Web Services Security
White Paper

VERSION 2022

Copyright©2025 Jade Software Corporation Limited. All rights reserve d.

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2025 Jade Software Corporation Limited.
All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.

Contents

GO NS . iii
Web Services SeCuUrity 4
UsernameToken Profile 4
N M S PaCES . . 4

User Names and PassWords 4

XML Sy N aX .. 5
EXAMDIES 6
SeCUINtY Class Library o 7
SeCUNtY ClaSSES ... 7
JAAWSSEC Class 7
JadeSecurityTOKEN Class 8
JadeUsernameToken Class 10
JadeWSAddressingHeader Class 13
JadeWSTimestampHeader Class 13
JadeWebServicesSecurity Classl 14

Example Of Use ... 15
Importthe Library .. 15

Create @a Package 19

Importthe Package 20

Create aWebh ServiCe 21
Consuming the Web Service 22
Generating Security Headers (Client) 23
Processing Security Headers (Service) 25

SaAMPIE SOAP MESSAGE 29

WP_WebServicesSecurity - 2022

Web Services Security

This white paper discusses the use of a .NET class library to implement web services security in the Jade Platform.
The initial implementation of this class library supports only the use of UsernameToken profile.

The implementation follows the specifications as set out by the OASIS Standard Specification (1 February 2006), Web
Services Security UsernameToken Profile 1.1. This specification describes how a web service consumer can supply a
UsernameToken as a means of identifying the requestor by "username" and optionally using a password (or shared
secret, or password equivalent) to authenticate that identity to the web service provider.

For more details, see the following subsections.

UsernameToken Profile

This section contains the following topics.
= Namespaces

m User Names and Passwords

= XML Syntax

m Examples

Namespaces

Namespace URIs (of the general form "some-URI") represents some application-dependent or context-dependent
URI as defined in RFC 3986 [URI]. This specification is designed to work with the general SOAP [SOAP11, SOAP12]
message structure and message processing model, and should be applicable to any version of SOAP. The current
SOAP 1.1 namespace URI is used here to provide detailed examples.

The namespaces used in this document are shown in the following table.

Prefix Namespace

S11 http://schemas.xmlsoap.org/soap/envelope/

S12 http://www.w3.0rg/2003/05/soap-envelope

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity- secext-1.0.xsd
wsse11 http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity- utility-1.0.xsd

The Oasis Web Services Security Username Token Profile 1.0 document that provides information about the
#PasswordDigest, #PasswordText, #UsernameToken URI fragments referred to in this document is available at:

https://groups.oasis—-open.org/higherlogic/ws/public/document?document id=16782

User Names and Passwords

The <wsse:UsernameToken> element is introduced in SOAP Message Security documents as a way of providing a
user name.

WP_WebServicesSecurity - 2022

https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=16782

jJadeplatform Web Services Security
White Paper

Web Services Security 5

Within a <wsse:UsernameToken> element, a <wsse:Password> element can be specified. Passwords of type
PasswordText and PasswordDigest are not limited to actual passwords, although this is a common case. Any
password equivalent such as a derived password or S/KEY (one-time password) can be used. Having a type of
PasswordText merely implies that the information held in the password is "in the clear", as opposed to holding a
"digest" of the information. For example, if a server does not have access to the clear text of a password but it does
have the hash, the hash is considered a password equivalent and can be used anywhere where a password is
indicated in this specification.

Passwords of type PasswordDigest are defined as being the Base64-encoded, SHA-1 hash value, of the
UTF-8-encoded password (or equivalent). However, unless this digested password is sent on a secured channel or
the token is encrypted, the digest offers no real additional security over use of wsse:PasswordText.

Two optional elements are introduced in the <wsse:UsernameToken> element to provide a counter-measure for
replay attacks: <wsse:Nonce> and <wsu:Created>. A nonce is a random value that the sender creates to include in
each UsernameToken that it sends. Although using a nonce is an effective counter-measure against replay attacks, it
requires a server to maintain a cache of used nonces, consuming server resources. Combining a nonce with a
creation timestamp has the advantage of allowing a server to limit the cache of nonces to a "freshness" time period,
establishing an upper bound on resource requirements. If either or both of <wsse:Nonce> and <wsu:Created> are
present, they must be included in the digest value, as follows.

Password Digest = Base64 (SHA-1 (nonce + created + password))

This concatenates the nonce, creation timestamp, and the password (or shared secret or password equivalent),
digests the combination using the SHA-1 hash algorithm, then includes the Base64 encoding of that result as the
password (digest). This helps to obscure the password and offers a basis for preventing replay attacks.

For web service providers to effectively thwart replay attacks, three counter measures are recommended. It is
recommended that:

= \Web service providers reject any UsernameToken not using both nonce and creation timestamps.

®m Web service providers provide a timestamp "freshness" limitation, and that any UsernameToken with "stale"
timestamps be rejected.

As a guideline, a value of five minutes can be used as a minimum to detect, and thus reject, replays.

m Used nonces be cached for a period at least as long as the above timestamp freshness limitation period, and that
UsernameTokens with nonces that have already been used (and are thus in the cache) be rejected.

Note that PasswordDigest can be used only if the plain text password (or password equivalent) is available to both
the requestor and the recipient.

XML Syntax

The following illustrates the XML syntax of this element.

<wsse:UsernameToken wsu:Id="Example-1">
<wsse:Username> ... </wsse:Username>
<wsse:Password Type="..."> ... </wsse:Password>
<wsse:Nonce EncodingType="..."> ... </wsse:Nonce>
<wsu:Created> ... </wsu:Created>

</wsse:UsernameToken>
The following describes the attributes and elements listed in the above example.
= wsse:Username

Required, specifies a user name.

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 6

® wsse:Password

Optional, provides password information. This element should be passed only when using a secure transport
(such as https) or if the token itself is encrypted.

= Password Type
This optional attribute specifies the type of password and can take one of two values.
= PasswordText (default)

The actual password for the user name, a password hash, or derived password. This type should be used when
hashed password equivalents do not rely on nonce or creation timestamps, or a digest algorithm other than
SHA1 is used.

= PasswordDigest
The digest of the password using the above password algorithm.
= wsse:Nonce
Optional, specifies a random nonce. Each message that includes a nonce must provide a unique nonce value.
m Encoding Type
This optional attribute specifies the encoding type of the nonce. If not specified, Base64 encoding is used.
= wsu:Created

This optional element specifies a timestamp used to indicate the creation time.

Examples

The following example illustrates the use of this element. In this example, the password is sent as clear text and
therefore this message should be sent over a confidential channel.

<Sll:Envelope xmlns:S11="..." xmlns:wsse="...">
<Sll:Header>

<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>wilbur</wsse:Username>
<wsse:Password>cheese</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>

</S11:Header>

</S1ll:Envelope>
The following example illustrates using a digest of the password along with a nonce and a creation timestamp.

<Sll:Envelope xmlns:S11="..." xmlns:wsse="...">
<Sll:Header>

<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>wilbur</wsse:Username>
<wsse:Password Type="#PasswordDigest">
weYI3nXd8LjMNVksCKEV8t3rgHh3Rw==

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 7

</wsse:Password>
<wsse:Nonce>WScganjCEAC4mQoBEO7sAQ==</wsse:Nonce>
<wsu:Created>2003-07-16T01:24:32%Z</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>

</S11:Header>

</S1ll:Envelope>

Security Class Library

The class library is called jadwssec and is supplied as a .NET assembly. In order to use it, you need to import this
library into your system.

As the library is likely to be required by more than one schema, you may want to import it into one schema, create a
package with the required classes, and then import this package into the schemas that need this feature.

For more details, see the following subsections.

Security Classes

The import generates six classes. Note that these are the default names, which you can change on import. The
discussion in the following subsections is based on the default names.

For more details, see the following subsections.

Jadwssec Class
The Jadwssec class is an abstract class that groups together all of the generated .NET classes corresponding to the
assembly to which they belong. This class also holds the public constants and enums that are defined in the library.

Note that enums are generated as class constants. The following constants are defined in this class.

Name Type Value Description

AssemblyName String jadwssec, Assembly Details
Version=1.0.0.0,
Culture=neutral,
PublicKeyToken=null

EncodingType_Base64Binary Integer 0 Nonce Encoding Base64 (default)
EncodingType_HexBinary Integer 1 Nonce Encoding Binary
PasswordOption_SendHashed Integer 0 Password Type Digest (default)
PasswordOption_SendNone Integer 1 Password Type None
PasswordOption_SendPlainText Integer 2 Password Type Plain Text
ProtectionType_Encrypt Integer 2 Encrypt Body
ProtectionType_EncryptAndSign Integer 4 Encrypt and Sign Body
ProtectionType_None Integer 0 No Encryption or Signing (default)
ProtectionType_Sign Integer 1 Sign Body
ProtectionType_SignAndEncrypt Integer 3 Sign and Encrypt Body

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 8

JadeSecurityToken Class

The JadeSecurityToken class is the abstract superclass for all security token classes. The following properties are
defined in this class.

Name Type Description
clearPassword String The clear text password to be used for signature and encrypting messages
protectionOrder Integer Message protection type, which must be one of the ProtectionType constants

defined in the constants table above

The following methods are defined for this class.

decryptXml

This method is called to decrypt an encrypted SOAP message.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to decrypt
Returns

A StringUtf8 string representing the decrypted SOAP message.

Remarks
Only the <body> of the SOAP message is decrypted.

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example
incomingMessage := unt.decryptXml (incomingMessage.StringUtf8) .String;
encryptXml
This method is called to encrypt a SOAP message.
Parameters
Name Type Description
Xml StringUtf8 The SOAP message to encrypt
Returns

A StringUtf8 string representing the decrypted SOAP message.

Remarks

Only the <body> of the SOAP message is encrypted. This routine does not generate <EncryptedKey> tags nor does
it handle multiple <EncryptedData> tags in the <body>.

Note that all strings passed to and returned from the class library are UTF-8 strings.

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 9

Example

outString := unt.encryptXml (inString);

getXml

This method is called to serialize the security token into XML. This is an abstract method. Its implementation is
token-dependent.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to which to add the XML
Returns

A StringUtf8 string representing the SOAP message with the serialized security token.

Remarks

Only the <body> of the SOAP message is encrypted. This routine does not generate <EncryptedKey> tags nor does
it handle multiple <EncryptedData> tags in the <body>.

Note that all strings passed to and returned from the class library are UTF-8 strings.
Example

outString := unt.getXml (inString);

signXml

This method is called to sign a SOAP message. The routine will sign the <body> tag. In addition, it will also sign the
addressing and timestamp tags, if present.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to sign
Returns

A StringUtf8 string representing the signed SOAP message.

Remarks

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

outString := unt.signXml (inString) ;

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 10

verifySignature

This method is called to verify the signature of a SOAP message. An exception is raised if the signature verification
fails.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to verify

Returns

Nothing. An exception is raised if signature verification fails.

Remarks

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

unt.verifySignature (inString) ;

JadeUsernameToken Class

The JadeUsernameToken class represents the UserNameToken profile. The following methods are defined for this
class.

createDotNetObject_1

This method is used to create a JadeUsernameToken instance.

Parameters
Name Type Description
username StringUtf8 The SOAP message to verify.
password StringUtf8 The clear password to use for the verification.
passType StringUtf8 Specify the password type, which can be one of the following.
= PasswordOption_SendHashed
® PasswordOption_SendPlain
® PasswordOption_SendNone
Default is PasswordOption_SendHashed.
encType StringUtf8 Specify the encoding type, which can be one of the following.

= EncodingType_Base64Binary
= EncodingType_HexBinary

Defaultis EncodingType_Base64Binary.

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 11

Returns

Nothing.

Remarks

Note that all strings passed to and returned from the class library are UTF-8 strings.

Example

vars
unt: JadeUsernameToken;
begin
create unt;
unt.createDotNetObject 1 ('wilbur',
'password’',
unt.PasswordOption SendHashed,
0);

getPassword

This method will return the password on a JadeUsernameToken instance.
Parameters

None.

Returns

The password associated with the JadeUsernameToken instance.
Remarks

Password can be null, plain text, or hashed.

Example

vars
pword: StringUtf8;

begin
// unt 1is an existing JadeUserNameToken instance
pword := unt.getPassword();

getUsername
This method will return the user name on a JadeUsernameToken instance.

Parameters

None.

Returns

The user name associated with the JadeUsernameToken instance.

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 12

Example

vars
user: StringUtf8;

begin
// unt is an existing JadeUserNameToken instance
user := unt.getUsername () ;

getXml
This method is called to serialize a JadeUserNameToken instance into XML.
Parameters

Name Type Description

xml StringUtf8 The SOAP message to which to add the XML

Returns

A StringUtf8 string representing the SOAP message with the serialized user name token embedded in the supplied
string.

Remarks

The <Header> and <Security> tags are also generated if they are not present in the input string.

Example
vars
user: StringUt£f8;
begin
// unt 1is an existing JadeUserNameToken instance
utString := unt.getXml (inString);
validatePassword

This method is used to validate the password that was in the SOAP message or the XML string.

Parameters
None.

Returns

A Boolean. A value of true indicates that the supplied clear password matches the incoming password and false if
they do not match.

Remarks

If the incoming password is hashed, the supplied password is hashed with the nonce and creation timestamp from the
incoming message before the values are compared.

Example

vars
success: Boolean;

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 13

begin
// unt is an existing JadeUserNameToken instance
unt.clearPassword := "password";
success := unt.validatePassword() ;

JadeWSAddressingHeader Class

The JadeWSAddressingHeader class is used to define the addressing information based on the WS-Addressing
specification. This class has the following properties, which are all of type StringUtf8.

Name Description

action Represents the <Action> tag.

An identifier that uniquely (and opaquely) identifies the semantics implied by this message.
Required. The general form of an action URI is as follows.

[target namespace]/[port type namel/[input/output name]

sendTo Represents the <To> tag. This element provides the value of the destination URL. Required.
messagelD Read-only property that is a generated global unique id (GUID).
relatesTo Required in the response message only, and should have the value of the <MessagelD> tag

from the request message.
replyTo Read-only property. Value is a constant and it is always:

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

The following method is defined for this class.

getXml

This method is called to serialize the addressing header into XML.

Parameters

Name Type Description

xml StringUtf8 The SOAP message to which to add the XML
Returns

A StringUtf8 string representing the SOAP message with the serialized addressing header.
Example

outString := addr.getXml (inString) ;

JadeWSTimestampHeader Class

The JadeWSTimestampHeader class is used to define the timestamp security information in the Security section of
the SOAP message.

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 14

The following properties are defined for this class.

Name Type Description

created TimeStamp Read-only property that defines the creation time of the message.

expires TimeStamp Read-only property that defines the expiry time. This value is obtained
by adding the seconds to timeout to the created time.

secondsToTimeout Integer Sets the expiry time based on this value. The number of seconds
defined by this property is added to the creation time. Defaults to 300
seconds.

The following methods are defined for this class.

getXml

This method is called to serialize the timestamp security information into XML.

Parameters

Name Type Description

xml StringUtf8 The SOAP message to which to add the XML
Returns

A StringUtf8 string representing the SOAP message with the serialized timestamp information.

Example
outString := ts.getXml (inString);
validateTimestamp

This method is used to validate the timestamp that was in the SOAP message or the XML string. An exception is
raised if the timestamp has expired.

Parameters

None.

Returns

Nothing. An exception is raised if validation fails.

Example

begin
// ts is an existing WSTimeStampHeader instance
ts.validateTimestamp () ;

end;

JadeWebServicesSecurity Class

The JadeWebServicesSecurity class is used to obtain the security tokens defined in an incoming SOAP message.

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 15

The following properties defined for this class are populated with values from the message.

Name Type Description

addressing JadeWSAddressingHeader Read-only property that contains the addressing
information if present in the message.

creationTimeStamp JadeWSTimestampHeader Read-only property that contains the timestamp
information if present in the message.

isEncrypted Boolean Read-only property is set to true if the
<EncryptedData> tag is present in the message.

isSigned Boolean Read-only property is set to true if the <Signature> tag
is present in the message.

usernameToken JadeUsernameToken Read-only property that contains the user name token
if present in the message.

The following method is defined for this class.

getTokens

This method is called to deserialize the XML string parameter into user name token, addressing, and timestamp
security information, and sets the signature and encryption status.

Parameters

Name Type Description

Xml StringUtf8 The SOAP message to process for header
information

Returns

A Boolean, set to true if there is header information; otherwise false. If header information is present, the properties
are set to the appropriate value.

Example

success := ts.getTokens (inString);

Example of Use

In this example, we will import the class library into a schema called WebServiceUtilitiesSchema and from this
schema, export the classes that make up this class library in a package called UserNameTokenSecurityProfile.

We will then import this package into a web service provider schema called CalculatorServices and to a web service
consumer schema called CalculatorServicesClient. This consumer schema will import the WSDL generated by the
CalculatorServices web service.

For more details, see the following subsections.

Import the Library

Create a schema called WebServiceUtilitiesSchema and then import the library into this schema. The name of the
library is jadwssec.dll.

WP_WebServicesSecurity - 2022

Jadeplatform

Web Services Security
White Paper

Web Services Security

16

To import the library, select the External Component Libraries menu item from the Browse menu.

Classes Ctrl+B
Primitive Types Ctrl+T
Global Constants Ctrl+5
Interfaces Ctrl+M
Methods Viewer 3
Maps Ctrl+M
Applications Ctrl+L
Libraries Ctrl+E

RP5 Mappings Shift+Ctrl+P
External Databaszes

External Functions Ctrl+F
Schema Views Ctrl+H
Relational Views Ctrl+O
Deltas Ctrl+D

Exposures

External Component Libraries
HTML Documents

Shift+Ctrl+R
Ctrl+l

This will then display the External Components Browser. Make sure that the .NET framework tab is selected,
right-click, and then select the Import option.

WP_WebServicesSecurity - 2022

Jadeplatform Web Services Security
White Paper
Web Services Security 17
This will display the .NET Import Wizard, shown in the following image.
£ .NET Import Wizard i ——— e . o | B |-
Choosze the aszembly that pou want
to have access to from JADE.

M ame |‘Jer$iun |Eulture |F'u|:u|iu: ey -

&ccessibility 1.0.5000.0 bO5EEFH 1d50a3a

& ccessibility 2000 bS5 1d50a3a

ALCE . Graphics Displayst anager. Shared 202573176845 309c3c70rB4E67E2e

&000E 7.0.3300.0 bO5REFH 1d50a3a

AE M Actionz CCAS, Shared 20.2791.31339 A03c3c7OF4ETEZ2e

A E k. Foundation 2 0.2791.31987 909c9c70FR4ETE e

AE . Plugin DPPE. Shared 202791, 32025 03370467 E2e

AE . Plugin EELL S hared 20.2791.320M 09c3-70F4ETEZe

&E b Plugin GO S hared 202791 32024 909c9c7OFB46 TR

AE M. Plugin Hotkeps, Shared 20.2791.32000 A03c3c7OF4ETEZ2e

AE . Flugin REG. Shared 2 0.2791.32040 909c9c70FR4ETE e

AE . Plugin, S ource EEL . Shared 20279132023 03370467 E2e

AE M. Plugin. S ource. GD . Shared 20,2791, 32027 09c3-70F4ETEZe

AE b Plugin.Source Kit Server 2 0.2839.22670 A09c9: 70467 R2e

AE . Server 202839 22362 A03c3c7OF4ETEZ2e

ASE .S erver. Shared 20.247591.3200 909c9c7OfB4ETEZ2e T

4 1 3

Browse. ..
< Back | Mest » | Cancel | Help |

Select the Browse button, change the directory to your Jade installation directory, select the jadwssec.dll from the
list, and then go through the import process. Once this is complete, open a Class Browser.

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 18

The following classes should now be displayed in the Class List.

é’ WebServicelltilitiesSchema Class Browsen: JadeDotMetType El@
= Object Al Atr | Congt| Bef

Application

Global

B ladeDotNetType
(= Jadwssec
=l JadeSecurityToken
1 ladelsernameToken
1 JadeWsAddressingHeader
1 JadeWSTimestampHeader
1 JadeWebServicesSecurity
WebSession

Class: RootSchema::JadeDotNetIype (769)
Superclass: Object

Aoocess: public

Type: real

Lifetime: all all-subclasses
Volatility: Volatile

Default: transient

Maps: _system

1 | m [3

| [Modified by crwwers] [9.9.00] 01 April 2010, 09:55:45]

WP_WebServicesSecurity - 2022

Jadeplatform Web Services Security
White Paper

Web Services Security 19

Create a Package

Create an export package called UserNameTokenSecurityProfile and then select all of the classes, constants,
properties, and methods that were imported from the library, as shown in the following image.

F
& Export Package Definition R — =] B [t

Select Clazzes and Features for Package

Avalable Clazzez and Features Selected Claszes and Features
[F)-JadeSecurityToken —(™ getPaszword HIPS
-Jadwssec —(M getDotMetT ypeh ame
-LlsernameTu:uken —(M) createDotMet0bject_2
-WSAddressingHeader (M) createDotMetObject_1
-WSTimestampHeader [=1-wiSaddressingH eader

—(M] zendTao

—(M relatesTa

—(M) get+ml

—(M) getDotMetT ypeMame
—(M action

g —(F) zendTo

—(F) relatesTa

L—(F) action
=1-wSTimestarmpHeader -
1 m p

>

m

|

Step3ofh

< Back | Mexts I Cancel | Help

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 20

Import the Package

Create a new schema called CalculatorServices and then import the UserNameTokenSecurityProfile package into
this schema.

s -

(= Import Package =HAC X

Select Package Ta lmport
|Web5 ervicelltiitiezSchema: UserMameT okenSecuntyProfile

Fename Package To

Package Description
Fackage for Web Services Security

Package Contents Impart Conflicts

[=)-JadeS ecurnityT oken

—IM) wvenfySignature

—I(A) sigrdml

—I(M) protechionT ype

—IF1 get=ml

—I(M) getDotMetTypel ame
—IH encrpt<ml

—I(M) decrypt=ml

—I(M) clearPazzword -

*

fum

[Include Circular Packages

0k Cancel Help

The Class Browser will then look similar to the example in the following image.

e
§ CalculatorServices Class Browser: JadeSecurityToken EI@
(= Object All At | Canszt | Ref Eﬂ clearPassword
Application l‘Eﬂ clearPassword |ﬁ| decryptXm
Global & protectionOrder & encryptXm
= ladeDotMetType |ﬂ| getDotNetTypeName
= Jadwssec 2 getim
B ladeSecurityToken ﬁ protectionOrder
(1 ladeUsernameToken |E|] signXm
1 JadeWSAddressingHeader ﬁ verifySignature
{1 ladeWSTimestampHeader
1 JadeWebServicesSecurity
ladeWebSenice

WebSession

Class: CalculatorServices::UserNameTokenSecurityProfile::JadeSecuritvIoken (2134)
Imported From: WebServiceUtilitiesSchema::UserNameTokenSecurityProfile
Superclass: Jadw3sec

Access: public

Type: abstract

Lifetime: transient shared-transient

WP_WebServicesSecurity - 2022

jJadeplatform

Web Services Security

White Paper

Web Services Security

21

Create another schema called CalculatorServicesClient and then repeat the package import into this schema.

Note The web service and the web service client will not normally be in the same system, so you have to repeat the
exercise of importing the library for both systems. In this case, you may or may not want to use packages.

Create a Web

Service

In this example, create a Calculator web service class, as follows.

-

&f CalculatorServices Class Browser JadeCalculator

(=1 Object
Application
Global
JadeDotNetType
=] JadeWebService

WebSession

=l JadeWebServiceProvider
B ladeCalculator

Al

Atk | Enn§t| Ref

& divide
& muldply
fﬂ subtract

add{a, b: Real)
vars
begin

return a + b;
end;

: Real webService;

1 | 1

M odified by criwcrs] [9.9.00] 24 March 2010, 09;39:51

Set up the web service by defining the exposure list, setting up the application, and then generating the WSDL. This
WSDL will be imported into the CalculatorWebServicesClient schema. Set the required jadehttp.ini setting, virtual
directory, and so on, as required. For details, see the SOAP Web Services and Web Services Tips and Techniques

white papers.

We will need to set up the provider so that it can process the incoming message that has security headers, but before
we do this, we will set up the consumer.

WP_WebServicesSecurity - 2022

jJadeplatform

Web Services Security

White Paper

Web Services Security

Consuming the Web Service

22

We now import the web service into the CalculatorWebServicesClient using the Web Service Consumer Browser.

At the end of the import process, the Class Browser for this schema will have the following classes shown in the
following image.

w

ﬁ' CalculatorservicesClient Class Browser: JadeCalculator

= Object
—_ Add
—_| AddResponse
Application
—_ Divide
—i_ DivideResponse
Global
JadeDotMetType
ladwssec
JadeZecurityToken
ladelUsernameToken
JadeWSAddressingHeader
JadeWsTimestampHeader
JadeWebServicesSecurity
—i_ JadeScript

= ladeWebService

= JadeWebServiceConsumer

B ladeCalculator
— Multiply
—i_ MultiplyResponse
—_ Subtract
—_ SubtractResponse
WebSession

Al

Attr | Eu:un§t| Ref

& add

& divide
Eﬂ multiply
ﬁ?nsubtract

Class: Jadelalculator (2090)

Superclass: JadeWebServicelonsumer

WP_WebServicesSecurity - 2022

jJadeplatform

Web Services Security
White Paper

Web Services Security

23

We will now define a JadeScript method that will set up the required security tokens and call the web service. The
method shown in the following image does this.

1 testCalculator():

2

3 vars

4 webService: JadeCalculator;

5 addRequest: add;

6 begin

7 et up the web service and the parameters for the add method call
g create webService;

g create addBRequest:

10 addRequest.a := 15;

11 addRequest.b := 20;

12

13 now call the web service

14 write webService.add {addRequest) .addResult;
15

16 epilog

17 delete webService;

18 delete addBRequest:;

159 end;

In this method:

Lines 4 and 5 declare the variables required for this call.

Lines 8 through 11 create the web service consumer instance and set up the parameters for the web service call.

Line 14 makes the call to the web service.

Lines 16 and 17 delete the transient objects.

Generating Security Headers (Client)

The web service client needs to know what headers are expected by the web service. There is no WS-Security Policy
information defined in the imported WSDL. In order to set up the security headers to be sent by the web service client,
we need to re-implement the invoke method on the JadeCalculator class. In the following example, we are going to

set up addressing, timestamp, and hashed user name token, and we are also going to sign and encrypt the message.

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security

White Paper

Web Services Security 24

The following method shows how to achieve this.

1 invoke {inputMeasage: S5tring): String updating;

2

3 vars

4 usernameToken: JadeUsernameToken;

S w3kddress: JadeWSAddressingHeader;

[w3Timestamp: Ja ::lei\":'l'ur-=3tc.rrp-]e der;

T str: StringUtfs;

g

9 begin

10 add addressing information

11 create wslAddress;

12 w3kddress.action := getSoaphction{'add').S5tringUtfi;

13 w3lAddress.sendTo := getEndpointURL.StringUtfi;

14 3tr := wslkddress.getXml {(inputMessage.StringlUtfE);

15

16 add the timestamp header and set the expiry time to 1000

17 create wslimestamp;

18 w3Timestamp. secondsToTimeout := 1000;

19 3tr := wslimestamp.getXml {3tr);

20

21 set up the e will use the hased password

22 create username]‘cken.

23 usernameToken.createDotNetObject 1("wilbur", "password”, usernameToken.PasswordOption SendHashed,
24 usernameToken.EncodingType Base6dBinary) ;
25

26 usernameToken.protection0Order := Jadwssec.ProtectionIype SlgnﬁndEncrypt
27 usernameToken.clearPassword := "password"; Sl
28

29 3tr := usernameToken.getXml (3tr);

30

31 now send the

32

33 return inheritMethod({str.5tring);

34

35 epilog

36 delete usernameToken;

=) delete wslAddress;

38 delete waTimestamp;

38 end;

The parameter to this method is the SOAP message that is to be sent to the web service. What we need to do here is
to insert the security headers into this message before it is sent.

Lines 4 through 8 declare the required local variables.

Lines 11 through 14 set up the WS-Addressing header and call the getXml method to insert the header into the
message.

Lines 17 through 19 create the timestamp security header and call the getXml method to insert this header into
the message. In this example, the expiry time is set to be 1000 seconds after the creation time.

Lines 22 through 29 create the JadeUserNameToken and call the createDotNetObejct_1 method to set up the
user name, password, and password option and encoding type. We are using a hashed password and a base-64
binary encoding. At this point, we also set up the protectionOrder property to say that we want to sign and
encrypt the message. We also set up the password to use for the signing and encryption. We then call the
getXml method, which will set up the required headers and set up the information required for signing and
encrypting the message.

Line 33 calls the invoke method defined in the superclass, using the string returned by the last getXml method
as a parameter.

This will send the message with the required information to the web service.

WP_WebServicesSecurity - 2022

jJadeplatform

Web Services Security

White Paper

Web Services Security

Processing Security Headers (Service)

25

The provider of the service knows what information is required to be in the headers. In order to process the incoming

message, we need to re-implement the processRequest method on the JadeCalculator class.

The following shows the method required for the example web service.

1 processBequest () updating, protected;

2

3 wars

4 jwss: JadeWebServicesSecurity;

5 atr: StringUt£s;

& isPasswordValid: Boolean;

7 begin

8 // get the tokens from the incoming message

9 // we expect to get 3 kens, addressing, timestamp and username
10 // raise exception if one of these is missing

11

12 create jwss;

13 jwss.getTokens (incomingMessage.StringUtfg) ;

14

15 if jwss.addressing = null then

16 raigseSecurityTokenException("Addressing header is missing™):
17 endif;

18

13 if jwss.creationTimestamp = null then

20 raigseSecurityTlokenException("Timestamp security header is missing™);
21 endif;

22

23 if jwss.usernameTcken = null then

24 raiseSecuritylokenException{"UsernameToken security hesder is missing™)»s
25 endif;

26

27

28

29 jwss.creationTimestamp.validateTimestamp() 7

30

31 jwas.usernameloken.clearPassword := "password”;

32

33 /{ Validate password - check the return result

34] action

35 isPasswordvValid := jwss.usernameToken.validatePassword():

36

37 /{ save addressing info ion for sending with the reply

38 // in user defined properties

38 messagelDl := jwss.addressing.messagelD;

40 socaphction := jwss.addressing.action;

41 endpoint := jwss.addressing.replyTo;

42

43 /{ if encryption is set, decrypt the message - exception raised if decryption fails
44 if jwss.isEncrypted then

45 atr := jw3s.usernameToken.decryptXml {incomingMessage.StringUcfs) »
48 // save the descrypted message

47 incomingMessage := str.S5tring;

45 endif;

49

50 /{ if the message i3 signed, w I assumes that the message i3 signed
51 /{ then encrypted - exception riased if w«

52 if jwss.isSigned then

53 jwas.usernameToken.verifySignature (str);

54 endif;

55

56 inheritMethod():

57 epilog

58 delete jwsas;

59 end;

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security

White Paper

Web Services Security 26

In this method:

Lines 4 through 6 declare the local variables required for processing the message.

Lines 12 and 13 create an instance of the JadeWebServicesSecurity class and call the method getTokens on
it. This method will scan for addressing and security headers and populate the properties on the created
instance.

Lines 15 through 25 validate that the required headers are present. If they are not, an exception is raised by
calling the raiseSecurityTokenException method (defined elsewhere).

Line 29 validates the timestamp information. If the timestamp is not valid or if the current time is past the expires
time, an exception is raised.

Line 31 sets up the password for validation, signing, and encryption.
Line 35 validates the password. If the password is not valid, a Boolean value of false is returned.
Lines 39 through 41 save information in the addressing header that will be sent with the response message.

Lines 44 through 48 decrypt the message if it is encrypted and save the decrypted message for processing by
the web services framework. An exception is raised if the decryption fails; for example, if the supplied password
does not match the password used to encrypt the message, an exception is raised.

Lines 52 through 54 validate the signature if the message has been signed. An exception is raised if the
validation fails; for example, if the supplied password does not match the password used to sign the message, an
exception is raised.

Line 56 then calls the processRequest on the superclass, to continue the processing of the message.

Line 58 deletes the transient instance.

WP_WebServicesSecurity - 2022

Jadeplatform

Web Services Security
White Paper

Web Services Security

27

If the web service wants to send headers in the response message, the code will need to be placed in a
re-implemented reply method, as shown in the following method.

1 reply(): String updating, protected;

2

3 vars

4 wakddress: JadeWSAddressingHeader;
5 wsTimestamp: JadeWSTimestampHeader:

[out: String:

7 atr: StringUtfsa;

g unt: badeUsernameIcken:

9 begin

10

11 f/ get the generated message

12 out := inheritMethod();

13

14 // add addressing information

15 create w3kddress;

lé wskddress.action := socapliction & "REesponse":
17 wshddress.sendTo := endpoint;

18 wshddress.relatesTo := messagelD;

13 3tr := w3hkddress.getXml (out.StringUtfE);

20

21 // add the timestamp header and set the expiry time to 1000
22 create w3Timestamp:

23 wsTimestamp.secondsToTimeout := 1000;

24 3tr := waTimestamp.getXml {str):

25

26 S/ HOTE:

27 [/ 1f we want to encrypt and/or sign the message we will need to create
28 // & username token to send with the response.
29 f/ want to encrypt or 3ign the message.

30

31 return str.String;

32

33 epilog

34 delete w3kddress;

35 delete waTimestamp;

36 end;

In this case, we do not

WP_WebServicesSecurity - 2022

jJadeplatf

orm Web Services Security
White Paper

Web Services Security 28

Similarly, if the web service client needs to process headers in the message that it receives, the code is implemented
in the invoke method; that is, in the same method from which it generates the headers, as shown in the following

method.

2
3 vars
4

o -1 & A

g
10
11 begi
12
13
14
15
1§
17
18
15
20
21
22
23
24
25
26
27
28
29
30
3
32
33
34
35
36
37
38
35
40
41
42
43
44
45
48
47
48
43
20
51
52
53
54 epil
55
56
51
58
59 end;

1 invoke (inputMessage: String): String updating;

usernameToken: JadeUsernameToken;
wakddress: JadeWSAddressingHeader;
walimestamp: JadeWSTimestampHeader;
out: String:

str: StringUcfg;

Jwaa: JadeWebServicesSecurity;
n

/f add addressing information

create wshddress:

w3hddress.action := getSocapAction('add').StringUcfi;
w3hddress.sendIo := getEndpointURL.StringUtis;

str := walddress.get¥ml {inputMessage.StringUcig):

/f add the timestamp header and set the expiry time to 1000
create walimestamp:

walimestamp. secondsToTimecut := 10007

str := w3limestamp.getXml (str);

£/ 3et up the user name token we will use the hased password
create usernameToken;
uszernameToken.createDotNetObject 1 ("wilbur™, "password”™, usernameloken.Passwordiption SendHashed,

usernameToken.EncodingType Basef4Binary) ;

uzernameToken.protectionfrder := Jadwssec.ProtectionType_SignAndEncrypt;
usernameToken.clearPassword := "password"; //password for signing end encrypticn

str := usernameToken.getXml (str);

// now send the message by calling the superclass method and wait for response

out := inheritMethecd({str.String):

/7 the out wvariabkle now contains the response message, get the tokens and validate them.

create jwasa:r
jwss.getTokens (out.StringUcig) ;

if jwss.addressing = null then
raiseSecurityTokenException("Addressing header is missing™):
endif;

if jwss.creationTimestamp = null then
raiseSecurityTokenException("Timestamp security header is missing™);
endif;

jwas.creationTimestamp.validateTimestamp () 7
return out.String;

og

delete usernameToken;

delete wsRddress;
delete waTimestamp;

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 29

Sample SOAP Message

The following is an example SOAP message that is sent from the web service client to the web service. This sample
contains WS-Addressing headers, Timestamp, UserNameToken, with a hashed password, signature, and encryption.

<?xml version="1.0" encoding="utf-8"7?>
<soap:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tns="urn:JadeWebServices/CalculatorService/"
xmlns:sl="urn:JadeWebServices/CalculatorService/"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-secext-1.0.xsd">
<soap:Header>

<wsa:Action wsu:Id="Id-378ad0c7-777e-48d0-8d4e-789634b0e757"></wsa:Action>

<wsa:MessagelID wsu:Id="I1d-89d7cle0-b989-4cb1-8319-
c2b3cc9259bc">uuid:301dc198-5d2b-4£72-9bbb-b6de3785ec7f</wsa:MessageID>

<wsa:ReplyTo wsu:Id="Id-953d69ec-9756-4367-b88f-e1c0d6859¢c13">

<wsa:Ad-
dress>ht-
tp://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:To wsu:Id="Id-7034a4d8-4142-4b71-997e-d0c7a8a7e9%ef"></wsa:To>
<wsse:Security soap:mustUnderstand="1">
<wsu:Timestamp wsu:Id="Timestamp-b098ebcf-14ca-472f-b643-1c85b68a0493">
<wsu:Created>2010-04-13T21:22:2772</wsu:Created>
<wsu:Expires>2010-04-13T21:39:072</wsu:Expires>
</wsu:Timestamp>
<wsse:UsernameToken wsu:Id="SecurityToken-339cb9af-73ad-4405-9223-
3flcfcel2ale">
<wsse:Username>wilbur</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss—-username-token-profile-
1.0#PasswordDigest">y+RiI7GYQE4J81X/ely0S+mZfI4=</wsse:Password>
<wsse:Nonce>5FiJYx352dYgamYU7CHDgOrfzrA=</wsse:Nonce>
<wsu:Created>2010-04-13T21:22:2772</wsu:Created>
</wsse:UsernameToken>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-
exc-cl4n#" />
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#hmac—

shal"™ />
<ds:Reference URI="#I1d-378ad0c7-777e-48d0-8d4e-789634b0e757">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"

/>

</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"
/>

<ds:DigestValue>+LMRkGFO6gtY91ley80XKEAutohE=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#Id-89d7cl1e0-b989-4cbl-8319-c2b3cc925%bc">

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 30

<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"

/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"
/>
<ds:DigestValue>j3xYQQXDX+xBbET1gqLbNFO2A63s=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#Id-953d69ec-9756-4367-b88f-elc0d6859c13">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"
/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"
/>
<ds:DigestValue>5W11ZeYplXrh+GsIQnbjOHVf2vg=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#Id-7034a4d8-4142-4b71-997e-d0c7a8a7e9ef">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"
/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"
/>
<ds:DigestValue>YF/+6N++1bXgYGYEpWuUEKD]jFCwA=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#Timestamp-b098ebcf-14ca-472f-b643-1c85068a0493">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"
/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"
/>
<ds:DigestValue>NAToSMCQMcO+9)DWvTDelhpgbfU=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#I1d-00299f17-588c-4f1f-987e-23b4534cfc21">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"
/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"
/>

<ds:DigestValue>So02/+F/h+EO1FOORwX2nlkkLbbs=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>sTelId/otJygDBxEx8sW31GDjLxM=</ds:Signaturevalue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#SecurityToken-339cb9af-73ad-4405-9223-
3flcfcel2ale" ValueType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss—
username-token-profile-1.0#UsernameToken" />
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
</soap:Header>

WP_WebServicesSecurity - 2022

jJadeplatform Web Services Security
White Paper

Web Services Security 31

<soap:Body wsu:Id="Id-00299£f17-588c-4f1f-987e-23b4534cfc21">
<xenc:EncryptedData Id="EncryptedContent-d028b5dd-bc55-4dd8-8cc6-
0b4cfdd98f4b" Type="http://www.w3.0rg/2001/04/xmlenc#Content"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#">
<xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc" />
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<wsse:SecurityTokenReference>
<wsse:Reference URI="#SecurityToken-339cb9af-73ad-4405-9223-
3flcfcel2ale" ValueType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss—
username-token-profile-1.0#UsernameToken" />
</wsse:SecurityTokenReference>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>v0SsdDFgxztnIsuF31oPvYwdNyChY3Q0eIHcFKPWTSXVinrBe9VEY
PeEgqbiFZSy7sqJoAwd2iGLs~—
m+JWwYHC1jpAoYQhzhAC8+WLNmk5v8FfquRHGEr+5p9+/0Y82cHjg-
pP4ZV2k5C9gDxgYWhmEA9hA==</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
</soap:Body>
</soap:Envelope>

WP_WebServicesSecurity - 2022

	Contents
	Web Services Security
	UsernameToken Profile
	Namespaces
	User Names and Passwords
	XML Syntax
	Examples

	Security Class Library
	Security Classes
	Jadwssec Class
	JadeSecurityToken Class
	JadeUsernameToken Class
	JadeWSAddressingHeader Class
	JadeWSTimestampHeader Class
	JadeWebServicesSecurity Class

	Example of Use
	Import the Library
	Create a Package
	Import the Package
	Create a Web Service
	Consuming the Web Service
	Generating Security Headers (Client)
	Processing Security Headers (Service)

	Sample SOAP Message

