
Copyright©2016 Jade Software Corporation Limited. All rights reserved.

Web Services
White Paper

 VERSION 7.1

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2016 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.

WP_WebServices - 7.1

Contents

Contents iii

Web Services 4
Why Web Services? 4
SOAP 4
WSDL 5
UDDI 5
Web Services in JADE 6

Architecture 6
JADE Web Services Provider 7

Runtime Deployment 8
JADE Web Services Provider Message Flow 8
SOAP Message Formats 9
Versioning Options 10
SOAP Faults 11
Using SOAP Headers 11
Documenting Your Web Service 12

Mapping JADE Types to XML Schema Types 14
A Web Service Provider Example 15

Creating the Web Service Class 15
Creating the Web Service Methods 15
Creating the Exposure List 18
Creating the Web Service Application 19
Generating the WSDL 20
Using the Test Harness 20

JADE Web Services Client 23
Creating a JADE Web Services Client 23
Using a JADE Web Services Client 24
Message Flow 25
Web Service Styles 25
Transients 26
SOAP Headers 26
Updating a Consumer 26
Changing the End Point 26
Direct Web Services 28

Example JADE Web Service Client 28
Sample Code 32

Writing a Non-JADE Client Application 35

Appendix A Sample WSDL File 42

Appendix B Proxy Classes 49

WP_WebServices - 7.1

Web Services

Web services are the fundamental building blocks in the move to distributed computing on the Internet. Open
standards and the focus on communication and collaboration among people and applications have created an
environment where Web services are becoming the platform for application integration.

This white paper provides an overview of Web services and the technologies used in Web services today. This
paper also covers the JADE implementation of the Web services provider and consumer features, along with a
detailed example.

Web services generally provide the following features.

Expose useful functionality to Web users through a standard Web protocol (usually SOAP).

Provide a way to describe their interfaces in enough detail to allow a user to build a client application to talk
to them. This is usually provided in an Extensible Markup Language (XML) document called a Web Services
Description Language (WSDL) document.

Are registered so that potential users can find them easily. This is done with Universal Discovery Description
and Integration (UDDI).

For more details, see the following subsections.

Why Web Services?
One of the primary advantages of the Web services architecture is that it allows programs written in different
languages on different platforms to communicate with each other in a standards-based way. SOAP is significantly
less complex than earlier approaches, so the barrier to entry for a standards-compliant SOAP implementation is
significantly lower. The other significant advantage that Web services have over previous efforts is that they work
with standard Internet protocols - XML, HTTP, and TCP/IP. A significant number of companies already have an
Internet infrastructure, and people with knowledge and experience in maintaining it, so again, the cost of entry for
Web services is significantly less than for previous technologies.

Exposing existing applications as Web services allows you to build new, more-powerful applications that use Web
services as building blocks. For example, you could develop a purchasing application to automatically obtain
price information from a variety of vendors, allow the user to select a vendor, submit the order, and then track the
shipment until it is received. The vendor application, in addition to exposing its services on the Web, could in turn
use Web services to check the customer's credit, charge the customer's account, and set up the shipment with a
shipping company.

SOAP
SOAP is the communications protocol for Web services. SOAP is a specification that defines the XML format for
messages. If you have a well-formed XML fragment enclosed within a pair of SOAP elements, you have a SOAP
message.

There are other parts of the SOAP specification that describe how to represent program data as XML and how to
use SOAP to do Remote Procedure Calls (RPCs). These optional parts of the specification are used to implement
RPC-style applications where a SOAP message containing a callable function, and the parameters to pass to the
function, is sent from the client and the server returns a message with the results of the executed function. Most
current implementations of SOAP support RPC applications because programmers who are used to doing
distributed applications with other technologies understand the RPC style.

WP_WebServices - 7.1

SOAP also supports document-style applications where the SOAP message is just a wrapper around an XML
document. Document-style SOAP applications are very flexible and many new Web services take advantage of
this flexibility to build services that would be difficult to implement using RPC. JADE gives you the freedom to
choose between RPC and document styles.

The last optional part of the SOAP specification defines what an HTTP message that contains a SOAP message
looks like. This HTTP binding is important because almost all current operating systems support HTTP. The HTTP
binding is optional, but almost all SOAP implementations support it because it is the only standardized protocol for
SOAP.

By far the most compelling feature of SOAP is that it has been implemented on many different hardware and
software platforms. This means that SOAP can be used to link disparate systems. SOAP is much smaller and
simpler to implement than many of the previous protocols. CORBA, for example, took years to implement so only a
few implementations were ever released. SOAP, however, can use existing XML parsers and HTTP libraries to do
most of the hard work, so a SOAP implementation can be completed in a matter of months.

The ubiquity of HTTP and the simplicity of SOAP make them an ideal basis for implementing Web services that
can be called from almost any environment.

The JADE Web services framework provides support for the HTTP protocol. SOAP messaging is transparent, as
JADE handles the processing of incoming SOAP messages, creates the appropriate transient objects, and calls
the requested method. On return from the method call, a SOAP response message is then generated and sent
back to the requesting client. User exits are available via method reimplementation to override the default
processing and response.

WSDL
WSDL stands for Web Services Description Language. For our purposes, we can say that a WSDL file is an XML
document that describes a set of SOAP messages and how the messages are exchanged. In other words, WSDL
is to SOAP what IDL is to CORBA or COM.

Since WSDL is XML, it is readable and editable, but in most cases it is generated and consumed by software.

The notation that a WSDL file uses to describe message formats is based on the XML Schema standard, which
means it is both programming-language neutral and standards-based, making it suitable for describing Web
services interfaces that are accessible from a wide variety of platforms and programming languages. In addition to
describing message contents, WSDL defines where the service is available and what communications protocol is
used to talk to the service. This means that the WSDL file defines everything required to write a program to work
with a Web service. A WSDL document can be generated by JADE and consumed by another JADE or third-party
application. JADE provides the necessary tools to do this quickly and easily.

UDDI
Universal Discovery Description and Integration (UDDI) is the yellow pages of Web services. As with traditional
yellow pages, you can search for a company that offers the services you need, read about the service offered, and
contact someone for more information. You can, of course, offer a Web service without registering it in UDDI.

A UDDI directory entry is an XML file that describes a business and the services it offers. There are three parts to
an entry in the UDDI directory.

The "white pages" describe the company offering the service: name, address, contacts, and so on.

The "yellow pages" include industrial categories based on standard taxonomies such as the North American
Industry Classification System and the Standard Industrial Classification.

The "green pages" describe the interface to the service in enough detail for someone to write an application

Web Services
White Paper

Web Services 5

WP_WebServices - 7.1

to use the Web service. The way services are defined is through a UDDI document called a Type Model or
tModel. In many cases, the tModel contains a WSDL file that describes a SOAP interface to a Web service,
but the tModel is flexible enough to describe almost any kind of service.

The UDDI directory also includes several ways to search for the services you need to build your applications. For
example, you can search for providers of a service in a specified geographic location or for a business of a
specified type. The UDDI directory will then supply information, contacts, links, and technical data to allow you to
evaluate which services meet your requirements.

JADE may provide UDDI discovery and publication in a future release. However, at present there is little usage of
this feature in the community. In fact, IBM, Microsoft, and SAP have now closed their public UDDI nodes.

Web Services in JADE
JADE has a full implementation of both the Web services provider and Web services consumer features. Currently
IBM, Microsoft, and others have proposed other Web Service technologies such as Web Services Addressing,
Web Services Reliable Messaging, and Web Services Transactions, but the standards bodies have not ratified
them.

JADE Web services will continue to be enhanced to support these technologies at the appropriate time.

JADE Web services currently support the XML 1.0, WSDL 1.1, SOAP 1.1, and SOAP 1.2 standards. In addition,
JADE Web services are also WS-I 1.0 compliant.

For more details, see the following subsections.

Architecture

Web Services
White Paper

Web Services 6

WP_WebServices - 7.1

JADE Web Services Provider
A Web service provider is a node on the network (Intranet or Internet) that provides access to a software service
that performs a specific set of operations. A service provider node provides access to the services of a business
system, a subsystem, or a component.

The JADE Web service provider framework uses the JADE Web application. An understanding of this framework
is assumed in the following discussion.

JADE uses the HTTP protocol for communicating with Web service clients or a direct connection over TCP for
communicating with other JADE systems. By method reimplementation, it is possible to cater for other protocols as
well.

The Web services framework in JADE shields you from the complexities of working with SOAP messages. As far
as you are concerned, you are creating JADE methods. The steps involved in creating a Web service in JADE are
as follows.

1. Add a Web service by creating a subclass of the JadeWebServiceProvider class. Each of these subclasses
will be a Web service. You can define multiple Web service classes within a single application.

2. Build the Web service by adding methods to this class. Methods that are to be exposed will require the
webservice option in the method signature. Any method added to a JadeWebServiceProvider subclass will
by default be a Web service method.

3. Define the properties to be exposed for the classes that will be returned by this service. A Web service
exposure form will list all classes that are required to be exposed and by default, all public and read-only
properties will be selected.

4. Create a Web-enabled Web service application. This application will receive and respond to client requests.
Set up the application options such as machine name, virtual directory, Web service exposure or exposures,
and secure service.

5. Extract the Web Services Description Language (WSDL) file. This file will have all of the necessary
information for a Web service client to create a SOAP message and communicate with your application. The
generated WSDL conforms to WSDL 1.1.

That is it from the development perspective. Of course, in order to successfully execute your application, you will
have to set up the virtual directory and the jadehttp.ini (IIS) or jadehttp.conf (Apache) file correctly for your Web
server. Once this has been done, you can test your Web service by using the built-in Web browser test harness or
a client application.

Although the development process is relatively simple, careful design of your Web service is important for the
following reasons.

Incorrect exposure of properties can lead to large response messages being generated. For example, in the
example Erewhon system, if all of the properties were exposed, what looks like a simple call (like getting a
single client by name) could end up returning almost all of the information in the database. This could end up
generating a response string that is about nineteen (19) megabytes!

Once the WSDL file is given to customers, it gets harder to change the interface as the interface is now
published. Version control will have to be enforced and multiple versions of the service may need to be
maintained.

As with most applications, performance, scalability, and reliability must be considered when designing your
Web service. This becomes particularly important because a Web service can be invoked without human
interaction.

For more details, see the following subsections.

Web Services
White Paper

Web Services 7

WP_WebServices - 7.1

Runtime Deployment
The Web service URL settings can be set at run time in the [WebOptions] section of the jade.ini file or in the
XML-based configuration file.

In the jade.ini file, use application-name_WebServicesURL=url to set it for a specific JADE application and use
WebServicesURL=url to set a default value where there is no specific application value set. For example, in the
jade.ini file for the development environment:

[WebOptions]
ErewhonWebService_WebServicesURL=http,developmentServer,jade,jadehttp.dll

For the jade.ini for the production environment:

[WebOptions]
ErewhonWebService_WebServicesURL=http,productionServer,jade,jadehttp.dll

The XML configuration file allows several runtime configuration options, which can be created using a text editor
or the application that is provided with JADE.

For details about configuring Web services, refer to the [WebOptions] section in the JADE Initialization File
Reference or "Configuring Web Applications" in Chapter 3 of the JADE Web Application Guide for details about
the Web Configuration application and XML-based configuration file settings.

JADE Web Services Provider Message Flow

Consider the following points about the Web services provider message flow.

The Web server can be IIS or Apache.

The JADE application must be a Web-enabled or Web-enabled non-GUI application.

A non-GUI application can be run on any of the JADE-supported operating systems.

The Get Session session handling is optional and if used, will create a persistent instance of the session
subclass.

The Process Request method can be reimplemented. This can be used, for example, to inspect the incoming
SOAP message.

Web Services
White Paper

Web Services 8

WP_WebServices - 7.1

The Send Reply method can be reimplemented. This can be used, for example, to inspect the response
message.

When the JADE application is executing, any exception that is raised will be converted to a SOAP fault and
returned to the calling application.

The message flow depicted in the above diagram is the default message flow when using the JADE-supplied
Web framework (which uses the HTTP protocol only).

SOAP Message Formats
WSDL 1.1 distinguishes between two message styles: document and RPC. Here's how each style affects the
contents of <soap:Body>.

Document

<soap:Body> contains one or more child elements called parts. There are no SOAP formatting rules for what
the <soap:Body> contains; it contains whatever the sender and the receiver agree upon.

RPC

RPC implies that <soap:Body> contains an element with the name of the method or remote procedure being
invoked. This element in turn contains an element for each parameter of that procedure.

For applications that use serialization and deserialization to abstract away the data wire format, there is one more
choice to be made: the serialization format. The current two popular serialization formats today are:

SOAP Encoding

SOAP encoding is a set of serialization rules defined in section 5 of SOAP 1.1 and is sometimes referred to
as "section 5 Encoding." The rules specify how objects, structures, arrays, and object graphs should be
serialized. Generally speaking, an application using SOAP Encoding is focused on remote procedure calls
and will likely use RPC message style.

Literal

Data is serialized according to a schema. In practice, this schema is usually expressed using W3C XML
Schema. Although there are no prescribed rules for serializing objects, structures, graphs, and so on, the
service's schema describes the application-level Infoset of each of the service's messages.

There are therefore four possible variations in the message format. By default, JADE uses the document/literal
format. If circular references are detected, the only way to currently represent this is in encoded format, so in this
case JADE defaults to document/encoded. You have a choice of changing either of these defaults to RPC format,
by using the application options. JADE’s RPC format is always encoded.

Many people believe that a shift away from SOAP encoding is inevitable. The W3C XML Protocol Working Group's
SOAP 1.2 specification makes support for SOAP encoding optional (that is, a toolkit can claim SOAP 1.2
compliance without supporting SOAP encoding), the WS-I Basic Profile Working Group's interoperability
guidelines (Basic Profile Version 1.0a) disallows the use of SOAP encoding with SOAP 1.1, and the W3C Web
Service Description Working Group has dropped support for encoding from the WSDL 1.2 specification.

Before JADE can drop support for encoded formats and conform to WS-I’s Basic Profile, there has to be an XML
schema-friendly way to handle circular references. A one-to-one relationship is an example of a circular
reference. If both properties in this relationship are exposed, the WSDL that JADE generates will be in encoded
format.

Web Services
White Paper

Web Services 9

WP_WebServices - 7.1

Versioning Options
When implementing a new version of a Web service, there are some instances in which you can simply enhance
the existing class and others where you need to implement a new class that can use the previous version.

The most-common tasks you will face when updating a Web service are:

Adding extra methods. The new methods are conceptually related to the existing Web service and should be
implemented on the same endpoint.

Changing method signatures. In this case, the number of parameters, the type of a parameter, or the return
type changes.

Updating the data model. In this case, classes are added, properties are added or deleted, or have their
name or type changed.

For details, see the following subsections.

Adding Extra Methods
In this case, the new methods can be added to the current Web service class and existing clients will continue to
work without any problems. A new WSDL file can be generated from the new definitions for new clients and
existing clients who require the new functionality. A new JADE application need not be created.

Changing Method Signatures
There are at least three choices, as follows.

Create a method with a different name and add it to the existing class. This is the same as adding extra
methods.

Create a new class with the same method name. In JADE, this new class cannot be a subclass of the existing
class because the method signatures are different.

You will therefore need to copy the methods whose signatures have not changed to this new class as well, to
retain the existing functionality. Even though you can select multiple Web service classes to be defined for an
exposure, as the generated WSDL cannot contain two methods with the same name, creating a completely
new class and a new application is therefore necessary.

Change the current method’s signature, supply the updated WSDL to your Web service clients, and use
version control to check and reject invalid requests.

Updating the Data Model
Adding a property but not exposing it will not have any effect on existing client systems. However, exposing this
property will cause XML to be generated for it and then whether this works or not will depend on how the client
system handles the message. Similarly, if an exposed property is deleted or its name is changed, the client system
can ignore the fact that a property value it expects is not there or there is a property value with a name that it does
not recognize. However, if the type of a property changes, it is likely that the client system will fail, especially if the
change is significant; for example, changing a property type from a primitive type to a class, or the reverse.

In order to ensure compatibility with existing client systems, it is generally safer to assume that structural changes
to exposed classes may cause a problem. In this case, you have at least two choices.

Make the change in your existing system and provide your Web service clients with the updated WSDL file
and other relevant documentation for them to make the necessary changes in their application. Set up
version control in the JADE application so that requests that do not match the correct version can be rejected

Web Services
White Paper

Web Services 10

WP_WebServices - 7.1

(JADE does this for you, by returning a SOAP fault).

Make the changes in a separate copy of the system and set up version control in the JADE application for
this system. You may need to set up other options such as the machine name and virtual directory so that the
requests are directed to the correct versions of the application.

SOAP Faults
When an error is raised during development, you will want to know where the error originated. Because this
information is not useful to consumers of the Web service, you won't want to return meaningless line numbers
when the service is deployed. Instead, you will want to provide other contextual information about what happened.

The SOAP Fault element has four separate pieces. In the following list, the bold names are for SOAP 1.1 and the
SOAP 1.2 names are shown in italics.

faultcode (Fault): Contains a value of VersionMismatch,MustUnderstand, Client, or Server.

faultstring (Reason): Provides an explanation of why the fault occurred.

faultactor (Role): Indicates the URI associated with the actor that caused the fault on the message path. In
RPC-style messaging, the actor should be the URI of the invoked Web service.

detail (Detail): Carries information about why the error happened. This element can contain more XML
elements or it could just be plain text.

The fault codes fall into the following categories.

VersionMismatch: The SOAP receiver saw a namespace associated with the SOAP envelope that it does
not recognize. When this fault code is received, the message should not be re-sent. The SOAP namespace
needs to be set to something the receiver does understand. JADE returns this code when the incoming
namespace does not match the namespace of the Web service application.

MustUnderstand: An immediate child of the SOAP header had MustUnderstand set to true. The receiver of
the message did not understand the header. The receiver will need to be updated somehow (new code, new
libraries, and so on) in order to make sense of the header. This fault code is currently not supported by JADE.

Client (Sender): Something about the way that the message was formatted or the data it contained was
wrong. The client needs to fix its mistake in order for the message to be sent back. When returning this fault
code, you should also fill in the details element with some specifics on what needs to happen in order for the
message to be processed. This fault code is returned by JADE if the service, method, or parameters are
invalid.

Server (Receiver): An error happened at the server. Depending on the nature of the error, you may be able
to resend the exact same message to the server and see it processed. JADE returns this fault code if the
method execution fails.

When a JADE exception is raised on the Web service provider, the fault is converted to a SOAP fault message and
returned to the client. SOAP faults are returned as HTTP 500 errors.

Using SOAP Headers
The SOAP specifications are not clear about what information goes in the header. There is mention of
"authentication, transaction management, payment, and so on", but beyond that, it is rather quiet and for the most
part sticks to descriptions of the schema. Those familiar with HTTP or MIME headers are probably used to seeing
various sorts of metadata included with the main data in the message. In a lot of ways, the SOAP header is similar,
with one major difference.

Web Services
White Paper

Web Services 11

WP_WebServices - 7.1

HTTP uses the Content-Type header to indicate the MIME type of the data in the body of an HTTP request or
response. Similarly, an HTTP client can request what kind of data it wants in the response, by including the HTTP
Accept header. From a high level, SOAP messages always contain XML data, so in that sense there is no need to
specify a MIME type to describe the data. In fact, the structure of the data in SOAP messages is much better
defined through the use of XML schema.

A Web service that defines its interface through WSDL defines the schema of its data along with the bindings that
correlate what response data types will be generated from which request data types.

The well-defined nature of SOAP messages is what allows them to be so easily used from within applications.
Therefore, because the data structure is already defined, using SOAP headers to describe the data structure in a
SOAP message is unnecessary.

The focus of the SOAP header should be to help process the data in the body. It makes sense to include
information about authentication or transactions, because this information will be involved in identifying the
person or company who sent the body and in what context it will be processed. Expiration data could be included
in the header, to indicate when the data in the body may need to be refreshed. User account information could be
included, to ensure that processing the message is performed only for a request that has been legitimately paid
for.

Another factor in determining whether information should be included in SOAP headers is will that information
have broad application to a wide variety of SOAP messages? If so, include it in the header. It makes more sense
to define a single schema and insert it into the definition of one header element than to force inclusion of the same
data into the body schemas of a large number of message definitions. Authentication and routing are problems
common to many Web services, so it makes sense that this information lives in the header element.

In JADE, SOAP headers are defined as a subclass of the JadeWebServiceSoapHeader class. Properties that are
to be included in the header are then defined on this class. These classes can then be included in a Web service
definition, by adding properties to the service of this type. Individual methods can then be assigned these
headers.

When session handling is enabled for a Web service application, a SOAP header is automatically generated for
every method call. This header carries the current session id. The client system does not need to process this
header but it is required to return the header back to the JADE Web service provider. The header is defined as
input-output so that the client knows to do this.

Documenting Your Web Service
Documentation for a Web service needs to contain several different elements.

1. First and foremost, it should provide a Web Services Description Language (WSDL) file that
programmatically describes the Web service.

2. Secondly, it needs to provide written documentation describing how to use the Web service. This should
include various items, including an API reference, troubleshooting tips, and usage descriptions.

3. Finally, the documentation should provide sample code for all of the operations, preferably using the fewest
lines of code needed to call the specified method. Examples of SOAP messages going back and forth should
be included, along with the code. These sample messages will help developers to develop a client in
languages other than those outlined by the samples. Ideally, the documentation should also include a
sample client that uses the Web service, complete with source code.

For more details, see the following subsections.

Web Services
White Paper

Web Services 12

WP_WebServices - 7.1

WSDL Files
When documenting a Web service, you must provide a WSDL document. This document provides critical
information about the Web service that both the developers and programming tools need. In a compact, concrete
way, this document describes everything, including:

Messages that the Web service understands and the format of its responses to those messages

Protocols that the service supports

Where to send messages

All of this information combines to give the programmer a view of how the system expects outside applications to
interact with the Web service. The WSDL is therefore the main piece of documentation your users need.

The WSDL file can be generated in JADE.

Usage Documentation
The documentation for your Web service should also describe how you expect people to use your Web service.
Explain how errors will be returned, how to initiate usage, and so on. This information will help get others up and
running with your Web service. Unless you are doing something simple like retrieving a stock quote based on
ticker symbol, people are going to need good documentation.

First, include an overview document. A good overview contains pointers to and summaries of the documentation
relating to the Web service: WSDL locations, developer guides, API reference, and so on. Within the developer
guide, explain how the Web service is to be used. Describe typical usage scenarios, as well as error handling.

When describing error handling, list errors that can be returned for everyWeb service method. Give the return
codes, so that client developers can look up the error number and display a meaningful message to their
end-users in either a display message or a log entry. You could add a method to the service that given an error
code, will return a message describing the error and how to correct it.

Besides error handling, you will also want to document the various operations in the Web service. This should
look like any other API documentation.

Explain what the operation does

Define the meaning and type of the parameters of the operation

Provide sample code

Give Helpful Hints
In addition to the above, give a sample SOAP message exchange dependent upon the communication pattern
used (one-way, request-response, and so on).

Finally, take some time to develop a sample client that uses most, if not all, of the operations exposed by the Web
service. Make sure that the sample actually looks like something you expect a client developer might want to
build. This reference may prove to be more useful than you think — the developer can use the sample to verify if
the problem is in his or her implementation or somewhere with the Web service itself.

Make use of the text feature for classes, methods, and properties to document your Web service. The text will be
extracted as part of the WSDL generation, thereby providing documentation in the WSDL file itself.

Web Services
White Paper

Web Services 13

WP_WebServices - 7.1

Mapping JADE Types to XML Schema Types
The following diagram represents the XML built-in data type hierarchy.

The mapping of JADE types to XML is as follows.

JADE Attribute XML Simple Type XML Examples (Delimited by Commas)

String, StringUtf8 string Confirm this is electric

Character unsigned byte 1, 126

Byte byte -1, 126

Binary base64Binary GpM7

Web Services
White Paper

Web Services 14

WP_WebServices - 7.1

JADE Attribute XML Simple Type XML Examples (Delimited by Commas)

Integer int -1, 12678967543233

Integer64 long -1, 12678967543233

Decimal decimal -1.23, 0, 123.4, 1000.00

Real double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

Boolean boolean true, false, 1, 0

Time time 13:20:00.000, 13:20:00.000-05:00

TimeStamp dateTime 1999-05-31T13:20:00.000-05:00

TimeStampInterval duration P5Y2M10D, P5Y2M10DT15H

TimeStampOffset dateTime 1999-05-31T13:20:00.000-05:00

Date date 1999-05-31

Note the different format for storing TimeStamp information in XML.

AWeb Service Provider Example
The following example is based on the Erewhon Investments example system that is shipped with JADE and is
available on the https://www.jadeworld.com/developer-center JADE Web site. Load the schemas and generate
the data. Refer to the Erewhon Demonstration System Reference document for more details.

In this example, we will create a new application calledWebService.

Note The Erewhon Investments example schema already includes this Web service provider, which was built
following the steps described in the following subsections. In the Erewhon example schema there are two
provider applications:WebServiceOverHttpApp, which uses normal Web services over HTTP, and
WebServiceOverTcpApp, which uses JADE’s Direct Web Services over TCP/IP.

Both applications provide the same functionality.

For more details, see the following subsections.

Creating the Web Service Class
In the ErewhonInvestmentsViewSchema, we add a subclass to the JadeWebServiceProvider class. This class
is called ErewhonInvestmentsService.

You can add properties to this class, but bear in mind that state information cannot be stored between requests
because the transient instance of this class that is created for the request is deleted when the response has been
sent.

We also add the following text to this class.

This service is used to access client and agent information on the Erewhon system.
A list of clients and or agent details can be obtained as well as details for an
individual client or agent.
Client and Agent details can also be updated using this service (2 variations).

Creating the Web Service Methods
We add the following methods to this class.

Web Services
White Paper

Web Services 15

https://www.jadeworld.com/developer-center

WP_WebServices - 7.1

Method 1: getClientNames

Method 2: getClient

Method 3: updateClientWithProxy

Method 4: updateClient

Method 1: getClientNames
The getClientNames method will return an array of client names for a company. The company used is the
company defined for the application.

getClientNames(): StringArray webService;
vars

names: StringArray;
client: Client;

begin
create names transient;
foreach client in app.myCompany.allClients do

names.add(client.name);
endforeach;
return names;

end;

We also add the following text to this method.

This method will return a string array of client names.

Method 2: getClient
The getClient method will return a Client object, based on an input parameter that contains the name of the client
to search for. If the client does not exist, an error is returned.

getClient(clientName: String): Client webService, updating;
vars

client: Client;
begin

client := app.myCompany.allClients[clientName];
if client = null then

setError(23, clientName, "Client does not exist");
endif;
return client;

end;

We also add the following text to this method.

Given a client name, this method will return a client object. If a client with the
supplied name does not exist, error 23 will be returned.

Method 3: updateClientWithProxy
The updateClientWithProxy method will update a client object based on an input parameter that is a transient
client object.

If the client does not exist or if the update fails, an error is returned.

Web Services
White Paper

Web Services 16

WP_WebServices - 7.1

The following method shows an example of using an input parameter that is not a primitive type.

updateClientWithProxy(proxyClient: Client) webService, updating;
vars

client: Client;
result: Integer;

begin
client := app.myCompany.allClients[proxyClient.name];
if client = null then

setError(23, proxyClient.name, "Client does not exist");
return;

endif;
result := app.myTA.trxUpdateClient(client, client.edition,

proxyClient.name, proxyClient.address1,
proxyClient.address2, proxyClient.address3,
proxyClient.phone, proxyClient.fax,
proxyClient.email, proxyClient.webSite);

if result <> 0 then
setError(result, proxyClient.name, "Client update failed");

endif;
end;

We also add the following text to this method.

This method takes a client proxy object as parameter and updates the persistent
copy of the client object with details from the proxy. If the persistent object
does not exist, error 23 is returned.

Method 4: updateClient
The updateClient method will update a client object based on several primitive type input parameters. If the client
does not exist, an error is returned. The following method is an alternative implementation to the method above.

updateClient(_name, _address1, _address2, _address3, _phone, _fax,
_email, _webSite: String) webService, updating;

vars
client: Client;
result: Integer;

begin
client := app.myCompany.allClients[_name];
if client = null then

setError(23, _name, "Client does not exist");
return;

endif;
result := app.myTA.trxUpdateClient(client, client.edition, _name,

_address1, _address2, _address3,
_phone, _fax, _email, _webSite);

if result <> 0 then
setError(result, _name, "Client update failed");

endif;
end;

We also add the following text to this method.

This method takes several string parameters and updates the persistent copy of the
client object with details from the parameters. If the persistent object does not

Web Services
White Paper

Web Services 17

WP_WebServices - 7.1

exist, error 23 is returned.

Note The framework will delete return types that are transients (for example, the StringArray in method 1
(getClientNames) when processing is complete.

If you do not want this behavior, set the deleteTransientReturnTypes property to false. You should set this
property in the create method of your JadeWebServiceProvider subclass.

Creating the Exposure List
The classes to be exposed in a Web service are deduced from the parameters and return types for every Web
service method exposed by the service.

When defining this exposure, the properties that are to be exposed for this service must also be defined. Use the
exposure wizard to do this. You can define multiple exposures for each application. In addition, you can use the
same exposure to define more than one Web service application. To achieve this, you must define the exposures
separately.

To create a new exposure, use the Exposures BrowserWeb Services sheet, accessed by selecting Add from the
Exposures command when the Exposure Browser has focus and then selecting theWeb Services sheet. The
following dialog is then displayed.

Web Services
White Paper

Web Services 18

WP_WebServices - 7.1

The list of Web service classes defined for your schema will be displayed. You will need to select at least one of
these classes.

Other Web service options (for example, session handling and version control) are also set up in this dialog. For
details about specifying application Web services, see "Defining a Web Services Application", in Chapter 11 of the
JADE Developer's Reference.

Clicking the Next button displays the second page of this dialog.

Select the properties that need to be exposed and then click the Update button, which will save the exposure.

Creating the Web Service Application
When you have added the required methods, you can now set up the application. From the Application Browser,
add a new application and call itWebService. Set up this application to be Web-enabled and the Web application
type to be a Web service.

In theWeb Options sheet, specify your Web service options and then select theWebServiceOverHttpApp as
your Web service exposure. In the example, scheme is kept at the default value of http, localhost is used as the
machine name, and jade as the virtual directory. No other settings were changed.

Web Services
White Paper

Web Services 19

WP_WebServices - 7.1

You can also use JADE-to-JADE direct Web services, which allow a Web service consumer to connect directly to
the Web service provider without the need for a Web server. As the messaging protocol is specific to JADE, the
Web service consumer must be a JADE system. To use the JADE-to-JADE direct Web services option, change the
scheme to tcp and enter a machine name of localhost:1234, where localhost is used as the machine name and
1234 represents the TCP port number to be used.

Nothing else needs to be set to use this option. Note also that nothing needs be set up in the IIS or Apache Web
server, as the communication between the JADE Web service provider and consumer uses TCP directly and
bypasses the Web server.

Generating the WSDL
You can now generate the WSDL by clicking the Generate WSDL button.

Generate and save the WSDL file.

Note that you can select more than one exposure from this dialog. As each exposure needs to be written to a
separate WSDL file, selecting multiple exposures will prompt you for multiple file names.

Using the Test Harness
JADE provides an in-built test harness whereby you can enter a URL containing the name of the Web service into
a browser and test the functionality of your Web service.

You will need to set up your virtual directory on your Web server and update the initialization file for the jadehttp
module. For more details, see "Configuring JadeHttp for Remote Connections", in Chapter 3 of your JADE
Installation and Configuration Guide. Once all of this is done, you can run the Web service application and use the
Browser menu item in the File menu to bring up the test harness on your browser.

Web Services
White Paper

Web Services 20

WP_WebServices - 7.1

The following diagrams illustrate a sample session using the test harness.

Web Services
White Paper

Web Services 21

WP_WebServices - 7.1

Web Services
White Paper

Web Services 22

WP_WebServices - 7.1

The test harness cannot be used when any of the parameters to the method are not primitive types. For example,
the updateClientWithProxy method cannot be invoked using the test harness.

JADE Web Services Client
The JADE Web services framework shields you from the complexities of working with SOAP messages. As far as
you are concerned, you are using JADE methods.

For more details, see the following subsections.

Creating a JADE Web Services Client
The steps involved in creating a Web service client in JADE are as follows.

1. Access the Web Service Consumer Browser from theWeb Service Consumer menu item in the Browse
menu and then add a consumer, by selecting the Addmenu item in the Consumer menu.

2. From the Web Service Consumer Wizard, enter a WSDL file name if the file is on disk or enter the URL of a
WSDL file that is available via the network.

3. Click the Validate button. A default consumer name is generated and a list of Web service methods with
parameters and return types is displayed. The consumer name is used to create a subclass of
JadeWebServiceConsumer containing these methods.

Web Services
White Paper

Web Services 23

WP_WebServices - 7.1

4. Click the Next button. A list of class and property names is displayed. The names from the WSDL are shown
on the left and the corresponding JADE names on the right. The JADE names will be different and
highlighted in orange if the WSDL names do not conform to the JADE naming rules. You can change any
JADE name and add a prefix to all class names, property names, or method names. You can also change
the superclass of all created classes from the default ofObject. The Erewhon sample schema
WebServiceConsumerSchema has a superclass of ErewhonAdmin and a class prefix ofWS_ applied.

5. If you check the Generate methods for asynchronous calls check box, methods for consuming the Web
service asynchronously are generated in addition to the methods for synchronous execution.

Tip For details about and examples of running Web services synchronously and asynchronously, see
"Using the Imported Web Service Consumer", in Chapter 11 of the JADE Developer's Reference.

6. If you check the Generate new primitive types check box, the Web service consumer classes and methods
generated from the WSDL use the primitive types Integer64, Byte, and TimeStampInterval where
appropriate. (These primitive types were not available in earlier implementations of Web services.)

7. Click the Update button. These classes are then all automatically added to the current schema.

Using a JADE Web Services Client
To use the Web service consumer, write user logic to create an instance of the JadeWebServiceConsumer
subclass and call the required methods with the parameters. JADE will automatically package and send a SOAP
message with the method request and parameter values to the Web service provider, wait for the SOAP response,
and unpackage the values into the Web service method return value plus any io or output method parameters.

After the call to the Web service provider method, the return value will be automatically populated. If this is a class
with references to and collections of other classes, transient instances of these classes will have been created
with data from the incoming SOAP message. The references will be established and the collections populated,
including any primitive and object arrays.

The data can then be accessed and used as if the method accessed local JADE resources. If the Web service
provider is unavailable or there are connection problems, appropriate JADE exceptions are raised.

Web Services
White Paper

Web Services 24

WP_WebServices - 7.1

Message Flow

Starting with the called JadeWebServiceConsumer subclass method:

sendRequest, which builds the SOAP request.

invoke, which sends the SOAP request out via HTTP (or TCP) and receives the response.

processReply, which raises a server error exception if the response is not a valid SOAP message, converts
a SOAP error message into a JADE exception, and populates the method return values.

You can reimplement the invoke method to examine and possibly change the input SOAP message (the value of
the inputMessage method parameter) before it is processed.

Web Service Styles
As explained for the Web service provider earlier in this document, JADE supports both Document- and RPC-style
Web services. In the consumer, this information is part of the WSDL definition, and JADE will build the Web
service consumer methods and classes differently for the two styles.

For RPC-style, classes are built for each definition in the WSDL that is not a primitive type; that is, all classes used
as Web service consumer method parameters and return types, plus all other classes to which they refer. The
Web service consumer parameters and return types are JADE primitives or the classes used as Web service
consumer classes. This gives a very natural JADE-like system, and for a simple JADE-to-JADE service, may be
the easiest way to code but it requires careful design of the Web service provider methods, to avoid frequent
reloads and changes in the consumer as method signatures are altered. In addition, the trend in Web services is
away from RPC-style towards Document-style.

Web Services
White Paper

Web Services 25

WP_WebServices - 7.1

For Document-style, classes are built as for RPC-style but two additional classes are built for each Web service
method: one containing the parameters and the other for the return value. The Erewhon schema
WebServiceConsumerSchema shows this. To call the Web service method, an input parameter object is created,
populated, and used as the method parameter, and an output parameter object is automatically created and
populated as needed by the method call.

This requires a little more coding, but with careful design can be a much more flexible mechanism, as you can
write a few general-purpose Web service methods and use one or more of the parameters to determine the actual
processing.

Transients
The Web service consumer code keeps track of all transients that it creates, and these are deleted when the reset
method is called or the Web service consumer object is deleted. If the Web service consumer object is re-used for
multiple method calls, you should call the reset method before each such use.

Any transient objects that are created in your code for Web service consumer method parameters should be
deleted in your code when they are no longer required.

SOAP Headers
If the imported WSDL includes details for SOAP headers, they will be automatically built as subclasses of
JadeWebServiceSoapHeader and references created from the JadeWebServiceConsumer subclass to them.
To populate them on output, just set the values before calling the Web service consumer method.

If the target Web service provider returns values in the SOAP headers, they will be automatically updated from the
Web service consumer method call.

Updating a Consumer
To update a JADE Web service consumer from an updated WSDL, follow a similar procedure to the initial
consumer creation described earlier in this document, accessing theWeb Service Consumer Browser from the
Web Service Consumer menu item in the Browse menu. Select the required consumer and then the Reload
menu item in the Consumer menu. Click OK on the Warning message box that is displayed, then follow the rest of
the steps in the earlier description of the initial Web service consumer creation.

The existing classes and properties created from the prior consumer creation plus the consumer methods,
whether renamed or not, are retained if the new WSDL still includes definitions for these under their original
names. Your existing code referencing the created classes will need changing only if there are previous classes,
properties, or consumer methods that are no longer in the new WSDL or whose definitions have changed.

Changing the End Point
The URL for a Web service is composed of several parts, as follows.

Scheme

Within the URL of an object, the first element is the name of the scheme, separated from the rest of the object
by a colon. The rest of the URL follows the colon in a format depending on the scheme. Internet protocols are
then followed by //. In JADE, the Internet protocol can be one of the following values.

http

Use the HTTP protocol (default)

https

Web Services
White Paper

Web Services 26

WP_WebServices - 7.1

Use the secure HTTPS protocol (if the service is marked as secure)

tcp2

Use the JADE Direct protocol (for JADE-to-JADE systems)

User name and password

Optional user name, if required. The password, if present, follows the user name, separated from it by a colon
(:). The user name and password are followed by an@ symbol. The use of user name and passwords that
are public is discouraged. You can set these values in the consumer, by setting the username and
password properties (not applicable to tcp2).

Domain name

The Internet domain name of the host or the IP address.

Port number

If it is not the default number for the protocol (80 for HTTP, 443 for HTTPS, must be specified for tcp2), is
specified after a colon.

Path

The rest of the locator is known as the path. It can define details of how the client should communicate with
the server, including information to be passed transparently to the server without any processing by the
client. The path is preceded by /. For example, a JADE Web service path consists of a virtual directory,
followed by /jadehttp.dll?, followed by the name of the Web service application, followed by the service
name, and optionally followed by an exposure list name (when using multiple exposures).

The full syntax of the Web service URL is as follows.

<scheme>://<user-name>:password@<domain>:<port>/<virtual-directory>
/jadehttp.dll?<application-name>&serviceName=<service-name>& listName=<list-name>

In this syntax, the required entities are marked in bold. If an exposure list name is not specified, the first exposure
in the list of exposures attached to the Web service application is selected (to maintain backwards compatibility).

The following are some JADE URL examples.

http://wilbur/jade/jadehttp.dll?WilburWebService&serviceName=InventoryService

http://smith:smithpass@wilbur:5695/jade/jadehttp.dll?WilburWebService&
serviceName=InventoryService&listName=FredsInventory

tcp2://wilbur:5700/jade/jadehttp.dll?WilburService&serviceName=InventoryService

The URL to which the SOAP request is sent is set in the imported WSDL. It can be subsequently changed in the
JADE development environment on theWeb Services sheet of the Define Classes dialog for the
JadeWebServiceConsumer subclass.

It can also be changed in the JadeWebServiceConsumer::setEndpointURLmethod; for example, to set the end
point for a regular Web service:

setEndPointURL("http://myserver/jade/jadehttp.dll?ErewhonWebServiceApp&
serviceName=ErewhonInvestmentsServiceAdmin")

Web Services
White Paper

Web Services 27

WP_WebServices - 7.1

To set the end point for a JADE direct Web service:

setEndPointURL("jadehttp.tcp2://myserver:8081/jade/jadehttp.dll?
ErewhonWebServiceAppDirect&serviceName=ErewhonInvestmentsServiceAdmin")

You can also change the end point URL in the XML-based runtime configuration file, by setting the endpoint
element. For details, see "endpoint element" in Chapter 3 of the JADE Web Application Guide.

Direct Web Services
If the WSDL is imported from a JADE direct Web service provider, the end point will reflect this.

You do not need to set or change anything in the consumer; JADE will automatically communicate using the direct
Web service instead of the IIS or Apache Web server.

Example JADE Web Service Client
The example in this section shows a JADE system accessing a non-JADE external Web service. This example
uses a Web service provided by Microsoft. In this example, we will use the Bing Services, who provide
programmatic access to Bing data through application programming interfaces (APIs). In order to use these
services, you will need an AppId from Microsoft.

To obtain an AppId, go to http://www.bing.com/developers/appids.aspx and obtain an AppId. The WSDL for this
service is provided with this white paper and its documentation can be found at http://msdn.microsoft.com/en-
us/library/dd251056.aspx.

To access a non-JADE external Web service

1. Select theWeb Service Consumer menu item in the Browse menu to import the WSDL and then select the
Addmenu item in the Consumer menu.

Web Services
White Paper

Web Services 28

http://www.bing.com/developers/appids
http://msdn.microsoft.com/en-us/library/dd251056
http://msdn.microsoft.com/en-us/library/dd251056

WP_WebServices - 7.1

Browse to the WSDL file name or specify it. The following form will then be displayed.

2. Check the Generate methods for asynchronous calls check box and then click the Validate button.

3. Change the consumer name, if required (the sample code below assumes that the default value of
BingSearch has been used), and then click the Next button.

Web Services
White Paper

Web Services 29

WP_WebServices - 7.1

The following form will then be displayed.

4. In order to minimize class name conflict errors, you can prefix the class names. You may still get errors with
conflicting or invalid names, so correct these as required.

5. Click the Update button, to complete the WSDL import.

Web Services
White Paper

Web Services 30

WP_WebServices - 7.1

The WSDL import creates a subclass of JadeWebServiceConsumer using the specified consumer name, plus a
number of classes for the data returned by the consumer methods, as shown in the following diagram.

For details about sample code, see the following subsection.

Web Services
White Paper

Web Services 31

WP_WebServices - 7.1

Sample Code
In this section, we will write an application that will search the Bing Web service for a specific search string and
category. This application will have a form that looks similar to the following.

To initialize the form, define the following method.

load() updating;
vars
begin

create webService;
end;

Use the following method to call the Web service and populate the list box when the search button is clicked.

btnSearch_click(btn: Button input) updating;
constants

AppID: String = "";
vars

sr: SearchRequest;
sra: SearchRequestA;
webr: WebRequest;
newsr: NewsRequest;
imager: ImageRequest;
videor: VideoRequest;
response: SearchResponse;
webresponse: WebResponse;
webresult: WebResult;
newsresponse: NewsResponse;

Web Services
White Paper

Web Services 32

WP_WebServices - 7.1

newsresult: NewsResult;
imageresponse: ImageResponse;
imageresult: ImageResult;
videoresponse: VideoResponse;
videoresult: VideoResult;
text: String;

begin
on Exception do handleException(exception);
if AppID = "" then

app.msgBox("You must have an AppID to use the LiveSearch Service." &
CrLf & "Please go to http://www.bing.com/developers/appids.aspx
for an AppID.", "Error", MsgBox_Exclamation_Mark_Icon);

return;
endif;
staStatusLine.foreColor := Blue;
staStatusLine.caption := "Calling web service...";
staStatusLine.refreshNow;
jrtResults.textRTF := null;
create sr;
create sra;
sr.parameters := sra;
sra.appId := AppID;
sra.query := txtQuery.text;
if chkWeb.value then

sra.sources.add("Web");
endif;
if chkNews.value then

sra.sources.add("News");
endif;
if chkImage.value then

sra.sources.add("Image");
endif;
if chkVideo.value then

sra.sources.add("Video");
endif;
// web request
if chkWeb.value then

create webr transient;
sra.web := webr;
webr.count := txtEntries.text.Integer;
webr.offset := txtOffset.text.Integer;

endif;
// news request
if chkNews.value then

create newsr transient;
sra.news := newsr;
newsr.count := txtEntries.text.Integer;
newsr.offset := txtOffset.text.Integer;

endif;
// image request
if chkImage.value then

create imager transient;
sra.image := imager;
imager.count := txtEntries.text.Integer;
imager.offset := txtOffset.text.Integer;

Web Services
White Paper

Web Services 33

WP_WebServices - 7.1

endif;
// video request
if chkVideo.value then

create videor transient;
sra.video := videor;
videor.count := txtEntries.text.Integer;
videor.offset := txtOffset.text.Integer;

endif;
// call the service
response := webService.search(sr);
// web response
webresponse := response.parameters.web;
staStatusLine.caption := 'Totals:
if webresponse <> null then

staStatusLine.caption := staStatusLine.caption & 'Web = '
& webresponse.total.String & ' ';

foreach webresult in webresponse.results do
text := text & webresult.title & CrLf & webresult.description

& CrLf & webresult.url & CrLf & CrLf;
endforeach;

endif;
// news response
newsresponse := response.parameters.news;
if newsresponse <> null then

staStatusLine.caption := staStatusLine.caption & 'News = '
& newsresponse.total.String & ' ';

foreach newsresult in newsresponse.results do
text := text & newsresult.title & CrLf & newsresult.snippet

& CrLf & newsresult.url & CrLf & CrLf;
endforeach;

endif;
// image response
imageresponse := response.parameters.image;
if imageresponse <> null then

staStatusLine.caption := staStatusLine.caption & 'Images = '
& imageresponse.total.String & ' ';

foreach imageresult in imageresponse.results do
text := text & imageresult.title & CrLf & imageresult.mediaUrl.String

& CrLf & imageresult.url & CrLf & CrLf;
endforeach;

endif;
// video response
videoresponse := response.parameters.video;
if videoresponse <> null then

staStatusLine.caption := staStatusLine.caption & 'Video = '
& videoresponse.total.String & ' ';

foreach videoresult in videoresponse.results do
text := text & videoresult.title & CrLf& videoresult.sourceTitle

& CrLf & videoresult.playUrl & CrLf & CrLf;
endforeach;

endif;
// set the rich text control
jrtResults.textRTF := text;

end;

Web Services
White Paper

Web Services 34

WP_WebServices - 7.1

If you do not specify the AppId that you obtained from Microsoft in the AppID constant, the Web service will not
work.

The following diagram shows sample output.

Note A sample schema is provided with this white paper. If you are using an ANSI system, you may get
non-ANSI characters returned by the Web service and you will get an exception displayed on the status line. You
can address this by running this application in Unicode JADE.

Writing a Non-JADE Client Application
There are many tools available today to write a Web service client. The following example uses the Microsoft .NET
platform and Visual Basic (VB).

The WSDL file that was generated in JADE, shown in Appendix A of this document, can be imported into a .NET
application. Loading this WSDL file into a .NET Visual Basic application using the Add Web Reference dialog
creates a file of Web service method calls and proxy classes. The file created for the sample WSDL file is shown in
Appendix B of this document.

Web Services
White Paper

Web Services 35

WP_WebServices - 7.1

Using this generated proxy, you can now create a client application with a GUI front-end like that shown in the
following diagram.

The code behind this form (the GUI code is omitted for clarity) looks like the following.

Public Class Form1
Inherits System.Windows.Forms.Form
' create an instance of the service
Dim ws As New WebReference1.ErewhonWebServiceAdmin
Dim myClient As WebReference1.Client
' local variables
Dim goFetch As String
Dim img As Image
Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click
' Call the service and get client details based on the selected client name
Dim getClient As New WebReference1.getClient
Dim getClientResp As WebReference1.getClientResponse
Dim getPhoto As New WebReference1.getPhoto
Dim getPhotoResp As WebReference1.getPhotoResponse
getClient.clientName = ComboBox1.Text
Try

If goFetch <> ComboBox1.Text Then
getClientResp = ws.getClient(getClient)
Dim bin As Byte()
' get picture and display it if it exists
If Not getClientResp.getClientResult.allRetailSales Is Nothing Then

getPhoto.clientName = ComboBox1.Text
getPhotoResp = ws.getPhoto(getPhoto)
bin = getPhotoResp.getPhotoResult
If Not System.IO.File.Exists("c:\temp\" + ComboBox1.Text

+ ".jpg") Then
FileOpen(1, "c:\temp\" + ComboBox1.Text + ".jpg",

OpenMode.Binary, OpenAccess.Write)

Web Services
White Paper

Web Services 36

WP_WebServices - 7.1

FilePut(1, bin)
FileClose(1)

End If
img = Image.FromFile("c:\temp\" + ComboBox1.Text + ".jpg")
PictureBox1.Image = img

Else
PictureBox1.Image = Nothing

End If
goFetch = ComboBox1.Text
address1.Text = getClientResp.getClientResult.address1
address2.Text = getClientResp.getClientResult.address2
address3.Text = getClientResp.getClientResult.address3
email.Text = getClientResp.getClientResult.email
Phone.Text = getClientResp.getClientResult.phone
Fax.Text = getClientResp.getClientResult.fax
webSite.Text = getClientResp.getClientResult.webSite
Label5.Text = ""
updateButton.Enabled = True
myClient = getClientResp.getClientResult

End If
Catch myErr As System.Web.Services.Protocols.SoapException

Label5.Text = myErr.Message
End Try

End Sub

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

' Call the service and populate list box with client names
Dim getClientNames As New WebReference1.getClientNames
Dim getClientNamesResp As WebReference1.getClientNamesResponse
Dim str As String
updateButton.Enabled = False
Try

getClientNamesResp = ws.getClientNames()
For Each str In getClientNamesResp.getClientNamesResult

ComboBox1.Items.Add(str)
Next

Catch myErr As System.Web.Services.Protocols.SoapException
Label5.Text = myErr.Message

End Try
End Sub

Private Sub updateButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles updateButton.Click

Dim updateClient As New WebReference1.updateClient
Dim updateClientResp As WebReference1.updateClientResponse
Dim client As New WebReference1.Client
Try

client = myClient
updateClient._name = ComboBox1.Text
updateClient._address1 = address1.Text
updateClient._address2 = address2.Text
updateClient._address3 = address3.Text
updateClient._email = email.Text
updateClient._phone = Phone.Text

Web Services
White Paper

Web Services 37

WP_WebServices - 7.1

updateClient._fax = Fax.Text
updateClient._webSite = webSite.Text
updateClientResp = ws.updateClient()
Label5.Text = "Update Successful"

Catch myErr As System.Web.Services.Protocols.SoapException
Label5.Text = myErr.Message

End Try
End Sub

End Class

The four calls made to the service from this code are shown in bold. The first call is made in the form loadmethod
and calls the getClientNames method.

The SOAP message format for the request is as follows.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<getClientNames xmlns="urn:JadeWebServices/WebServiceOverHttpApp/" />

</soap:Body>
</soap:Envelope>

The SOAP message response to this message is as follows.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<getClientNamesResponse xmlns="urn:JadeWebServices/WebServiceOverHttpApp/">

<getClientNamesResult xsi:type="ArrayOfString">
<String>Andrew Fitzpatrick</String>
<String>Barbara Montenegro</String>
<String>Barry Ogen</String>
<String>Brian Olsen</String>
<String>Christine Montgomery</String>
<String>Christine Ronaldo</String>
<String>Christopher Burke</String>
<String>David Russel</String>
<String>Elaine Lee</String>
<String>Heather Bisset</String>
<String>Howard Ellis</String>
<String>Jane Phillippe</String>
<String>Levi Muir</String>
<String>Pauline Wild</String>
<String>Peggy Simpson</String>
<String>Peter Morrissey</String>
<String>Philip Jenkins</String>
<String>Roger Boeing</String>
<String>Sarah Bailey</String>
<String>Sean Hill</String>

</getClientNamesResult>
</getClientNamesResponse>

Web Services
White Paper

Web Services 38

WP_WebServices - 7.1

</soap:Body>
</soap:Envelope>

The second method is called when the Lookup button is clicked. This calls the getClient method.

The SOAP message format for the request (assuming that the client we want to look up is called Brian Olsen) is as
follows.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<getClient xmlns="urn:JADEWebServices/WebServiceOverHttpApp/">

<clientName>Brian Olsen</clientName>
</getClient>

</soap:Body>
</soap:Envelope>

The SOAP message response to this message is as follows.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<getClientResponse xmlns="urn:JadeWebServices/WebServiceOverHttpApp/">

<getClientResult xsi:type="Client">
<address1>2834 The Palace</address1>
<address2>San Diego</address2>
<address3>United States of America</address3>
<email>bo@wol.com</email>
<fax>64 2 2930 9393</fax>
<name>Brian Olsen</name>
<phone>1 2 3848 8384</phone>
<webSite>www.wol/olsen.com</webSite>
<allRetailSales>

<RetailSale>
<mySaleItem xsi:type="RetailSaleItem">

<shortDescription>Jungle Hideaway</shortDescription>
</mySaleItem>
<price>6250000.00</price>

</RetailSale>
</allRetailSales>
<allTenderSales>

<TenderSale>
<mySaleItem xsi:type="TenderSaleItem">

<shortDescription>Coffee Mill</shortDescription>
</mySaleItem>
<myTender>

<offer>1305.00</offer>
<timeStamp>1999-11-17T00:55:00.000-00:00</timeStamp>

</myTender>
</TenderSale>
<TenderSale>

<mySaleItem xsi:type="TenderSaleItem">

Web Services
White Paper

Web Services 39

WP_WebServices - 7.1

<shortDescription>Oil Painting</shortDescription>
</mySaleItem>
<myTender>

<offer>7732.00</offer>
<timeStamp>2000-02-05T19:25:00.000-00:00</timeStamp>

</myTender>
</TenderSale>

</allTenderSales>
</getClientResult>

</getClientResponse>
</soap:Body>

</soap:Envelope>

As part of this lookup, the getPhotomethod is called to get the photograph of a retail sale item.

Finally, when the Update button is clicked, the updateClientWithProxy method is called.

The SOAP message format for the request (again assuming that the client we want to update is Brian Olsen) is as
follows.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<updateClient xmlns="urn:JadeWebServices/WebServiceOverHttpApp/">

<_name>Brian Olsen</_name>
<_address1>2834 The Palace</_address1>
<_address2>San Diego</_address2>
<_address3>United States of America</_address3>
<_phone>1 2 3848 8384</_phone>
<_fax>64 2 2930 9393</_fax>
<_email>brian.olsen@gmail.com</_email>
<_webSite>www.wol/olsen.com</_webSite>

</updateClient>
</soap:Body>

</soap:Envelope>

The SOAP message response to this message is as follows.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<updateClientResponse xmlns="urn:JadeWebServices/WebServiceOverHttpApp/">

<updateClientResult></updateClientResult>
</updateClientResponse>

</soap:Body>
</soap:Envelope>

When an exception is raised in JADE, a SOAP fault message is sent as a response. For example, if a requested
client does not exist, the response that is sent back to the client is as follows.

<?xml version="1.0" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

Web Services
White Paper

Web Services 40

WP_WebServices - 7.1

<soap:Fault>
<faultcode>soap:Sender</faultcode>
<faultstring>Error 23 - Client does not exist</faultstring>
<detail>

<tns:faultDetails xmlns:tns="urn:JADEWebServices/WebShop/">
<errorCode>23</errorCode>
<errorItem>Barry Ogen</errorItem>
<errorText>Client does not exist</errorText>

</tns:faultDetails>
</detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

Most toolkits convert this fault to an application exception. It is up to the client application to trap this fault and
display a suitable message to the user.

Web Services
White Paper

Web Services 41

WP_WebServices - 7.1

Appendix A Sample WSDL File

The following WSDL file is generated from JADE for the Erewhon Investments Web service provider. This file was
used to produce the Visual Basic .NET file provided in Appendix B of this document.

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="urn:JadeWebServices/WebServiceOverHttpApp/"
xmlns:s1="http://jadeworld.com/wsdl/types/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="urn:JadeWebServices/WebServiceOverHttpApp/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:types>
<xsd:schema elementFormDefault="qualified"

targetNamespace="urn:JadeWebServices/WebServiceOverHttpApp/">
<xsd:element name="getClient">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="clientName" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="getClientResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="getClientResult" nillable="true" type="tns:Client"

/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="getClientNames">
<xsd:complexType>
<xsd:sequence />

</xsd:complexType>
</xsd:element>
<xsd:element name="getClientNamesResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="getClientNamesResult" nillable="true"

type="tns:ArrayOfString" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="getPhoto">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="clientName" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

WP_WebServices - 7.1

<xsd:element name="getPhotoResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="getPhotoResult" type="xsd:base64Binary" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="updateClient">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="_name" type="xsd:string" />
<xsd:element name="_address1" type="xsd:string" />
<xsd:element name="_address2" type="xsd:string" />
<xsd:element name="_address3" type="xsd:string" />
<xsd:element name="_phone" type="xsd:string" />
<xsd:element name="_fax" type="xsd:string" />
<xsd:element name="_email" type="xsd:string" />
<xsd:element name="_webSite" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="updateClientResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="updateClientResult" type="xsd:anyType" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="updateClientWithProxy">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="proxyClient" nillable="true" type="tns:Client" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="updateClientWithProxyResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="updateClientWithProxyResult" type="xsd:anyType" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name="Client">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:AddressableEntity">
<xsd:sequence>
<xsd:element name="allRetailSales" nillable="true"

type="tns:ArrayOfRetailSale" />
<xsd:element name="allTenderSales" nillable="true"

type="tns:ArrayOfTenderSale" />
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="ArrayOfRetailSale">

Web Services
White Paper

Appendix A SampleWSDL File 43

WP_WebServices - 7.1

<xsd:sequence>
<xsd:element minOccurs="0" maxOccurs="unbounded" name="RetailSale"

type="tns:RetailSale" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="ArrayOfAnyType">
<xsd:sequence>
<xsd:element minOccurs="0" maxOccurs="unbounded" name="Any"

nillable="true" type="xsd:anyType" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Object" abstract="true">
<xsd:sequence />

</xsd:complexType>
<xsd:complexType name="RetailSale">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:Sale">
<xsd:sequence>
<xsd:element minOccurs="0" name="price" type="tns:decimal_12_2" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="Sale" abstract="true">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:ModelEntity">
<xsd:sequence>
<xsd:element name="mySaleItem" nillable="true" type="tns:SaleItem" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="SaleItem" abstract="true">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:ModelEntity">
<xsd:sequence>
<xsd:element name="shortDescription" type="xsd:string" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="ModelEntity" abstract="true">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:Object">
<xsd:sequence />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="RetailSaleItem">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:SaleItem">
<xsd:sequence />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Web Services
White Paper

Appendix A SampleWSDL File 44

WP_WebServices - 7.1

<xsd:complexType name="TenderSaleItem">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:SaleItem">
<xsd:sequence />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="ArrayOfTenderSale">
<xsd:sequence>
<xsd:element minOccurs="0" maxOccurs="unbounded" name="TenderSale"

type="tns:TenderSale" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="TenderSale">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:Sale">
<xsd:sequence>
<xsd:element name="myTender" nillable="true" type="tns:Tender" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="Tender">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:ModelEntity">
<xsd:sequence>
<xsd:element minOccurs="0" name="offer" type="tns:decimal_12_2" />
<xsd:element minOccurs="0" name="timeStamp" type="xsd:dateTime" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="AddressableEntity" abstract="true">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:ModelEntity">
<xsd:sequence>
<xsd:element name="address1" type="xsd:string" />
<xsd:element name="address2" type="xsd:string" />
<xsd:element name="address3" type="xsd:string" />
<xsd:element name="email" type="xsd:string" />
<xsd:element name="fax" type="xsd:string" />
<xsd:element name="name" type="xsd:string" />
<xsd:element name="phone" type="xsd:string" />
<xsd:element name="webSite" type="xsd:string" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="ArrayOfString">
<xsd:sequence>
<xsd:element minOccurs="0" maxOccurs="unbounded" name="String"

nillable="true" type="xsd:string" />
</xsd:sequence>

</xsd:complexType>
<xsd:simpleType name="decimal_12_2">

Web Services
White Paper

Appendix A SampleWSDL File 45

WP_WebServices - 7.1

<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="12" />
<xsd:fractionDigits value="2" />

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>
</wsdl:types>
<wsdl:message name="getClientSoapIn">
<wsdl:part name="inputParameters" element="tns:getClient" />

</wsdl:message>
<wsdl:message name="getClientSoapOut">
<wsdl:part name="return" element="tns:getClientResponse" />

</wsdl:message>
<wsdl:message name="getClientNamesSoapIn">
<wsdl:part name="inputParameters" element="tns:getClientNames" />

</wsdl:message>
<wsdl:message name="getClientNamesSoapOut">
<wsdl:part name="return" element="tns:getClientNamesResponse" />

</wsdl:message>
<wsdl:message name="getPhotoSoapIn">
<wsdl:part name="inputParameters" element="tns:getPhoto" />

</wsdl:message>
<wsdl:message name="getPhotoSoapOut">
<wsdl:part name="return" element="tns:getPhotoResponse" />

</wsdl:message>
<wsdl:message name="updateClientSoapIn">
<wsdl:part name="inputParameters" element="tns:updateClient" />

</wsdl:message>
<wsdl:message name="updateClientSoapOut">
<wsdl:part name="return" element="tns:updateClientResponse" />

</wsdl:message>
<wsdl:message name="updateClientWithProxySoapIn">
<wsdl:part name="inputParameters" element="tns:updateClientWithProxy" />

</wsdl:message>
<wsdl:message name="updateClientWithProxySoapOut">
<wsdl:part name="return" element="tns:updateClientWithProxyResponse" />

</wsdl:message>
<wsdl:portType name="ErewhonInvestmentsServiceSoap">
<wsdl:operation name="getClient">
<documentation>Given a client name, this method will return a client object.

If a client with the supplied name does not exist, error 23 will be
returned.</documentation>

<wsdl:input message="tns:getClientSoapIn" />
<wsdl:output message="tns:getClientSoapOut" />

</wsdl:operation>
<wsdl:operation name="getClientNames">
<documentation>This method will return a string array of client

names.</documentation>
<wsdl:input message="tns:getClientNamesSoapIn" />
<wsdl:output message="tns:getClientNamesSoapOut" />

</wsdl:operation>
<wsdl:operation name="getPhoto">
<wsdl:input message="tns:getPhotoSoapIn" />
<wsdl:output message="tns:getPhotoSoapOut" />

</wsdl:operation>

Web Services
White Paper

Appendix A SampleWSDL File 46

WP_WebServices - 7.1

<wsdl:operation name="updateClient">
<documentation>This method takes several string parameters and updates the

persistent copy with details from the parameters. If the persistent object does not
exist, error 23 is returned.</documentation>

<wsdl:input message="tns:updateClientSoapIn" />
<wsdl:output message="tns:updateClientSoapOut" />

</wsdl:operation>
<wsdl:operation name="updateClientWithProxy">
<documentation>This method takes a client proxy object as parameter and

updates the persistent copy of the client object with details of the proxy. If the
persistent object does not exist, error 23 is returned.</documentation>

<wsdl:input message="tns:updateClientWithProxySoapIn" />
<wsdl:output message="tns:updateClientWithProxySoapOut" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ErewhonInvestmentsServiceSoap"

type="tns:ErewhonInvestmentsServiceSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getClient">
<soap:operation

soapAction="urn:JadeWebServices/WebServiceOverHttpApp/getClient" style="document"
/>

<wsdl:input>
<soap:body use="literal" />

</wsdl:input>
<wsdl:output>
<soap:body use="literal" />

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getClientNames">
<soap:operation

soapAction="urn:JadeWebServices/WebServiceOverHttpApp/getClientNames"
style="document" />

<wsdl:input>
<soap:body use="literal" />

</wsdl:input>
<wsdl:output>
<soap:body use="literal" />

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getPhoto">
<soap:operation

soapAction="urn:JadeWebServices/WebServiceOverHttpApp/getPhoto" style="document" />
<wsdl:input>
<soap:body use="literal" />

</wsdl:input>
<wsdl:output>
<soap:body use="literal" />

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="updateClient">
<soap:operation

soapAction="urn:JadeWebServices/WebServiceOverHttpApp/updateClient"
style="document" />

<wsdl:input>

Web Services
White Paper

Appendix A SampleWSDL File 47

WP_WebServices - 7.1

<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="updateClientWithProxy">
<soap:operation

soapAction="urn:JadeWebServices/WebServiceOverHttpApp/updateClientWithProxy"
style="document" />

<wsdl:input>
<soap:body use="literal" />

</wsdl:input>
<wsdl:output>
<soap:body use="literal" />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="ErewhonInvestmentsService">
<documentation>This service is used to access client and agent information on

the Erewhon system.

A list of clients and or agent details can be obtained as well as details for an
individual client or agent.

Client and Agent details can also be updated using this service (2
variations).</documentation>

<wsdl:port name="ErewhonInvestmentsServiceSoap"
binding="tns:ErewhonInvestmentsServiceSoap">

<soap:address
location="http://localhost/jade/jadehttp.dll?WebServiceOverHttpApp&
serviceName=ErewhonInvestmentsService&listName=WebServiceOverHttpApp" />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The following are notes about the above WSDL.

This document specifies the document/literal format for SOAP messages.

The superclass and subclass relationship is specified using XML schema syntax.

Classes that are abstract are specified as such.

The service location includes the Web service class name, because a JADE Web service application can
have multiple Web service classes.

Class and method text is used for the documentation.

Web Services
White Paper

Appendix A SampleWSDL File 48

WP_WebServices - 7.1

Appendix B Proxy Classes

The following file is generated when importing the sample WSDL file, provided in Appendix A of this document,
into Visual Basic .NET.

'--
' <auto-generated>
' This code was generated by a tool.
' Runtime Version:2.0.50727.3074
'
' Changes to this file may cause incorrect behavior and will be lost if
' the code is regenerated.
' </auto-generated>
'--

Option Strict Off
Option Explicit On

Imports System
Imports System.ComponentModel
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Serialization

'
'This source code was auto-generated by Microsoft.VSDesigner, Version
2.0.50727.3074.
'
Namespace WebReference1

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053"), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Web.Services.WebServiceBindingAttribute

(Name:="ErewhonInvestmentsServiceSoap",
[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/"), _

System.Xml.Serialization.XmlIncludeAttribute(GetType([Object]))> _
Partial Public Class ErewhonInvestmentsService

Inherits System.Web.Services.Protocols.SoapHttpClientProtocol

Private getClientOperationCompleted As System.Threading.SendOrPostCallback

Private getClientNamesOperationCompleted As
System.Threading.SendOrPostCallback

Private getPhotoOperationCompleted As System.Threading.SendOrPostCallback

Private updateClientOperationCompleted As
System.Threading.SendOrPostCallback

WP_WebServices - 7.1

Private updateClientWithProxyOperationCompleted As
System.Threading.SendOrPostCallback

Private useDefaultCredentialsSetExplicitly As Boolean

'''<remarks/>
Public Sub New()

MyBase.New
Me.Url =

Global.ErewhonInvestments.My.MySettings.Default.ErewhonInvestments_WebReference1_
ErewhonInvestmentsService

If (Me.IsLocalFileSystemWebService(Me.Url) = true) Then
Me.UseDefaultCredentials = true
Me.useDefaultCredentialsSetExplicitly = false

Else
Me.useDefaultCredentialsSetExplicitly = true

End If
End Sub

Public Shadows Property Url() As String
Get

Return MyBase.Url
End Get
Set

If (((Me.IsLocalFileSystemWebService(MyBase.Url) = true) _
AndAlso (Me.useDefaultCredentialsSetExplicitly =

false)) _
AndAlso (Me.IsLocalFileSystemWebService(value) =

false)) Then
MyBase.UseDefaultCredentials = false

End If
MyBase.Url = value

End Set
End Property

Public Shadows Property UseDefaultCredentials() As Boolean
Get

Return MyBase.UseDefaultCredentials
End Get
Set

MyBase.UseDefaultCredentials = value
Me.useDefaultCredentialsSetExplicitly = true

End Set
End Property

'''<remarks/>
Public Event getClientCompleted As getClientCompletedEventHandler

'''<remarks/>
Public Event getClientNamesCompleted As getClientNamesCompletedEventHandler

'''<remarks/>
Public Event getPhotoCompleted As getPhotoCompletedEventHandler

'''<remarks/>

Web Services
White Paper

Appendix B Proxy Classes 50

WP_WebServices - 7.1

Public Event updateClientCompleted As updateClientCompletedEventHandler

'''<remarks/>
Public Event updateClientWithProxyCompleted As

updateClientWithProxyCompletedEventHandler

'''<remarks/>
<System.Web.Services.Protocols.SoapDocumentMethodAttribute

("urn:JadeWebServices/WebServiceOverHttpApp/getClient",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Bare)> _

Public Function getClient(<System.Xml.Serialization.XmlElementAttribute
("getClient", [Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> ByVal
getClient1 As getClient) As <System.Xml.Serialization.XmlElementAttribute
("getClientResponse", [Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")>
getClientResponse

Dim results() As Object = Me.Invoke("getClient", New Object()
{getClient1})

Return CType(results(0),getClientResponse)
End Function

'''<remarks/>
Public Function BegingetClient(ByVal getClient1 As getClient, ByVal

callback As System.AsyncCallback, ByVal asyncState As Object) As
System.IAsyncResult

Return Me.BeginInvoke("getClient", New Object() {getClient1}, callback,
asyncState)

End Function

'''<remarks/>
Public Function EndgetClient(ByVal asyncResult As System.IAsyncResult) As

getClientResponse
Dim results() As Object = Me.EndInvoke(asyncResult)
Return CType(results(0),getClientResponse)

End Function

'''<remarks/>
Public Overloads Sub getClientAsync(ByVal getClient1 As getClient)

Me.getClientAsync(getClient1, Nothing)
End Sub

'''<remarks/>
Public Overloads Sub getClientAsync(ByVal getClient1 As getClient, ByVal

userState As Object)
If (Me.getClientOperationCompleted Is Nothing) Then

Me.getClientOperationCompleted = AddressOf
Me.OngetClientOperationCompleted

End If
Me.InvokeAsync("getClient", New Object() {getClient1},

Me.getClientOperationCompleted, userState)
End Sub

Private Sub OngetClientOperationCompleted(ByVal arg As Object)
If (Not (Me.getClientCompletedEvent) Is Nothing) Then

Dim invokeArgs As

Web Services
White Paper

Appendix B Proxy Classes 51

WP_WebServices - 7.1

System.Web.Services.Protocols.InvokeCompletedEventArgs = CType
(arg,System.Web.Services.Protocols.InvokeCompletedEventArgs)

RaiseEvent getClientCompleted(Me, New getClientCompletedEventArgs
(invokeArgs.Results, invokeArgs.Error, invokeArgs.Cancelled, invokeArgs.UserState))

End If
End Sub

'''<remarks/>
<System.Web.Services.Protocols.SoapDocumentMethodAttribute

("urn:JadeWebServices/WebServiceOverHttpApp/getClientNames",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Bare)> _

Public Function getClientNames
(<System.Xml.Serialization.XmlElementAttribute("getClientNames",
[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> ByVal getClientNames1
As getClientNames) As <System.Xml.Serialization.XmlElementAttribute
("getClientNamesResponse",
[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> getClientNamesResponse

Dim results() As Object = Me.Invoke("getClientNames", New Object()
{getClientNames1})

Return CType(results(0),getClientNamesResponse)
End Function

'''<remarks/>
Public Function BegingetClientNames(ByVal getClientNames1 As

getClientNames, ByVal callback As System.AsyncCallback, ByVal asyncState As Object)
As System.IAsyncResult

Return Me.BeginInvoke("getClientNames", New Object() {getClientNames1},
callback, asyncState)

End Function

'''<remarks/>
Public Function EndgetClientNames(ByVal asyncResult As System.IAsyncResult)

As getClientNamesResponse
Dim results() As Object = Me.EndInvoke(asyncResult)
Return CType(results(0),getClientNamesResponse)

End Function

'''<remarks/>
Public Overloads Sub getClientNamesAsync(ByVal getClientNames1 As

getClientNames)
Me.getClientNamesAsync(getClientNames1, Nothing)

End Sub

'''<remarks/>
Public Overloads Sub getClientNamesAsync(ByVal getClientNames1 As

getClientNames, ByVal userState As Object)
If (Me.getClientNamesOperationCompleted Is Nothing) Then

Me.getClientNamesOperationCompleted = AddressOf
Me.OngetClientNamesOperationCompleted

End If
Me.InvokeAsync("getClientNames", New Object() {getClientNames1},

Me.getClientNamesOperationCompleted, userState)
End Sub

Web Services
White Paper

Appendix B Proxy Classes 52

WP_WebServices - 7.1

Private Sub OngetClientNamesOperationCompleted(ByVal arg As Object)
If (Not (Me.getClientNamesCompletedEvent) Is Nothing) Then

Dim invokeArgs As
System.Web.Services.Protocols.InvokeCompletedEventArgs = CType
(arg,System.Web.Services.Protocols.InvokeCompletedEventArgs)

RaiseEvent getClientNamesCompleted(Me, New
getClientNamesCompletedEventArgs(invokeArgs.Results, invokeArgs.Error,
invokeArgs.Cancelled, invokeArgs.UserState))

End If
End Sub

'''<remarks/>
<System.Web.Services.Protocols.SoapDocumentMethodAttribute

("urn:JadeWebServices/WebServiceOverHttpApp/getPhoto",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Bare)> _

Public Function getPhoto(<System.Xml.Serialization.XmlElementAttribute
("getPhoto", [Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> ByVal
getPhoto1 As getPhoto) As <System.Xml.Serialization.XmlElementAttribute
("getPhotoResponse", [Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")>
getPhotoResponse

Dim results() As Object = Me.Invoke("getPhoto", New Object()
{getPhoto1})

Return CType(results(0),getPhotoResponse)
End Function

'''<remarks/>
Public Function BegingetPhoto(ByVal getPhoto1 As getPhoto, ByVal callback

As System.AsyncCallback, ByVal asyncState As Object) As System.IAsyncResult
Return Me.BeginInvoke("getPhoto", New Object() {getPhoto1}, callback,

asyncState)
End Function

'''<remarks/>
Public Function EndgetPhoto(ByVal asyncResult As System.IAsyncResult) As

getPhotoResponse
Dim results() As Object = Me.EndInvoke(asyncResult)
Return CType(results(0),getPhotoResponse)

End Function

'''<remarks/>
Public Overloads Sub getPhotoAsync(ByVal getPhoto1 As getPhoto)

Me.getPhotoAsync(getPhoto1, Nothing)
End Sub

'''<remarks/>
Public Overloads Sub getPhotoAsync(ByVal getPhoto1 As getPhoto, ByVal

userState As Object)
If (Me.getPhotoOperationCompleted Is Nothing) Then

Me.getPhotoOperationCompleted = AddressOf
Me.OngetPhotoOperationCompleted

End If
Me.InvokeAsync("getPhoto", New Object() {getPhoto1},

Me.getPhotoOperationCompleted, userState)
End Sub

Web Services
White Paper

Appendix B Proxy Classes 53

WP_WebServices - 7.1

Private Sub OngetPhotoOperationCompleted(ByVal arg As Object)
If (Not (Me.getPhotoCompletedEvent) Is Nothing) Then

Dim invokeArgs As
System.Web.Services.Protocols.InvokeCompletedEventArgs = CType
(arg,System.Web.Services.Protocols.InvokeCompletedEventArgs)

RaiseEvent getPhotoCompleted(Me, New getPhotoCompletedEventArgs
(invokeArgs.Results, invokeArgs.Error, invokeArgs.Cancelled, invokeArgs.UserState))

End If
End Sub

'''<remarks/>
<System.Web.Services.Protocols.SoapDocumentMethodAttribute

("urn:JadeWebServices/WebServiceOverHttpApp/updateClient",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Bare)> _

Public Function updateClient(<System.Xml.Serialization.XmlElementAttribute
("updateClient", [Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> ByVal
updateClient1 As updateClient) As <System.Xml.Serialization.XmlElementAttribute
("updateClientResponse",
[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> updateClientResponse

Dim results() As Object = Me.Invoke("updateClient", New Object()
{updateClient1})

Return CType(results(0),updateClientResponse)
End Function

'''<remarks/>
Public Function BeginupdateClient(ByVal updateClient1 As updateClient,

ByVal callback As System.AsyncCallback, ByVal asyncState As Object) As
System.IAsyncResult

Return Me.BeginInvoke("updateClient", New Object() {updateClient1},
callback, asyncState)

End Function

'''<remarks/>
Public Function EndupdateClient(ByVal asyncResult As System.IAsyncResult)

As updateClientResponse
Dim results() As Object = Me.EndInvoke(asyncResult)
Return CType(results(0),updateClientResponse)

End Function

'''<remarks/>
Public Overloads Sub updateClientAsync(ByVal updateClient1 As updateClient)

Me.updateClientAsync(updateClient1, Nothing)
End Sub

'''<remarks/>
Public Overloads Sub updateClientAsync(ByVal updateClient1 As updateClient,

ByVal userState As Object)
If (Me.updateClientOperationCompleted Is Nothing) Then

Me.updateClientOperationCompleted = AddressOf
Me.OnupdateClientOperationCompleted

End If
Me.InvokeAsync("updateClient", New Object() {updateClient1},

Me.updateClientOperationCompleted, userState)

Web Services
White Paper

Appendix B Proxy Classes 54

WP_WebServices - 7.1

End Sub

Private Sub OnupdateClientOperationCompleted(ByVal arg As Object)
If (Not (Me.updateClientCompletedEvent) Is Nothing) Then

Dim invokeArgs As
System.Web.Services.Protocols.InvokeCompletedEventArgs = CType
(arg,System.Web.Services.Protocols.InvokeCompletedEventArgs)

RaiseEvent updateClientCompleted(Me, New
updateClientCompletedEventArgs(invokeArgs.Results, invokeArgs.Error,
invokeArgs.Cancelled, invokeArgs.UserState))

End If
End Sub

'''<remarks/>
<System.Web.Services.Protocols.SoapDocumentMethodAttribute

("urn:JadeWebServices/WebServiceOverHttpApp/updateClientWithProxy",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Bare)> _

Public Function updateClientWithProxy
(<System.Xml.Serialization.XmlElementAttribute("updateClientWithProxy",
[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> ByVal
updateClientWithProxy1 As updateClientWithProxy) As
<System.Xml.Serialization.XmlElementAttribute("updateClientWithProxyResponse",
[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")>
updateClientWithProxyResponse

Dim results() As Object = Me.Invoke("updateClientWithProxy", New Object
() {updateClientWithProxy1})

Return CType(results(0),updateClientWithProxyResponse)
End Function

'''<remarks/>
Public Function BeginupdateClientWithProxy(ByVal updateClientWithProxy1 As

updateClientWithProxy, ByVal callback As System.AsyncCallback, ByVal asyncState As
Object) As System.IAsyncResult

Return Me.BeginInvoke("updateClientWithProxy", New Object()
{updateClientWithProxy1}, callback, asyncState)

End Function

'''<remarks/>
Public Function EndupdateClientWithProxy(ByVal asyncResult As

System.IAsyncResult) As updateClientWithProxyResponse
Dim results() As Object = Me.EndInvoke(asyncResult)
Return CType(results(0),updateClientWithProxyResponse)

End Function

'''<remarks/>
Public Overloads Sub updateClientWithProxyAsync(ByVal

updateClientWithProxy1 As updateClientWithProxy)
Me.updateClientWithProxyAsync(updateClientWithProxy1, Nothing)

End Sub

'''<remarks/>
Public Overloads Sub updateClientWithProxyAsync(ByVal

updateClientWithProxy1 As updateClientWithProxy, ByVal userState As Object)
If (Me.updateClientWithProxyOperationCompleted Is Nothing) Then

Web Services
White Paper

Appendix B Proxy Classes 55

WP_WebServices - 7.1

Me.updateClientWithProxyOperationCompleted = AddressOf
Me.OnupdateClientWithProxyOperationCompleted

End If
Me.InvokeAsync("updateClientWithProxy", New Object()

{updateClientWithProxy1}, Me.updateClientWithProxyOperationCompleted, userState)
End Sub

Private Sub OnupdateClientWithProxyOperationCompleted(ByVal arg As Object)
If (Not (Me.updateClientWithProxyCompletedEvent) Is Nothing) Then

Dim invokeArgs As
System.Web.Services.Protocols.InvokeCompletedEventArgs = CType
(arg,System.Web.Services.Protocols.InvokeCompletedEventArgs)

RaiseEvent updateClientWithProxyCompleted(Me, New
updateClientWithProxyCompletedEventArgs(invokeArgs.Results, invokeArgs.Error,
invokeArgs.Cancelled, invokeArgs.UserState))

End If
End Sub

'''<remarks/>
Public Shadows Sub CancelAsync(ByVal userState As Object)

MyBase.CancelAsync(userState)
End Sub

Private Function IsLocalFileSystemWebService(ByVal url As String) As
Boolean

If ((url Is Nothing) _
OrElse (url Is String.Empty)) Then

Return false
End If
Dim wsUri As System.Uri = New System.Uri(url)
If ((wsUri.Port >= 1024) _

AndAlso (String.Compare(wsUri.Host, "localHost",
System.StringComparison.OrdinalIgnoreCase) = 0)) Then

Return true
End If
Return false

End Function
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class getClient

Private clientNameField As String

'''<remarks/>
Public Property clientName() As String

Get
Return Me.clientNameField

Web Services
White Paper

Appendix B Proxy Classes 56

WP_WebServices - 7.1

End Get
Set

Me.clientNameField = value
End Set

End Property
End Class

'''<remarks/>
<System.Xml.Serialization.XmlIncludeAttribute(GetType(ModelEntity)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(AddressableEntity)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(Client)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(Tender)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(SaleItem)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(TenderSaleItem)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(RetailSaleItem)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(Sale)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(TenderSale)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(RetailSale)), _
System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public MustInherit Class [Object]
End Class

'''<remarks/>
<System.Xml.Serialization.XmlIncludeAttribute(GetType(AddressableEntity)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(Client)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(Tender)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(SaleItem)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(TenderSaleItem)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(RetailSaleItem)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(Sale)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(TenderSale)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(RetailSale)), _
System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public MustInherit Class ModelEntity

Inherits [Object]
End Class

'''<remarks/>
<System.Xml.Serialization.XmlIncludeAttribute(GetType(Client)), _
System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _

Web Services
White Paper

Appendix B Proxy Classes 57

WP_WebServices - 7.1

System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public MustInherit Class AddressableEntity

Inherits ModelEntity

Private address1Field As String

Private address2Field As String

Private address3Field As String

Private emailField As String

Private faxField As String

Private nameField As String

Private phoneField As String

Private webSiteField As String

'''<remarks/>
Public Property address1() As String

Get
Return Me.address1Field

End Get
Set

Me.address1Field = value
End Set

End Property

'''<remarks/>
Public Property address2() As String

Get
Return Me.address2Field

End Get
Set

Me.address2Field = value
End Set

End Property

'''<remarks/>
Public Property address3() As String

Get
Return Me.address3Field

End Get
Set

Me.address3Field = value
End Set

End Property

'''<remarks/>
Public Property email() As String

Get

Web Services
White Paper

Appendix B Proxy Classes 58

WP_WebServices - 7.1

Return Me.emailField
End Get
Set

Me.emailField = value
End Set

End Property

'''<remarks/>
Public Property fax() As String

Get
Return Me.faxField

End Get
Set

Me.faxField = value
End Set

End Property

'''<remarks/>
Public Property name() As String

Get
Return Me.nameField

End Get
Set

Me.nameField = value
End Set

End Property

'''<remarks/>
Public Property phone() As String

Get
Return Me.phoneField

End Get
Set

Me.phoneField = value
End Set

End Property

'''<remarks/>
Public Property webSite() As String

Get
Return Me.webSiteField

End Get
Set

Me.webSiteField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

Web Services
White Paper

Appendix B Proxy Classes 59

WP_WebServices - 7.1

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class Client

Inherits AddressableEntity

Private allRetailSalesField() As RetailSale

Private allTenderSalesField() As TenderSale

'''<remarks/>
<System.Xml.Serialization.XmlArrayAttribute(IsNullable:=true), _
System.Xml.Serialization.XmlArrayItemAttribute(IsNullable:=false)> _
Public Property allRetailSales() As RetailSale()

Get
Return Me.allRetailSalesField

End Get
Set

Me.allRetailSalesField = value
End Set

End Property

'''<remarks/>
<System.Xml.Serialization.XmlArrayAttribute(IsNullable:=true), _
System.Xml.Serialization.XmlArrayItemAttribute(IsNullable:=false)> _
Public Property allTenderSales() As TenderSale()

Get
Return Me.allTenderSalesField

End Get
Set

Me.allTenderSalesField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class RetailSale

Inherits Sale

Private priceField As Decimal

Private priceFieldSpecified As Boolean

'''<remarks/>
Public Property price() As Decimal

Get
Return Me.priceField

End Get
Set

Me.priceField = value

Web Services
White Paper

Appendix B Proxy Classes 60

WP_WebServices - 7.1

End Set
End Property

'''<remarks/>
<System.Xml.Serialization.XmlIgnoreAttribute()> _
Public Property priceSpecified() As Boolean

Get
Return Me.priceFieldSpecified

End Get
Set

Me.priceFieldSpecified = value
End Set

End Property
End Class

'''<remarks/>
<System.Xml.Serialization.XmlIncludeAttribute(GetType(TenderSale)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(RetailSale)), _
System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public MustInherit Class Sale

Inherits ModelEntity

Private mySaleItemField As SaleItem

'''<remarks/>
<System.Xml.Serialization.XmlElementAttribute(IsNullable:=true)> _
Public Property mySaleItem() As SaleItem

Get
Return Me.mySaleItemField

End Get
Set

Me.mySaleItemField = value
End Set

End Property
End Class

'''<remarks/>
<System.Xml.Serialization.XmlIncludeAttribute(GetType(TenderSaleItem)), _
System.Xml.Serialization.XmlIncludeAttribute(GetType(RetailSaleItem)), _
System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public MustInherit Class SaleItem

Inherits ModelEntity

Web Services
White Paper

Appendix B Proxy Classes 61

WP_WebServices - 7.1

Private shortDescriptionField As String

'''<remarks/>
Public Property shortDescription() As String

Get
Return Me.shortDescriptionField

End Get
Set

Me.shortDescriptionField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class TenderSaleItem

Inherits SaleItem
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class RetailSaleItem

Inherits SaleItem
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class TenderSale

Inherits Sale

Private myTenderField As Tender

'''<remarks/>
<System.Xml.Serialization.XmlElementAttribute(IsNullable:=true)> _
Public Property myTender() As Tender

Get
Return Me.myTenderField

Web Services
White Paper

Appendix B Proxy Classes 62

WP_WebServices - 7.1

End Get
Set

Me.myTenderField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute

([Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class Tender

Inherits ModelEntity

Private offerField As Decimal

Private offerFieldSpecified As Boolean

Private timeStampField As Date

Private timeStampFieldSpecified As Boolean

'''<remarks/>
Public Property offer() As Decimal

Get
Return Me.offerField

End Get
Set

Me.offerField = value
End Set

End Property

'''<remarks/>
<System.Xml.Serialization.XmlIgnoreAttribute()> _
Public Property offerSpecified() As Boolean

Get
Return Me.offerFieldSpecified

End Get
Set

Me.offerFieldSpecified = value
End Set

End Property

'''<remarks/>
Public Property timeStamp() As Date

Get
Return Me.timeStampField

End Get
Set

Me.timeStampField = value
End Set

Web Services
White Paper

Appendix B Proxy Classes 63

WP_WebServices - 7.1

End Property

'''<remarks/>
<System.Xml.Serialization.XmlIgnoreAttribute()> _
Public Property timeStampSpecified() As Boolean

Get
Return Me.timeStampFieldSpecified

End Get
Set

Me.timeStampFieldSpecified = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class getClientResponse

Private getClientResultField As Client

'''<remarks/>
<System.Xml.Serialization.XmlElementAttribute(IsNullable:=true)> _
Public Property getClientResult() As Client

Get
Return Me.getClientResultField

End Get
Set

Me.getClientResultField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class getClientNames
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _

Web Services
White Paper

Appendix B Proxy Classes 64

WP_WebServices - 7.1

System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,
[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _

Partial Public Class getClientNamesResponse

Private getClientNamesResultField() As String

'''<remarks/>
<System.Xml.Serialization.XmlArrayAttribute(IsNullable:=true), _
System.Xml.Serialization.XmlArrayItemAttribute("String")> _
Public Property getClientNamesResult() As String()

Get
Return Me.getClientNamesResultField

End Get
Set

Me.getClientNamesResultField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class getPhoto

Private clientNameField As String

'''<remarks/>
Public Property clientName() As String

Get
Return Me.clientNameField

End Get
Set

Me.clientNameField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class getPhotoResponse

Private getPhotoResultField() As Byte

'''<remarks/>

Web Services
White Paper

Appendix B Proxy Classes 65

WP_WebServices - 7.1

<System.Xml.Serialization.XmlElementAttribute(DataType:="base64Binary")> _
Public Property getPhotoResult() As Byte()

Get
Return Me.getPhotoResultField

End Get
Set

Me.getPhotoResultField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class updateClient

Private _nameField As String

Private _address1Field As String

Private _address2Field As String

Private _address3Field As String

Private _phoneField As String

Private _faxField As String

Private _emailField As String

Private _webSiteField As String

'''<remarks/>
Public Property _name() As String

Get
Return Me._nameField

End Get
Set

Me._nameField = value
End Set

End Property

'''<remarks/>
Public Property _address1() As String

Get
Return Me._address1Field

End Get
Set

Me._address1Field = value
End Set

Web Services
White Paper

Appendix B Proxy Classes 66

WP_WebServices - 7.1

End Property

'''<remarks/>
Public Property _address2() As String

Get
Return Me._address2Field

End Get
Set

Me._address2Field = value
End Set

End Property

'''<remarks/>
Public Property _address3() As String

Get
Return Me._address3Field

End Get
Set

Me._address3Field = value
End Set

End Property

'''<remarks/>
Public Property _phone() As String

Get
Return Me._phoneField

End Get
Set

Me._phoneField = value
End Set

End Property

'''<remarks/>
Public Property _fax() As String

Get
Return Me._faxField

End Get
Set

Me._faxField = value
End Set

End Property

'''<remarks/>
Public Property _email() As String

Get
Return Me._emailField

End Get
Set

Me._emailField = value
End Set

End Property

'''<remarks/>
Public Property _webSite() As String

Get

Web Services
White Paper

Appendix B Proxy Classes 67

WP_WebServices - 7.1

Return Me._webSiteField
End Get
Set

Me._webSiteField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class updateClientResponse

Private updateClientResultField As Object

'''<remarks/>
Public Property updateClientResult() As Object

Get
Return Me.updateClientResultField

End Get
Set

Me.updateClientResultField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class updateClientWithProxy

Private proxyClientField As Client

'''<remarks/>
<System.Xml.Serialization.XmlElementAttribute(IsNullable:=true)> _
Public Property proxyClient() As Client

Get
Return Me.proxyClientField

End Get
Set

Me.proxyClientField = value
End Set

End Property
End Class

Web Services
White Paper

Appendix B Proxy Classes 68

WP_WebServices - 7.1

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml",

"2.0.50727.3074"), _
System.SerializableAttribute(), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code"), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=true,

[Namespace]:="urn:JadeWebServices/WebServiceOverHttpApp/")> _
Partial Public Class updateClientWithProxyResponse

Private updateClientWithProxyResultField As Object

'''<remarks/>
Public Property updateClientWithProxyResult() As Object

Get
Return Me.updateClientWithProxyResultField

End Get
Set

Me.updateClientWithProxyResultField = value
End Set

End Property
End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053")> _
Public Delegate Sub getClientCompletedEventHandler(ByVal sender As Object,

ByVal e As getClientCompletedEventArgs)

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053"), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code")> _
Partial Public Class getClientCompletedEventArgs

Inherits System.ComponentModel.AsyncCompletedEventArgs

Private results() As Object

Friend Sub New(ByVal results() As Object, ByVal exception As
System.Exception, ByVal cancelled As Boolean, ByVal userState As Object)

MyBase.New(exception, cancelled, userState)
Me.results = results

End Sub

'''<remarks/>
Public ReadOnly Property Result() As getClientResponse

Get
Me.RaiseExceptionIfNecessary
Return CType(Me.results(0),getClientResponse)

End Get
End Property

End Class

'''<remarks/>

Web Services
White Paper

Appendix B Proxy Classes 69

WP_WebServices - 7.1

<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",
"2.0.50727.3053")> _

Public Delegate Sub getClientNamesCompletedEventHandler(ByVal sender As Object,
ByVal e As getClientNamesCompletedEventArgs)

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053"), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code")> _
Partial Public Class getClientNamesCompletedEventArgs

Inherits System.ComponentModel.AsyncCompletedEventArgs

Private results() As Object

Friend Sub New(ByVal results() As Object, ByVal exception As
System.Exception, ByVal cancelled As Boolean, ByVal userState As Object)

MyBase.New(exception, cancelled, userState)
Me.results = results

End Sub

'''<remarks/>
Public ReadOnly Property Result() As getClientNamesResponse

Get
Me.RaiseExceptionIfNecessary
Return CType(Me.results(0),getClientNamesResponse)

End Get
End Property

End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053")> _
Public Delegate Sub getPhotoCompletedEventHandler(ByVal sender As Object, ByVal

e As getPhotoCompletedEventArgs)

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053"), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code")> _
Partial Public Class getPhotoCompletedEventArgs

Inherits System.ComponentModel.AsyncCompletedEventArgs

Private results() As Object

Friend Sub New(ByVal results() As Object, ByVal exception As
System.Exception, ByVal cancelled As Boolean, ByVal userState As Object)

MyBase.New(exception, cancelled, userState)
Me.results = results

End Sub

'''<remarks/>
Public ReadOnly Property Result() As getPhotoResponse

Get

Web Services
White Paper

Appendix B Proxy Classes 70

WP_WebServices - 7.1

Me.RaiseExceptionIfNecessary
Return CType(Me.results(0),getPhotoResponse)

End Get
End Property

End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053")> _
Public Delegate Sub updateClientCompletedEventHandler(ByVal sender As Object,

ByVal e As updateClientCompletedEventArgs)

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053"), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code")> _
Partial Public Class updateClientCompletedEventArgs

Inherits System.ComponentModel.AsyncCompletedEventArgs

Private results() As Object

Friend Sub New(ByVal results() As Object, ByVal exception As
System.Exception, ByVal cancelled As Boolean, ByVal userState As Object)

MyBase.New(exception, cancelled, userState)
Me.results = results

End Sub

'''<remarks/>
Public ReadOnly Property Result() As updateClientResponse

Get
Me.RaiseExceptionIfNecessary
Return CType(Me.results(0),updateClientResponse)

End Get
End Property

End Class

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053")> _
Public Delegate Sub updateClientWithProxyCompletedEventHandler(ByVal sender As

Object, ByVal e As updateClientWithProxyCompletedEventArgs)

'''<remarks/>
<System.CodeDom.Compiler.GeneratedCodeAttribute("System.Web.Services",

"2.0.50727.3053"), _
System.Diagnostics.DebuggerStepThroughAttribute(), _
System.ComponentModel.DesignerCategoryAttribute("code")> _
Partial Public Class updateClientWithProxyCompletedEventArgs

Inherits System.ComponentModel.AsyncCompletedEventArgs

Private results() As Object

Friend Sub New(ByVal results() As Object, ByVal exception As
System.Exception, ByVal cancelled As Boolean, ByVal userState As Object)

Web Services
White Paper

Appendix B Proxy Classes 71

WP_WebServices - 7.1

MyBase.New(exception, cancelled, userState)
Me.results = results

End Sub

'''<remarks/>
Public ReadOnly Property Result() As updateClientWithProxyResponse

Get
Me.RaiseExceptionIfNecessary
Return CType(Me.results(0),updateClientWithProxyResponse)

End Get
End Property

End Class
End Namespace

Web Services
White Paper

Appendix B Proxy Classes 72

	Contents
	Web Services
	Why Web Services?
	SOAP
	WSDL
	UDDI
	Web Services in JADE
	Architecture
	JADE Web Services Provider
	Runtime Deployment
	JADE Web Services Provider Message Flow
	SOAP Message Formats
	Versioning Options
	SOAP Faults
	Using SOAP Headers
	Documenting Your Web Service

	Mapping JADE Types to XML Schema Types
	A Web Service Provider Example
	Creating the Web Service Class
	Creating the Web Service Methods
	Creating the Exposure List
	Creating the Web Service Application
	Generating the WSDL
	Using the Test Harness

	JADE Web Services Client
	Creating a JADE Web Services Client
	Using a JADE Web Services Client
	Message Flow
	Web Service Styles
	Transients
	SOAP Headers
	Updating a Consumer
	Changing the End Point
	Direct Web Services

	Example JADE Web Service Client
	Sample Code

	Writing a Non-JADE Client Application

	Appendix A Sample WSDL File
	Appendix B Proxy Classes

