
Copyright©2021 Jade Software Corporation Limited. All rights reserved.

Upgrading to the JADE 2020
Release

 V E R S I O N 2020.0.02

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2021 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadme.txt file.

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Contents

Contents iii

Upgrading to the JADE 2020 Release 7
JADE Release Support 8

Deimplementations and Deprecations 8
Application Class Constants Deprecated 8
RPS Working Set Data Store Mode Deprecated 8

Highlights in this Release 9
Accessing Details about Faults Fixed in Releases 11

How to Locate PARs Fixed in a Specific Release 11
Upgrading to JADE 2020 12

Upgrading to JADE 2020 from JADE 2018 12
Running Two Releases of JADE on the Same Workstation 13

JADE Thin Client Upgrade 13
Upgrading an SDS Native or RPS Secondary System 13
Upgrade Validation 13

JADE 2020 Changes that May Affect Your Existing Systems 14
.NET Import Issue Hotfix (PAR 67915) 14
Adding a String to a BinaryArray (PAR 67749) 14
Base URL for Context-sensitive Online Help 14
Collection Membership Length (JAD-I-84) 15
Dictionary Maintenance of a Key Property in a Collection (PAR 67895) 15
DDX-Format File Extraction (PAR 67676) 15
Detecting Orphaned DevControlProperties Instances (PAR 66131) 15
Exceptions Accessing System-only Features 16
Loading User Preferences from an Earlier Release (NFS 67599) 16
Multiple activate/deactivate Events Generated for One User Action (PAR 67865) 16
Natively Supporting Additional .NET Imported Types in JADE 17
Reverting a 2020 Thin Client to JADE 2018 (PAR 68048) 17
Security Restrictions 17
SslConfigurationTool Executable (PAR 68118) 18
String Type replace__ and replaceFrom__ Methods (PAR 67698) 18
Suspending Parent Alignment when Positioning Controls (NFS 68413) 18

Changes in JADE Release 2020.0.02 (Service Pack 1) 19
Array Membership of Type Any 19
Checking for Orphan Subobjects in User Data Files 19
Collection Class Methods 19

Conditional Methods 19
tryCopy__ Method (JAD-I-642) 19

Compound Assignments 20
Converting a String Type to a Time Type (PAR 68119) 20
Custom MenuItem Events (NFS 68101) 21
Database Initial and Extent File Sizes (PAR 68240) 21
Deleting Subobject Dynamic Properties (PAR 61609) 21
Extended create Instruction Expansion 21
Generating OpenAPIs from JADE REST APIs (Jad-I-635) 22
Iterating through Virtual Collections (PAR 67606) 22
JADE Container Image Naming Convention (JAD-I-631) 22

JADE Images 22
JADE Development Environment 23

AutoComplete Parameter Display for Translatable Strings (NFS 68109) 23
Delta Searches (NFS 68089) 23
Display of the Class in which a Method is Defined (NFS 68122) 23
Finding a Class by Number (NFS 68102, JAD-I-592) 24
Inspecting Code in the Debugger (PAR 68357) 24
Painter Hierarchy for Form Dialog (NFS 68385, JAD-I-573) 24
Package Class Name Handling in the Find Type Dialog (PAR 68459) 25
Suspending Parent Alignment when Positioning Controls (NFS 68413) 25
Workspace Refactoring (PAR 68352) 25

Contents iv

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

JadeDbFilePartition Class drop Method (PAR 62426) 25
MergeIterator Class startKey Methods (PAR 68511) 25
Reorganization 26

Initiating a Managed Reorganization Transition 26
Reorganizing Changed Array Definitions (PAR 68306, PAR 683549) 26

Report Writer (JAD-I-552) 26
REST Request PDF Data Format (PAR 68114) 29
Running a Workspace in a Deployed System (PAR 68293) 29
Security (JAD-I-431) 30
Status Line Positioning (PAR 68131) 30
Unicode Surrogate Pair Character Support (PAR 68066) 31
Unit Test Runner Form (NFSes 65290, 65287) 32

Changes and New Features in JADE Release 2020.0.01 33
Animate Window Functionality for Forms (NFS 67576) 33
Any Primitive Type Methods 34
Application Methods 34

Allowing Zero Forms 34
Starting an Application Method with a String 34

Array Variable-Size Elements (JAD-I-84) 34
Button Picture Scaling (PAR 66907) 35
Collection Concurrency (JAD-I-423) 35
ComboBox and ListBox Class ItemNotFound Constant 37
ComboBox Control Default Line Height (NFS 67273, JAD-I-467) 37
File Open Dialog Prompt (PAR 65662, PAR 66871) 37
Containerization (JAD-I-433) 37

Console Remote Access Program (jadrapb) (JAD-I-525) 38
Further Container-ready Services 38
Docker Images 38
Image Naming Convention 38
JADE Images 39
Container Logging 40
Windows Base Image 40
Image Update Policy 40
Support Policy 40
JADE Container Examples 40

Database 41
convertToBackup Command after Recovery (PAR 67837) 41
convertToBackup Command Extension (JAD-I-461) 41
Database File Address Mismatch (PAR 67345) 41
Database Diagnostic Enhancements (PAR 67280) 41

Date Primitive Type Methods 42
Dynamic Objects 42

External Dynamic Object Methods (JAD-I-389) 42
Merging Dynamic Objects 43
Methods that Set Dynamic Object Properties 43
Processing and Obtaining Information about Dynamic Objects 43

File Open Error Suppression (JAD-I-454) 43
firstVisibleLine Property Availability (JAD-I-449) 44
Floating Form Visibility (PAR 67979) 44
foreach Instruction as Expression (JAD-I-173) 44
Inspector 44

Inspecting a Deployed Database (PAR 66532) 44
Inspecting Class and Object Volatility (JAD-I-137) 45
Inspector Security 45
Quick Inspect Toolbar (JAD-I-168) 45

JADE Development Environment 47
Adding a New Property (NFS 67555) 47
Application Default Inherited (NFS 67299) 47
AutoComplete 47

Block Label Prompt (NFS 66867) 47
Constructors with Parameters Signature Display (NFS 67275, JAD-I-426) 48
Displaying Identifier Usages from the Editor Pane (NFS 67553, JAD-I-517) 48
Displaying Options for External Methods (PAR 67517) 49
Selecting an Exact Entry in the List (NFS 67276, JAD-I-468) 49

Bubble Help 49

Contents v

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Bubble Help in the Editor Pane (NFS 64066) 49
Displaying Shortcut Keys in Icon Bubble Help (NFS 67715, JAD-I-325) 50

Camel Case Filtering in List Boxes (NFS 67480, JAD-I-493) 50
Captions on Floating Forms (NFS 67001) 50
Clipboard Toolbar Context Menu (JAD-I-168) 51
Closing Tabs in the Development Environment (NFS 62115) 51
Comparing Method Sources (NFS 67704, JAD-I-160) 51
Condition Method Text Template (NFS 67277, JAD-I-335) 51
Dark and Light Themes (JAD-I-370) 51
Debugger 52

Bubble Help in the Debugger (NFS 67666) 52
Inspecting Variables in the Debugger (NFS 66542) 52
Sorting Local Variables (NFS 67719, JAD-I-267) 52

Displaying Implementor References of a Method (PAR 66666) 53
Displaying Local Methods Referencing a Property (NFS 67439) 53
Displaying Submenus (NFS 66558) 53
Filtering Combo and List Box Text Entries (NFS 67196, JAD-I-353) 53
Finding Unused Local Variables and Parameters (NFS 67629, JAD-I-507) 54
Going to a Specified Method Line Number (JAD-I-240) 55
Horizontal Scroll Bars in Hierarchy Browsers (NFS 67347) 55
Identifying User of Unavailable Resource (NFS 67278, JAD-I-303) 55
Importing and Exporting Browser Layouts (NFS 67232, JAD-I-396) 55
Interfaces 56

Interface Deletion (PAR 66088) 56
Interface Implementation Mapper Dialog (NFS 48016, JAD-I-350) 56
Interfaces Displayed for a Class (NFS 66482) 57
Iterating using Interfaces (JAD-I-571) 57
Mapping Interfaces (NFS 67750, JAD-I-273) 57
Method List and Interface Folder Changes 58
Typecasting Interface Objects (NFS 63986) 58

Loading Checked Out Methods (JAD-I-181) 58
Opening a Method from the Method Status List Browser (NFS 66744) 58
Orphaned Event Method Detection (NFS 67029) 59
Painter 59

Deleting the Current Form in Painter (NFS 67602, JAD-I-520) 59
Finding Available and Duplicate Caption Accelerator Characters (NFS 67617) 59
Positioning Controls and all Parents in Painter (NFS 67670) 60
Printer Form Font (PAR 67048) 60
Removing ActiveX Controls from Forms (NFS 67595, JAD-I-530) 61
Title Bar (NFS 67198, JAD-I-309) 61

Pasting Text into the Method Definition Dialog (NFS 67346) 61
Patch Versioning 62

Comparing Method Sources (NFS 67704, JAD-I-160) 62
Primitive Types Browser Type Menu (PAR 66989) 62
Refactoring JADE Methods 62

Identifying Local Variables in Extracted Methods (NFS 67432) 62
Signature of Created Methods (NFS 67428, JAD-I-498) 62

Running an Application from the String Browser (NFS 67291, JAD-I-272) 62
Scaling Decimal Array Elements (NFS 64143) 63
Schema Navigation (NFS 67352, JAD-I-484) 63
Searching 63

Exposure Browser Search (NFS 67226, JAD-I-334) 63
Finding a Class by Number (NFS 67605, JAD-I-574) 63
Global Searching for an Imported Entity (PAR 66489) 64
Saving and Restoring Find and Replace Options (NFS 67614, JAD-I-255) 64
Searching for a Property or Method in a List (NFS 67674, JAD-I-550) 64
Searching for Changed Methods by Date and Time (NFS 67718, JAD-I-409) 64
Searching for Comments (NFS 67628, JAD-I-534, PAR 67891) 65

Sorting Possible Transient Leaks (NFS 67298, JAD-I-474) 65
Suppressing Message Boxes (JAD-I-100) 65
Viewing Defined References (NFS 66564) 66

JadeAuditAccess Read Offset (PAR 66198) 66
JADE Initialization File 67

AccessibilityEnabled Parameter (NFS 67762) 67
Single User Application Restrictions (PAR 65360) 67

Contents vi

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Thin Client Security (PAR 66521) 67
JadeHTTPConnection Class 68

isStatusCodeSuccess Method (JAD-I-97) 69
JadeHTTPConnection Class Supported Verbs (NFS 64197) 69
JadeHTTPConnection::sendRequestUtf8 Method (NFS 66868, JAD-I-349) 69

JADE Monitor Cache Performance Details (JAD-I-515) 69
JadeTimeZone Class (JAD-I-254) 69
ListBox and Table Control Disabled foreColor (PAR 67920) 70
Loading User Preferences from the Command Line (NFS 67599) 70
Logical Certifier 70

Additional Checks Resulting from Closed PARs 70
Incremental Logical Certify (JAD-I-478) 71

MDI Child Forms 71
Floating, Docking, and Pinning MDI Child Forms (NFS 67200) 71
Tabs in MDI Child Forms (NFS 67224) 73

Message Boxes 74
Customizing Message Box Button Captions (NFS 66844, JAD-I-74) 74
Handling Message Boxes (PAR 67849) 76

Object Class creationTimeUTC Method (PAR 67561, JAD-I-536) 76
Pasting into a JadeRichText Control (NFS 67765) 76
Package Initialization (PAR 66629) 76
Partial-Word Searches in HTML5 Online Help 77
Print Preview Form and Skin Compatibility (PAR 67350) 77
Printer Methods Client Execution (PAR 66745) 77
Regular Expression (Regex) Pattern Matching (JAD-I-438) 77
REST Client (NFS 65594, JAD-I-97) 78
REST Services 79

REST Service Exceptions (PAR 66669) 79
REST Service Security (JAD-I-430) 79

RPS Diagnostic Dump on SQL Update Error 81
Security 82
Skins 82

Changing the Skin of a Control Scroll Bar (NFS 67522) 82
Cloning Skins (NFS 67523) 83
Foreground Color of Table Columns and Rows (NFS 67292, JAD-I-443) 83
Skin Category Selection in the JADE Painter (NFS 67295) 84
Skinning Folder Overflow Buttons (NFS 67506, JAD-I-280) 84

SSL End-to-End, including SDS, Encryption (JAD-I-580, JAD-I-275) 85
Stretching an Image (PAR 67370) 85
Type Class Methods 85

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Upgrading to the JADE 2020 Release

This document covers the following topics.

JADE Release Support

Deimplementations and Deprecations

Highlights in this Release

Accessing Details about Faults Fixed in Releases

How to Locate PARs Fixed in a Specific Release

Upgrading to JADE 2020

Upgrading to JADE 2020 from JADE 2018

JADE Thin Client Upgrade

Upgrading an SDS Native or RPS Secondary System

Upgrade Validation

JADE 2020 Changes that May Affect Your Existing Systems

Changes in JADE Release 2020.0.02 (Service Pack 1)

Changes and New Features in JADE Release 2020.0.01

Tip For details about using a web browser to view the JADE product information, see "JADE HTML5 Online
Help", in Chapter 2 of the JADE Development Environment User’s Guide. For details about using Acrobat Reader
to view the JADE product information, see "JADE Product Information Library in Portable Document Format", in
Chapter 2 of the JADE Development Environment User’s Guide.

The JADE Product Information Library document (JADE) provides a summary of contents of documents in the
JADE product information library and navigation to the documents.

If you want to develop your own installation process for Windows, the JADE install and upgrade steps are
documented in the ReadmeInstallSteps document in the documentation directory.

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

JADE Release Support
For details about the JADE release policy, see https://www.jadeworld.com/jade-platform/developer-
centre/release-policy.

JADE 2020 is built using Microsoft Visual Studio 2017, which requires the installation of the Microsoft Visual C++
2017 Redistributables.

For details about the deimplementations and deprecations in this release, see the following subsection.

Deimplementations and Deprecations
This section contains the deimplementations and deprecations in this release.

Application Class Constants Deprecated
The following Application class constants have been deprecated in this release, and are now unpublished.

ApplicationType_AGL_NoState_G

ApplicationType_AGL_NoState_N

ApplicationType_SilverLight

RPS Working Set Data Store Mode Deprecated
The RPSWorking Set data store mode has been deprecated, as have the related:

JadeDatabaseAdmin class RpsStorageMode_WorkingSet constant

AutoExtractOnPrimary<n> parameter in the [JadeRps] section of the JADE initialization file

Exception 3420 (RPS reorg extract on primary failed)

https://www.jadeworld.com/jade-platform/developer-centre/release-policy
https://www.jadeworld.com/jade-platform/developer-centre/release-policy

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Highlights in this Release
The highlights in JADE release 2020, which help you to deliver high-performance, interoperable applications on
Windows for both 32-bit and 64-bit platforms, are as follows. You can now use:

Containerization, which provides a new way to run your JADE applications.

Deliverables

Docker container-ready versions of backend components such as database and application servers as
well as non-GUI standard client nodes.

Docker images for JADE services that can be used to configure and deploy a fully containerized JADE
environment accessible from a public JADE Container Registry (JCR).

Benefits

Containers are efficient, secure, and portable. You can run existing JADE applications in a Docker-based
ecosystem with no code changes.

Value

Containerizing your JADE application can help you meet some of the biggest challenges in IT: modernizing
heritage applications, moving to the cloud, adopting DevOps, enabling coexistence with newer cloud-native
applications, and staying innovative.

For details, see "Containerization (Jad-I-433)", later in this document.

Collection concurrency, which provides:

Conditional collection operations

New collection methods that allow updates to persistent collections to be deferred

New deferred update mode for automatic multi-valued inverses

Benefit

Provides a simple way to remove or avoid bottlenecks (and deadlocks) caused by contention for collection
locks.

Value

Enables developers to improve the scalability of their JADE applications and remove code complexity
around collection locking, thereby simplifying the code base.

For details, see "Collection Concurrency (JAD-I-423)", later in this document.

End-to-end Secure Sockets Layer (SSL) encryption between:

jadehttp.dll (IIS) and the application server (REST and SOAP web service providers)

SDS primary and secondary nodes

For details, see "End-to-End SSL Encryption", in Chapter 2 of the JADE Installation and Configuration Guide.

JADE REST client RootSchema classes, which allow for the easy consumption of REST services. A proxy
class generator is also provided, which consumes an OpenAPI specification of a REST API and generates
the appropriate data model and resource proxy classes.

For details, see "REST Client (NFS 65594, JAD-I-97)", later in this document.

The ability to restrict JADE REST APIs so that only clients with a valid bearer token can consume the API. In
addition, an API developer can customize the rules on what constitutes a valid token to meet your
requirements.

For details, see "REST Service Security (JAD-I-430)", later in this document.

Highlights in this Release 10

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The JadeRegexLibrary class, which is the abstract superclass of the regular expression (Regex)
pattern-matching Application Programming Interface (API) subclasses in JADE. This API reduces
hand-crafted string parsing and code manipulation, to assist in the reading and testing of your code.

JADE does not implement a Regex engine itself, but wraps an existing implementation (the Perl Compatible
Regular Expressions (PCRE) dialect) with defined behavior and documentation.

For details, see "Regular Expression (Regex) Pattern Matching (JAD-I-438)", later in this document.

The foreach instruction iteration using the new RootSchema interfaces JadeIterableIF and
JadeReverseIterableIF, which provide contracts for an implementing class to support being iterated. These
interfaces expose iterator implementations through new RootSchema interfaces JadeIteratorIF and
JadeReversibleIteratorIF.

For details, see "Iterating using Interfaces (JAD-I-571)", later in this document.

The JADE Logical Certifier option that validates only inverse references and collections that have changed
since the last time the system was certified.

For details, see "Incremental Logical Certify (JAD-I-478)", later in this document.

Many new features and changes in the JADE development environment; for example, a dark theme and the
quick inspect functionality.

For details, see "JADE Development Environment", later in this document.

Accessing Details about Faults Fixed in Releases 11

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Accessing Details about Faults Fixed in Releases
To access the complete documentation about the Product Anomaly Reports (PARs) fixed in this release, run
Parsys, our Fault Managements and Customer Contact system. This system also enables you to view the
progress of your own contacts.

If you have any queries about Parsys, please direct them to JADE Parsys Support in the first instance, at
parsyssupport@jadeworld.com. You can download the install shield for Parsys from the following URL.

https://www.jadeworld.com/jade-platform/developer-centre/support

When you first run the Parsys application, it downloads an update via the automatic thin client download feature.
When this has completed and you have the log-on form ready and waiting, please contact JADE Parsys Support,
who will then send you an e-mail message with your user code and password details. Parsys requires you to
change your password when you first log on.

Note Because the encryption of passwords is a one-way algorithm, we cannot advise you of your password
should you forget it, but we can reset it to a known value again.

How to Locate PARs Fixed in a Specific Release
This section describes the actions that enable you to locate Product Anomaly Reports (PARs) fixed in a specific
release.

To locate the PARs fixed in a specific release

1. Select the Advanced Search command from the Search menu with the following settings.

a. On the Basic Search Criteria sheet, the Latest option button is selected in the Mode group box.

b. All is selected in the Priority list box.

c. The PAR check box is checked in the Phase group box.

d. The Fault and NFS types are selected.

e. The Closed and Patched check boxes are checked in the Status group box.

Note If you want to restrict the search to the hot fixes that were produced, check the A hot fix was created
check box on the Advanced Search Criteria II (Optional) sheet.

2. On the Advanced Search Criteria III (Optional) sheet:

In the Closed list box of the Releases group box, select the release whose fixed PARs you want to
locate (for example, the 2020 list item).

3. Click the Search button.

Tip To display more than the default 100 entries returned by the search process, select the User
Preferences command from the File menu to open the User Preferences dialog, select the Search Defaults
command from the Searching submenu, and in the Maximum hits returned (latest search mode) group box,
select the All option button or select the Nomore than option button and then increase the value (for
example, to 300) in the adjacent text box.

mailto:parsyssupport@jadeworld.com
https://www.jadeworld.com/jade-platform/developer-centre/support

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Upgrading to JADE 2020
This section covers the following topics.

Upgrading to JADE 2020 from JADE 2018

Running Two Releases of JADE on the Same Workstation

JADE Thin Client Upgrade

Upgrading an SDS Native or RPS Secondary System

Upgrade Validation

For details about the JADE 2020 software requirements, which differ from those of earlier releases, see "Software
Requirements", in Chapter 1 of the JADE Installation and Configuration Guide.

Caution Before you upgrade to JADE 2020, refer to "JADE 2020 Changes that May Affect Your Existing
Systems", elsewhere in this document.

As with any JADE release (for example, upgrading to a minor release or to a major feature release from an earlier
JADE version), you must recompile any external method Dynamic Link Libraries (DLLs) or external programs
using the JADE Object Manager Application Programming Interfaces (APIs) with the new JADE \Include and
\Library files before you attempt to run your upgraded JADE systems. (For details about the JADE Object Manager
APIs, see Chapter 3 of the JADE Object Manager Guide.)

Upgrading to JADE 2020 from JADE 2018
If you want to develop your own upgrade process, refer to the JADE install and upgrade steps documented in the
ReadmeInstallSteps.pdf document in the documentation directory.

Note Example files are not part of the installation. They must be downloaded from the appropriate link (for
example, JADE-Erewhon or JADE-ATCG) at https://github.com/jadesoftwarenz.

The JADE Setup program enables you to upgrade your binary and database files to JADE 2020 from JADE 2018,
by performing the following actions.

1. On the JADE 2018 system, carry out the following certify operations. Proceed to the next certify operation
only when any and all errors reported in the current operation are resolved.

a. A physical certify using JADE Database utility (jdbutil.exe or jdbutilb.exe), to ensure that the system is
structurally correct. (For details, see Chapter 1 of the JADE Database Administration Guide.)

b. A meta logical certify, to ensure that the meta model is clean. (For details, see "Running a Non-GUI
JADE Logical Certifier", in Chapter 5 of the JADE Object Manager Guide.)

c. A logical certify, to ensure that the user data is referentially correct. (For details, see "Running the
Diagnostic Tool", in Chapter 5 of the JADE Object Manager Guide.)

Note If you are unsure how to interpret the information output by the certify process, first refer to
"Logical Certifier Errors and Repairs", in Chapter 5 of the JADE Object Manager Guide, and if you are
still unsure, contact JADE Support (jadesupport@jadeworld.com) for advice.

2. Use the JADE Database utility to take a full backup of your existing JADE 2018 database.

Caution If the upgrade should fail, you will need to restore this backup and then retry the upgrade process
when all of the conditions that caused the failure have been addressed.

3. If you defined your own String primitive type replace__ and replaceFrom__ methods in JADE 2016.0.02 or
later, you must rename them before you upgrade to JADE 2018, as JADE's new replace__ and
replaceFrom__ methods will conflict with any existing Stringmethod named replace__ or replaceFrom__.

https://github.com/jadesoftwarenz
mailto:jadesupport@jadeworld.com

Upgrading to JADE 2020 13

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

4. Installing the JADE ODBC drivers and the Microsoft Visual C++ redistributable packages requires
administrator rights, so ensure that you have the appropriate privileges.

5. Run the JADE 2020 installer, available from https://www.jadeworld.com/jade-platform/developer-
centre/download-jade.

Note The Custom type applies only to a Fresh Copy installation type, and is not relevant when upgrading.
The SDS/RPS Database Server option applies only to 64-bit Feature Upgrade installation type.

6. A warning message may be displayed if the upgrade validation process has not completed. If so, check the
jadeupgrade.log file for information about what needs to be modified in your user schemas to pass the
validation and enable application execution. If the validation needs to be run again, see the
ReadmeInstallSteps.pdf file in the documentation directory for instructions.

7. When the upgrade is complete, the JADE Setup program informs you that the JADE Setup was successfully
completed and that you can now view the ReadMe.txt file. The ReadMe.txt file contains late-breaking
important information not possible to publish in this document.

8. Use the JADE Database utility to take a full backup of your JADE 2020 database.

Running Two Releases of JADE on the Same Workstation
You can have any number of releases of JADE installed on the same workstation. If ODBC is installed, only the
last installation of the JADE ODBC driver is available from the ODBC Data Source Administrator.

JADE Thin Client Upgrade
When upgrading a presentation client to JADE release 2020, ensure that you have the appropriate privileges or
capabilities to install applications. The configuration of User Account Control (UAC) and your current user account
privileges may affect the behavior of the upgrade to JADE 2020. For details about UACs, standard user accounts,
and administrator accounts, see the Microsoft documentation.

If JADE is installed in the \Program Files directory (or \Program Files (x86) directory on a 64-bit machine with
32-bit JADE binaries):

If the machine has had UAC disabled, the thin client upgrade will fail because of lack of permissions for
standard users. For administration users, the necessary privileges are automatically granted so the upgrade
will succeed.

If UAC is not disabled, administrative users are prompted with an Allow or a Cancel choice but standard
users must know and supply the user name and password of a user with administrative privileges to enable
the upgrade to succeed.

For more details, see Appendix B, "Upgrading Software on Presentation Clients", in the JADE Thin Client Guide.

Upgrading an SDS Native or RPS Secondary System
SDS secondary databases can be upgraded. For details about how to do this, see the ReadmeInstallSteps.pdf
file in the \documentation directory.

Upgrade Validation
During the upgrade process, a validation script is run to check the integrity of the upgraded system. Any user
schema entities that conflict with system schema entities are logged as errors in the jommsgn.log file. All errors
must be corrected and validation re-run before user applications can be executed on the updated system. If the
system is in the un-validated state, a message box is displayed when you log on to the JADE development
environment, asking if validation should be re-run.

To perform the validation from the command line, see the ReadmeInstallSteps.pdf file in the \documentation
directory.

https://www.jadeworld.com/jade-platform/developer-centre/download-jade
https://www.jadeworld.com/jade-platform/developer-centre/download-jade

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

JADE 2020 Changes that May Affect Your Existing
Systems

This section describes only the changes in the JADE 2020 release that may affect your existing systems. Some
changes may result in compile errors during the load process, or cause your JADE release 2020 systems to
behave differently.

.NET Import Issue Hotfix (PAR 67915)
Hotfix 2018.0.01.85 was released to fix some issues that were introduced with the new supported
DateTimeOffset and Byte[] .NET types. (See also "Natively Supporting Additional .NET Imported Types in JADE",
elsewhere in this document.) Any .NET assembly imported prior to JADE 18.0.01 continues to function as
expected after applying this hotfix. However, as this was not introduced with the initial release of JADE
2018.0.01.85 may require you to run a fix-up script to correct the generated JadeDotNetType class methods and
set compatibility flags.

Any JADE 2018.0.01 systems that imported or re-imported .NET assemblies before applying hotfix 2018.0.01.85
and have imported either of the following are required to run the provided fix-up script or to re-import the .NET
assembly after applying the hotfix.

Imported .NET classes with properties, fields, method or event parameters and /return values of the
DateTimeOffset type

Imported .NET classes with properties, fields, method or event parameters and return values of the Byte[]
type

The RootSchema Schema class _fixDotNetImportMethodsAndSetFlags fix-up method needs to be executed
once, after applying the hotfix if the system meets the above criteria. This script modifies and recompiles the
necessary generated methods for affected assemblies, as well as sets some compatibility flags on the generated
assembly meta data.

We have also provided another RootSchema Schema class _fixDotNetImportCompatibilityFlags method, which
sets the compatibility flags. You should use this method if the method changes are deployed to the system.

Alternatively, any imported .NET assemblies that meet the above criteria can be re-imported after applying the
hotfix. This causes the methods to be generated correctly and compatibility flags to be set.

The following is an example of running the fix-up method from the command line.

jadclient path=database-path ini=initialization-file-name
app=RootSchemaApp
schema=RootSchema
executeSchema=RootSchema
executeClass=Schema
executeMethod=_fixDotNetImportMethodsAndSetFlags

Adding a String to a BinaryArray (PAR 67749)
Exception 1000 (Invalid parameter type) is now raised if the type of the value being added is not compatible with
the type of the collection; for example, when attempting to add string values to a binary array.

This could occur if a local variable with type Array is used to send the addmessage to an array, because the
compiler is unable to check the type of the parameter when the method is compiled.

Base URL for Context-sensitive Online Help
If you had specified a base URL (for example, https://www.jadeworld.com/docs/jade-2020/Default.htm) in the
JadeHelpBaseUrl parameter in the [JadeHelp] section of the JADE initialization file, context-sensitive online help
from JADE does not locate the topic to which you are navigating.

JADE 2020 Changes that May Affect Your Existing Systems 15

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Context-sensitive online help is now provided when the following parameters in the [JadeHelp] section of the
JADE initialization file are all set to <default>.

htmlSchemes

UseJadeWebHelp

JadeHelpBaseUrl

If there is not a topic in the product information library for a JADE entity when you press F1, the HTML5 landing
page (https://secure.jadeworld.com/JADETech/JADE2020/OnlineDocumentation/Default.htm) is displayed.

Collection Membership Length (JAD-I-84)
In earlier releases, an exception was raised when adding a value longer than the limit of 128 bytes for a
BinaryArray; 63 characters for a StringArray; 2,048 characters for a HugeStringArray; and 30 UTF8 characters
for a StringUtf8Array.

With the implementation of variable-size arrays in this release, an exception is now raised only if a value longer
than the limit for the membership type is added to the array. The maximum supported length for the membership of
these collections is now 16,000 for a BinaryArray; 15,999 for a StringArray; 15,999 for a HugeStringArray; and
8,000 UTF8 characters for a StringUtf8Array. An exception continues to be raised for user-defined subclasses of
Array if a value longer than the defined length for the Array class is added to the array.

See also "Array Variable-Size Elements (JAD-I-84)", elsewhere in this document.

Dictionary Maintenance of a Key Property in a Collection (PAR 67895)
Dictionary maintenance is no longer performed if a property that is used as a key of a collection is updated but the
new value is the same as the current value.

This change potentially improves performance for all JADE applications by avoiding unnecessary locking. Since
the collection is not changed, update notifications are no longer sent. This means that collections passed to the
Table, ListBox, or ComboBox control class displayCollectionmethod with the update parameter set to true will
not be refreshed if the key value for an object in the collection is updated but unchanged. To force the collection to
be redisplayed, call the Object class updateObjectEditionmethod.

DDX-Format File Extraction (PAR 67676)
From JADE 2018.0.01, you could extract and load files in the XML Device Data Exchange (DDX) format, which
extracted and loaded only those properties defined in the JADE Painter. The DDX format in JADE 2018.0.01 was
based on the ability to identify system meta data references by name and the contents therefore did not include
object OIDs. As a result, it did not include user references to other objects if they exist in the DDX extract.

From JADE 2020, the DDX extract process now extracts all defined non-virtual primitive properties and primitive
array properties on controls. (Virtual properties on other included classes are not extracted.) This change means
that if you load DDX files into JADE 2020.0.01 that were extracted in JADE 2018.0.01, there will be many
differences in the contents of the DDX file.

Note DDX files extracted in JADE 2020.0.01 will not load into JADE 2018, because they are no longer
backwards-compatible.

Detecting Orphaned DevControlProperties Instances (PAR 66131)
The Meta Certify or certifyMeta Logical Certify operation now checks for DevControlProperties instances that
have no owner; that is, the parent property is null.

https://secure.jadeworld.com/JADETech/JADE2020/OnlineDocumentation/

JADE 2020 Changes that May Affect Your Existing Systems 16

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

This situation could have been created due to a historic problem when a forms definition (.ddb) file that contained
Control definitions with design-time properties is loaded into a JADE version that was greater than the system in
which the definitions were extracted.

Caution After upgrading to JADE 2020, systems that use Painter design-time properties may report
occurrences of the following error. We recommend running the generated repair, then another meta certify
operation.

*** Error 98: owner is null DevControlProperties/1000486.1-
>DevControlProperties::parent (1000486.1 created 07 April 2002, 17:36:53)

FIX1: delete 1000486.1 CHECK: '1000486.1'.asOid.DevControlProperties.parent=null

Exceptions Accessing System-only Features
Exception 1192 (Feature is restricted to system processes) is now raised when you attempt to execute Object
class sendMsg, sendMsgWithIOParams, sendTypeMsg, sendTypeMsgWithIOParams,
sendTypeMsgWithParams, invokeIOMethod, invokeMethod, and setPropertyValue methods to access system-
only features, as these are restricted to internal system processes only.

See also "Security Restrictions", elsewhere in this document.

Loading User Preferences from an Earlier Release (NFS 67599)
As documented under "Loading User Preferences from the Command Line (NFS 67599)", later in this document,
you can now load your exported user preferences file using the command line.

The loading of an exported file of your user preferences no longer supports the older-style editor key bindings
entries in your user preferences that were created in releases earlier than JADE version 2018.0.01. The loading of
such files is therefore rejected when you import an earlier user preferences file and by a batch file load using the
jadclient or non-GUI client jade executable command line.

You should therefore export your older user preferences to a file in JADE 2018.0.01 and higher before importing
or loading them into JADE 2020.0.01 and higher.

Multiple activate/deactivate Events Generated for One User Action (PAR
67865)

Multiple activate and deactivate events can be generated for the one user action. This mainly occurs when an
MDI child is floated; for example, clicking on an MDI child that is docked generates an activate and deactivate
event for the floating form and then an activate event for the docked MDI form. In addition:

If the user clicks on an MDI child in a position that is not a control that can have focus, the form is not
activated. Clicking on a control that is allowed focus causes the form to be activated.

When a floating form has focus and the users clicks on another standalone form, the floating form receives a
deactivate event but the MDI frame does not.

The handling of activate and deactivate events has now changed to ensure that the following events occur once
only.

deactivate of the prior active form.

deactivate of the MDI frame of the prior active form if it was an MDI child and the new form gaining focus is
not the MDI frame or a child of the MDI frame.

activate of the MDI frame if the form to be activated is an MDI child and the frame is not already active.

activate of the form to be activated.

JADE 2020 Changes that May Affect Your Existing Systems 17

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

If another Windows or JADE application is activated while a JADE application is active, only deactivate events
are generated for the deactivated JADE application.

If a JADE application is activated when another Windows or JADE application is active, only the activate events
are generated for the activated JADE application.

Natively Supporting Additional .NET Imported Types in JADE
The .NET assembly import functionality has been enhanced as follows.

The .NET Import Wizard has been updated to natively support the following types.

DateTimeOffset .NET type now maps to the TimeStampOffset JADE primitive type

Byte[] .NET type now maps to Binary JADE primitive type

When importing a new assembly in JADE 2018 and higher, these type mappings are automatically applied.

When re-importing an existing .NET assembly, a compatibility warning dialog is now displayed. This dialog gives
the option to re-import in compatibility mode, which keeps the existing mappings, or to re-import with the new
mappings, which replaces any existing properties and method references with the new types.

Re-importing a .NET assembly with the new mappings can cause methods to be marked in error if they were
referencing properties or methods with the old mapping to JadeDotNetType.

If you imported or re-imported any .NET assemblies with these new mappings before hotfix 18.0.01.85 is applied,
see “.NET Import Issue Hotfix (PAR 67915)“, elsewhere in this document.

Reverting a 2020 Thin Client to JADE 2018 (PAR 68048)
Until releases earlier than JADE 2020 have been patched and deployed, exception 14144 (Thin Client Tcp
connection read error) is raised if you attempt to revert a JADE 2020 thin client to JADE 2018.

When all major releases earlier than JADE 2020 have been patched, the thin client will be allowed to be reverted
to any prior release that contains the fix.

Security Restrictions
The following security restrictions are now in place.

Content included in Report Writer scripts has been further restricted.

Access to the Workspace window from the RootSchema Schema Inspector application is now disabled.

In earlier releases, the Schema Inspector Utility did not observe development security.

It now observes development security; that is, in production systems that have development security
enabled, inspecting a class will be blocked if the development jadeDevelopmentFunctionSelected security
hook function inspectInstances task denies access for that class.

See also "Quick Inspect Toolbar (JAD-I-168)" and "Inspector Security", elsewhere in this document.

JADE REST Service APIs can now be secured with JSON Web Tokens.

See also "REST Service Security (JAD-I-430)", elsewhere in this document.

A small JavaScript cross-site scripting (XSS) injection hole in the HTML generation functionality has been
closed.

See also "Exceptions Accessing System-only Features", earlier in this document.

JADE 2020 Changes that May Affect Your Existing Systems 18

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

SslConfigurationTool Executable (PAR 68118)
Because localhost is no longer a practical host name for clients to connect to, the SslConfigurationTool.exe utility
has been changed to reflect this.

The TryForDefaultConfiguration and SelectCertificateFromUI actions have been enhanced to take the
ServerHostname and ServerPortNumber command line arguments. If ServerHostname is not specified, by
default, the SSL configuration tool uses the fully qualified domain name of the computer.

String Type replace__ and replaceFrom__ Methods (PAR 67698)
In earlier releases, the String primitive type replace__ and replaceFrom__ methods raised exception 1002
(Invalid parameter value) if the value specified in the target parameter had a length of zero (empty) string value.

From JADE 2020.0.01, this behavior has changed so that this no longer causes an exception but instead returns
the original receiver String.

Suspending Parent Alignment when Positioning Controls (NFS 68413)
In the JADE Painter, it was difficult to position docking controls to meet your requirements when the
alignContainer and alignChildren properties are set.

To improve this situation, the JADE Painter Layout menu now provides the Suspend Parent Alignments
command. When this command is unchecked (the default), the alignContainer and alignChildren properties of
controls behave as normal.

When the command is checked, the alignContainer and alignChildren properties of controls are treated as
though the property values are zero (0) so that no automatic alignment occurs, which enables you to position
controls to meet your requirements. When you uncheck the command again, normal behavior is resumed and the
required alignments are applied.

Notes If you attempt to save the form when the command is checked, a message box is displayed asking if you
want to continue. If you indicate that the save process is to continue, the form is saved using the current control
positions that could differ from those that apply when normal alignment operations are in effect. If you do not want
to continue, the save process is cancelled.

Suspending alignment applies only to the alignContainer and alignChildren properties and it does not affect the
behavior of the parentAspect property or the StatusLine control.

Changes in JADE Release 2020.0.02 (Service Pack 1) 19

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Changes in JADE Release 2020.0.02 (Service Pack 1)
This section contains details about product and documentation changes in JADE release 2020.0.02 (Service Pack
1).

For details about release 2020.0.01 (the first general release of JADE 2020), see "JADE 2020 Changes that May
Affect Your Existing Systems" and "Changes and New Features in JADE Release 2020.0.01", elsewhere in this
document.

Array Membership of Type Any
The Any primitive type can now be selected for the membership type of a user-defined Array class. Values added
to the array can contain an object reference or any primitive value.

The maximum length of Binary, String, and StringUtf8 values is as follows.

Binary - 16,000 bytes

String - 15,999 characters

StringUtf8 - 8,000 UTF8 characters

The RootSchema does not have a subclasses of Array with membership type of Any. If you require such an array,
subclass the Array class in your user schema, selecting Any as the membership.

Checking for Orphan Subobjects in User Data Files
In the absence of a full logical certify of all instances of all user classes (for example, before upgrading to a higher
JADE release), you can check for orphan subobjects in user data files by specifying the orphanSubobjects
operation in the JADE Logical Certifier non-GUI application of the jadclient program; for example:

jadclient path=c:\jade\system ini=c:\jade\system\jade.ini schema=RootSchema
app=JadeLogicalCertifierNonGui server=SingleUser startAppParameters
operation=orphanSubobjects logDir=c:\jade\logs\certify

Collection Class Methods
This section describes the new Collection class methods in this release.

Conditional Methods
The Collection class now provides the following conditional methods.

The tryAddIfNotNullmethod attempts to add the value specified in the value parameter to the collection if
the value is not null and it is not already contained in the collection. It returns true if the value was
successfully added; otherwise it returns false.

The tryRemoveIfNotNullmethod attempts to remove the value specified by the value parameter from the
collection if it is not null and it is contained in the collection. It returns true if the value was successfully
removed; otherwise it returns false.

See also "tryCopy__ Method (JAD-I-642)", elsewhere in this document.

tryCopy__ Method (JAD-I-642)
In the next major release (tentatively 2022), we have introduced a new Collection class tryCopy method, which
copies the values from the receiver collection to the specified target toColl collection that are not present in the
target collection, and returns a reference to the target collection.

Changes in JADE Release 2020.0.02 (Service Pack 1) 20

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

You could previously implement this action in JADE code by iterating the source collection and calling the tryAdd
method on the target collection for each entry; however, the tryCopy__ method implements this more efficiently in
C++, and it also handles special cases such as copying to an external key dictionary more easily.

To make the functionality available in the 2020 service pack with low risk of conflicting with your own Collection
methods of the same name, the method has been named Collection class tryCopy__. The next major release will
provide an upgrade process to rename usages of tryCopy__ to tryCopy.

Caution If you currently have methods named tryCopy in the Collection class hierarchy, we advise you to
rename these ahead of the next major release. If your tryCopy functionality is essentially the same as the new
Collection class tryCopy__ method provided in this release, you can switch to using that instead.

This method is reimplemented in the Collection class Dictionary, DynaDictionary, and Array subclasses.

Compound Assignments
The JADE language now supports compound assignment operators, which are an extension to the existing :=
assignment operation. They provide a shorthand syntax for assigning the result of an arithmetic or concatenation
operation.

The compound assignment operators listed in the following table are now supported.

Compound Assignment Operator Assignment

+= Addition

-= Subtraction

*= Multiplication

/= Division

^= Power

%= Modulo

&= Concatenation

Compound assignment operators perform the operation specified by the additional operator on the left and right
operands, then assign the result to the left operand. For details and an example, see "Compound Assignments", in
Chapter 1 of the JADE Developer's Reference.

Converting a String Type to a Time Type (PAR 68119)
When converting a String primitive type to a Time primitive type, the valid time string is now as follows.

hh:mm[:ss.fff] [pre-or-post-noon-indicator]

This string is converted to Time. The rules that apply when casting a string to a time are as follows.

The delimiter between time elements is a single non-alphanumeric characters.

The hour element must be numeric in the range 0 through 24 (inclusive).

The minute and second elements must be numeric in the range 0 through 59 (inclusive).

The millisecond element must be numeric in the range 0 through 999 (inclusive).

A term specifying pre- or post-noon (that is, case-insensitive "am", "a.m.", "pm", or "p.m.") is valid only if
the hour element is less than or equal to 12.

"12:00 a.m.".Time converts to 00:00:00.

"12:00 p.m.".Time converts to 12:00:00.

Changes in JADE Release 2020.0.02 (Service Pack 1) 21

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Custom MenuItem Events (NFS 68101)
You can now add user-defined event methods for menu items, to handle populating or refreshing the state of each
in a recursive manner in a similar way that you can controls. (See "Adding Methods to Your Subclasses Control",
in Chapter 5 of the JADE Developer's Reference".) In earlier releases, only the click and select events were
available.

To add a custom menu item event method, add an external method to the MenuItem class as follows:

event-name(parameter-list) is CallMenuEvent in jadpmap updating;

After you have defined the custom menu item, clicking on a menu item property of a form will include that menu
item name in the menu item event list that is displayed.

You can then define the event logic. To take effect, this event must be called manually in logic; for example:

mnuAddCustomer.event-name();

If the menu item is deleted, the associated event methods (including any custom events) are also deleted.

Database Initial and Extent File Sizes (PAR 68240)
From JADE 7.0 and higher, the database file initial and extent size minimum and default values increased. The
documentation has now been updated to state that the minimum value is 64K and the default value is 128K for
both the extent size and initial size file attributes.

Deleting Subobject Dynamic Properties (PAR 61609)
The JadeDynamicPropertyCluster class now provides the deleteSubobjectDynamicProperty method, which
deletes a subobject dynamic property definition and any subobject instances that may exist for the class on which
the cluster is declared and any subclasses. This allows for deletion of an exclusive dynamic property when there
are instances of the parent class.

Subobject instances include:

Exclusive collection instances

Binary and StringUtf8 values for dynamic properties with a maximum length or a length greater than 540

String values for dynamic properties with a maximum length or a length greater than 539

Note As this method can result in a large number of objects being deleted, consideration should be given to
calling this method in its own transaction.

Subobject dynamic property definitions and instances can be deleted only if the class in which it is defined is not
being used by any other process. If production mode is set, a subobject dynamic property can be deleted only in
single user mode.

Extended create Instruction Expansion
In this release, the JADE language syntax has been expanded to make the extended create instruction
compatible with more usages.

In addition to allowing the extended create instruction to be used as the right-hand side expression of an
assignment statement, it can now be used in the following situations.

As a parameter of a method call, provided that the formal parameter is constant or input.

As the expression of a return instruction.

As a parameter to a superclass parameterized constructor within a create method.

Changes in JADE Release 2020.0.02 (Service Pack 1) 22

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Exception 6801 (Cannot assign to create expression) is raised if you attempt to assign an extended create
expression as the value of an io or output parameter.

See "create Instruction” in Chapter 1 of the JADE Developer's Reference for more details and examples.

Generating OpenAPIs from JADE REST APIs (Jad-I-635)
From JADE 2020.0.01, you can parse OpenAPI specifications, and now you can automatically generate them from
JADE REST APIs. This enables you to automatically generate descriptions for all of the methods that are part of
the API and any classes that are required by the API. In addition, you can customize descriptive elements such as
the info section.

The new REST OpenAPI classes are summarized in the following table. (For details, see Volume 1 of the JADE
Encyclopaedia of Classes.)

Class Description

JadeOpenAPI Abstract grouping class for classes relating to the JADE OpenAPI Generator

JadeOpenAPIGenerator JadeOpenAPI subclass for generating OpenAPI specifications
programmatically, as an alternative to the OpenAPI Generation wizard

JADE also provides an OpenAPI Generation Wizard that enables you to generate an OpenAPI specification from a
JADE REST class and any additional documentation set in the wizard. To open the wizard for a REST class, click
the Generate OpenAPI button on theWeb Options sheet of the Define Application dialog. For details, see
"Generating OpenAPI Specifications from JADE REST APIs", in Chapter 11 of the JADE Developer's Reference.

Iterating through Virtual Collections (PAR 67606)
The ability to iterate through virtual collections using the Iterator class startAtObject method has now been
reinstated.

JADE Container Image Naming Convention (JAD-I-631)
Docker images for the JADE services are provided. The component name for each image is one of the following.

database-server

application-server

application-database-server

non-gui-client

gui-client

JADE Images
The following table lists the description and entrypoint process for each container image.

Component Name Description Entrypoint Process

database-server Database server jadrapb.exe

application-server Application server node jadappb.exe

application-database-server Application server with local database jadappb.exe

non-gui-client SOAP or REST web service jadclient.exe

gui-client Web application or GUI web service jade.exe

Changes in JADE Release 2020.0.02 (Service Pack 1) 23

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The following table lists the image names for each JADE component. Image names are used in docker pull
commands, to pull JADE container images from the JADE container registry; that is, registry.jadeworld.io.

Component Name Image Names

database-server registry.jadeworld.io/jade/database-server:20.0.02-x64-U
registry.jadeworld.io/jade/database-server:20.0.02-x64-A

application-server registry.jadeworld.io/jade/application-server:20.0.02-x64-U
registry.jadeworld.io/jade/application-server:20.0.02-x64-A

application-database-server registry.jadeworld.io/jade/application-database-server:20.0.02-x64-U
registry.jadeworld.io/jade/application-database-server:20.0.02-x64-A

non-gui-client registry.jadeworld.io/jade/non-gui-client:20.0.02-x64-U
registry.jadeworld.io/jade/non-gui-client:20.0.02-x64-A

gui-client registry.jadeworld.io/jade/gui-client:20.0.02-x64-U
registry.jadeworld.io/jade/gui-client:20.0.02-x64-A

JADE Development Environment
This section describes the JADE development environment changes in this release.

AutoComplete Parameter Display for Translatable Strings (NFS 68109)
The JADE AutoComplete feature now displays the expected parameters for a translatable string that has defined
parameters in the same way that it does when you enter the parameters of a method call.

In addition:

The parameter usages in the constant value are also highlighted in red as well as the parameter name
definition itself.

External function calls in logic now display the method signature and highlighted current parameter in the
signature.

Delta Searches (NFS 68089)
When you enter text in the Search for Delta Id Containing text box on the Delta Browser, pressing Enter now
performs the search so that you no longer have to tab to the Search button or use the mouse to click it.

If a matching delta is found, the delta is selected. If the delta is not found, a bell sound will result.

Display of the Class in which a Method is Defined (NFS 68122)
When the Show Inherited command is selected in the View menu, it can be difficult to determine the class in
which a method is defined when a class has a large number of superclasses and methods. The Class Browser,
Interface Browser, and Methods Browser now provides additional information about a displayed method and for
methods in the Methods List of a browser.

For the methods displayed in the:

Editor pane, when the mouse is hovered over the method name at the start of the source, the JADE
AutoComplete feature now displays bubble help for the method, which includes the schema and class to
which the method belongs.

Methods List in the JADE Hierarchy Browser and Methods Browser, when the mouse is hovered over an
entry, bubble help now includes the schema and class of the method, as well as the method signature.

Changes in JADE Release 2020.0.02 (Service Pack 1) 24

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Finding a Class by Number (NFS 68102, JAD-I-592)
In JADE 2020.0.01, the Find Type dialog allowed partial matching on numbers (NFS 67605, JAD-I-574).

When you check the new Find Class Number check box, it now no longer clears the Find text box when it
contains numbers only.

Inspecting Code in the Debugger (PAR 68357)
A number of changes and enhancements have been made when the debugger is at a breakpoint and when
inspecting code in the debugger.

When the debugger is at a breakpoint, if nothing is selected and you hover the mouse over a variable, the
value of the variable is displayed when possible (including path expressions). No methods are executed.

If an expression is selected, hovering over the selection attempts to execute the expression. The expression
must be compilable within the context of the method and must return a value.

If the compile and execution succeed, the returned value is displayed.

Note It is your responsibility for the effects that the expression may have on the database and execution of
the method logic.

The Inspector dialog accepts expressions that can be compiled and executed. There are no restrictions other
than the expression able to be compiled and return a value.

Expressions longer than 100 characters are accepted, and it is your responsibility for the effects that the
expression may have on the database and execution of the method logic.

Note You can now resize the debugger Inspect Variable dialog, which enables you to enter longer
expressions.

The inspector value dialogs for both the primitive value display and modification can now also be resized to
better display longer and multiple line values.

The Local Variables window now includes self unless the method being executed is a type method.

The debugger now accepts expressions as watches. Watches, however, are limited to 100 characters (stored
in an identifier array where the key is a maximum of 100 characters).

The debugger accepts only the initial entry of a new watch expression if it successfully compiles, executes,
and returns a value. To enter a new watch, therefore, the debugger must be at a break position where the
expression is valid and the objects involved are not null.

When the watch is active, if it is not valid in another context, the value is displayed as [Out of scope]. If the
expression cannot be executed because a variable is null, **not Initialised** is displayed.

Note It is your responsibility for the effects that the expression may have on the database and execution of
the method logic.

Watches in the debugger are again restored if the watch window was restored when the debugger starts up.

Painter Hierarchy for Form Dialog (NFS 68385, JAD-I-573)
The JADE Painter Hierarchy for Form dialog now provides the following option buttons that control the way in
which controls are ordered under their parent.

Order by Name, which orders the control children by name (the default value)

Order by Top/Left, which orders the control children by the top position and then the left position when two
controls have the same top position, providing a visual association with the form layout

Changes in JADE Release 2020.0.02 (Service Pack 1) 25

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

In addition, the description for each displayed form and control now includes the top and left positions and the
height and width sizes in pixels; that is, (T:top L:left H:heightW:width), as shown in the following example.

lblWebSite (T:18 L:12 H:21 W:60) (Label) 'URL'

Package Class Name Handling in the Find Type Dialog (PAR 68459)
If there are duplicate imported class names in a schema because multiple packages have the same class name,
each class name copy is displayed in the Find Type dialog list box. Selecting any of the duplicate imported class
names now displays the correct imported class rather than the same imported class.

In addition, the mouseHover event has been implemented for the Find Type dialog list box so that hovering over
any entry with the mouse now displays the text returned by the display method for the associated object in bubble
help.

Suspending Parent Alignment when Positioning Controls (NFS 68413)
In the JADE Painter, it was difficult to position docking controls to meet your requirements when the
alignContainer and alignChildren properties are set.

To improve this situation, the JADE Painter Layout menu now provides the Suspend Parent Alignments
command. When this command is unchecked (the default), the alignContainer and alignChildren properties of
controls behave as normal.

When the command is checked, the alignContainer and alignChildren properties of controls are treated as
though the property values are zero (0) so that no automatic alignment occurs, which enables you to position
controls to meet your requirements. When you uncheck the command again, normal behavior is resumed and the
required alignments are applied.

Notes If you attempt to save the form when the command is checked, a message box is displayed asking if you
want to continue. If you indicate that the save process is to continue, the form is saved using the current control
positions that could differ from those that apply when normal alignment operations are in effect. If you do not want
to continue, the save process is cancelled.

Suspending alignment applies only to the alignContainer and alignChildren properties and it does not affect the
behavior of the parentAspect property or the StatusLine control.

Workspace Refactoring (PAR 68352)
The Refactor menu is disabled for aWorkspace method because aWorkspace has no self class object and
therefore the menu is not relevant.

JadeDbFilePartition Class drop Method (PAR 62426)
The following caveat has been documented for the JadeDbFilePartition class dropmethod, which removes
objects in the global partition index, removes the partition, and marks it as deleted.

Caution The dropmethod does not execute destructors or trigger inverse maintenance, which means that
inversed collections that referenced objects in the partition will contain invalid object references after the drop
method has completed.

MergeIterator Class startKey Methods (PAR 68511)
If the dictionaries attached to a MergeIterator object do not have the same keys, the values specified in the keys
parameter of the MergeIterator class startKeyGeq, startKeyGtr, startKeyLeq, and startKeyLss methods must
be the same as the subset of common keys of the attached dictionaries.

Changes in JADE Release 2020.0.02 (Service Pack 1) 26

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Reorganization
This section describes the JADE database reorganization changes in this release.

Initiating a Managed Reorganization Transition
Product information of prior releases did not document the JadeReorgApp application initiateManagedTransition
action.

This action initiates the offline phase of a reorganization on the primary system and schedules the initiation of the
transition on a secondary database by replaying the online phases of the reorganization that took place on the
primary, stopping before the transition is initiated. The secondary system remains available and the inquiry
applications continue to run.

Tracking is restarted at a time scheduled by the administrator on the secondary system. This action automatically
shuts down the inquiry applications and server applications, and the offline phases of the schema instantiation are
carried out.

For details, see "Initiating a Managed Transition", in Chapter 14 of the JADE Developer's Reference.

Reorganizing Changed Array Definitions (PAR 68306, PAR 683549)
Reorganization now supports some changes to the definition of an array.

Changing the definition of an array may require all instances of that dictionary, both exclusive and shared, to be
reorganized.

Note You can change the definition for an array only if the membership type is one of Binary, Decimal, String,
or StringUtf8.

The supported changes are:

Decreasing the maximum length of an array definition with membership Binary, String, or StringUtf8. All
values must be less than or equal to the new maximum length. Values that are longer than a decreased
maximum length cause the reorganization process to fail and an exception to be raised.

Decreasing the precision or scale factor of an array definition with membership Decimal. All values must be
less than or equal to the new precision. Values that are longer than a decreased precision cause the
reorganization process to fail and an exception to be raised.

Enabling scaling of entries of an array definition with membership Decimal.

A reorganization is not required if the:

Maximum length of an array with membership Binary, String, or StringUtf8 is increased.

Precision or scale factor of an array with membership Decimal is increased, or if scaling of entries is
disabled.

Report Writer (JAD-I-552)
The following changes have been made to the JADE Report Writer in this release.

Ability to copy and paste fields (for example, literals, database fields, and so on) between sections in the
same report or different reports with the same root collections.

Changes in JADE Release 2020.0.02 (Service Pack 1) 27

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The Systems sheet of the Catalog of Available Fields dialog now groups attributes and collections under
their classes and allows the class to be collapsed, as shown in the following image.

In addition, the Catalog of Available Fields dialog now provides a combo box that enables you to quickly
search for fields. The F4 function key also enables you to start your search.

Changes in JADE Release 2020.0.02 (Service Pack 1) 28

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

All fields in the list box are searched; not just exposed classes, as shown in the following image.

You can now change the color of the dashed border around the currently selected fields on a report so that
they stand out. The default border color is now purple (it was blue in earlier releases).

Changes in JADE Release 2020.0.02 (Service Pack 1) 29

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The Designer selection border color control on the Options sheet of the User Preferences dialog, shown in
the following image, enables you to configure the border color of selected fields on a report to a color of your
choice.

REST Request PDF Data Format (PAR 68114)
The JadeRestRequest class now provides the DataFormat_PDF class constant, which has an integer value of
27 and corresponds to the application/PDF HTTP content-type. When using this format, set the body parameter as
required by the REST API specification.

Running a Workspace in a Deployed System (PAR 68293)
If your JADE system has no developer licenses or has the JADE schema database files marked as offline, you can
now run encrypted Workspaces supplied by JADE Support.

The jadclient executable program now provides the executeEncryptedWorkspace command, which has the
following syntax.

jadclient ini=jade-initialization-file
path=database-path
executeEncryptedWorkspace=file-name

The encrypted Workspace is read from the specified file, which must have been provided by JADE Support. (Use
of this command in jadclient is equivalent to opening an encrypted Workspace file and executing it in the JADE
development environment.)

The schema and app commands are not required, and are ignored if they are specified.

Changes in JADE Release 2020.0.02 (Service Pack 1) 30

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The encrypted Workspace can be run in single user or multiuser mode, depending on the requirements of the
Workspace.

Security (JAD-I-431)
SSL-enabled connections now include all client node to database connections, that is:

Application server to database server

Standard client to database server

.NET client to database server

ODBC standard client to database server

These connections are controlled with the ClientToRap parameter in the [Connections] section of the Secure
JADE SSL configuration file.

Status Line Positioning (PAR 68131)
There was a conflict between the value of the StatusLine control autoSize property set to true and the use of the
parentAspect, relativeLeft, and relativeWidth properties on the child controls. When the value of the autoSize
property is true, the status line first positioned any children that are not fully visible, if possible. The parent aspect
and relativeLeft and relativeWidth of the child control is then invoked but on the repositioned values. (Note that
the relative properties are ignored when the parentAspect property is used.)

This behavior has now been changed so that parentAspect, relativeLeft, and relativeWidth properties used by
child controls of a status line control work as expected regardless of the value of the StatusLine control autoSize
property value.

When the value of the StatusLine control autoSize property is true:

If a child control left property value position is less than zero, the control is moved to be zero (0) when the
parentAspect, relativeLeft, and relativeWidth property values of the child do not affect the horizontal
position (not stretch horizontal, anchor right, and centered horizontal, and the relativeLeft and relativeWidth
property values are false).

If a child control is not fully visible horizontally, the child is right-aligned in the status line control if it can be
fully displayed or positioned at zero (0) if it cannot when the parentAspect, relativeLeft, and relativeWidth
property values of the child do not affect the horizontal position (not stretch horizontal, anchor right, and
centered horizontal, and the relativeLeft and relativeWidth property values are false).

If a child control top position is less than zero (0), the control is moved to be zero when the parentAspect
property value of the child does not affect the vertical position (not stretch vertical, anchor bottom, or centered
vertical).

If a child control is not fully visible vertically, the child is bottom-aligned in the StatusLine control when the
parentAspect property value of the child does not affect the vertical position (not stretch vertical, anchor
bottom and centered vertically).

The values of the relativeTop and relativeHeight properties of child controls are always set to false, as their
functionality is not compatible with auto-sizing the height of the StatusLine control (as has always been the
case).

All parentAspect flag values and relativeLeft and relativeWidth values are applied.

The height of the StatusLine control is then determined by analyzing the child control as follows, to determine the
maximum height required. For a child control that does not have a fixed height and has the parentAspect
property with the:

ParentAspect_StretchBottom flag set, the height required is the top position, height, and
parentBottomOffset property values of the child.

Changes in JADE Release 2020.0.02 (Service Pack 1) 31

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

ParentAspect_AnchorBottom flag set, the height required is the height and parentBottomOffset property
values of the child; otherwise, the height of the child control.

These changes mean that the parentAspect property can be successfully used to position controls within a status
line control.

Note The changes documented previously for PAR 68095 are no longer relevant.

Unicode Surrogate Pair Character Support (PAR 68066)
JADE now supports 16-bit Unicode code characters that are greater than 0xFFFF, which includes emojis,
mathematical symbols, and others.

The term emoji in JADE product information includes any type of surrogate pair characters. Such characters:

Are stored as surrogate pair characters.

Require the use of two 16-bit values to store the value. These Unicode values are stored as two encoded
characters.

The actual value of the original Unicode character is split into two and stored in the lower part of each of the two
characters, with 0XD800 added to the first 16-bit character and 0xDC00 added to the second. For example, the
Unicode value 0x1F783 that represents an emoji is stored as 0xD83c and 0XDF83.

JADE now handles surrogate pair characters; in particular, the conversion from String to StringUtf8 and
StringUtf8 to String primitive types. As a result of this, emoji characters can be included in text in a Unicode JADE
system with some limitations.

The following code fragment is an example of Unicode surrogate pair character handling.

strUtf8 := #[f0 9f 8e 85].Binary.StringUtf8; // Father Christmas emoji
str := strUtf8.String;
write str;
write strUtf8;

A Unicode UTF-8 encoding table and emoji characters can be found at https://www.utf8-chartable.de/unicode-
utf8-table.pl?start=127872.

The following is a list of notes about surrogate pair emoji usage in JADE.

Emojis can be used only in a Unicode JADE system because they cannot be represented in ANSI.

Emojis can be represented using StringUtf8 in an ANSI JADE system, but they cannot be converted to a
String value as there is no ANSI representation.

Emojis can be included in any text displayed or printed, except for the rich text restriction later in this list.

Emojis can be copied and pasted to and from TextBox controls or pasted into the editor pane.

The emoji selection window (displayed using the Windows key + period (.), or dot, character key
combination) can be used to paste a selection.

Emoji characters can be converted to and from a StringUtf8 primitive type, which means that can be
included in web text data.

An emoji character cannot be stored in a Character property because it requires two characters, so it will not
fit.

Emojis can be made up of multiple surrogate pair values that are overlayed on each other to get the final
displayed representation. Using an arrow key can therefore leave the cursor positioned in the same place
and may require multiple presses to step over each part of the emoji.

The JADE length of a string that includes emojis is the number of 16-bit characters, not the number of
displayed characters.

https://www.utf8-chartable.de/unicode-utf8-table.pl?start=127872
https://www.utf8-chartable.de/unicode-utf8-table.pl?start=127872

Changes in JADE Release 2020.0.02 (Service Pack 1) 32

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Locate emoji characters in text by checking whether the first character is greater than 0xD800 and the
second character is greater than 0xDC00.

The JadeRichText control, which is a Microsoft control, does not support emoji characters.

Unit Test Runner Form (NFSes 65290, 65287)
In this release, the Unit Test Runner form has been updated to include some new usability features.

The following changes have been made to the Select Tests pane of the form.

It now displays the test classes in a hierarchical list. A top-level item is displayed for the current schema and
subitems are added for all test classes in the schema.

Individual tests are still represented as leaf items.

The number of tests for each class is now displayed beside each test class. The total number of tests for a
schema is also displayed beside the top-level schema item.

If you select a class that has no local tests but it has subclasses with unit tests, clicking the Run button runs
all tests from all subclasses.

The text color of individual tests now reflects their status; that is, they are displayed in blue if they are yet to
be run, green if the test succeeded, and red if the test failed.

Double-clicking a method or class in the Select Tests pane now moves the focus to the JADE development
environment and navigates to the selected entity in the relevant Hierarchy Browser or opens a new browser
if one does not already exist for the current schema.

Other changes made to the Unit Test Runner form are as follows.

The Refresh command in the View menu (or pressing F5) now runs or reruns all currently selected tests.

New Expand all and Collapse all icon buttons have been added to the top right corner of the Select Tests
pane.

The Expand all button expands the list box, making all tests visible.

The Collapse all button collapses the list box, showing only the schema item and its direct children.
This represents all direct children of the JadeTestCase class.

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Changes and New Features in JADE Release 2020.0.01
This section summarizes the product and documentation changes and new features in JADE release 2020.0.01.
For details about the changes in release 2020 that may affect your existing systems, see "JADE 2020 Changes
that May Affect Your Existing Systems", earlier in this document.

Animate Window Functionality for Forms (NFS 67576)
The animate window functionality is now provided for forms rather than just for controls, as it was in earlier
releases. This allows for the display of an animated informational popup window without having to write a
significant amount of logic, for example.

TheWindow class now provides the animateWindowmethod, which has the following signature.

animateWindow(millisecs: Integer; animateType: Integer) clientExecution;

This method is the superclass implementation of the Control class animateWindowmethod, which has been
marked as unpublished so that existing uses are unaffected.

The documentation is the same as it was for the Control class animateWindowmethod except as follows.

The Control class constants used for this functionality have been renamed and added to theWindow class.
The new names have the prefix AnimateWindow_Flags_ instead of AnimateWindow_; for example,
AnimateWindow_Flags_Slide.

The Control class constants have been marked as unpublished so that uses in earlier releases are
unaffected.

The following newWindow class constants apply only to a top-level form.

AnimateWindow_Flags_Activate (integer value of #20000) causes the form to be activated when it is
shown. If it is not set, the form is shown without it gaining focus. In addition, when not set, the form
retains its current zOrder position if it is redisplayed using the animateWindowmethod.

AnimateWindow_Flags_Blend (integer value of #80000) causes the form to fade in or out (This setting
cannot be used with other animation effect options.)

The animateWindowmethod call on a window does not result in any animation being shown if the form is
maximized, modal, or an MDI child.

TheWindow class implementation shows the border and caption of a form, and animates the contents inside
it. This does not always produce the best appearance, and Windows does not always draw the animation
correctly. If the form:

Has no border and caption, the animation should work correctly and be more appealing.

Is skinned, the effects apply to the whole form, including the border area, and the animation is drawn
correctly.

If the form has not been shown, calling the animateWindowmethod causes the loadmethod to be executed.

Notes The animateWindowmethod is available only in GUI applications and for JADE forms (that is, it is not
available for Web forms).

As the Control class animateWindowmethod and its associated class constants have been superseded by the
Window class animateWindowmethod and its associated class constants from JADE release 2020.0.01, they are
now unpublished in JADE 2020 so that use in earlier releases is not affected.

Changes and New Features in JADE Release 2020.0.01 34

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Any Primitive Type Methods
The Any primitive type now provides the methods summarized in the following table.

Method Returns...

getType The type of the value that is assigned to the receiver

isIntegral true if the receiver can be type-converted to an Integer primitive type without any loss of
data

isIntegral64 true if the receiver can be type-converted to an Integer64 primitive type without any loss of
data

isNumericType true if the type of the value assigned to the receiver is a Decimal, Integer, Integer64, or
Real primitive type

isTextType true if the type of the value assigned to the receiver is a Character, String, or StringUtf8
primitive type

Application Methods
This section describes the changes to Application class methods in this release.

Allowing Zero Forms
The Application class now provides the allowZeroForms method, which continues the process after the
Application class startAppMethod or startAppMethodWithStringmethod completes, even if a form was not
created.

The allowZeroForms method does nothing if the application is running on the server or on an application server;
that is, the application must be running on the client for the action to apply.

Code a terminate instruction to end the process when zero forms are allowed.

Starting an Application Method with a String
The Application class now provides the startAppMethodWithStringmethod, which enables your logic to initiate
another application on the same node as the initiating application, passing a string as a parameter for the
specified method to be invoked on the new application.

Array Variable-Size Elements (JAD-I-84)
Arrays now provide efficient storage for Binary, String, and StringUtf8 arrays. In earlier releases, array values
were stored in fixed-size entries so that the length of the array membership needed to be set high enough for any
eventuality. Arrays of maximum-sized values therefore resulted in a waste of resources.

The Membership sheet of the Define Class dialog now contains the Maximum Length check box. This check box
is enabled if the membership is Binary, String, or StringUtf8. The length value specified in the Length text box
cannot exceed the maximum supported length for the membership type, as follows.

Binary - 16,000 bytes (maximum of 128 bytes in earlier releases)

String - 15,999 characters (maximum of 63 characters in earlier releases)

StringUtf8 - 8,000 UTF8 characters (maximum of 30 UTF8 characters in earlier releases)

The BinaryArray, StringArray, HugeStringArray, and StringUtf8Array RootSchema classes are no longer
defined as arrays of fixed-length values. The length of values in these arrays can now be up to the maximum
supported length for the membership type.

Changes and New Features in JADE Release 2020.0.01 35

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

See also "Collection Membership Length (JAD-I-84)" under "JADE 2020 Changes that May Affect Your Existing
Systems", earlier in this document.

Button Picture Scaling (PAR 66907)
When an icon image is assigned to a picture, pictureDown, or pictureDisabled property of a button and the
Button class autoSize property is not AutoSize_Picture, the size of the icon selected from the assigned icon
image is now based on the client height of the button.

Collection Concurrency (JAD-I-423)
Locks on persistent collections create a bottleneck that affects most production multiuser systems in some way.
Minimizing contention and avoiding deadlocks is a challenge for developers. To help with these challenges,
JADE now provides:

Conditional collection operations

New collection methods that allow updates to persistent collections to be deferred

New deferred update modes for automatic multi-valued inverses

The deferred execution model is a good choice when applied to collections that are updated but not read within a
database transaction. Some of the benefits of deferred execution are:

Deferred execution methods can be called at any point within the transaction. Since a deferred execution
does not lock the collection, multiple processes can execute the deferred operations concurrently.

Handles concurrent additions or removals of the same object executed by different processes in overlapping
transactions.

Provides a deadlock avoidance strategy.

If application logic does not read the collection in the updating transaction, a shared-to-exclusive lock
upgrade does not occur.

Notes The deferred add and remove operations are not visible to the calling process until after the enclosing
transaction has committed.

The ExternalCollection and JadeBytes classes do not implement any of the tryxxx methods. Attempts to call
these raise exception 1068 (Feature not available in this release).

Deferred execution methods and non-deferred execution updating methods cannot be called on the same
collection within the same transaction; otherwise exception 1471 (Collection locking is incompatible with prior
updates) is raised (PAR 67879).

The Process class now provides the useDeferredInverseMaintenance and
overrideDeferredInverseMaintenance methods, which support enabling or disabling deferred execution for all
automatic or manual/automatic inverse collection properties for the current process.

The Collection class now provides the abstract tryAdd and tryRemove conditional methods, which are
implemented by the Array, DynaDictionary, ExtKeyDictionary,MemberKeyDictionary, and Set classes.

The Dictionary class now provides the abstract tryPutAtKey, tryRemoveKey, and tryRemoveKeyEntry
conditional methods, which are implemented by the DynaDictionary and ExtKeyDictionary classes.

Changes and New Features in JADE Release 2020.0.01 36

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Collection types that can contain objects provide tryAddDeferred, tryPutAtKeyDeferred, tryRemoveDeferred,
tryRemoveKeyDeferred, and tryRemoveKeyEntryDeferred deferred conditional methods.

Deferred Execution Common Behavior

The following behavior is common to deferred execution.

A deadlock avoidance strategy; that is, updates to multiple collections are grouped and processed in
collection OID order

Add and remove operations are processed in the order in which they were queued

Development Environment Changes

The Update Mode group box on the extended Define References dialog in the JADE development environment
provides the Deferred Execution check box. You can check or uncheck this check box only when the Automatic
or Man/Auto option button is selected (that is, it is disabled when the Manual update mode is selected or the
corresponding Type is not a Collection or a Collection that does not support deferred update modes).

New .NET API Methods

JADE now provides .NET API methods for conditional and deferred collections, as follows.

JoobCollection class methods

TryAdd

TryAddDeferred

TryRemove

TryRemoveDeferred

JoobDictionary class methods

TryPutAtKey

TryPutAtKeyDeferred

TryRemove

TryRemove

TryRemoveDeferred

DynamicDictionary class method

TryRemoveDeferred

ExtKeyDictionary class method

TryRemoveDeferred

JoobSession class methods

OverrideDeferredInverseMaintenance

UseDeferredInverseMaintenance

IJoobCollection interface methods

TryAdd

TryAddDeferred

Changes and New Features in JADE Release 2020.0.01 37

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

TryRemove

TryRemoveDeferred

These are documented in the JADE .NET API JadeDotNetAPI.chm file, which is in the installed JADE
documentation directory (for example, C:\Jade\JADE Docs\documentation).

ComboBox and ListBox Class ItemNotFound Constant
The ComboBox and ListBox classes now provide the ItemNotFound constant, which has in Integer value of -1.
For the:

ListBox control, this indicates the value of the listIndex property when no item is currently selected (the
default).

ComboBox control, this indicates the value of the listIndex property when no item is currently selected or
when the user has entered text that does not match any valid option in the combo box.

ComboBox Control Default Line Height (NFS 67273, JAD-I-467)
You can now specify the default line height of a combo box (for example, cbt.defaultLineHeight := 25;).

The defaultLineHeight property of the ComboBox class specifies the default height of lines in a combo box,
independent of the font. This property represents pixels and defaults to zero (0), indicating that the height of a line
in a combo box list is determined by the combo box font.

This property has no impact on the size of the combo box itself; only the height of the list items when the list is
displayed.

File Open Dialog Prompt (PAR 65662, PAR 66871)
When using the common File Open dialog (the CMDFileOpen class), selecting a file, then navigating to another
directory, you are no longer prompted to create the file selected, which prevents the display of unnecessary
Create File dialogs. You are now advised that the file was not found, and prompting you to check the file name
and try again.

The default value of the CMDFileOpen class createPrompt property has been changed to false. When a user
now attempts to open a file that does not exist, the create prompt is not displayed and the user is no longer
prompted to create the file each time a folder is navigated to from within the File Open dialog.

Note To achieve the behavior in earlier releases, you must now specify cmdFileOpen.createPrompt := true;
before you call the CMDFileOpen class openmethod.

Containerization (JAD-I-433)
Containerization is defined as a form of operating system virtualization through which applications are run in
isolated user spaces called containers, all using the same shared operating system. A container is essentially a
fully packaged and portable computing environment.

Everything an application needs to run – its binaries, libraries, configuration files, and dependencies – is
encapsulated and isolated in its container.

The container itself is abstracted away from the host operating system, with only limited access to underlying
resources – much like a lightweight virtual machine (VM).

As a result, the containerized application can be run on various types of infrastructure – on bare metal, within
VMs, and in the cloud – without needing to refactor it for each environment.

Changes and New Features in JADE Release 2020.0.01 38

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Compared to a VM, there is less overhead during start-up and no need to set up a separate guest operating
system for each application since they all share the same operating system kernel. Because of this efficiency,
containerization is commonly used for packaging up the many individual microservices that make up modern
applications.

The following subsections describe JADE containerization in this release.

Console Remote Access Program (jadrapb) (JAD-I-525)
In earlier releases, you can run a database server node as a GUI application using jadrap.exe or as a Windows
service using jadserv.exe.

This release provides an additional jadrapb executable, which enables you to run a database server node as a
console application. The main use case for this is to provide a docker container-ready entry-point process.

Run the console version of the JADE Remote Access Program from a command line, specifying the following.

jadrapb path=database-path ini=JADE-initialization-file-path

The following is an example command line.

jadrapb path=c:\jade\system ini=c:\jade\system.ini

The following is an example Dockerfile entry point specification.

WORKDIR /LogMonitor
SHELL ["c:/LogMonitor/LogMonitor.exe", "powershell.exe"]

define the entrypoint process
ENTRYPOINT c:/jade/bin/jadrapb.exe ini=c:/jade/system.ini, path=c:/jade/system
persistentdb.journalrootdirectory=c:/jade/journals, jadelog.logfile=db_server,
jadelog.logdirectory=c:/jade/logs

Further Container-ready Services
The following service hosting console applications have been extended to operate correctly in Docker containers.

jadappb – a console application that runs an application server node as a background process.

jadclient - a console application that runs a standard client node as a background process. This is the
preferred way to run a SOAP- or REST-based web service in a Docker container.

Container-ready processes shut down gracefully when the container is stopped by a user or a container
orchestrator.

Docker Images
Docker images that can be used to configure and deploy a fully containerized JADE environment are served from
the JADE Container Registry (JCR) [registry.jadeworld.io].

Each container image is configured to run a single JADE process. The code file variants cover Unicode, ANSI,
and x64 variants.

Image Naming Convention
JADE container images are named according to the following convention.

registry-name/jade/component-name:TAG

Changes and New Features in JADE Release 2020.0.01 39

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The component-name is one of the following.

database-server

application-server

application-database-server

non-gui-client

gui-client

The TAG is used to identify the version and build configuration, using the following format.

build-version-architecture-codeset

The TAG values are as follows.

build-version is a JADE version string; for example, 20.0.01

architecture is x64

codeset is U for Unicode or A for ANSI

The following is an example of the tag value.

20.0.01-x64-U

The following is an example of the full image name (or tag).

registry.jadeworld.io/jade/database-server:20.0.01-x64-U

JADE Images
Docker images for the JADE services are provided.

The following table lists the description and entrypoint process for each container image.

Component Name Description Entrypoint Process

database-server Database server jadrapb.exe

application-server Application server node jadappb.exe

application-database-server Application server with local database jadappb.exe

non-gui-client SOAP or REST web service jadclient.exe

gui-client Web application or GUI web service jade.exe

The following table lists the image names for each JADE component. Image names are used in docker pull
commands, to pull JADE container images from the JADE container registry; that is, registry.jadeworld.io.

Component Name Image Names

database-server registry.jadeworld.io/jade/database-server:20.0.02-x64-U
registry.jadeworld.io/jade/database-server:20.0.02-x64-A

application-server registry.jadeworld.io/jade/application-server:20.0.02-x64-U
registry.jadeworld.io/jade/application-server:20.0.02-x64-A

application-database-server registry.jadeworld.io/jade/application-database-server:20.0.02-x64-U
registry.jadeworld.io/jade/application-database-server:20.0.02-x64-A

non-gui-client registry.jadeworld.io/jade/non-gui-client:20.0.02-x64-U
registry.jadeworld.io/jade/non-gui-client:20.0.02-x64-A

Changes and New Features in JADE Release 2020.0.01 40

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Component Name Image Names

gui-client registry.jadeworld.io/jade/gui-client:20.0.02-x64-U
registry.jadeworld.io/jade/gui-client:20.0.02-x64-A

Container Logging
Most container ecosystem logging solutions are built to pull from the STDOUT pipeline as is standard with Linux.
Windows container application logs historically have not been accessible via these solutions.

JADE container images incorporate a Microsoft Open source tool called LogMonitor, sourced from GitHub at
https://github.com/microsoft/windows-container-tools. The LogMonitor tool is configured to monitor jommsg.log
output. Log output is written to STDOUT so that it can be accessed by the Docker engine or by log collection tools
such as Fluentd or Logstash.

In addition, JADE container images are configured to write logs to a mappable internal directory that can be ‘bind
mounted’ to an external directory on the host file system. This provides an additional simple way to persist and
view jommsg.log output from outside a running container.

Windows Base Image
JADE container images use the Long-Term Servicing Channel (Windows Server 2019) base image
https://hub.docker.com/_/microsoft-windows-servercore tagged ltsc2019.

The image is pulled frommcr.microsoft.com/windows/servercore:ltsc2019.

Image Update Policy
JADE base images will be updated to include cumulative hotfixes as they are released and on a regular basis to
incorporate security and bug fix updates rolled out by Microsoft in updates to Windows server core base images.

Note As part of the containerized delivery way of working, we recommend that you put a process in place to
ensure you update your image references to the latest base images on a regular basis.

Support Policy
JADE supports running JADE containers in on-premises configurations or cloud-based container platforms
capable of correctly running Windows images based on windows/servercore:ltsc2019. If you experience issues
or have questions about JADE container-related Docker functionality, JADE is your first point of contact.

For information about Microsoft’s support policies for containers and related services on Azure, see:

https://docs.microsoft.com/en-us/troubleshoot/azure/general/support-policy-
containers

For information about Microsoft’s support policy for Windows containers and Docker in on-premises scenarios,
see:

https://support.microsoft.com/en-nz/help/4489234/support-policy-for-windows-
containers-and-docker-on-premises

JADE Container Examples
Several examples that demonstrate how to use JADE containers to stand up a variety of application environments
are provided on a public GitHub repository at:

https://github.com/jadesoftwarenz/JADE-container-examples

https://github.com/microsoft/windows-container-tools
https://hub.docker.com/_/microsoft-windows-servercore
https://docs.microsoft.com/en-us/troubleshoot/azure/general/support-policy-containers
https://docs.microsoft.com/en-us/troubleshoot/azure/general/support-policy-containers
https://support.microsoft.com/en-nz/help/4489234/support-policy-for-windows-containers-and-docker-on-premises
https://support.microsoft.com/en-nz/help/4489234/support-policy-for-windows-containers-and-docker-on-premises
https://github.com/jadesoftwarenz/JADE-container-examples

Changes and New Features in JADE Release 2020.0.01 41

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The examples are all based on the Erewhon sample application. Each example has a README that explains
how to deploy and run the example in a step-wise fashion as well as a single script that can be run to deploy a
fully operational example environment on a laptop, PC, bare metal server, or in the cloud.

The example repository also contains documentation about how to get started using Docker Desktop for Windows
and provides a script to automate the setup process.

Database
This section describes the JADE database changes in this release.

convertToBackup Command after Recovery (PAR 67837)
The convertToBackup operation is now permitted when the database image has been recovered to the end of a
journal that contains in-progress transactions.

Note that it is not valid to run the convertToBackup operation on a database image:

That is in a crashed state requiring restart recovery

Where the class file mappings are inconsistent, which could happen if a step-wise recovery terminated
during a schema instantiation

convertToBackup Command Extension (JAD-I-461)
Previously, the database convertToBackup function verified the integrity of the database and generated a
restoreinfo file, creating the equivalent of a "restored backup".

The database convertToBackup function now creates a backupinfo file in addition to the restoreinfo file, creating
the equivalent of a backup image that can be restored and recovered using standard database restore
mechanisms. The result is both a backup and a "restored backup".

Database File Address Mismatch (PAR 67345)
In earlier releases, a database certify or backup action could result in logged warnings like that shown in the
following example.

>>> Warning Coll header address mismatch - oid: [3924.49741942.2115.2.2:1], size=95
>>> address in index: 31892931552, actual file offset: 30049047889

Database certify warnings such as the above are now logged and counted as errors, as shown in the following
example of a certify error.

06df4-1060 *** Coll header address mismatch - oid: [3924.49741942.2115.2.2:1],
06df4-1060 size=95 address in index: 31892931552, actual file offset:
06df4-1060 30049047889

Similar warnings detected by the database backup verification are now also logged as errors prefixed by '***', but
these are not counted as errors and do not result in a backup failure.

The database file certify sequential scan now includes the warning count in the summary; for example:

06df4-1060 34 verify errors, 94 warnings found scanning data

Database Diagnostic Enhancements (PAR 67280)
The JADE initialization file can now contain a [DBUtil] section, with parameters that provide new analysis
capabilities. The parameters in this section are read when a file certify or freespace analysis operation is
performed using:

Changes and New Features in JADE Release 2020.0.01 42

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The JADE Database utility (jdbutil and jdbutilb)

The JADE Database Administration utility (jdbadmin)

JADE code with the corresponding certifyFile or getFreeSpace method on the DbFile class

In JADE 2018, Boolean values were disabled by default, to reflect existing behavior. However, the values of all but
the FetchAllObjects parameter have changed in this release.

The parameters are listed in the following table.

Parameter Default Specifies...

FetchAllObjects false Whether each database object is fetched and certified.

Note When set to true, this action may increase the time taken
by the operation.

FreeSpaceDeepChecking true Whether enhanced checking of individual blocks in the freespace
area is performed for certify and freespace operations.

FreeSpaceCrossChecking true Whether individual blocks in the separate freespace areas are
checked for duplication in another area for certify and freespace
operations.

FreeSpaceErrorLimit 0 The number of errors (for example, 20) that is reached during
freespace analysis before the process stops and a message is
logged to the specific operation log file (including why it stopped
and the number of errors that were detected) when a certify or
freespace operation is performed.

The default value specifies that there is no limit to the number of
freespace errors.

Date Primitive Type Methods
The Date primitive type now provides the methods listed in the following table, which enable you to determine
information about days in a month.

Method Returns...

daysInMonth An Integer value equal to the days in the month of the date value of the
receiver

lastOccurrenceOfDayInMonth A date identical to the receiver except that the day is modified to the last
occurrence that matches the specified day of the week

nthOccurrenceOfDayInMonth A date identical to the receiver except the day is modified to match the
specified nth occurrence (for example, 1st or 2nd) that matches the specified
day of the week

Dynamic Objects
This section describes the JADE dynamic object changes in this release.

External Dynamic Object Methods (JAD-I-389)
Using JADE dynamic objects required you to make multiple get calls for the same property to retrieve different
attributes of it, which could be computationally inefficient.

You can now implement the following JadeDynamicObject external methods.

Changes and New Features in JADE Release 2020.0.01 43

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Method Description

getPropertyIndex Returns the index of the property specified by the name parameter

getPropertyInfoByIndex Outputs the name, type, and value of the property at the position specified by the
index parameter

getPropertyInfoByName Outputs the index, type, and value of the property specified by the name
parameter

Merging Dynamic Objects
The JadeDynamicObject class now provides the merge method, which enables you to merge two or more
dynamic objects.

Methods that Set Dynamic Object Properties
The JadeDynamicObject class now provides the following methods.

Method Description

setPropertyValueAsPropertyType Returns the index of the property specified by the name
parameter

setPropertyValueAsPropertyTypeByIndex Outputs the name, type, and value of the property at the position
specified by the index parameter

tryGetPropertyValue Returns the value of the specified property, if it exists

Processing and Obtaining Information about Dynamic Objects
The JadeDynamicObject class now implements the methods summarized in the following table, to provide you
with more flexibility when obtaining information about and processing dynamic objects.

Method Returns an implementation of the...

getPropertyNames JadeIterableIF interface that enables you to iterate through the property names of the
JadeDynamicObject

getPropertyTypes JadeIterableIF interface that enables you to iterate through the property types of the
JadeDynamicObject

getPropertyValues JadeIterableIF interface that enables you to iterate through the property values of the
JadeDynamicObject

Iterating through this interface using these methods returns the respective names, types, or values of the
properties in index order on the dynamic object. (See also "Iterating using Interfaces (JAD-I-571)", elsewhere in
this document.)

File Open Error Suppression (JAD-I-454)
The File class tryOpenmethod previously logged operating system errors in the jommsg.log file when the file
open request failed for any of the following error causes.

5003 (Requested file not found)

5030 (File is in use by another process)

5040 (Insufficient system resources)

Operating system error logging is now suppressed.

Changes and New Features in JADE Release 2020.0.01 44

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

firstVisibleLine Property Availability (JAD-I-449)
The availability of the JadeTextEdit control class firstVisibleLine has changed to read or write at any time. (In
earlier releases, its availability was read-only at run time.)

Setting the value outside of the range 1 through the value of the lineCount property results in the value of the
firstVisibleLine property being capped to that range.

Floating Form Visibility (PAR 67979)
When the float method was called on a docking control, the internal logic always made the floating form visible.
(This was an incorrect assumption in that existing systems hide a docking control and then float it.) From JADE
16.0.01, this resulted in a change of behavior.

The JADE 7.1 behavior has been restored so that floating a docking control will not affect its visible status.

If the control is not visible, the floating form will not be visible. Changing the value of the visible property to true
results in the display of the floating form.

foreach Instruction as Expression (JAD-I-173)
The foreach instruction now enables you to specify the optional as expression that, if present, contains an explicit
type name or an expression that must evaluate to a type.

This enables the foreach target variable to be a subtype of the collection membership. Use this for variable type
validation when you know that the collection contains objects that are more specific than the membership type of
the collection; for example:

foreach dog in animalCollection as Dog do

Inspector
This section describes the JADE Schema Inspector changes in this release.

Inspecting a Deployed Database (PAR 66532)
The implementation of a deployed system changed in JADE 6.3, which resulted in the Schema Inspector
application no longer calling the optional allowedToInspect security filter method to restrict access to user class
instances. Since JADE 6.3, a deployed system means that the _jadeapp and _jadedef database files have been
marked offline.

The Schema Inspector now blocks access to user class instances by default, if any of the following is true.

Production mode is enabled

The system does not have any developer licenses installed

The _jadeapp or the _jadedef database file has been marked offline

The jadeDevelopmentFunctionSelected security hook inspectInstances task fails for the selected class

You can implement the optional allowedToInspect method to override this behavior, or since the deployed JADE
Database Inspector is subject to development security, you can implement the optional JADE development
security hook inspectInstances task to control access. If none of these conditions apply, there are no restrictions
to accessing user instances.

Notes If the allowedToInspect method returns false or the inspectInstances development security library hook
fails for the selected class or classes, the inspection is denied; that is, a message box is displayed, informing the
user that he or she does not have sufficient security rights to inspect instances of that class.

The quick inspect toolbar is never displayed in a deployed database.

Changes and New Features in JADE Release 2020.0.01 45

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Inspecting Class and Object Volatility (JAD-I-137)
The Schema Inspector now displays class and object volatility by default.

This enables you to check whether objects and collections are set to stable or frozen without having to write code
to determine the volatility state of an object or collection.

Inspector Security
In earlier releases, development security covering the use of the Inspector form allowed unrestricted access to all
instances.

The inspectInstances security hook task is used by the quick inspect toolbar in both the JADE development
environment and the Schema Inspector dialog to control access to the inspection of instances. The
entityName input parameter enables you to control access to a specific class (schema-name::class-name).

The inspectMethod security hook task toggles access to the Object class and Collection class inspect and
inspectModalmethods. The entityName input parameter enables you to control access to a specific class
(schema-name::class-name).

The enableInspectToolbar security hook task is used by the JADE development environment quick inspect
toolbar and the Schema Inspector dialog to control access to the quick inspect toolbar itself. The entityName
input parameter specifies the schema (schema-name) and application (application-name) that the quick
inspect functionality can access. If an enableInspectToolbar security hook task fails in the:

JADE development environment, the quick inspect toolbar is disabled. If the quick inspect toolbar is
already floating when this security hook fails, the floating quick inspect toolbar will be disabled but will
still be able to be docked.

Schema Inspector, the quick inspect toolbar and the corresponding Option menu Show Inspect
Toolbar command will not be visible.

The searchInstances security hook task enables you to control the search behavior of the quick inspect
toolbar both in the JADE development environment and the Schema Inspector dialog. The entityName input
parameter specifies the schema (schema-name) to which to control access. When a user fails the security
check in the:

Schema Inspector dialog, the quick inspect toolbar is still displayed, but accepts only valid OIDs.

JADE development environment, the quick inspect toolbar is still displayed but accepts only valid OIDs
and the floating Quick Inspect form does not display a list box.

For details about mechanisms to restrict access to tasks in the JADE development environment and task
authentication, see "JADE Development Environment Security", in Chapter 2 of the JADE Object Manager Guide.

Quick Inspect Toolbar (JAD-I-168)
The JADE development environment now provides the quick inspector toolbar, which:

Removes the need to write code to inspect an object

Adds the ability to search and view multiple instances of an entity

The valid entries are an unqualified class (where only the current schema will be searched), an existing OID,
a class number, or a qualified class name (that is, schema-name::class-name, package-name::class-name,
or schema-name::package-name::class-name).

Note If the JADE development security hook searchInstances task check fails, the only accepted entry is a
valid OID.

Changes and New Features in JADE Release 2020.0.01 46

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Can be docked in the development environment main toolbar, and contains:

A button (indicated by the ˅ down arrow icon) that floats the control.

A combo box in which to enter the search entity or select a recently inspected entity. When no text is
entered, the combo box displays the current schema.

The Inspect button that opens the Inspector form with the entity specified in the combo box.

You can position the docked quick inspect toolbar anywhere in the main toolbar that does not overlap
existing control icons (which are always left-aligned).

Can be floated, by clicking the float button (indicated by the down arrow icon) or by dragging the toolbar off
the main toolbar. The resizable Quick Inspect form that is then displayed contains:

A button (indicated by the ˄ up arrow icon) that docks the control

A text box in which to enter the search entity

The Inspect button that opens the Inspector with the entity specified in the text box or selected in the list
box

A list box that displays search results or previously inspected items for your current session

The floating position and size of the Quick Inspect form is retained for the duration of your work session.

When the number of entries in the list box exceeds 1,000, Next, Previous, First, and Last buttons are
displayed to provide easy navigation over the list.

When the text box is empty, the list box displays previously inspected items. (Historical items are preserved
for the current session only.)

If you specify a valid class number, the class name and instances of the class are displayed. If you specify a
valid class name, the class number and instances of the class are displayed.

The allowedToInspect security filter method called on a class enables you to define security to specify users
who can inspect class instances in a deployed (runtime) database.

Tip Use the Ctrl+Alt+I shortcut keys to set focus to the search combo box when the quick inspect toolbar is
docked or to the search text box on the Quick Inspect form when the quick inspect toolbar is floating.

If text is selected in more than one editor pane, the latest selected text is pasted into the corresponding search
control. If multiple lines are selected, it is cut off at the first CrLf end-of-line sequence.

The JADE development environment main toolbar now provides a context (popup) menu that has the Show Quick
Inspect Toolbar as well as the Show Clipboard Toolbar commands, which are checked by default. These
commands are also provided in the development environment View menu. They toggle (hide or show) the display
of the selected toolbar and update the value of the Show Quick Inspect Toolbar check box on theWindow sheet
of the Preferences dialog.

TheWindow sheet of the Preferences dialog contains the:

Show Quick Inspect Toolbar check box (which is checked by default), to show or hide the display of the
quick inspect toolbar. (If the quick inspect toolbar is docked in the toolbar of the main development
environment window, hiding the main development environment window toolbar also hides the quick inspect
toolbar.)

Quick Inspect Width text box, which enables you to change the width of the quick inspect toolbar combo box
from the default value of 300 pixels to the number of pixels you require, with a minimum value of 200 pixels
and a maximum of 1,000 pixels.

Changes and New Features in JADE Release 2020.0.01 47

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The development environment Schema Inspector dialog:

Now displays the Inspect search text box and button

Replaces the existing hierarchy list box at the left of the dialog or form by a folder containing two sheets: the
History sheet containing the existing hierarchy list box and the new Search sheet

Note The above list applies only to the development environment Schema Inspector dialog; not to the
production Schema Collection Inspector form (that is, the Schema Inspector dialog started from the
JadeSchemaInspector application in the JadeMonitorSchema).

The dock or float status and the floating size and position of the Quick Inspect form are saved if you have set your
Save Windows user preference to true (that is, you have checked the Save Windows check box on the Exit sheet
of the Preferences dialog). When you next initiate the JADE development environment, the quick inspect toolbar
status is restored.

In earlier releases, development security covering the use of the Inspector form allowed unrestricted access to all
instances. For details about inspection security in this release, see "Inspector Security", elsewhere in this
document.

JADE Development Environment
This section describes the JADE development environment changes in this release. (See also "Quick Inspect
Toolbar (JAD-I-168)", earlier in this document.)

Adding a New Property (NFS 67555)
When you added a new property to a class and the Properties List displays the Attributes, References. Controls,
or Menu sheet and the new property does not match the displayed type, the new property was not visible because
it does not belong to the current list.

If the new property type does not match the type that is currently displayed, JADE now changes focus to the All
sheet and the new property is visible and selected.

Application Default Inherited (NFS 67299)
If the default application is set to a superschema application on the Run Application dialog, the default application
no longer reverts to the first application defined in the current schema.

The superschema application is now retained as the default and its name is displayed in the application name
label at the right of the main (background) window of the JADE development environment browser.

When the Run Application dialog is displayed and the default application is a superschema application, the Show
Inherited check box in the Inheritance group box of the Preferences dialog Browser sheet is automatically
checked.

AutoComplete
This section describes the JADE AutoComplete feature changes in this release. (See also "Camel Case Filtering
in List Boxes (NFS 67480, JAD-I-493)", elsewhere in this document.)

Block Label Prompt (NFS 66867)
The JADE AutoComplete feature now prompts you with the list of block labels (if any exist) when you type a
character after a break or continue instruction.

In addition, a prompt is also displayed with the label associated with the block at that level (if one exists) when you
type a character after an endwhile or endforeach statement.

Changes and New Features in JADE Release 2020.0.01 48

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Constructors with Parameters Signature Display (NFS 67275, JAD-I-426)
The JADE AutoComplete feature now displays the signature of the constructor when you specify a constructor with
parameters in the editor pane, to indicate which parameter you are editing.

Displaying Identifier Usages from the Editor Pane (NFS 67553, JAD-I-517)
The JADE development environment and editor pane now enable you to select an identifier in the method source
and request usages of the identifier by using the Usages of identifier command in the Edit context (popup) menu
in the editor pane without having to find and select the item from a hierarchy browser and performing the same
action.

Usages include references, property and method local references, property read and update references, method
implementors, local implementors, and implementor references.

The cursor must be positioned in the identifier name with nothing selected or the whole identifier must be
selected.

Note This functionality requires the JADE AutoComplete feature to be in use for the method (that is, the Use
AutoComplete check box in the Auto Complete group box on the Editor Options sheet of the Preferences dialog
is checked).

The identifier must be one of the following.

Type name

Class name

Imported package class name

Global constant

Class constant

Imported class constant

Class property

Imported class property

Type or class method

Imported class method

Display the Edit menu by selecting the Edit menu in the menu bar or by right-clicking in the editor pane of the
method. If the cursor is not positioned on one of the above types of identifier, the 'usages' menu item is disabled
and the caption displays Usages - no suitable identifier selected.

If the selected identifier is one of the following, the menu command that is displayed is References of
identifier-type identifier-name; for example, References of Class Customer.

Type name

Class name

Imported package class name

Global constant

Class constant

Imported class constant

Changes and New Features in JADE Release 2020.0.01 49

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Selecting the menu command displays the references to that identifier. If the identifier is a property or method, the
displayed menu command has the caption Usages of identifier-type identifier-name; for example, Usages of
Class Customer.

Clicking the menu displays a submenu of the following options that depend on the type of identifier.

References, for all property and method types

Local References, for non-imported class properties and methods

Read References, for property read references

Update References, for property update references

Implementors, for implementors of a method

Local Implementors, for local implementors of a method if the schema type is a non-imported class

Implementor References, for references to local implementors of a method if the schema type is a
non-imported class

Clicking these commands performs the same actions as those when selecting the item in a browser list and then
right-clicking and selecting the equivalent menu command.

If AutoComplete is not active, the Usages of identifier command is not displayed in the Edit menu.

Displaying Options for External Methods (PAR 67517)
The JADE editor now handles external methods in AutoComplete processing. It parses the definition of an
external method, expecting it to be of the form:

method-name (method-parameters) [: return-type] is entry-point-name in
library-name method-options;

Note AutoComplete does not offer any suggestions for the is, entry-point-name, in, and library-name values.

AutoComplete cannot filter or check the validity of method options, but only check that the option is in the list of
possible options.

Selecting an Exact Entry in the List (NFS 67276, JAD-I-468)
When the Use History for Selection check box on the Editor Options sheet of the Preferences dialog was
selected, the AutoComplete feature automatically highlighted the word that was last selected. This could cause
issues when you want to select an identifier that is a prefix of the selected word; for example, if the history was for
application and you typed app, pressing the . key resulted in application being inserted when you required the
app system variable.

The AutoComplete feature now selects an entry in the list when it is an exact match (case-sensitive) instead of the
historical entry; that is, in the above example, app is selected when you enter app. The list item application is still
selected when you enter a, ap, or appl in the editor pane.

Bubble Help
This section describes the bubble help changes in this release. (See also "Bubble Help in the Debugger (NFS
67666)", elsewhere in this document.)

Bubble Help in the Editor Pane (NFS 64066)
The information for the currently selected symbol that is displayed in the editor pane when you press F11 now
includes the creation timestamp and patch version of the entity.

Changes and New Features in JADE Release 2020.0.01 50

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Displaying Shortcut Keys in Icon Bubble Help (NFS 67715, JAD-I-325)
When you hover the mouse over the icon on a toolbar button, the bubble help that displays the icon function now
also displays the equivalent menu shortcut in the displayed bubble help text as bubble-help-description
[shortcut-keys]; for example, Browse Classes [Ctrl+B].

The shortcut key that is displayed for an action is set on the Short Cut Keys sheet of the Preferences dialog.

The development environment Reorg, Context Help, and General Help toolbar icons do not have an equivalent
menu shortcut, so there is no shortcut displayed in the bubble help. To display the defined shortcuts in the bubble
help for the other toolbar button icons, the following changes have been made.

The list of shortcut combinations has been expanded in the Shortcut Key combo box on the Menu Item
sheet of the Menu Design form in the JADE Painter. The combo box list now includes:

Ctrl+Alt+alpha-character

Ctrl+Alt+numeric-digit

Ctrl+Alt+function-key

The development environment File menu now includes the following commands.

Schema Extract Ctrl+Alt+E (equivalent to clicking the Extract toolbar button)

Schema Load Ctrl+Alt+L (equivalent to clicking the Load toolbar button)

Note The existing Extract and Load commands in the Schema menu of the Schema Browser are retained
for user consistency.

The File menu New command has a shortcut of Ctrl+Alt+W

The File menu Open command has a shortcut of Ctrl+Alt+O

The File menu Print Selected command has a shortcut of Ctrl+Alt+P

The File menu Monitor command has a shortcut of Ctrl+Alt+M

The Jade menu Browse Schema command has a shortcut of Ctrl+Alt+S

The History Back and History Next toolbar button shortcuts have been changed to Ctrl+Alt+B and Ctrl+Alt+N,
respectively. (During testing, it was found that the existing shortcuts of Ctrl+Alt+← and Ctrl+Alt+→ did not work,
as Microsoft intercepts these sequences for its own desktop handling.)

Camel Case Filtering in List Boxes (NFS 67480, JAD-I-493)
In earlier releases, the editor pane and the Find Type dialog supported camel case filtering in list boxes only when
the first sequence of uppercase characters of the list item match the filter text in that order.

This filtering process has now changed so that the search finds the uppercase sequence anywhere in the text of a
list box item; for example, CA matches the entry of a CMClass_Customer_Address class. This avoids having to
type any XXXX prefix you may have on all your class names, which reduces the number of characters that need to
be typed to find a camel case match.

Captions on Floating Forms (NFS 67001)
When any of the JADE hierarchy browser major panels (the Class List, Properties folder, Methods folder, and
editor pane) is floated, the floating form now has a caption, as follows.

Class List panel displays schema-name classes; for example, DocEgSchema classes

Properties folder panel displays schema-name::class-name properties; for example,
DocEgSchema::Reviewed properties

Changes and New Features in JADE Release 2020.0.01 51

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Methods folder panel displays schema-name::class-name methods; for example, DocEgSchema::Reviewed
methods

Editor pane displays schema-name::class-name editor; for example, DocEgSchema::Reviewed editor

Clipboard Toolbar Context Menu (JAD-I-168)
The JADE development environment toolbar now provides a context (popup) menu, which has the Show
Clipboard Toolbar as well as the Show Quick Inspect Toolbar commands. These commands are also provided in
the development environment View menu. They toggle (hide or show) the display of the selected toolbar and
update the value of the Show Quick Inspect Toolbar check box on theWindow sheet of the Preferences dialog.

Closing Tabs in the Development Environment (NFS 62115)
When the MDI option on the Browser sheet of the Preferences dialog is set to Use Mdi With Tabs or to Use Tabs
Only, you can now close a tab by clicking the middle mouse button (that is, pressing the mouse wheel) on the tab.
(The middle mouse button does not close pinned tabs.)

Notes This affects only the main development environment tabs.

You can still close a tab by clicking the close icon at the top right corner of the tab, including pinned tabs.

Comparing Method Sources (NFS 67704, JAD-I-160)
When comparing method source within a patch summary, the Compare Sources dialog now hides the merge
editor pane by default, which provides more space for the displayed method sources.

A ShowMerge Pane button is now provided, which when clicked, toggles the visible status of the merge editor
pane. The button has the ShowMerge Pane caption when the pane is hidden and the Hide Merge Pane caption
when the pane is visible.

Notes The size of the merge editor pane is no longer saved and restored.

When the merge editor pane is visible, from JADE 2016, a resize bar enables you to drag the merge editor pane
to reduce or increase its displayed size in the dialog.

Condition Method Text Template (NFS 67277, JAD-I-335)
When adding a condition method, the text template in the JADE editor no longer includes the vars and epilog
sections if they had been included in the template.

Dark and Light Themes (JAD-I-370)
You can now set a pre-defined light or dark color mode in the JADE development environment so that you can
select a dark theme if you prefer the dark color set that reduces excessive brightness. The JADE development
environment also provides a default JADE theme and new dark and light skins.

A JADE theme is consists of:

A name

The Window colors

The Editor colors

The Relationship colors

Changes and New Features in JADE Release 2020.0.01 52

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

TheWindow sheet of the Preferences dialog in the JADE development environment enables you to:

Change between a light theme or a dark theme. (The Editor sheet and the sample list box in theWindow
sheet reflect the selected theme.)

Select from dark and light versions of skins; for example. JADE Lava Lamp Dark and JADE Lava Lamp.

Add, edit, reset, or remove a user-defined theme.

When you click the OK button on the Preferences dialog, the entire development environment is updated to reflect
the selected theme.

The Miscellaneous sheet of the development environment Preferences dialog enables you to import or export a
user-defined theme.

Debugger
This section describes the JADE Debugger changes in this release.

Bubble Help in the Debugger (NFS 67666)
The debugger has been enhanced to display the value of a path such as sc.startDate. This is now available in
the following cases.

If you hover the mouse over an identifier that is part of a path (for example, startDate in sc.startDate), the
bubble help display is sc.startDate = date. The value is also displayed if the full path is selected.

You can inspect a path in the debugger. If you place the cursor over a variable and then perform an inspect
action, the Variable Inspector dialog is displayed with the full path name displayed.

Notes If a valid path is selected in the editor text, the inspector value display is presented without the
Variable Inspector dialog appearing.

A path that contains a method call cannot be inspected.

A path can now be used as a debugger watch expression.

Inspecting Variables in the Debugger (NFS 66542)
The Inspect Variable dialog in the JADE Debugger:

Can now be resized. (There is also now a minimum height and width to which the dialog can be resized.)

Can display more than the 40-character maximum value of earlier releases. The Value text box is resized as
the dialog is resized.

Enables you to directly modify the content of a variable, if applicable. The Value text box and Modify button
are disabled if a variable cannot be modified; that is, it is an Any primitive type.

The Modify Variable dialog has therefore been removed, as have the Modify context menu item in the Local
Variables window and the Modify Watch context menu item.

Sorting Local Variables (NFS 67719, JAD-I-267)
In a method with a lot of local variables, it can be difficult to locate a specific variable to see its value.

The tables of displayed variables and watches shown by the JADE Debugger can now be sorted by clicking on
the fixed column cell of the table.

By default, the variables in the Local Variables window are displayed in the order in which they appear in the
method or as they are added to the Watches window.

Changes and New Features in JADE Release 2020.0.01 53

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Clicking in the fixed part or a column causes the entries to be displayed alphabetically sorted (case-insensitive) by
that column for the rest of the debugger session. For example, clicking on an identifier in the Name column sorts
the list by identifier name. Clicking the sorted fixed column cell again inverts the sorted list.

If the table is sorted, a numeric sorting indicator is displayed in the fixed cell of the column. If the column selected
for sorting is not the identifier column, the identifier column is the second sort key.

Displaying Implementor References of a Method (PAR 66666)
The References to schema::class:method browser now includes the Implementor References command, which
is also found in the JADE development environment Methods menu.

You can toggle the display of the methods list in the + (expand, or show) icon or the - (collapse, or hide) icon of the
parent entry. Clicking on the entry displays only the name of the schema, the class in which it is defined, and the
method name.

Displaying Local Methods Referencing a Property (NFS 67439)
The JADE development environment Properties menu now provides the Local References command. Select this
command to add all local references of the selected property to the methods list in the pane on the Local
References to schema::class::property browser.

This window lists all methods in the selected class and its subclasses that reference the selected property, and
enables you to view specific references to that property.

Displaying Submenus (NFS 66558)
Left-clicking on a menu item that has a submenu immediately opens the submenu instead of waiting for the menu
hover timer to expire before the submenu is displayed.

Filtering Combo and List Box Text Entries (NFS 67196, JAD-I-353)
Some JADE development environment and Painter forms now allow filtering of combo box and list box entries in a
similar way to the existing F4 (Find Type) functionality, to enable you to locate a required list item more quickly by
selecting from a list of suggestions for what is being entered in the current context.

When you enter text in a combo box or the text box associated with a list box, the displayed list items are only
those entries that contain the specified text (case-insensitive) or if the specified text is all uppercase, the entries
with the same Pascal case (for example, CA matches CustomerAddress). Because the search process handles
uppercase searches if all text entered after the first character is uppercase, the list includes all entries in which the
first character of the entity name matches the first entered character and the entity name has uppercase characters
that match the order of the remaining entered uppercase text. For example, entering sNT in the method combo
box of the navigation bar includes method names searchNameTextOnly and someNumberedTest.

This functionality applies to the following forms and controls.

Painter Load Form dialog Form list box.

When editing a form, the Load Form dialog provides the Show as Hierarchy check box, which defaults to
false (that is, unchecked). When unchecked, the list is displayed alphabetically sorted and it allows the
filtering process to be performed. When it is checked, the list is displayed in hierarchical form, as was the
case in earlier releases, and the filtering process is not performed.

Painter Find Control dialog Control to Find combo box.

Define Reference dialog Type combo box (only for the current class on the left of the extended form of the
dialog).

Quick Navigation dialog Class combo box.

Define Class dialog Subclass of combo box.

Changes and New Features in JADE Release 2020.0.01 54

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Find Unused Class Entities dialog Search selected class in selected schema combo box.

Find Unused Local Variables and Parameters dialog Search selected class in selected schema combo
box.

Find Possible Transient Class Leaks dialog Search for creates of selected class in all schemas combo
box.

Navigation bar in hierarchy browser combo boxes (that is, for classes, properties, and methods lists).

This feature uses standard combo box and list box facilities to achieve this filtering. You can achieve the same
thing in your own JADE systems, as follows.

Set the value of the style property for the ComboBox control class to ComboBox.Style_DropDown (0).

The ComboBox or ListBox control class hasPictures, hasTreeLines, and hasPlusMinus properties are all
set to false.

The sorted property of the ComboBox or ListBox control class must be set to false after the list is loaded.

A disabled description list item is added as the first entry in the list (after sorting is turned off).

The change event on the combo box or associated text box calls a filtering routine to hide or show the entries
based on the new text entered.

Setting the level of the item to 2 hides the entries, which is why there has to be an entry at item position 1 that
is always at level 1. (A child item must have a parent.)

Note For a combo box, the click event is not normally implemented. The selection action is performed on the
closeup event so that nothing happens until the user completes the selection action.

See also "Camel Case Filtering in List Boxes (NFS 67480, JAD-I-493)", elsewhere in this document.

Finding Unused Local Variables and Parameters (NFS 67629, JAD-I-507)
The Find Unused Local Variables/Parameters command, accessed from the Schema menu, now allows the
filtering of unused parameters, as follows.

The Parameters reporting options group box on the Find Unused Local Variables and Parameters dialog
now contains the Ignore Inherited Methods check box.

Check this check box if you want to exclude the parameters of any method that has reimplementations from
the parameters unused list, regardless of whether the parameters are used.

This covers the case where the superclass implementation of a method are essentially blank default
implementations that are then properly defined in the subclasses.

If you include the tag [ExcludeFromUnusedParameterReport] (which must be enclosed within [] bracket
symbols) on the same line as an unused parameter, that parameter is not included in the report. For
example, the first of the following code fragment comments does not exclude the unused parameter from the
report, but the second example does.

run(indx: Integer, str: String) updating; // [ExcludeFromUnusedParameterReport]

run(indx: Integer, // [ExcludeFromUnusedParameterReport]
str: String) updating;

The new UnusedParameterReport global constant category contains the
"ExcludeFromUnusedParameterReport" global constant, which you can use to locate the string tag in
comments by using the local or global search functionality.

Changes and New Features in JADE Release 2020.0.01 55

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Going to a Specified Method Line Number (JAD-I-240)
You can now go to a specified line in a method displayed in the editor pane, including of the Sender Browser. (In
earlier releases, you could go only to a specified code position.)

When you select the:

New Go To Line command (Ctrl+Alt+G) from the Methods menu, the Find Position in Method Source dialog is
then displayed.

The Line Number option button is selected by default, the number of the line at which the caret is currently
positioned is displayed, and the Specify Line Number text box displays the range of line numbers in the
current method as hint text. Enter the number of the line you want to locate.

Existing Find Code Position command from the Methods menu, the Find Position in Method Source dialog is
then displayed.

The Code Position option button is selected by default, the number of position at which the caret is currently
positioned is displayed, and the Specify Code Position text box displays the range of code positions in the
current method as hint text. Enter the number of the code position you want to locate.

When you specify a valid line number or code position and click OK, the caret is then positioned in the editor pane
at the start of the specified line or at the specified position in the method.

Horizontal Scroll Bars in Hierarchy Browsers (NFS 67347)
All list boxes in hierarchy browsers now set the value of the scrollBars property to Both (3), so that a horizontal
scroll bar is displayed only if any list entry is truncated horizontally.

Identifying User of Unavailable Resource (NFS 67278, JAD-I-303)
When the JADE development environment outputs a message stating that an unavailable resource (for example,
a form, class, application, lock, and so on) is held by another user, the message now includes user-name
{process-identifier}. This enables you to determine which process to force off, and it minimizes errors when
doing so.

The following is an example of the additional information output with the message.

The Form ViewSchema::UpdateCustomer is in use by Wilbur {6}

Importing and Exporting Browser Layouts (NFS 67232, JAD-I-396)
Hierarchy browser form layouts that you created following the release of JADE 2018.0.01 can now be saved.

Layouts assigned to a specific schema and the default layout for all schemas can now be saved (by selecting the
Export Preferences button on the Miscellaneous sheet of the Preferences dialog) to your JADE user preferences
initialization file, which defaults to JadeUserPreferences.ini. Conversely, the Import Preferences button enables
you to apply a saved preferences initialization file.

Loading a saved user preferences initialization file (by selecting the Import Preferences button on the
Miscellaneous sheet of the Preferences dialog) loads any saved layouts if the schema of the layout is present or if
the layout is the default.

Note Loaded layouts replace any defined layout for the same schema or for the default layout.

Layouts for a schema that is not present are ignored. Existing layouts in your system are retained when there is no
corresponding layout in your user preferences initialization file.

Loaded layouts are installed (applied) only when you click the OK button on the Preferences dialog after the
preferences initialization file has been successfully read.

Changes and New Features in JADE Release 2020.0.01 56

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Loaded layouts are not applied to any open window or form. You must select the layout that your require from the
View menu Layout command submenu.

Interfaces
This section describes the JADE interfaces changes in this release.

Interface Deletion (PAR 66088)
When you delete an interface, you are now informed that:

You cannot delete an interface that is part of an exported package.

You must remove the interface from the package before you delete the interface.

An imported package that you are deleting contains an interface that the schema then extends. A Confirm
Delete message box is displayed.

If this extended interface is also used (implemented), an error message box informs you that you cannot
delete the package, and you must first remove any implementations before you can delete the package.

Interface Implementation Mapper Dialog (NFS 48016, JAD-I-350)
The Interface Implementation Mapper dialog has been updated to incorporate some new features based on NFS
and JEDI suggestions.

You can now change the selected class using the new Selected Class drop-down combo box at the top of the
Interface Implementation Mapper dialog, which enables you to quickly transition to different classes without
closing and reopening the dialog every time.

Available and implemented interfaces have been separated into two list boxes, making it easy to distinguish
between interfaces already implemented and those that are available to be implemented. In addition, a new Show
Inherited check box is displayed above the implemented interfaces list box, which when checked, displays the
interfaces implemented on any superclasses of the currently selected interface in the interfaces list box.

The inherited interfaces also display the schema and superclass in which they are implemented.

The interface summary text box has been updated to include information about any super interfaces belonging to
the selected interface. If the selected class does not implement one or more of these prerequisite super interfaces,
they are displayed in red with the expression (not implemented) beside their name. In addition, if a super interface
implementations is missing, the Implement button is disabled. If the super interfaces are implemented or inherited
by the selected class, they are displayed in green; for example:

The method mapping table has been updated to better display compatible methods. If an existing compatible
method is selected for mapping, it is displayed in bold. In addition, a new Map To Existing Methods check box is
displayed below the method mapping table. When this is checked, any existing method with the same name as a
corresponding interface method name and with a compatible signature is automatically selected for mapping. This
check box is checked (enabled) by default and overrides the value of the Include Method Prefix check box.

Changes and New Features in JADE Release 2020.0.01 57

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Interfaces Displayed for a Class (NFS 66482)
When a class is selected in the Class List of the Hierarchy Browser, the editor pane now displays any inherited
interfaces within the schema and superschemas and any interfaces implemented in subschemas.

If the class does not implement any interfaces, none of the following sections are displayed.

Implements the following interfaces:

schema-name::interface-name

Inherits the following interfaces:

schema-name::interface-name from schema-name::class-name

Subschema implemented interfaces:

schema-name::class-name implements schema-name::interface-name

Superschema implemented interfaces:

schema-name::class-name implements schema-name::interface-name

Iterating using Interfaces (JAD-I-571)
The foreach instruction has been extended to support iterating with the JadeIterableIF interface, which provides
the contract for an implementing class to be able to be iterated. JadeIterableIF simply exposes a JadeIteratorIF
implementation through its createIterator method. This exposed JadeIteratorIF implementation can then be used
to iterate the JadeIterableIF receiver.

A JadeIterableIF interface instance, or similarly a JadeIterableIF implementor instance, can be the target of a
foreach instruction. For details, see "Iterating using the JadeIterableIF Interface", in Chapter 1 of the JADE
Developer's Reference.

The JadeIterableIF interface is implemented by the RootSchema Collection class, which satisfies the
createIterator method by creating RootSchema Iterator class instances.

For details about implementing the JadeIterableIF interface for a class selected in the Class Browser of a user
schema, see "Implementing an Interface", in Chapter 14 (Adding and Maintaining Interfaces"), of the JADE
Development Environment User’s Guide. See also "Processing and Obtaining Information about Dynamic
Objects", elsewhere in this document.

Mapping Interfaces (NFS 67750, JAD-I-273)
If you use Shift+F11 to navigate through a series of methods and you reach a method defined on an interface, there
was no quick way to get a list of the classes and methods that implement that interface.

The handling of the display of interface mappings has now been enhanced, as follows.

Selecting the Interface Mappings menu command in the Methods menu of a hierarchy browser displays all
interface methods that the method implements and the entire list of methods that implement each interface
method.

This shows each interface method at level 1 in the list box and all methods that implement the interface
underneath at level 2 (sorted by name) with drawn tree levels and icons; for example:

RootSchema::JadeMultiWorkerTcpTransportIF::connectionEvent (interface method
and the following methods that implement it)

RootSchema::JadeOdbcServer::mwtt_ConnectionEvent
RootSchema::JadeWebAppExtension::mwtt_connectionEvent

Selecting the Method Implemented by command in the Methods menu from the Interfaces Browser displays
the same information as that in the previous item of this list.

Changes and New Features in JADE Release 2020.0.01 58

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The Methods menu commands for all Method windows now also include the Interface Mappings command.
(This includes all Shift+F11 method lists.)

This command is enabled only when the currently selected method implements an interface or it is a an
interface method.

Method List and Interface Folder Changes
Methods that have one or more interface mappings displayed in the Methods List window in the Class Browser
now display (i) on the end of the method name; for example:

addCustomer (i)

Note If the method is also a reimplementation, it displays both (r) and (i) on the end of the list item method
name.

To view all implemented interface mappings, select the Interface folder in the Methods List window in the
hierarchy Class Browser. The Methods list then displays all implemented interfaces and mapped methods as a
two-level hierarchy. The top level displays the names of all interfaces implemented on the selected class and the
second level displays all their implemented methods. If a method has multiple interface mappings, it displays the
method under each of the mapped interfaces. If the implemented method name differs from the interface method
name, the interface method name is displayed in parentheses after the implemented methods name.

To group implemented methods into interfaces in which they are defined for all Methods List folders, select the
Show Interface Method Mappings command from the View menu.

Note Selecting the Show Interface Method Mappings command from the View menu does not change what is
displayed when viewing the Interface method list folder, as it already displays this information.

Typecasting Interface Objects (NFS 63986)
For convenience and to help safeguard from typecasting to a class that does not implement the interface at
compile time, JADE now allows you to typecast interface objects directly to any class implementing the interface
without first having to typecast to the Object class; for example:

football := iSports.Football;

In earlier releases, it was not obvious that you had to first cast to the Object class; for example:

football := iSports.Object.Football;

Loading Checked Out Methods (JAD-I-181)
When a delta is set, the Check Out Methods check box on the Advanced Load Options dialog is now checked by
default. (In earlier releases, it was unchecked.) This was done to reduce the chance of overriding existing
methods.

If a delta is set and it contains methods checked out prior to a schema load, they are updated with any change in
the schema file. If you want to preserve your current system, set a delta with no methods checked out prior to a
schema load, and make sure the Check Out Methods check box is checked (it is checked by default if a delta is
set).

Opening a Method from the Method Status List Browser (NFS 66744)
When you double-click on a method displayed in the methods list of the Method Status List Browser or you
double-click a method entry while holding down the Shift key, that method is then displayed in a separate window.

This enables you to fix a compile error and keep the method displayed. (When you fix a compile error in the editor
pane of the Method Status List Browser and press F8, the method is removed from the list so is no longer
displayed.)

Changes and New Features in JADE Release 2020.0.01 59

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Orphaned Event Method Detection (NFS 67029)
When a control or menu is deleted from a form, in the past, not all associated event methods of the control or
menu were always deleted, which can cause schema load failures because the control is unknown. Such
orphaned methods are marked as events methods and do not appear on the All sheet of the Methods List in the
Class Browser but they are displayed in the Methods Browser for a class.

These orphaned event methods are now detected when you use the Validate Schema dialog to validate forms.
Orphaned event methods are displayed in the error output, as follows.

Form form-name has an event method method-name that does not have an associated property

For form event methods without an underscore character (_), the following error is output.

Form form-name has an event method method-name that does not have an associated property and is not a
Form event

Form form-name has an event method method-name that does not have an associated property but a
non-control or menu property also exists: property-name

Painter
This section describes the JADE Painter changes in this release. (See also "Skin Category Selection in the JADE
Painter (NFS 67295)" under "Skins", elsewhere in this document.)

Deleting the Current Form in Painter (NFS 67602, JAD-I-520)
The File menu in the JADE Painter now provides the Delete Current Form command, which enables the currently
active form to be deleted while allowing you to visually confirm that it is the correct form.

If the form can be deleted (that is, it has no meta data inhibitors such as has property references), the menu
command is enabled and the caption is Delete Current Form:active-form-name.

If the form cannot be deleted, the menu command is disabled. Placing the cursor over the disabled command
displays in the status line the reason that the form cannot be deleted (for example, the form has subclasses).

Clicking the Delete Current Form command:

Reconfirms that the form can be deleted.

Checks that the form is not in use elsewhere in the system.

Confirms that you can perform the delete action (that is, the security library is called).

Deletes the form and its class if there are no inhibitors.

Closes the form in Painter if the form is deleted and discards any unsaved changes.

Finding Available and Duplicate Caption Accelerator Characters (NFS 67617)
In earlier releases, the Painter Menu Design dialog enabled you to see the available characters in a menu
caption.

The Controls menu in the JADE Painter now provides the Find Available Caption Accelerator Characters and
Check For Duplicate Control Accelerators commands, which show the characters in a control caption that are
available to be used as a unique accelerator and the duplicate control accelerators in the full hierarchy of the
currently selected form, respectively. These Controls menu commands result in the display of a message box
containing:

All of the used accelerator characters for other controls on the form, all superclasses, and all subclasses of
the current form gathered and removed from the caption string of the currently selected control, leaving the

Changes and New Features in JADE Release 2020.0.01 60

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

list of available characters

All of the accelerators on all forms in the hierarchy of the form are searched for duplicates

After selecting a control, clicking the Find Available Caption Accelerator Characters command, the Accelerator
Search message box displays one of the following.

There is no character in the caption that can be used as a unique accelerator

The character character is available to be used as an accelerator

The following characters are available to be used as an accelerator: character-list

The Find Available Caption Accelerator Characters command is disabled if a control is not selected or if the
selected control does not have a caption property.

After selecting the Check For Duplicate Control Accelerators command, the Accelerator Duplicate Check
message box displays one of the following.

There are no duplicated accelerators on any control in the hierarchy for the form selected-form-name
[including sub-classes]

There is a duplicate use of a control accelerator as follows: 'accelerator-character' [form-name::]control-name
[form-name::]control-name

There are duplicate uses of control accelerators as follows: 'accelerator-character' [form-name::]control-name
[form-name::]control-nameaccelerator-list

The Check For Duplicate Control Accelerators command is disabled if a form is selected or if the selected
control does not have a caption property.

Positioning Controls and all Parents in Painter (NFS 67670)
The Painter Controls menu now enables you to bring a control and all of its parents to the top of the zOrder of
controls displayed on the form or to push them all to the bottom of the zOrder.

Printer Form Font (PAR 67048)
For printer-style forms in JADE 7.1 and earlier releases, controls were given the default font Arial 10. In JADE
2016, controls added to printer-style forms are given the default font Tahoma 10, and all new printer forms or all
new controls added to printer forms default to Tahoma. This default is hard-coded and cannot be changed.

From version 2018.0.02, JADE has been changed to provide you with the ability to define default property values
for new controls added to a printer form in the JADE Painter.

The following new methods are available.

RootSchemaWindow class setDefaultPainterControlProperties method

RootSchema Form class isPrinterForm

The setDefaultPainterControlProperties method does nothing, by default. The JADE Painter calls this method
on any new control created in the painter. You can re-implement this method and set default property values to
meet your requirements.

The base method is declared in theWindow class so that you can re-implement the method in the Control class in
your schema to set any control properties. You can also re-implement the method on any Control subclass, to set
properties on a specific control subclass; for example, Frame.

The Form class isPrinterForm method returns whether the form was declared as a printer form on the New Form
dialog in the JADE Painter; that is, the Printer option button was selected in the Form Style group box. This
method then allows the setDefaultPainterControlProperties method re-implementation to set properties only on
a printer-style form, for example.

Changes and New Features in JADE Release 2020.0.01 61

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The following method is an example of these methods.

setDefaultPainterControlProperties();
begin

if self.form.isPrinterForm() then
self.fontName := "Arial";

endif;
end;

For more details about printer-style forms in the JADE Painter, see "Printer-style Forms", in Chapter 5 of the JADE
Development Environment User's Guide.

Removing ActiveX Controls from Forms (NFS 67595, JAD-I-530)
When an ActiveX control cannot be located and installed, you cannot run or edit the form on which it resides.

If an ActiveX control cannot be loaded when a form is opened for editing, the JADE Painter now displays a
message box, prompting you to confirm that the load should continue. The message box displays:

The load of the control control-name of type control-type failed with an exception:
error-text error-code

Click:

Yes to continue the load action.

The loading of the form continues and the control is marked as being deleted. The control and any event
methods for the control are permanently deleted from the form when you save it.

No to abort the load action.

The form load is aborted and abandoned.

Note The form load cannot be continued if the control being loaded is on a superform or if the control would
have had children.

The ability to delete controls from a command file and from the JADE development environment Class Browser
will be considered in a future release. The only current work around is to extract the class and manually remove
the control from the *.cls and *.ddb or *.ddx files.

Title Bar (NFS 67198, JAD-I-309)
The Painter title bar now includes the database path, user identifier and process identifier, and the skin (if
selected) in the caption. The information is displayed in the following format.

JADE Painter : (database-path : user-identifier_painter-process-identifier :
singleUser or multiUser) schema-name::form-name skin-selected

Pasting Text into the Method Definition Dialog (NFS 67346)
You can now paste text into the Name text box of the Method Definition dialog so that the paste action displays the
initial name in the text box as the name of the new method.

The paste action strips all but the first identifier (alpha, numeric, and underscore characters) and inserts that text
into the Name text box. This enables a simpler selection process when you copy the text of an existing method (for
example, when you have pressed Ctrl+A followed by Ctrl+C to copy the entire method text to the clipboard followed
by Ctrl+V to paste it into the Name text box on the Method Definition dialog).

For example, pasting get_Customer_Details(formatType : Integer): String; in the text box results in the
following displayed as the method name.

get_Customer_Details

Changes and New Features in JADE Release 2020.0.01 62

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Patch Versioning
This section describes the patch versioning changes in this release.

Comparing Method Sources (NFS 67704, JAD-I-160)
When comparing method source within a patch summary, the Compare Sources dialog now hides the merge
editor pane by default, which provides more space for the displayed method sources.

A ShowMerge Pane button is now provided, which when clicked, toggles the visible status of the merge editor
pane. The button has the ShowMerge Pane caption when the pane is hidden and the Hide Merge Pane caption
when the pane is visible.

Notes The size of the merge editor pane is no longer saved and restored.

When the merge editor pane is visible, from JADE 2016, a resize bar enables you to drag the merge editor pane
to reduce or increase its displayed size in the dialog.

Primitive Types Browser Type Menu (PAR 66989)
When a Primitive Types Browser is displayed, clicking on the Methods List folder did not correctly set up the
editor display for the sheet change event method so that the previous method was displayed in read-only mode.

The behavior of the Class Browser and Primitive Types Browser has now been changed to fix this issue. When
you now select another sheet in the Methods List folder, the first defined method in the list is selected in the
methods list and is automatically displayed in the editor pane, ready for editing.

If there is no defined method in the list, the editor pane displays the information for the currently selected class or
primitive type.

Refactoring JADE Methods
This section describes the changes to the refactoring of JADE methods in this release.

Identifying Local Variables in Extracted Methods (NFS 67432)
JADE now detects local variables used only in the selected logic of methods to be extracted. When the refactored
method is created, they are now defined as local variables in the new method rather than being passed as io
parameters in the signature of the created method. The definition of local variables is not affected in the original
method.

If a variable is used in other logic not selected in the original method to be extracted, it is still passed as a
parameter to the new method that is created.

Signature of Created Methods (NFS 67428, JAD-I-498)
In earlier releases, when creating a new method using the Extract Method command from the editor pane popup
(context) menu Refactor command, a public method was always created.

When you extract a method for refactoring, a protected method is now created if you have selected the Protected
access option button in the Methods group box on the Schema sheet of the Preferences dialog. In the editor pane,
manually remove the protected option from the signature of the created method if it is not required.

Running an Application from the String Browser (NFS 67291, JAD-I-272)
The File menu in the String Browser now contains the Run Application (Ctrl+R) command, which enables you to
run an application from the form on which you translate strings.

Changes and New Features in JADE Release 2020.0.01 63

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Scaling Decimal Array Elements (NFS 64143)
If you select the Decimal primitive type for membership of an array class, the Scale Factor text box is now
enabled on the Membership sheet of the Define Class dialog. To maintain compatibility for existing applications,
Decimal values added to an array of decimals are not scaled, by default.

When you check this check box to define the scale factor for entries in the array, values are rounded to the number
of decimal places specified by the scale factor when they are added to the array.

Schema Navigation (NFS 67352, JAD-I-484)
Changing the schema using the navigation bar combo box in the Class List of a Class Browser to navigate to the
parent class in a superschema no longer selects the Object class in the superschema by default.

The selected class is now the first class previously selected in the class hierarchy that is common to both
schemas; that is, if a:

Superschema is selected, the class selected will be the superclass of the previously selected class.

Subschema is selected, the previously selected class will again be selected in that schema.

Searching
This section describes the search functionality changes in this release.

Exposure Browser Search (NFS 67226, JAD-I-334)
The Exposure Browser now provides the ability to search for an exposure by name, by right-clicking in the list box
and then selecting the Find command. The Find Exposure dialog is then displayed, listing the current exposures
in alphabetic order.

The list is filtered when you specify text in the Find text box, so that the displayed exposures are only those entries
that contain the specified text. The text is case-insensitive or if the specified text is all uppercase, the entries with
the same Pascal case are located; for example, DCE matches DocCsharpExample.

If all text entered after the first character is uppercase, the list includes all entries in which the first character of the
entity name matches the first entered character and the entity name has uppercase characters that match the
order of the remaining entered uppercase text.

Select an entry in the Select Required Entry list and then click the OK button so that the exposure is selected in
the Exposure Browser.

Finding a Class by Number (NFS 67605, JAD-I-574)
The Find Type dialog now enables you to specify a class number to search for the associated class in the current
schema so that specifying numeric values does not affect the search.

The Find Type dialog has changed as follows.

When initiated from a hierarchy browser, the dialog now has a Find Class Number check box, which is
unchecked by default.

If the check box is unchecked, specifying text in the Find text box filters the list of displayed class names as in
earlier releases, so that it includes the situation where you specify numbers only.

If the check box is checked, the Find text box is cleared and allows only numeric digits to be specified.

Pressing Enter searches the current schema and all superschemas for that class number. If that class
number:

Is found, the hierarchy browser is refreshed to select and display that class.

Cannot be found, a message box is displayed.

Changes and New Features in JADE Release 2020.0.01 64

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The check box is not visible when performing a search in other hierarchy browser forms such as the Schema
Browser and the Global Constants Browser.

Global Searching for an Imported Entity (PAR 66489)
The global find and replace functionality now enables you to search for and optionally replace an entity (for
example, a method) imported from another schema.

If you want to search the names and values of all imported entities that match your search criteria, check the
Include Imported check box in the Search Entities group box on the Global Search And Replace dialog. (This
check box is unchecked by default.)

Saving and Restoring Find and Replace Options (NFS 67614, JAD-I-255)
The local Find/Replace dialog and the Global Search and Replace dialog have been changed so that the Case
Sensitive and the Full Word Only check box values are saved, and restored the next time the dialog is displayed.

The first time the dialog is displayed after logging on to the JADE development environment, the values are false
(that is, unchecked). After you perform a search, the values used in the search are saved. Those values are
restored the next time the dialog is used in your current development environment session.

Searching for a Property or Method in a List (NFS 67674, JAD-I-550)
In earlier releases, the Ctrl+6 and Ctrl+7 shortcut keys enabled you to search a hierarchy Class Browser for a
specific property or method, respectively, in the hierarchy Class Browser. The displayed list of properties or
methods is filtered based on what you type into the search text box.

These shortcut keys now enable you to search all properties or methods displayed in a list box in the:

Class Browser

Class References Browser

Messages Browser

Methods Browser

Interface Browser

Primitive Types Browser

Sender Browser lists such as references and implementors

Unused Entities Browser

Searching for Changed Methods by Date and Time (NFS 67718, JAD-I-409)
The Changed Methods dialog that is used to search for changed, checked out, and versioned methods now
provides the From Time and To Time text boxes, which enable you to filter located methods based on the date
and the time. These text boxes are associated with the from and to dates. If the corresponding date is not
specified, the time value is ignored.

The values of these text boxes default to 00:00 and 23:59, respectively. The to time includes any part of the
specified minute.

When you specify a date and time, the search includes any methods that were changed after the specified from
date and time (that is, the timestamp) and before the specified to date and time.

If the to date is not specified, the search includes methods changed after (or at) the specified from date and time.

Changes and New Features in JADE Release 2020.0.01 65

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Searching for Comments (NFS 67628, JAD-I-534, PAR 67891)
The local Find/Replace dialog and the Global Search and Replace dialog now provide the Include Comments
check box, which is checked by default, applies only to a find or replace in a JADE method. By default, comments
in the source of a method are searched for and optionally replaced.

Tip You can use the Alt+u shortcut keys to toggle the check box value.

When the check box is unchecked, occurrences of the search text in method comments, including line (//) and
block (/* */) comments, in the source of a method are ignored when searching and replacing.

The Include Comments check box on the Global Search and Replace dialog is not displayed if the Methods
check box is not checked, as it does not apply to the search of class or global constants.

The Include Comments check box is set to true (that is, checked) for the first search performed after logging on.
Subsequent displays of the local Find/Replace and the Global Search and Replace dialogs set the check box
value to the prior setting that was used to perform a search or replace action.

Sorting Possible Transient Leaks (NFS 67298, JAD-I-474)
The possible transient leaks listed in the upper pane of the Methods Browser are now sorted in ascending order of
the Method column (that is, by schema, class, and method).

Left-click on the first row (the column header) of the table to sort the possible transient leaks in descending order
(that is, Z through A or 9 through 1) using the contents of the clicked column. Click the same column again to
toggle the order of the entries.

The column that is used for sorting displays an arrow icon to indicate whether the sorting is in ascending (˄) or
descending (˅) order.

Suppressing Message Boxes (JAD-I-100)
There are a number of messages boxes that appear frequently to which the response is usually always the same,
for example:

After a schema load: Load Completed or a .mul file load of multiple schemas: Load Completed Successfully

When a change prompts recompilation: Your change requires n method(s) to be recompiled. Recompile
now?

When compiling a method: Do you want to view the error list?

Confirmation when moving or copying a method

When adding a method: Do you want to reimplement superclass method?

Find and replace in the editor pane: Search text not found and Replace successful

You can now specify that the display of a number of message boxes is suppressed and your answers are retained
for your future work sessions. When a message box is suppressed, the button you set is recalled and its click
event is automated.

By default, no message boxes are suppressed. Suppress message boxes by performing one of the following
actions.

When a message box that can be suppressed is displayed, check or uncheck the Hide in the future check
box if there is one button only. If there is more than one button, select the button you want to be automated
and then check the Remember my selection and hide in the future check box.

On the Preferences dialog, select the new Message Box Suppression sheet and then enable or disable
each message box in the displayed table.

Changes and New Features in JADE Release 2020.0.01 66

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The Message Box Suppression sheet of the Preferences dialog enables you to check the suppression of
each message box in the Suppressed column and then in the Stored Value column, select the button in the
combo box that is to be automatically clicked when that message box is displayed.

Note Your suppression options are not committed until you click the OK button on the Preferences dialog.

When the Stored Value embedded combo box is set to the first empty entry in the combo box, the
Suppressed check box is unchecked. Conversely, if the Suppressed check box is not checked and you
select a valid stored value in the embedded combo box, the Suppressed check box is checked.

Click the Suppress All button to suppress all message boxes listed in the table, or the Clear All button to
clear all of your message box suppression settings.

The Pop-up Display Time (ms) text box enables you to specify the number of milliseconds that the Status
Line Popup dialog is displayed in the lower-left corner of the JADE development environment if you want to
decrease or increase the default display time of 4.75 seconds (that is, 4750 milliseconds). The default
display time can be within the range 1500 through 15000 milliseconds, which adequately updates the user
to the system state while suppressing the message-box and requiring no user-interactions. If you set a value
lower than 1500 milliseconds or higher than 15000 milliseconds, the minimum or maximum value is set after
a message box indicates that the value is invalid.

The Status Line Popup dialog is displayed indefinitely when the cursor is over it. The timer resumes after the
cursor ceases to hover over the dialog. Press Esc or click the close button, marked with X, to close the Status
Line Popup dialog immediately. Check the Hide Pop-up check box if you do not want the Status Line Popup
dialog displayed. By default, this check box is unchecked.

Viewing Defined References (NFS 66564)
The Defined Inverses pane on the extended Define Reference dialog has been moved to a pane that is above
the buttons at the foot of the dialog, and which spans the width of the dialog so that it is easier to view inverse
references without having to resize the dialog. In addition:

The relationship cardinality between the current and related classes has been updated.

A status bar has been added to the bottom of the dialog, to display the effect on the relationship between the
two properties when you click an access, update mode, or relationship type option button.

Check boxes and access, update mode, and relationship type option buttons now display bubble text
indicating their function when you hover over the control.

JadeAuditAccess Read Offset (PAR 66198)
Because the JadeAuditAccess read offset can be incorrect if large negative or large positive Integer values are
used, the following methods are now defined in the JadeAuditAccess class.

getJournal_64(pDirectory: String;
pJournalNumber: Integer64;
pRecordOffset: Integer64 io): Integer updating;

getJournalNumber_64(): Integer;

getNextRecordUTC_64(pType: Integer output;
pObjectType: Integer output;
pRecordOffset: Integer64 output;
pUTCTimestamp: TimeStamp output;
pUTCBias: Integer output;
pTimestamp: TimeStamp output;
pSerialNumber: Decimal output;
pTransactionId: Decimal output;
pOid: String output;
pClassNumber: Integer output;
pEdition: Integer64 output): Boolean;

Changes and New Features in JADE Release 2020.0.01 67

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

getNextRecord_64(pType: Integer output;
pObjectType: Integer output;
pRecordOffset: Integer64 output;
pTimestamp: TimeStamp output;
pSerialNumber: Decimal output;
pTransactionId: Decimal output;
pOid: String output;
pClassNumber: Integer output;
pEdition: Integer64 output): Boolean;

The JadeAuditAccess class getJournalNumber, getNextRecordUTC, and getNextRecordmethods can now
return exception 1406 (Result of expression overflows Integer precision) or 1446 (Result of expression
underflowed Integer precision) if the offset or journal number parameters exceed Max_Integer (2,147,483,647) or
go below zero (0). If this occurs, you must use the corresponding _64 version of the method.

JADE Initialization File
This section describes the JADE initialization file changes in this release.

AccessibilityEnabled Parameter (NFS 67762)
The [Jade] section of the JADE initialization file can now contain the AccessibilityEnabled parameter, which
controls whether JADE processes accessibility messages. (This parameter is read when the client node is
initialized.)

The parameter is set to false by default, as this feature is not required by most users. The default value means that
JADE will not participate in the accessibility processing and Microsoft Windows uses its default handling for any
accessibility features that are enabled on the client node.

Set the parameter to true if you want JADE to participate in accessibility handling. This mode then provides
accessibility with additional information when performing blind reading, for example.

Single User Application Restrictions (PAR 65360)
Application restrictions are now applied for a node running in single user mode. This includes single-user
jade.exe or application server. Only permitted applications can be started if the value of the
EnableAppRestrictions parameter in the [JadeClient] section of the JADE initialization file is set to true.

Thin Client Security (PAR 66521)
In earlier releases, if the EnableAppRestrictions parameter in the [JadeAppServer] section of the JADE
initialization was set to:

true and another initialization file parameter enabled access to the JADE development environment (for
example, AllowSchemaAndApp1=JadeSchema,Jade or just JadeSchema), any application that was run
from RootSchema was also able to be executed.

false, there were no restrictions on what application a thin client could run, which potentially allowed users to
run applications that may not have been in the best interests of the site.

As a result, the security for running applications from a JADE thin client has now changed.

There has been a fundamental change to the EnableAppRestrictions parameter security checking. If the
application was initiated by logic from another application, the application is now allowed to run. (In earlier
releases, all thin client applications that were initiated were subjected to the EnableAppRestrictions parameter
processing, which meant that any applications allowed by the EnableAppRestrictions parameter could be
initiated by any thin client user.)

Changes and New Features in JADE Release 2020.0.01 68

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

This new philosophy means that your organization can write your own applications that then initiate protected
applications. Each application can then enforce its own getAndValidateUser sign-on security before initiating the
protected application.

The EnableAppRestrictions mechanism enables you to prevent thin client users from directly executing a
protected application.

Note Any application can be initiated from the JADE development environment unless prevented from doing so
by the JADE development environment security mechanisms.

The [JadeAppServer] section of the JADE initialization file can now contain the Boolean
EnableRootSchemaAppRestrictions=<default> parameter, which controls whether a user can execute
RootSchema applications, in conjunction with the EnableAppRestrictions parameter.

The following EnableAppRestrictions and EnableRootSchemaAppRestrictions parameter combinations apply
to the initial application initiated by a user. ('Child' applications initiated by that application are always allowed to
run.)

EnableAppRestrictions EnableRootSchemaAppRestrictions Thin client user...

false false No restrictions on the applications that
can be executed.

false true Cannot execute any RootSchema
application but can run any other
application.

true true Can execute only applications
specified using
AllowSchemaAndApp<n> =
<schema>,<application> parameters.

Including AllowSchemaAndApp<n> =
JadeSchema,Jade or = JadeSchema
does not grant the ability to execute
RootSchema applications.

Any RootSchema applications that are
allowed must have their own
AllowSchemaAndApp<n>
parameters.

true false Can execute only applications
specified using
AllowSchemaAndApp<n> =
<schema>,<application> parameters.

Including AllowSchemaAndApp<n> =
JadeSchema,Jade or = JadeSchema
grants the ability to execute
RootSchema applications.

The default value of the EnableRootSchemaAppRestrictions parameter is true, which means that RootSchema
applications cannot be executed by default unless they are initiated by another application such as the JADE
development environment.

JadeHTTPConnection Class
This section describes the JadeHTTPConnection class changes in this release. (See also "REST Service Security
(JAD-I-430)", elsewhere in this document.)

Changes and New Features in JADE Release 2020.0.01 69

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

isStatusCodeSuccess Method (JAD-I-97)
The JadeHTTPConnection class now provides the isStatusCodeSuccess type method, which returns true if the
HTTP connection status code is in the range of successful responses specified by the new Minimum_
Successful_StatusCode and Maximum_Successful_StatusCode class constants; otherwise it returns false.
(For details about HTTP connection status codes, see https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status.)

JadeHTTPConnection Class Supported Verbs (NFS 64197)
As the JadeHTTPConnection class now supports all HTTP verbs as well as the existing "GET" (the default value)
and "POST" verbs, you can now specify other verbs such as "DELETE", "PATCH", and "PUT" in the:

pVerb parameter of the getHttpPage and getHttpPageBinary methods

verb parameter of the sendRequest and sendRequestUtf8 methods

JadeHTTPConnection::sendRequestUtf8 Method (NFS 66868,
JAD-I-349)
The JadeHTTPConnection class now provides the sendRequestUtf8 method, which has the following signature.

sendRequestUtf8(verb: String,
additionalHeaders: String;
optionalPostPutData: StringUtf8): Boolean;

This method sends the specified request from an ANSI system as StringUtf8 data to the HTTP server.

Note This method is the same as the existing sendRequest method except that the StringUtf8 value of the third
parameter (that is, optionalPostPutData) specifies a string, encoded in UTF8 format, containing any optional data
to be sent immediately after the request headers.

JADE Monitor Cache Performance Details (JAD-I-515)
The Cache Performance view of the JADE Monitor now contains the Details check box, which you can use to
toggle between the display of a summary of cache performance and cache performance details for each type of
cache.

JadeTimeZone Class (JAD-I-254)
JADE now provides the JadeTimeZone class, which enables you to obtain information about and perform
conversions between different time zones. It also supports differing daylight saving rules across different time
zones.

JadeTimeZone objects are transient only. You cannot create persistent or shared transient instances.

Create your own transient JadeTimeZone subclasses to:

Obtain information about time offsets and daylight saving for various regions; for example, coordinating
communication between different time zones, providing information about time zones, having systems
automatically perform actions switching over to or from daylight saving, and so on

Use JadeTimeZone objects to perform timestamp conversions for different time zones and timestamps

Convert a time zone for a past or future timestamp, where the daylight saving state may differ from the current
daylight saving state

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Changes and New Features in JADE Release 2020.0.01 70

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

ListBox and Table Control Disabled foreColor (PAR 67920)
ListBox and Table controls now observe the foreColorDisabled property value if specifically set; otherwise the
default system gray color is used.

You can override the default disabled color, as follows.

If the ListBox or Table control uses a skin and that skin has a default disabled foreground color value set
(from the Default disabled foreColor check box on the Controls sheet of the Jade Skin Maintenance dialog),
that skin-defined color is used.

If you programmatically set the foreColor property of a disabled JadeTableCell, this color overrides both the
System disabled color (gray) and any skin colors.

Loading User Preferences from the Command Line (NFS 67599)
You can now load an exported user preferences file by executing a non-GUI JADE client application using the
jadclient or jade executable; for example, if you have created and built JADE environments from a specific
release and you want to load your preferences with a defined schema set.

The LoadUserProfileIniFile application requires the following two parameters.

userName, which specifies the user name of the user profile to be created or updated

profileIniFileName, which specifies the file path and name of the preferences .ini file that is to be loaded

The following is an example of the jadclient command line. (You can also load your user preferences by using the
JADE executable (jade.exe) command line.)

jadclient.exe path=c:\Jade\system ini=c:\jade\system\jade.ini server=singleUser
schema=JadeSchema app=LoadUserProfileIniFile startAppParameters userName=myusername
profileIniFileName=c:\jade\JadeUserPreferences.ini

The exit of jadclient or jade is set to non-zero if the process fails. The success or failure is also written to the
jommsg log file.

See also "Loading User Preferences from an Earlier Release (NFS 67599)" under "JADE 2020 Changes that May
Affect Your Existing Systems", earlier in this document.

Logical Certifier
In addition to a number of new checks, this section describes the Logical Certifier changes in this release.

Additional Checks Resulting from Closed PARs
A number of Logical Certifier checks are now performed as a result of closure of the following Product Anomaly
Reports (PARs).

66131 - Logical Certifier does not detect orphan DevControlProperties instances

66135 - Logical Certifier does not detect orphan MenuItem instances

67039 - Logical Certifier does not check Translatable Strings used in Controls, MenuItems and Forms

67285 - Logical Certify reports errors for exclusive collections defined on a subclass of JadeBytes

67690 - Logical Certifier does not detect orphan event methods

67813 - Logical Certifier does not detect MenuItem instances with no corresponding property

67817 - Logical Certifier does not detect Control instances with no corresponding property

67820 - Logical Certifier does not detect Property instances marked as control with no corresponding Control

Changes and New Features in JADE Release 2020.0.01 71

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The Closure Details sheet of Parsys provides information about the check or checks that have been incorporated.

Incremental Logical Certify (JAD-I-478)
The JADE Logical Certifier now provides an operation to validate only inverse references and collections that
have changed since the last time the system was certified.

The Logical Certifier saves the highest update transaction ID of the inverses that are certified. On subsequent
certifies, inverses are certified only if the update transaction ID is greater than the saved highest transaction ID. If
the update transaction ID of an inverse is lower than the saved value, it must have been certified previously.

Checking only changed inverses incrementally can significantly reduce the time required to check the integrity of
user data.

The Jade Logical Certifier dialog now provides the Incremental Certify option button for a full logical certify (that
is, all classes in all schemas). When this option is selected, only inverse references and collections that have
changed since the last time the system was certified will be validated. The Set Incremental Transaction ID dialog
that is then displayed enables you to manually set the transaction ID.

The JADE Logical Certifier non-GUI application has new command line parameters to specify incremental
certification and optionally to manually set the transaction ID used during an incremental certify.

MDI Child Forms
This section describes the Multiple-Document Interface (MDI) child form changes in this release.

Floating, Docking, and Pinning MDI Child Forms (NFS 67200)
You can now programmatically provide the functionality to float, dock, and pin MDI child forms in your own
application logic. JADE now allows:

Control over whether users can invoke an MDI menu on an MDI child form by right-clicking on the caption of
the form. The MDI popup menu can contain the following commands.

Menu Command Action

Close Closes the form (the same as clicking the Close button or the Context-Menu
Close command)

Close All But This Closes all other MDI children in the current MDI frame except for the current
form

Close All But Pinned Closes all MDI child forms that are not pinned and have the allowClose
property set to true

Float Floats the current MDI child form

Dock Re-docks the MDI child form in its MDI frame

Pin Toggles the pinned status of an MDI child form

The Form class provides the following new Boolean primitive type properties, all of which have a default
value of false, which means that the MDI menu is not displayed by right-clicking the MDI child caption:

Property Contains the...

showMdiCloseAllButPinnedMenu Close All But Pinned command

showMdiCloseAllButThisMenu Close All But This command

showMdiCloseMenu Close command

Changes and New Features in JADE Release 2020.0.01 72

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Property Contains the...

showMdiDockMenu Dock command

showMdiFloatMenu Float command

showMdiPinMenu Pin command

If the value of all of these properties is true, right-clicking the MDI child caption displays a menu.

These properties are ignored if the form is not an MDI child form. In addition, the Close All But This, Close
All But Pinned, and Close commands are ignored if the allowClose property is set to false.

The property values can be set at run time and in the JADE Painter.

Note The Float command is disabled if the form is floating and the Dock command is disabled if the MDI
child form is already docked in the MDI frame.

The Form class now also provides the Boolean type mdiPinned property, which defaults to false. This
property is read and write at run time, to allow access from your application logic to the pinned status of a
form.

The Form class now provides the methods listed in the following table.

Method Description

floatMdi(); Floats an MDI child. It does nothing if the form is already floating or if the
form is not an MDI child.

dockMdi(); Docks an MDI child. It does nothing if the form is not floating or if the form is
not an MDI child.

isMdiFloating(): Boolean; Returns true if the MDI child is floating or false if it is docked or it is not an
MDI child.

The Form class now provides the event methods listed in the following table.

Event Method Description

mdiFloated(); Called after the user floats an MDI child. Appears in the Form Event
Methods list box in the JADE development environment. This event is not
called if the floatMdimethod is called to float the form.

mdiDocked(); Called after the user docks an MDI child. Appears in the Form Event
Methods list box in the JADE development environment. This event is not
called if the dockMdimethod is called to dock the form.

Note When floated, an MDI child form is positioned on the screen in the same position, except it is not a child
restricted to the MDI frame; for example, it can be dragged to another monitor.

The MDI child form is always on top of the MDI frame. To reposition the form programmatically, set the left and top
properties, or use theWindow classmove method.

When an MDI child form is docked, the position and size of the form is restored to the values it had when it was
floated, if the current top-most MDI child in the MDI frame is not maximized. If the current top-most MDI child in the
MDI frame is maximized, the docked form is also maximized.

Changes and New Features in JADE Release 2020.0.01 73

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Tabs in MDI Child Forms (NFS 67224)
You can now programmatically provide the functionality to display tabs for MDI child forms in user systems, by
controlling the style of MDI child form styles. The styles are:

Standard MDI child forms, as in earlier releases (the default).

Standard MDI child forms with a tab for each child form on the MDI frame. The child forms can be maximized,
minimized, and restored.

MDI with a tab only for each child form on the MDI frame. Only the top MDI child form is visible and it is
always maximized.

For the second and third of the styles in the previous list, when tabs are displayed:

The tab contains the caption of the child form. Clicking on the tab brings that form to the top. The child form
with focus has its tab highlighted. If the caption is too long to fit in the tab, the first and last part of the caption
are displayed separated by points of ellipsis (...).

Moving the mouse over the tab displays the full caption in a bubble help display.

A down arrow button is displayed at the end of the tabs. Clicking the button displays the full list of captions of
open child forms.

Selecting an entry in the list brings that form to the front (that is, the same functionality that the Window menu
provides for arranging and manipulating child windows in the JADE development environment). The order of
the list can be alphabetic, the last-used, or creation order.

Not all tabs are displayed if there is not sufficient room. (Use the down arrow or Window menu to locate a
form that is not displayed.)

JADE provides the ability to pin selected tabs to the left of the displayed tabs. The user can also drag tabs to
another position, by clicking the tab and dragging it. (It can be dragged only within the pinned or non-pinned
grouping.)

Pinned forms display a pin icon in the tab. Clicking the pin also unpins the form.

The Application class provides the following properties and class constants.

Note These properties apply only to forms that have been created in version 2020.0.01 and higher.

The Integer type mdiStyle property, which defaults to MdiStyle_Mdi (0), sets the default MDI style for an
application at run time. You can also set the application style in the Mdi Style group box on the Form sheet of
the Define Application dialog in the JADE development environment.

Set this property to one of the following values.

MdiStyle_Mdi (0)

MdiStyle_Mdi_With_Tabs (1)

MdiStyle_Tabs_Only (2)

The Integer type mdiWindowListOrder property, which defaults to MdiWindowList_Order_Creation (0), sets
the order that child forms are displayed in the Window menu list of child forms and in the MDI Tabs down
arrow list. You can also set the application window list order in the Mdi Window List Order group box on the
Form sheet of the Define Application dialog in the JADE development environment.

Set this property to one of the following values.

MdiWindowList_Order_Creation (0)

The Window List menu and the MDI tabs down arrow show the list of MDI child forms in creation order.

Changes and New Features in JADE Release 2020.0.01 74

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

MdiWindowList_Order_LastUse (1)

The Window list menu and the MDI tabs down arrow show the list of MDI child forms in last-use order.

MdiWindowList_Order_Alphabetic (2)

The Window list menu and the MDI tabs down arrow show the list of MDI child forms in caption
alphabetic order.

Message Boxes
This section describes the message box handling changes in this release. (See also "Suppressing Message
Boxes (JAD-I-100)" under "JADE Development Environment", elsewhere in this document.)

Customizing Message Box Button Captions (NFS 66844, JAD-I-74)
JADE now provides the Application classmsgBoxCustom method, which enables you to display a message box
with customized button captions and waits for the user to click a button. The method displays a message box with
as many buttons displayed as there are string captions specified in the btnCaptions parameter.

The new method has the following signature.

msgBoxCustom(msg: String;
title: String;
flags: Integer;
btnCaptions: ParamListType): Integer;

Note You can call this method only in a GUI application, because it is implemented in jade.exe.

The method parameters are listed in the following table.

Parameter Specifies the...

msg Message displayed in the dialog.

title Dialog title (null ("") displays the application name).

flags Icons that are to be displayed in the dialog, the cancel button, and the default button.

btnCaptions String captions for the buttons to be displayed. The number of captions parameters defines
the number of buttons to be displayed (in the range 1 through 5).

The code fragment in the following example shows a msgBoxCustom method call.

retVal := app.msgBoxCustom("Please choose how many of the articles you require",
"Selection", MsgBoxCustom_Icon_Question_Mark + MsgBoxCustom_Default_First +
MsgBoxCustom_Cancel_Four, "1", "2", "3", "None");

The return value is the number of the button clicked by the user. The default button has been set to the first button
and the fourth button is the button that will be clicked when the Esc key is pressed.

The new MessageBoxCustom category provides global constants for this method.

Caution Do not use the global constants in the MessageBox category, because some MessageBoxCustom
global constants are synonyms while others do not apply (for example, buttons required).

Changes and New Features in JADE Release 2020.0.01 75

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The flags parameter is constructed by adding a constant from each of the first three groups. Use one constant only
from each group. The global constants in the MessageBoxCustom category are listed in the following table.

Global Constant Integer Value Description

MsgBoxCustom_Cancel_None 0 There is no Cancel button
(the default), and pressing
Esc will be ignored

MsgBoxCustom_Cancel_One 1 First button is the Cancel
button

MsgBoxCustom_Cancel_Two 2 Second button is the
Cancel button

MsgBoxCustom_Cancel_Three 3 Third button is the Cancel
button

MsgBoxCustom_Cancel_Four 4 Fourth button is the Cancel
button

MsgBoxCustom_Cancel_Five 5 Fifth button is the Cancel
button

MsgBoxCustom_Default_First MsgBox_Default_First (0) First button is the default
button (default)

MsgBoxCustom_Default_Second MsgBox_Default_Second (256) Second button is the default

MsgBoxCustom_Default_Third MsgBox_Default_Third (512) Third button is the default

MsgBoxCustom_Default_Fourth #300 Fourth button is the default

MsgBoxCustom_Default_Fifth #400 Fifth button is the default

MsgBoxCustom_Icon_Exclamation_Mark MsgBox_Exclamation_Mark_Icon Displays the exclamation
icon

MsgBoxCustom_Icon_Information MsgBox_Information_Icon Displays the information
icon

MsgBoxCustom_Icon_Question_Mark MsgBox_Question_Mark_Icon Displays the question mark
icon

MsgBoxCustom_Icon_Stop MsgBox_Stop_Icon Displays the stop icon

MsgBoxCustom_Return_One 1

MsgBoxCustom_Return_Two 2

MsgBoxCustom_Return_Three 3

MsgBoxCustom_Return_Four 4

MsgBoxCustom_Return_Five 5

Notes If you do not include one of the MsgBoxCustom_Icon_ values, no icon is displayed.

The MsgBoxCustom_Return_ global constants can be used to return and test the value of the clicked button.

If the application is not a GUI application, error 14078 (A gui action has been requested in a non-gui environment)
occurs. If the number of button captions is zero (0) or greater than 5, error 1407 (Invalid argument passed to
method) occurs. If a caption is not a string or is null (""), error 1000 (Invalid parameter type) occurs.

Changes and New Features in JADE Release 2020.0.01 76

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Handling Message Boxes (PAR 67849)
The handling of the custom message box has been changed, as follows.

1. The application name is shown as the title if the value of the Application classmsgBoxCustom method title
parameter is null.

2. The icon required, specified in the flags parameter, is verified. If it is not valid, an invalid parameter
exception is generated.

3. Very large strings without spaces are handled in the title and the message box text so that the message will
not enlarge beyond two-thirds of the width of the monitor on which it is displayed.

Long titles are truncated. Long message text without spaces is wrapped onto the next line when strings exceed
the width of the assigned message area.

The handling of ordinary message boxes has also been changed to validate the button and the icon specified in
the flags parameter of the Application classmsgBox method call. Calling the standard Microsoft message box
API will silently fail if those flags were invalid. If not valid, an invalid parameter exception is generated.

Object Class creationTimeUTC Method (PAR 67561, JAD-I-536)
The Object class now provides the creationTimeUTC method, which returns the date and time at which the
receiver was created as a Coordinated Universal Time (UTC) timestamp value.

Pasting into a JadeRichText Control (NFS 67765)
You can now programmatically paste from the Windows clipboard into a JadeRichText control.

The canPaste_ method returns whether there is content such as text or an image in the Windows clipboard
that can be pasted into the JadeRichText control. (You can also obtain this status by calling the existing
JadeRichText class getRedoAndUndoState method.)

If there is suitable content such as text or an image in the Windows clipboard, the paste_ method pastes that
content into the JadeRichText control at the current cursor position. If the clipboard does not contain suitable
content, the method does not result in any change. (This method is equivalent to selecting the Paste
command in the context menu of the JadeRichText control at run time.)

Before you call the paste_ method, call the canPaste_ method to confirm there is suitable content available.

Package Initialization (PAR 66629)
The [JadeServer] and [JadeClient] sections of the JADE initialization file can now contain the
PackageInitializationDisabledApp<n> parameter, which has the following string value.

user-schema-name,RootSchema-application-name

When the PackageInitializationDisabledApp<n> parameter is defined, package initialization is disabled when
the specified RootSchema application is run from the specified user schema.

The <n> variable in the parameter name indicates a unique number; for example:

PackageInitializationDisabledApp1 = UnitTestSchema,JadeUnitTest
PackageInitializationDisabledApp2 = UnitTestSchema,JadeUnitTestRun

In this example, package initialization is disabled when either the JadeUnitTest application or the
JadeUnitTestRun application is run in the UnitTestSchema schema.

Tip You can disable package initialization if the application does not require functionality from any packages
imported by the user schema. This can reduce the startup time for the application.

Changes and New Features in JADE Release 2020.0.01 77

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Partial-Word Searches in HTML5 Online Help
The JADE HTML5 Web format online help now supports partial-word searches.

You can type part of a word or any string (including numbers) in the Search text box, press Enter or click the
Search button, and then see the search results that match those characters.

Notes You must type at least six characters before you see partial-word search results.

As a partial-word search is not limited to words only, it works with any string (including numbers) that starts and
ends with a space. For example, if you want to locate the TCP/IP address 143.57.055.259, typing 143.57 into the
search field and then pressing Enter finds the topics containing that string.

Print Preview Form and Skin Compatibility (PAR 67350)
When a form or control skin background color is defined with a brush rather than a color, the skin brush is always
drawn, even if the value of the backColor property of the form or control is not the default. This conflicts with the
behavior where the form or control backColor is used to draw the background and the skin backColor is ignored
if the skin backColor is defined as a color and the form or control backColor value is not the default.

In earlier releases, when such a skin was used to preview the printing of a form and the skin had a white brush,
the boundary of the printed output preview was not evident.

This issue has been addressed by making the behavior of the drawing of the skin background consistent,
regardless of whether it is defined with a brush or a color. In both cases, if the form or control is defined with a
non-default background color, that color is used to draw the background and the skin background definition is
ignored.

Printer Methods Client Execution (PAR 66745)
The clientExecutionmethod option is no longer added to the Printer class getAllPrinters and
getAllPrinterPaperSources methods. (These methods, which are effectively type methods, pre-dated the
availability of the typeMethodmethod option in JADE.)

When the getAllPrinters method is executed in a serverExecutionmethod, it now returns the list of printers
attached to the server node. When executed in an application server or standard client, the method returns the list
of printers visible to the client device.

When the getAllPrinterPaperSources method is executed in a serverExecutionmethod, it now returns the list of
paper sources for the specified printer attached to the server node. When executed in an application server or
standard client, the method returns the list of paper sources for the specified printer attached to the client device.

Regular Expression (Regex) Pattern Matching (JAD-I-438)
JADE now provides the JadeRegexLibrary class, which is the abstract superclass of the regular expression
(Regex) pattern-matching Application Programming Interface (API) subclasses in JADE. This API reduces
hand-crafted string parsing and code manipulation, to assist in the reading and testing of your code.

JADE does not implement a Regex engine itself, but wraps an existing implementation (the Per Compatible
Regular Expressions (PCRE) library) with defined behavior and documentation. JADE Regex therefore uses the
PCRE dialect, whose documentation that can be found at https://www.pcre.org/current/doc/html/pcre2syntax.html.

The JADE regular expression pattern-matching provides:

The ability to find words and numbers, and their positions in a body of text based on a pattern

The ability to replace a word or number in a body of text based on a pattern with a substitute word or number

Extraction of data, using a pattern to extract data fields from a string

Validation of data; for example, checking that a credit card number is in the correct format

https://www.pcre.org/current/doc/html/pcre2syntax.html

Changes and New Features in JADE Release 2020.0.01 78

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Command line Key=Value pair parsing

Log error message parsing, particularly in a test framework

The subclasses of the JadeRegexLibrary superclass are summarized in the following table. (For details, see
Volume 1 of the JADE Encyclopaedia of Classes.)

Class Description

JadeRegex Contains type methods for quick, simple use of the JadeRegexLibrary. Each method
has common options that suit many use cases.

JadeRegexCapture A capture group of your regular expression, containing information about it; for
example, the text it matched, the group name, length, and so on

JadeRegexMatch A single match of your regular expression against the subject string. It optionally
contains JadeRegexCapture objects if capturing groups is enabled.

JadeRegexPattern A compiled Regex object that provides enhanced functionality and performance over
the JadeRegex class and its type methods.

JadeRegexResult An object representing one or more matches resulting from a Regex operation.

In addition, the JadeRegexException subclass of the NormalException class is the transient class that defines
details for exceptions that occur as a result of JADE regular expression pattern matching.

REST Client (NFS 65594, JAD-I-97)
In earlier releases, JADE provided RESTful web services using the JadeRestService class, but they could not be
consumed other than using the limited functionality of the JadeHTTPConnection class sendRequest method.

JADE now provides JADE REST client classes, providing easy consumption of REST services The interface is
similar to REST clients in other technologies; for example, the .NET RestSharp library (http://restsharp.org/).

This feature enables you to set properties on a JadeRestRequest object to specify the required resource and any
required inputs such as parameters or a serialized object in the HTTP body (used for PUT or POST operations),
then pass the object as a parameter to a method of the JadeRestClient class, which will return a
JadeRestResponse object with properties for the various response information, along with deserialization
methods.

In this release, the REST client proxy classes support the GET, PUT, POST, DELETE, and OPTIONS verbs,
although other verbs are available when using the JadeRestClient class directly.

The new REST client and proxy classes are summarized in the following table. (For details, see Volume 1 of the
JADE Encyclopaedia of Classes.)

Class Description

JadeRestClient Represents the client that sends the REST request to the server

JadeRestProxy Grouping class for auto-generated proxy classes that model a REST API
based on an OpenAPI specification

 JadeRestDataModelProxy JadeRestProxy subclass grouping auto-generated proxy classes that
model the data structure of an imported REST API

 JadeRestResourceProxy JadeRestProxy subclass grouping proxy classes that expose the
resource methods of the imported REST API

JadeRestProxyHook Provides hook methods that can be reimplemented in your client, request,
and response REST subclasses

JadeRestRequest Represents a REST request that is to be sent to a REST API specification

JadeRestResponse Contains the results of a request to a REST API endpoint

http://restsharp.org/

Changes and New Features in JADE Release 2020.0.01 79

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

JADE also provides a proxy class generator, which consumes an OpenAPI specification of a REST API and
generates the appropriate data model and resource proxy classes. Use the JADE development environment
External Components Libraries Browser to import and maintain OpenAPI specifications. For details, see
"Maintaining OpenAPI Objects", in Chapter 16 of the JADE Development Environment User's Guide. See also
"JADE REST Client" in the REST Services White Paper.

REST Services
This section describes the REST service changes in this release.

REST Service Exceptions (PAR 66669)
Prior to JADE version 2018 (1800), the format of REST service call exceptions was XML. In JADE version 2018
(1800) and later, the format of REST service call exceptions is formatted in the style specified in the URL.

The default format of REST service call exceptions is XML. You can control the format used to generate REST
service call exceptions by using the new JadeRestService class exceptionFormat property, which has an
Integer value.

You can specify the required JadeRestService class OutputFormat_ constant value in the exceptionFormat
property (for example, in the create method of your JadeRestService subclass) if you want to change the
exception output format at run time. The class constant values are listed in the following table.

JadeRestService Class Constant Value Exceptions are in...

OutputFormat_Json 0 JSON (Microsoft JSON) format

OutputFormat_Xml 1 XML format (the default)

OutputFormat_Json_NewtonSoft 2 JSONN (NewtonSoft JSON) format

Any other value (for example, -1) means that exceptions are returned in the format controlled by the received URL.

Applies to Version: 2018.0.02 (Service Pack 1) and higher

REST Service Security (JAD-I-430)
In earlier releases, RESTful web services APIs were not able to be secured; that is, anyone with the URL could
consume it without providing authentication.

JADE now provides the ability to restrict JADE REST APIs so that only clients with a valid bearer token can
consume the API. In addition, an API developer can customize the rules on what constitute a valid token to meet
your requirements.

REST service security allows for the validation of token signatures, including asymmetrical tokens (for example,
RS256) signed from third-party Auth providers. It also allows for the generation of symmetrical tokens (for
example, HS256) and the association of required claims such as access level or token expiry against specific
REST service methods.

The supported token is JSON Web Token (JWT) – an open standard tracked by RFC 7519. The JWT standard
defines a compact and self-contained way for securely transmitting information between parties represented as a
JSON object.

The new Add JSON Web Token Claims dialog enables you to specify the claims that must be present in a JSON
Web Token in order to access a JADE REST API method. As long as one or more required claims are associated
with a method, any incoming REST request must include a JSON Web Token in the authorization header of the
HTTP request; that is, it must include a header of the form Authorization: Bearer <Token>. For details, see
"Associating Required JSON Web Token Claims with REST API Methods" under "REST Service Security", in
Chapter 2 of the JADE Object Manager Guide.

Changes and New Features in JADE Release 2020.0.01 80

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

The new REST security classes are summarized in the following table. (For details, see Volume 1 of the JADE
Encyclopaedia of Classes.)

Class Description

JadeRequiredClaimAnnotation Abstract class that represents an annotation on a
JadeRestService REST API method, requiring a claim to
be present in a JSON Web Token (JWT) and the claim to
fulfill the validateTokenmethod so that a client can
access the associated REST method

 JadeRequiredDelegateClaimAnnotation Represents an annotation on a JadeRestService REST
API method, validating the token is done by calling the
method referenced by the delegateMethod property

 JadeRequiredOneOfValueClaimAnnotation Represents an annotation on a JadeRestService REST
API method, validating the token by comparing the claim
in the JWT to each of the values in the allowedValues
property

 JadeRequiredSingleValueClaimAnnotation Represents an annotation on a JadeRestService REST
API method, validating the token by comparing the claim
in the JWT to the value contained in the expectedValue
property

JadeJWTModel Abstract grouping class for JSON Web Token (JWT)
classes

 JadeJWKSAuthProviderResponse Can be used as the first parameter to the parse method of
the JadeJson class

 JadeJWTClaim Represents one claim in a JSON Web Token

 JadeJWTParser Contains type methods used for parsing JSON Web
Tokens

 JadeJWTValidator Contains type methods used for validating the signature
claims of JSON Web tokens

 JadeJsonWebKeySetReader Provides methods to obtaining the public key from a
JSON Web Key Set that is used to validate
asymmetrically-signed JSON Web Tokens (JWTs)

 JadeJsonWebToken Represents a symmetrically-signed JSON Web Token that
can be used by a JADE REST service to generate
authorization tokens for its clients

To increase REST service security, use one of the following jadeDevelopmentFunctionSelected function security
hooks.

Task Name Entity Name Description

applyRestSecurity Schema-name::type-name::method-name Applies security to a REST Service
method

importOpenAPI Schema-name Imports (adds) an OpenAPI specification

removeOpenAPI Schema-name Removes an OpenAPI specification

Changes and New Features in JADE Release 2020.0.01 81

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

In addition, the:

JadeRestService class now provides the following methods

addBearerToken, which adds a bearer token (for example, a JSON Web Token) to the REST request

fetchJWT, which returns the bearer token from the Authorization: Bearer HTTP header of the incoming
REST request

fetchSecret, which returns the secret with which to validate symmetrically-signed tokens

getTargetMethod, which gets the name of the method targeted by the incoming REST request

validateShadowMethod, which returns true if the method is a valid shadow method of a REST service
method

validateToken, which validates a JSON Web Token against the required claims associated with the
specified method

JadeRestService class now provides the following class constants

EncryptionAlg_HS256

EncryptionAlg_HS384

EncryptionAlg_HS512

EncryptionAlg_RS256

ServerVariable_AllHttp

ServerVariable_AllRaw

ShadowMethodPrefix

JadeHTTPConnection class now provides the following class constants

AuthType_Basic

AuthType_Bearer

HttpResponse_Created

HttpResponse_Forbidden

HttpResponse_NotFound

HttpResponse_Success

HttpResponse_Unauthorized

TimeStamp primitive type now provides the following constant and methods.

UnixEpoch constant

getSecondsFromUnixEpochmethod, which returns the number of seconds between the Unix epoch
and the TimeStamp

setFromUnixEpochmethod, which sets the TimeStamp by adding the specified number of seconds to
the Unix epoch

RPS Diagnostic Dump on SQL Update Error
The [JadeRps] section of the JADE initialization file now contains the DumpOnSqlErrorDuringCud parameter,
which when set to true, takes a diagnostic dump if an SQL create, update, or delete operation fails. (The default
value is false.)

Changes and New Features in JADE Release 2020.0.01 82

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Security
For information about the security changes in this release, see the following topics elsewhere in this document.

Security Restrictions

Inspector Security

Thin Client Security (PAR 66521)

REST Service Security (JAD-I-430)

SSL End-to-end, including SDS, Encryption (JAD-I-580, JAD-I-275)

Skins
This section summarizes the skins and JadeSkinControl subclass changes in this release.

Changing the Skin of a Control Scroll Bar (NFS 67522)
Scroll bars were previously drawn using the scroll bar skins attached to the application skin that was applied. By
default, scroll bars are drawn using the JadeSkinHScroll and JadeSkinVScroll skins assigned to the application.
You can apply a different skin to a form by calling the Form class setApplicationSkinmethod, which allows
different scroll bars skins to be assigned for the form and its control children.

You can now assign a specific horizontal and vertical scroll bar skin to JADE controls that display scroll bars; that
is, to the BaseControl, ComboBox list box, ListBox, Picture, JadeRichText, Table, and TextBox control classes
and to the Form class.

The JadeSkinWindow class now provides the following properties.

myHorizontalScrollBarSkin, which defaults to null

myVerticalScrollBarSkin, which defaults to null

These properties, which you can set on the Jade Skin Maintenance dialog, apply only to the controls specified
above (that is, the BaseControl, ComboBox list box, ListBox, Picture, JadeRichText, Table, and TextBox
controls and to the Form class), and are ignored for any other controls.

The new Scroll Bar Skins group box on the Jade Skin Maintenance dialog Form and Control sheets contains the
Horizontal and Vertical combo boxes, which allow specific horizontal and vertical scroll bar skins to be assigned
to the Form skin and to specific Control class skins.

The rules for the use of the scroll bar skins are as follows.

1. For a form, if the form:

Has a specific scrollbar skin assigned of the required type, the form scroll bar is drawn with that skin.

Does not have a specific scroll bar skin assigned, the application scroll bar skin of the required type is
used. If the application does not have a scroll bar skin assigned of the required type, the scroll bar is not
skinned.

When the form is an MDI frame, the MDI client window that hosts the child forms uses the form's scroll bar
skin using the same rules.

2. For a control, if the control:

Has a specific scrollbar skin assigned of the required type, the control scroll bar is drawn with that skin.

Does not have a specific scroll bar skin assigned, the form scroll bar skin rules in step 1 of this list
apply.

Changes and New Features in JADE Release 2020.0.01 83

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

3. For a ComboBox, if the combo box:

Has a list box skin assigned, the above scroll bar rules for a control in step 2 of this list are applied to
the list box part of the combo box display.

The list box of a combo box is skinned only if the ComboBox skin has a list box skin assigned to the
myListBoxSkin property.

Cloning Skins (NFS 67523)
The Jade Skin Maintenance form now allows you to select an existing skin item and then create a clone of that
skin using another name.

The Applications, Controls, Forms,Menus, Simple Buttons, andWindow State Images sheets now all have a
Clone button, which enables you to create a new skin item as a copy of an existing skin item. This functionality
works as follows.

1. Select an item on the current skin list; for example, an application skin in the Application Skins list box on
the Applications sheet.

a. Click the Clone button. This clears the skin Name text box and displays a hint in red; for example,
<Enter name of new application>. All of the displayed controls of the previously selected skin remain
displayed in the same state (except for the Name text box).

2. Focus is then set to the skin Name text box, so that you can specify the name of the new skin.

3. Click the Update button. A new skin is then created as a duplicate of the existing skin, except that it has
another name.

Note If the selected skin had been changed but not saved when you click the Clone button, you are
prompted to save the existing changes for the selected skin.

If you click the No button, the changes are not be saved against the original skin but the changes remain for
the new skin. If you click the Yes button, the changes are saved against the original skin and remain for the
cloned new skin.

Foreground Color of Table Columns and Rows (NFS 67292, JAD-I-443)
The JadeSkinTable class now provides the fixedColumnsForeColor and fixedRowsForeColor properties, which
enable you to set the color with which text of fixed text color of cells in a fixed cell. These properties are ignored if
the default value is #80000000 or a fixed cell has a specific foreground color set by the foreColor property of the
Table class for a cell, row, or column.

The fixedRowColorHasPrecedence property of the JadeSkinTable class has changed, so that it now specifies
whether cells that are in both a fixed row and a fixed column are drawn using the value of the
fixedRowsBackColor and the fixedRowsForeColor properties. The default value is true; that is, cells that are in
both a fixed row and a fixed column are drawn using the value of the fixedRowsBackColor and the
fixedRowsForeColor properties. When the value is false, cells that are in both a fixed row and a fixed column are
drawn using the value of the fixedColumnsBackColor and fixedColumnsForeColor properties.

If a fixed cell has a specific:

Background color set by the backColor property of the Table class for a cell, row, or column, the skin
background color value specified by the fixedRowColorHasPrecedence property is ignored when drawing
the background of a fixed cell.

Foreground color set by the foreColor property of the Table class for a cell, row, column, the skin foreground
color value specified by the fixedRowColorHasPrecedence property is ignored when drawing the text of a
fixed cell.

The Table control types on the Controls sheet of the Jade Skin Maintenance dialog now also allows these color
values to be specified in the same way as other color properties.

Changes and New Features in JADE Release 2020.0.01 84

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

Skin Category Selection in the JADE Painter (NFS 67295)
When you click on the skinCategoryName property on Common page of the Properties dialog in the JADE
Painter, a combo box with a list of skin category names is now displayed.

The list box contains only those category names that are assigned to a skin of the same type or superclass type as
the window currently selected in the Painter. The list box also contains a blank entry, to enable you to clear the
current skin category name.

When the required skin has not been loaded into the current development environment, you can also specify a
skin category name that is not displayed in the list.

Skinning Folder Overflow Buttons (NFS 67506, JAD-I-280)
When the Folder class tabsLines property was set to TabsLines_SingleLine and not all sheet tabs could be
displayed in earlier releases, JADE added two arrow buttons on the right of the tab line. Clicking the buttons
scrolled the sheet tabs left or right.

The display of these buttons has been changed as follows.

The left arrow button is displayed on the left of the tabs line.

The sheet tab that is farthest left is positioned to the right of the arrow.

The right arrow is displayed at the end of the tab line, possibly obscuring part of the last sheet tab that is
displayed.

The arrows are drawn bordered with a black box and the background color is the value of the backColor
property of the folder. Each box is the height of the tab line.

In addition, these buttons can be skinned. The JadeSkinFolder class has the following new properties.

myTabScrollLeftButton, which defaults to null and is of type JadeSkinSimpleButton

myTabScrollRightButton, which defaults to null and is of type JadeSkinSimpleButton

tabScrollButtonBackColor, which defaults to #80000000 and is of type Integer

The Jade Skin Maintenance dialog enables you to set the:

Tab scroll left and right buttons to a JadeSkinSimpleButton set of images that define the normal, rollover,
disabled, and down states.

The background color of the button area.

If a folder skin does not specify a button image, the appropriate default arrow is displayed.

When the button image is set, the width of the normal state image defines the width of the button area.

If a button image is not defined, the value of the tabScrollButtonBackColor property is ignored.

If the value of the tabScrollButtonBackColor property of a folder skin is:

Not the default (that is, #80000000), the background of the button area is drawn using that color

The default value (#80000000), the background of the tab area is drawn using the background color of the
parent of the folder.

The button image is vertically centered in the tab line.

Changes and New Features in JADE Release 2020.0.01 85

Copyright 2021, Jade Software Corporation Ltd. All rights reserved JADE-2020.0.02

SSL End-to-End, including SDS, Encryption (JAD-I-580, JAD-I-275)
JADE now provides Secure Sockets Layer (SSL) encryption between:

jadehttp.dll (IIS) and the application server (REST and SOAP web service providers)

SDS primary and secondary nodes

For details, see "End-to-End SSL Encryption", in Chapter 2 of the JADE Installation and Configuration Guide.

Stretching an Image (PAR 67370)
Images that are mostly white or black lost their clarity when displayed in a Picture control using the stretch
property and the picture control is smaller than the image. When an image was stretched, JADE set the Microsoft
stretch mode to COLORONCOLOR, which meant all pixels were treated equally, and Windows dropped pixels
when the image was reduced in size. The exception was for a 1-bit image, where JADE calculated whether there
were more white or black pixels and then set the Microsoft stretch mode to BLACKONWHITE (white pixels are
discarded instead of black pixels) orWHITEONBLACK (black pixels are discarded instead of white pixels).

JADE has now been changed so that if the image consists of more than 50 percent of white pixels, JADE now sets
the stretch mode to BLACKONWHITE. Similarly, if the image consists of more than 50 percent of black pixels,
JADE now sets the stretch mode toWHITEONBLACK. This change improves the display of small images; for
example, plan drawings.

Type Class Methods
The Type class now provides the methods summarized in the following table, which are similar to those defined in
the Object class. (For details, see Volume 2 of the JADE Encyclopaedia of Classes.)

These methods allow you to dynamically call type methods without specifically requiring an instance of the type,
which was previously the case with the base implementation on the Object class.

Method Sends the specified...

invokeIOTypeMethod Target type method containing a variable list of parameters to the receiver
type instance, after switching to the specified target context execution context

invokeTypeMethod Target type method containing a variable list of parameters to the receiver
type instance, after switching to the specified target context execution context

sendTypeMsg Message (a valid type method) to the receiver type instance

sendTypeMsgWithIOParams Message (a valid type method) to the receiver type instance

sendTypeMsgWithParams Message (a valid type method) to the receiver type instance

	Contents
	Upgrading to the JADE 2020 Release
	JADE Release Support
	Deimplementations and Deprecations
	Application Class Constants Deprecated
	RPS Working Set Data Store Mode Deprecated

	Highlights in this Release
	Accessing Details about Faults Fixed in Releases
	How to Locate PARs Fixed in a Specific Release

	Upgrading to JADE 2020
	Upgrading to JADE 2020 from JADE 2018
	Running Two Releases of JADE on the Same Workstation

	JADE Thin Client Upgrade
	Upgrading an SDS Native or RPS Secondary System
	Upgrade Validation

	JADE 2020 Changes that May Affect Your Existing Systems
	.NET Import Issue Hotfix (PAR 67915)
	Adding a String to a BinaryArray (PAR 67749)
	Base URL for Context-sensitive Online Help
	Collection Membership Length (JAD-I-84)
	Dictionary Maintenance of a Key Property in a Collection (PAR 67895)
	DDX-Format File Extraction (PAR 67676)
	Detecting Orphaned DevControlProperties Instances (PAR 66131)
	Exceptions Accessing System-only Features
	Loading User Preferences from an Earlier Release (NFS 67599)
	Multiple activate/deactivate Events Generated for One User Action (PAR 67865)
	Natively Supporting Additional .NET Imported Types in JADE
	Reverting a 2020 Thin Client to JADE 2018 (PAR 68048)
	Security Restrictions
	SslConfigurationTool Executable (PAR 68118)
	String Type replace__ and replaceFrom__ Methods (PAR 67698)
	Suspending Parent Alignment when Positioning Controls (NFS 68413)

	Changes in JADE Release 2020.0.02 (Service Pack 1)
	Array Membership of Type Any
	Checking for Orphan Subobjects in User Data Files
	Collection Class Methods
	Conditional Methods
	tryCopy__ Method (JAD-I-642)

	Compound Assignments
	Converting a String Type to a Time Type (PAR 68119)
	Custom MenuItem Events (NFS 68101)
	Database Initial and Extent File Sizes (PAR 68240)
	Deleting Subobject Dynamic Properties (PAR 61609)
	Extended create Instruction Expansion
	Generating OpenAPIs from JADE REST APIs (Jad-I-635)
	Iterating through Virtual Collections (PAR 67606)
	JADE Container Image Naming Convention (JAD-I-631)
	JADE Images

	JADE Development Environment
	AutoComplete Parameter Display for Translatable Strings (NFS 68109)
	Delta Searches (NFS 68089)
	Display of the Class in which a Method is Defined (NFS 68122)
	Finding a Class by Number (NFS 68102, JAD-I-592)
	Inspecting Code in the Debugger (PAR 68357)
	Painter Hierarchy for Form Dialog (NFS 68385, JAD-I-573)
	Package Class Name Handling in the Find Type Dialog (PAR 68459)
	Suspending Parent Alignment when Positioning Controls (NFS 68413)
	Workspace Refactoring (PAR 68352)

	JadeDbFilePartition Class drop Method (PAR 62426)
	MergeIterator Class startKey Methods (PAR 68511)
	Reorganization
	Initiating a Managed Reorganization Transition
	Reorganizing Changed Array Definitions (PAR 68306, PAR 683549)

	Report Writer (JAD-I-552)
	REST Request PDF Data Format (PAR 68114)
	Running a Workspace in a Deployed System (PAR 68293)
	Security (JAD-I-431)
	Status Line Positioning (PAR 68131)
	Unicode Surrogate Pair Character Support (PAR 68066)
	Unit Test Runner Form (NFSes 65290, 65287)

	Changes and New Features in JADE Release 2020.0.01
	Animate Window Functionality for Forms (NFS 67576)
	Any Primitive Type Methods
	Application Methods
	Allowing Zero Forms
	Starting an Application Method with a String

	Array Variable-Size Elements (JAD-I-84)
	Button Picture Scaling (PAR 66907)
	Collection Concurrency (JAD-I-423)
	ComboBox and ListBox Class ItemNotFound Constant
	ComboBox Control Default Line Height (NFS 67273, JAD-I-467)
	File Open Dialog Prompt (PAR 65662, PAR 66871)
	Containerization (JAD-I-433)
	Console Remote Access Program (jadrapb) (JAD-I-525)
	Further Container-ready Services
	Docker Images
	Image Naming Convention
	JADE Images
	Container Logging
	Windows Base Image
	Image Update Policy
	Support Policy
	JADE Container Examples

	Database
	convertToBackup Command after Recovery (PAR 67837)
	convertToBackup Command Extension (JAD-I-461)
	Database File Address Mismatch (PAR 67345)
	Database Diagnostic Enhancements (PAR 67280)

	Date Primitive Type Methods
	Dynamic Objects
	External Dynamic Object Methods (JAD-I-389)
	Merging Dynamic Objects
	Methods that Set Dynamic Object Properties
	Processing and Obtaining Information about Dynamic Objects

	File Open Error Suppression (JAD-I-454)
	firstVisibleLine Property Availability (JAD-I-449)
	Floating Form Visibility (PAR 67979)
	foreach Instruction as Expression (JAD-I-173)
	Inspector
	Inspecting a Deployed Database (PAR 66532)
	Inspecting Class and Object Volatility (JAD-I-137)
	Inspector Security
	Quick Inspect Toolbar (JAD-I-168)

	JADE Development Environment
	Adding a New Property (NFS 67555)
	Application Default Inherited (NFS 67299)
	AutoComplete
	Block Label Prompt (NFS 66867)
	Constructors with Parameters Signature Display (NFS 67275, JAD-I-426)
	Displaying Identifier Usages from the Editor Pane (NFS 67553, JAD-I-517)
	Displaying Options for External Methods (PAR 67517)
	Selecting an Exact Entry in the List (NFS 67276, JAD-I-468)

	Bubble Help
	Bubble Help in the Editor Pane (NFS 64066)
	Displaying Shortcut Keys in Icon Bubble Help (NFS 67715, JAD-I-325)

	Camel Case Filtering in List Boxes (NFS 67480, JAD-I-493)
	Captions on Floating Forms (NFS 67001)
	Clipboard Toolbar Context Menu (JAD-I-168)
	Closing Tabs in the Development Environment (NFS 62115)
	Comparing Method Sources (NFS 67704, JAD-I-160)
	Condition Method Text Template (NFS 67277, JAD-I-335)
	Dark and Light Themes (JAD-I-370)
	Debugger
	Bubble Help in the Debugger (NFS 67666)
	Inspecting Variables in the Debugger (NFS 66542)
	Sorting Local Variables (NFS 67719, JAD-I-267)

	Displaying Implementor References of a Method (PAR 66666)
	Displaying Local Methods Referencing a Property (NFS 67439)
	Displaying Submenus (NFS 66558)
	Filtering Combo and List Box Text Entries (NFS 67196, JAD-I-353)
	Finding Unused Local Variables and Parameters (NFS 67629, JAD-I-507)
	Going to a Specified Method Line Number (JAD-I-240)
	Horizontal Scroll Bars in Hierarchy Browsers (NFS 67347)
	Identifying User of Unavailable Resource (NFS 67278, JAD-I-303)
	Importing and Exporting Browser Layouts (NFS 67232, JAD-I-396)
	Interfaces
	Interface Deletion (PAR 66088)
	Interface Implementation Mapper Dialog (NFS 48016, JAD-I-350)
	Interfaces Displayed for a Class (NFS 66482)
	Iterating using Interfaces (JAD-I-571)
	Mapping Interfaces (NFS 67750, JAD-I-273)
	Method List and Interface Folder Changes
	Typecasting Interface Objects (NFS 63986)

	Loading Checked Out Methods (JAD-I-181)
	Opening a Method from the Method Status List Browser (NFS 66744)
	Orphaned Event Method Detection (NFS 67029)
	Painter
	Deleting the Current Form in Painter (NFS 67602, JAD-I-520)
	Finding Available and Duplicate Caption Accelerator Characters (NFS 67617)
	Positioning Controls and all Parents in Painter (NFS 67670)
	Printer Form Font (PAR 67048)
	Removing ActiveX Controls from Forms (NFS 67595, JAD-I-530)
	Title Bar (NFS 67198, JAD-I-309)

	Pasting Text into the Method Definition Dialog (NFS 67346)
	Patch Versioning
	Comparing Method Sources (NFS 67704, JAD-I-160)

	Primitive Types Browser Type Menu (PAR 66989)
	Refactoring JADE Methods
	Identifying Local Variables in Extracted Methods (NFS 67432)
	Signature of Created Methods (NFS 67428, JAD-I-498)

	Running an Application from the String Browser (NFS 67291, JAD-I-272)
	Scaling Decimal Array Elements (NFS 64143)
	Schema Navigation (NFS 67352, JAD-I-484)
	Searching
	Exposure Browser Search (NFS 67226, JAD-I-334)
	Finding a Class by Number (NFS 67605, JAD-I-574)
	Global Searching for an Imported Entity (PAR 66489)
	Saving and Restoring Find and Replace Options (NFS 67614, JAD-I-255)
	Searching for a Property or Method in a List (NFS 67674, JAD-I-550)
	Searching for Changed Methods by Date and Time (NFS 67718, JAD-I-409)
	Searching for Comments (NFS 67628, JAD-I-534, PAR 67891)

	Sorting Possible Transient Leaks (NFS 67298, JAD-I-474)
	Suppressing Message Boxes (JAD-I-100)
	Viewing Defined References (NFS 66564)

	JadeAuditAccess Read Offset (PAR 66198)
	JADE Initialization File
	AccessibilityEnabled Parameter (NFS 67762)
	Single User Application Restrictions (PAR 65360)
	Thin Client Security (PAR 66521)

	JadeHTTPConnection Class
	isStatusCodeSuccess Method (JAD-I-97)
	JadeHTTPConnection Class Supported Verbs (NFS 64197)
	JadeHTTPConnection::sendRequestUtf8 Method (NFS 66868, JAD‑I‑349)

	JADE Monitor Cache Performance Details (JAD-I-515)
	JadeTimeZone Class (JAD-I-254)
	ListBox and Table Control Disabled foreColor (PAR 67920)
	Loading User Preferences from the Command Line (NFS 67599)
	Logical Certifier
	Additional Checks Resulting from Closed PARs
	Incremental Logical Certify (JAD-I-478)

	MDI Child Forms
	Floating, Docking, and Pinning MDI Child Forms (NFS 67200)
	Tabs in MDI Child Forms (NFS 67224)

	Message Boxes
	Customizing Message Box Button Captions (NFS 66844, JAD-I-74)
	Handling Message Boxes (PAR 67849)

	Object Class creationTimeUTC Method (PAR 67561, JAD-I-536)
	Pasting into a JadeRichText Control (NFS 67765)
	Package Initialization (PAR 66629)
	Partial-Word Searches in HTML5 Online Help
	Print Preview Form and Skin Compatibility (PAR 67350)
	Printer Methods Client Execution (PAR 66745)
	Regular Expression (Regex) Pattern Matching (JAD-I-438)
	REST Client (NFS 65594, JAD-I-97)
	REST Services
	REST Service Exceptions (PAR 66669)
	REST Service Security (JAD-I-430)

	RPS Diagnostic Dump on SQL Update Error
	Security
	Skins
	Changing the Skin of a Control Scroll Bar (NFS 67522)
	Cloning Skins (NFS 67523)
	Foreground Color of Table Columns and Rows (NFS 67292, JAD-I-443)
	Skin Category Selection in the JADE Painter (NFS 67295)
	Skinning Folder Overflow Buttons (NFS 67506, JAD-I-280)

	SSL End-to-End, including SDS, Encryption (JAD-I-580, JAD-I-275)
	Stretching an Image (PAR 67370)
	Type Class Methods

