
Copyright©2016 Jade Software Corporation Limited. All rights reserved.

Web Services Security
White Paper

 VERSION 7.1

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2016 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.

WP_WebServicesSecurity - 7.1

Contents

Contents iii

Web Services Security 4
UsernameToken Profile 4

Namespaces 4
User Names and Passwords 5
XML Syntax 5
Examples 6

Security Class Library 7
Security Classes 7

Jadwssec Class 7
JadeSecurityToken Class 8
JadeUsernameToken Class 10
JadeWSAddressingHeader Class 13
JadeWSTimestampHeader Class 14
JadeWebServicesSecurity Class 15

Example of Use 16
Import the Library 16
Create a Package 19
Import the Package 20
Create a Web Service 21
Consuming the Web Service 21
Generating Security Headers (Client) 23
Processing Security Headers (Service) 24

Sample SOAP Message 29

WP_WebServicesSecurity - 7.1

Web Services Security

This white paper discusses the use of a .NET class library to implement Web services security in JADE. The initial
implementation of this class library supports only the use of UsernameToken profile.

The implementation follows the specifications as set out by the OASIS Standard Specification (1 February 2006),
Web Services Security UsernameToken Profile 1.1. This specification describes how a Web service consumer can
supply a UsernameToken as a means of identifying the requestor by "username" and optionally using a
password (or shared secret, or password equivalent) to authenticate that identity to the Web service provider.

For more details, see the following subsections.

UsernameToken Profile
This section contains the following topics.

Namespaces

User Names and Passwords

XML Syntax

Examples

Namespaces
Namespace URIs (of the general form "some-URI") represents some application-dependent or context-dependent
URI as defined in RFC 3986 [URI]. This specification is designed to work with the general SOAP [SOAP11,
SOAP12] message structure and message processing model, and should be applicable to any version of SOAP.
The current SOAP 1.1 namespace URI is used here to provide detailed examples.

The namespaces used in this document are shown in the following table.

Prefix Namespace

S11 http://schemas.xmlsoap.org/soap/envelope/

S12 http://www.w3.org/2003/05/soap-envelope

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity- secext-1.0.xsd

wsse11 http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity- utility-1.0.xsd

The Oasis Web Services Security UsernameToken Profile 1.0 document that provides information about the
#PasswordDigest, #PasswordText, #UsernameToken URI fragments referred to in this document is available
at:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0.pdf

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

WP_WebServicesSecurity - 7.1

User Names and Passwords
The <wsse:UsernameToken> element is introduced in SOAP Message Security documents as a way of
providing a user name.

Within a <wsse:UsernameToken> element, a <wsse:Password> element can be specified. Passwords of type
PasswordText and PasswordDigest are not limited to actual passwords, although this is a common case. Any
password equivalent such as a derived password or S/KEY (one-time password) can be used. Having a type of
PasswordText merely implies that the information held in the password is "in the clear", as opposed to holding a
"digest" of the information. For example, if a server does not have access to the clear text of a password but it does
have the hash, the hash is considered a password equivalent and can be used anywhere where a password is
indicated in this specification.

Passwords of type PasswordDigest are defined as being the Base64-encoded, SHA-1 hash value, of the
UTF8-encoded password (or equivalent). However, unless this digested password is sent on a secured channel
or the token is encrypted, the digest offers no real additional security over use ofwsse:PasswordText.

Two optional elements are introduced in the <wsse:UsernameToken> element to provide a counter-measure for
replay attacks: <wsse:Nonce> and <wsu:Created>. A nonce is a random value that the sender creates to include
in each UsernameToken that it sends. Although using a nonce is an effective counter-measure against replay
attacks, it requires a server to maintain a cache of used nonces, consuming server resources. Combining a nonce
with a creation timestamp has the advantage of allowing a server to limit the cache of nonces to a "freshness" time
period, establishing an upper bound on resource requirements. If either or both of <wsse:Nonce> and
<wsu:Created> are present, they must be included in the digest value, as follows.

Password_Digest = Base64 (SHA-1 (nonce + created + password))

This concatenates the nonce, creation timestamp, and the password (or shared secret or password equivalent),
digests the combination using the SHA-1 hash algorithm, then includes the Base64 encoding of that result as the
password (digest). This helps to obscure the password and offers a basis for preventing replay attacks.

For Web service providers to effectively thwart replay attacks, three counter measures are recommended. It is
recommended that:

Web service providers reject any UsernameToken not using both nonce and creation timestamps.

Web service providers provide a timestamp "freshness" limitation, and that any UsernameToken with "stale"
timestamps be rejected.

As a guideline, a value of five minutes can be used as a minimum to detect, and thus reject, replays.

Used nonces be cached for a period at least as long as the above timestamp freshness limitation period, and
that UsernameTokens with nonces that have already been used (and are thus in the cache) be rejected.

Note that PasswordDigest can be used only if the plain text password (or password equivalent) is available to
both the requestor and the recipient.

XML Syntax
The following illustrates the XML syntax of this element.

<wsse:UsernameToken wsu:Id="Example-1">
<wsse:Username> ... </wsse:Username>
<wsse:Password Type="..."> ... </wsse:Password>
<wsse:Nonce EncodingType="..."> ... </wsse:Nonce>
<wsu:Created> ... </wsu:Created>

</wsse:UsernameToken>

Web Services Security
White Paper

Web Services Security 5

WP_WebServicesSecurity - 7.1

The following describes the attributes and elements listed in the above example.

wsse:Username

Required, specifies a user name.

wsse:Password

Optional, provides password information. This element should be passed only when using a secure transport
(such as https) or if the token itself is encrypted.

Password Type

This optional attribute specifies the type of password and can take one of two values.

PasswordText (default)

The actual password for the user name, a password hash, or derived password. This type should be used
when hashed password equivalents do not rely on nonce or creation timestamps, or a digest algorithm other
than SHA1 is used.

PasswordDigest

The digest of the password using the above password algorithm.

wsse:Nonce

Optional, specifies a random nonce. Each message that includes a nonce must provide a unique nonce
value.

Encoding Type

This optional attribute specifies the encoding type of the nonce. If not specified, Base64 encoding is used.

wsu:Created

This optional element specifies a timestamp used to indicate the creation time.

Examples
The following example illustrates the use of this element. In this example, the password is sent as clear text and
therefore this message should be sent over a confidential channel.

<S11:Envelope xmlns:S11="..." xmlns:wsse="...">
<S11:Header>

...
<wsse:Security>

<wsse:UsernameToken>
<wsse:Username>wilbur</wsse:Username>
<wsse:Password>cheese</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>
...

</S11:Header>
...

</S11:Envelope>

Web Services Security
White Paper

Web Services Security 6

WP_WebServicesSecurity - 7.1

The following example illustrates using a digest of the password along with a nonce and a creation timestamp.

<S11:Envelope xmlns:S11="..." xmlns:wsse="...">
<S11:Header>

...
<wsse:Security>

<wsse:UsernameToken>
<wsse:Username>wilbur</wsse:Username>
<wsse:Password Type="#PasswordDigest">

weYI3nXd8LjMNVksCKFV8t3rgHh3Rw==
</wsse:Password>
<wsse:Nonce>WScqanjCEAC4mQoBE07sAQ==</wsse:Nonce>
<wsu:Created>2003-07-16T01:24:32Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
...

</S11:Header>
...

</S11:Envelope>

Security Class Library
The class library is called jadwssec and is supplied as a .NET assembly. In order to use it, you need to import this
library into your system.

As the library is likely to be required by more than one schema, you may want to import it into one schema, create
a package with the required classes, and then import this package into the schemas that need this feature.

For more details, see the following subsections.

Security Classes
The import generates six classes. Note that these are the default names, which you can change on import. The
discussion in the following subsections is based on the default names.

For more details, see the following subsections.

Jadwssec Class
The Jadwssec class is an abstract class that groups together all of the generated .NET classes corresponding to
the assembly to which they belong. This class also holds the public constants and enums that are defined in the
library. Note that enums are generated as class constants. The following constants are defined in this class.

Name Type Value Description

AssemblyName String jadwssec,
Version=1.0.0.0,
Culture=neutral,
PublicKeyToken=null

Assembly Details

EncodingType_Base64Binary Integer 0 Nonce Encoding Base64 (default)

EncodingType_HexBinary Integer 1 Nonce Encoding Binary

PasswordOption_SendHashed Integer 0 Password Type Digest (default)

Web Services Security
White Paper

Web Services Security 7

WP_WebServicesSecurity - 7.1

Name Type Value Description

PasswordOption_SendNone Integer 1 Password Type None

PasswordOption_SendPlainText Integer 2 Password Type Plain Text

ProtectionType_Encrypt Integer 2 Encrypt Body

ProtectionType_EncryptAndSign Integer 4 Encrypt and Sign Body

ProtectionType_None Integer 0 No Encryption or Signing (default)

ProtectionType_Sign Integer 1 Sign Body

ProtectionType_SignAndEncrypt Integer 3 Sign and Encrypt Body

JadeSecurityToken Class
The JadeSecurityToken class is the abstract superclass for all security token classes. The following properties
are defined in this class.

Name Type Description

clearPassword String The clear text password to be used for signature and encrypting messages

protectionOrder Integer Message protection type, which must be one of the ProtectionType constants
defined in the constants table above

The following methods are defined for this class.

decryptXml
This method is called to decrypt an encrypted SOAP message.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to decrypt

Returns

A StringUtf8 string representing the decrypted SOAP message.

Remarks

Only the <body> of the SOAP message is decrypted.

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

incomingMessage := unt.decryptXml(incomingMessage.StringUtf8).String;

encryptXml
This method is called to encrypt a SOAP message.

Web Services Security
White Paper

Web Services Security 8

WP_WebServicesSecurity - 7.1

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to encrypt

Returns

A StringUtf8 string representing the decrypted SOAP message.

Remarks

Only the <body> of the SOAP message is encrypted. This routine does not generate <EncryptedKey> tags nor
does it handle multiple <EncryptedData> tags in the <body>.

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

outString := unt.encryptXml(inString);

getXml
This method is called to serialize the security token into XML. This is an abstract method. Its implementation is
token-dependent.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to which to add the XML

Returns

A StringUtf8 string representing the SOAP message with the serialized security token.

Remarks

Only the <body> of the SOAP message is encrypted. This routine does not generate <EncryptedKey> tags nor
does it handle multiple <EncryptedData> tags in the <body>.

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

outString := unt.getXml(inString);

signXml
This method is called to sign a SOAP message. The routine will sign the <body> tag. In addition, it will also sign
the addressing and timestamp tags, if present.

Web Services Security
White Paper

Web Services Security 9

WP_WebServicesSecurity - 7.1

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to sign

Returns

A StringUtf8 string representing the signed SOAP message.

Remarks

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

outString := unt.signXml(inString);

verifySignature
This method is called to verify the signature of a SOAP message. An exception is raised if the signature
verification fails.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to verify

Returns

Nothing. An exception is raised if signature verification fails.

Remarks

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

unt.verifySignature(inString);

JadeUsernameToken Class
The JadeUsernameToken class represents the UserNameToken profile. The following methods are defined for
this class.

createDotNetObject_1
This method is used to create a JadeUsernameToken instance.

Web Services Security
White Paper

Web Services Security 10

WP_WebServicesSecurity - 7.1

Parameters

Name Type Description

username StringUtf8 The SOAP message to verify.

password StringUtf8 The clear password to use for the verification.

passType StringUtf8 Specify the password type, which can be one of the following.

PasswordOption_SendHashed

PasswordOption_SendPlain

PasswordOption_SendNone

Default is PasswordOption_SendHashed.

encType StringUtf8 Specify the encoding type, which can be one of the following.

EncodingType_Base64Binary

EncodingType_HexBinary

Default is EncodingType_Base64Binary.

Returns

Nothing.

Remarks

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

vars
unt: JadeUsernameToken;

begin
create unt;
unt.createDotNetObject_1('wilbur',

'password',
unt.PasswordOption_SendHashed,
0);

getPassword
This method will return the password on a JadeUsernameToken instance.

Parameters

None.

Returns

The password associated with the JadeUsernameToken instance.

Remarks

Password can be null, plain text, or hashed.

Web Services Security
White Paper

Web Services Security 11

WP_WebServicesSecurity - 7.1

Example

vars
pword: StringUtf8;

begin
// unt is an existing JadeUserNameToken instance
pword := unt.getPassword();

getUsername
This method will return the user name on a JadeUsernameToken instance.

Parameters

None.

Returns

The user name associated with the JadeUsernameToken instance.

Example

vars
user: StringUtf8;

begin
// unt is an existing JadeUserNameToken instance
user := unt.getUsername();

getXml
This method is called to serialize a JadeUserNameToken instance into XML.

Parameters

Name Type Description

xml StringUtf8 The SOAP message to which to add the XML

Returns

A StringUtf8 string representing the SOAP message with the serialized user name token embedded in the
supplied string.

Remarks

The <Header> and <Security> tags are also generated if they are not present in the input string.

Example

vars
user: StringUtf8;

begin
// unt is an existing JadeUserNameToken instance
utString := unt.getXml(inString);

Web Services Security
White Paper

Web Services Security 12

WP_WebServicesSecurity - 7.1

validatePassword
This method is used to validate the password that was in the SOAP message or the XML string.

Parameters

None.

Returns

A Boolean. A value of true indicates that the supplied clear password matches the incoming password and false if
they do not match.

Remarks

If the incoming password is hashed, the supplied password is hashed with the nonce and creation timestamp from
the incoming message before the values are compared.

Example

vars
success: Boolean;

begin
// unt is an existing JadeUserNameToken instance
unt.clearPassword := "password";
success := unt.validatePassword();

JadeWSAddressingHeader Class
The JadeWSAddressingHeader class is used to define the addressing information based on the WS-Addressing
specification. This class has the following properties, which are all of type StringUtf8.

Name Description

action Represents the <Action> tag.

An identifier that uniquely (and opaquely) identifies the semantics implied by this message.
Required. The general form of an action URI is as follows.

[target namespace]/[port type name]/[input/output name]

sendTo Represents the <To> tag. This element provides the value of the destination URL. Required.

messageID Read-only property that is a generated global unique id (GUID).

relatesTo Required in the response message only, and should have the value of the <MessageID>
tag from the request message.

replyTo Read-only property. Value is a constant and it is always:

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

The following method is defined for this class.

getXml
This method is called to serialize the addressing header into XML.

Web Services Security
White Paper

Web Services Security 13

WP_WebServicesSecurity - 7.1

Parameters

Name Type Description

xml StringUtf8 The SOAP message to which to add the XML

Returns

A StringUtf8 string representing the SOAP message with the serialized addressing header.

Example

outString := addr.getXml(inString);

JadeWSTimestampHeader Class
The JadeWSTimestampHeader class is used to define the timestamp security information in the Security section
of the SOAP message.

The following properties are defined for this class.

Name Type Description

created TimeStamp Read-only property that defines the creation time of the message.

expires TimeStamp Read-only property that defines the expiry time. This value is obtained by
adding the seconds to timeout to the created time.

secondsToTimeout Integer Sets the expiry time based on this value. The number of seconds defined
by this property is added to the creation time. Defaults to 300 seconds.

The following methods are defined for this class.

getXml
This method is called to serialize the timestamp security information into XML.

Parameters

Name Type Description

xml StringUtf8 The SOAP message to which to add the XML

Returns

A StringUtf8 string representing the SOAP message with the serialized timestamp information.

Example

outString := ts.getXml(inString);

validateTimestamp
This method is used to validate the timestamp that was in the SOAP message or the XML string. An exception is
raised if the timestamp has expired.

Web Services Security
White Paper

Web Services Security 14

WP_WebServicesSecurity - 7.1

Parameters

None.

Returns

Nothing. An exception is raised if validation fails.

Example

begin
// ts is an existing WSTimeStampHeader instance
ts.validateTimestamp();

end;

JadeWebServicesSecurity Class
The JadeWebServicesSecurity class is used to obtain the security tokens defined in an incoming SOAP
message.

The following properties defined for this class are populated with values from the message.

Name Type Description

addressing JadeWSAddressingHeader Read-only property that contains the addressing
information if present in the message.

creationTimeStamp JadeWSTimestampHeader Read-only property that contains the timestamp
information if present in the message.

isEncrypted Boolean Read-only property is set to true if the <EncryptedData>
tag is present in the message.

isSigned Boolean Read-only property is set to true if the <Signature> tag is
present in the message.

usernameToken JadeUsernameToken Read-only property that contains the user name token if
present in the message.

The following method is defined for this class.

getTokens
This method is called to deserialize the XML string parameter into user name token, addressing, and timestamp
security information, and sets the signature and encryption status.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to process for
header information

Returns

A Boolean, set to true if there is header information; otherwise false. If header information is present, the
properties are set to the appropriate value.

Web Services Security
White Paper

Web Services Security 15

WP_WebServicesSecurity - 7.1

Example

success := ts.getTokens(inString);

Example of Use
In this example, we will import the class library into a schema calledWebServiceUtilitiesSchema and from this
schema, export the classes that make up this class library in a package called UserNameTokenSecurityProfile.

We will then import this package into a Web service provider schema called CalculatorServices and to a Web
service consumer schema called CalculatorServicesClient. This consumer schema will import the WSDL
generated by the CalculatorServicesWeb service.

For more details, see the following subsections.

Import the Library
Create a schema calledWebServiceUtilitiesSchema and then import the library into this schema. The name of
the library is jadwssec.dll.

To import the library, select the External Component Libraries menu item from the Browse menu.

This will then display the External Components Browser. Make sure that the .NET framework tab is selected,
right-click, and then select the Import option.

Web Services Security
White Paper

Web Services Security 16

WP_WebServicesSecurity - 7.1

This will display the .NET Import Wizard, shown in the following diagram.

Select the Browse button, change the directory to your JADE installation directory, select the jadwssec.dll from
the list, and then go through the import process. Once this is complete, open a Class Browser.

Web Services Security
White Paper

Web Services Security 17

WP_WebServicesSecurity - 7.1

The following classes should now be displayed in the Class List.

Web Services Security
White Paper

Web Services Security 18

WP_WebServicesSecurity - 7.1

Create a Package
Create an export package called UserNameTokenSecurityProfile and then select all of the classes, constants,
properties, and methods that were imported from the library, as shown in the following diagram.

Web Services Security
White Paper

Web Services Security 19

WP_WebServicesSecurity - 7.1

Import the Package
Create a new schema called CalculatorServices and then import the UserNameTokenSecurityProfile package
into this schema.

The Class Browser will then look similar to the example in the following diagram.

Web Services Security
White Paper

Web Services Security 20

WP_WebServicesSecurity - 7.1

Create another schema called CalculatorServicesClient and then repeat the package import into this schema.

Note that normally the Web service and the Web service client will not be in the same system, so you have to
repeat the exercise of importing the library for both systems. In this case, you may or may not want to use
packages.

Create a Web Service
In this example, create a CalculatorWeb service class, as follows.

Set up the Web service by defining the exposure list, setting up the application, and then generating the WSDL.
This WSDL will be imported into the CalculatorWebServicesClient schema. Set the required jadehttp.ini setting,
virtual directory, and so on, as required. For details, see theWeb Services andWeb Services Tips and
Techniques white papers.

We will need to set up the provider so that it can process the incoming message that has security headers, but
before we do this, we will set up the consumer.

Consuming the Web Service
We now import the Web service into the CalculatorWebServicesClient using the Web Service Consumer
Browser.

Web Services Security
White Paper

Web Services Security 21

WP_WebServicesSecurity - 7.1

At the end of the import process, the Class Browser for this schema will have the following classes shown in the
following diagram.

We will now define a JadeScript method that will set up the required security tokens and call the Web service.
The method shown in the following diagram does this.

Web Services Security
White Paper

Web Services Security 22

WP_WebServicesSecurity - 7.1

In this method:

Lines 4 and 5 declare the variables required for this call.

Lines 8 through 11 create the Web service consumer instance and set up the parameters for the Web service
call.

Line 14 makes the call to the Web service.

Lines 16 and 17 delete the transient objects.

Generating Security Headers (Client)
The Web service client needs to know what headers are expected by the Web service. There is no WS-Security
Policy information defined in the imported WSDL. In order to set up the security headers to be sent by the Web
service client, we need to re-implement the invoke method on the JadeCalculator class. In the following example,
we are going to set up addressing, timestamp, and hashed user name token, and we are also going to sign and
encrypt the message.

The following method shows how to achieve this.

Web Services Security
White Paper

Web Services Security 23

WP_WebServicesSecurity - 7.1

The parameter to this method is the SOAP message that is to be sent to the Web service. What we need to do here
is to insert the security headers into this message before it is sent.

Lines 4 through 8 declare the required local variables.

Lines 11 through 14 set up the WS-Addressing header and call the getXmlmethod to insert the header into
the message.

Lines 17 through 19 create the timestamp security header and call the getXmlmethod to insert this header
into the message. In this example, the expiry time is set to be 1000 seconds after the creation time.

Lines 22 through 29 create the JadeUserNameToken and call the createDotNetObejct_1 method to set up
the user name, password, and password option and encoding type. We are using a hashed password and a
base-64 binary encoding. At this point, we also set up the protectionOrder property to say that we want to
sign and encrypt the message. We also set up the password to use for the signing and encryption. We then
call the getXmlmethod, which will set up the required headers and set up the information required for
signing and encrypting the message.

Line 33 calls the invoke method defined in the superclass, using the string returned by the last getXml
method as a parameter.

This will send the message with the required information to the Web service.

Processing Security Headers (Service)
The provider of the service knows what information is required to be in the headers. In order to process the
incoming message, we need to re-implement the processRequest method on the JadeCalculator class.

Web Services Security
White Paper

Web Services Security 24

WP_WebServicesSecurity - 7.1

The following shows the method required for the example Web service.

Web Services Security
White Paper

Web Services Security 25

WP_WebServicesSecurity - 7.1

In this method:

Lines 4 through 6 declare the local variables required for processing the message.

Lines 12 and 13 create an instance of the JadeWebServicesSecurity class and call the method getTokens
on it. This method will scan for addressing and security headers and populate the properties on the created
instance.

Lines 15 through 25 validate that the required headers are present. If they are not, an exception is raised by
calling the raiseSecurityTokenExceptionmethod (defined elsewhere).

Line 29 validates the timestamp information. If the timestamp is not valid or if the current time is past the
expires time, an exception is raised.

Line 31 sets up the password for validation, signing, and encryption.

Line 35 validates the password. If the password is not valid, a Boolean value of false is returned.

Lines 39 through 41 save information in the addressing header that will be sent with the response message.

Lines 44 through 48 decrypt the message if it is encrypted and save the decrypted message for processing
by the Web services framework. An exception is raised if the decryption fails; for example, if the supplied
password does not match the password used to encrypt the message, an exception is raised.

Lines 52 through 54 validate the signature if the message has been signed. An exception is raised if the
validation fails; for example, if the supplied password does not match the password used to sign the
message, an exception is raised.

Line 56 then calls the processRequest on the superclass, to continue the processing of the message.

Line 58 deletes the transient instance.

Web Services Security
White Paper

Web Services Security 26

WP_WebServicesSecurity - 7.1

If the Web service wants to send headers in the response message, the code will need to be placed in a
re-implemented reply method, as shown in the following method.

Web Services Security
White Paper

Web Services Security 27

WP_WebServicesSecurity - 7.1

Similarly, if the Web service client needs to process headers in the message that it receives, the code is
implemented in the invoke method; that is, in the same method from which it generates the headers, as shown in
the following method.

Web Services Security
White Paper

Web Services Security 28

WP_WebServicesSecurity - 7.1

Sample SOAP Message
The following is an example SOAP message that is sent from the Web service client to the Web service. This
sample contains WS-Addressing headers, Timestamp, UserNameToken, with a hashed password, signature, and
encryption.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tns="urn:JadeWebServices/CalculatorService/"
xmlns:s1="urn:JadeWebServices/CalculatorService/"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd">
<soap:Header>
<wsa:Action wsu:Id="Id-378ad0c7-777e-48d0-8d4e-789634b0e757"></wsa:Action>
<wsa:MessageID wsu:Id="Id-89d7c1e0-b989-4cb1-8319-c2b3cc9259bc">uuid:301dc198-

5d2b-4f72-9bbb-b6de3785ec7f</wsa:MessageID>
<wsa:ReplyTo wsu:Id="Id-953d69ec-9756-4367-b88f-e1c0d6859c13">

<wsa:Ad-
dress>http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous</wsa:Address>

</wsa:ReplyTo>
<wsa:To wsu:Id="Id-7034a4d8-4142-4b71-997e-d0c7a8a7e9ef"></wsa:To>
<wsse:Security soap:mustUnderstand="1">
<wsu:Timestamp wsu:Id="Timestamp-b098ebcf-14ca-472f-b643-1c85b68a0493">
<wsu:Created>2010-04-13T21:22:27Z</wsu:Created>
<wsu:Expires>2010-04-13T21:39:07Z</wsu:Expires>

</wsu:Timestamp>
<wsse:UsernameToken wsu:Id="SecurityToken-339cb9af-73ad-4405-9223-

3f1cfce02a1e">
<wsse:Username>wilbur</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-username-token-profile-
1.0#PasswordDigest">y+RiI7GYQE4J8lX/e1yOS+mZfI4=</wsse:Password>

<wsse:Nonce>5FiJYx352dYgamYU7CHDqOrfzrA=</wsse:Nonce>
<wsu:Created>2010-04-13T21:22:27Z</wsu:Created>

</wsse:UsernameToken>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#" />
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-

sha1" />
<ds:Reference URI="#Id-378ad0c7-777e-48d0-8d4e-789634b0e757">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<ds:DigestValue>+LMRkGFO6gtY91ey8OXKEAutohE=</ds:DigestValue>

</ds:Reference>
<ds:Reference URI="#Id-89d7c1e0-b989-4cb1-8319-c2b3cc9259bc">
<ds:Transforms>

Web Services Security
White Paper

Web Services Security 29

WP_WebServicesSecurity - 7.1

<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<ds:DigestValue>j3xYQQXDX+xBbET1qLbNFO2A63s=</ds:DigestValue>

</ds:Reference>
<ds:Reference URI="#Id-953d69ec-9756-4367-b88f-e1c0d6859c13">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<ds:DigestValue>5W11ZeYp1Xrh+GsIQnbjOHVf2vg=</ds:DigestValue>

</ds:Reference>
<ds:Reference URI="#Id-7034a4d8-4142-4b71-997e-d0c7a8a7e9ef">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<ds:DigestValue>YF/+6N++1bXgYGYEpWuEKDjFCwA=</ds:DigestValue>

</ds:Reference>
<ds:Reference URI="#Timestamp-b098ebcf-14ca-472f-b643-1c85b68a0493">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<ds:DigestValue>NAToSMCQMcO+9jDWvTDe1hpgbfU=</ds:DigestValue>

</ds:Reference>
<ds:Reference URI="#Id-00299f17-588c-4f1f-987e-23b4534cfc21">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<ds:DigestValue>So2/+F/h+EO1FOORwX2n1kkLbbs=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>sTeId/otJygDBxEx8sW3iGDjLxM=</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#SecurityToken-339cb9af-73ad-4405-9223-

3f1cfce02a1e" ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#UsernameToken" />

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</soap:Header>
<soap:Body wsu:Id="Id-00299f17-588c-4f1f-987e-23b4534cfc21">
<xenc:EncryptedData Id="EncryptedContent-d028b5dd-bc55-4dd8-8cc6-0b4cfdd98f4b"

Type="http://www.w3.org/2001/04/xmlenc#Content"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc" />

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>
<wsse:Reference URI="#SecurityToken-339cb9af-73ad-4405-9223-3f1cfce02a1e"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-

Web Services Security
White Paper

Web Services Security 30

WP_WebServicesSecurity - 7.1

profile-1.0#UsernameToken" />
</wsse:SecurityTokenReference>

</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>v0SsdDFqxztnIsuF3loPvYwdNyChY3QeIHcFKPWTSXVjnrBe9VEY

PeEqbiFZSy7sqJoAwd2iGLs-
m+JWwYHC1jpAoYQhzhAC8+WLNmk5v8FfquRHGEr+5p9+/oY82cHjg-
p4ZV2k5C9qDxgYWhmEA9hA==</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

</soap:Body>
</soap:Envelope>

Web Services Security
White Paper

Web Services Security 31

	Contents
	Web Services Security
	UsernameToken Profile
	Namespaces
	User Names and Passwords
	XML Syntax
	Examples

	Security Class Library
	Security Classes
	Jadwssec Class
	JadeSecurityToken Class
	JadeUsernameToken Class
	JadeWSAddressingHeader Class
	JadeWSTimestampHeader Class
	JadeWebServicesSecurity Class

	Example of Use
	Import the Library
	Create a Package
	Import the Package
	Create a Web Service
	Consuming the Web Service
	Generating Security Headers (Client)
	Processing Security Headers (Service)

	Sample SOAP Message

