Casino Trips $4.500.00 $4.500.00
Proceed Bemove Empty Back
To proceed with your purchases and/or bids, click the 'Proceed’ button. To cancel your order, click the "Emphy”
‘ button. To resume shopping, click the ‘Back' button.
l a d E All purchases will be charged to your account.

To remove any unwanted items from the shopping cart, select the item in the list and then click the Remove button. To
remove all of the items in the shopping cart, click the Empty button. If you want to return to the Product Search form,
click the Back button. To initiate the final processing of the shopping cart, click the Proceed button. A list of the bought
and tendered items will then be displayed so that you can confirm the transaction.

Web Shop Application

The WebShop application is the shop-front interface for clients to run over the World-Wide-Web. The application is
built in Jade and is automatically deployed over the Internet using Jade's native functionality. For details, see the
following subsections.

m | ogon
®m Product Search
= Viewing the Details of a Product

®m Buying or Bidding for a Product

WP_Erewhon - 2022.0.04

Jade platform Erewhon Demonstration System Reference

Part2 User Guide 36

L Product Details - Tender

m Checkout

Logon

The following image is the WebShop application logon form.

I |_«—Ell £ Erewhon Investments In l—i— v — O b4

< - 0O @ @ | localhost/HTML/jjadehttp.dli?webShop * = 1 .

Welcome to the Erewhon Web Shop, please select your name from
the list.

ETrE—

c Please select your Client name from the listbox, and click 'Enter’.
¥ Jade

Select a user name from the drop-down list box and then click Enter.

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part2 User Guide 37

Product Search

The Product Search form is the main form of the WebShop application. To begin, search for a list of products by
selecting the required search criteria in the Search panel and then click the Search button.

5 5 I 1 Erewhon Investments In 3 l db e o O %
< - 0O @ | localhost/HTML/jadehttp.dii?WebShop ¥ ~ 7 8
Welcome, Howard Ellis - You have 0 items in your shopping cart. erew h on

Product From Price
Search Buy |Bali Treks 15/09/1999 [$1,600.00
re Buy |Goldmining 9/10/1999 [$5,999.00
Country / Region: Buy [Beach Paradise 6/10/1999 |$4,995.00
[Asia - Bali ~
Product Category:
) Retail ltems
) Items for Tender
© All ltems
L ower price range’
Upper price range:

Select a product from the list and click Buy/Bid to either add a Retail Item to your shopping cart or lodge a bid for
B d e-- an Item for Tender.

A new search list can be generated at any time by changing the search criteria and then clicking the Search button.
The search criteria can also be reset by clicking the Reset button. The list of search results can be cleared at any time
by clicking the Clear button below the list of results (this will not affect any of the items currently in the shopping cart).
To scroll through the search results list, click the Next button or the Back button.

Some products are retail sale items, while others are tender items for which you must enter a bid.

Viewing the Details of a Product

The second column in the search results list is the name of the product item, which is a link to the details of the
product. By clicking on the product item's name link, the details of the product will be displayed. If the selected product

is a tender item, then as the details of the product are displayed, a field will also be shown in which to enter your offer
(your tender amount).

Buying or Bidding for a Product

The first column in the search results list will contain a link named Bid or Buy. Click this link to purchase a sale item
(buy) or bid for a tender item. If you are buying a product item, it will be added to your shopping cart immediately. If the
selected product is a tender item, the details of the product will be displayed and a field will also be shown, in which to
enter your offer (your tender amount).

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part2 User Guide 38

After entering your offer, click the Buy/Bid button and the tender will then be added to your shopping cart. To return to
the search results list, click the List button. To go to the checkout, click the Checkout button.

Product Details/Tender

When a product is selected in the search results list by clicking the product name, more-detailed information about the
product item will be shown. Click the List button to revert to the search results list.

B <—EII 3 Erewhon Investments In {—|— N

— O %
&< = O @ @ | localhost/HTML/jadehttp.dl?Webshop +r o T
Welcome, Howard Ellis - You have 0 items in your shopping cart. erew h on

Code DEST0038
search Description:
Trek the moon's frozen lakes and hit
Country / Region: the longest golf drives ever!
[— Select — v]
Product Category:
__Holidays e
) Available: 1/01/2000
8 IFtletallfIten_;s " Close date: 1/07/2000
ems for Tender -
O All ltems Price: 52,000,000.00-
Lower price range: Agent: Petra Petrovski

Upper price range:

Enter the amount of your Tender:

f That Tender offer is below the item's reserve price.
ade

If the product item is a tender item, the details of the product will include a field in which to enter your offer (your tender
amount).

Clicking the Reset button with the product details in view will cause the product details to be replaced with an empty
search results list and the search criteria will also default to their original settings. If the Search button is clicked with a
product's details displayed, the details will be replaced with the new search results list.

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part2 User Guide 39

Checkout

The checkout is the final confirmation of your shopping cart before proceeding with the transaction of purchasing sale
items or submitting any bids for tender items, or both purchasing sale items and submitting any bids for tender items.

& = ‘ 3 Erewhon Investments In l aF o = O bd
< > | 0| & @ | localhost/HTML jadehttp.dil?webshop e ~ 7 8
Welcome, Howard Ellis - You have 3 items in your shopping cart. erew h on
[Transaction Code Product Price Bid
Remove |Retail DEST0024 ISouthern France $3,995.00
Remove |Retail DEST0032 Loch Water Tours $3,599.00
Remove [Tender DEST1021 et Flights $10,999.00 $12,500.00
C To remove an item fom the Shopping Cart, click its 'Remove’ link.
= jade

To remove any unwanted items from the shopping cart at this point, click the Remove link (underlined) in the first
column of the item's row. To remove all of the items in the shopping cart, click the Empty button. If you want to return
to the Product Search form, click the Back button. To initiate the final processing of the shopping cart, click the
Proceed button. A list of the bought and tendered items will then be displayed, so that you can review the transaction.

Tender Closure Application

The Tender Closure application runs the processing that converts the highest tenders for sale items into actual sales.
It does this by processing all tender items at a specific date, and if the tender item's closure date is on or prior to the
specified date and the item is not sold, the highest tender offer is converted into a sale. Typically, such an operation
would be implemented as a batch (separate) process that runs outside the main applications (for example, it can be
implemented as a separate application that schedules the processing to be run once a day, late at night), which is why
we have implemented this processing in a separate application.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part2 User Guide 40

The application has only one form, shown in the following image.

Close Tenders ot

Cloze Tenders as at Cument Date

Tenderz cloged: 0 Cloze Mow

Simulate Daily Tender Clozures

Initial Closure Date 2440742023 Start
Perform D aily Clozsure eveny: [minutes) Stop

Closure date for last interval. Mone

Tenders closed in last interval: 0
Exit

Enter the date in the Close tenders as at date text box at which tenders are to be closed. Any unsold tender items
with a closure date on or prior to this date will be processed.

To process tenders immediately, click the Close Now button. The operation will start and when it completes, the
number of closed tender items will be displayed. The application also gives an example of how to use Jade timers to
schedule processing. Enter a number of minutes in the Closure interval text box and then click the Start button. This
will start a timer that counts down from the specified number of minutes, with progress being displayed at the bottom of
the form.

When the time period expires, any unsold tender items with a closure date on or prior to the date specified in the Close
tenders as at date text box will be processed. The number of closed tender items will be displayed. The closure date
will then advance one day and the timer will restart from the specified number of minutes. This allows you to simulate
the scheduling of the operation to run once a day. To stop the timer, click the Stop button (which is enabled only when
the timer is active). To shut down the application, click the Exit button.

WP_Erewhon - 2022.0.04

Part 3 Model Implementation

This section describes the model entity classes that implement the core object model of the Erewhon Investments
system. All of these classes are defined in ErewhoninvestmentsModelSchema and they inherit from a common
superclass, ModelEntity, as follows.

® ModelEntity (abstract)

o Address
o Agent
o Client

o Company
o CommissionRate

o Location (abstract)
— Country
— Region
o Sale (abstract)
— RetailSale
— TenderSale
o Saleltem (abstract)
— RetailSaleltem
— TenderSaleltem

o SaleltemCategory
o Tender

Diagrams describe the relationships between these classes, followed by an overview of each concrete class. For
more details, see the following subsections.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part3 Model Implementation 42

Locations

The following diagram describes the relationships between Location, Country, and Region and their related
ModelEntity classes.

Location

+ name

Region
+ createl)
. + documentSelfRTF()
+ getCountryAndRegionMNames()

l l | T _i'!l.'.l.l.;".';.l..;;'."l"l'ég:"

updatej)

1SetProps()
.
0. 1
1 0.*
Com pany Saleltem
1 0..*

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part3 Model Implementation

Agents and Commission Rates

The following diagram describes the relationships between Agent and CommissionRate, and their related
ModelEntity classes.

Address

Agent

+

name

+ + + + + + + +

addCommissionRate()
create()
documentSelfRTF()
getAllSalesi)

getCommissionRateForCategory(

getDebugString()
getNameString()

update()
zCollAddExceptionHandler({)

Company

0.*
0.*

CommissionRate

1\\1

+ percentage

clearAllAgents()
create()
getDebugString()

update()

+ + + +

zSetProps()

SaleltemCategory

0.*

Saleltem

43

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part3 Model Implementation

Sales and Clients

The following diagram describes the relationships between Sale (and subclasses), Saleltem (and subclasses), Client
and Tender, and their related ModelEntity classes.

Address
]
1 | 1 1
|1
Agent Company
— 11—
0.* 1 1
Client
\1 name
\ + create()
+ createTender()
\ + getAllSales()
+ getDebugString()
\ + update()
\ \
0.* \ 0.* 1
Saleltem
+ getDate()
+ zCalculateAgentCommission()

RetailSaleltem

price
timeStamp

getDa '.Ié--;)
getDebugString()

\

TenderSaleltem

+
+ petD
+
+

getTi

create()

getDeb

Jade Reference Diagram

The following diagram describes the Jade implementation of the relationships described above. In Jade, a two-way
relationship is implemented by defining an inverse between two reference properties. Single-value references are
used to implement the "one" side of a relationship; collection references are used to implement the "many" side. In this
way, one-to-one, one-to-many, and many-to-many relationships can be implemented.

44

Sale

agentCommission

+ getDate()

zCalculateAgentCommission()

/

t\

TenderSale RetailSale
+ create() price
+ getDate() timeStamp
+ ebugString() N -
N + create()
+ getDate()
+ getDebugString()

Tender

offer
timeStamp

[T

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part3 Model Implementation 45

This diagram has an example of at least one relationship of each cardinality. Cardinalities are represented by the
standard UML syntax, except that P and C represent a parent/child relationship, where P is the parent.

Company

P 1

0..*
C 0..*
Agent Sale
0..*
0..*
CommissionRate TenderSale Tender

Agent

Agents represent users of the system who bring in items for sale. These items can be offered for retail sale or for sale
by tender. An agent can have many items for sale at any one time. For each sale item category in the system, an agent
operates at one (and only one) commission rate. The commission rate from which an agent is operating for a category
determines the percentage of each sale from the category that an agent takes as commission.

Client

Clients represent users of the system who log on to search for and purchase items. Clients can purchase retail items
immediately, or place bids on items offered for sale by tender. Once a tender sale item is closed, the highest tender is
converted into a sale for the client. Clients know about all sales in which they have been involved, and all tender offers
they have made.

Company

A single instance of Company provides the root object for the system. We assume only one persistent company
instance at any one time and the create (constructor) method of Company enforces this. Company represents the
top of the parent-child reference hierarchy, and provides collections through which we can navigate to all other objects
in the system.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part3 Model Implementation 46

Commission Rate

One or more commission rates can exist for each sale item category. Each commission rate can have multiple agents
operating from it. A commission rate determines the percentage commission its agents make on sales from the
commission rate's category.

Country

Countries provide a means of grouping and organizing geographical regions. Each country can have multiple regions
defined for it and as such, may or may not represent an actual country; for example, a continent that has relatively few
regions may be counted as a country.

Region

Regions provide a means of grouping sale items into geographical areas. Each region is owned by a country and can
have multiple sale items located in it.

Retail Sale

Retail sale objects model sales of retail items. Each retail sale has a price and a time stamp, and inherits its client, sale
item, and company references from the Sale class. A retail sale knows the item that was sold and the client to whom it
was sold. The agent's commission on the sale is calculated at the time the sale is created.

Tender Sale

Tender sales represent sales of items offered for sale by tender. A tender sale is created when the closure date on a
tender sale item has passed, and the highest tender is accepted and converted into a sale. Each tender sale knows
the item sold, the client to whom it was sold, and the winning tender object. The agent's commission on the sale is
calculated at the time the sale is created.

Retail Sale Item

Instances of this class represent items offered for retail sale. All items are owned by the company and are organized
into categories and geographical regions. Each item knows the agent who brought it in for sale. All sale items have a
two-part code consisting of a string prefix followed by an integer number. The prefix is supplied by the application,
while the number is allocated automatically when an item is created. Items can also hold a 200 by 200 pixel image of
themselves.

Once an item has been sold, its mySale property refers to the sale in which it is involved. If mySale is not assigned
(that s, it has a null value), the item is not yet sold.

Tender Sale Iltem

Instances of this class represent items offered for sale by tender. All items are owned by the company and are
organized into categories and geographical regions. Each item knows the agent who brought it in for sale. All sale
items have a two-part code consisting of a string prefix followed by an integer number. The prefix is supplied by the
application, while the number is allocated automatically when an item is created. Items can also hold a 200 by 200
pixel image of themselves.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part3 Model Implementation 47

A tender sale item has a minimum (reserve) price, offers below which will not be accepted. The item's closure date

indicates the date at which bidding will stop. At this date, the highest tender is accepted and a sale is created for the
item. A tender sale item knows all bids that have been made for it. Once an item has been sold, its mySale property
refers to the sale in which it is involved. If mySale is not assigned (that is, it has a null value), the item is not yet sold.

Sale Iltem Category

Sale item categories allow items to be grouped into logical categories. All categories are owned by the Company
object.

Categories also hold all of the commission rates at which agents can operate for sale items belonging to the category.

Tender

Tender objects represent bids made by clients on items offered for tender sale. A tender holds the offer price and time
stamp of the bid, as well as the client who made the bid and the item for which they have tendered. If a tender is
accepted when bidding for an item is closed, a tender sale object is created and myTenderSale will be set to this
object. If myTenderSale is non-null after bidding on the tender's item has closed, it means that the tenderer won the
item.

WP_Erewhon - 2022.0.04

Part 4 Design Considerations

This section discusses some of the design issues considered during implementation of the Erewhon Investments
demonstration system. It focuses on those we feel are most important, and as such should not be seen as an
exhaustive discussion of all design issues. What we propose in this document are guidelines.

We have tried to illustrate as many points as we can in the Erewhon system, without making it too complex. At the
same time, it is intended to be a working multiuser system that deals with a number of issues encountered when
building production applications. This is essential to illustrate the rationale of our design decisions.

What we're trying to stress are the design issues themselves, or themes. The demonstration system is just one
possible implementation. There are undoubtedly many other ways of addressing the problems we shall discuss. We
have tried to keep things as straightforward as possible to make it easier for those new to Jade, but without trivializing
the points.

The main thing to take away from this document is an awareness of some of the issues that should be considered
early on in a development project.

For details about design considerations, see the following subsections.

Conventions

Before we get underway, we should point out some of the conventions used in the Erewhon system. These should be
seen as guidelines only, as several are subject to personal preference.

m All protected property and method names start with a lower case z. We use this to distinguish them from public
features, and to force them to appear at the end of property and method lists.

m Single-value (that is, non-collection) references are prefixed with my.
® Multi-value (that is, collection) references are prefixed with all.

m Global constants are used extensively for such things as error numbers, application names, and version
numbers. From the Browse menu in Jade, select Global Constants command to view the global constants for a
schema.

m Except for development, testing, or peripheral methods, literal strings are not used in code. Instead, strings are
defined as translatable strings. To view translatable strings for a schema in Jade, select the Strings command
from the Schema menu.

® Ingeneral, we prefer to make properties read-only rather than implement get methods for them (see "Model
Operations", later in this document).

Models, Views, and Controllers

The Model, View, Controller architecture (MVC) was popularized by Smalltalk. It divides a system into an underlying
model, any number of different views of the model, and controllers that synchronize interaction between the model
and the views. MVC makes it possible to concentrate on the essentials of a system (the model), and add the
application and user interface layers independently. There can be many different view and controller pairs for each
model; the intention is that views and controllers can be modified extensively with little or no change in the model.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 49

For many systems, though, the role of the controller is small, with little or no distinction between views and controllers
in terms of implementation. While they always represent distinct concepts, often they are implemented as one. Views
can take responsibility for their own synchronization and sometimes the model provides synchronization services. The
Erewhon system is an example of this. In such cases, we can simply refer to the Model and the Views (MV).

Model and View Separation

The model and views have been separated into their own schemas (which are discussed in the following section). This
makes explicit the distinction between the model and its views.

The model should focus on the problem (or business) domain. The question to start with is "How do we best model the
business operations?". By separating the model from the views, the model can be made more independent of
application-level and user interface requirements. Separating the model allows you to build a more-stable base, since
the business domain (which the model represents) is generally less likely to change than the application layers or the
user interface, or both the application layers and the user interface. A well-defined model can support several
applications. For example, in the Erewhon system we have one model schema, with the view schema defining four
applications that run over this model.

We have used subschemas in Jade to separate the model from the views. It allows for a cleaner, more well-defined
design and implementation. It also means that separate development teams can more easily work on separate parts
of the system, but still within the same single Jade environment. Separating the views from the model by packaging
them in their own schemas prevents the model schema from becoming cluttered with user interface implementation,
and means that the model schema can support many different views. It also makes it easier to identify the services
provided by the model.

Schemas

A schema is the highest-level organizational structure in Jade and represents the object model for a specific domain.
A schemais a logical grouping of classes, together with their associated methods and properties. These effectively
define the object model upon which applications are based. The appearance and functionality of applications in a
schema can differ, but they all share the underlying object model defined by the schema. Jade provides the
RootSchema, which is always at the top of the schema hierarchy. The RootSchema provides essential system
classes that are available to all subschemas.

The schemas that make up the Erewhon Investments system are shown in the following image of the Jade Schema
Browser window.

_ 0O x
Schema Browser
Root=chema
Commaon=chems

—I=] ErevvhonimvestmentshodelSchema
(=] Erewhoninvestments'viewSchema

=] SelfDocumentorschema
1= | WehZerviceConsumer

The schema hierarchy is analogous to a class hierarchy and similar terminology is used. For example,
ErewhoninvestmentsModelSchema is a subschema of CommonSchema, and
ErewhonlnvestmentsViewSchema is a subschema of ErewhonlnvestmentsModelSchema. Subschemas inherit
all the classes, methods, and properties that are defined in their superschemas. Therefore, all schemas in the
Erewhon system inherit the entities defined in the CommonSchema.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 50

The system is implemented in three main schemas and two supplementary schemas, as follows.

CommonSchema

This inherits from RootSchema and provides common services for all of its subschemas. Services include common
exception-handling methods on the GCommonSchema class and a selection of subclassed controls, including a date
text box and collection viewer list box.

ErewhonlnvestmentsModelSchema

This schema implements the model for the system. All classes for which persistent objects are created are defined in
this schema as subclasses of ModelEntity. The schema also implements a number of classes that provide services to
the views including transaction agents and order proxies. A number of utility JadeScript methods are provided in this
schema for development and testing use, such as methods to initialize the database.

ErewhonlnvestmentsViewSchema

This schema implements the views or applications that run over the model. The entire user interface is implemented in
this schema. The schema defines six applications.

® Administration is a back-office application that company staff and agents can use to administer the system. Itis
expected that this application would be deployed on a mixture of standard clients and Jade (smart) thin clients.

= ErewhonShop is a front-office application that clients will use to search the items for sale, and to buy or bid on
items. It is expected that this application would be deployed on Jade thin clients, but the application can
obviously be run on standard clients as well.

m WebShop is a web application server that allows clients to search, buy, and bid on items from within a web
browser. It provides similar functionality to the ErewhonShop application but with a slightly different interface for
web browsers.

® The TenderClosureApp closes all sale items open for tender if their closure date is at or prior to a specified
date. The application closes each tender sale item and accepts the highest bid.

You can specify a timer interval so that the operation is performed automatically on a regular basis. We expect
that one copy of this application would run on a standard client (possibly on the same machine as the server) and
would be set to run the operation at a time when activity is low.

= WebServiceOverHttpApp and WebServiceOverTcpApp are applications that demonstrate Jade's web
service provider capabilities. For details, see the SOAP Web Services white paper (which is also available from
the Jade website at https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers).

The view schema also extends model classes by adding methods to them in the view schema. For example, display
and getSearchResultString methods are added to ModelEntity subclasses in the view schema.

SelfDocumentorSchema

This schema demonstrates Jade interfaces and Jade packages by exporting a framework that allows objects to
document themselves. Refer to the FormDocumentorSetup form in the ErewhoninvestmentsViewSchema, to see
how this package and the interface that it exports is used.

The btnShow_click method on the form invokes the package. This form can be accessed by running the
Administration application from the view schema and selecting the Misc | Show Details via Interface menu item.

WP_Erewhon - 2022.0.04

WP_SOAPWebServices.pdf
https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 51

WebServiceConsumer

This schema demonstrates Jade's web service consumer capabilities. For details, see the SOAP Web Services white
paper (which is also available from the Jade website at https://www.jadeworld.com/jade-platform/developer-
centre/documentation/white-papers).

Transaction Separation

The TransactionAgent class in the model schema provides activity methods that implement all transactions in the
model. Except for development or peripheral tasks (for example, initializing the database), there are no other places in
the model that begin or commit transactions. Our views also should rarely (if ever) begin and commit their own
transactions. Rather, transaction methods should be added to the TransactionAgent in the model, or to the
TransactionAgent subschema copy class in the view schemas.

Transactions are a concept in their own right. A transaction brackets one or more model operations into one activity
(logical unit of work) bounded by begin transaction, and commit or abort transaction. Each operation in the model
should generally not be responsible for going into and out of transaction state, as this is error-prone and reduces the
flexibility by which operations can be combined into transactions or activities.

Itis important to recognize that transactions are application-defined. The application requirements determine the
boundaries of a transaction, as it is the application that determines what is a logical unit of work. In the Erewhon
system, we have defined the TransactionAgent class in the model schema because we have only one set of
transactions for the views. We thought it made the system an easier example to understand if the transaction methods
were defined in the model schema along with the operations that they call. However, it is important to note that
although they are located in the same schema, the transaction methods are distinct from the model. They are
determined by the requirements of the applications in the view schema.

Indeed, for a larger system, it may be appropriate to implement transactions in their own subschema between the
model and the views. Alternatively, each view can implement its own TransactionAgent class (or an equivalent
mechanism). For systems with many transactions or complex transactions, creating several specialized
TransactionAgent (or equivalent) subclasses is an approach worth considering. Some systems even go as far as
defining classes to represent individual transactions. The technique that you adopt depends on the specific
requirements of your application.

Separating out transactions in this way brings several benefits, as follows.

= Transaction code is centralized.

m Model operations do not have to worry about beginning, committing, or aborting transactions.

m Model operations can be more-easily combined into different transactions or activities.

®m |t provides a centralized layer for enforcing certain lock policies.

m |t provides a layer to encapsulate exception handling.

Model Operations

Operations in the model should be based on business application requirements. In
ErewhonlInvestmentsModelSchema, operations are implemented as methods on the ModelEntity subclasses.

WP_Erewhon - 2022.0.04

WP_SOAPWebServices.pdf
https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers
https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 52

We have avoided unconditionally defining get and set methods for all ModelEntity subclass properties. It is not
uncommon for projects (almost religiously) to insist on defining all properties as protected and implementing public get
and set methods. However, this tends to overlook certain higher-level Jade concepts that provide an effective
alternative without sacrificing encapsulation or flexibility, and with lower runtime overhead. In general, we have
defined properties that are part of the public interface of a class as read-only, for the following reasons.

m Aproperty, when accessed in the Jade language, is already equivalent both conceptually and in reality to a pair
of related get and set operations implemented by the Jade Object Manager. When you refer to a property using
the Jade language, you are doing so via the default get and set operations provided by the Object Manager;
never directly.

m The access option for a property defines which of the implicit get and set operations are part of the public
interface of the class; protected implies none, read-only implies get only, and public implies both.

m [fyou insist on defining and writing get method wrappers for all properties that simply return the property value,
this does not really increase encapsulation. All it does is incur the unnecessary runtime overhead of dynamic
binding and method dispatch.

Itis accepted, though, that for implementation encapsulation (that is, information hiding) get methods are appropriate.
However, these should be identified on a case-by-case basis. For example, the Sale class in
ErewhonlnvestmentsModelSchema implements a getAgentCommission method that simply returns the value of
the zZAgentCommission property. The implementation of sale commissions has in fact changed a couple of times
from being a value derived when the get is requested, to being a value calculated and stored on the sale when it is
created. These changes indicate that in this case, having a get wrapper for the agent commission is warranted but
implementing a getName method on Address, for example, instead of simply defining name as read-only would
seem heavy-handed.

®m |fyou ever need to redefine the behavior of the implicit get or set operations (without changing the type of the
property), Jade has the solution: mapping methods. These can be added at any time, so there is no loss of
flexibility.

®m The read-only option stillimposes the discipline whereby only the methods defined in a class (the
implementation) can change the state of its instances (the desirable level of encapsulation).

Unconditionally defining set operations for all properties defeats encapsulation, as it exposes every property to
updates from any other class. This can also give rise to update order dependencies, as the order in which properties
are set cannot be controlled if they can be set from anywhere. It is common to set references individually and to set
groups of attributes (that is, properties other than references) in a single call. This is what we have implemented in the
Erewhon system (see the update methods on the ModelEntity subclasses).

Bear in mind that our decision to implement a single update method for attributes on some classes was based on our
business/application requirements. Those classes implementing a single update method for attributes represent
low-volatility data that will be updated one object at a time from the views. However, imagine, for example, that we
have to support a frequent (albeit fictitious) transaction that requires updating just the e-mail address on all Address
objects. It would make sense in this case to have an individual setEmail method rather than passing all attribute
values to update, knowing that only the e-mail address is going to change. The key point is to determine what set or
update methods you need, and how many properties each of them update, based on the transactions and operations
your model must support.

Be wary of defining set or update methods for each class that set all of its properties (attributes and references, as
opposed to just attributes) in one call. An exception to this is when an object is first created. For object creation, it is
often useful to have a method that sets all properties in one call. The model schema does this by implementing a
create method on ModelEntity subclasses. This method is to be invoked only when an entity is first created. For
updates to existing objects, setting all attributes (that is, properties other than references) in one method is common,
but setting references should be considered more carefully. The Erewhon model schema implements an update
method on several ModelEntity subclasses that sets all attributes only.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 53

The decision as to what references can be updated (after an object has been created) should be based on
business/application requirements. Methods should be defined that represent the operations to be performed, rather
than just implementing methods that set all references at once. Having such generic methods makes model
operations less clear, reduces encapsulation, and can introduce update order dependencies (increasing the chance of
deadlocks). Typically, changing a single reference is a single operation. Of course, that does not exclude the
possibility of operations that need to change multiple references. However, methods that do this should be the
exception, not the rule.

ModelEntity classes implement specific operations to change those references to which updates are permitted; for
example:

= Agent::addCommissionRate
= CommissionRate::clearAllAgents
= Saleltem::updateCategory

= Saleltem::updateRegion

Exception Handling

Exception handlers are an effective means of encapsulating code for handling unexpected or infrequent errors. Within
a transaction, exception handlers are often responsible for restoring things to a consistent state if something goes
wrong (usually by aborting the transaction). They are useful for efficiently guarding against invalid object references
on an exception basis, rather than always checking the validity of an object in-line (which can require more round trips
to the server and defeat caching).

For a discussion of exception handling in Jade, see the Jade Exception Handling white paper (which is also available
from the Jade website at https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers).

Exception handling is used extensively in the Erewhon system. Some examples are:

® TransactionAgent methods arm handlers to catch exceptions and translate them into error numbers that are
returned to the views. This shields the views from having to implement their own exception handling around
transaction requests. For examples of this, look at any TransactionAgent method, the TransactionAgent
zExceptionHandler, zLockExceptionHandler, zSilentLockExceptionHandler methods, and the
ActivityAgent zRegisterObjectAndErrorCode method.

= The model schema Application subclass ErewhoninvestementsModelApp::initialize method arms a generic
global exception handler and a generic global lock exception handler that are used to catch any exceptions not
caught locally. The GCommonSchema class in CommonSchema provides both of these exception handler
methods. The commonExceptionHandler method gives an example of a simple generic exception handler and
the commonLockExceptionHandler gives an example of a lock exception handler. The view schema
GErewhoniInvestmentsViewSchema class reimplements the commonExceptionHandler method to perform
some exception handling specifically for the WebShop application.

® The ModelEntity class implements zCollAddExceptionHandler to safely add an object to a collection when it is
already there and zColIRemoveExceptionHandler to safely remove an object from a collection when it is not
there. To see uses of these methods, select them in the Class Browser window in Jade and then select
References from the Methods menu.

® The FormClientApp class in the view schema implements a zinvalidObjectExHandler method that catches all
invalid object or deleted object exceptions and redisplays the current form. This exception handler is armed at
the start of FormClientApp subclass event methods.

WP_Erewhon - 2022.0.04

WP_ExceptionHandling.pdf
https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 54

Cache Synchronization

When an application references a persistent object, Jade first looks to see if the object is resident in local cache. Ifit s,
the cached object is used for the current operation. If the object is not in cache, it is fetched from the server, brought
into cache, and used for the current operation. Once an object has been brought into cache, it is available for use in
subsequent operations. Objects do not exist in cache indefinitely. Jade can discard objects from cache when required,
to make space for objects being brought into cache. Jade also provides facilities for you to manually discard objects.
When an object is discarded, the next reference to it will cause it to be fetched again from the server. In a multiuser
system, a locally cached object can be made obsolete when another user updates it. A caching strategy is necessary
to keep locally cached objects synchronized with the database, when required.

The Erewhon Investments applications are multiuser and therefore require a caching strategy. A good caching
strategy ensures that the objects stored in local cache are the latest editions where necessary, and that this is
maintained with the minimum amount of network and processing activity.

An application that makes efficient use of cache will have significant performance advantages over one that does not,
as Jade's use of cache is one of its key strengths. A caching strategy comprises all of the mechanisms you use to
synchronize local cache with the Jade database.

In the Erewhon Investments system, we have the following considerations.

= While Jade has facilities for developers to manually request that objects be resynchronized in local cache, the
automatic cache coherency provided by Jade makes life much easier for developers, and Erewhon takes
advantage of this feature. Readers familiar with earlier versions of Erewhon will notice how much code the
automatic cache coherency eliminates!

Automatic cache coherency is enabled by adding the following lines to the Jade initialization file (an example
jade.ini file for the Erewhon system is provided in examples/erewhon/erewhonjade.ini).

[JadeServer]
AutomaticCacheCoherencyDefault=true
AutomaticCacheCoherency=ServerDefault

[JadeClient]
AutomaticCacheCoherency=ServerDefault

With automatic cache coherency enabled, objects updated in other nodes (database server, application servers,
background nodes, or standard clients) are automatically reloaded in local cache.

®m Each operation in the model (that is, methods defined on ModelEntity classes) must handle its own integrity
locking. By integrity locking, we mean that each operation is responsible for locking those objects of which it
requires the latest editions in order to ensure data integrity. Each method assumes responsibility for its own
integrity so that the operation is safe, regardless of the context in which it is invoked. Any synchronization locking
(that is, locking specifically to serialize transactions) will be done in the respective transaction methods; for
example:

TransactionAgent::trxCloseTendersAtDate

® Any TransactionAgent method that allows an object to be updated must provide a mechanism for the caller to
request that it performs an edition check. This allows the TransactionAgent method to verify, on behalf of the
caller, that the expected edition of the object is being updated.

m QOutside of TransactionAgent methods, we are concerned primarily with ensuring that application forms are
kept synchronized when objects that they are viewing change and that we have the latest edition of an object
before comparing it against search criteria.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 55

We have made use of several mechanisms to implement our caching strategy, in order to illustrate some of the
approaches available to you in Jade:

m Automatic cache coherency

= |istCollection

= CollectionListBox subclassed control
m Object notifications

m Edition checking

These are discussed in the following sections.

listCollection

The listCollection method of the ListBox and ComboBox classes (provided by the RootSchema) enables list box
or combo box controls to have a collection attached to them. Logic attaches the collection to the list box or combo box
by using the listCollection method. If you use this method to attach a collection to a list box or combo box, little is
required to load entries into the list.

If the list box is not sorted, an entry is retrieved from the collection only when it is to be displayed or accessed by logic.
Only a few entries from the collection are therefore initially accessed, instead of the entire contents of the collection
(though if the list box is sorted, every element in the collection must be accessed). However, as you scroll through the
collection, list box entries are not discarded, which means that for large collections, the list box can contain an
unacceptably large number of entries. For this reason, listCollection should be used only for small collections that will
never contain too many items.

When you call listCollection, you specify true or false for an update parameter. If the update parameter in the
listCollection method is true:

m Deleting the collection results in the list box or combo box being cleared and the collection is no longer
associated with the list box or combo box.

® Any changes to the collection cause the contents of the list box or combo box to be discarded and the collection
is rebuilt to the current display point (the current entry is reselected if it still exists).

If the update parameter is set to false, the list box or combo box is not updated and can contain out-of-date
information.

The view schema makes use of listCollection in several of its forms (for example, the zlnitialize method of
FormCommissionRate and FormLocationsList). By setting the update parameter to true, the individual controls
handle synchronization of the data they are displaying.

Note We assume that we will never have a large number of commission rates and locations. If this were not the
case, use of the default listCollection would not be appropriate.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 56

CollectionListBox Class

The CollectionListBox class in the CommonSchema presents an example of a subclassed control. It implements a
ListBox subclass that can view a collection in subsets of its members. It implements the listCollection method
(described earlier in this document) so that it presents the same interface as standard Jade list boxes and combo
boxes. Once a collection has been registered with the CollectionListBox (using listCollection), it takes care of
loading elements from the collection as required, depending on the scroll position (the entire collection is not loaded).
As you scroll through a collection, members of the list box that are no longer visible are discarded. In this way, the
CollectionListBox can view collections containing thousands of items without the actual list box contents ever
growing to be too large. The CollectionListBox will register notifications on the collection and the members displayed
in the list, so that it can automatically synchronize itself if they change.

While the CollectionListBox is capable of viewing very large collections, if the collection is very big, the time taken for
the list box to position itself in the collection when scrolling can become quite noticeable. However, this occurs only
with collections of thousands of elements and you would have to question the appropriateness of displaying that many
entries in a list box in the first place.

Forms in the view schema make good use of the CollectionListBox to display information (for example,
FormAgentClientList and FormSaleltemCategoryList). By using CollectionListBox, the forms do not need to
worry about synchronizing this information. They can let the list box do it.

Object Notifications

If there are individual objects for which you want to implement specific behavior when they change (such as updating a
view), you can use object notifications to manage that part of your caching strategy.

The CollectionListBox control class (described earlier in this document) in the CommonSchema uses object
notifications to be informed of updates to objects that it is displaying, so that it can update itself if they change.

The CollectionListBox class begins object notifications in its zLoadSubset, zLoadSubsetReversed, and
zSetCollection methods. An example is:

if showUpdates then
// We want to be told about changes to this object
beginNotification (obj, Object Update Event, Response Continuous,
NotifyInstanceUpdate) ;
endif;

If the obj object is changed, the list box will receive a notification upon which it can update itself. Jade calls the
sysNotification method when the notification is received.

Edition Checking

There are several forms in the Administration application that present an object to the user, enabling them to edit it.
In a multiuser application, we must guarantee integrity by preventing two users from editing the same object at the
same time, or by preventing the changes of one user being overwritten by the changes of another (who may have
made his or her changes based on an obsolete object). There are several approaches, as follows.

m Share lock the object being edited as soon as the form is displayed. When the user goes to commit his or her
changes, try to get an exclusive lock. If the exclusive lock cannot be obtained, display an error. This approach
presents the problem that the object might be locked for a long period (for example, if the user takes a long time
to make his or her changes, or goes out to lunch with the form open). It could also deadlock if two users, who
both hold a share lock for an object, try to commit their changes at the same time (as neither user will be able to
upgrade his or her share lock to an exclusive lock in order to update the object).

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 57

m Reserve lock the object during form initialization. This allows other users read access, but only we can upgrade
the lock to an exclusive lock (which means that only we can update the object). Until we do so, other processes
can still read the object. As with the share lock, this approach means that the object might be locked for a long
period.

m Share lock and unlock, or resynchronize, the object during form initialization, and register a notification on it. If a
notification is received while the user is editing, we display a message saying the object has been changed and
discard the user's updates. The uses must start editing again. This approach introduces a timing hole in that a
user may be able to commit his or her changes before the notification of an update arrives at the client from the
server.

m Use edition checking (described in the following list). We have used this approach in the Erewhon system.

When presenting the user with a form to edit an object, the view does not keep a lock on the object in order to prevent
it from being locked for a long period (potentially impacting concurrency). The form resynchronizes the object it is
editing when it initializes using the resynchObject method (see FormBase::zResynchObjectAndGetEdition in
ErewhonInvestmentsViewSchema).

We cannot allow an update to proceed if the object on which the user based his or her update is no longer current. We
use edition checking to implement this, as follows.

1. The zResynchObjectAndGetEdition method synchronizes the object and saves its edition on the form.

2. When the form calls the required TransactionAgent method to perform the update, it passes in the saved
edition (for example, see FormAgent::zDoAction and FormClient::zDoAction).

3. Each TransactionAgent method that receives a non-zero edition parameter first obtains an exclusive lock on
the object to be updated. This brings the latest edition of the object into cache and locks it, thus preventing other
users from updating it. We exclusively lock the object because we know we are about to update it. If the supplied
edition is not equal to the latest edition of the object, we know that another user has changed it and we return
ObjectOutOfDate to the caller. For examples of this, see the TransactionAgent methods trxUpdateAgent and
trxUpdateClient in the model schema.

This approach gives us a good balance between ensuring that we do not process an out-of-date object, without
requiring that the object be locked for the whole time the user is in the edit dialog.

Synchronization of Shop Views

The two shop views (all subclasses of FormClientApp in the view schema) implement searching and shopping cart
facilities. Both of these features hold references to persistent ModelEntity objects during the session. As the shop
view can be deployed on the web, we do not want to rely on notifications to synchronize the view. The shop views deal
mainly with sale items, clients, categories, and locations. We expect such objects to be deleted only rarely, so have
adopted a fairly straightforward approach of using exception handlers to trap object-not-found and object-deleted
exceptions.

Each event method on FormClientApp and its subclasses arms a local exception handler at the start of the method. It
then calls a non-event method to do the processing. If an invalid object is encountered, the exception simply resets the
form, gives the user a message, and then resumes. For an example of this, see the
FormClientSaleltems::btnResultsDetails_click and FormClientApp::zinvalidObjectExHandler methods.

Any exceptions not caught locally will be caught by the commonExceptionHandler method implemented in the
GCommonSchema class. This exception handler method is armed globally when an application starts. The view
schema reimplements this method in its GErewhoninvestmentsViewSchema class. For non-web applications, this
reimplementation inherits the default behavior, which logs the exception and displays an error message box. For web
applications, it simply aborts the current transaction and redisplays the last page.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 58

Locking

Transactions protect against inconsistencies that can occur if something goes wrong within the transaction itself, but
they can do so only within a single thread of execution. Whenever two or more database transactions are operating at
the same time, there is the risk that they may interfere with each other by modifying the same objects.

Concurrency control is necessary, and for this we use locks.

To protect against inconsistencies, Jade provides mechanisms to lock objects. In Jade, a lock does two things. Firstly,
it controls concurrent access to an object. Secondly, locking an object ensures that the latest edition of the object is
brought into local cache in the node. In the Jade language, you can use the exclusivelLock, sharedLock, and
reserveLock methods of the Object class to lock objects. The valid concurrent lock combinations are displayed in the
following table.

Exclusive Shared Reserve
Exclusive No No No
Shared No Yes Yes
Reserve No Yes No

Exclusive locks are also known as write locks and shared locks are also known as read locks.

Locks can have two durations: session and transaction. Session locks are held until the end of the session
(process/application) that acquired the lock or until the lock is explicitly released using the unlock method.
Transaction duration locks are held until the end (either commit or abort) of the next transaction (at which point all
transaction duration locks for the process are released) or until the lock is explicitly released using the unlock method
when not in transaction state (manual unlocks of transaction duration locks within a transaction are ignored).

Ignoring explicit unlocks of transaction duration locks when in transaction state and releasing all transaction duration
locks at the end of a transaction is known as two-phase locking. By doing so, Jade avoids the classic "assumed
update" problem, by not allowing a second process to update objects modified by a first process until the first process
has committed or aborted the entire transaction.

For examples of locking in the Erewhon Investments system, see the methods on the TransactionAgent class and
ModelEntity subclasses in the model schema.

Exclusive Locks

Before an object can be updated, Jade insists that it be exclusively locked. This prevents two processes from updating
the same object at the same time. An exclusive lock can be obtained only if there are no other locks in place for the
object. When you lock an object using an exclusive lock, no other process can lock (and hence update) the same
object. Jade automatically applies an exclusive lock when an object is updated. By default, updated objects are locked
automatically for the duration of the transaction.

Shared Locks

A shared lock allows several processes to simultaneously read an object but not update it. Shared locks enable
greater concurrency while ensuring that a process never works with obsolete data. If you lock an object using a shared
lock, other processes attempting to update the object or explicitly acquire an exclusive lock wait until the lock is
released, but can acquire a shared lock or a reserve lock.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 59

Reserve Locks

Areserve lock is available for situations where you intend to update an object but you need to minimize the length of
time the object is locked with an exclusive lock. When you place a reserve lock on an object, other processes
attempting to acquire an exclusive lock or reserve lock on that same object wait until the reserve lock is relinquished,
but those attempting to acquire a shared lock succeed.

Unlocking Objects

You can unlock objects manually. Use the unlock method to explicitly unlock an object. Requests to unlock
transaction duration locks when in transaction state are ignored. All transaction duration locks are held until the next
commit or abort transaction instruction, at which time they are all released, regardless of whether or not they were
explicitly released with an unlock.

Inverses and Referential Integrity

A reference is a property that contains a reference to another object; that is, it is an end-point in a one- or
two-directional relationship. The two types of reference in Jade are:

= Animplicit reference, in which an object references another object and either of the following is true.

o The referenced object does not contain a reference back to the first object.

o The referenced object contains a reference to the first object, but the two properties have not been defined
as end-points in a two-way relationship.

= Aninverse (or explicit) reference, in which two objects reference each other and the two properties have been
defined as end-points in a two-way relationship.

Inverse (or explicit) references are used in Jade to implement relationships between objects. They offer significant
advantages in that Jade will automatically handle updating one side of a relationship (an inverse reference) whenever
the other side changes. In addition, if one or both ends of a relationship is a dictionary, related elements in the
dictionary are automatically updated whenever their keys change. This helps to ensure referential integrity in your
model. In fact, in a persistent model, inverse (or explicit) references should be the rule. There should be few cases
where they are not used, and in such cases, a good reason for not using them.

In Jade, a reference can refer to a single object, or to multiple objects (via a collection). This allows you to implement
one-to-one, one-to-many, and many-to-many relationships. Relationships can be defined as peer-to-peer or
parent-child. They differ only when objects are deleted. A parent-child relationship allows you to implement a
cascading delete where all related children of a parent object are deleted when the object itself is deleted. In a
peer-to-peer relationship, when one object is deleted, all references to it in its related objects are removed (set to null).

Jade allows a reference to have multiple inverses (that is, participate in multiple relationships). In such cases, Jade will
automatically propagate updates on a single reference to multiple inverse references.

The ErewhonlInvestmentsModelSchema employs inverse references extensively. Some examples are as follows.

® One-to-One Relationships
® One-to-Many Relationships
m Many-to-Many Relationship

= Parent-Child Relationships

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4

Design Considerations 60

Multiple Inverse Relationships

Automatic Key Maintenance

One-to-One Relationships

Saleltem::mySale to Sale::mySaleltem

TenderSale::myTender to Tender::myTenderSale

One-to-Many Relationships

Company::allAgents to Agent::myCompany

SaleltemCategory::allCommissionRates to CommissionRate::mySaleltemCategory

Many-to-Many Relationship

Agent::allCommissionRates to CommissionRate::allAgents

Parent-Child Relationships

Company::aliClients to Client::myCompany (a one-to-many relationship)
Country::allRegions to Region::myCountry (a one-to-many relationship)

Parent-child relationships are what allow the JadeScript method deleteAllData to purge the database by simply
deleting the Company. Jade cascades the delete through all of the parent-child relationships in the model.

Multiple Inverse Relationships

Tender::myTenderSaleltem to TenderSaleltem::allTendersByOfferTime
Tender::myTenderSaleltem to TenderSaleltem::allTendersByTimeOffer

Whenever myTenderSaleltem is set on a Tender, the Tender is added to both the allTendersByOfferTime and
allTendersByTimeOffer dictionaries on the sale item.

Sale::myClient to Client::allTenderSales
Sale::myClient to Client::allRetailSales

These illustrate a conditional multiple inverse relationship. Whenever myClient is set on a Sale, the Sale is added to
allTenderSales on the Client if it is a tender sale (because membership of the allTenderSales dictionary is
TenderSale) and allRetailSales, if it is a retail sale (because membership of the allRetailSales dictionary is a
RetailSale).

Automatic Key Maintenance

Client::myCompany to Company::allClients

In the above one-to-many relationship, if the name of a client is changed, the allClients dictionary of the Company to
which the client is related will automatically be updated.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 61

Saleltem::myCompany to Company::allSaleltems

In the above one-to-many relationship, if the code prefix or code number of the sale item changes, the allSaleltems
dictionary of the sale item's company will automatically be updated.

Key Paths

A key path is a mechanism that enables you to define a dictionary key that is not an embedded property of the
members of the dictionary, but is instead derived from the member objects. When you define a key path, you specify a
chain of references starting from the member class and finishing at an end-point. At run time, the references are
traversed to arrive at the end-point that yields the key value. Like all dictionary keys, if the dictionary participates in a
relationship, changes to key path keys will automatically be propagated to the related dictionaries.

The ErewhonlInvestmentsModelSchema has several dictionaries that make use of keys paths. Three of them are:

= SaleByltemDict
m RetailSaleByTimeltemDict

® TenderSaleByTimeltemDict

Server Methods

The serverExecution method option indicates that the method and all methods subsequently called by this method
are to be executed at the database server node (unless they are clientExecution methods, in which case they are
executed at the node of the client calling the method).

By simply adding serverExecution to a method signature, Jade will shift execution of the method to the database
server node. This method option provides performance benefits (by reducing network traffic) when a method
accesses a large number of persistent objects in multiuser mode. The methods are executed at the node in which the
objects reside, rather than the required objects having to be passed across the network to the client node for
processing.

See the TransactionAgent::trxCloseTendersAtDate and Company::closeTendersAtDate methods in the model
schema for an example of serverExecution. These methods are used to close all open tender sale items ata
specified date, and as such, we expect that they may reference a large number of objects. As this is a batch-type
operation and there is no requirement for them to be processed at the client node, we implement this transaction as a
server method to avoid all of the tender sale items and their associated tenders and related objects having to be
brought across the network.

Server methods are great for distributing code to reduce network traffic. However, be aware of the following
restrictions.

m Transactions must be total client transactions or total server transactions; that is, any begin and commit
transaction pair of instructions must be done while executing on the client (without executing an updating server
method), or while executing on the server (without the execution of updating client methods).

®m Persistent transactions must be started, performed, and finalized at a single node. All of the update operations of
the transaction must occur in the same node that started the transaction.

® Server methods cannot invoke GUI methods.
In the ErewhonInvestmentsModelSchema, it is for the first two reasons that the InitialDataLoader loadData

method commits the first transaction before invoking the zCloseTendersAtCurrentDate method (which begins and
commits a transaction on the server).

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part4 Design Considerations 62

Tender closures are performed in a server method, so they require a separate transaction on the server. The first
transaction, which we begin on the client, must be committed on the client before we start the server transaction.

Skins

A skin is a series of images that is applied to the caption line, menu line, and border areas of each form to provide an
enhanced look and feel. The skin can also define images for most controls, to further enhance the look and feel of
forms.

Jade provides a collection of skins for the Jade Platform development environment and a global collection that
contains any user-defined skins for all schemas.

The Erewhon Administration application provides a Skins menu that is populated dynamically with the names of all
skins that are present in the system. With this menu, users can select the skin they want applied to the application. To
see how this is implemented, see the zZSetupSkinSelectMenu and mnuSkin_click methods on the FormAdminMdi
class in ErewhoninvestmentsViewSchema.

WP_Erewhon - 2022.0.04

Part 5 Transaction Agent Framework

This section discusses the recommended approach to persisting objects using the Jade Platform and it provides
examples of a Transaction Agent Framework (TAF) that you can use in your own applications.

By the end of this section, you should be able to implement all create, update, and delete functionality using a TAF in
your own Jade applications.

The code examples shown in this section are written using the 22.0.01 release version of the Jade Platform. (Code
example images enclosed in a solid (unbroken) border indicate a complete Jade method, whereas a code example
enclosed in a jagged (broken) border indicates a code fragment.)

The following table lists the acronyms (pronounced as a word), initialisms (pronounced as a series of letters that are
abbreviations derived from the letters of the words they represent), and terms used in this section.

Entity Description

CRUD Create, Read, Update, and Delete.

TA Transaction Agent.

TAF Transaction Agent Framework.

TI Transaction Implementor.

UML Unified Modeling Language.

Modify Targeted update that sets specific properties on an object.

Persistent Object that exists in the database. Also referred to as persistent storage.
object

Subordinate
object

Transaction
Agent

Child object referenced in a parent object; for example, an Invoice can contain a reference to a
Customer object and can also create its own instance of an Address object to store the shipping

address.

Customer Invoice

Subordinate Objects

ShippingAddress

Class responsible for persisting an object.

For details about the Transaction Agent Framework (TAF), see the following subsections.

Applies to Version: 2022.0.01 and higher

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 64

Best Practice Guidelines

The following table lists some recommended best practices and coding styles recommended when developing Jade
applications.

Entity Guideline

Collection references References to collections should be prefixed with all. For example, a Client class may
have a reference to a collection of sales. The reference to the Sales collection in the Client
class should be named allSales.

Global constants Global constants should be used in place of arbitrary values. For example, rather than
referring to exception 1048 (Update outside transaction), you can create an Exceptions
category for your schema in the Global Constants Browser and then create a global
constant called UpdateOutsideTransactionException with a 1048 definition. Global
constants can be accessed using the Ctrl+G keyboard shortcut.

Inverse references Inverse references automatically delete child objects when the parent object is deleted. In
most cases, the manual update is on the my reference and the automatic update is on the
all reference. (It can be useful to remember this as "M=Manual and My A=Automatic/All".)

When the single reference is updated, the collection is automatically updated. It is
recommended that you create inverse references whenever a parent object owns a child
object or collection of objects.

Object references References to objects should be prefixed with my. For example, a Sale class that contains
a reference to a Client object should be named myClient.

Property / properties ~ Generic name to represent an attribute or reference property.

Self Use the self system variable (keyword) when referencing a property, method, or control
from within the same class instance.

Separation of Methods should be responsible only for performing a specific task. If a method is

concerns performing more than one task, it may need to be split into one or more methods.

Separating logic improves code readability, unit testing activities, and debugging.

Transient objects A transient object is an object that is local to the Jade process and cannot be created or
accessed by another Jade process.

Transient objects are stored in a transient cache. When the transient cache gets full, the
least-recently used transient objects overflow to an unbound transient database. Because
this database is unbound, transient leaks can cause significant amounts of disk space to
be used. For this reason, transient objects must be manually deleted. Deleting transient
objects is usually performed in the epilog of the method that created the transient object.

Transaction Agent Framework (TAF) Overview

This section provides a basic high-level overview of the framework. Detailed examples and descriptions of the
methods used in this section are provided in later sections of this document.

® Whatis the Transaction Agent Framework (TAF)?
m Whyis a TAF Needed?
= Where Should the TAF Reside?

L How Does the TAF Work?

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 65

What is the Transaction Agent Framework (TAF)?

The Transaction Agent Framework (TAF) is a set of classes that work together to perform persistent storage of
objects.

The four main classes of the TAF are PersistentModel, ModelTA, Transactionimplementor, and BaseForm. As
the following diagram shows, these classes work together to commit transactions into a Jade database.

[BaseForm]

Contains transaction
behaviors to perform during a
beginTransaction,
commitTransaction, and
abortTrapsaction

_________________ { ModelTA

[Transactionlmplementor] [PersistentModel]
The transaction agent
responsible for
persisting an object T
The object to be
persisted

The following table summarizes the four main classes.

Class Description

PersistentModel Subclasses of this class represent the objects to persist. They could represent a
physical entity such as a Person or a concept like a Sale, which are essentially
objects being saved in the database.

ModelTA Subclasses of this class are the transaction agents responsible for performing
persistent operations. Each PersistentModel subclass requires its own transaction
agent subclass to be created. For example, when creating a transaction agent for a
Client object, the transaction agent should be named ClientTA. The ClientTA class
will contain the same properties.

Transactionlmplementor These classes are injected into various transaction agent methods through
dependency injection, to determine the type of transaction behavior to perform; for
example, begin, commit, and abort operations.

BaseForm This class contains properties and methods used to connect forms and user
interfaces with the TAF. All child forms should inherit this class, and therefore it
should be the top-level class of the Form object. The BaseForm class may not be
needed in situations where data is being persisted programmatically; for example,
when loading data from a text file or in a situation where a user interface may not be
required. For details, see "Manually Persisting an Object" under "How Does the TAF
Work?", later in this document.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 66

Why is a TAF Needed?

Software requirements are constantly changing, so new methods and properties may need to be introduced at any
stage of development. What the client initially requested is often different from their actual needs.

Due to the high possibility of change, software should be written in a way that is open for extension and closed for
modification. Simply put, we don't want to modify existing working code in order to develop additional requirements;
instead we want to extend the code base with the new logic. This is referred to as the Open/Closed Principle.

The Transaction Agent Framework does not use parameterized functions or constructors to create objects, because
adding additional parameters when requirements change is likely to cause changes that break existing code. Instead,
the TAF creates objects based on the properties stored in the transaction agent class. This method of creating objects
not only eliminates parameterized functions and constructors but allows additional properties and logic to be added
into the code base without affecting the original code.

Where Should the TAF Reside?

The TAF should be part of the Model schema (except for the BaseForm class residing in the View schema).

The following diagram shows a recommended setup of the Transaction Agent Framework in a standard Jade

application.
/\
/\

Application logic

Domain logic ————> YourApp Model Schema

Persistent object
classes live here
PersistentModel](—‘
TransientModel Transieqt object
classes live here

—>» YourApp View Schema

Views and user
interfaces

Base Form

Global form logic BaseForm

A Transactionlmplementor

Your forms —)‘ Sub Form 1

Transaction implementors

ModelTA](7Transaction agents

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 67

How Does the TAF Work?

The following diagram shows the process of a Client object being created and persisted using the TAF.

Method Calls when Creating an Object

Client Form ClientTA Client CommitTransactionTlI
BaseForm ModelTA PersistentModel Transactionlmplementor
‘ doSave()]
Key
v
‘ populate TAFromForm() H persistEntity()]
createEntity()

v

createEntityWithTransactionImplementor()

v

doPreValidate()

v

doValidate()

v

lockForCreate()] }'L doBeginTransaction()

doCreate() J(i

>){ onCreate()

setCommonProperties()

—

createSubordinateObjects() I4

(

}L doCommitTransaction()

processAfterSave() }{

Details about the methods in this diagram are described later in this document.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 68

Manually Persisting an Object

The transaction agent framework does not have to use the BaseForm class to persist objects, as it can be done
manually and may be required when creating unit tests or loading data from a text file.

To persist an object without using the BaseForm class, transaction agents need to be created as a transient object
and populated manually by setting the properties directly or by passing in an object into the ModelTA class
populateFromObject method.

The following method is an example of how to persist an entity by manually populating the transaction agent
properties.

createClienti):

vars
clientTA : ClientTh:
addre=sTA : AddressTLh:
begin
create clientTd transient;
create addressT4d transient;

clientTh.name := "Cliwve Entworth™;
addressTA. street = "555 Fake 5t.7;
addressTh.city = "Dunedin™;

addressTA. country = "New Zealand™;
addressTA.phone 1= "555 55555557
addressTA. fax 1= "555 44444447
addressTh.enail := "CliEntfE.mail"™;
addrezsTA.webh3ite = "yww,.webhzite.con™;

addrezssTA.nyModelTh = clientTh:;
clientTh.persistEntity | TransactionType Persist):
epilog

delete clientThk;
end;

The above example deletes the ClientTA transient in the epilog but does not delete the AddressTA. This is because
the AddressTA transient object will be automatically deleted because of the parent/child relationship being set when
the reference was created. One of the major benefits of the TAF is ensuring that references are always inversed
correctly.

Caution Remember to delete transient objects! Transient objects are stored in a transient cache. When the
transient cache gets full, the least-recently used transient objects overflow to an unbound transient database.
Because this database is unbound, transient leaks can cause significant amounts of disk space to be used. For this
reason, transient objects must be manually deleted, which is usually done in the epilog of the method that created the
transient object.

WP_Erewhon - 2022.0.04

Jadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 69

Creating Objects using the BaseForm Class

Persistent objects should be created using the TAF, by calling the BaseForm class doSave method.

Method Calls when Creating an Object

Client Form ClientTA Client CommitTransactionTlI
BaseForm ModelTA PersistentModel Transactionlmplementor
‘ doSave()] Key
i
‘ populate TAFromForm() persistEntity()

v

createEntity()

v

createEntityWithTransactionImplementor()

v

doPreValidate()

v

doValidate()

v

lockForCreate()] }'L doBeginTransaction()]

doCreate() J(i

>){ onCreate()

setCommonProperties()

createSubordinateObjects() I4

(

}L doCommitTransaction()

processAfterSave() }{

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 70

Updating Objects using the BaseForm Class

Updating objects is performed in exactly the same way as creating an object, by calling the doSave method on the
BaseForm class. The transaction agent will check the value of the myModelObject parameter in the persistEntity
method and perform an update if the model object value is not null.

Method Calls when Updating an Object

Client Form ClientTA Client CommitTransactionTl|
BaseForm ModelTA PersistentModel Transactionlmplementor
‘ doSave() ’ Key
v
‘ populate TAFromForm() }—4)‘ persistEntity()
e persistEntity() W|_|| perform an update
operation when
¢ the myModelObject reference in the
transaction agent (ClientTA) contains an
updateEntityWithTransactionlmplementor() object.
doPreValidate()
doValidate()
lockForUpdate() }I doBeginTransaction()
doUpdate() }Q
onUpdate() ’

v

[setCommonProperties()]

[updateSubordinateObjects() }(47

}I doCommitTransaction()

processAfterSave() }(1

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

71

Deleting Objects using the BaseForm Class

Deleting objects is performed by calling the BaseForm class doDelete method.

Method Calls when Deleting an Object

Client Form ClientTA Client CommitTransactionT]
BaseForm ModelTA PersistentModel Transactionlmplementor
‘ doDelete() ’ Key
¢ Public Method
Protected Method
‘ populate TAFromForm() }»){ persistEntity() ‘
deleteEntity() persistEntity() will perform a delete

v

deleteEntityWithTransactionimplementor()

v

doPreValidate()

v

doValidate()

v

lockForDelete()

operation when the parameter is -1. This
value is stored as the global constant
TransactionType_Delete.

doDelete()

}I doBeginTransaction()

deleteSubordinateObjects()

onDelete() J

}(47

A

}I doCommitTransaction()

processAfterDelete() }(1

Reading Data

The transaction agent is not responsible for read operations when the object does not require persistence. Objects
being used for display purposes should be retrieved using standard Jade practices.

Returning a Single Collection Item

To return a single client, you can use the Dictionary class getAtKey method and pass in the key value.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 72

The following example shows the shorthand way of calling the getAtKey method.
app.myCompany.allClients["client-name-here"];

Populating a List Box

To populate a list box with a collection of clients, you can use the following code.
self.lstClients.listCollection (app.myCompany.allClients, true, 0);

The listCollection method in the ListBox or ComboBox classes enables list box or combo box controls to have a
collection attached to them. Use the displayCollection method to automatically attach only as many entries as
required to fill the list of the control.

The differences between the listCollection method and the displayCollection method are as follows.

m The listCollection method retains all entries added to the list or combo box when the user scrolls the view.

= Forthe listCollection method, the number of entries in the list (returned by the listCount method) is logically the
size of the attached collection minus any discarded entries.

m For the displayCollection method, the listCount method returns only the number of entries that are displayed.

= The displayCollection method enables you to specify a starting object.

Populating a Table
To populate a table, use the displayCollection method, as follows.

self.tblTenders.displayCollection(self.myTendersSearch.allTenders,
false, null, null);

The value to be displayed is set in the displayRow method of the table, as shown in the following example.

thlTenders_displayRow(table: Table input:
thelheet: Integer;
pTender: Tender:
theRow: Integer:
boontinuae: Boolean io) :3tring updatineg:

begin
f# Color closed tenders red
if pTender.gertitatus() = Closed then
table, accessRow(theFow).foreColor := Red:
endif;

S# Tender item was Juccessful

if pTender.uwyTenderSale <> rull then
table,accessRow(theFow).foreColor := Green;

endif;

return pTender.getitatusi) &« Tab &
pTender.getDate (). 3tring & Tab
pTender.myTenderIten. closurelate. String & Tab &
pTender.myClient.hame & Tab &
pTender.nyTenderTten. getCode () & Space & Colon & Space & pTender.nyTenderItem.hname & Tab &
pTender.myTenderIten. price. currencyFormat|) & Tab &
pTender.offer. currencyFormat() & Tab &
pTender.nyTenderIten. nyagent. nane ;

end:

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 73

Locking Objects

You should exclusive-lock persistent objects in a consistent order, including any collections which will be updated by
automatic inverse maintenance, to avoid deadlocks when multiple processes attempt to update the same object or
attempt to create, update, or delete instances of the same class. Obtaining the exclusive locks in a consistent order
will ensure other processes queue behind the process that currently holds the exclusive locks, therefore removing the
opportunity for a deadlock to occur.

An example of when locking may be required is an application requiring objects to remain unmodified while an
operation is carried out; for example, a trial balance in which account objects are share locked before reading the
balance, to guarantee that the latest edition of each account is used. The shared locks are held until the trial balance
calculation is complete.

Note Share locking an object does not prevent other processes accessing it, but it does prevent them updating it.

Locking a Collection

Locking a collection is used to avoid objects being added or removed, or keys changing in a dictionary collection
(member objects in a dictionary can always be updated). A collection should be exclusive locked when performing
create, update, and delete operations if a property in the respective object is being used as a key or inverse.

To find the relevant collections for an object, select the key property (that is, it will have the key symbol displayed at the
left of the property name) in the Properties List of the Class Browser and then click the Property Details tab above the
editor pane, paying particular attention to the Used as a key in and Inverses details.

Locking Collection Objects Before a Create Action

All collections that will be updated by automatic inverse maintenance to add the object being created into that
collection need to be exclusive locked in a consistent order, to remove the opportunity for a deadlock to occur. This is
especially important if the object is generating unique identifiers from the collection.

There is no need to lock collections that use a key path (Key Path is a dictionary key that is not embedded on the
object but derived from member objects) for the created object (for example, a Category object) because no other
objects will reference the new object in their key path and no updates to these collections will happen.

Locking Collection Objects Before a Delete Action

Any collections that contain the object being deleted will need to be exclusive locked in a consistent order prior to
deleting the object, to remove the opportunity for a deadlock to occur.

If the object to be deleted is being used as a key path, a check should be performed to ensure that no references to the
object exist before the object is deleted. For this reason, there is no need to lock collections that use the object as a
key path.

Locking Collection Objects Before an Update Action

If an updated property in the object is used as a key path, any collections that use that key will require exclusive
locking; otherwise locking the collections is not required.

PersistentModel Class

The PersistentModel class contains subclasses that represent an entity or abstract concept, and it requires database
persistence.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 74

Classes should be singularly named, as each instance represents a single object persisted in a database. For
example, a class representing an employee should be named Employee; not Employees.

The following class diagram shows a persistent Client class using the TAF in the Erewhon schema.

PersistentModel

+ lockedByProcessld : Decimal {readonly}

+ getTAClass() : Class abstract

+ isSoftLockedByMe() : Boolean
+ onCreate(pTA : ModelTA)
+ onDelete(pTA : ModelTA)
+ onModify(pTA : ModelTA)
+ onUpdate(pTA : ModelTA)

setCommonProperties (pTA : ModelTA)

+ lockedTimeStamp : TimeStamp

Client

+ allRetailSales : RetailSaleByTimeltemDict {readonly}
+ allTenderSales : TenderSaleByTimeDict {readonly}

+ allTenders : TenderByltemTimeOfferDict {readonly}
+ myAddress : Address {readonly}

+ name : String {readonly key}

+ getAllSales (saleSet : SaleSet input)
+ getDebugString() : String

+ getNameAndAddress() : String

+ getTAClass () : Class (r)

+ onCreate(pClientTA : ClientTA) (1)

setCommonProperties (pTA : ClientTA) (r)

Three methods in the Client class are reimplemented from the PersistentModel class. They are getTAClass,
onCreate, and setCommonProperties.

The getTAClass method must be reimplemented in each class to return the appropriate subclass of the ModelTA
transaction agent class used for persistent transactions.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 75

PersistentModel Code Implementation Examples

The following code examples show the use of the PersistentModel inherited methods in a Client class using the
Erewhon Investments application.

getTAClass

The inherited getTAClass method returns the transaction agent responsible for performing the persistent database
operations.

getTAClass() @ Class}

begin
return ClientTh;

end;

onCreate

The inherited onCreate method calls the inherited onCreate method to set the common properties from the
transaction agent, then sets the Client class myCompany property.

onCreate| pClientTh : ClientTh) updatineg:

begin
inheritMethod| pClientTh)

self.nyConpany := app.onyConpany:
end;

This method is called only when creating an object. Properties that need to be set once only or methods that are
executed only at object creation should be coded in this method.

setCommonProperties

The inherited setCommonProperties method calls the inherited setCommonProperties method first and it then
populates the model object properties from the transaction agent.

getCommonProperties| pClientTh @ ClientThd) updating, protected;

begin
inheritMethod| pClientTh §;

self.name = pClientTh,name;
end;

This method is called when creating or updating objects.

PersistentModel Properties
The read-only properties defined in the PersistentModel class are summarized in the following table.

Property Type Holds the...

lockedByProcessld Decimal Process identifier that soft-locked the object. The value is automatically
set by the ModelTA value specified in the PersistentModel class
onModify method parameter.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5

Transaction Agent Framework 76
Property Type Holds the...
lockedTimeStamp TimeStamp Timestamp of when the object was soft-locked. The value is
automatically set by the ModelTA value in the PersistentModel class
onModify method.

PersistentModel Methods

The methods defined in the PersistentModel class are summarized in the following table.

Method Description

getTAClass Called when the transaction agent class is required for an existing persistent object.

isSoftLockedByMe Checks if the current process has soft-locked the object.

onCreate Called when creating an object. It is used to set the model properties that do not
change.

onDelete Called when deleting an object, to delete the persistent object from the database.

onModify Called when an object is modified. A modify operation is a targeted update that only
sets some of the properties on an object.

onUpdate Called when an object is updated. An update operation sets the properties on an
object.

setCommonProperties Called during a create or update operation to set the model property values by copying

the properties from the transaction agent.

getTAClass

The public getTAClass method in the PersistentModel class returns a Classvalue. It is called when the transaction
agent class is required for an existing persistent object.

This abstract method must be implemented on each subclass to return the transaction agent subclass (the ModelTA
class type) that the framework should use for persisting that class.

Base Implementation

getTAClass () : Class abstract;

isSoftLockedByMe

The public isSoftLockedByMe method in the PersistentModel class returns a Boolean value. It checks if the current
process has soft-locked the object.

This method returns true if the current process has soft-locked the object; otherwise it returns false.

Base Implementation

iz3oftlLockedBEyMe|)] : Eoolean:

begin
returnn self.lockedBvProcessId = self.getInstanceldForlObiject| process);

end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 77

onCreate

The public onCreate method in the PersistentModel class is called when creating an object. It is used to set the
model properties that do not change.

A use case of this method is setting a self.myCompany reference to app.myCompany.
Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTA ModelTA The ModelTA class that persists the object. Subclass reimplementation of this method
changes the parameter to a more-specific subclass of the ModelTA class.

Base Implementation

onCreate pTa : ModelTi) updating:

begin
zelf.zetConnonProperties | pTh |
end;

onDelete

The public onDelete method in the PersistentModel class is called when deleting an object, to delete the persistent
object from the database.

Additional work required when deleting an object can be implemented in this method.
Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTA ModelTA The ModelTA class that initiated the delete operation. Subclass reimplementation of this
method changes the parameter to a more-specific subclass of the ModelTA class.

Base Implementation

orbelete [pTA @ ModelTd) updating:

begin
delete =elf;
end;

onModify

The public onModify method in the PersistentModel class is called when an object is modified. A modify operation is
a targeted update that only sets some of the properties on an object.

You can implement additional work during object modification in this method.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 78

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTA ModelTA The ModelTA class that initiated the modification. Subclass reimplementation of this
method changes the parameter to a more-specific subclass of the ModelTA class.

Base Implementation

onModifvy(pTh @ ModelTid) updating:

begin
if pTa.modificationCode = TransactionType_Modify LockEntity then
self.lockedEyProcessId := pTh.lockedByProcessId:
self.lockedTine3tanp := pTh. lockedTime3tanp;
elaeif pTa.modificationCode = TransactionType Modify TnlockEnticy then
self.lockedEyProcessId = rmll:;
zelf.lockedTine3tanp t= rmll;
endif;
end;
onUpdate

The public onUpdate method in the PersistentModel class is called when an object is updated. An update operation
sets the properties on an object.

Reimplement this method only if there is something other than the common properties that needs updating or there
are specific notifications to be implemented.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTA ModelTA The ModelTA class that initiated the update operation. Subclass reimplementation of
this method changes the parameter to a more-specific subclass of the ModelTA class.

Base Implementation

onlpdate | pTA @ ModelTh | updating;

begin

self.setConnonProperties| pTh |:
end;
setCommonProperties

The protected setCommonProperties method in the PersistentModel class is called during a create or update
operation to set the model property values by copying the properties from the transaction agent.

Reimplement this method to set the specific properties that are defined on that subclass and that should be set on a
create or update. Be sure to include an inheritMethod instruction so any superclass implementations are called.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 79

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTA ModelTA The ModelTA class from which to copy values. Subclass reimplementation of this
method changes the parameter to a more-specific subclass of the ModelTA class.

Base Implementation

setConmonProperties(pTA : ModelTd) updating, protected:

begin
self. lockedByProcessId := null;
self. lockedTineStanp t= null;
end;

ModelTA Class (Transaction Agent)

The transaction agent framework is responsible for communication between the views and the database. Persistent
operations such as create, update, modify, and delete must be executed using a transaction agent.

Each class that is stored as persistent data should have a transaction agent class containing all of the properties of the
PersistentModel child class other than automatically maintained inverse references.

The following diagram shows an abstract implementation of the ModelTA class and its relationships with other

classes.
ModelTA PersistentModel]
!
The persistent object
[SubordinateTA PersistentModelTA
1 ™
Transaction agent (TA) for any Specific transaction agent (TA)
subordinate classes of the for the persistent object

persistent object

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 80

To better present this concept, an actual implementation of the ModelTA class for a Client class is shown in the
following diagram.

ModelTA PersistentModel
Subordinate TA T
l Client Class Object
[AddressTA ClientTA

SubordinateTA (AddressTA)

Subordinate transaction agents (TAs) are used to create, update, modify, and delete subordinate objects in the parent
class. In the above diagram, the ClientTA class has a subordinate transaction agent named AddressTA, which is
responsible for persisting an Address object.

PersistentModel

The PersistentModel class holds a Client object. ClientTA gets the Client object by calling the getModelObject
method, which gets the value stored in the myModelObject property and is populated in the inherited
populateFromObject method.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 81

ModelTA Class Diagrams

The following diagram shows the properties and methods defined in the ModelTA class.

ModelTA

+ allErrors : StringArray

+ allWarnings : StringArray

+ expectedEdition : Integer

+ focusField : String

+ lockedByProcessld : Decimal

+ lockedTimeStamp : TimeStamp

+ modificationCode : Integer

+ myModelObject : PersistentModel

addError(pError : String; pFocusField : String)

addWarning(pWarning : String; pFocusField : String)

checkEdition(pExpectedEdition : Integer) : Boolean

clearErrors()

clearErrorsOnSubordinate TAs()

clearWarnings()

clearWarningsOnSubordinate TAs()

copyErrors(pFromTA : ModelTA)

copyWarnings(pFromTA : ModelTA)

createEntity() : Boolean

createEntityInTransState() : Boolean

createEntityWithTransactionimplementor(pTransactionlmplementor : Transactionimplementor) : Boolean
createSubordinateObjects() : Boolean

deleteEntity() : Boolean

deleteEntityInTransState() : Boolean

deleteEntityWithTransactionlmplementor(pTransactionlmplementor : Transactionlmplementor) : Boolean
deleteSubordinateObjects() : Boolean

doAbortTransactionCleanup()

doAbortTransactionCleanupForSubordinateObjects()

doCreate() : Boolean

doDelete() : Boolean

doModify(pModification : Integer) : Boolean

+ doPreValidate()

doUpdate() : Boolean

+ doValidate(pValidationType : Integer) : Boolean

+ getFullErrorDetails() : String

+ getModelObject() : PersistentModel

getModelObjectClass() : Class

hasErrors() : Boolean

hasNoErrors() : Boolean

hasOnlySubordinatePersistentObjects() : Boolean

+ initialize()

lockForCreate() : Boolean

lockForDelete() : Boolean

lockForModify() : Boolean

lockForUpdate() : Boolean

modifyEntity(pModification : Integer) : Boolean

modifyEntitylnTransState(pModification : Integer) : Boolean

modifyEntityWithTransactionlmplementor(pTransactionimplementor : Transactionimplementor; pModification : Integer) : Boolean
modifySubordinateObjects(pModification : Integer) : Boolean

+ persistEntity(pTransactionType : Integer) : Boolean

+ persistEntitylnTransState(pTransactionType : Integer) : Boolean
+ populateFromObject(pModelObject : PersistentModel)

populateSubordinateObjects(pModelObject : PersistentModel)
tryLockingObject(pObject : Object) : Boolean

updateEntity() : Boolean

updateEntitylnTransState() : Boolean

updateEntityWithTransactionlmplementor(pTransacitonlmplementor : Transactionimplementor) : Boolean
updateSubordinateObjects() : Boolean

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 82

The ClientTA class is a subclass of the ModelTA class and therefore inherits the properties and methods of the
ModelTA class, with (r) denoting a reimplemented class.

ClientTA

+ myAddressTA : AddressTA

+ name : String

clearErrorsOnSubordinate TAs()

clearWarningsOnSubordinate TAs()

createSubordinateObjects(): Boolean (r)

doAbortTransactionCleanupForSubordinateObjects()
+ doValidate(pValidationType : Integer) : Boolean (r)

+ getModelObject() : Client (r)

getModelObjectClass() : Class (r)

+ initialize() updating (r)

lockForCreate() : Boolean (r)

lockForDelete() : Boolean (r)

lockForModify() : Boolean (r)

lockForUpdate() : Boolean (r)

modifySubordinateObjects (pModification : Integer) : Boolean
populateFromObject(pClient : Client) : (r)

populateSubordinateQObjects (pClient : Client)

updateSubordinateObjects () : Boolean

Note The ClientTA class contains the same properties as the PersistentModel class.

The ClientTA class reimplements various methods of the ModelTA class as required. However, some methods are
commonly implemented on all transaction agents and these are listed in the following table. In the first column of this
table, * denotes a required implementation and ** denotes a required implementation unless the
hasOnlySubordinatePersistentObjects method returns true.

Method Description

doValidate Validates the ClientTA properties

getModelObject ** Retrieves the Client object stored in the myModelObject property
getModelObjectClass ** Retrieves the Client class type

initialize Clears the ClientTA properties to an uninitialized state
lockForCreate * Locks objects during a create operation

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 83
Method Description
lockForDelete * Locks objects during a delete operation
lockForModify * Locks objects during a modify operation
lockForUpdate * Locks objects during an update operation
populateFromObject ** Copies Client model properties to the ClientTA properties

ModelTA Code Implementation Examples
The following code examples show the implemented methods in the ClientTA class.

clearErrorsOnSubordinateTAs

This method clears the errors on the myAddressTA property and is reimplemented only if the transaction agent
contains subordinate objects.

clearErrorsindubordinateTas () updating, protected:

begin
inheritMethodi) ;

if self.myhddressTa <= null then
self.myhddressTh.clearErrors();
endif;
ernd;

clearWarningsOnSubordinateTAs

This method clears the warnings on the myAddressTA property and is reimplemented only if the transaction agent
contains subordinate objects.

clearWarningzon3ubordinateTiz () updating, protected;

begin
inheritMethod(]

if zelf.mydddressTL <> rmll then
zelf.nyhddressTA. clearWarnings () ;
endif;
end;

createSubordinateObjects

This method creates an Address object for a Client and is reimplemented only if the transaction agent contains
subordinate objects.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 84

The system should already be in a transaction state and therefore the subordinate object should be persisted in
TransState.

createiubordinatelbijects() : Boolean updating, protected;

hegin
inheritMethod() ;

A4 fBet the wy model reference on the subordinate Ta
self.nyvaddressTa.uyModel 1= self.getModelObiject():

/4 Create the Address ohject

if not self.nyhddressTh.persistEntityInTransitate(TranzactionType_FPersist) then
F#4 Error cccured, copy AddressTL errors to self.allErrors attribure
self.copyErrors(self.nyhdddressTa):

endif;

return self.hasWoErrors():
end;

doAbortTransactionCleanupForSubordinateObjects

This method performs clean up logic on the AddressTA if a transaction is aborted by calling the
doAbortTransactionCleanup method in the ModelTA class.

dobdbhortTransactionCleanupFor3ubordinatedbjects() protected:

begin
inheritMethod();

if self.nyiddressTa <> null then
gelf.nyiddressTh. dodbhortTransactionCleanap () !
endif;
end;

Note An abort operation is usually the result of a failed transaction.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 85

doValidate
This method validates the ClientTA and subordinate TAs and returns true if no errors exist.

A failed validation check should add an error to the allErrors collection to result in the method returning false.

doValidate| pWalidationType : Integer) : Boolean updating:

begin
itnheritMethod| pValidationType !

f4 1f delete operation, then no walidation required

if pWValidationType = ValidationType_Delete then
return true;

endif;

self.name :=self.name.trinlhitcelpace():

S walidate name
if self.name = rull then

/4 name cannot be ruall

gelf.addError| "Name is a required field™, Focus_Nawme);
endif:

F4 walidate client does not exist [(wvalidates on create only)

if pValidationType = ValidationType Create

atd app.nyConpany.hasClientWithThisNane [self.name) then
gelf.addError| "Client already exists"™, Focus_MName) ;

endif:

A4 walidate ancother client does not have the same name (walidates on update only)
if pValidationType = ValidationType Update

atd app.nyConpany.hazinotherClientWithThizName [self.name, self.getModelObject()] then
gelf.addError| "Another client with this name already exists™, Focus_Name)
endif;

44 walidate address

if self.wydddressTh <> rnall and not self.wnyAddressTA.doValidate| pWalidationType | then
zelf.copyErrors| zelf.myhaddre=ssTh)

endif;

return self.hasloErrors();
ernd;

getModelObject

This method returns the object stored in the myModelObject property and casts it to a Client type.

getModelObjectl) : Client;
begin

return inheritMethod().Client;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 86

getModelObjectClass

This method returns the Class type used by the transaction agent. In this case, it is a Client class type.

getModelObjectlClass()] : Class protected;

begin
return Client;
end;

This is method is used in the doCreate method to create a persistent object, as shown in the following code fragment.
create self.myModelObject as self.getModelObjectClass () persistent;
initialize

This method is called when the transaction agent is initialized and it sets the transaction agent properties to an
uninitialized state (which is generally null).

initialize) updating:

begin
inheritMethod() :

self.name = null;
end;

lockForCreate
This method is used to manually place an exclusive lock on objects during a create operation.

The app.myCompany.allClients collection is being locked because the Client object is an inverse of the allClients
collection.

lockForCreate() : Eoolean protected;

begin
if not self.tryLockinglObject| app.wyConpatry.allClients) then
return false;
endif;

return true;
end;

lockForDelete

This method is used to manually place an exclusive lock on objects during a delete operation.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 87

The app.myCompany.allClients collection is being locked because the Client object is an inverse of the allClients
collection.

lackFarDelete() : Eoolean protected;

begin
if not self.tryLockinglbhject| app.myCompany.allClients) then
returt false;
endif;

return true;
end;

lockForModify

This method is used to manually place an exclusive lock on objects during a modify operation. A modify is a targeted
update that sets only some of the properties on an object.

This method returns true because there is no modification code being called in the ClientTA class.

lockForModify () : EBoolean protected:

begin
return true;
end;

lockForUpdate
This method is used to manually place an exclusive lock on objects during an update operation.

The app.myCompany.allClients collection is being locked because the Client object is an inverse of the collection.
The name attribute in the Client model is used as a dictionary key, therefore we need only to lock the allClients
collection if the value of the name property has changed.

lockForUpdate () : Eoolean protected:

begin
F#4 Is the key walue on the object changihg?
4 IE it i=, then we need to lock the collection
if self.name <> self.getModellbject().name then
if not self.teylockinglbject| app.wyCompany.allClients 1 then
return false;
endif;
endif;

return true;
end;

We attempt to lock during an update if the property being updated is used as a key.

modifySubordinateObjects
This method is used when the ClientTA modifies an object to modify the Address object.

A modify operation is a targeted update that sets only some of the properties on an object.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

88

The system should already be in a transaction state, therefore we will persist the subordinate object in TransState.

begin
inheritMethod| pModification):

/f Modify the Address object
if self.myiddressTa <> null

endif;

returh self.hasNoErrors():
end;

modifySubordinatedbijects| pModification @

and not self.wyiddressTA.persistEnticyInTransstate| pModification 1 then
J4 Error oceoured, Copy AddressTA errors to self.allErrors attribute
gelf.copyErrors| self.myhddressTh |:

Integer): EBoolean updating, protected:

populateFromObject

This method copies the properties of a Client model into the relevant ClientTA properties.

populateFrom0biject| pClient : Client)
begin
inheritMethod(pClient)

zelf.name :
end;

pClient.name;

updating;

populateSubordinateObjects

This method copies the properties of the subordinate objects into the respective subordinate transaction agents and

sets the subordinate reference to self.

populateiubordinateldbjects(pClient :

WALrS

addressTA : AddressTh;

begin
inheritMethod| pClient):

create addressTh transient;

addressTh. nyModelT4 :
end;

self;

addrezsTA.populateFronlbiject| pClient.myiddress);

Client) updating, protected;

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

updateSubordinateObjects

This method updates the properties of the subordinate objects (Address) in the Client model.

The system should already be in a transaction state and therefore the subordinate objects should be persisted in

TransState.

updateiubordinatedbjects ()

begin
inheritMethod();

endif;

: Boolean updating, protected;

if self.wydddressTh <= null
and not self.mydddressTh.persistEntityInTransitate | TransactionType Fersist) then
self.copyErrors(self.wyvhddressTh):

return self.hasNoErrorsi);

89

end;
ModelTA Properties

The read-only properties defined in the ModelTA class are summarized in the following table.

Property Value Stores...

allErrors HugeStringArray A collection of errors (including validation errors) encountered
during a persist operation. Errors will prevent the transaction agent
from persisting a transaction.

allWarnings HugeStringArray A collection of all the warnings during a persist operation.
Warnings will not prevent the transaction agent from persisting a
transaction.

expectedEdition Integer The value of the expected object edition.

focusField String A global constant value for the field that receives focus if an error
occurs.

lockedByProcessld Decimal The process identifier that has acquired a lock on the transaction
agent.

lockedByTimeStamp TimeStamp The sever time when the transaction agent was locked.

modificationCode Integer A global constant value of the specific properrties to update during
a modify operation. A modify operation is a targeted update that
sets only some of the properties on an object.

myModelObject PersistentModel The persistent object of type PersistentModel for which the

transaction agent is responsible.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

clearErrorsOnSubordinate TAs

clearWarnings

clearWarningsOnSubordinateTAs

copyErrors

copyWarnings

createEntity

createEntitylInTransState

createEntityWithTransactionlmplementor

createSubordinateObjects

deleteEntity

deleteEntityInTransState

deleteEntityWithTransactionlmplementor

deleteSubordinateObjects

doAbortTransactionCleanup

doAbortTransactionCleanupForSubordinateObjects

Part5 Transaction Agent Framework 90
ModelTA Methods
The methods defined in the ModelTA class are summarized in the following table.
Method Description
addError Called in the doValidate method to add an error to the
allErrors collection and assigns the field to receive focus
addWarning Adds a warning to the allWarnings collection and
assigns the field to receive focus
checkEdition Checks if the current edition of the class is the expected
version
clearErrors Called at the start of every persist operation to clear the

allErrors collection

Empty method to be reimplemented on subclasses that
use subordinate objects to clear all errors on the
subordinate transaction agents

Called at the start of every persist operation to clear the
allWarnings collection

Clears the allWarnings collection on subordinate
transaction agents

Copies the errors from the value specified in the
ModelTA parameter into the calling transaction agents
allErrors collection

Copies the warnings from the value specified in the
ModelTA parameter into the calling transaction agents
allWarnings collection

Programmatically called to persist an object when the
system is not in a transaction state

Programmatically called to persist an object when the
system is already in a transaction state

Programmatically called when creating an object

Called to persist subordinate objects when the system is
in a transaction state

Programmatically called to delete an object when the
system is not in a transaction state

Programmatically called to delete an object when the
system is already in a transaction state

Programmatically called when deleting an object

Programmatically called to delete subordinate objects
when the system is in a transaction state

Programmatically called to perform cleanup behavior if a
transaction fails

Performs cleanup behavior for subordinate objects if a
transaction fails

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

91

Method Description

doCreate Programmatically called to persist an object to the
database

doDelete Programmatically called to delete an object from the
database

doModify Programmatically called to modify a targeted property or

doPreValidate

doUpdate

doValidate

getFullErrorDetails

getModelObject

getModelObjectClass
hasErrors

hasNoErrors

hasOnlySubordinatePersistentObjects

initialize

lockForCreate

lockForDelete

lockForModify

lockForUpdate

modifyEntity

modifyEntitylnTransState

modifyEntityWithTransactionimplementor

modifySubordinateObjects

subset of properties

Empty method called before the doValidate method to
perform pre-validation logic

Programmatically called to update a persisted object and
its subordinates

Validates the transaction agent properties prior to
persisting an object

Returns a formatted string of all the errors in the allErrors
collection separated by a carriage return/ line feed
characters

Returns the object stored in the myModelObject
property

Returns the class type used by the transaction agent
Checks the allErrors collection to see if it contains errors

Checks the allErrors collection to see if it contains no
errors

Declares the transaction agent to work with various
subordinate objects and not a single persistent object or

type

Initializes the transaction agent properties to an
uninitialized state

Manually places an exclusive lock on objects during a
create operation

Manually places an exclusive lock on objects during a
delete operation

Manually places an exclusive lock on objects during a
modify operation

Manually places an exclusive lock on objects during an
update operation

Programmatically called to modify a targeted property
when the system is not in transaction state

Programmatically called to modify a targeted property
when the system is in transaction state

Programmatically called to modify targeted properties

Programmatically called to modify targeted properties on
subordinate objects

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 92
Method Description
persistEntity Main method called to persist (create, update, modify, or

delete) an object to the database when the system is not
in a transaction state

persistEntityInTransState Main method called to persist (create, update, modify, or
delete) an object to the database when the systemisin a
transaction state

populateFromObject Copies the PersistentModel object properties into the
properties of the transaction agent

populateSubordinateObjects Copies the PersistentModel object properties for the
subordinate objects to the respective subordinate
transaction agents

tryLockingObject Attempts to place an exclusive lock on the object passed
in as the value of the pObject parameter

updateEntity Programmatically called to update an object when the
system is not in transaction state

updateEntitylnTransState Programmatically called to update an object when the
system is in a transaction state

updateEntityWithTransactionimplementor Programmatically called to update an object by passing a
Transactionlmplementor as an argument to determine
if the transaction should be committed to the database

updateSubordinateObjects Programmatically called to update the subordinate
objects

addError

The protected addError method in the ModelTA class is generally called in the doValidate method to add an error to
the allErrors collection and assigns the field to receive focus.

Parameters

The parameters for this method are listed in the following table.

Name Type Description
pError String Description of the error.
pFocusField String Field to receive focus. This value should be stored as a global constant.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 93

Base Implementation

addError(pError : String:
pFocusField : Atring
1 updating, protected, final:;

begin
zelf.allErrors.add(pError):

A4 Focuz should be zet to the first field in error
if self.focusField = nmull then
self.focusField := pFocusField:
endif;
end;

addWarning

The protected addWarning method in the ModelTA class adds a warning to the allWarnings collection and assigns
the field to receive focus.

Parameters

The parameters for this method are listed in the following table.

Name Type Description
pWarning String Description of the warning.
pFocusField String The field to receive focus. This value should be stored as a global constant.

Base Implementation

addWarning [pWarning : String;
pFocusField @ String
| updating, protected, final:

begin
gelf.allWarnings.add(pWarning) ;

if self.focusField <> null then
self.focusField := pFocusField;
endif;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 94

checkEdition

The protected checkEdition method in the ModelTA class returns a Boolean value. This method checks if the current
edition of the class is the expected version. This method should be reimplemented on subclasses where edition
checking is required.

Reimplementations of this method should return true if the edition is the expected edition; otherwise it returns false.
Parameter

The parameter for this method is listed in the following table.

Name Type Description

pExpectedEdition Integer Number of the expected edition

Base Implementation

checkEdition| pExpectedEdition : Integer) : Boolean protected;

begin
return true;
end;

clearErrors

The protected clearErrors method in the ModelTA class is called at the start of every persist operation to clear the
allErrors collection.

Base Implementation

clearErrors() protected, updating, £inal;

begin
self.allErrors.clear();
self.focusField = null;
gelf.clearErrorsiniubordinateTas() ;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 95

clearErrorsOnSubordinateTAs

The protected clearErrorsOnSubordinateTAs method in the ModelTA class is an empty method to be

reimplemented on subclasses that use subordinate objects, to clear all errors on the subordinate transaction agents
(TAs).

The reimplemented method should call the clearErrors method on the subordinate transaction agent (TA), as shown
in the following example.

clearErrorsOnSubordinateTd= () updating, protected;

begin
inheritMethod() ;

if self.wyhddressTh <> null then
self.wyhddressTA. clearErrorsi) :
endif;
end;

Base Implementation

clearErrorsOniubordinateTasz () updating, protected;
begin

end;

clearWarnings

The protected clearWarnings method in the ModelTA class is called at the start of every persist operation to clear the
allWarnings collection.

Base Implementation

clearWarnings() updating, protected, final;
begin
zelf.allWarnings.clear();
gelf.focusField = null;
gelf.clearWarningsinfubordinateTas() ;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 96

clearWarningsOnSubordinateTAs

The protected clearWarningsOnSubordinateTAs method in the ModelTA class clears all warnings on the
subordinate transaction agents (TAs).

Reimplement this method if the transaction agent contains subordinates and should call the clearWarnings method in
the subordinate transaction agent (TA), as shown in the following example.

clearWMarningsOnSubordinateTas () updating, protected;

begin
inheritMethaodi) ;

if zelf.mvhaddressTa <> null then
self.nyvhddressTh. clearWarnings ()2
endif;
erd;

Base Implementation

clearWarningsinSubordinateTads () updating, protected:

begin

erd;

copyErrors

The protected copyErrors method in the ModelTA class copies the errors from the pFromTA parameter into the
calling transaction agents allErrors collection. This method is commonly used in transaction agents with subordinate
objects to pass the subordinate transaction agent errors to the primary transaction agent.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pFromTA ModelTA Transaction agent from which to copy the errors

Base Implementation

copyErrors(pFromTd : ModelTi) updating, protected, final:

wars
errorMessage @ String;

begin
foreach errorMessage in pFrowTa.allErrors do
self.addError| errorMessage, null);
endforeach;

if self.focusField = mall then
self.focusField = pFrowTh.focusField;
endif;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 97

copyWarnings

The protected copyWarnings method in the ModelTA class copies the warnings from the pFromTA parameter into
the calling transaction agents allWarnings collection. This method is commonly used in transaction agents with
subordinate objects to pass the subordinate transaction agent warning to the primary transaction agent.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pFromTA ModelTA Transaction agent from which to copy the warnings

Base Implementation

copyWarnings | pFromT& : ModelTi) updating, protected, f£inal:

wars
warningMessage @ String:

begin
foreach warningMessage in pFromTh.allWarnings do
self.addWarning | warningMessage, nall)
endfareach;

if self.focusField = null then
zelf.focusField := pFromTi. focusField;
endif;
end;

createEntity

The protected createEntity method in the ModelTA class returns a Boolean value. This method is programmatically
called to persist an object when the system is not in a transaction state.

This method returns true if the entity was created successfully; otherwise it returns false if the entity failed to be
created.

Base Implementation

createEntity () : Boolean updating, final, protected:
vars

transactionImplementor @ CommitTransactionTI
begin

create transactionlmplemenhtor transient;
return self.createEntityWithTransactionInplementor | transactionlnplementor]2
epilog

delete transactionlInplementor;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 98

createEntitylnTransState

The protected createEntitylnTransState method in the ModelTA class returns a Boolean value. This method is
programmatically called to persist an object when the system is already in a transaction state.

This method is generally used for persisting a collection of objects or subordinate objects.

This method returns true if the entity was created successfully; otherwise it returns false if the entity failed to be
created.

Base Implementation

createEntityInTrans3tate () : Eoolean updating, final, protected:
AL S

transactionInplementor : NoTransactionTI ;
begin

create CransactionImplementor tTransient:
return self.createEntityWithTransactionlnplenentor(transactionInplementor |;
epilog

delete transactiohInplementor;
end;

createEntityWithTransactionimplementor

The protected createEntityWithTransactionlmplementor method in the ModelTA class returns a Boolean value.
This method is programmatically called when creating an object.

A Transactionlmplementor is passed as a parameter to determine if the transaction should be committed to the
database. Generally, the transaction implementor is a CommitTransactionTI for general persists or a
NoTransactionTI for persisting subordinate objects or collections.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTransactionlmplementor Transactionimplementor The transaction implementor passed in determines if
transaction state changes when the
Transactionlmplementor class
doBeginTransaction, doCommitTranasction, or
doAbortTransaction method is called

This method returns true if the entity was created successfully; otherwise it returns false if the entity failed to be
created.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

Base Implementation

99

createEntityllithTransactionInplenentor |
pTranszactionImplementor @ Transactionlmplementor
] & Boolean updating, protected, f£inal:

rars
wvalidateRtn : Boolean;
transactionCompleted : Boolean;
begin

aelf.clearErrorai) 2
self.clearWarnings();

walidateRtn := self.doValidate(ValidationType Create);

if walidateRtn then
if self.lockForCreate(] then
pTransactionInplenentor.doBeginTransactiont) ;
if self.dolCreate() then
pTransactionInplenentor. doComnitTransaction () ;
elze
pTransactionInplenentor.dodbortTransaction() ;
return false;
endif;
elze
pTransactionInplementor. dodbortTransaction() ;

return false:
endif;
else
return false;
endif;

transactionCompleted 1= true;
return true;

epilog
if not transactionCompleted then
self.dobdbortTransactionCleanup () 2
endif;
end;

self.addError("Create conflicted with another user's activity. Try again shortly.™, nall);

createSubordinateObjects

The protected createSubordinateObjects method in the ModelTA class returns a Boolean value. This method is

called to persist subordinate objects when the system is in a transaction state.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 100

This method, shown in the following example, should be reimplemented by transaction agents that contain
subordinate objects and should persist objects using the persistEntitylInTransState method, as the system should
already be in a transaction state.

create3ubordinatedbjects() : Eoolean updating, protected;

begin
inheritMethod() :

A4 et the my model reference on the subordinate Ta
self.nyhddressTA.wyModel = self.getModelObiject();

4/ Create the Address object

if not self.mybddressTh.persistentEntityInTransitate | TransactionType_Fersist) then
F4 Error oceourred, copy AddressThd errors to self.allErrors collection
self.copyErrors| self.mybddressT4):

endif:;

return =self.hasNcErrors;
end;

This method returns true if the subordinate objects were created successfully; otherwise it returns false if the
subordinate objects failed to be created.

Base Implementation

createldubordinatelbjects () : Boolean updating, protected:

begin
return true:
end;

deleteEntity

The protected deleteEntity method in the ModelTA class returns a Boolean value. This method is programmatically
called to delete an object when the system is not in a transaction state.

This method returns true if the entity was deleted successfully; otherwise it returns false if the entity failed to be
deleted.

Base Implementation

deleteEntity() : Boolean updating, final, protected;
Tars

transactionInplementor @ ComwitTransactionTI:
begin

create transactionlmplementor transient:
return self.deleteEntityWithTransactionInplementor | transacticnImplementor);
epilog

delete transactionImplementor:
end:

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 101

deleteEntitylnTransState

The protected deleteEntitylnTransState method in the ModelTA class returns a Boolean value. This method is
generally used for deleting a collection of objects or subordinate objects.

This method returns true if the entity was deleted successfully; otherwise it returns false if the entity failed to be
deleted.

Base Implementation

deleteEntityInTrans3tate () : EBoolean updating, final, protected;
vars

transactionInplementor @ NoTransactionTI:
begin

create tCransactionlImplementor transient:
return self.deleteEntityWithTransactionInplementor| transactionInplementor | ;
epilog

delete transactiohImplementor;
end;

deleteEntityWithTransactionlmplementor

The protected deleteEntityWithTransactionimplementor method in the ModelTA class returns a Boolean value.
This method is programmatically called when deleting an object.

A Transactionlmplementor is passed as a parameter to determine if the transaction should be committed to the
database. Generally, the transaction implementor is a CommitTransactionTI for general persists or a
NoTransactionTI for persisting subordinate objects or collections.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTransactionimplementor Transactionlmplementor The transaction implementor passed in determines if
transaction state changes when the
Transactionlmplementor class
doBeginTransaction, doCommitTranasction, or
doAbortTransaction method is called

This method returns true if the entity was deleted successfully; otherwise it returns false if the entity failed to be
deleted.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

Base Implementation

deleteEntityllithTransactionInplenentor |
pTransactiohInplementor @ TransactionInplenentor
) : Boolean updating, final, protected:

vars
transactionConpleted : Boolean:

begin
gelf.clearErrors():
zelf.clearWarnings();

if zelf.doValidate| ValidationType_Delete | then
if szelf.lockForDelete() then
pTransactionInplementor. doBeginTransaction() ;
if self.daoDelete(] then
pTranzsactionInplenentor. doComnitTransaction () :
elze
pTransactionInplementor., dodbortTransactionl) 2
return false;
endif;
elze
pTransactionImplementor. dodbortTransactioni) ;
zelf.addError(
"helete conflicted with another user's activity. Try again shortly.™,
mll
I
return false;
endif;
elae
return false;
endif;

transactionConpleted 1= Lrue;
return true;

epilog
if not transactionCompleted then
zelf.dodbortTransactionClearap () 2
endif;
end;

deleteSubordinateObjects

102

The protected deleteSubordinateObjects method in the ModelTA class returns a Boolean value. This method is

called to delete subordinate objects when the system is in a transaction state.

By default, this method returns true but it should be reimplemented by transaction agents that contain subordinate

objects.

Persistence should be performed using the persistEntitylnTransState method, as the system should already be in a

transaction state.

This method returns true if the subordinate objects were deleted successfully; otherwise it returns false if the

subordinate objects failed to be deleted.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 103

Base Implementation

deleteiubordinatelbjects() : Boolean updating, protected;

begin
return true;
end;

doAbortTransactionCleanup

The protected doAbortTransactionCleanup method in the ModelTA class is programmatically called to perform
cleanup behavior if a transaction fails.

This method should also be called from the doAbortTransactionCleanupForSubordinateObjects method for each
transaction agent that has subordinate transaction agents, as shown in the following example.

dodbortTransactionCleanupForiubordinatelbjects() protected:

begin
inheritMethod() ;

if self.wmvhddressTh <> null then
zelf.nyiddressTh, dodbortTransactionClearp () ;
endif;
end;

Base Implementation

dodhortTransactionCleanup () updating, protected;
begin
if not app.isWalid0bject(zself.wmyModellbject | then
zelf.nyModellbiject = null:
endif;
end;

doAbortTransactionCleanupForSubordinateObjects

The protected doAbortTransactionCleanupForSubordinateObjects method in the ModelTA class performs
cleanup behavior for subordinate objects if a transaction fails.

Note All classes that contain subordinate objects should reimplement this method.

Base Implementation

There is no implementation at this level, because not all classes contain subordinate objects.

dobdhortTransactionCleanupForSubordinatelbjects() protected:

begin

end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 104

doCreate

The protected doCreate method in the ModelTA class returns a Boolean value. It is programmatically called to persist
an object to the database.

This method also calls the createSubordinateObjects method responsible for persisting subordinate objects.

This method returns true if the object and subordinates were persisted successfully; otherwise it returns false if the
object or subordinates failed to be persisted.

Base Implementation

doCreate() : Boolean updating, protected, f£inal;

begin
if not self.hasOnlySubordinatePersistentlObjects() then
create self.wyModelObject as self.getModellObijectClass() persistent;

zelf.nyModellObject.onlCreate | self):
endif;

if not self.createlubordinatelbjects()] then
return false:
endif;

return true;
end;

doDelete

The protected doDelete method in the ModelTA class returns a Boolean value. This method is programmatically
called to delete an object from the database.

This method also calls the deleteSubordinateObjects method responsible for deleting subordinate objects.

This method returns true if the object and subordinates were deleted successfully; otherwise it returns false if the
object or subordinates failed to be deleted.

Base Implementation

dolelete() : EBoolean updating, protected, £inal:

begin
if not self.hasOnlyiubordinatePersistentibjects() then
self.uyModellbject. onbelete| self):
endif;

if not self.deletelubordinatelbjects() then
return falze;
endif;

return true;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 105

doModify

The protected doModify method in the ModelTA class returns a Boolean value. This method is programmatically
called to modify a targeted property or subset of properties.

Note Modify is a targeted update that sets only some of the properties on an object. The targeted property or subset
of properties depends on the modification code passed into the method.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pModification Integer The specific property or subset of properties to be modified. This
value should be stored as a global constant.

This method returns true if the entity was updated successfully; otherwise it returns false if the entity failed to be
updated.

Base Implementation

doModify | pModification : Integer 1 @ Boolean updating, protected, f£inal:

hegin
if not self.hasinlyiubordinatePersistentlObjects() then
zelf.nyModelObject, onModify(=self):
endif;

if not self.modifyiubordinatelbijects(pModification) then
return false;
endif;

return Lrue;
end;

doPreValidate

The public doPreValidate method in the ModelTA class is an empty method called before the doValidate method to
perform pre-validation logic. Examples of pre-validation logic include:

m Sanitizing properties by removing whitespace
= Applying formatting to properties such as uppercase, phone formats, and so on

®m Generating unique identifiers such as Globally Unique Identifiers (GUIDs) or incrementing identifiers (IDs)

Note Reimplement this method on all classes that require pre-validation logic.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

The following is an example of the reimplementation of this method.

doPreValidate() updating;

begin
inheritMethodi) ;

f/ Generate Item Code
if self.codelumber = null then

zelf.codellumber = zelf.getlextCodelNumber() ;
endif;

4 Initialize Data

if self.listedlate = null

or not self.listedDate.isValid() then
gelf.listedbate := Utilities@getderverDate();

endif;

/4 Banitize Data

end;

self.fulllescription := self.fulllescription. trinWhiteipace()
self.shortDescription := self.shortDescription. trimWhiteipace():

106

This reimplementation generates a code number, and provides a default date value, as well as sanitizing the data by

trimming whitespace.

Base Implementation

doPreValidate () updating;

begin

end;

doUpdate

The protected doUpdate method in the ModelTA class returns a Boolean value. This method is programmatically

called to update a persisted object and its subordinates.

This method returns true if the object and subordinates were updated successfully; otherwise it returns false if the

object or subordinates failed to be updated.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

Base Implementation

doUpdate() : Eoolean updating, protected, final:

begin

end;

if not self.hasinlyiubordinatePersistentibijects(] then
self.myModellbject. onlUpdate | self):
endif;

if not self.updateiubordinatelbjects()] then
return false:

endif;

return true;

doValidate

The public doValidate method in the ModelTA class returns a Boolean value. This method validates the transaction
agent properties before persisting an object.

107

You should generally reimplement this method on most child classes. Failed validations should add an error to the
allErrors collection by calling the ModelTA class addError method.

The following is an example of reimplementing this method.

etd:

dovalidate| pValidationTvpe : Integer) @ Eoolean updating:

hegin

inheritMethod| pValidationType)2

A4 If delete operation then no walidation recquired

if pWalidationType = ValidationType Delete then
return true;

endif;

self.nane = self.name. crimhitedpace() :

f4 validarte name attribute
if self.name = rull then

gelf.addError | "Wame iz a required field”™, Focus_ Name)
endif;

J4 walidate subordinate

if self.myhddressT4d <> null

and not self.mybddress.doValidate | pWalidationType | then
self.copyErrors| self.mydddressTa |

endif;

returh self.hasNoErrorsi):

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 108

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pValidationType Integer The type of validation to be performed. This value should be
stored as a global constant.

This method returns true if the allErrors collection does not contain errors; otherwise it returns false if the allErrors
collection contains errors.

Base Implementation

dovalidare| pWalidationType : Integer | : Boolean updating:

begin
return self.hasNoErrors():
end;

getFullErrorDetails

The public getFullErrorDetails method in the ModelTA class returns a formatted string of all the errors in the
allErrors collection separated by a carriage return/ line feed characters.

This method is generally used to populate message boxes or labels with a list of the errors.

Base Implementation

getFullErrorDetails() : String;

wars
errorMessage @ String:
fullErrorDetails @ String:

begin
foreach errorMessage in self.allErrors do
fullErrorDetails.appendTextWithDelin CrLf, errorMessage, false ;
endforeach;

return fullErrorDetails;
end;

getModelObject

The public getModelObject method in the ModelTA class returns the PersistentModel object stored in the ModelTA
class myModelObject property.

This method is called when persisting an object to determine if the object should be created or updated. If this method
returns null, the object should be created; otherwise the object already exists so it should be updated.

Note This method is generally reimplemented on all transaction agents.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

109

When reimplementing this method, the return type should be type-specific and returned with a type cast of the

inheritMethod instruction call, as shown in the following example.

getModelObject() @ Client:

begin
return inheritMethod().Client:
end;

Base Implementation

getModelObiject() : PersistentModel:

begin
return self.wyModellbject:
end;

getModelObjectClass

The protected getModelObjectClass method in the ModelTA class returns the Class type used by the transaction

agent, is used when creating a persistent object to determine its class type; for example:

create self.myModelObject as self.getModelObjectClass () persistent;

The following is an example of the method used to create a persistent object to determine its class type.

getMaodelObjectlClass() : Class protected;

bhegin
return Client;
end;

Base Implementation

getModelObjectClass()] : Class protected;
begin
return FPersistentModel:
end;
hasErrors

The protected hasErrors method in the ModelTA class returns a Boolean value. This method checks the allErrors

collection to see if it contains errors.

This method returns true if the transaction agent has errors; otherwise it returns false if the transaction agent does not

have errors.

Base Implementation

hasErrors() : Boolean protected, final:

hegin
return not self.hasNoErrorsi():
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 110

hasNoErrors

The protected hasNoErrors method in the ModelTA class returns a Boolean value. This method checks the allErrors
collection to see if it contains no errors.

This method returns true if the transaction agent has no errors; otherwise it returns false if the transaction agent has
errors.

Base Implementation

hasNoErrors() : Boolean protected, final:
begin

return self.allErrors.isEmpty():
end:

hasOnlySubordinatePersistentObjects

The protected hasOnlySubordinatePersistentObjects method in the ModelTA class returns a Boolean value. This
method is used to declare the transaction agent to work with various subordinate objects and not a single persistent
object or type. For example, a ShoppingCartTA might contain two collections of different types such as RetailSales
and Tenders. These items should be displayed to the user in a single list and checked out in the same transaction.

As these objects should be persisted together and are subordinate objects, the persistence should be performed in
the ModelTA class createSubordinateObjects method in transaction state, as shown in the following example.

createfubordinatelbjects() : Boolean updating, protected:

vars
retailfaleTd @ RetailfaleTh:
tenderTd :TenderTh;
currentTimestanp : Time3tamp;

begin
inheritMethod() ;

f# Perzist FEetall Sales
foreach retail%aleTh in self.allFetail3aleTi= do
retailialeTh. time3tamp := currentTimestany:
if not retaillaleTh.persistEntityInTransitate(TransactionType_ FPersist) then
zelf.copyErraors(retail3aleTi ;!
endif:
endfaoreach;

f4 Persist Tenders
foreach tenderTd ih self.allTenderTaszs do
tenderTh, tineitanp = currentTimestanp;
if not tenderTid.persistEntityInTransitate| TransactionType_ Fersist | then
self.copyErrors(tenderTa):
endif;
endforeach:

returt self.hasloErrors;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 111

Subordinate objects are persisted using the persistEntity method, as follows.

| T
11f not app.getdhoppingCartTA() .persistEntity | TransactionType_Persist) then:
: /4 Display error message / handle error here |
: return; :
[|

1

This method needs to be reimplemented only on transaction agents that do not use a specific object type or persist
multiple objects. To reimplement this method, simply return true, as follows.

hazinlyiubaordinatePersistentfhijects(] @ Eoolean protected:

hegin
return true;
end:

Base Implementation

hasinlviubordinatePersistentlibjects() : Boolean protected:

begin
return false;
end;

initialize

The public initialize method in the ModelTA class initializes the transaction agent properties to an uninitialized state
(generally null).

This method is generally reimplemented on all transaction agents, as shown in the following example.

initialize() updating:

begin
inheritMethod()

zelf.name = null;
end;

Itis generally not required to manually call this method. However, one situation in which you may need to call the
initialize method directly is when performing persistent operations in a loop using the same transaction agent. The
transaction agent needs to be initialized at the start of each loop, to ensure no properties exist from the previous
iteration.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 112

The following example shows the initialize method being called in a client data loader method.

create clientTh transient;
create addressTA transient:

while not inputFile.end0fFile(] do
line := inputFile.readLine.trimBlanks():

if line <> " then
pos = FirstIndexInline;

clientTh.initializel();
clientTh.name := self.getNextToken(line, pos):

addressTA.initialize ()
addressTA.wyModelTh = clientTh;

addressTh. street = self.getMNextToken| line, pos |:
addressTh.city := zelf.getNextToken| line, pos):
addre=ssTA. country := self.getNextToken| line, pos):
addrezsTA.email := zelf.getlextTcken| line, poz !
addrezsTA.fax = zelf.getlextToken(lihe, poz |;
addrezsTA.phohe := zelf.getlextTcken(line, poz !
addrezsTA.webh3ite = zelf.getNextToken| line, pos !

clientTh.persistEntityInTransitate| TransactionType Persist):
endif;

etidwhile;

Base Implementation

initiali=ze() updating;

begin
self.allErrars.clear():
self.allWarnings.clear():

self.expectedEdition 1= rmll;
gelf.focusField t= mll;
zelf.lockedByProcessId = null;
self.lockedTinestanp = mll;
self.wodificationCode = rmmll;
self.uyModellbiject 1= rmll;

erd;

lockForCreate

The protected lockForCreate method in the ModelTA class returns a Boolean value. This method is used to manually
place an exclusive lock on objects during a create operation.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 113

The following example shows a reimplementation of this method in a ClientTA class. The
app.myCompany.allClients collection is being locked, because the Client object is an inverse of the
Company::allClients collection.

laockFarCreate() : Eoolean protected;

begin
if not self.tryLockinglbhject| app.myCompany.allClients) then
returt false;
endif;

return true;
end;

This method returns true if the lock was applied successfully; otherwise it returns false if the lock was unable to be
applied.

Base Implementation

lackFarCreate(] : Eoolean protected;
hegin
return true;
end:
lockForDelete

The protected lockForDelete method in the ModelTA class returns a Boolean value. This method is used to manually
place an exclusive lock on objects during a delete operation.

The following example shows a reimplementation of this method in a ClientTA class. The
app.-myCompany.allClients collection is being locked here because the Client object is an inverse of the
Company::allClients collection.

lockFarDelete() : Eocolean protected:

begin
if not self.trylockinglbiject| app.wyCompany.allClients | then
return false;
endif;

return true;
end;

This method returns true if the lock was applied successfully; otherwise it returns false if the lock was unable to be
applied.

Base Implementation

lackFarDelete(] : Eoolean protected;

begin
return true;
end:

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 114

lockForModify

The protected lockForModify method in the ModelTA class returns a Boolean value. This method is used to
manually place an exclusive lock on objects during a modify operation. A modify operation is a targeted update that
sets only some of the properties on an object.

If there are no modify operations being performed, the reimplementation can simply return true, as shown in the
following method example.

lockForModify () : Eoolean protected;

begin
return true;
end:

Alternatively, perform a lock on the necessary objects, as shown in the following code fragment.

if not zelf.trylLockinglObject| app.myCompany.allClients | then
return false;

This method returns true if the lock was applied successfully; otherwise it returns false if the lock was unable to be
applied.

Base Implementation

lockForModifyi) : Boolean protected;
begin
return true;
end;
lockForUpdate

The protected lockForUpdate method in the ModelTA class returns a Boolean value. This method is used to place an
exclusive lock on objects during a update operation.

The following example shows a reimplementation of this method in a ClientTA class.

lockForUpdate () : Eoolean protected:

begin
ff 1s the key walue on the object changingr?
f41f it is, then we need to lock the collection
if self.name <> self.getModelObject().name then
if not self.trylLockinglbject| app.wyCompany.allClients 1 then
return false:
endif;
endif;

return true;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 115

In the above method example, the app.myCompany.allClients collection is being locked because the Client object
is an inverse of the Company class allClients collection. However, we only attempt to lock the object if the attribute
used as a key value is being updated.

This method returns true if the lock was applied successfully; otherwise it returns false if the lock was unable to be
applied.

Base Implementation

lockForUpdate|) : Boolean protected;

begin
return true;
end:

modifyEntity

The protected modifyEntity method in the ModelTA class returns a Boolean value. This method is programmatically
called to modify targeted properties when the system is not in transaction state. Modify is a targeted update operation
that sets only some of the properties on an object. The targeted property or subset of properties depends on the
modification code passed into the method.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pModification Integer The specific property or subset of properties to be modified. Passed in
from the caller.

This method returns true if the object property or subset of properties was modified successfully; otherwise it returns
false if the object property or subset of properties failed to be updated.

Base Implementation

modifyEntity(pModificarion @ Integer) : Boolean updating, final, protected:

vArS
transactionInplementor @ CommitTransactionTI;

begin
create transactionImplementor tratnsient:

return self.wodifvEnticyllithTransactionInplenentor | transactionImplementor, pModification):;
epilog

delete transactionlmplementor;
erd;

modifyEntitylnTransState

The protected modifyEntitylnTransState method in the ModelTA class returns a Boolean value. This method is
programmatically called to modify targeted properties when the system is in transaction state. Modify is a targeted
update that sets only some of the properties on an object. The targeted property or subset of properties depends on
the modification code passed into the method.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 116

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pModification Integer The specific property or subset of properties to be modified. Passed in
from the caller.

This method returns true if the object properties were modified successfully; otherwise it returns false if the object
properties failed to be updated.

Base Implementation

nodifyEntityInTransitate | pModification @ Integer) @ Boolean updating, final, protected;

vars
transactionImplementor : HNoTransactionTI;

begin
create transactionhImplementor transient;

returty self.nodifvEntityWithTransactionInplenentor | transactionlmplemnentor, pModification);
epilog

delete transactionImplementor;
end;

modifyEntityWithTransactionimplementor

The protected modifyEntityWithTransactionlmplementor method in the ModelTA class returns a Boolean value.
This method is programmatically called to modify targeted properties. A Transactionlmplementor object reference is
passed as an argument to determine if the transaction should be committed to the database. Generally, this is a
CommitTransactionTI object for general persists or a NoTransactionTI object for persisting subordinate objects or
collections.

Modify is a targeted update operation that sets only some of the properties on an object. The targeted property or
subset of properties depends on the modification code passed into the method.

The parameters for this method are listed in the following table.

Name Type Description

pTransactionlmplementor Transactionimplementor The transaction implementor passed in determines if
transaction state changes when a
doBeginTransaction, doCommitTransaction, or
doAbortTransaction method is called.

pModification Integer The specific property or subset of properties to be
modified. This value should be stored as a global
constant.

This method returns true if the object properties were modified successfully; otherwise it returns false if the object
properties failed to be updated.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

Base Implementation

modifyEntityWithTransactionInplenentor |
pTransactionlnplementor : Transactionlmplementor;
pModification @ Integer

| : EBoolean updating, final, protected;

wArS
transactionConpleted : Boolean:

begin
self.clearErrorsi):
zelf.clearWarnings() :

modificationCode := pModification;

if self.doValidate| ValidationType Modify) then
if self.lockForModify() then
pTransactionImplementor. doBeginTransaction() ;
if zelf.doModifv(pModificartion 1 then
pTransactionInplenentor. doConmi tTransaction() ;
else
pTransactionImplementor. dodbortTransaction() ;
return false:
endif;
else
pTransactionImplementor. dodbortTransaction() ;

return false;
endif;
else
recurn false:
endif;

CransactionCompleted := Crue;
return true;

epilog
if not transactionCompleted then
zelf.dodbortTransactionCleanup () ;
endif;
end;

self.addError("Update conflicrted wich another user.™, null]:

modifySubordinateObjects

117

The protected modifySubordinateObjects method in the ModelTA class returns a Boolean value. This method is

programmatically called to modify targeted properties on subordinate objects.

Modify is a targeted update operation that sets only some of the properties on an object. The targeted property or

subset of properties depends on the modification code passed into the method.

A transaction implementor is passed as an argument to determine if the transaction should be committed to the
database. Generally, this is a CommitTransactionTl object for general persists or a NoTransactionTI object for

persisting subordinate objects or collections.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 118

This method should be reimplemented in transactions agents that contain subordinate objects, as shown in the
following example.

modifyiubordinartedbjects | pModification @ Integer) @ Boolean updating, protected:

begin
inheritMethod| pModification)

if self.wyaddressTh <> rall;

and not zelf.wyiddressTA.persistEntityInTranssitate| pModification) then
F4 Error occurred, Copy AddressTa errors to self.allErrors attribure
self.copyErrors| self.wmvhddressTh)

endif;

return self.hasNoErrors;
end;

The parameter for this method is listed in the following table.

Name Type Description

pModification Integer The specific property or subset of properties to be modified. This value
should be stored as a global constant.

This method returns true if the subordinate objects property or subset of properties were modified successfully;
otherwise it returns false if the subordinate objects property or subset of properties failed to be updated.

Base Implementation

wodifyiubordinatetbjects| pModification : Integer) : Boolean updating, protected;

begin
return true;
end;

persistEntity

The public persistEntity method in the ModelTA class returns a Boolean value. This method is the main method
called to persist (create, update, modify, or delete) an object to the database when the system is not in a transaction
state.

The following code fragment is an example of creating or updating a Client object.
clientTA.persistEntity(TransactionType Persist);
The following code fragment is an example of deleting a Client object.

clientTA.persistEntity(TransactionType Delete);

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

Parameter

The parameter for this method is listed in the following table.

Name Type Description

119

pTransactionType Integer The type of transaction to perform; that is:

= ATransactionType_Delete triggers a delete transaction.

® ATransactionType_Persist triggers a create or update transaction.

® Atransaction type with values larger than a persist transaction indicate a
modification. Modification codes should be stored as global constants.

This method returns true if the object was persisted successfully; otherwise it returns false if the object failed to be
persisted.

Base Implementation

end;

persistEntity(pTransactionType @ Integer | @ EBoolean updating, final:

hegin

4/ Check for Full delete first (aka -1}
if pTransactionType = TransactionType Delete then
if self.getModelObject() = rull then

/4 Bather thah raise an exception, Jjust treat this as a

A4 no-op instead and return true.
return true;
endif;

return self.deleteEntity () :

£f Check for Full update next {(aka 0)
elzeif pTransactionType = TransactionType Persist then

if self.getModellObiject() = mull then
return self.createEntityi()
glse
return self.updateEntityi()
endif;

/4 Check for a modification number
elzeif pTransactionType > TransactionType FPersist then
return self.modifyEntity | pTransactionType |:

elze
return false;
endif:

persistEntitylnTransState

The public persistEntitylnTransState method in the ModelTA class returns a Boolean value. This method is the
main method called to persist (create, update, modify, or delete) an object to the database when the systemisina
transaction state.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 120

This method is commonly used to persist subordinate objects or when persisting multiple objects in a single
transaction (for example, in a collection of objects).

The following code fragment is an example of creating or updating an Address object from a ClientTA object.

self.myAddressTA.persistEntityInTransState (TransactionType persist);

Tip Because the Address object (child) is inversed to the Client (parent), we do not need a
persistEntitylnTransState method to perform a delete operation, as child objects are automatically deleted when the
parent object is deleted. This is one huge benefit of using inverses.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTransactionType Integer The type of transaction to perform; that is:

= ATransactionType_Delete triggers a delete transaction.
® ATransactionType_Persist triggers a create or update transaction.

® Atransaction type with values larger than a persist transaction indicate a
modification. Modification codes should be stored as global constants.

This method returns true if the object was persisted successfully; otherwise it returns false if the object failed to be
persisted.

Base Implementation

persistEntityInTransitate | pTransactionType @ Integer 1 @ Boolean updating, f£inal:

begin
Sf Check for Full_delete first [aka -1)
if pTransactionType = TransactionType Delete then
if self.getModelObject() = null then
return true;
endif;

return self.deleteEntityInTransitate() !

£f Check for Full_update next [(aka 0]
elzeif pTransactionType = TransactionType Persist then

if self.getModelibiject() = null then
returh self.createEntityInTransitate()
else
return self.updateEntityInTransitate();
endif;

Sf Check for a modification number
elzseif pTransactionType > TransactionType Persist then
returnn self.modifyEntityInTransitate | pTransactionType) :

else
return false;
endif;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 121

populateFromObject

The public populateFromObject method in the ModelTA class copies the PersistentModel object properties into the
properties of the transaction agent.

This method is generally used on all transaction agents and should be reimplemented accordingly. In addition, the
parameter name and type should be changed to be more specific.

The following reimplementation example shows the properties in a Client object being copied to the ClientTA
properties.

populateFromChject| pClient : Client) updating;

begin
inheritMethod| pClient):

self.name := pClient.name;
end;

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pModelObject PersistentModel The object from which to copy properties. The object and the
transaction agent should both have the same properties.

Base Implementation

populateFromObiject| pModelObject : PersistentModel) updating:

begin
self.nyModellbject := pModelObject:

gelf.populateiubordinatelbijects| pModellbiject)
end;

populateSubordinateObjects

The protected populateSubordinateObjects method in the ModelTA class copies the PersistentModel object
properties of the subordinate objects into the respective subordinate transaction agents.

Reimplement this method in all transaction agents that contain subordinate transaction agents. In addition, the
parameter name and type should be changed to be more specific.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 122

The following example shows an implementation of this method where an Address is being referenced to a Client
object.

populateiubardinatedhjects(pClient @ Client) updarting, protected:

vars
addressTa : AddressTa:

begin
inheritMethod| pClient j:

create addressTA transient;
addrezsTA.populateFromibhject| plClient.myiddreszs) ;
addressTA.wyModelTd := self:

end;

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pModelObject PersistentModel The object from which to copy properties. The object and the
transaction agent should both have the same properties.

Base Implementation

This method is intentionally left blank, as not all transaction agents have subordinate objects.

populateiubordinatelbijects | pModellbject @ PerzsistentModel) updating, protected:

begin

end;

tryLockingObject

The protected tryLockingObject method in the ModelTA class returns a Boolean value. This method attempts to
place an exclusive lock on the object passed in as the parameter.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pObject Object The object to be exclusively locked

This method returns true if the object was successfully locked; otherwise it returns false if the object was unable to be
locked.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 123

Base Implementation

tryLockinglbject| pObject : Object) : Eoolean protected, final:
F4 Try to get a lock on the Object, or return false

begin
return self.trylock(pObject, Exclusive_Lock, Transaction Duration, LockTimeout Jerwver Defined):
end;

updateEntity

The protected updateEntity method in the ModelTA class returns a Boolean value. This method is programmatically
called to update an object when the system in not in transaction state.

Note This method should not be reimplemented.

This method returns true if the object was updated successfully; otherwise it returns false if the object failed to be
updated.

Base Implementation

updareEncicy () @ Boolean updating, final, protected;
wArs

transactionInplementor : CommitTransactionTI;
begin

create transactionImplementor transient:
returh self.updateEntity¥lithTransactionInplementor | transactionInplementor);
epilog

delete transactionImplementor;
end;

updateEntitylnTransState

The protected updateEntitylnTransState method in the ModelTA class returns a Boolean value. This method is
programmatically called to update an object when the system is in transaction state.

Note This method should not be reimplemented.

This method returns true if the object was updated successfully; otherwise it returns false if the object failed to be
updated.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 124

Base Implementation

updateEnticyInTransitate () : Eoolean updating, final, protected:
wAars

transactionImplementor : NoTransactionTI:
begin

create transactionlmplementor transient:
return self.updateEntityWichTransactionhInplenentar| tranfactionImplementar)
epilog

delete transactionlmplementor;
end;

updateEntityWithTransactionImplementor

The protected updateEntityWithTransactionlmplementor method in the ModelTA class returns a Boolean value.
This method is programmatically called to update an object. A Transactionlmplementor is passed as a parameter to
determine if the transaction should be committed to the database. Generally, the transaction implementor is a
CommitTransactionTI for general persists or a NoTransactionTI for persisting subordinate objects or collections.

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTransactionimplementor Transactionlmplementor The transaction implementor passed in determines if
transaction state changes when the
Transactionlmplementor class
doBeginTransaction, doCommitTranasction, or
doAbortTransaction method is called

This method returns true if the object was updated successfully; otherwise it returns false if the object failed to be
updated.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 125

Base Implementation

updateEntityWithTransactionInplementor |
pTransactionIuplementor : Transactionlmplementor
I : Boolean updating, £inal, protected;

vars
validateRtn : Boolean;
transactionConpleted : Boolean;
begin

self.modificationCode:= null;
zelf.clearErrors();
zelf.clearWarnings():

walidateRtn := zelf.doValidate(ValidationType Update):

if walidateRtn then
if self.lockForUpdate() then
if not self.checkEdition(self.expectedEdition) then
self.addError | "Another user updated this entity™, rmall):
return false;
endif;
pTransactionInplenentor. doBeginTransaction() ;
if self.doUpdate() then
pTranzsactionInplenentor. doComnitTransaction) 2
else
pTransactionInplenentor. dodbortTransaction() ;
return false;
endif;
elze
pTransactionInplenentor. dodbortTransactioni) ;
self.addError | "Update conflicted™, rmall)
return false;
endif;
elze
return false:
endif;

transactionConpleted 1= true;
return true;
epilog
if not transactionCompleted then
self.dobbortTransactionCleanup () ;

endif:
end;

updateSubordinateObjects

The protected updateSubordinateObjects method in the ModelTA class returns a Boolean value. This method is
programmatically called to update subordinate objects.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 126

A Transactionlmplementor is passed as a parameter to determine if the transaction should be committed to the
database. Generally, the transaction implementor is a CommitTransactionTI for general persists or a
NoTransactionTI for persisting subordinate objects or collections.

Reimplement this method in transaction agents that contain subordinate objects, as shown in the following example.

updateiubordinatelbjects() : EBoolean updating, protected;

begin
inheritMethod() ;

A4 Tpdate the Address object

if self.wmyhaddressTa <> rmll

and not self.mydddressTA.persistEntityInTransitate | TransactionType Fersist | then
A4 Error occurred, Copy AddressTA errors to self.allErrors attribute
zelf.copyErrors(self.myviddressTa):

endif;

return self.hasNoErrors;
end;

This method returns true if the object was updated successfully; otherwise it returns false if the object failed to be
updated.

Base Implementation

updateiubordinatelbjects() : Eoolean updating, protected:

begin
return true;
end;

Transactionlmplementor Class

The TransactionImplementor (TI) classes contain specific behaviors to perform at different stages of a persistent
transaction.

Tl classes are injected into the xxxxxxxEntityWithTransactionlmplementor methods (for example,
createEntityWithTransactionlmplementor) in the ModelTA class as a dependency, allowing the methods to call the
same functions but perform different behaviors specific to the transaction implementor provided. This technique is
referred to as Dependency Injection.

Each transaction implementor has different behavioral implementations for begin, commit, and abort operations.
Beginning a Transaction

To perform a persistent operation in Jade (saving, updating, or deleting objects from a database), the system must
first be placed into a transaction state. This is generally done by calling the beginTransaction instruction prior to
performing persistent operations. This behavior is handled by the doBeginTransaction method in the TI.

Committing a Transaction

To commit a transaction to the database, Jade uses the commitTransaction instruction. This functionality is handled
by the doCommitTransaction method in the TI.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 127

Aborting a Transaction

To abort a transaction (in the case of an error or other reason), Jade uses the abortTransaction instruction. This
functionality is handled by the doAbortTransaction method in the TI.

Transaction Implementor

[AborﬂransactionTl] [CommitTransactionT]] [NoTransactionT]| }

[CommitTransactionOnIntervaITI] [SubordinateTransactionTI]

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

Transactionlmplementor Class Diagram

The following diagram shows the properties and methods defined in the Transactionlmplementor class.

Transactionimplementor

+ doAbortTransaction() abstract
+ doBeginTransaction() abstract

+ doCommitTransaction() abstract

+ dolntermediateCommitifDue() : Boolean

A\

AbortTransactionTI

CommitTransactionTI

128

+ doAbortTransaction() (r)

+ doBeginTransaction() (r)

+ doCommitTransaction() (r)

NoTransactionTI|

+ doAbortTransaction() (r)

+ doBeginTransaction() (r)

+ doCommitTransaction() (r)

CommitTransactionOnintervalTI

maxDurationMS : Integer

+ create() updating
+ dolntermediateCommitlfDue() : Boolean (r)

+ setMaxDurationMS(pMilliSeconds : Integer)

Transactionlmplementor Abstract Class

+ doAbortTransaction() (r)
+ doBeginTransaction() (r)

+ doCommitTransaction() (r)

T

SubordinateTransactionTl

The abstract transaction implementor class is reimplemented in child classes to ensure that the transaction methods
are available in each child class.

The Transactionlmplementor abstract class public methods are summarized in the following table.

Method Return Type Description

doAbortTransaction Not applicable Generally called to abort a transaction
doBeginTransaction Not applicable Generally called to start a transaction
doCommitTransaction Not applicable Generally called to commit a transaction
dolntermediateCommitlfDue Boolean For use on longer background tasks to commit periodically

after an elapsed time

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 129

doAbortTransaction (Abstract)

The public doAbortTransaction abstract method in the Transactionlmplementor abstract class is generally called
to abort a transaction.

Base Implementation

doAbortTransaction () abstract;

doBeginTransaction (Abstract)

The public doBeginTransaction abstract method in the Transactionlmplementor abstract class is generally called
to start a transaction.

Base Implementation

doBeginTransaction () abstract;

doCommitTransaction (Abstract)

The public doCommitTransaction abstract method in the Transactionlmplementor abstract class is generally
called to commit a transaction.

Base Implementation

doCommitTransaction () abstract;

dointermediateCommitifDue

The public doIntermediateCommitlfDue abstract method in the Transactionlmplementor abstract class is for use
on longer background tasks to commit periodically after an elapsed time, and it is reimplemented only in
CommitTransactionOnintervalTI abstract classes.

This method (in a reimplementation only) returns true if the elapsed time has passed and therefore should commit. By
default, this method returns false; that is, it does nothing.

Base Implementation

doIntermediateConmnitIfDue()] : Boolear:

begin
return false;
end;

AbortTransactionTl Class

The AbortTransactionTI transaction implementor class will go into a transaction state but will never commit, as the
doCommitTransaction method will abort the transaction.

This transaction implementor class can be used for:

m Unittesting

= Previewing code (where the preview is doing some persistent updating to get the result for displaying and then
aborting)

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 130

The AbortTransactionTI class public methods are summarized in the following table.

Method Description

doAbortTransaction Aborts the transaction by calling the abortTransaction instruction
doBeginTransaction Places the system into a transaction state

doCommitTransaction Called to commit a transaction; however, the transaction will not commit because

the abortTransaction instruction will be called instead

doAbortTransaction

The public doAbortTransaction method in the AbortTransactionTlI class aborts the transaction by calling the
abortTransaction instruction.

Base Implementation

The following example calls a method in the app object to perform the abort action because the same logic may be
used in other abort methods. In addition, we want to call our app notification manager to clear any scheduled
notifications.

dobdbortTranzaction() ;

begin
app. erevhondbortTransaction() ;
end:

The erewhonAbortTransaction method in the following example is responsible for aborting the transaction and
clearing any scheduled natifications in the notification manager. This logic could be placed directly in the
doAbortTransaction method; however, because the app shares this logic, we have separated it into its own method.

erevhondhortTransaction() ;

begin
ahortTransaction;

if zelf.myNotificationManager <> null then
self.nyNotificationManager. clearicheduledNotifications() ;
endif;
end;

doBeginTransaction

The public doBeginTransaction method in the AbortTransactionTI class places the system into a transaction state.

Base Implementation

doBeginTransaction()

begin
beginTransaction:
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 131

doCommitTransaction

The public doCommitTransaction method in the AbortTransactionTlI class is called to commit a transaction;
however, the transaction will not commit because the abortTransaction instruction will be called instead.

Base Implementation

doCommitTransaction() ;

begin
A/ thizs implementor will NEVER commit
app. erewhondbortTransaction() ;

end;

The erewhonAbortTransaction method in the following example is responsible for aborting the transaction and
clearing any scheduled notifications in the notification manager. This logic could be placed directly in the
doCommitTransaction method; however, because the app shares this logic, we have separated it into its own
method.

erevhondbortTransaction () ;

begin
ahortTransaction;

if zelf.myNotificationManhager <> null then
self.nyNotificationManager. clear3chedulediotifications():
endif;
end;

CommitTransactionTIl Class

The CommitTransactionTI transaction implementor class is used for normal persistence of objects during create,
update, modify, and delete operations.

The CommitTransactionTI class public methods are summarized in the following table.

Method Description

doAbortTransaction Aborts the transaction by calling the abortTransaction instruction
doBeginTransaction Places the system into a transaction state

doCommitTransaction Commits a transaction and therefore takes the system out of transaction state

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 132

doAbortTransaction

The public doAbortTransaction method in the CommitTransactionTI class aborts the transaction by calling the
abortTransaction instruction.

Base Implementation

The following example calls a method in the app object to perform the abort action because the same logic may be
used in other abort methods. In addition, we want to call our app notification manager to clear any scheduled
notifications.

dodbortTransactioni);

begin
app. erevhondbhortTransactioni) ;
end;

The erewhonAbortTransaction method in the following example is responsible for aborting the transaction and
clearing any scheduled notifications in the notification manager. This logic could be placed directly in the
doAbortTransaction method; however, because the app shares this logic, we have separated it into its own method.

erevhonbdbortTransactioni) ;

begin
abortTransaction;

if self.wmyNotificationManager <> null then
self.nyNotificationManager.clearicheduledlotifications() ;
endif;
end;

doBeginTransaction

The public doBeginTransaction method in the CommitTransactionTI class places the system into a transaction
state.

Base Implementation

doBeginTransaction() ;

begin
beginTransaction;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 133

doCommitTransaction

The public doCommitTransaction method in the CommitTransactionTI class commits a transaction and therefore
takes the system out of transaction state.

Base Implementation

doConmitTransaction() :

begin
app.erevhonConni tTransactioni) »
end:

The erewhonAbortTransaction method in the following example is responsible for committing the transaction and
sending any scheduled notifications using a notification manager. This logic could be placed directly in the
doCommitTransaction method, however because the app shares this logic, we have separated it into its own
method.

erewhonComni tTransaction|) ;

begin
connitTransaction:

if self.wyNotificationManager <> null then
self.nylotificationManager. sendicheduledNotifications() ;
erndif;
end;

CommitTransactionOnlintervalTl Class

The CommitTransactionOnlintervalTlI class behaves exactly the same as the CommitTransactionTI class, but
there is an additional dointermediateCommitlfDue method that can be used when a longer background task is
running and you want to commit periodically.

Note This implementor performs a commit action only if the system has been in a transaction state for longer than
3,000 milliseconds (that is, 3 seconds) from the time the system was placed into a transaction state.

Itis up to the developer to call the dolntermediateCommitifDue method at an appropriate point in the processing, as
the interim begin and commit actions do not occur automatically. If you want a different interval instead of the default
value of 3 seconds, use the setMaxDurationMS method to override the default value.

Tip The specified value should be suitable to avoid contention with other users and to avoid the transaction getting
very large so that it has a negative impact on performance, but also not so short that it has a negative impact from the
associated overhead when doing commits to the database.

The protected property in the CommitTransactionOnlintervalTlI class is listed in the following table.

Property Description

maxDurationMS Integer value that specifies the number of milliseconds from when the system
was placed in a transaction state until a commit transaction can occur

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 134

The public methods in the CommitTransactionOnlintervalTI class are summarized in the following table.

Method Description

create Executed when the object is first created

dolntermediateCommitlfDue Commits periodically after an elapsed time for longer background tasks

setMaxDurationMS Sets the maximum number of elapsed milliseconds after which to commit the
action

create

The public create method in the CommitTransactionOnintervalTI class is executed when the object is first created.

This method sets the value of the maxDurationMS property to the default maximum duration value of 3,000
milliseconds (that is, 3 seconds).

Base Implementation

createl) updating;

hegin
gelf.maxDurationMs := Default MaxDuration:
end;

dointermediateCommitifDue

The public dointermediateCommitlfDue method in the CommitTransactionOnlintervalTI class returns a Boolean
value. This method is used on longer background tasks to commit periodically after an elapsed time.

If the system has been in a transaction state for longer than the maximum amount of the time specified in the
maxDurationMS property, the system commits the transaction and sets the system back into a transaction state
ready for the next commit interval, as shown in the following example.

doIntermediateComnitIflue() : Eoolean;

begin
if systemn.getTimeInTransactionitate| process | > self.maxDurationMi then
gelf.doConnitTransactioni) ;
zelf.doBeginTransaction() :
return true;
endif;

return false;
end;

This method returns true if the maximum duration has been exceeded and the transaction has been committed;
otherwise it returns false if the duration has not been exceeded.

Base Implementation

doIntermediateConmitIfDue () : Boolean;

hegin
return false:
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 135

maxDurationMS

The protected maxDurationMS property in the CommitTransactionOnlintervalTlI class has an Integer value that
specifies the number of milliseconds from when the system was placed in a transaction state until a commit
transaction can occur.

The default value of 3,000 milliseconds (3 seconds) is set in the CommitTransactionOnlintervalTI class create
method. To override this default value, call the setMaxDurationMS method.

setMaxDurationMS

The public setMaxDurationMS method in the CommitTransactionOnintervalTI class sets the value of the
maxDurationMS property to a different interval (in milliseconds).

The default interval is 3,000 milliseconds (that is, 3 seconds) set by the create method.

Base Implementation

getMaxDurationt3(pMilliZecond=s : Integer] updating;

begin
self.maxDurationts = pMilliZeconds:
end;

NoTransactionTl Class

The NoTransactionTlI transaction implementor class does not perform any beginTransaction, commitTransaction,
or abortTransaction instruction behavior and is primarily used when creating subordinate objects for the parent
object while in a transaction state.

The parent object is responsible for beginning, committing, and aborting the transaction.

The public methods in the NoTransactionTI class are summarized in the following table.

Method Called when the...

doAbortTransaction Transaction should abort
doBeginTransaction System should be in placed transaction state
doCommitTransaction Should commit
doAbortTransaction

The public doAbortTransaction method in the NoTransactionTlI class is called when the transaction should abort.
As this implementor is used for subordinate objects, the parent object is responsible for aborting the transaction, so
this method does nothing.

Base Implementation

dosbortTransaction()

hegin
S do nothing
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 136

doBeginTransaction

The public doBeginTransaction method in the NoTransactionTI class is called when the system should be in
transaction state. As this implementor is used for subordinate objects, the parent object should already be in a
transaction state, so this method does nothing.

Base Implementation

doBeginTransaction() ;

begin
44 do nothing
end;

doCommitTransaction

The public doCommitTransaction method in the NoTransactionTlI class is called when the transaction should
commit. As this implementor is used for subordinate objects, the parent object is responsible for committing the
transactions, so this method does nothing.

Base Implementation

doConni tTransaction() ;

begin
A do nothing
end;

SubordinateTransactionTl Class

The SubordinateTransactionTI class is for use by subordinate TA methods where the parent TA is responsible for
controlling the transaction state.

The inherited doBeginTransaction, doCommitTransaction, and doAbortTransaction methods do nothing!

This class behaves the same as the NoTransactionTI class. The class name implies a more-specific usage.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 137

BaseForm Class

Most of the time, the user interacts with the system through forms. These forms need to work with the transaction
agent through a BaseForm class.

The BaseForm class should be the parent class of all forms that use the transaction agent framework, and it generally
does not contain any controls or menus but it does contain the properties and methods for interacting with the

transaction agent.
ViewSchema Your Application View
Schema

AN

The transaction agent f E
used by the form Jade

| |

Form

-
BaseForm }(— Base Form
o

A

[PersistentModel]F \

The persistent
object class

Your custom forms
e.g. ClientForm

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

138

The above diagram shows the BaseForm class as a child of the Jade Form object. By convention, all user interfaces

and views should be a subclass of a YourAppNameViewSchema schema.

BaseForm Class Diagram

The BaseForm class contains a reference to the ModelTA transaction agent and a PersistentModel. The form data

is populated in the PersistentModel and passed to the ModelTA for processing.

BaseForm

+ myCurrentObject : PersistentModel

+ myTA : ModelTA

displayErrors()

displayObject(pObject : PersistentModel)
doDelete() : Boolean

doSave() : Boolean

formLoad()

formUnload()

+ getCurrentObject() : PersistentModel

+ getTA() : ModelTA

getTAClass() : Class

populateTAFromForm(pTA : ModelTA input) : Boolean
processAfterDelete(pTA : ModelTA input)

processAfterSave(pTA : ModelTA)

+ setContextObject(pContext : PersistentModel)

1

EditClientForm

displayObject(pClient : Client)

+ getCurrentObject() : Client

+ getTA() : ClientTA

getTAClass() : Class

populateTAFromForm(pClientTA : ClientTA input) : Boolean
processAfterDelete(pClientTA ; ClientTA input)

processAfterSave(pClientTA: ClientTA)

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

EditClientForm Code Implementation Examples

139

The EditClientForm class reimplements the methods summarized in the following table. For code implementation
examples of these methods, see the following subsections.

Method Description

displayObject Populates the form controls using the properties of the pClient parameter
getCurrentObject Gets the Client object stored in the myCurrentObject property

getTA Gets the ClientTA transaction agent instance used by the form

getTAClass Gets the class type of the ClientTA transaction agent

populateTAFromForm Populates the ClientTA transaction agents from the respective form control values

processAfterDelete

processAfterSave Tasks to perform after a successful save action

Tasks to perform after a successful delete action

displayObject

The displayObject method in the EditClientForm class populates the form controls with the values contained in the

pClient parameter.

wars
address @ Lddress:

begin
inheritMethod| pClient)

if pClient = rull then

elze

self. txtNane. text &=

self.txtitrest. text
self.txtlity. Cext &=
self.txtCountry. text
zelf. txtPhone. text
self.txtFax. text =
self.txtEmail. text
self. txtlebiite. text
endif;
end;

displayibject| pClient : Client | updating, protected;

-

self.caption := §4dd & " " & self.caption;

gelf.caption = $Edit &« " " & self.caption:

pClient.name;

addreszs := pClient.wmyhddress;

= address.street;
address.city;
= address.country;

= addrezs.phone:;

addrezs. fax:

= address.email:;

= address.webiite;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 140

getCurrentObject

The getCurrentObject method in the EditClientForm class returns the object stored in the myCurrentModel
reference returned by the inheritMethod instruction and typecasts it to the more-specific Client type.

getCurrentlObject() : Client;
begin

return inheritMethod().Client:
end;
getTA

The getTA method in the EditClientForm class gets the transaction agent stored in the myTA property returned by
the inheritMethod instruction and typecasts it to the more-specific ClientTA type.

getTA()] : ClientTi:

begin
returthh inheritMethod().ClientTh;
end;

getTAClass

The getTAClass method in the EditClientForm class gets the Class class instance for the ClientTA transaction
agent used by the form.

getTAClazs() : Class protected;
begin

return ClientTi;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

populateTAFromForm

141

The populateTAFromForm method in the EditClientForm class populates the transaction agent properties with the

respective values from the controls of the form.

vars
addressTh : AddressTi;

begin
if not inheritMethod| pClientT&) then
return false;
endif;

addressTh 1= pClientTh.nyhddressTh:

i1f addrezsTi = rmll then
create addressTh transient;
addressTA. . wyModelTh 1= pClientTi:

refturn true;
end:

populateTiFronForm| pClientTid @ ClientTi4 input)

pClientTA.name := self,tdtName.text. trinWhite3pace(];

J4 create the addressTh if it does not exist

endif;

addressTA,. street 1= self.txititreet, text, Crimhiteipace()] 2
addressTh.city = self.txtlCity.text.trinhitelpace(];
addressTh. country := self.txtlountry. text, trinlhitelpace()
addressTA.phone := z2elf.txtPhone. text, trinlfhiceipace(] ;
addressTh. fax := self.txtFax. text. trinlhite3pace () :
addressTh.email := zself. txtEmail. text.trinllhitelpace(]:
addressTh.weh3ite = zelf.txtWeblite. text. trinlhitelpacer) !

: Eoolean protected;

processAfterDelete

The processAfterDelete method in the EditClientForm class performs tasks after a delete operation has been
successfully performed. In this case, we are showing a message box to alert the user that the Client object was

deleted.

begin
inheritMethod| pClientTd) ;

app.wsgBox | 'Client ' & pClientTad.name &
end;

processafterDelete| pClientTd @ ClientTh input | protected;

' has bheen deleted',

"Juccess', MagBox_0E_Only):

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 142

processAfterSave

The processAfterSave method in the EditClientForm class performs tasks after a save operation has been
successfully performed. In this case, we are showing a message box to alert the user that the Client object was
saved.

processhdfterBawve| pClientTd : ClientT&) updating, protected:

begin
inheritMethod| pClientTh)

app.msghox ['Client ' & pClientTA.name & ' has been sawved', 'Success', Magbox_ 0E_Only):
end;

BaseForm Properties

The public properties defined in the BaseForm class are summarized in the following table.

Property Value Stores the...
myCurrentObject PersistentModel Object for which the form and transaction agent are responsible
myTA ModelTA Transaction agent responsible for persisting and displaying the

PersistentModel object

BaseForm Methods

The methods defined in the BaseForm class are summarized in the following table.

Method Description

displayErrors Displays the errors stored in the allErrors collection after a failed delete or save
operation

displayObject Displays the persistent object properties on the form

doDelete Performs a persistent delete of the object stored in the myCurrentObject property

doSave Performs a persistent save of the object stored in the myCurrentObject property

formLoad Performs specific form load behavior

formUnload Performs specific form unload behavior

getCurrentObject Gets the PersistentModel object stored in the myCurrentObject property of the form

getTA Returns the transaction agent stored in the myTA property

getTAClass Returns the type of transaction agent used by the form

populateTAFromForm Populates the transaction agent of the form with the form control values

processAfterDelete Performs tasks after a successful delete operation

processAfterSave Performs tasks after a successful save operation

setContextObject Populate the myCurrentObject property of the form with the PersistentModel

specified in the pContext parameter

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 143

displayErrors

The protected displayErrors method in the BaseForm class displays the errors stored in the allErrors collection
after a failed delete or save operation.

Parameters

The parameters for this method are listed in the following table.

Name Type Description
pTA ModelTA The transaction agent being used to store the errors
pTitle String Title for the message box

Base Implementation

displavErrors({ pTh : ModelTh; pTitle : String | updating, protected;

wAars
wsg ¢ String;
error @ Itring;
title : 3tring;

begin
if pTa <> null then
foreach error in pTh.allErrars do
w3g. appendTextWithbelim| CrLE£, error, false);
endforeach:;
endif:

title := pTitle;
if title = mull then

title := "Error during save™;
endif;

/fset focous field when encountered an error
zelf.setFocusField| pTh.focusField);

app.n3glox (msg , title , MsgBox_Information Icon + MsgBox_0E_Only) :
end;

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

displayObject

144

The protected displayObject method in the BaseForm class displays the persistent object properties on the form.

The reimplementation of this method should provide a more-specific parameter. In the following example, a Client

instance has been provided as the parameter.

vars
address : Address:

begin
inheritMethod| pClient);

if pClient = rull then

displayObject| pClient : Client) updating, protected:

self.caption = $4dd & " " & self.caption:
else
self.caption := $Edit & " " & self.caption:
self. txtlane. text := pClient.name;
addrezs = pClient.nyiddress;
self.cxtitreet, text = addresz.street;
gelf.cxtCity. text = address.city;
self. txtCountry. text := address.country:
self. txtPhone. text := address.phone:;
self,txtFax.text = address.fax:
self.txtEmail. text := address.email;
self. xtlleb3ite. text = address.wehlite:;
endif:
end;
Parameter

The parameter for this method is listed in the following table.

Name Type Description

pClient Client Persistent client containing the properties to be displayed

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 145

Base Implementation

diszplaylbiject| pObject : FPerzistentModel) updating, protected;
rars
nsgReturn : Integer:
begin
if pObject <> null and pObject.lockedByProcessId <= null then
msgReturn = app.msgBox|
"Thiz " & self.thing() & " is currently bheing edited.
Would you like to send a 'Save' request so that changes made are sawved:?™,
zelf.thing() & " already being dited”, MagBox_(uestion Mark Icon + MsgBox_Yes_HNo);
if magReturn = MagBox Return Ves then
plbject. causeEvent | Erewhon Event SavelutstandingChanges, true, Erewvhon Event SavelutstandingChanges):
endif;
endif;
self.myCurrentibiject = plbject:
end;

doDelete

The protected doDelete method in the BaseForm class returns a Boolean value. This method is called by the form to
perform a persistent delete of the object stored in the myCurrentObject property.

The method in the following example shows the doDelete method being called when the Remove button is clicked.

btnRemove_click(btn : Button input) updating;

begin
app.mousefointer = Busy:

if lsztflients.listlObject <> rmll then
self.myCurrentibject = lstClients.listObject.Client;
self.doDeletel] ;

endif;

epilog
app.mousePointer 1= Idle:
end:

This method returns true if the delete operation was successful; otherwise it returns false if the delete operation was
unsuccessful.

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

Base Implementation

daolelete(] : Boolean updating, protected;

vars
ta : ModelTa:

begin
ta := self.getTAl):

if ta = rmll then
create self.wyThA as self.getlCurrentlbject().getTiClasz=s();
ta = self.uyThk;

endif:;

ta.populateFronlbject| self.getlCurrentObiject(] |:

if not ta.persistEntity(TransactionType_Delete)] then
zelf.displayErrors(ta, rmll);
return false:;

endif:

self.processifterbelete| ta):
A4 Clean up references to inwvalid objects
delete zelf.myTA;

self.myCurrentlbiject = rmll;

return true;
end;

doSave

146

The protected doSave method in the BaseForm class returns a Boolean value. This method is called by the form to

perform a persistent save of the object stored in the myCurrentObject property.

The method in the following example shows the doSave method being called when the Ok button is clicked. If the

method returns false, we exit the button click method by returning early.

btnlk_click(btn : Button input | updating;

begin
app.uwousePointer := Busy;

if not self.dofave() then
return;
endif;

self.modalResult := ModalOE:;
self.unloadFormi) 2

epilog
app.nousePointer 1= Idle;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 147

This method returns true if the save operation was successful; otherwise it returns false if the save operation was
unsuccessful.

Base Implementation

dofawve() : Boolean updating, protected:

WAL S
ta : ModelTh;

begin
ta := self.getThi);

if ta = null then
create self.myTh as self.getTAClassi):
ta 1= self.myTh;

if zelf.gecfurrentlbject(] => rull then
ta.populateFromObiject| self.getCurrentObject())
endif;
endif;

if not self.populateTAFromForm(ta) then
return false;
endif;

if not ta.pergistEntity|(TransactionType_ FPersist) then
self.displayErrors| ta, null);
return false;

endif;

self.processhafteriave| ta)

return true;
end;

formLoad

The protected formLoad method in the BaseForm class is a proxy method to perform specific form load behavior.
This method is called by the inbuilt Jade load method for forms.

This method should be used to disable or enable buttons or other initial setup that does not rely on the specific values
from the transaction agent, as shown in the following example.

formLoad() updating, protected:

begin
inheritMethod() ;

self.lstClients.listlollection| app.nyCompany.allClients, true, 0O):

gelf.btnEdit.enahled = falze;
self.btnRemowve. enabled := false;
end;

WP_Erewhon - 2022.0.04

jJadeplatform

Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

Base Implementation

148

formLoad() updating, protected;

TAYS
keyzs : Integerdrray:

begin
create keys transient;

epilog
delete keys:
end;

self.fornGetRegisterKeys | kevs)
self.registerFormKeys(kevs | :

formUnload

The protected formUnload method in the BaseForm class is a proxy method to perform specific form unload
behavior. This method is called by the inbuilt Jade unload method for forms.

This method can be used to automatically save an object or unsubscribe from notifications. For example, the following
logic can be used to delete transient objects and end notifications.

begin
inheritMethodi)

delete self.myIltemfearch:

end;

formnleoad() updating, protected;

self.endlotificationForbubscriber(self);

Base Implementation

begin

endif;

endif;

delete zelf.myTh;
end;

fornmload({) updating, protected;

if self.wyCurrentlObject <> rull and self.myCurrentObiject.isioftLockedBvyMe() then
if self.wmyTh = rull then
create self.wyTA as self.getTAClass():
self.wyTh.populateFromlbject| self.myCurrentibject):

gelf.nyTh.persistEntity(TransactionType Modify UnlockEntity):

self.endlotificationForiubscriber| self):

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 149

getCurrentObject

The protected getCurrentObject method in the BaseForm class returns a PersistentModel value. This method, is
used to get the PersistentModel object stored in the myCurrentObject property of the form.

When reimplementing this method, the return type should be more-specific and the inherited method type cast with
the specific PersistentModel subclass, as shown in the following example.

getCurrentibject(] : Client;
begin

return inheritMethod().Client;
end;

Base Implementation

getCurrentlbiject() : PersistentModel;
begin
return self.wyCurrentibject;
end;
getTA
The protected getTA method in the BaseForm class is used to return the transaction agent stored in the myTA
property.

When reimplementing this method, the return type should be more-specific and the inherited method type cast with
the specific ModelTA subclass.

getTa() @ ClientTa;
begin

return inheritMethod().ClientTi;
end;

Base Implementation

getTa() @ ModelTi:

begin
return self.wyTh:
end;

getTAClass

The BaseForm class protected getTAClass method is used to return the type of transaction agent used by the form.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework

150

The reimplementation of this method should return a specific transaction agent (ModelTA) subclass, as shown in the

following example.

getTaClass() : Class protected;
begin

returnn ClientTi;
end;

Base Implementation

getTaClass() : Class protected:

begin
returty ModelTd;
end;

populateTAFromForm

The protected populateTAFromForm method in the BaseForm class returns a Boolean value. This method is used
to populate the forms transaction agent with the form control values.

The following reimplementation example shows a ClientTA object being populated with form data.

populateTaFronForn | pClientTh : ClientTd input |

wArS
addressTa @ AddressTh;

begin
if not inheritMethod| pClientTi4) then
return falsze;
endif;

addressTh := pClientTh.myaddressTh;

/4 create the addressTh if it does not exist
if addressTA = rull then

create addreszsT4d transient;

addre=zsTLh. myModelTA := pClientTi;

return true;
end;

: Boolean protected:

pClientTd.name := self.txtWName.text.trinhiteipace(])

endif;

addressTh, street := self.txtitreet, text. trinWhitedpace():
addressTh.city = self.txtlCity. text, trinhitelipace(]
addressTA. country = self.txtlCountry. text, trinWhitelpace (]
addressTA.phone = self. txtPhone. text. teinlhitelpace ()
addressTA, fax := self.txtFax.text.trinlhitelpace();
addrezsTh. email = zelf.txtEmajl. text.trinlhitelpace();
addre=zsTh. web3ite = zelf.txtWebiite.text. trinWhiteipace (]

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 151

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTA ModelTA The transaction agent used by the form to populate the
data. Reimplementation of this method should use a
specific ModelTA subclass parameter value.

This method returns true if the operation was successful; otherwise it returns false if the operation was unsuccessful.

Base Implementation

populateTaFronForm(pTa @ ModelTA input) @ EBoolean protected;

begin
pTa.nvHodelObject = self.getCurrentlObiject(];

return true;
end;

processAfterDelete

The protected processAfterDelete method in the BaseForm class performs tasks after a successful delete
operation.

The following example shows how you can display a message box to the user or refresh a list.

processhafterDelete| pClientTd @ ClientTh input) protected;

hegin
inheritMethod| pClientTd) ;

app.msgBox | 'Client ' & pClientTA.name & ' has been deleted', 'Succesz', MagBox 0K _Only):
end;

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTA ModelTA The transaction agent used by the form

Base Implementation

processiafrerDelete| pTa @ ModelTd input)| protected;

begin

end;

processAfterSave

The protected processAfterSave method in the BaseForm class performs tasks after a successful save operation.

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 152

The following example shows how you can display a message box to the user or refresh a list.

processafteriave | pClientThd @ ClientTh) updating, protected;

begin
inheritMethod] pClientTh) ;

app.w3gBox('Client ' & pClientTh.name & ' has been zawved', 'Success', Magbox_0E_0Only):
end;

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pTA ModelTA The transaction agent used by the form

Base Implementation

processAfteriave| pTaA : ModelTh) updating, protected;

begin
if self.wmyCurrentlibject = null then
self.myCurrentlbject t= pTa.getModelObijectl) ;
endif;

self.displaylbject| self.myCurrentObiject |

end;

setContextObject

The protected setContextObject method in the BaseForm class is used to populate the myCurrentObject property
with the PersistentModel specified in the pTA parameter.

The following example shows how you can populate the new form with a specified Client object to perform an update
operation.

btnEdit click(btn : Button input) updating;

Tars
clientForm : EditClientForm;

begin
app.mouselfointer 1= Busy:

if lstClients.listObject <> null then
create clientForm;
clientForm,. sethddressableEntity | lstlClients.listlObject.Client.wyhddress)
clientForm. setContextlbject| lstClients.listlObject.Client)
clientForm. showModal ;
endif:
epilog
app.mousePointer = Idle;
end;

WP_Erewhon - 2022.0.04

jJadeplatform Erewhon Demonstration System Reference

Part5 Transaction Agent Framework 153

Parameter

The parameter for this method is listed in the following table.

Name Type Description

pContext PersistentModel The persistent object to be set as myCurrentObject

Base Implementation

setContextObiject| pContext : PersistentModel) updating:

begin
self.myCurrentlbject := pContext:
end;

WP_Erewhon - 2022.0.04

	Introduction
	Part 1 Setting Up the Erewhon Demo System
	Batch Loading the Erewhon Schemas
	Initializing the Erewhon Investments Database
	Initializing the Database from the Command Line
	Running the Administration Application (Standard Client)
	Running the Shop Application (Standard Client)
	Running the Tender Closure Application (Standard Client)
	Running Jade in Thin Client Mode
	Running the Web Shop Application using Apache HTTP Server
	Running the Web Shop Using Internet Information Server
	Configuring IIS
	Step 1: Installing CGI and ISAPI Extensions
	Step 2: Adding an Application Pool
	Step 3: Adding an Application
	Step 4: Configuring Handler Mappings for the Application
	Step 5: Adding a Virtual Directory for Images

	Running the Web Shop Application
	Authorizing the WebShop Application for IIS

	Part 2 User Guide
	Administration Application
	Logon
	Main Administration Window – File Menu
	Main Administration Window – Edit Menu
	Company Details
	Agent Commission Rates (Company User Only)
	Locations (Company User Only)
	Sale Item Categories (Company User Only)

	Main Administration Window – View Menu
	Agents and Clients (Company User Only)
	Commission Rates
	Sale Items (by Category)
	Sales

	Jade Thin Client Shop Application
	Logon
	Product Search
	Viewing the Details of a Product
	Buying or Bidding for a Product
	Shopping Cart
	Product Details
	Checkout

	Web Shop Application
	Logon
	Product Search
	Viewing the Details of a Product
	Buying or Bidding for a Product
	Product Details/Tender
	Checkout

	Tender Closure Application

	Part 3 Model Implementation
	Locations
	Agents and Commission Rates
	Sales and Clients
	Jade Reference Diagram
	Agent
	Client
	Company
	Commission Rate
	Country
	Region
	Retail Sale
	Tender Sale
	Retail Sale Item
	Tender Sale Item
	Sale Item Category
	Tender

	Part 4 Design Considerations
	Conventions
	Models, Views, and Controllers
	Model and View Separation
	Schemas
	CommonSchema
	ErewhonInvestmentsModelSchema
	ErewhonInvestmentsViewSchema
	SelfDocumentorSchema
	WebServiceConsumer

	Transaction Separation
	Model Operations
	Exception Handling
	Cache Synchronization
	listCollection
	CollectionListBox Class
	Object Notifications
	Edition Checking
	Synchronization of Shop Views
	Locking
	Exclusive Locks
	Shared Locks
	Reserve Locks
	Unlocking Objects

	Inverses and Referential Integrity
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationship
	Parent-Child Relationships
	Multiple Inverse Relationships
	Automatic Key Maintenance

	Key Paths
	Server Methods
	Skins

	Part 5 Transaction Agent Framework
	Best Practice Guidelines
	Transaction Agent Framework (TAF) Overview
	What is the Transaction Agent Framework (TAF)?
	Why is a TAF Needed?
	Where Should the TAF Reside?
	How Does the TAF Work?
	Manually Persisting an Object
	Creating Objects using the BaseForm Class
	Updating Objects using the BaseForm Class
	Deleting Objects using the BaseForm Class
	Reading Data

	Locking Objects
	Locking a Collection
	Locking Collection Objects Before a Create Action
	Locking Collection Objects Before a Delete Action
	Locking Collection Objects Before an Update Action

	PersistentModel Class
	PersistentModel Code Implementation Examples
	PersistentModel Properties
	PersistentModel Methods
	getTAClass
	isSoftLockedByMe
	onCreate
	onDelete
	onModify
	onUpdate
	setCommonProperties

	ModelTA Class (Transaction Agent)
	ModelTA Class Diagrams
	ModelTA Code Implementation Examples
	ModelTA Properties
	ModelTA Methods
	addError
	addWarning
	checkEdition
	clearErrors
	clearErrorsOnSubordinateTAs
	clearWarnings
	clearWarningsOnSubordinateTAs
	copyErrors
	copyWarnings
	createEntity
	createEntityInTransState
	createEntityWithTransactionImplementor
	createSubordinateObjects
	deleteEntity
	deleteEntityInTransState
	deleteEntityWithTransactionImplementor
	deleteSubordinateObjects
	doAbortTransactionCleanup
	doAbortTransactionCleanupForSubordinateObjects
	doCreate
	doDelete
	doModify
	doPreValidate
	doUpdate
	doValidate
	getFullErrorDetails
	getModelObject
	getModelObjectClass
	hasErrors
	hasNoErrors
	hasOnlySubordinatePersistentObjects
	initialize
	lockForCreate
	lockForDelete
	lockForModify
	lockForUpdate
	modifyEntity
	modifyEntityInTransState
	modifyEntityWithTransactionImplementor
	modifySubordinateObjects
	persistEntity
	persistEntityInTransState
	populateFromObject
	populateSubordinateObjects
	tryLockingObject
	updateEntity
	updateEntityInTransState
	updateEntityWithTransactionImplementor
	updateSubordinateObjects

	TransactionImplementor Class
	TransactionImplementor Class Diagram
	TransactionImplementor Abstract Class
	doAbortTransaction (Abstract)
	doBeginTransaction (Abstract)
	doCommitTransaction (Abstract)
	doIntermediateCommitIfDue
	AbortTransactionTI Class
	doAbortTransaction
	doBeginTransaction
	doCommitTransaction

	CommitTransactionTI Class
	doAbortTransaction
	doBeginTransaction
	doCommitTransaction

	CommitTransactionOnIntervalTI Class
	create
	doIntermediateCommitIfDue
	maxDurationMS
	setMaxDurationMS

	NoTransactionTI Class
	doAbortTransaction
	doBeginTransaction
	doCommitTransaction

	SubordinateTransactionTI Class

	BaseForm Class
	BaseForm Class Diagram
	EditClientForm Code Implementation Examples
	displayObject
	getCurrentObject
	getTA
	getTAClass
	populateTAFromForm
	processAfterDelete
	processAfterSave

	BaseForm Properties
	BaseForm Methods
	displayErrors
	displayObject
	doDelete
	doSave
	formLoad
	formUnload
	getCurrentObject
	getTA
	getTAClass
	populateTAFromForm
	processAfterDelete
	processAfterSave
	setContextObject

