
Copyright©2016 Jade Software Corporation Limited. All rights reserved.

Relational Queries Using ODBC
White Paper

 VERSION 7.1

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2016 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.

WP_RelQueriesODBC - 7.1

Contents

Contents iii

Relational Queries Using ODBC 4
Relational Views 4
Using the JADE ODBC Driver 5
Sample Schemas 5
JADE ODBC Thin Client 5

ODBC Server Application Definition 7
Thin Client DSN Definition 8
ODBC Query Tool Execution 9
User Context-Dependent Application Method Code 10

Improving Query Performance 11
Using Collections on Joins 12
Using Collection Methods 14

Soft Entities and Soft Attributes 16
Soft Entity and Soft Attribute Definition 16
How to Add Soft Entities to a Relational View 18
JadeRelationalEntityIF Interface 20
JadeRelationalAttributeIF Interface 20
Adding a Soft Entity to a Relational View 21
Adding a Soft Attribute to a Soft Entity in a Relational View 22
Query Execution with Soft Attributes 23

SELECT with Soft Entity Mapped to JADE Class 23
SELECT with Soft Entity Not Mapped to JADE Class 24
SELECT with Soft Entity with WHERE Clause 25

Query Provider Interface 25
JADE Documentation on Relational Views and ODBC Queries 30

Conclusion 30

WP_RelQueriesODBC - 7.1

Relational Queries Using ODBC

The JADE ODBC (Open Database Connectivity) standard driver and thin client driver enable you to use SQL
statements to access a relational view of your JADE database. You can use the JADE ODBC drivers with tools that
access databases using ODBC (for example, MS Query or Crystal Reports). The JADE ODBC drivers are installed
as part of the JADE installation process.

The JADE Relational View wizard enables you to create a relational view of your JADE database. This relational
view can include JADE classes, properties, and methods. It can also include user schema-defined (soft) attributes
and entities.

To use an ODBC driver, configure an ODBC Data Source (DSN) using the Data Source Administrator. The DSN
defines the ODBC driver to use and any driver-specific configuration information. Usually, a DSN specifies a
specific database to use. For JADE, this configuration information includes the relational view to use and
connection information.

Typically, the query tool allows you to select the DSN to be used when using the ODBC interface. The query tool
will retrieve catalog information defining tables and columns and allows you to define the data required. The
retrieval of the data is done using a SELECT statement.

The JADE ODBC thin client establishes a TCP/IP connection with a user-defined ODBC server application
running in a JADE node. The JADE ODBC standard (fat) client runs as a JADE client node, establishing
communication with a JADE database server in the same way as any other JADE standard client.

The JADE ODBC driver is a Core-level implementation of an ODBC version 3.51 driver.

The JADE ODBC drivers are available in 32-bit and 64-bit versions. If running on a 64-bit machine, the driver used
must match the third-party tool being used; for example, it may be necessary to install 32-bit JADE ODBC drivers
for use with 32-bit tools.

For more details, see the following subsections.

Relational Views
The relational view allows you control over the visibility of data from the JADE schema.

The following table shows the mapping in a relational view between JADE components and ODBC entities.

JADE Component ODBC Entity

Class Table

Primitive attribute, value method Column

Inverse (1:M relationship) Foreign key / primary key OID

Inverse (M:M relationships) Derived table

Collection method Derived table

Non-inverse collection, primitive array Derived table

External-keyed dictionary Additional table

WP_RelQueriesODBC - 7.1

Using the JADE ODBC Driver
The JADE ODBC driver is installed as part of the JADE installation process.

The specific drivers installed depend upon the type of installation. For example, for a JADE 7.1 Development
installation, the following drivers are installed.

JADE ODBC Driver: a generic standard driver that is updated with each JADE release

JADE ODBC Driver 7.1: a standard driver that is specific to the JADE release

JADE ODBC Thin Client: a thin client driver that is updated with each JADE release

Note The JADE ODBC drivers are available in 32-bit and 64-bit versions. If installing the 64-bit version, both
64-bit and 32-bit drivers are installed. (64-bit version driver names have a suffix of x64 suffix.

When using a JADE ODBC driver on a 64-bit machine, the bit version of the JADE node executing the JADE
ODBC access must match the bit version of the JADE ODBC driver that is being used.

If you are running JADE on a 64-bit machine under Windows in 64-bit mode and you are configuring a 32-bit
ODBC driver, run the following program.

<\windows-directory>\SysWOW64\odbcad32.exe

This runs the 32-bit version of the Microsoft Data Source Administrator program rather than the 64-bit version.

Using the Microsoft Data Source Administrator program, create a DSN that uses the appropriate JADE ODBC
driver and configure it as required.

Sample Schemas
The sample schema for this white paper is built on the Erewhon sample schemas found in the JADE
examples\erewhon directory. You can download the Erewhon sample schemas and the white paper sample
schemas, if required, from the JADE Web site at https://www.jadeworld.com/developer-center.

To load the ODBC sample schema

1. Load the Erewhon example schemas, using the ErewhonInvestments.mul file.

2. Load the modifications to the ErewhonInvestmentsModel schema for this white paper sample, using
ModelODBC.scm and ModelODBC.ddb.

3. Perform a reorganization of the ErewhonInvestmentsModel schema.

4. Load the ErewhonInvestmentsODBC schema, using ErewhonInvestmentsODBC.scm and
ErewhonInvestmentsODBC.ddb.

JADE ODBC Thin Client
The JADE ODBC thin client driver allows JADE ODBC access from any machine that has the JADE thin
(presentation) client installed.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 5

https://www.jadeworld.com/developer-center/

WP_RelQueriesODBC - 7.1

The JADE ODBC thin client driver communicates with a JADE ODBC server application using a TCP/IP
connection and the JADE multiple worker TCP/IP transport mechanism. The query to retrieve the JADE objects is
executed in the ODBC server application, which can be run on a standard client, application server, or database
server node.

The multiple worker infrastructure enables a number of client connections to be supported by a smaller number of
worker processes.

The following outlines the steps required to run an ODBC thin client. The details of the steps are covered in the
following sections.

In the schema in which the relational view is defined:

1. Create the non-GUI ODBC server application.

2. On the ODBC server application node:

a. Specify the JADE initialization file options for the ODBC server application. This can be done directly in
the JADE initialization file or in an ODBC server application Extensible Markup Language (XML) file,
which is specified in the JADE initialization file options.

b. Run the ODBC server application.

3. On the ODBC thin client machine:

a. Install the JADE ODBC thin client driver (normally done as part of JADE Thin Client installation).

b. Create the DSN to connect to the ODBC server application.

c. Run the ODBC query tool and then select the DSN.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 6

WP_RelQueriesODBC - 7.1

The following diagram illustrates the execution of the ODBC query tool on the thin client machine and the
execution of the ODBC server application in the ODBC server node.

The selection and location of the JADE node in which the ODBC server application is run will affect the
performance of the ODBC queries. As this is the node in which the JADE code is executing and the JADE objects
are being accessed, the same considerations apply as those for any application server or standard (fat) client
node.

ODBC Server Application Definition
The sample ErewhonInvestmentsODBC schema contains the OdbcServer application, which has
initializeOdbcServer and finalizeOdbcServer as the initialize and finalize methods. These methods call
app.odbcWorkerInitialize and app.odbcWorkerFinalize.

The parameters for this application are defined in the JADE initialization file using the following.

[JadeOdbcServer]
ApplicationConfigFile=D:\jade\odbcconfig.xml

You can create and maintain the odbcconfig.xml file using the OdbcServerConfigurator application in the
JadeMonitorSchema; for example:

jade.exe path=c:\jade\system ini=c:\jade\system\jade.ini schema=JadeMonitorSchema
app=OdbcServerConfigurator

The sample configuration file contains the following.

<?xml version="1.0" ?>
<jade_config>

<application schema="ErewhonInvestmentsODBC" name="OdbcServer">

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 7

WP_RelQueriesODBC - 7.1

<odbc_config>
<listen_host_name>localhost</listen_host_name>
<listen_port_number>65434</listen_port_number>
<listen_protocol_family>TcpIPv4</listen_protocol_family>
<minimum_workers>2</minimum_workers>
<maximum_workers>5</maximum_workers>
<read_timeout>0</read_timeout>
<queue_depth_limit>1</queue_depth_limit>
<queue_depth_limit_timeout>2</queue_depth_limit_timeout>
<worker_idle_timeout>120</worker_idle_timeout>

</odbc_config>
</application>

</jade_config>

The defined host (localhost) and TCP/IP port number (65434) are used when defining the DSN for the ODBC thin
client connection.

When the OdbcServer application is started and calls app.odbcWorkerInitialize, the initialization file options in
the [JadeOdbcServer] section are read, to define the start-up options. This section can specify an XML file that
defines the options, or the options can be specified directly in the initialization file. The use of the XML file allows
multiple worker applications to be defined for the node.

In the sample, the initialization file specifies the XML file to be used. When the XML file is read, two worker
processes are started (the minimum workers value) and these workers wait for connections on localhost::65434.

The worker processes also respond to management event call-backs from the multiple worker TCP/IP transport
framework to start and stop workers, as required. If all of the workers are busy executing query requests, there will
be no workers available to start new workers, if required. For this reason, we recommend that the minimum
number of workers be set to one more than the queue depth limit.

In the sample, initially two workers are started. When a connection to a thin client is established, each request is
queued and allocated to a worker process. If another connection is established and the requests overlap, the
queue depth is exceeded, which sends a management request to start a new worker process. A third worker
process is started and continues as long as the worker idle timeout is not exceeded. Up to five workers can be
started (the maximum workers value).

Thin Client DSN Definition
To define a DSN for the ODBC thin client connection, run the Microsoft ODBC Administrator on the thin client
machine. If running on a 64-bit machine, the DSN must be defined using the appropriate 64-bit or 32-bit
administrator and JADE thin client driver for the ODBC query tool that will use the DSN.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 8

WP_RelQueriesODBC - 7.1

Add a User Data Source using the JADE thin client driver. The following screen defines the fields, including the
required TCP/IP connection information and relational view information.

ODBC Query Tool Execution
Run the ODBC query tool to be used to access the JADE data.

Specify the ErewhonThin DSN to be used for ODBC connection.

When the tool calls SQLConnect, the TCP/IP connection to the ODBC server application is opened. The versions
of the JADE DLLs being used by the JADE ODBC thin client must match the versions in the ODBC server node. If
the versions do not match, an error is reported and the connection is dropped. The JADE thin client binaries must
be updated by establishing a standard JADE presentation client to an application server connection and using the
automatic download, or by manually updating the thin client binaries.

The connection from the JADE ODBC thin client passes in a user-supplied user name and password. This
connection information is validated by a call to the Global::isUserValidmethod. You should implement this to
validate the user name and password for ODBC access.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 9

WP_RelQueriesODBC - 7.1

User Context-Dependent Application Method Code
User logic is executed when columns in a SELECT statement are mapped to methods. This user logic is executed
from within the OdbcServer application that was started by a specific user code.

Each SELECT query queued for a worker can be from a different thin client, each of which connected with its own
user code. Before the user logic is called, the value of process.userCode is set to the user name for the thin client
connection for which the query is being executed.

In the sample schema, the method SaleItem::getMySaleStatus returns a string which, based on the current
app.zMyClient value, returns whether or not the client (the logged in user) has bought this item or bid on this item
and the status of the bid. Normally, the app.zMyClient would be set in the application initialization code.

To allow the application context to be set for the appropriate thin client user, the ODBC server calls the following
routines.

Application::startOdbcSession(rv: RelationalView; username: String);

This method is called when the connection from the thin client is established, after Global::isUserValid has
been called to verify the validity of the user name. You can use this method to create a shared transient
session object to save any required user context information for this session.

The code can call app.setOdbcSessionObject(sessionObject) to save the session object for later retrieval
using app.getOdbcSessionObject. This is required because app cannot be used to save the session, since
the next call for this thin client can be on a different worker and the next call on this worker can be for a
different thin client.

In the sample schema, the following code in startOdbcSession creates and saves the application-specific
session object.

vars
os : OdbcSession; // class defined for session context

begin
beginTransientTransaction;
create os sharedTransient;
os.zMyClient := Company.firstInstance.allClients[username];
commitTransientTransaction;
setOdbcSessionObject(os);

end;

Application::initializeOdbcSelect(rv: RelationalView; username: String);

This method is called when a SELECT query is executed. All user logic for the columns will be called on this
worker thread. You can use this method to set up the application data required for this user.

The code can call app.getOdbcSessionObject to retrieve the appropriate session object for this user, if this
has be created and saved previously.

In the sample schema, the following code in initializeOdbcSelect gets the saved context and sets
app.zMyClient for the correct client (if any).

vars
os : OdbcSession; // class defined for session context

begin
os := getOdbcSessionObject.OdbcSession;
if os <> null then

app.setClient(os.zMyClient);

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 10

WP_RelQueriesODBC - 7.1

endif;
end;

If the SaleItem::getMySaleStatus method is called during the SELECT query, it will return the correct value
based on the correct app.zMyClient value, which can be null if the ODBC user name is not a valid client.

Application::finalizeOdbcSelect(rv: RelationalView; username: String);

This method is called when the SELECT query processing is completed. You can use this method to clear
any Application user context that may have been set for the user. The next call on this worker thread can be
for a different user.

In the sample schema, the following code in finalizeOdbcSelect clears the app.zMyClient value.

begin
app.setClient(null);

end;

Application::endOdbcSession(sessionObject: Object);

This method is called when the connection from the thin client is disconnected. You can use this method to
delete the shared transient session object and perform any other clean-up code required.

In the sample schema, the following code in endOdbcSession deletes the session information for the thin
client user name.

begin
if sessionObject <> null then

beginTransientTransaction;
os := sessionObject.OdbcSession;
delete os;
commitTransientTransaction;

endif;
end;

You can also use the ODBC security method defined in the relational view to restrict the visibility of objects to the
ODBC user. The security method is used in both standard client and thin client connections. This method is
invoked for each object that satisfies the current query before it is added to the result set.

The security method has the following signature.

odbcSecurity(relViewName: String): bool;

The security method returns true if the object can be included in the result set; otherwise it returns false.

The security method must be defined for every class that can have instances used in the relational view. In most
cases, the method would be defined at the Object class level, and reimplemented in the subclasses, as required.

Improving Query Performance
The following subsections discuss techniques for improving query performance. This discussion assumes that the
user schema-supplied query provider is not being used for these queries.

The sample ErewhonInvestmentsODBC schema contains the relational view ErewhonOdbc, which you can use
to run the queries.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 11

WP_RelQueriesODBC - 7.1

The following sections apply when using the thin client or standard client JADE ODBC drivers. When using the
thin client driver, the query is actually executed in the ODBC server. For clarity, this section refers to the query
execution code as the query engine.

Using Collections on Joins
Understanding how the query engine utilizes collections and inverses for a SELECT query that contains a
WHERE clause can help you to construct the query in a way that improves performance.

In a relational database, performing a SELECT query with aWHERE clause that utilizes an index over the table is
usually quick; for example:

SELECT * FROM "Client" WHERE "name" = 'Roger Boeing'

In JADE, the only index over the table Client is Client.allInstances. To find the required object, the query engine
must go through Client.allInstances and do a getProperty of name for each instance.

In real JADE code, of course, this is not how the equivalent operation would be done. If this is a selection that
occurs frequently, there will be a collection that would be keyed by Client.name on Company; for example,
Company.firstInstance.allClients.

To utilize this collection, the SELECT query must "tell" the query engine about this relationship between Company
and Client; for example:

SELECT Client."name", Client."address1", Client."address2"
FROM "Client", "Company"
WHERE Client.myCompany = Company.oid AND Client.name = 'Roger Boeing'

In this case, the Client.myCompany = Company.oid clause allows the query engine to check the inverses of
Client.myCompany for a collection that has Client.name as a key. Since this collection exists, the query engine
uses the Company.allClients collection getAtKey method to select the required instance.

Trace output from the query engine is useful in checking the paths used for the SELECT queries. To enable path
execution trace output in the query engine:

Set the following option in the JADE initialization file.

[JadeOdbc]
QueryExecutionTraceOn=true

When running the thin client driver and ODBC server application, set the option in the JADE initialization file
for the node on which the ODBC server application is executing. This option is read when the thin client
connection is established.

The ODBC tool may need to be restarted to re-establish the connection if the option is changed.

When running the standard client ODBC driver, set the option in the JADE initialization file specified in the
DSN.

Trace information is output to the jommsg.log file.

You can also set debug output for the thin client and ODBC server. This debug output logs information about all
ODBC calls made from the tool and all calls made to the server.

To set the call tracing debug output for the ODBC server application, set the following option in the JADE
initialization file for the JADE node in which the application is run.

[JadeLog]
Odbc-s=0x0FFFF

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 12

WP_RelQueriesODBC - 7.1

To set the call tracing debug output for the thin client side, set the following option.

[JadeLog]
OdbcDriver=0x0FFFF

For the thin client, this option must be set in the jade.ini file in the bin directory in which the jadodbc_c DLL is
located.

For the standard client, set both options in the JADE initialization file specified in the DSN.

[JadeLog]
Odbc-s=0x0FFFF
OdbcDriver=0x0FFFF

Debug output is logged to the jommsg.log file.

The path execution trace output for the first SELECT query above would be as follows.

Prepare Query :
SELECT * FROM "Client" WHERE "name" = 'Roger Boeing'
Table Costs :

Client = 20
Add TableSoftClass SoftLookupAll Client
LookUpTableAll: Read 20 of 20 : Included in Query : 1
End Execute Query: ResultsReturned=1

The table costs indicate the number of instances in the table. In this case, the LookupTableAll option (equivalent
to allInstances) is the only option available, so 20 instances are read and 1 is returned.

The path execution trace output for the second SELECT query above would be as follows.

Prepare Query :
SELECT Client."name", Client."address1", Client."address2"

FROM "Client", "Company"
WHERE Client.myCompany = Company.oid AND Client.name = 'Roger Boeing'

Table Costs :
Client = 20
Company = 1

Edges :
Company : --- (0.5) ---> Client
Client : --- (1) ---> Company

Path 0 (21) =
All Instances --- (1) ---> Company
All Instances --- (20) ---> Client

Path 1 (1.5) =
All Instances --- (1) ---> Company
Company --- (0.5) ---> Client

Path 2 (40) =
All Instances --- (20) ---> Client
Client --- (1) ---> Company

Minimum Path =
All Instances --- (1) ---> Company
Company --- (0.5) ---> Client

Add TableClass LookupAll Company
Add LookupJoinMemberKeyDict Company.allClients
Join Using Equality : myCompany = oid
Optimised Out Comparison : name = Roger Boeing

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 13

WP_RelQueriesODBC - 7.1

LookUp Join MemberKey: allClients Read 1 of 20 : Included in query 1
LookUpTableAll: Company Read 1 of 1 : Included in Query : 1
End Execute Query: ResultsReturned=1

The table costs indicate the number of instances in the table. The edges indicate the paths found between
Company and Client, using Company.allClients and Client.myCompany.

Using the allClients dictionary to look up the required instances has a lower cost than traversing in the opposite
direction. After calculating the cost of all possible paths, the lowest-cost path is selected, using
Company.allInstances (in this case, one instance) and using the allClients dictionary. This results in one
instance being read and returned.

Using Collection Methods
A collection method in a relational view is a method that returns a collection that is mapped to a table in the
relational view. The method can have input parameters, which are mapped to columns in the table. The value of
the column as defined in the query is passed to the method as the parameter value.

Collection methods are useful in a number of scenarios. They can be used to allow the use of persistent
collections with constraints. When the query engine calculates the minimum path, collections with constraints are
not used. However, a collection method returning the constrained collection is an efficient method of using a
persistent constrained collection in the query, since the table is explicitly included in the query.

Collection methods are also useful in hiding complex relationship paths from the ODBC user. The method table
joins the tables of the receiver of the method and the membership of the collection.

In the JADE system, the collection may actually be a multiple-level path. Without the collection method, each of
these tables must be included in the query and the joins defined. In other cases, the collections a SELECT query
needs may not exist in the persistent model. Alternatively, the collection may need to be constructed based on
specific parameter values. In these cases, it may be more efficient to use a method that returns the collection for
the query, rather than have the query engine search for the required instances.

In the sample schema, the Company.getSaleItemsByRegionByCost method has been included as an example
of using a collection method. This method has the following signature.

getSaleItemsByRegionByCost(regionName : String;
minPrice : Decimal;
maxPrice : Decimal): SaleItemsByRegionAndPrice;

The method creates a transient instance of the SaleItemsByRegionAndPrice external key dictionary, which is
keyed by Region.name and SaleItem.getPrice. If the parameters are null (that is, the user has not specified a
value), all values are returned; otherwise the results are constrained by the parameter values. When the method is
included in the relational view, the Company_getSaleItemsByRegionByCost table is defined with the
Company_oid, SaleItem_oid, regionName,minPrice, and maxPrice columns.

You can use the following SELECT query to select all sale items in the London region that cost between $1000
and $100,000, ordered by price.

SELECT SaleItem_0.getPrice, SaleItem_0.shortDescription
FROM Company_getSaleItemsByRegionByCost RBC, Company Company_0, SaleItem SaleItem_0
WHERE

RBC.saleItem_oid = SaleItem_0.oid AND
RBC.company_oid = Company_0.oid AND
((RBC.regionName='London') AND
(RBC.maxPrice=100000) AND
(RBC.minPrice=1000))

The columns mapped to the method parameters have been given constant values that are passed to the method.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 14

WP_RelQueriesODBC - 7.1

The following query engine trace output shows the execution plan for this SELECT query.

Minimum Path =
All Instances --- (1) ---> Company
Company --- (Unknown) ---> Company_getSaleItemsByRegionByCost
Company_getSaleItemsByRegionByCost --- (1) ---> SaleItem

Add TableClass LookupAll Company
Add LookupJoinCollMethod Company.getSaleItemsByRegionByCost
Add LookupReference Company_getSaleItemsByRegionByCost.oid
Join Using Equality : saleItem_oid = oid
Join Using Equality : company_oid = oid
Join Using Equality : myRegion = oid
LookUp Join Reference: SaleItem Read 1 of 1 : Included in query 1
LookUp Join Collection: getSaleItemsByRegionByCost Read 1 of 1 :Included in query 1
LookUpTableAll: Company Read 1 of 1 : Included in Query : 1

The equivalent query without using the collection method would be as follows.

SELECT SaleItem_0.getPrice, SaleItem_0.shortDescription
FROM Country Country_0, Company Company_0, Region Region_0, SaleItem SaleItem_0
WHERE Country_0.myCompany = Company_0.oid AND

Region_0.myCountry = Country_0.oid AND
SaleItem_0.myRegion = Region_0.oid AND
((Region_0.name='London') AND
(SaleItem_0.getPrice>=1000) AND
(SaleItem_0.getPrice<=100000))

ORDER BY SaleItem_0.getPrice

In this case, the number of tables included in the equivalent query is not that significant. In a more-complex JADE
system, the difference could be significant. The execution path for this query would be as follows.

Minimum Path =
All Instances --- (1) ---> Company
Company --- (1) ---> Country
Country --- (0.5) ---> Region
Region --- (1) ---> SaleItem

Add TableClass LookupAll Company
Add LookupJoinMemberKeyDict Company.allCountries
Add LookupJoinMemberKeyDict Country.allRegions
Add LookupJoinMemberKeyDict Region.allSaleItems
Join Using Equality : myCompany = oid
Join Using Equality : myCountry = oid
Join Using Equality : myRegion = oid
Optimised Out Comparison : name = London
LookUp Join MemberKey: allRegions Read 0 of 2:Included in query 0
LookUp Join MemberKey: allRegions Read 0 of 4:Included in query 0
LookUp Join MemberKey: allRegions Read 0 of 5:Included in query 0
LookUp Join MemberKey: allRegions Read 0 of 4:Included in query 0
LookUp Join MemberKey: allSaleItems Read 4 of 4:Included in query 1
LookUp Join MemberKey: allRegions Read 1 of 6:Included in query 1
LookUp Join MemberKey: allRegions Read 0 of 6:Included in query 0
LookUp Join MemberKey: allCountries Read 6 of 6:Included in query 6
LookUpTableAll: Company Read 1 of 1 :Included in Query : 1
End Execute Query: ResultsReturned=1

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 15

WP_RelQueriesODBC - 7.1

For this query, the query engine must read more instances to determine the result set. In the collection method
case, the reading of the instances is done in the JADE method code.

Soft Entities and Soft Attributes
Often it is desirable for an administrative user of a JADE application to be able to extend the schema-defined data
model by defining additional attributes for a data entity. An administrative user may also be allowed to define new
data entities. These user-defined entities and attributes are not hard-coded directly in the JADE metadata, but are
soft-coded using JADE classes created specifically for that purpose within the user schema. These user-defined
metadata entities and attributes are referred to as soft entities and soft attributes.

The mapping of soft entities and soft attributes is done using JADE interfaces defined in the RootSchema and
implemented in the user schema JADE classes that define the entities and attributes. Methods in the RootSchema
RelationalView class enable you to add the soft entities and soft attributes to the relational view and define the
required mappings.

The following subsections apply when using the thin client or standard client JADE ODBC drivers. When using the
thin client driver, the query is actually executed in the ODBC Server. For clarity, this section refers to the query
execution code as the query engine.

Soft Entity and Soft Attribute Definition
In order to explain how to map soft entities and soft attributes in a relational view, we will first implement the
following classes: SoftEntity, SoftAttribute, and SoftValue. This example will use the Erewhon sample schemas
as the development base.

For simplicity, in this example all creation and deletion of these classes will be done using JADE scripts. In a
useful implementation of soft entities and attributes, you would develop a more-flexible user interface.

See the ErewhonInvestmentsModelSchema and ErewhonInvestmentsODBC sample schemas for more
information. The sample ErewhonInvestmentsODBC schema contains additional methods on the classes
discussed later in this section for creating and initializing instances, and so on, as required.

The SoftEntity class defines each soft entity. Each SoftEntity instance defines either a real JADE class in the user
schema that has soft attributes added to it or a soft entity that is not represented by a real JADE class.

The SoftEntity class contains the following properties.

tableName

The name of the table in the relational view.

classNumber

If the entity is mapped to a real JADE class, the value is the JADE class number.

If the entity is not mapped to a real JADE class, the value is zero (0).

The abstract SoftAttribute class defines each soft attribute. It contains the following properties.

attributeName

The name of the attribute. This is used as the Column name in the relational view.

attributeLength

The length of the attribute. This is used for variable length types (String, Binary, and Decimal) only.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 16

WP_RelQueriesODBC - 7.1

The following diagram shows the class hierarchy for soft attributes.

The SoftJadeFeature subclasses are used when a soft entity that is not based on an existing JADE class maps
real JADE properties or methods to a soft attribute.

The SoftPrimitiveAttribute (and the real type-specific subclasses) are used when the SoftAttribute is not
mapped to a real JADE attribute. In this case, the abstract SoftValue class (and its real subclasses
SoftIntegerValue, SoftStringValue, SoftBooleanValue, and others as required) is used to define the actual
values for each object on which the SoftAttribute is defined.

The following diagram shows the relationships between these classes for a SoftAttribute of type String.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 17

WP_RelQueriesODBC - 7.1

The root Company contains a collection of all SoftEntity objects. Each SoftEntity object contains a collection of
all SoftAttribute objects. Each SoftAttribute object is an instance of SoftJadeFeature or SoftPrimitiveAttribute.

Each SoftPrimitiveAttribute object contains a collection of all SoftValue objects (of the appropriate subclass).
Each SoftValue object contains a value (in this case, stringValue) and a reference to the ModelEntity object to
which this SoftAttribute value is assigned.

To create some instances of these classes, run the JadeScript::createAllSoftValues method in the
ErewhonInvestmentsODBC schema. This script will create the following SoftEntity (and SoftAttribute and
SoftValue) instances.

Agent

Represents the JADE class Agent. Create and populate the SoftIntegerAttribute class agentNumber
property, which is an Integer value. A value of this attribute is assigned to all existing Agent instances.

Client

Represents the JADE class Client. Create and populate the SoftBooleanAttribute class current property,
which is a Boolean value. A value of this attribute is assigned to all existing Client instances.

Country

Represents the JADE class Country. Create and populate the SoftStringAttribute class continent, which is
a String of length 50. A value of this attribute is assigned to selected Country instances.

Person

Represents instances of Agent or Client (not based on a single JADE class).

Create and populate the SoftStringAttribute class nickname, which is a String of length 80. A value of this
attribute is assigned to selected Agent and Client instances.

Create the SoftProperty class, which maps to real JADE property called name. The property is defined on
AddressibleEntity, which is a superclass of Agent and Client.

Create the SoftMethod property, which maps to real JADE method called getNameAndAddress, also on the
AddressibleEntity class.

These classes define a sample implementation of soft entities, soft attributes, and soft values.

In the sample schema, there is no user interface to view, define, or modify these values. However, the
implementation is sufficient for use as an example of mapping these entities and attributes to a relational view.

How to Add Soft Entities to a Relational View
Using the Relational View Wizard, you can map JADE classes to tables and JADE properties and methods to
columns in these tables.

Soft entities are administrator-defined metadata and not part of the JADE metadata, so cannot be added to the
relational view in the same way.

To add soft entities to a relational view, you must implement the following interfaces from the RootSchema.

JadeRelationalEntityIF, which defines the soft entities to be added to the relational view.

JadeRelationalAttributeIF, which defines the soft attributes on the soft entities.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 18

WP_RelQueriesODBC - 7.1

In the ErewhonInvestmentsODBC sample schema, the SoftEntity class implements the JadeRelationalEntityIF
interface and the SoftAttribute class implements the JadeRelationalAttributeIF interface, as shown in the
following diagram.

Once these interfaces are implemented as required, you can use the following methods on the RootSchema
RelationalView class to add the soft entities and attributes to the relational view.

addUserTable(entityDesc : JadeRelationalEntityIF;
 includeRealProperties : Boolean;

includeMethods : Boolean);

Adds the table defined by the entityDesc interface object. Properties and methods on the JADE class to
which the table maps (if any) can optionally be added to the table.

addUserAttribute(entityDesc : JadeRelationalEntityIF;
 attrDesc : JadeRelationalAttributeIF);

Adds the column defined by the attrDesc interface object to the table defined by the entityDesc interface
instance (must already have been added).

Some important ideas to keep in mind are:

All soft entity and soft attribute objects are user metadata (not JADE metadata).

Your logic is responsible for adding, deleting, and maintaining the integrity of the soft entities and soft
attributes used in a relational view.

A relational view can have a mix of tables mapped directly to JADE classes and tables mapped to soft
entities that may or may not map to a JADE class. Only the tables mapped directly to JADE classes are
extracted during a schema extract. Tables mapped to soft entities must always be added in user logic.

Soft attributes can be added only to soft entity tables, not to tables mapped directly to a JADE class.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 19

WP_RelQueriesODBC - 7.1

Soft entity tables that have been added to the relational view are visible in the Relational View wizard. Using
the wizard, you can delete these tables but you cannot add or alter them.

All tables in the relational view always have an oid column. This is not defined by user logic, but is always
added on creation of the table.

The sample ErewhonInvestmentsODBC schema includes the SoftEntitiesOdbc relational view, which contains
the class Company. This class is the root class for the relational view.

To add the previously created SoftEntity instances to the OdbcSoftEntities relational view, run the
JadeScript::addSoftEntitiesToRV method in the ErewhonInvestmentsODBC schema. This script uses the
methods described earlier in this section to add the Agent, Client, Country, and Person tables to the relational
view.

JadeRelationalEntityIF Interface
A soft entity that is to be mapped to a table in a relational view must be an instance of a class that implements the
RootSchema JadeRelationalEntityIF interface. This interface contains methods that:

Define the mapping between the soft entity and the table. The following methods are called at the time the
entity is added to the relational view and the values are saved in the JADE metadata relational view
information.

callIFAllInstances(): Boolean;

getJadeClass(): Class;

getSQLName(): String;

Provide information for the query engine when the query is executing. The following methods are called
when the SELECT query is executed.

allInstances(): Collection;

getPropertyValue(entity: Object;attributeDesc: JadeRelationalAttributeIF): Any;

getQueryProvider(): JadeRelationalQueryProviderIF;

isAttributeValid(attributeDesc: Object): Boolean;

In the ErewhonInvestmentsODBC sample schema, the SoftEntity class implements the JadeRelationalEntityIF
interface.

JadeRelationalAttributeIF Interface
A soft attribute that is to be mapped to a column in a relational view must be an instance of a class that implements
the RootSchema JadeRelationalAttributeIF interface. This interface contains methods that define the mapping
between the soft attribute and the column.

The following methods are called at the time the attribute is added to the relational view and the values are saved
in the JADE metadata relational view information.

getJadeType(): Type;

getLength(): Integer;

getSQLName(): String;

getScaleFactor(): Integer;

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 20

WP_RelQueriesODBC - 7.1

In the ErewhonInvestmentsODBC sample schema, the SoftAttribute class implements the
JadeRelationalAttributeIF interface.

Adding a Soft Entity to a Relational View
A soft entity is added to a relational view when user logic calls the RelationalView class addUserTable method.
The parameters to this method are:

entityDesc: JadeRelationalEntityIF

The user instance of the soft entity that is added to the relational view. This instance must implement the
JadeRelationalEntityIF interface. Interface method calls will be made on this instance at the time of the
addUserTable method call and when the table is used in the query engine.

includeRealProperties: Boolean

If true and the soft entity maps to a real JADE class, the real properties of the JADE class are added to the
table.

includeMethods: Boolean

If true and the soft entity maps to a real JADE class, the methods of the JADE class that conform to ODBC
method mapping requirements are added to the table.

The interface methods that are called when the soft entity is mapped in the relational view specify how the table
will be used in the relational view. A table within a relational view can be a:

JADE class containing real JADE attributes mapped using the Relational View wizard.

When these tables are used in a query, the query engine accesses the class instances, properties, and
methods using the JADE metadata. Properties are accessed using getProperty calls and methods are
accessed using sendMsg calls.

When the query contains joins between JADE classes, any existing collection and inverse information can
be used to optimize the query. For example, if the query contains Client.myCompany = Company.oid AND
Client.name = ‘Philip Jenkins’ in theWHERE clause, the query engine will use the Company.allClients
collection to optimize the selection of the Client instance.

Soft entity mapped using the soft entity class that does not equate directly with a JADE class and has only
soft attributes mapped.

When these tables are used in a query, the query engine has no intrinsic knowledge of how to access the
instances for this table or how to access the column values for each instance. It must use the
JadeRelationalEntityIF interface allInstances and getPropertyValue methods to retrieve this information.

Additionally, it has no intrinsic knowledge of how to optimize anyWHERE clauses specified for this table.
The JadeRelationalQueryProviderIF (discussed later in this document) can be implemented in user logic to
provide this optimization.

JADE class mapped using the SoftEntity class with real JADE attributes mapped and additional soft
attributes mapped. When these tables are used in a query, you can specify whether the table should be
treated as a:

Real JADE class, with only the actual soft attribute values being accessed using the
JadeRelationalEntityIF interface getPropertyValue method.

Soft entity mapping, assuming no knowledge about optimization and calling the
JadeRelationalEntityIF interface allInstances and getPropertyValue methods.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 21

WP_RelQueriesODBC - 7.1

In most cases, you would want the table treated a real JADE class, in order to take advantage of the
optimizations using collections and inverses. In some cases, however, you may want control over the
instances included in the table and can choose to do any optimization yourself using a query provider.

In the ErewhonInvestmentsODBC sample schema, the SoftEntity class implements the JadeRelationalEntityIF
methods, as:

Mapping definition methods, as follows.

jre_CallIFAllInstances(): Boolean;

This method returns whether or not the table should be treated as a soft entity or a JADE class.

For a soft entity, this method returns classNumber = 0; that is, it treats the table as a soft entity if this
table has no JADE class mapped to it; otherwise it treats it as a JADE class.

jre_GetJadeClass(): Class;

This method returns the JADE class to which the table is mapped, if any.

For a soft entity, this method returns null if classNumber = 0; otherwise it returns
currentSchema.getClassByNumber(classNumber).

jre_GetSQLName(): String;

This method returns the name of the table. If mapped to a JADE class, this can be the class name, but is
not required to be. The name must be unique in the relational view in which it is being defined.

For a soft entity, this method returns tableName.

Adding a Soft Attribute to a Soft Entity in a Relational View
A soft attribute is added to a soft entity table in a relational view when user logic calls the
RelationalView::addUserAttribute method. The parameters to this method are:

entityDesc : JadeRelationalEntityIF

The user instance of the soft entity that defines the soft entity table. This instance must implement the
JadeRelationalEntityIF interface.

attrDesc : JadeRelationalAttributeIF

The user instance of the soft attribute that will be added to the table. This instance must implement the
JadeRelationalAttributeIF interface. Interface method calls will be made on this instance at the time of the
addUserAttribute method call and when the table is used in the query engine.

The interface methods that are called when a soft attribute is added to a soft entity in a relational view define how
the column will be defined in the table.

In the ErewhonInvestmentsODBC sample schema, the SoftAttribute class implements the
JadeRelationalAttributeIFmethods, as the following mapping definition methods.

jra_GetJadeType(): Type;

This method returns the JADE type of the column.

For SoftAttribute, this method returns Integer for SoftIntegerAttribute, and so on.

jra_GetLength(): Integer;

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 22

WP_RelQueriesODBC - 7.1

This method returns the length of the column for variable-length types; for example, String, Binary, and
Decimal.

For SoftAttribute, this method returns attributeLength for String types; else zero (0).

jra_GetSQLName(): String;

This method returns the name of the column. The name must be unique in the table in which it is being
defined.

For SoftAttribute, this method returns attributeName.

jra_GetScaleFactor(): Integer;

This method returns the number of decimal digits for columns of type Decimal.

Query Execution with Soft Attributes
When a SELECT query that includes soft entities is executed, the query execution time methods on the
JadeRelationalEntityIF interface will be called by the query engine.

For more details, see the following subsections.

SELECT with Soft Entity Mapped to JADE Class
Execute the following query on the sample schema.

SELECT name, agentNumber FROM Agent

The table Agent in the relational view is a soft entity table that is defined as mapped to the JADE Agent class,
containing all Agent properties as columns and the soft attribute agentNumber.

When validating the statement, the query engine calls the following interface method.

isAttributeValid(attributeDesc: Object): Boolean;

This method returns true if the attribute defined by attributeDesc is still valid. If the method returns false, the
column will be set to null in the query output.

The call made is equivalent to the following code.

vars
softEntity : SoftEntity;
jre : JadeRelationalEntityIF;
softAttrib : SoftAttribute;

begin
softEntity := Company.firstInstance.allSoftEntities["Agent"];
jre := softEntity;
softAttrib := softEntity.allAttributes["agentNumber"];
return jre.isAttributeValid(softAttrib);

end;

Since the table is mapped to a real JADE class and the jre_CallIFAllInstances method call returned false, the
query engine will retrieve all instances of the Agent class from the JADE database.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 23

WP_RelQueriesODBC - 7.1

For each instance of the Agent class, the query engine will call the following interface method.

getPropertyValue(entity: Object; attributeDesc: JadeRelationalAttributeIFs): Any;

This method returns the value of the soft attribute defined by attributeDesc for the entity object. For soft
entities that are mapped to a JADE class, the entity object will be an instance of that JADE class.

The type of the returned value must match the type defined by the attributeDesc. For example, if the attribute has
been defined as an Integer, the value returned must be an Integer. If the types do not match, an exception is
raised by the query engine.

The SoftEntity implementation executes:

return entity.ModelEntity.getSoftValue(attributeDesc.Object.SoftAttribute);

ModelEntity.getSoftValue looks up the SoftAttribute in the allSoftValues dictionary and if the entry is found,
returns the value; else it returns a null value.

softValue := allSoftValues.getAtKey(attribute.attributeName);
if softValue = null then

return attribute.getNullValue;
endif;
return softValue.getValue;

SELECT with Soft Entity Not Mapped to JADE Class
Execute the following query on the sample schema.

SELECT Nickname, getNameAndAddress, name, oid FROM Person

The table Person in the relational view is a soft entity table that is not mapped directly to a JADE class. Nickname
is a SoftStringAttribute instance with a SoftStringValue instance, getNameAndAddress is a SoftMethod
instance mapped to the AddressibleEntity::getNameAndAddress method, and name is a SoftProperty
instance mapped to the AddressibleEntity::name property. The table is defined in the user logic as containing all
instances of Client and Agent.

When validating the statement, the query engine will call the isAttributeValid interface method for each column
(other than oid) in the select query.

The query engine calls the interface method to retrieve the instances to return for the select.

allInstances : Collection;

This method returns a collection of instances for this table.

For SoftEntity, this method is expected to only be called for the SoftEntity "Person". An exception is raised if this
method is called for any other instance of SoftEntity. For Person, it executes the following code

create coll transient;
// Person is defined by all instances of Client and Agent
Company.firstInstance.allClients.copy(coll);
Company.firstInstance.allAgents.copy(coll);
return coll;

This coll transient collection will be deleted by the query engine when it is no longer required.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 24

WP_RelQueriesODBC - 7.1

For each object in the collection returned from allInstances, the query engine will call the getPropertyValue
interface method for each column (other than oid) in the select query. The SoftEntity implementation for
SoftMethod and SoftProperty retrieves the values for the entity object using sendMsg and getPropertyValue, as
required.

SELECT with Soft Entity with WHERE Clause
Execute the following query on the sample schema:

SELECT Agent.agentNumber, Agent.name, Company.name FROM Agent, Company
WHERE Agent.myCompany=Company.oid AND Agent.name='Hank Williams'

Because this query includes a selection on the soft entity table Agent and aWHERE clause for that table
(Agent.name=’value’), the query engine calls the interface method to determine whether or not the
implementation wants to use its own query provider to optimize thisWHERE clause or let the query engine do the
optimization. The call is made to:

getQueryProvider : JadeRelationalQueryProviderIF;

This method returns an instance of a class that implements the JadeRelationalQueryProviderIF interface if
the user logic provides the query provider to optimize the selection for this table (based on theWHERE
clause).

The SoftEntity implementation returns a null value for soft entities that are mapped to a JADE class (as Agent is).

The query engine optimization will use the collection Company::allAgents, which has Agent.name as the key to
optimize the selection of the instance to be output.

This is possible because the Agent and Company tables are joined in the query using the reference
Agent.myCompany to Company.oid. The query engine will check all inverses of Agent::myCompany for key
matches on the remainingWHERE clause. In this case, it finds an appropriate match.

Query Provider Interface
When a soft entity is mapped to a table in a relational view, you have the option of providing your own query
provider to optimize the retrieval of results when the SELECT query includes aWHERE clause that includes
values in the soft entity.

This query provider must implement the JadeRelationalQueryProviderIF interface from the RootSchema. When a
soft entity table is used in aWHERE clause, the query engine will call the JadeRelationalEntityIF interface
getQueryProvider method.

If this method returns a non-null value, this object will be used to call the JadeRelationalQueryProviderIF
interface methods to process theWHERE clause expressions for this table. The result of this is a collection that
contains the objects that satisfy theWHERE clause expression.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 25

WP_RelQueriesODBC - 7.1

In the ErewhonInvestmentsODBC sample schema, the QueryProvider class is a query provider that implements
the JadeRelationalQueryProviderIF interface, as shown in the following diagram.

It is not a complete implementation and as implemented, is intended to be used only for SoftEntity instances that
do not map to a JADE class. In the case of the ErewhonInvestmentsODBC sample schema, this is the Person
table that maps to Agent and Client instances.

To illustrate the process of using the query provider from the query engine, we will describe the calls made to
process a simple SELECT withWHERE clause using the Person table.

SELECT Nickname, getNameAndAddress, name, oid FROM Person WHERE Nickname > ''

Since theWHERE clause includes an attribute on a soft entity table, the query engine calls the
JadeRelationalEntityIF interface getQueryProvider method to determine if a user-defined query provider should
be used for this query. This method is called using the instance of the SoftEntity class that was associated with
the Person table when the table was added to the relational view.

In the ErewhonInvestmentsODBC sample, the SoftEntity::jre_GetQueryProvider implementation creates and
returns a transient instance ofQueryProvider if the soft entity is not mapped to a JADE class. It saves this
transient instance on the app instance, so it can be deleted when no longer required.

if classNumber = 0 then
if app.myQueryProvider = null then

create app.myQueryProvider transient;
endif;
return app.myQueryProvider;

endif;
return null;

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 26

WP_RelQueriesODBC - 7.1

Using the instance ofQueryProvider returned by this method, the query engine next calls the
JadeRelationalQueryProviderIF interface binaryExpression and unaryExpressionmethods, as required, to
define theWHERE expression.

In our exampleWHERE clause, the query engine calls the jrq_BinaryExpressionmethod, as follows.

binaryExpression(operator: Integer; leftOperand: Object io;
rightOperand: Any io; level: Integer): Object updating;

The binaryExpressionmethod has the following parameters.

binaryExpression(JadeRelationalEntityIF.Op_GreaterThan,
SoftEntity object for the Nickname attribute,
String with value null string (''),
1);

The sample implementation builds a temporary tree to save the expression using the subclasses ofQueryNode,
OperatorNode, and LeafNode. The return value is the instance ofOperatorNode for this tree.

The query engine then calls the JadeRelationalQueryProviderIF interface executeQuery method, as follows.

executeQuery(expression: Object io): Boolean updating;

The executeQuery method has the following parameter.

executeQuery(instance of OperatorNode from binaryExpession);

In the sample schema, the jrq_ExecuteQuery implementation builds a result set of objects that match the
expression passed in to the execution. The result set is built in the myResultSet on QueryProvider collection.

The jrq_ExecuteQuery method interprets the LeafNode left and right operands. For an OperatorNode, the
following combinations are possible.

Operator is a boolean operator Op_And,Op_Or, or Op_Not

Left and right operands are OperatorNode instances or Boolean SoftAttribute, Property, or Method
instances.

Operator is a comparison operator Op_Equal,Op_NotEqual,Op_GreaterThan,Op_LessThan,Op_
GreaterThanOrEqual,Op_LessThanOrEqual,Op_Like, or Op_NotLike.

Left operand is a SoftAttribute, Property, or Method instance.

Right operand is a SoftAttribute, Property,Method, or SoftValue (literal) instance.

For thisWHERE clause (Nickname > ‘’), the leftOperand is a SoftPrimitiveAttribute and the rightOperand is a
literal String value. To process this input, the query provider jrq_ExecuteQuery method calls the
executeSoftAttrValueToLiteralmethod. This method creates an iterator for the allSoftStringValues collection on
the SoftStringAttributeNickName instance and starts the iterator at the getAtKeyGtr('') instance. All instances in
the collection from that point on are put into the results collection.

The query engine then calls the JadeRelationalQueryProviderIF interface getResultSet method, to retrieve the
set of objects that match the expression. In the sample, the jrq_GetResultSet implementation returns the
myResultSet value built in the executeQuery call.

For each object in the results collection, the query engine will retrieve the column values for the SELECT query by
calling the JadeRelationalEntityIF interface getPropertyValue method.

When the SELECT output rows are complete, the query engine calls the JadeRelationalEntityIF interface
finalizeQuery method with the same expression parameter as passed to the executeQuery.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 27

WP_RelQueriesODBC - 7.1

At this point, the implementation cleans up the transients created for this query. It deletes the transientQueryNode
expression and deletes itself; that is, the QueryProvider instance. The transient setmyResultSet is deleted by
the query engine.

In a more-complicated SELECT when theWHERE clause contains multiple expressions, the binaryExpression
method will be called multiple times to process the expression. The output of a binaryExpression call can be
passed in as an operand to a subsequent call.

The final output is passed to the executeQuery method; for example, with the following SELECT statement.

SELECT Nickname, getNameAndAddress, name, oid FROM Person
WHERE name < 'Hank Williams' AND Nickname >= 'A' OR

name = 'Hank Williams'

The following diagram shows the expression tree built to represent this SELECT statement.

The binaryExpressionmethod will be called five times with the following parameters (oid values are example
values only).

1. (Op_LessThan,SoftProperty/2078.2,"Hank Williams",3)

SoftProperty/2078.2 represents the name property. The return value is OperatorNode/18467.1.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 28

WP_RelQueriesODBC - 7.1

2. (Op_GreaterThanOrEqual,SoftStringAttribute/2061.12,"A",3)

SoftStringAttribute/2061.12 represents the Nickname soft attribute. The return value is
OperatorNode/18467.2.

3. (Op_And,OperatorNode/18467.1,OperatorNode/18467.2,2)

The operands are the OperatorNode objects returned from calls 1 and 2. The return value is
OperatorNode/18467.3.

4. (Op_Equal,SoftProperty/2078.2,"Hank Williams",2)

SoftProperty/2078.2 represents the name property. The return value is OperatorNode/18467.4.

5. (Op_Or,OperatorNode/18467.3,OperatorNode/18467.4,1)

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 29

WP_RelQueriesODBC - 7.1

The operands are the OperatorNode objects returned from calls 3 and 4. The return value is
OperatorNode/18467.5.

The OperatorNode object returned in the last call (18467.5) will be passed into executeQuery for execution.

JADE Documentation on Relational Views and ODBC Queries
The following JADE documentation should be read for additional information about defining relational views and
using the ODBC drivers in queries.

Chapter 9, "Defining ODBC Inquiry Relational Views and Ad Hoc Indexes", in the JADE Development
Environment User’s Guide, for details about using the Relational View wizard to define a relational view.

"Obtaining a Relational View of your JADE Database", in Chapter 2 of the JADE External Interface
Developer’s Reference, for details about using the JADE ODBC driver.

Conclusion
When using the JADE ODBC driver to access JADE data using a query tool that uses ODBC, the following may be
useful.

Using the ODBC thin client will improve performance, especially if the server application is executed on the
same machine as the database server. Some JADE development is required to set up the application and
ensure the correct session context for method execution.

Queries that define joins that efficiently utilize existing JADE collections will perform better. Using the ODBC
Execution trace allows you, as the query developer, to check the query engine path selection.

Collection methods may be useful to improve performance when:

The collection to be used is constrained.

The collection to be used must be constructed for the query.

The paths to the required instances are long and difficult to set up in the query.

Soft attributes can be mapped to ODBC tables using the JADE interfaces supplied in the RootSchema. Some
JADE development is required to implement the interfaces and include the soft attributes and soft tables in
the relational view.

The query provider may be useful for JADE systems that use soft attributes extensively. Significant JADE
development may be required to implement the query provider JADE Interface supplied in the RootSchema,
especially if the search engine must be built from scratch.

Relational Queries Using
ODBCWhite Paper

Relational Queries Using ODBC 30

	Contents
	Relational Queries Using ODBC
	Relational Views
	Using the JADE ODBC Driver
	Sample Schemas
	JADE ODBC Thin Client
	ODBC Server Application Definition
	Thin Client DSN Definition
	ODBC Query Tool Execution
	User Context-Dependent Application Method Code

	Improving Query Performance
	Using Collections on Joins
	Using Collection Methods

	Soft Entities and Soft Attributes
	Soft Entity and Soft Attribute Definition
	How to Add Soft Entities to a Relational View
	JadeRelationalEntityIF Interface
	JadeRelationalAttributeIF Interface
	Adding a Soft Entity to a Relational View
	Adding a Soft Attribute to a Soft Entity in a Relational View
	Query Execution with Soft Attributes
	SELECT with Soft Entity Mapped to JADE Class
	SELECT with Soft Entity Not Mapped to JADE Class
	SELECT with Soft Entity with WHERE Clause

	Query Provider Interface
	JADE Documentation on Relational Views and ODBC Queries

	Conclusion

