
Copyright©2024 Jade Software Corporation Limited. All rights reserved.

Collection Concurrency
White Paper

VERSION 2022

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2024 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.

WP_CollConcurrency - 2022.0.03

Contents

Collection Concurrency 4
Background to Collection Locking Behavior 4

Implicit Object Locking 4
Implicit Collection Locking 4
Releasing Locks 5

Transaction State 5
Load State 5

Transaction Phases 6
Processing Phase 6
Commit Phase 6

Collection Concurrency Feature Summary 6
Deferred Collection Methods 7
Deferred Inverse Maintenance 7

Collection Concurrency Feature Details 7
Conditional Collection Methods 8
Conditional Dictionary Methods 10
Common Exception Handling for Conditional Methods 11
Deferred Collection Update Methods 11
Deferred Collection Update Exception Handling 14
Deferred Update Visibility 15
Deferred Inverse Maintenance 15

Implementing Collection Concurrency 16
.NET API Collection Concurrency Methods 18
Benchmarking 22

Benchmark Scenarios 22
Benchmark Results 23

Appendix A Tips and Techniques 25
Locking Strategy 25
Deadlock Exceptions and How to Avoid Them 26

WP_CollConcurrency - 2022.0.03

Collection Concurrency

Contention and concurrency are interconnected concepts. Achieving high concurrency has been a challenge in
developing performant and scalable transaction processing systems with Jade due to contention for locks on
persistent collections.

High lock contention results in low concurrency, leading to the following well-known impacts.

Extends user response time for interactive workloads.

Reduces throughput (transactions per second) for batch workloads.

This white paper describes deferred operation functionality introduced in the Jade 2020 release aimed at removing
accidental complexity so that you can concentrate on delivering value to your business.

Background to Collection Locking Behavior
To help explain deferred operations, let's first review locking and introduce some terminology.

The locking behavior described in this section applies to persistent and shared transient instances.

Implicit Object Locking
When a Jade process updates an object, the Jade Object Manager (JOM) automatically locks the object to ensure
that:

Other processes cannot view the object in an incomplete state.

Other processes cannot view uncommitted updates since those updates may be backed out if the transaction
aborts.

The updating process has the latest edition of the object before it is modified so that updates made by other
processes are not lost.

Implicit Collection Locking
When a collection is accessed to be updated or read, JOM acquires a lock on the collection where the type of lock
depends on several factors. One factor is whether the collection is being read or updated.

It is useful to distinguish between methods that update the collection and methods that read (or query) the collection.

Updating methods

RootSchema collection methods like add and remove that update the receiver are annotated with the
lockReceivermethod option, as shown in the following example.

add(value: MemberType) lockReceiver, updating;

For all updating collection methods where lockReceiver is specified, JOM automatically acquires either an
exclusive or an update lock on the collection. Normally, this will be an exclusive lock; it will be an update lock if
the updating process has enabled update locks.

WP_CollConcurrency - 2022.0.03

Query methods

Collection query methods like includes or getAtKey that read the collection and do not update it do not have the
lockReceivermethod option specified, as shown in the following example.

includes(value: MemberType): Boolean;

For query methods where lockReceiver is not specified, JOM automatically acquires a shared lock on the
collection to prevent it being altered by another process.

In addition, remember that when you iterate over a collection using an iterator or a foreach instruction, these call
collection query methods which acquire a shared lock on the collection.

Releasing Locks
Shared locks are automatically released when the read function is finished unless the process remains in either
transaction or load state. Let's consider transaction and load states.

Transaction State
As part of executing a commitTransaction or abortTransaction instruction, JOM automatically releases all
transaction duration locks of the following types.

Share

Reserve

Update

Exclusive

It does not matter if the object was updated or not, or how the lock was obtained; that is:

Implicitly by JOM

Explicitly when your code included a lock instruction

It also does not matter when the lock was obtained; that is:

Before the beginTransaction instruction

Within transaction state

Session duration locks are not released at the end of transactions or at the end of load state.

Load State
All objects locked between beginLoad and endLoad instructions remain locked until the endLoad instruction is
executed, at which time they are unlocked.

Objects locked with session duration and objects locked before the current beginLoad instruction are not unlocked by
the endLoad instruction.

Unlock object requests are ignored between beginLoad and endLoad instructions.

For more details, including locking and unlocking in load state and lock state, see Chapter 6, "Jade Locking", in the
Developer's Reference.

Collection Concurrency
White Paper

Collection Concurrency 5

WP_CollConcurrency - 2022.0.03

Transaction Phases
It is useful to consider the following two phases of a transaction. The:

Processing Phase

Commit Phase

The relevant actions executed in each phase of an updating transaction are shown in this section. For simplicity,
exception paths that result from or cause a transaction abort are omitted.

Processing Phase
The processing phase of a transaction covers the application logic executed between a beginTransaction and a
commitTransaction instruction.

In the processing phase, an application reads, creates, updates, and deletes objects and may explicitly lock objects
including collections.

When not explicitly locked:

Any object updated or deleted is locked with an exclusive or update lock.

Collections that are read are share locked.

A strict 2-phase locking protocol is enforced, which means any transaction duration locks of any type will not be
released until the transaction commits (or aborts).

Commit Phase
The commit phase of a transaction covers the JOM actions processed when a commitTransaction instruction is
executed.

The relevant actions are:

Update locks are upgraded from shared to exclusive.

Registered transaction callbacks are invoked.

Object create, update, and delete operations are sent to the database server.

Object updates are journaled by the database engine.

A commit audit record is journaled, to ensure the transaction is durable.

Transaction duration locks are released.

Persistent notifications are sent.

With that background context in mind, let's look at conditional collection methods and deferred methods.

Collection Concurrency Feature Summary
The objective of the collection concurrency feature is to simplify the your task of writing code that efficiently maintains
persistent collections, either directly or through automatic inverse maintenance, while minimizing contention and
avoiding deadlocks.

Collection Concurrency
White Paper

Collection Concurrency 6

WP_CollConcurrency - 2022.0.03

Deferred Collection Methods
The Jade 2020 release introduced a set of collection methods that allow updates (and hence required locks) to
persistent collections to be deferred until the enclosing transaction commits. For details, see "Deferred Collection
Update Methods", later in this document.

Deferred Inverse Maintenance
The intention is to make it easy for you to start using deferred updates for automatically maintained collections. This is
achieved with a deferred execution strategy for automatically maintained, multi-valued inverses, with two ways to
control its scope.

Schema defined per-property scope

A runtime execution per-process scope, which overrides the property scope for the process

The deferred execution strategy applies to all state changes that currently trigger automatic collection maintenance,
including:

Assigning or changing the manual single value property

Setting or changing key values for an auto-inverse member key dictionary

Changing the values of properties used in a condition specified as a constraint on the multi-valued inverse

Collection Concurrency Feature Details
This section covers the following topics.

Conditional Collection Methods

Conditional Dictionary Methods

Common Exception Handling for Conditional Methods

Deferred Collection Update Methods

Deferred Collection Update Exception Handling

Deferred Update Visibility

Deferred Inverse Maintenance

Collection Concurrency
White Paper

Collection Concurrency 7

WP_CollConcurrency - 2022.0.03

Conditional Collection Methods
Consider the following example tryAddWithCheck collection method, which, incidentally, was discovered in a
production code base.

The main issue with the method in the previous example is that it is prone to triggering deadlock exceptions when
called on a persistent (or shared transient) collection.

A deadlock situation presents itself when two (or more) processes execute the tryAddWithCheckmethod in parallel.

The reason for the deadlock is depicted in the following diagram, which shows what happens when operations in a
sequence overlap in a specific manner in transaction state.

As Process 1 and Process 2 call self.includes(value), they each acquire a shared lock on self before continuing
execution.

Collection Concurrency
White Paper

Collection Concurrency 8

WP_CollConcurrency - 2022.0.03

Process 1 is the first to execute self.add(value) and attempts to acquire the exclusive lock required for the update.
The lock cannot be acquired because Process 2 holds a conflicting shared lock, resulting in Process 1 waiting.

When Process 2 executes self.add(value) and attempts to acquire an exclusive lock on self, if we were to allow it to
wait, Process 1 and Process 2 would end up waiting for each other to release their shared locks so both processes
would come to a standstill until one of the lock waits timed out.

JOM doesn't allow the deadlock to manifest. As soon as JOM identifies a deadlock situation, the process that
triggered the deadlock is given a deadlock exception and the action is aborted, which ultimately means the enclosing
database transaction is aborted. In the previous example, Process 2 is given the deadlock exception.

The previous deadlock scenario is often referred to as a share to exclusive upgrade deadlock. One way to avoid this
form of upgrade deadlock is to acquire an exclusive lock on the receiver before it is read (and share locked). A simple
way to accomplish that is to add the lockReceivermethod option to the tryAddWithCheckmethod, as shown in the
following example.

tryAddWithCheck(value: MemberType): Boolean lockReceiver, updating;

However, there's an easier and more efficient way to avoid upgrade deadlocks and that's to use the tryAddIfNotNull
method.

The tryAddIfNotNullmethod is one of several conditional methods that are implemented by the Collection class and
several of its subclasses. The following conditional collection methods provide a convenient and efficient way to add
or remove a value from a collection without needing to check whether the collection contains the value.

tryAddmethod

tryAdd(value: MemberType): Boolean lockReceiver, updating, abstract;

This method adds the specified value if the value is not contained in the collection. It returns true if the value was
successfully added or returns false if the collection already contains the value.

Exception Handling

Member key dictionaries with a no-duplicates constraint raise a duplicated key (1310) exception when the
collection already contains the member key or keys with a different value.

This is not a case of adding the same object again; it is an attempt to add a different object that conflicts with an
existing entry.

Applies to Version: 2020.0.01 and higher.

tryRemovemethod

tryRemove(value: MemberType): Boolean lockReceiver, updating, abstract;

This method removes the specified value if the value is contained in the collection. It returns true if the value was
successfully removed or returns false if the collection does not contain the value.

Applies to Version: 2020.0.01 and higher.

tryAddIfNotNullmethod

tryAddIfNotNull(value: MemberType): Boolean receiverByReference,
updating, final;

The tryAddIfNotNullmethod of the Collection class attempts to add the value specified by the value parameter
to the collection if the value is not null and it is not already contained in the collection.

This method returns true if the value was successfully added; otherwise it returns false.

Applies to Version: 2020.0.02 and higher.

Collection Concurrency
White Paper

Collection Concurrency 9

WP_CollConcurrency - 2022.0.03

Conditional Dictionary Methods
The tryCopy, tryCopyFrom, tryPutAtKey, tryRemoveKey, and tryRemoveKeyEntry dictionary methods are
methods defined on the Dictionary class and are implemented by the DynaDictionary, ExtKeyDictionary, and
MemberKeyDictionary classes.

tryCopymethod

tryCopy(toCollection: Collection input): Collection;

This method copies the values from the receiver dictionary to the specified target toCollection collection that are
not present in the target collection, and returns a reference to the target collection.

Notes Dictionary implementations (including theMemberKeyDictionary and DynaDictionary classes)
support copying to an ExtKeyDictionary class with compatible keys.

Exception 1312 (Class of value passed to a collection method incompatible with membership) is raised if the
member types are not compatible or exception 1000 (Invalid parameter type) for dictionary types if the keys are
not compatible.

Applies to Version: 2022.0.01 and higher.

tryCopyfrommethod

tryCopyFrom(sourceCollection: Collection) lockReceiver, updating;

This method copies the values that are not present in the receiver from the collection specified in the
sourceCollection parameter to the receiver.

Notes Dictionary implementations (including theMemberKeyDictionary and DynaDictionary classes)
support copying to an ExtKeyDictionary class with compatible keys.

Exception 1312 (Class of value passed to a collection method incompatible with membership) is raised if the
member types are not compatible or exception 1000 (Invalid parameter type) for dictionary types if the keys are
not compatible.

Applies to Version: 2022.0.01 and higher.

tryPutAtKeymethod

tryPutAtKey(keys: KeyType;
value: MemberType): Boolean abstract, lockReceiver, updating;

This method attempts to add the specified (key, value) pair to the dictionary. It returns true if the (key, value) pair
was successfully added or returns false if the dictionary already contains the (key, value) pair.

Exception Handling

Dictionaries with a no-duplicates constraint raise a duplicated key (1310) exception when the collection already
contains the member key or keys with a different value.

Applies to Version: 2020.0.01 and higher.

tryRemoveKeymethod

tryRemoveKey(keys: KeyType): MemberType abstract, lockReceiver, updating;

Collection Concurrency
White Paper

Collection Concurrency 10

WP_CollConcurrency - 2022.0.03

This method attempts to remove a single (key, value) pair with the specified key or keys from the dictionary. It
returns the member value if a single (key, value) pair was successfully removed or returns null if the dictionary
does not contain the specified key.

Note No subclass of the RootSchema Dictionary class allows the insertion of a null object reference.

Applies to Version: 2020.0.01 and higher.

tryRemoveKeyEntrymethod

tryRemoveKeyEntry(keys: KeyType;
value: MemberType): Boolean abstract, lockReceiver,

updating;

This method attempts to remove the specified (key, value) pair from the dictionary. It returns true if the (key,
value) pair was successfully removed or returns false if the dictionary does not contain the specified (key, value)
pair.

Applies to Version: 2020.0.01 and higher.

Common Exception Handling for Conditional Methods
The conditional collection and dictionary methods do all of the same precondition checks on the parameters as their
non-conditional counterparts do. When a precondition check fails, an exception is raised.

Deferred Collection Update Methods
In our Performance Design Tips White Paper, we discussed the importance of implementing an effective locking
strategy. The locking strategy should support the greatest possible degree of multithreading.

A couple of key aspects of a recommended locking strategy are that objects should:

Remain locked for the minimum time necessary

Be locked in a consistent order, to reduce deadlocks

Deferred collection updates implement both aspects by:

Capturing "conditional operations" during the processing phase of a transaction without fetching or locking the
collection

Executing deferred operations in the commit phase of the transaction

Performing updates in collection OID order to avoid deadlocks

As an example, let's look at the tryAddDeferredmethod of the Collection class, which is defined as follows.

tryAddDeferred(value: MemberType): Boolean receiverByReference, updating,
abstract;

The receiverByReferencemethod option (introduced in the Jade 2020 release) instructs JOM to not lock or fetch the
receiver.

When you execute tryAddDeferred in the processing phase of a transaction, Jade queues a request to try to add the
specified value by executing a tryAdd(value)method.

Collection Concurrency
White Paper

Collection Concurrency 11

WP_CollConcurrency - 2022.0.03

The tryAddDeferred external method implementation is passed the collection OID (instead of the object buffer) and
the value parameter. The implementation saves the collection OID, the value to be added, and the operation (in this
case , the try add action). There is no need to access the collection, so it is not fetched and it is not locked.

The implementation registers a transaction callback so that it is called to process the deferred operations during the
commit phase.

When your application logic executes a commitTransaction instruction, the commit phase of the transaction is
entered. Registered transaction callbacks are invoked, one of which takes care of executing deferred collection
operations. This is the stage where the required exclusive locks are acquired and (as mentioned) they are acquired in
collection OID order.

Use of the tryAddDeferredmethod is ideal when your intent is to add the value if it's not present in the collection. You
don't need to check whether it's present and you don't need to worry about multiple processes executing the same
operation. If several processes queue a deferred try add action, the first process to execute the try add action
achieves the intended result for all processes.

There are similar definitions for tryRemoveDeferred, tryPutAtKeyDeferred, and so on. In the processing phase, you
can call try<xxx>Deferredmethods multiple times for the same collection and even multiple times for the same
collection and value. Multiple deferred operations to a {collection, value} combination are consolidated and the
single net result is applied.

If you were to therefore execute the following sequence on the same collection, the remove obj1 cancels the add
obj1 and so no change is applied.

tryAddDeferred(obj1):

tryRemoveDeferred(obj1):

Deferred conditional collection methods are:

Declared abstract at the collection or dictionary level with specific implementations for different collection types

Supported for collection types that contain objects and for all collection instance lifetimes

Not supported for primitive arrays

Deferred execution behavior is observed for persistent collections only (not shared transient collections).

Deferred execution methods and non-deferred execution updating methods cannot be called on the same collection
within the same transaction. Attempts to do so raise exception 1471 (Incompatible deferred update); that is, collection
locking is incompatible with prior updates.

The following summarizes the deferred collection update methods and their expected behavior.

tryAddDeferredmethod

tryAddDeferred(value: MemberType): Boolean receiverByReference, updating,
abstract;

This method attempts to add the value specified by the value parameter to the collection if it is not already
present. For persistent dictionaries, a tryAdd operation is queued and executed when the database transaction
commits.

Notes:

For persistent dictionaries, the receiver is not fetched or locked.

For transient dictionaries, a tryAdd operation is executed immediately.

Collection Concurrency
White Paper

Collection Concurrency 12

WP_CollConcurrency - 2022.0.03

Returns true if a dictionary is persistent or the dictionary is transient, and the value was added; otherwise it
returns false.

Applies to Version: 2020.0.01 and higher.

tryPutAtKeyDeferredmethod

tryPutAtKeyDeferred(keys: KeyType;
value: MemberType): Boolean receiverByReference, updating;

If the receiver has a persistent lifetime:

The receiver is not fetched or locked.

A request to execute a tryPutAtKey operation is queued and the method returns true.

The queued tryPutAtKey operation is executed when the transaction successfully commits.

If the receiver has a non-persistent lifetime, the method is executed directly by calling tryPutAtKey.

Applies to Version: 2020.0.01 and higher.

tryRemoveDeferredmethod

tryRemoveDeferred(value: MemberType): Boolean receiverByReference, updating,
abstract;

If the receiver has a persistent lifetime:

The receiver is not fetched or locked.

A request to execute a tryRemove operation is queued and the method returns true.

The queued tryRemove operation is executed when the transaction successfully commits.

If the receiver has a non-persistent lifetime, the method is executed directly by calling tryRemove.

Applies to Version: 2020.0.01 and higher.

tryRemoveIfNotNullmethod

tryRemoveIfNotNull(value: MemberType): Boolean abstract,
receiverByReference, updating;

The tryRemoveIfNotNullmethod of the Collection class attempts to remove the value specified in the value
parameter from the collection if it is not null and is contained in the collection.

It returns true if the value was successfully removed; otherwise it returns false.

Applies to Version: 2020.0.02 and higher.

tryRemoveKeyDeferredmethod

tryRemoveKeyDeferred(keys: KeyType): MemberType, abstract,
receiverByReference, updating;

If the receiver has a persistent lifetime:

The receiver is not fetched or locked.

A request to execute a tryRemoveKey operation is queued and the method returns true.

Collection Concurrency
White Paper

Collection Concurrency 13

WP_CollConcurrency - 2022.0.03

The queued tryRemoveKey operation is executed when the transaction successfully commits.

If the receiver has a non-persistent lifetime, the method is executed directly by calling tryRemoveKey.

Applies to Version: 2020.0.01 and higher.

tryRemoveKeyEntryDeferredmethod

tryRemoveKeyEntryDeferred(keys: KeyType;
value: MemberType): Boolean abstract,

receiverByReference, updating;

If the receiver has a persistent lifetime:

The receiver is not fetched or locked.

A request to execute a tryRemoveKeyEntry operation is queued and the method returns true.

The queued tryRemoveKeyEntry operation is executed when the transaction successfully commits.

If the receiver has a non-persistent lifetime, the method is executed directly by calling tryRemoveKeyEntry.

Applies to Version: 2020.0.01 and higher.

Deferred Collection Update Exception Handling
When invoked in the processing phase of a transaction, the deferred conditional collection and dictionary methods do
all the same precondition checks on the parameters as their existing non-deferred counterparts do. When a
precondition check fails, an exception is raised.

Precondition checks are repeated when deferred operations are applied in the commit phase. The likelihood of the
precondition checks failing in the commit phase is low. For example, with member key dictionaries, it won't be possible
to encounter any parameter precondition check failure because the object being added is locked and in the remove
case, we do not require that the object being removed exists.

Unlike update locks, there is no window where an acquired shared lock is dropped and a new exclusive lock is
acquired, which means deferred updates are not susceptible to intervening update (1146) exceptions.

Like update locks, deferred operations must acquire an exclusive lock on the target collection prior to committing,
which means object locked (1027) and deadlock (1081) exceptions can still occur. How these are handled by the
application is much the same as update lock scenarios.

Object locked exceptions

Lock timeouts are reported as normal object locked (1027) exceptions. This allows exception handlers to
determine the object involved, to retry the lock, and to abort or continue as required. An exclusive lock should be
retried for the object involved. When a lock exception is continued, the commit action carries on allowing further
deferred operations to be processed. If the lock exception handler attempts to continue without successfully
retrying the lock, a lock cannot be continued (1225) exception is raised. If the lock exception is not successfully
continued, the transaction will be automatically aborted.

Deadlock exceptions

Deadlock (1081) exceptions can be raised with the usual deadlock exception information. This exception will
trigger a transaction abort.

Collection Concurrency
White Paper

Collection Concurrency 14

WP_CollConcurrency - 2022.0.03

Deferred Update Visibility
A potential downside to deferred operations you need to consider is that the effects are not visible to the calling
process until after the enclosing transaction has committed. In the Jade 2022 release, we provided collection query
methods that take into account the net effect of deferred operations for the process. The <xxx>WithDeferred
methods are summarized below.

getAtKeyWithDeferredmethod

getAtKeyWithDeferred(keys: KeyType): MemberType;

The getAtKeyWithDeferredmethod of the Dictionary class returns a reference to an object in the receiver
collection at the specified keys parameter value, taking account of deferred operations visible to the calling
process. If an entry with the specified keys parameter value is not found, the method returns a null value.

Applies to Version: 2022.0.01 and higher.

includesKeyWithDeferredmethod

includesKeyWithDeferred(keys: KeyType): Boolean;

The includesKeyWithDeferredmethod of the Dictionary class returns true if the receiver contains an entry at
the specified keys parameter value, taking account of deferred operations visible to the calling process. If an
entry with the specified keys parameter value is not found, the method returns false.

Applies to Version: 2022.0.01 and higher.

includesWithDeferredmethod

includesWithDeferred(value: MemberType): Boolean;

The includesWithDeferredmethod of the Collection class returns true if the collection contains the object
specified in the value parameter, taking account of deferred operations visible to the process. This method
returns false if a null reference is passed to the value parameter. For a dictionary, the method returns true if the
object is contained in the dictionary at its current key value, taking account of deferred operations visible to the
process.

Applies to Version: 2022.0.01 and higher.

Deferred Inverse Maintenance
Deferred inverse maintenance covers the ability to specify that a collection inverse is maintained using a deferred
execution strategy at an individual property level. Deferred execution is applicable to the Automatic andMan/Auto
update modes on the Define Reference dialog, resulting in two additional update modes.

automaticDeferred

manualAutomaticDeferred

The following Process instance methods are provided to support enabling or disabling deferred execution for all
inverse collection properties with the Automatic orMan/Auto option set for the current process.

useDeferredInverseMaintenancemethod

useDeferredInverseMaintenance(enable: Boolean): Boolean, updating;

Collection Concurrency
White Paper

Collection Concurrency 15

WP_CollConcurrency - 2022.0.03

When called with the enable parameter set to true, this method enables the use of a deferred execution strategy
for all automatically maintained collection properties for the current process, overriding the execution strategy for
each property. When called with the enable parameter set to false, this method restores the schema-defined
behavior for each property and returns the value of the prior enabled state.

Use Case

Evaluating, testing, and benchmarking the impact of using a deferred execution strategy before permanently
applying its use in the schema.

Applies to Version: 2020.0.01 and higher.

overrideDeferredInverseMaintenancemethod

overrideDeferredInverseMaintenance(disable: Boolean): Boolean, updating;

When called with the disable parameter set to true, this method disables the use of a deferred execution
strategy for all automatically maintained collection properties for the current process, overriding the execution
strategy for each property. When called with the disable parameter set to false, this method restores the
schema-defined behavior for each property and returns the value of the prior disabled state.

Use Case

Deferred execution has been specified at the property level in the schema because this was deemed to be
appropriate for standard online processing. However, there is also a need to avoid the impact (particularly
memory consumption) from a batch processing or bulk data load workload that is known to generate many
collection updates. The overrideDeferredInverseMaintenancemethod provides a means to disable the
schema-defined behavior for the duration of the batch or bulk load execution window.

Applies to Version: 2020.0.01 and higher.

Implementing Collection Concurrency
You can make use of any of the methods discussed in this document in your Jade application logic.

When considering the use of deferred update methods, it is important to check whether your logic calls methods that
read collections in the same transaction that updates them. This is because reading and updating collections in the
same transaction statement is prone to encountering deadlocks due to the implicit locking performed by Jade. For
details, see the deadlock scenario described under "Conditional Collection Methods", earlier in this document.

On the other hand, if you have coded an exclusive lock before reading a collection within transaction state as a
deadlock avoidance measure, you will need to rework this logic before you start to make effective use of deferred
collection updates. This is best achieved by doing collection lookups in a read and validation phase before entering
transaction state where you do your update processing.

The deferred execution model is a good choice when applied to collections that are updated but not read within the
transaction. Here are some pros and cons to consider.

Pros

The proposed methods can be called at any point within the transaction and since a deferred execution
does not lock the collection at all, it means multiple processes can execute the deferred operations
concurrently, whereas only one process at a time can hold an update lock on a given collection.

If application logic does not read the collection in the updating transaction, a shared to exclusive lock
upgrade does not happen.

Collection Concurrency
White Paper

Collection Concurrency 16

WP_CollConcurrency - 2022.0.03

Con

The deferred add and remove operations are not visible to the calling process until after the enclosing
transaction has committed. This is mitigated in Jade version 2022.0.01 by the includesWithDeferred,
getAtKeyWithDeferred, and includesKeyWithDeferredmethods.

When considering or implementing the deferred collection updates feature, utilize the Process class
useDeferredInverseMaintenancemethod to facilitate the evaluation, testing, and benchmarking of the deferred
execution strategy's impact before making a permanent commitment in a schema or code.

Note We are actively working on an enhancement, which will allow collection query methods to take into account
the effects of deferred operations by default. We are aiming to make this enhancement available in a Jade 2022
feature release.

If, after implementing deferred collection updates, an increased memory consumption becomes an issue for certain
workloads, consider overriding the deferred inverse maintenance strategy for automatically maintained collection
properties. This could help avoid the impact, especially on memory consumption, caused by numerous collection
updates during heavy batch or bulk data workloads. The overrideDeferredInverseMaintenancemethod is available
for this purpose.

Deferred inverse maintenance for specific references is configured on the Define Reference dialog of the reference,
as shown in the following example.

For more details, see "Defining an Inverse Reference Property", in Chapter 4 of the Development Environment User's
Guide.

Collection Concurrency
White Paper

Collection Concurrency 17

WP_CollConcurrency - 2022.0.03

.NET API Collection Concurrency Methods
The collection concurrency methods are also provided in the Jade .NET API, with subtle differences in some cases to
conform to a .NET idiom.

Tip For documentation about the .NET classes and other components, including those for collection concurrency,
that comprise the Jade .NET API, see the JadeDotNetAPI.chm file, which is located in the installed Jade
documentation directory (for example, C:\Jade\JADE docs\documentation).

TryAddmethod

public bool TryAdd(
T item

)

This method attempts to add the specified item to the collection. It returns true if the item was successfully added
or returns false if the collection already contains the item.

Namespace: JadeSoftware.Joob

Applies to Version: 2020.0.01 and higher

TryRemovemethod

public TValue TryRemove(
TKey key

)

This method attempts to remove the specified key from the collection. It returns true if the key was successfully
removed or returns false if the collection does not contain the key.

This method also supports the functionality of the tryRemoveKey and tryRemoveKeyEntry Jade methods.

tryRemoveKeymethod

This method attempts to remove a single (key, value) pair with the specified key or keys from the dictionary.
It returns the member value if a single (key, value) pair was successfully removed or returns null if the
dictionary does not contain the specified key.

Note No subclass of the RootSchema Dictionary class allows the insertion of a null object reference.

tryRemoveKeyEntrymethod

This method attempts to remove the specified (key, value) pair from the dictionary. It returns true if the
(key, value) pair was successfully removed or returns false if the dictionary does not contain the specified
(key, value) pair.

Namespace: JadeSoftware.Joob

Applies to Version: 2020.0.01 and higher

TryPutAtKeymethod

public virtual bool TryPutAtKey(
TKey key,
TValue value

)

Collection Concurrency
White Paper

Collection Concurrency 18

WP_CollConcurrency - 2022.0.03

This method attempts to add the specified (key, value) pair to the dictionary if it is not already present. It returns
true if the (key, value) pair was successfully added or returns false if the dictionary already contains the (key,
value) pair.

Namespace: JadeSoftware.Joob

Applies to Version: 2020.0.01 and higher

Exception Handling

Dictionaries with a no-duplicates constraint raise a duplicated key (1310) exception when the collection already
contains the member key or keys with a different value.

TryAddDeferredmethod

bool TryAddDeferred(
JoobObject item

)

This method attempts to add the value specified by the item parameter to the collection if it is not already
present. For persistent collections, a TryAdd operation is queued and executed when the database transaction
commits. For transient collections, the attempt is executed immediately.

Notes:

For persistent collections, the receiver is not fetched or locked.

For transient collections, a TryAdd operation is executed immediately.

Returns true if the item is persistent, or was transient and added to the collection; otherwise it returns false.

Namespace: JadeSoftware.Joob

Applies to Version: 2020.0.01 and higher

TryAddIfNotNullmethod

bool TryAddIfNotNull(
JoobObject item

)

This method attempts to add the specified item if it is not present in the collection. For persistent collections, the
attempt is queued and executed when the transaction commits. For transient collections, the attempt is executed
immediately. This method returns true if the item was successfully added; otherwise it returns false.

Namespace: JadeSoftware.Joob

Applies to Version: 2020.0.02 and higher

TryPutAtKeyDeferredmethod

public virtual bool TryPutAtKeyDeferred(
TKey key,
TValue value

)

Collection Concurrency
White Paper

Collection Concurrency 19

WP_CollConcurrency - 2022.0.03

This method attempts to add the specified (key, value) pair to the dictionary if it is not already present. For
persistent dictionaries, the attempt is queued and executed when the transaction commits. For transient
dictionaries, the attempt is executed immediately.

If the receiver has a persistent lifetime:

The receiver is not fetched or locked.

A request to execute a TryPutAddKey operation is queued and the method returns true.

The queued TryPutAddKey operation is executed when the transaction successfully commits.

If the receiver has a non-persistent lifetime, the method is executed directly by calling TryPutAddKey.

Namespace: JadeSoftware.Joob

Applies to Version: 2020.0.01 and higher

TryRemoveDeferredmethod

public bool TryRemoveDeferred(
TKey key,
TValue value

)

This method attempts to remove the specified (key, value) pair if it is present. For persistent dictionaries, the
attempt is queued and executed when the transaction commits. For transient dictionaries, the attempt is
executed immediately. The method returns true if the dictionary is persistent or if the value was removed from
the dictionary; otherwise it returns false.

If the receiver has a persistent lifetime:

The receiver is not fetched or locked.

A request to execute a TryRemove operation is queued and the method returns true.

The queued TryRemove operation is executed when the transaction successfully commits.

If the receiver has a non-persistent lifetime, the method is executed directly by calling TryRemove.

This method also supports the functionality of the tryRemoveKeyDeferred and tryRemoveKeyEntryDeferred
Jade methods.

tryRemoveKeyDeferredmethod

If the receiver has a persistent lifetime:

The receiver is not fetched or locked.

A request to execute a tryRemoveKey operation is queued and the method returns true.

The queued tryRemoveKey operation is executed when the transaction successfully commits.

If the receiver has a non-persistent lifetime, the method is executed directly by calling tryRemoveKey.

Collection Concurrency
White Paper

Collection Concurrency 20

WP_CollConcurrency - 2022.0.03

tryRemoveKeyEntryDeferredmethod

If the receiver has a persistent lifetime:

The receiver is not fetched or locked.

A request to execute a tryRemoveKeyEntry operation is queued and the method returns true.

The queued tryRemoveKeyEntry operation is executed when the transaction successfully commits.

If the receiver has a non-persistent lifetime, the method is executed directly by calling
tryRemoveKeyEntry.

Namespace: JadeSoftware.Joob

Applies to Version: 2020.0.01 and higher

TryRemoveIfNotNullmethod

public bool TryRemoveIfNotNull(
T item

)

The TryRemoveIfNotNullmethod of the Collection class attempts to remove the specified item if it is not null
and it is present in the collection. It returns true if the item was successfully removed; otherwise it returns false.

Namespace: JadeSoftware.Joob

Applies to Version: 2020.0.02 and higher

UseDeferredInverseMaintenancemethod

public bool UseDeferredInverseMaintenance(
bool enable

)

When called with the enable parameter set to true, this method enables the use of a deferred execution strategy
for all automatically maintained collection properties for the current process, overriding the execution strategy for
each property. When called with the enable parameter set to false, this method restores the schema-defined
behavior for each property and returns the value of the prior enabled state.

Use Case

Evaluating, testing, benchmarking the impact of using a deferred execution strategy before permanently
applying its use in the schema.

Namespace: JadeSoftware.Joob.Management

Applies to Version: 2020.0.01 and higher

OverrideDeferredInverseMaintenancemethod

public bool OverrideDeferredInverseMaintenance(
bool disable

)

When called with the disable parameter set to true, this method disables the use of a deferred execution
strategy for all automatically maintained collection properties for the current process, overriding the execution
strategy for each property. When called with the disable parameter set to false, this method restores the
schema-defined behavior for each property and returns the value of the prior disabled state.

Collection Concurrency
White Paper

Collection Concurrency 21

WP_CollConcurrency - 2022.0.03

Use Case

Deferred execution has been specified at the property level in the schema because this was deemed to be
appropriate for standard online processing. However, there is also a need to avoid the impact (particularly
memory consumption) from a batch processing or bulk data load workload that is known to generate many
collection updates. TheOverrideDeferredInverseMaintenancemethod provides a means to disable the
schema-defined behavior for the duration of the batch or bulk load execution window.

Namespace: JadeSoftware.Joob.Management

Applies to Version: 2020.0.01 and higher

Benchmarking
Benchmarking of deferred operations was performed against a sizeable database with collections of a size between 1
million and 2 million entries using a 10 millisecond (10ms) workload. Batteries of tests were run, simulating both
interactive user load and batch/bulk load processing. The testing was done on a server running Windows Server 2016,
with 8 logical CPUs, so the server was running above 50 percent (%) CPU during some of the tests, especially when
deferring updates.

Benchmark Scenarios
Benchmark scenarios were run to gauge improvements in user response time for interactive workloads and in
throughput for batch workloads. The tables in "Benchmark Results", later in this document, illustrate that
improvements were achieved in both scenarios.

The sample user transaction for the interactive workload benchmark scenario is described in the following table.

Interactive Workload Transaction Duration (ms)

Do work 10

Shared lock/unlock a collection

Work 10

beginTransaction;

Update the collection

Work 10

commitTransaction;

The work in this scenario is a pure CPU load (calculations), to simulate doing other processing. The shared lock and
unlock of a collection is to simulate accessing a collection partway through the transaction. The same collection is
updated during the persistent transaction, so the shared locks are sometimes queued. The collection is locked early in
the database transaction, so the exclusive locks are held for a while. This is the primary use case for this feature. The
performance characteristics are the same whether the tryAddDeferred and tryRemoveDeferredmethods are used
or inverses are changed while using the process.useDeferredInverseMaintenancemethod call.

For the interactive workload scenario, there are five fat client users, who perform these transactions in a loop. Each
user accesses randomly selected customer objects in a class. There is a pair of transactions; the first adds the object
into the collection and the second removes it from the collection. The add and remove transactions are both in the
format shown above, and the performance of each is virtually identical.

Collection Concurrency
White Paper

Collection Concurrency 22

WP_CollConcurrency - 2022.0.03

Amulti-worker bulk load scenario was simulated by having five fat clients performing transactions containing many
collection updates. The sample user transaction for the batch workload benchmark scenario is described in the
following table.

Batch Workload Transaction Details

reserveLock For non-deferred transactions - required to prevent deadlocks

beginTransaction;

Update 100 objects with inverse 10ms

commitTransaction;

As with the online simulation, the work in this scenario is a pure CPU load (calculations), to simulate doing other
processing. The reserveLock is needed if setting an inverse without the deferred updates, to prevent deadlocks. This
was not used with deferred updates, as one of the design features is intended to help avoid deadlocks. The
reserveLock was not required for the explicit add and remove test, as each user locked the collections in the same
sequence. Again, the performance characteristics are virtually the same whether the tryAddDeferred and
tryRemoveDeferredmethods are used or inverses are changed while using the
process.useDeferredInverseMaintenancemethod call.

As for the interactive workload scenario, there are five fat client users, who perform these transactions in a loop. Each
user accesses selected customer objects in a class. There is a pair of transactions; the first adds the object into the
collections and the second removes it from the collections. The add and remove transactions are both in the format
shown in the previous table.

Benchmark Results
This section covers the benchmark results for the interactive workload and batch workload test cases.

The benchmark results for the interactive workload test case are listed in the following table.

Interactive Workload Test Case
Non-Deferred
Elapsed Time (ms)

Deferred Elapsed
Time (ms)

Change
(%)

Five users 127 72 43

Five users, with no initial read (shared lock) access 110 68 38

Five users, collection updated at end of transaction 71 70 1.41

Single user 60 61 -1.67

The value in the Change column is expressed as the percentage of improvement in performance.

For:

Five users, non-deferred elapsed time was 127ms, deferred elapsed time was 72ms, indicating a 43%
improvement with deferral.

Five users with no initial read access (shared lock), non-deferred time was 110ms, deferred time was 68ms,
showing a 38% improvement with deferral.

Five users with a collection update at the end of the transaction, non-deferred time was 71ms, deferred time was
70ms, resulting in a marginal 1.41% change.

A single user, non-deferred time was 60ms, deferred time was 61ms, indicating a slight -1.67% change.

Collection Concurrency
White Paper

Collection Concurrency 23

WP_CollConcurrency - 2022.0.03

The benchmark results for the batch workload test case are listed in the following table.

Batch Workload Test Case
Non-Deferred Elapsed
Time (seconds)

Deferred Elapsed Time
(seconds)

Change
(%)

Five processes, four collections updated 7.2 2.3 68

Five processes, three collections updated 5.6 2.1 62.5

The value in the Change column is expressed as the percentage of improvement in performance.

With:

Five processes and four collections updated, non-deferred time was 7.2 seconds, deferred time was 2.3
seconds, reflecting a significant 68% improvement with deferral.

Five processes and three collections updated, non-deferred time was 5.6 seconds, deferred time was 2.1
seconds, showing a 62.5% improvement with deferral.

Collection Concurrency
White Paper

Collection Concurrency 24

WP_CollConcurrency - 2022.0.03

Appendix A Tips and Techniques

Your application logic may be structured so that it's not possible to just flick a switch and start using a deferred
collection update strategy for all your collection updates without reworking existing logic.

It is always useful to look at your current locking strategy with a view to taking advantage of deferred collection
updates.

Locking Strategy
You should establish an effective locking strategy as part of your system design for every multiuser application.

An effective locking strategy should meet the following general objectives, although in some circumstances these
objectives can conflict. When this occurs, you should typically aim to maximize multithreading over other objectives.

The locking strategy should support the greatest possible degree of multithreading (unless you are effectively in a
dedicated single user mode; for example, where a solitary batch process is running offline).

Objects should remain locked for the minimum time necessary.

Objects (and classes) should be locked in a consistent order, to reduce deadlocks.

Objects that are going to be updated should be locked as soon as that is known, with a reserve lock, update
lock, or exclusive lock.

For more details about designing and building an effective locking strategy, read Chapter 6, "Jade Locking", in the
Developer's Reference, and "Locking" in Part 4, "Design Considerations", in the Erewhon Demonstration System
Reference included with the Example schemas and also available on the Jade website.

WP_CollConcurrency - 2022.0.03

Deadlock Exceptions and How to Avoid Them
A deadlock is a situation where one or more processes wait indefinitely for each other to release locks they need to be
able to proceed. If left unresolved, none of the waiting processes would progress, leading to a standstill or impasse.

Consider the example in the following diagram, which shows what happens when object updates and their required
locks overlap in a specific manner in transaction state.

In the previous example, Process 1 acquires an exclusive lock on account instance a1 to update it. Subsequently,
Process 2 updates and acquires an exclusive lock on customer instance c1. When Process 1 updates customer
instance c1, it needs to acquire an exclusive lock and must wait on Process 2 to release its lock. If Process 2 then
updates account instance a1, it needs to acquire an exclusive lock on a1. If we were to allow Process 2 to wait for
Process 1, both processes would end up waiting for each other to release their locks and both processes would come
to a standstill.

JOM doesn't allow the deadlock to manifest. As soon as JOM identifies a deadlock situation, the process that
triggered the deadlock is given a deadlock exception and the action is aborted, which ultimately means the enclosing
database transaction is aborted. In the previous example, Process 2 is given the deadlock exception.

As another example of a deadlock situation, if two processes have shared locks on the same object and they both try
to upgrade the lock to reserve or exclusive, a deadlock occurs. In this case, the second process to attempt the
upgrade receives the deadlock exception. If two processes have shared locks on the same object and they both try to
upgrade the lock to update, a deadlock will not occur. This is because the shared lock is released before the update
lock is requested, even if in transaction state.

Collection Concurrency
White Paper

Appendix A Tips and Techniques 26

WP_CollConcurrency - 2022.0.03

The more deadlocks you have occurring in your system, the greater the impact will be on the performance of the
system, let alone the irritation to the users. It is therefore sensible to take practical steps to reduce the number of
deadlocks that occur. There are a number of simple steps to take to assist in this; for example:

Control the order in which classes are locked. For example, always lock the customer first, then lock the
customer's accounts, and then lock the customer account's transactions.

This is probably best enforced by encapsulating the locking activity.

Within a class, control the order in which objects are locked. For example, when locking multiple customers,
always try to lock in one specific order (for example, the customer number order).

You can use the Process::setPersistentDeadlockPrioritymethod to control which user will receive the deadlock
exception. You could give higher priority to online users, for example, so that background reports receive the
deadlocks or give higher priority to the background reports so that they don't hold locks as long.

If all processes involved in a deadlock have the same deadlock priority, the exception is usually given to the process
whose action caused the deadlock.

You can set the DoubleDeadlockException parameter to true in the [JadeServer] section of the Jade initialization
file to help diagnose deadlocks. With this setting, two of the processes involved receive the deadlock exception, which
enables you to get two stack dumps to diagnose the contention.

Collection Concurrency
White Paper

Appendix A Tips and Techniques 27

	Collection Concurrency
	Background to Collection Locking Behavior
	Implicit Object Locking
	Implicit Collection Locking
	Releasing Locks
	Transaction State
	Load State

	Transaction Phases
	Processing Phase
	Commit Phase

	Collection Concurrency Feature Summary
	Deferred Collection Methods
	Deferred Inverse Maintenance

	Collection Concurrency Feature Details
	Conditional Collection Methods
	Conditional Dictionary Methods
	Common Exception Handling for Conditional Methods
	Deferred Collection Update Methods
	Deferred Collection Update Exception Handling
	Deferred Update Visibility
	Deferred Inverse Maintenance

	Implementing Collection Concurrency
	.NET API Collection Concurrency Methods
	Benchmarking
	Benchmark Scenarios
	Benchmark Results

	Appendix A Tips and Techniques
	Locking Strategy
	Deadlock Exceptions and How to Avoid Them

