
Copyright©2025 Jade Software Corporation Limited. All rights reserved.

REST Services
White Paper

VERSION 2022

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2025 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.

WP_RestServices - 2022

Contents

Contents iii

REST Services 4
Why RESTWeb Services? 4
REST Services in Jade 4
REST Service Components 5

The JadeRestService Class 5
JadeRestService Class Methods 6

GET Method Example 6
POST Method Example 7
PUT Method Example 7
DELETE Method Example 7

Syntax of a Direct REST Request 8
Syntax of a Legacy IIS REST Request 9

Defining a REST Service Application 11
Defining a Direct REST Service Application 13
REST Service Application Types 14
Jade REST Service Application and SSL 14

REST Message Handling 15
Notes about REST Service Messages 18

Generating and Parsing JSON independent of REST 22
WADL-like Generated XML Description 23
Jade REST Client 23

The JadeRestClient Class 25
JadeRestClient Class Methods 25
Setting the Endpoint 25

The JadeRestRequest Class 26
JadeRestRequest Class Methods 26
Setting the Resource Location 26
Adding Authorization Headers 27
Adding Object Parameters 27

JSON or XML Serialization 27
Form URL Data 28
Multipart Form Data 28

The JadeRestResponse Class 28
JadeRestResponse Class Methods 28
Deserializing an Object Result 28
Standardizing a Primitive Result 29

Putting it all Together 29
GET Method Example 29
POST Method Example 30
PUT Method Example 30
DELETE Method Example 31

OpenAPI Imports 32
What is OpenAPI? 32
Importing an OpenAPI Specification 32

The OpenAPI Import Wizard 32
Loading an OpenAPI Specification 33
Naming the REST API 33
Renaming Proxy Classes 33
Renaming Properties and Methods 35
Excluding Resource Proxy Classes and Loading the API 36

Using the Generated Proxy Classes 37

WP_RestServices - 2022

REST Services

This white paper contains information about the REST-based web services that Jade provides.

A web service usually uses HTTP to exchange data. Unlike a web application, which is typically HTML over HTTP, a
web service uses HTTP with a file format specialized for machine-readability; for example, Extensible Markup
Language (XML) or JavaScript Object Notation (JSON). When a client sends a request in XML or JSON, the server
responds with a response in the same format.

A Representational State Transfer (REST) API is a type of web service. A REST API differs from the older
SOAP-based web services in the way it is intended to be used. By using REST, the API tends to be lightweight and
embraces HTTP. For example, a REST API leverages HTTP methods to present the actions a user would like to
perform, with the application entities becoming resources on which these HTTP methods can act.

Why REST Web Services?
REST-based web services offer a light-weight alternative to the original SOAP andWSDL-based web services. As
they are stateless, with the REST provider not storing any state for each client, REST-based web services are more
scalable than previous web services implementations.

REST works with resources that are identified with a Uniform Resource Identifier (URI). REST resources are named
with nouns as part of the URI rather than verbs; for example, /customers rather than /getCustomers. One of the key
characteristics of RESTful web API is that the URI or the request message does not include a verb.

To use REST services, a client sends an HTTP request using theGET, POST, PUT, or DELETE verb.

The traditional HTTP error messages (for example, 200 - OK and 404 - Not found) can be used to indicate whether a
request is successful. If a request is successful, information can be returned in Extensible Markup Language (XML) or
JavaScript Object Notation (JSON) format.

As session handling is not performed, there is no timeout of connections. Additionally, information is not retained
between requests from a client. If that is required, it must be provided by the application developer.

REST Services in Jade
Jade implements the Representational State Transfer (REST) stateless architecture style as a simpler alternative to
SOAP web services. Mainstream web 2.0 service providers such as Google, Salesforce, and Facebook have
endorsed this easier-to-use, resource-oriented model to expose their services. REST-based web services,
implemented using HTTP, offer a light-weight alternative to the web services available in earlier releases.

Jade REST services currently support the following output formats.

JSON (Microsoft JSON)

XML (Microsoft XML (version .NET 4.5)

JSONN (NewtonSoft JSON) version 6.0.1

JSON RFC8259 (for dynamic parsing only)

WP_RestServices - 2022

REST Services
White Paper

REST Services 5

Legacy IIS REST services in Jade use the existing HTTP communications framework.

REST Service Components
This section contains:

The JadeRestService Class

JadeRestService Class Methods

GET Method Example

POST Method Example

PUT Method Example

DELETE Method Example

Syntax of a REST Request

Dynamic parsing allows you to accurately ingest and reply with JSON data without a matching Jade class. When the
parameter of the REST method is of the JadeJsonObject class or JadeAnyArray class type, dynamic parsing is
used.

The JadeJsonObject class stores an accurate representation of JSON data within a Jade system. It is transient-only
and is valid only for the node on which it is created. The JadeAnyArray class implements the JadeIteratorIF interface
and allows you to iterate through the property names and values of its matching object.

The JadeRestService Class
A transient instance of a subclass of the JadeRestService class is created by each REST service application and is
used by each REST services message that is received.

The JadeRestService class processRequestmethod is called on this object, passing the message details in the
URL. That method decodes the URL and any objects passed in XML or JSON format, and calls the required method
on the same JadeRestService object. The result returned by the method is encoded into XML or JSON, as
requested. The JadeRestService class replymethod is then called, passing the string to be returned to the client.

WP_RestServices - 2022

REST Services
White Paper

REST Services 6

JadeRestService Class Methods
You can create REST service methods only for a JadeRestService subclass.

The methods defined in the JadeRestService class are summarized in the following table.

Method Description

addResponseHeaderField Adds HTTP header fields for an individual Direct REST response

createVirtualDirectoryFile Passes files created by a Jade application to the jadehttp library (applies
only to legacy IIS REST services)

deleteVirtualDirectoryFile Deletes specified files from the virtual directory used by the jadehttp
library (applies only to legacy IIS REST services)

fetchJWT Returns the bearer token from the Authorization: Bearer HTTP header
of the incoming REST request

fetchSecret Returns the secret with which to validate symmetrically-signed tokens

getOutputFormat Returns an Integer value that represents the output format

getServerVariable Returns the specified HTTP header information for your REST service
request from the Internet Information Server (IIS)

getTargetMethod Gets the name of the method targeted by the incoming REST request

isVDFilePresent Returns true if the specified file is present in the virtual directory used by
the jadehttp library (applies only to legacy IIS REST services)

processRequest Processes the received message

reply Sends the returned value from the called method to the client

validateShadowMethod Returns true if the method is a valid shadow method of a REST service
method

validateToken Validates a JSONWeb Token against the required claims associated with
the specified method

The following subsections contain examples of REST service methods to handleGET, POST, PUT, and DELETE
requests, which could be defined in a JadeRestService subclass in your schema.

GET Method Example
The method in the following example returns a Customer object in XML or JSON in response to aGET request in
which the customer identifier is specified.

getCustomer(pId: Integer): Customer updating;
vars

customer: Customer;
begin

// allCustomers is keyed on the customer id
customer := app.myRoot.allCustomers.getAtKey(pId);
if customer = null then

// Setting HTTP status optional - you could simply return a 'null'
customer

self.httpStatusCode := 404;
return null;

else
// Make an object to return and avoid returning references

WP_RestServices - 2022

REST Services
White Paper

REST Services 7

return customer.cloneSelf(true);
endif;

end;

POST Method Example
The method in the following example creates a customer in response to a POST request in which the data for the
customer is specified as primitive type parameters.

postCustomer(pName: String; pAddress: String);
vars

customer: Customer;
begin

beginTransaction;
create customer;
// Properties are set from the primitive parameters
customer.name := pName;
customer.address := pAddress;
customer.myRoot := app.myRoot;
commitTransaction;

end;

PUT Method Example
The method in the following example updates an existing customer in response to a PUT request.

Note One or more parameters are used to identify the Customer object to be updated. The remaining parameters
are used to update the object.

putCustomer(pId: Integer; pName: String; pAddress: String);
vars

customer: Customer;
begin

// Identify customer to be updated using pId
customer := app.myRoot.allCustomers.getAtKey(pId);
if not customer = null then

// Update customer using pName and pAddress
beginTransaction;
customer.name := pName;
customer.address := pAddress;
commitTransaction;

endif;
end;

DELETE Method Example
The method in the following example deletes a specified customer in response to a DELETE request.

deleteCustomer(pId: Integer);
begin

// Delete customer with specified id
beginTransaction;
delete app.myRoot.allCustomers.getAtKey(pId);
commitTransaction;

end;

WP_RestServices - 2022

REST Services
White Paper

REST Services 8

Syntax of a Direct REST Request
A Direct REST request is sent from a client as an HTTP verb (GET, POST, PUT, or DELETE), followed by the URL of
the resource. The syntax is similar to that of other types of Jade web-enabled applications.

Verb REST server URL:port-number/path[.xml|json|jsonn][&extra_info]
<-------------------------> <-------------------> <---------->

first part second part third part

The following Jade Direct REST service request retrieves information in JSON format for a customer with an identifier
of 123.

GET://localhost:port-number/customer/123.json
<---------------------> <--------------->

first part second part

The first part of the URL is the address and port number of the Direct REST application.

http://localhost:543

In this example, the host is the local machine and :543 is its port number.

The second part of the URL contains the following.

Identifier of the resource, which in this example is customer.

The JadeRestServicemethod that is invoked for aGET request on the resource /customer is obtained by
converting the HTTP verb to lowercase (get) and appending the name with the first letter capitalized
(Customer), resulting in the method name getCustomer.

Each additional URL path level is a parameter passed to the called method. Each string value is converted to the
required method parameter type. An exception is raised if the data is invalid or there is a mismatch in the number
of parameters.

AGET request for /customer/123 would result in a getCustomer(123)method call; that is, the getCustomer
method would require the first parameter to be of the Integer type.

AGET request for /customer/Clark Kent would result in a getCustomer("Clark Kent")method call; that is, the
getCustomermethod would require the first parameter to be of the String type.

Note Direct REST requests must be URL-encoded before the request is sent, so that /customer/Clark Kent
would become /customer/Clark%20Kent.

AGET request for /customer/Clark Kent/Smallville would result in a getCustomer("Clark Kent",
"Smallville")method call; that is, the getCustomermethod would require the type of the first and second
parameters to be String.

URL path levels separated by the slash character (/) are used to pass primitive parameters. An object parameter
is passed as XML or JSON as the body of the data received. You can pass one object parameter only in a Direct
REST service request.

A ParamListType parameter can be used in the method signature to receive multiple path parameters from the
URL but it must be the last parameter of the Jade method. All parameters passed for a ParamListType
parameter are assumed to be strings.

WP_RestServices - 2022

REST Services
White Paper

REST Services 9

You can include the output format of the data at the end of the path information.

/customer/123.xml returns customer information in Microsoft XML format

/customer/123.json returns customer information in Microsoft JSON format

/customer/123.jsonn returns customer information in NewtonSoft JSON format

If the output format is not specified (/customer/123), data is returned in Microsoft JSON format.

The third part of the URL is the query string.

GET http://localhost/customer/123.json

For aGET request, you can append an ampersand character (&) followed by the XML or JSON for an object, if the
REST service method has an object parameter in the signature.

For a POST, PUT, or DELETE request, you can supply the XML or JSON for an object in the request body, if the
REST service method has an object parameter in the signature.

The type of the object is specified by the type of the parameter in the signature of the JadeRestServicemethod. The
information for that object is passed in the query string after the ampersand character (&) in XML or JSON format.

To delete an employee:

DELETE http://localhost:543/customer/123

To update the details of an employee:

PUT http://localhost:543/customer/123

To create a new employee:

POST http://localhost:543/cusotmer

The XML or JSON user data is passed in as the body of the data received. That data is contained in the httpIn
parameter passed to the JadeRestService class processRequestmethod.

To return a collection of all employees:

GET http://localhost:543/customer

This request is passed using aGET HTTP request and returns an array of customers as XML or JSON.

See also "REST Message Handling", later in this document.

Applies to Version: 2022 and higher

Syntax of a Legacy IIS REST Request
A legacy IIS REST request is sent from a client as an HTTP verb (GET, POST, PUT, or DELETE), followed by the
URL of the resource. The syntax is similar to that of other types of Jade web-enabled applications.

Verb IIS server URL/jadehttp.dll/path[.xml|json|jsonn]?app_name[&extra_info]
<-------------------------> <-------------------> <------------------->

first part second part third part

WP_RestServices - 2022

REST Services
White Paper

REST Services 10

The following Jade REST service request retrieves information in JSON format for a customer with an identifier of
123.

GET http://localhost/jade/jadehttp.dll/customer/123.json?RestApp
<--------------------------------> <---------------> <----->

first part second part third part

The first part of the URL is the path to the jadehttp.dll file.

http://localhost/jade/jadehttp.dll

In this example, the IIS host is the local machine and jade is an alias defined in IIS for the physical directory that
contains the jadehttp.dll file.

The second part of the URL contains the following.

Identifier of the resource, which in this example is customer.

The JadeRestServicemethod that is invoked for aGET request on the resource /customer is obtained by
converting the HTTP verb to lowercase (get) and appending the name with the first letter capitalized
(Customer), resulting in the method name getCustomer.

Each additional URL path level is a parameter passed to the called method. Each string value is converted to the
required method parameter type. An exception is raised if the data is invalid or there is a mismatch in the number
of parameters.

AGET request for /customer/123 would result in a getCustomer(123)method call; that is, the getCustomer
method would require the first parameter to be of the Integer type.

AGET request for /customer/Clark Kent would result in a getCustomer("Clark Kent")method call; that is, the
getCustomermethod would require the first parameter to be of the String type.

Note REST requests must be URL-encoded before the request is sent, so that /customer/Clark Kent would
become /customer/Clark%20Kent.

AGET request for /customer/Clark Kent/Smallville would result in a getCustomer("Clark Kent",
"Smallville")method call; that is, the getCustomermethod would require the type of the first and second
parameters to be String.

URL path levels separated by the slash character (/) are used to pass primitive parameters. An object parameter
is passed as XML or JSON as the body of the data received. You can pass one object parameter only in a REST
service request.

A ParamListType parameter can be used in the method signature to receive multiple path parameters from the
URL but it must be the last parameter of the Jade method. All parameters passed for a ParamListType
parameter are assumed to be strings.

You can include the output format of the data at the end of the path information. (This is ignored for dynamic
parsing, where JSON RFC8259 is always used.)

/customer/123.xml returns customer information in Microsoft XML format

/customer/123.json returns customer information in Microsoft JSON format

/customer/123.jsonn returns customer information in NewtonSoft JSON format

If the output format is not specified (/customer/123), data is returned in Microsoft JSON format.

WP_RestServices - 2022

REST Services
White Paper

REST Services 11

The third part of the URL is the query string. It contains the name of the Jade REST service application. In the
following example, the Jade REST service application is called RestApp.

To delete an employee:

DELETE http://localhost/jade/jadehttp.dll/customer/123?RestApp

To update the details of an employee:

PUT http://localhost/jade/jadehttp.dll/customer/123?RestApp

To create a new employee:

POST http://localhost/jade/jadehttp.dll/customer?RestApp

The XML or JSON user data is passed in as the body of the data received. That data is contained in the httpIn
parameter passed to the JadeRestService class processRequestmethod.

To return a collection of all employees:

GET http://localhost/jade/jadehttp.dll/customers?RestApp

This request is passed using aGET HTTP request and returns an array of customers as XML or JSON.

See also "REST Message Handling", later in this document.

Defining a REST Service Application
The REST service application is defined in the Define Application dialog in the standard way. For details, see
"Defining Applications, in Chapter 3 of the Development Environment User's Guide. See also Defining a REST
Service Application" and "Running a REST Service Application in the Direct REST Mode", in Chapter 11 of the
Developer's Reference.

WP_RestServices - 2022

REST Services
White Paper

REST Services 12

On the Application sheet, select Rest Services or Rest Services, Non-Gui in the Application Type combo box.

This is defined from the development perspective. To successfully execute your application, set up the virtual directory
and the jadehttp.ini (IIS) file correctly for your REST server. To configure IIS, see:

https://secure.jadeworld.com/developer-
centre/Jade2022/OnlineDocumentation/#resources/wp_erewhon/part_1/configuring_
iis.htm

In the jadehttp.ini file, add an [application-name] section to enable clients to connect to the Jade REST service
application. Set the parameter values to match the configuration information you specified on the Define Application
dialog.

[RestApp]
ApplicationType=RestServices
TcpConnection=localhost
TcpPort=45000

https://secure.jadeworld.com/developer-centre/Jade2022/OnlineDocumentation/#resources/wp_erewhon/part_1/configuring_iis.htm
https://secure.jadeworld.com/developer-centre/Jade2022/OnlineDocumentation/#resources/wp_erewhon/part_1/configuring_iis.htm
https://secure.jadeworld.com/developer-centre/Jade2022/OnlineDocumentation/#resources/wp_erewhon/part_1/configuring_iis.htm

WP_RestServices - 2022

REST Services
White Paper

REST Services 13

Defining a Direct REST Service Application
Before the implementation of Direct REST functionality, access to REST applications was available using only IIS.
Client applications would make HTTP/1.1 REST requests to IIS, and then IIS would communicate with the Jade REST
application to serve responses to these requests. The communication between the IIS and the Jade REST application
was performed by the Internet Server Application Programming Interface (ISAPI) extension Dynamic Link Library
(DLL) called jadehttp.dll. This DLL implemented a proprietary Jade protocol between IIS and the REST applications.

The Direct REST functionality adds support for the HTTP/1.1 communication protocol to REST applications. This
means that Jade Direct REST applications, when run in the Direct REST mode, no longer require IIS to enable
communication with other HTTP-compliant applications (for example, REST clients, web browsers, reverse proxies,
web servers, or TLS termination servers). This allows a greater degree of freedom for the deployment of Jade REST
applications and it also reduces the system requirements for the development of REST applications. See also the
Direct REST Reference Architecture White Paper, for suggestions and example deployment configurations that could
be used with Jade Direct REST services.

The REST service application is defined in the Define Application dialog in the standard way. For details, see
"Defining Applications", in Chapter 3 of the Development Environment User's Guide. See also "Defining a REST
Service Application" and "Running a REST Service Application in the Direct REST Mode", in Chapter 11 of the
Developer's Reference.

The only functionality not provided by the JadeRestService class when REST applications are run in the Direct REST
mode are the three methods related to the use of the legacy IIS virtual directory feature (that is,
createVirtualDirectoryFile, deleteVirtualDirectoryFile, and isVDFilePresent). If these methods are called in a
Direct REST application, exception 1068 (Feature not available in this release) is raised.

As the use of the virtual directory (specified in the Virtual Directory text box on theWeb Options sheet of the Define
Application dialog) is normally reserved for serving files to web applications and REST applications are traditionally
used to provide data access.

To run a REST application

If you have the following setting of the DirectRest parameter in the [WebOptions] section of the Jade
initialization file, all Rest Services and Rest Services, Non-Gui applications on your node run in Direct mode.

[WebOptions]
DirectRest=true

If you have the following (default) setting of the DirectRest parameter in the [WebOptions] section of the Jade
initialization file, for example, all Rest Services and Rest Services, Non-Gui applications on your node run in
legacy mode.

[WebOptions]
DirectRest=false

If your node has a Rest Services application called YellowRulesTheRest and the following DirectRest
parameter settings, the application called YellowRulesTheRest runs in Direct REST mode but all other Rest
Services and Rest Services, Non-Gui applications on that node would run in legacy mode.

[WebOptions]
DirectRest=false
YellowRulesTheRest_DirectRest=true

WP_RestServices - 2022

REST Services
White Paper

REST Services 14

In addition to the DirectRest parameter, the [WebOptions] section of the Jade initialization file also provides the
parameters listed in the following table.

Parameter Specifies...

KeepAliveTimeout The maximum time idle connections are kept alive before they are closed by the
REST application.

LogHttpMessages Whether HTTP messages are logged. If logging of HTTP messages is enabled, they
are also displayed in the console of GUI REST applications.

MaxRequestLength Maximum length (in bytes) of HTTP requests for Direct REST applications.

MinimumReadDataRate Minimum rate allowed for incoming data (defined in kilobits per second).

QueueDepthMax Maximum size of queued requests allowed in the REST application (subsequent
requests will be rejected).

In addition, you can use the JadeRestService class addResponseHeaderFieldmethod to add an HTTP header for
an individual Direct REST response, in addition to the automatically generated Content-Type and Content-Length
headers. When running in Direct mode, Jade REST applications continue to support the JadeRestService class
replymethod extension point.

Applies to Version: 2022.0.05 and higher

REST Service Application Types
The ApplicationType_Rest_Services and ApplicationType_Non_GUI_Rest are available. These types are treated
in most cases the same as ApplicationType_Web_Enabled and ApplicationType_Non_GUI_Web.

Use of the ApplicationType_Rest_Services type causes the display of the Web Application Monitor when the
application is initiated; ApplicationType_Non_GUI_Rest does not.

Jade REST Service Application and SSL
You can implement security for REST-based web services using:

Operating system security and Internet Information Server (IIS) for data access

Secure Sockets Layer (SSL) for data transmission

The communication from the client to IIS has no Jade involvement. Calling with an https header from C# automatically
uses SSL. When the message is received by the Jade REST service, it has already been decrypted by IIS and passed
to Jade as clear text.

To use SSL, you first need to establish the SSL configuration within IIS, which involves configuring the SSL certificate
within IIS.

1. Add the certificate to the IIS Server certificates.

2. Create a binding on the default website for HTTPS and the certificate.

3. Turn on SSL for the Jade website that is to be used. If no certificate is required on the client, set the Ignore
option for the client setting.

WP_RestServices - 2022

REST Services
White Paper

REST Services 15

REST Message Handling
REST service messages can serialize public and protected properties. Protected properties can optionally be
excluded from the serialization process, and read-only properties are always excluded from the serialization process.

Note The messages in this topic are those of a legacy IIS REST service application. The syntax of Direct REST
service requests differ, as documented in "Syntax of a Direct REST Request", elsewhere in this document.

Jade handles REST messages as follows.

1. When the REST service application is initiated, the web framework is initialized and the required number of
application copies is activated.

2. A REST message is sent from a client using a URL that is of the form:

<iis-server-url>/jadehttp.dll/<path[.xml/json/jsonn]>?<application-name>
[&extra-info]

The following URL is an example of a REST message from the client.

http://localhost/jade/JadeHttp.dll/customer/123.json?RestApp

The path parameter contains:

The name of the action at the first level; for example, customer. The method to be called is constructed
from the type of request (get, put, post, or delete) and the action name with the first character capitalized;
for example, getCustomer.

Each additional URL path level becomes the parameters passed to the called method. Each string value is
converted to the required method parameter type (an exception is generated if the data is invalid). For
example, 123 is converted to an integer when the parameter is defined as an Integer.

Note A ParamListType can be used in a method signature but it must be the last parameter.

Optionally, the output format of the data returned can be included at the end of the path information; that is,
.xml, .json, or .jsonn. If this is not present, the data is formatted into JSON. See step 7 later in this
instruction for more details.

3. When a message arrives, the web processing framework calls the JadeRestService class processRequest
method on the application REST service object. This method can be re-implemented by the application, if
required, but that method must call inheritMethod for the processing to be completed.

The processRequestmethod automatically receives the following parameter values from the web processing
framework.

Parameter Description

httpIn Used for passing object parameters to method that require them. If a serialized object (in
JSON or XML format) has been included in the HTTP request body, it is used. If not, the
query string in the URL is used (that is, this will have the same value as the value of the
queryStr parameter). If neither contains a serialized object, exception 11105 (The
object parameter required by called Rest Services method was not supplied) is raised.

queryStr Contains the query string; that is, the application name and optionally a single serialized
object.

WP_RestServices - 2022

REST Services
White Paper

REST Services 16

Parameter Description

pathIn Contains the resource name, any passed parameters, and the response format (if
included); for example, /Customer/123.json.

methodType The HTTP verb used to access the resource; that is, one ofGET, PUT, POST, or
DELETE.

4. When the JadeRestService class processRequestmethod is called:

It parses the <path> part of the received data. The first identifier is combined with the message method
type (that is,GET, PUT, POST, or DELETE in lowercase) to create the method name to be called. For
example, /customer for aGET type calls a getCustomermethod (the first path character is made
uppercase) on the JadeRestService subclass being used. An exception is generated if the method does
not exist on the JadeRestService subclass.

Converts subsequent levels of the path into the parameters (validated and converted to the correct type)
passed to the method. For example, /customer/123/12:45 results in a call to getCustomer(123, 12:45) if
the signature is id: Integer; time: Time.

If the method signature includes an object parameter, the httpIn text is searched for an object serialized in
XML JSON,JSONN, or JSON RFC8259 format. This serialized object must be the last text part of the
string.

If a JadeJsonObject class or JadeAnyArray class parameter is used, the following conditions apply.

The content of the message is parsed as JSON.

A series of linked JadeJsonObject and JadeAnyArray objects are created, which represent the
JSON data structure received in the message and the top-level object or array is set to the parameter
of the REST method.

The top-level entity (object or array) must be of a type that matches the parameter (for example, a
JSON object matches a JadeJsonObject and a JSON array matches a JadeAnyArray).

The created objects are transient, and valid only on the node on which the REST method is invoked.

Any objects created this way are deleted after the invoked REST method exits.

For an XML string, recognized by its <?xml header, the following conditions apply.

The XML is parsed to create the contained object or objects. The XML can indicate that the passed
object is null.

If the base object is not null, the object must be of the type required by the parameter; otherwise an
exception is generated.

Any classes or properties referenced in the XML that do not exist in the schema are ignored.

For properties that exist, the passed value in the XML is validated for its type and generates an
exception if the format is invalid.

For a JSON string, the following conditions apply. (Note that because there is no class name in the JSON,
passing the wrong object results in the entire content being ignored unless both object types happened to
have the same property name.)

The text is searched for the first { if the parameter object type is not a collection or the first { or [when
the parameter object type is a collection. If found, JSON format is assumed.

JSON has no other header, and does not indicate the content type of object.

WP_RestServices - 2022

REST Services
White Paper

REST Services 17

The JSON format from NewtonSoft is different from that of Microsoft.

If the { or [character is not found and the end of the string is '' (that is, null), the base object passed is
assigned as being a null object.

If the JSON header is found, the JSON is parsed and the object defined by the parameter type is
created and populated.

For an XML or JSON string only, the following conditions apply; that is, when dynamic parsing is not used
(the parameter value is not a JadeJsonObject class or JadeAnyArray).

Any classes or properties referenced in the XML, JSON, or JSONN that do not exist in the schema
are ignored.

For properties that exist, the passed value in the XML, JSON, or JSONN is validated for its type and
generates an exception if the format is invalid.

Any text prior to the found XML, JSON, or JSONN string is ignored. This could be used by the
application to pass additional information that could be processed by a reimplementation of the
JadeRestService class processRequestmethod.

One object parameter only can be defined for the method. It can appear in any position in the
signature other than after a ParamListType.

Any objects created by the XML, JSON, or JSONN parsing are deleted after the required method is
called.

The created base object (or null, if null was indicated) is passed as the object parameter.

5. An exception is generated if the path and any passed object do not match the method signature.

6. The located method is called, executing the logic defined by the application for the operation.

7. The method returns a value to be passed back to the client. This value is encoded into a string according to the
format requested by the client, as follows.

For XML, the format depends on the returned type. If the return value is anObject class or a
TimeStampInterval primitive type, the XML format is that which is expected by the Microsoft
DataContractSerializer class.

Note The output can support circular and multiple references to the same object in the returned data, as
it will include oids for all included and referenced objects. However, if the return value is any primitive type
other than TimeStampInterval, the XML format is that which is expected by the Microsoft XmlSerializer
class.

For JSON, the format is that which is expected by the Microsoft DataContractJsonSerializer class. This
format type does not support circular references or multiple references to the same object in the returned
data (that is, an exception is generated if the situation is detected).

Note This is the default format if no format was specified

For JSONN (NewtonSoft JSON), the format is that which is expected by the NewtonSoft JSON class
software. This format differs from that of Microsoft in the structure, tags, and the format of some primitive
types.

The output includes oids for each object and references to already included objects, and therefore supports
circular and multiple references to the same object in the returned data. For dynamic parsing, the hierachy
will be converted into JSON RFC8259 format.

WP_RestServices - 2022

REST Services
White Paper

REST Services 18

Note also about return value handling:

If the returned value is an object, the entire referenced object tree is encoded into XML or JSON, as
required.

For returned objects, all property values are included, including null values.

If the returned value is a string that is already encoded in XML format (that is, it starts with <?xml), the XML
string value is sent as is.

8. The JadeRestService class reply(str: String);method is called, passing the string constructed from the
returned value. This method sends the string back to the client. The replymethod can be re-implemented by the
application, but the re-implementation must call inheritMethod.

9. The processRequestmethod then deletes:

Any objects created from the passed XML, JSON, or JSONN.

The returned value, if it is a non-shared transient object.

Any objects added to the objectsToBeDeleted collection by user logic. (They must be non-shared
transient objects; otherwise an exception is generated.)

A returned shared transient object is not deleted on completion of the REST Services processing. It would
be unsafe to do so, because Jade cannot be certain of whether that is the intention and Jade would have to
go into transaction state to do so.

Note Anything added to the JadeRestService class objectsToBeDeleted collection is expected be to
non-shared transients, and any other object lifetime will cause the logic to fail because the logic is not in
transaction state.

Notes about REST Service Messages
When using the Jade REST service:

A REST service is stateless; there is no session object.

There is no time-out facility, because there is no session object.

The standard web XML configuration file can be used.

The JadeDynamicObject type is not supported by Jade REST services.

By default, all properties are serialized for objects returned by Jade REST service messages (whether public,
protected, or read-only).

By default, data received for read-only properties is ignored. Optionally, data received for protected properties is
also ignored.

WP_RestServices - 2022

REST Services
White Paper

REST Services 19

To exclude protected properties for serialization and the receiving of data, check the Exclude Protected
Properties check box on theWeb Options sheet of the Define Application dialog.

REST services do not provide an exposure facility. The application controls what object types can be passed
from the client by the signatures of the methods called to handle the incoming requests. However, clicking the
Generate Description button on theWeb Options sheet of the Define Application dialog displays a common
Save As dialog that enables you to specify or select the name and location of the .xml file to which the XML
description of the REST service is written. For an example, see "WADL-like Generated XML Description", later in
this document.

WP_RestServices - 2022

REST Services
White Paper

REST Services 20

The generated XML file is based on the following entities.

The application name and required URL.

The list of available resources with the:

HTTP name required (that is,GET, PUT, POST, or DELETE)

Resource id (for example, Person)

Required parameter names and types

Type of object required in JSON or XML format

The list of classes referred to by the signatures of the resource methods.

The name of the class

The name and C# type of each property of each class

One object only can be passed to a method, but that method can contain references to other child objects that
were also passed in the XML or JSON. The object parameter can occur in any location within the method
signature except after a ParamListType.

Any primitive type parameters for the called method must be specified in the URL path in the order in which they
appear in the method signature.

The web server in a REST web service can be IIS or Apache.

The JadeRestService class processRequestmethod, called to process the request, can be re-implemented.

If the processRequestmethod is reimplemented, inheritMethod should always be called to complete the
processing.

processRequest(httpIn: String; queryStr: String; pathIn: String;
methodType: String);

The JadeRestService class replymethod, called by the framework to send the reply, can also be
re-implemented.

reply(msg: String);

Failures that are generated by IIS (for example, when the service is not available) are in HTML format.

By default, Jade logic and processing exceptions generate an XML reply of the form:

<?xml version="1.0" encoding="UTF-8"?>
<Fault>

<errorCode>11102</errorCode>
<errorItem>Method 'TestRestService::deleteStringArray' not

found</errorItem>
<errorText>Requested Rest Service method does not exist</errorText>

</Fault>

WP_RestServices - 2022

REST Services
White Paper

REST Services 21

If you want to change the exception output format at run time, specify the requiredOutputFormat_ constant
value in the exceptionFormat property of the JadeRestService class; for example, you could add
self.exceptionFormat := 0; to the createmethod of your JadeRestService subclass. The class constant
values for the exception output format are listed in the following table.

JadeRestService Class Constant Value Exceptions are in...

OutputFormat_Json 0 JSON (Microsoft JSON) format

OutputFormat_Xml 1 XML format (the default)

OutputFormat_Json_NewtonSoft 2 JSONN (NewtonSoft JSON) format

Any other value (for example, -1) means that exceptions are returned in the format controlled by the received
URL.

Jade logic and processing exceptions generate a response formatted in the style specified in the URL.
When the output format is:

JSON (Microsoft JSON), the response is formatted as follows.

{"__type":"Fault",
"errorCode":"<error number>",
"errorItem":"<Exception type>",
"errorText":"<exception description>"}

JSONN (NewtonSoft JSON), the response is formatted as follows.

{"$type":"Fault",
"errorCode":"<error number>",
"errorItem":"<Exception type>",
"errorText":"<exception description>"}

The following is an example of an array in the JSONN (NewtonSoft JSON) format.

1 {"$id":"ArrayOfInteger1", "$values":[1,2,3]}

Note In this example, the "$id" tag can be anything but it is unique for each array in the JSON
string. You can use the $ref tag to reference already existing objects by array identifier. The
"$values" tag contains all of the values for the array. The "$id" tag must come before the "$values"
tag, the "$id" tag must have a string value, and the "$values" tag must be a square-bracketed ([])
array or it will not parse successfully and an exception will be returned.

The following is an example of a generated XML reply.

<?xml version="1.0" encoding="UTF-8"?>
<Fault>

<errorCode>11102</errorCode>
<errorItem>Method 'TestRestService::deleteStringArray' not

found</errorItem>
<errorText>Requested Rest Service method does not exist</errorText>

</Fault>

User logic can set the JadeRestService class httpStatusCode property to a value that will generate a
WebException in the calling client logic (if not 0 and < 200 or > 299).

The returned value from the called method is still also returned. The client logic can retrieve that information; for
example, in C#, processing the WebException Response property.

WP_RestServices - 2022

REST Services
White Paper

REST Services 22

Generating and Parsing JSON independent of REST
The JadeJson class enables JSON to be parsed or serialized as a standalone feature that is independent of the
Representational State Transfer (REST) Application Programming Interface (API).

The JadeJson class contains the following methods, which enable you to create, load, unload, and parse JSON in the
same way you can with XML.

Method Description

generateJson Generates JSON from a primitive type variable or an object

generateJsonDynamic Generates JSON from the Any value specified in the source parameter

generateJsonFile Generates JSON from a primitive type variable or an object and writes the output to a
file

parse Parses JSON text to create and populate an object and all referenced objects

parseDynamic Generates a series of linked JadeJsonObject objects and JadeAnyArray arrays
that accurately represent the specified JSON data structure

parseFile Reads and parses JSON text from a file to create and populate an object and all
referenced objects

parsePrimitive Parses JSON text for a primitive type and returns the primitive type value

parsePrimitiveFile Parses JSON text for a primitive type from a file and returns the primitive type value

Dynamic parsing allows you to accurately ingest and reply with JSON data without a matching Jade class. When the
parameter of the REST method is of the JadeJsonObject class or JadeAnyArray class type, dynamic parsing is
used.

The JadeJsonObject class stores an accurate representation of JSON data within a Jade system. It is transient-only
and is valid only for the node on which it is created. The JadeAnyArray class implements the JadeIteratorIF interface
and allows you to iterate through the property names and values of its matching object.

Instead of mapping the JSON to an existing Jade class, a hierarchy of JadeJsonObject and JadeAnyArray transient
objects are created that accurately represents the provided JSON data. (Refer to the methods provided by those
classes to see how to navigate and utilize this structure.) When the method has completed execution, these transient
objects are deleted.

WP_RestServices - 2022

REST Services
White Paper

REST Services 23

WADL-like Generated XML Description
The following is an example of a Web Application Description Language (WADL) generated XML description.

<Application name="RestTest"
uri="http://localHost/Jade/jadehttp.dll/">
<resources>

<method name="GET" id="Person1">
<request>

<param name="id" type="int" />
</request>
<response type="Person" />

</method>
<method name="PUT" id="Person">

<request>
<param name="id" type="int" />
<xml-or-json-object name="Person" />

</request>
<response type="Person" />

</method>
<method name="GET" id="PersonArray">

<request/>
<response type="List<Person>" />

</method>
</resources>
<CommunicationClasses>

<Person>
<countryOfBirth type="Country" />
<dob type="DateTime" />
<forenames type="String" />
<sex type="Char" />
<surname type="String" />

</Person>
<PersonSub superclass="Person">

<description type="String" />
</PersonSub>

</CommunicationClasses>
</Application>

Note The generated description is that of a legacy IIS REST service application. The syntax of Direct REST service
requests differ, as documented in "Syntax of a Direct REST Request", elsewhere in this document.

Jade REST Client
This section contains:

The JadeRestClient Class

JadeRestClient Class Methods

Setting the Endpoint

The JadeRestRequest Class

WP_RestServices - 2022

REST Services
White Paper

REST Services 24

JadeRestRequest Class Methods

Setting the Resource Location

Adding Authorization Headers

Adding Object Parameters

JSON or XML Serialization

Form URL Data

Multipart Form Data

The JadeRestResponse Class

JadeRestResponse Class Methods

Deserializing an Object Result

Standardizing a Primitive Result

Putting it all Together

GET Method Example

POST Method Example

PUT Method Example

DELETE Method Example

OpenAPI Imports

What is OpenAPI?

Importing an OpenAPI Specification

The OpenAPI Import Wizard

Loading and OpenAPI Specification

Naming the REST API

Renaming Proxy Classes

Renaming Properties and Methods

Excluding Resource Proxy Classes and Loading the API

Using the Generated Proxy Classes

WP_RestServices - 2022

REST Services
White Paper

REST Services 25

The JadeRestClient Class
The JadeRestClient class represents the REST client itself. It is this class that contains the logic for generating the
appropriate Uniform Resource Identifiers (URIs) and headers for the REST request, and establishing the Hypertext
Transfer Protocol (HTTP) connection to the server. It depends on two additional classes: the JadeRestRequest
class, which represents a specific request that will be made to the server; and the JadeRestResponse class, which
represents the response the server made to a specific request.

JadeRestClient Class Methods
The methods defined in the JadeRestClient class are summarized in the following table.

Method Description

create Creates the JadeRestClient object

deleteResource Executes a DELETE operation on a resource of the REST API specification

execute Executes the specified operation on a resource of the REST API specification

get Executes aGET operation on a resource of the REST API specification

post Executes a POST operation on a resource of the REST API specification

put Executes a PUT operation on a resource of the REST API specification

setEndpoint Sets the endpoint, which represents the location of the REST API specification

Setting the Endpoint
A REST endpoint is the first part of the URI and it specifies the location at which the various resources of the API can
be found.

WP_RestServices - 2022

REST Services
White Paper

REST Services 26

When instantiating a JadeRestClient object, you need to provide the endpoint of the API as a parameter to the create
method. For example, consider the following URI from the Swagger Petstore example REST API.

The https://petstore.swagger.io/v2/ part is the endpoint, which is where the API is found, and it contains multiple
resources. The /pet/3 part is the specific resource we are accessing. Together they make up the URI; however it is the
endpoint part we need to provide in the createmethod of the JadeRestClient object, as follows.

client := create JadeRestClient("https://petstore.swagger.io/v2/");

If you want to change the endpoint of an existing JadeRestClient object, you can use the setEndpointmethod of the
JadeRestClient class to do so, as follows.

client.setEndpoint("https://petstore.swagger.io/v2/");

The JadeRestRequest Class
The JadeRestRequest class represents a specific request that is to be made to the server.

You can use the methods of this class to customize the request before sending it through the JadeRestClient object
to the server. For example, you can specify authorization headers, add object parameters in a variety of formats, and
specify any required query strings.

JadeRestRequest Class Methods
The methods defined in the JadeRestRequest class are summarized in the following table.

Method Description

addBearerToken Adds a bearer token (for example, a JSONWeb Token) to the REST request.

addFormUrlData Adds object properties as (key, value) pairs when consuming a REST service
that requires the application/x-www-form-urlencoded content-type.

addMultipartFormData Adds content when consuming a REST service that requires the
multipart/form-data content-type.

addObjectParam Adds an object to the HTTP body when consuming a REST service that
requires the application/json or application/xml content-type. The object is
serialized into JSON or XML, depending on the content-type.

addQueryString Adds a parameter to the query string part of the URI.

addURLSeg Adds a value for one of the parameters contained within the REST API URI.

create Instantiates an object of the JadeRestRequest class.

replaceDefaultDiscriminator Replaces the default value of the discriminator with a new value.

Setting the Resource Location
A REST resource location is the second part of the URI and it specifies which resource of the API is to be accessed.

WP_RestServices - 2022

REST Services
White Paper

REST Services 27

When instantiating a JadeRestRequest object, you need to provide a resource of the API as a parameter to the
createmethod. For example, consider the following URI from the Swagger Petstore example REST API.

The /pet/3 part is the specific resource we are accessing, which is the resource part we need to provide in the create
method of the JadeRestRequest object, as follows.

client := create JadeRestRequest("/pet/3");

In this case, part of the resource location is a parameter to let the server know which of the Pet resource objects we
are trying to access, specifically the Pet with an ID equal to 3. We can make this more readable by using a parameter
name in the createmethod and then using the addURLSegmethod of the JadeRestRequest class, as follows.

client := create JadeRestRequest("/pet/{petID}");
client.addURLSeg("petID", "3");

Adding Authorization Headers
Some REST APIs will be secured and may require authorization to access some resources. The usual way of
authorizing a request is by using a bearer token (for example, a JSONWeb Token). You can add a token to the
JadeRestRequest object by using the addBearerTokenmethod, as follows.

request.addBearerToken(token);

If any token has been added with the addBearerTokenmethod, an Authorization: Bearer HTTP header will be added
to the request and the most-recent token will be used. (You never need to include more than one authorization bearer
token.)

Adding Object Parameters
When making a PUT or POST request, you will need to provide a serialized object as part of the request; that is, the
object to be PUT at the existing resource or POSTed to the new resource.

The format in which to serialize the object will vary, depending on the requirements of the API. As such, the
JadeRestRequest class provides a variety of serialization formats. For details, see the following subsections.

JSON or XML Serialization
The most-common way to provide an object for a PUT or POST request is to include it in the body of the HTTP
request, usually serialized into JSON or sometimes into XML format. You can use the JadeRestRequest class
addObjectParammethod to serialize an object into JSON or XML format, depending on the value of the value of the
dataFormat property of that JadeRestRequest. For example, the following code fragment serializes the Customer
object theCustomer into JSON format and adds it to the body of the JadeRestRequest objectmyRequest.

myRequest.dataFormat := JadeRestRequest.DataFormat_JSON;
myRequest.addObjectParam(theCustomer, Customer);

Alternatively, to serialize it into XML format, simply change the data format, as shown in the following code fragment.

myRequest.dataFormat := JadeRestRequest.DataFormat_XML;
myRequest.addObjectParam(theCustomer, Customer);

WP_RestServices - 2022

REST Services
White Paper

REST Services 28

Form URL Data
You can use the JadeRestRequest class addFormUrlDatamethod to add key/value pairs to the HTTP request body
in the format required for the application/x-www-form-urlencoded HTTP content-type, as follows.

request.dataFormat := JadeRestRequest.DataFormat_FormUrlEncoding;
request.addFormUrlData("name", name);
request.addFormUrlData("status", status);

Multipart Form Data
You can use the JadeRestRequest class addMultipartFormDatamethod to add content to the HTTP request body
in the format required for themultipart/form-data HTTP content type; for example:

request.dataFormat := JadeRestRequest.DataFormat_MultipartFormData;
request.addMultipartFormData(

"additionalMetadata",
null,
"application/json",
additionalMetadata.String);

request.addMultipartFormData(
"file",
"file",
"application/octet-stream",
file.String);

The JadeRestResponse Class
The JadeRestResponse class represents a response returned from the server as the result of a specific request.

It contains information about the response; for example, the status code and data format for the request. It also
contains the response body (data) returned from the server, as well as methods to deserialize it.

When making a REST request, you need to pass a JadeRestResponse as a parameter, which will be populated with
the response information.

JadeRestResponse Class Methods
The methods defined in the JadeRestResponse class are summarized in the following table.

Method Description

deserialize Deserializes the response body back into objects

getDataWithoutMarkup Standardizes primitive value response bodies by removing markup

Deserializing an Object Result
You can use the JadeRestResponse class deserializemethod to deserialize a serialized object or collection.

You will need to provide two parameters to the method, which are the type of the object being deserialized and an
ObjectArray into which to put the deserialized object and any references. The first entry in this array will be the
deserialized object and then any referenced objects will be inserted after it; for example:

jadeRestResponse.deserialize(Customer, objs);
customer := objs.first.Customer;

WP_RestServices - 2022

REST Services
White Paper

REST Services 29

Standardizing a Primitive Result
When receiving a primitive result from a REST service, you don’t need to deserialize it.

The JSON and XML formats are used to serialize an object into a text representation, but primitive types already have
a reasonable text representation. That said, it is common for REST services to put some amount of markup around a
primitive type response or surround the result with quote characters.

You can use the JadeRestResponse class getDataWithoutMarkupmethod to remove any markup or quotes from a
response body, leaving only the primitive type result. The method will always return a String. If the primitive is a
different type, you will need to type-cast it to the appropriate type; for example:

intResult := jadeRestResponse.getDataWithoutMarkup().Integer;

Putting it all Together
Using the JadeRestClient, JadeRestRequest, JadeRestResponse classes, you can consume REST services from
Jade.

The following sections contain code examples for requests of the four most-common HTTP verbs, and each will use
the Swagger Petstore, a public demonstration REST API found at https://petstore.swagger.io/.

Note These examples assume you have classes that mirror the data model of the REST service (for example, a Pet
class description). You can do this manually by inspecting the API documentation for the REST service you are
consuming or by generating it automatically, which we will cover under "OpenAPI Imports", later in this white paper.

GET Method Example
AGET request is used for obtaining a resource.

It is not usual for any HTTP body to be required for aGET request, but the REST service will typically return the
requested resource in the response body on a successful request.

getPet() : Pet;
constants

Endpoint = "https://petstore.swagger.io/v2";
Path = "/pet/{petId}";

vars
client : JadeRestClient;
response : JadeRestResponse;
request : JadeRestRequest;
objs : ObjectArray;

begin
client := create JadeRestClient(Endpoint) transient;
request := create JadeRestRequest(Path) transient;
request.addURLSeg("petID", "1");
create response transient;
client.get(request, response);

create objs transient;
response.deserialize(Pet, objs);
return objs.first.Pet;

epilog
delete client;
delete response;
delete request;

https://petstore.swagger.io/

WP_RestServices - 2022

REST Services
White Paper

REST Services 30

delete objs;
end;

POST Method Example
A POST request is used for adding a new resource to the REST service.

A POST request will usually require a serialized object to be included in the HTTP body.

postPet();
constants

Endpoint = "https://petstore.swagger.io/v2";
Path = "/pet";

vars
client : JadeRestClient;
response : JadeRestResponse;
request : JadeRestRequest;
pet : Pet;

begin
client := create JadeRestClient(Endpoint) transient;
request := create JadeRestRequest(Path) transient;

create pet transient;
pet.id := 314;
pet.name := "Fluffy";
pet.status := "available";
request.dataFormat := request.DataFormat_JSON;
request.addObjectParam(pet, Pet);

create response transient;
client.post(request, response);
// We should get a 200 - Success.
write response.statusCode;

epilog
delete client;
delete response;
delete request;
delete pet;

end;

PUT Method Example
A PUT request is used to replace an existing resource with a new one. It functions in a similar way to a POST request,
except that an existing resource will be overwritten on the REST service.

putPet();
constants

Endpoint = "https://petstore.swagger.io/v2";
Path = "/pet";

vars
client : JadeRestClient;
response : JadeRestResponse;
request : JadeRestRequest;
pet : Pet;

begin
client := create JadeRestClient(Endpoint) transient;
request := create JadeRestRequest(Path) transient;

WP_RestServices - 2022

REST Services
White Paper

REST Services 31

create pet transient;
pet.id := 314;
pet.name := "Not Fluffy";
pet.status := "available";
request.dataFormat := request.DataFormat_JSON;
request.addObjectParam(pet, Pet);

create response transient;
client.put(request, response);
// We should get a 200 - Success.
write response.statusCode;

epilog
delete client;
delete response;
delete request;
delete pet;

end;

DELETE Method Example
A DELETE request is used to delete an existing resource. It will not usually require any HTTP body for the request, nor
will it return anything in the response body.

NoteFor the DELETE verb, the method you need to call is the JadeRestClient class deleteResourcemethod rather
than delete, as delete is a Jade reserved word.

deletePet();
constants

Endpoint = "https://petstore.swagger.io/v2";
Path = "/pet/{petId}";

vars
client : JadeRestClient;
response : JadeRestResponse;
request : JadeRestRequest;

begin
client := create JadeRestClient(Endpoint) transient;
request := create JadeRestRequest(Path) transient;
request.addURLSeg("petID", "314");
create response transient;
client.deleteResource(request, response);
write response.statusCode;

epilog
delete client;
delete response;
delete request;

end;

WP_RestServices - 2022

REST Services
White Paper

REST Services 32

OpenAPI Imports
This section contains:

What is OpenAPI?

Importing an OpenAPI Specification

The OpenAPI Import Wizard

Loading an OpenAPI Specification

Naming the REST API

Renaming Proxy Classes

Renaming Properties and Methods

Excluding Resource Proxy Classes and Loading the API

Using the Generated Proxy Classes

What is OpenAPI?
OpenAPI is a standardized format that describes REST APIs in a way that is readable by both humans and machines.

An OpenAPI specification fully describes a REST API including not only available endpoints and resources, the
supported HTTP operations on those resources and the data model of the API, but also information such as licensing
information, contact information, and terms of use.

From Jade 2020 and higher, you can import OpenAPI-compliant specifications into Jade, automatically generating
proxy classes, the data model, and methods for all specified operations of the API. This allows you to use a REST API
as if it were classes and methods of your own schema.

Importing an OpenAPI Specification
To show the import process for an OpenAPI specification, we use the specification for the public example REST API;
that is, the Swagger Petstore.

The specification for the Swagger Petstore can be found at https://petstore.swagger.io/ or by making aGET REST
request to https://petstore.swagger.io/v2/swagger.json.

The OpenAPI Import Wizard
You can use the OpenAPI Import Wizard to import OpenAPI Specifications.

To open the OpenAPI Import Wizard

1. In the Schema Browser, select the schema into which to import the OpenAPI specification.

2. From the Browse menu in the Class Browser, select External Component Libraries (Ctrl+Shift+R).

3. Select theOpenAPI sheet.

4. Right-click on the OpenAPI sheet to open the context menu, then select Import.

The OpenAPI Import Wizard is then displayed.

https://petstore.swagger.io/
https://petstore.swagger.io/v2/swagger.json

WP_RestServices - 2022

REST Services
White Paper

REST Services 33

Loading an OpenAPI Specification
From the first step of the OpenAPI Import Wizard, you can load an OpenAPI specification one of the following ways.

Copy and paste the specification into the main text box.

Click the Browse button and select a file containing the specification.

Enter a REST URL into the URL text box at the lower left of the form and then click the GET from URL button.

For example, enter https://petstore.swagger.io/v2/swagger.json in the URL text box and then click theGET from URL
button to fetch the Swagger Petstore OpenAPI specification and display it in the main text box, as shown in the
example in the following image.

When a valid OpenAPI specification is displayed in the main text box, click the Next button.

Naming the REST API
The REST API name is obtained automatically, by taking the title field of the specification and converting it to a valid
Jade class name; that is, replacing invalid characters with underscore characters and capitalizing the first character.
You can change it to any valid Jade class name if you do not want to use this default name.

When you are satisfied with the REST API name, click the Next button.

Renaming Proxy Classes
A Jade class is created for each data model class and resource in the specification. In addition, a grouping class is
created as the superclass of the data model classes, and another as the superclass of the resource classes.

https://petstore.swagger.io/v2/swagger.json

WP_RestServices - 2022

REST Services
White Paper

REST Services 34

You can rename each of these classes on the Rename Proxy Classes sheet of the wizard, as shown in the example
in the following image.

The classes have the following default names. For the:

Grouping classes, the API name set in the previous step of the wizard is prefixed with DM_ for the data model
grouping class, and RP_ for the resource proxy grouping class.

Data model classes, the names are as close as possible to those in the specification, except the first character
uppercase if required, any invalid characters are replaced by underscore characters, and any clashes are
resolved by appending _1 (or _2, _3, and so on, for multiple clashes).

Resource classes, any parameters will be removed, and the name will be suffixed with s (resources are by
convention described as plural). Then the same process as for the data model classes will be applied to ensure a
valid Jade class name with no clashes.

You can rename any of these classes; for example, you can rename Store_inventorys to Store_inventories. Any
class that has been renamed from its default value, including by use of _1 (and so on) to avoid conflicts is colored blue.

As you rename classes, the names are automatically validated and if there are any conflicts, either within the
generated classes or with an existing class of the schema, a validation error message is displayed and the Next
button is disabled until all classes pass validation.

If you want to add a prefix to all data model classes or all resource proxy classes, enter the prefix in the Data Model
Prefix or the Resource Prefix text box and then click the appropriate Apply button.

WP_RestServices - 2022

REST Services
White Paper

REST Services 35

You can also use a regular expression (Regex) to modify the class names. Click on the Regex button to open the
OpenAPI Wizard Regex dialog. If you want to test a Regex pattern before applying it to the class names, you can use
one of the Test buttons on the dialog to apply the Regex pattern to the example text, which enables you to verify that it
behaves as you expect before applying it to the class names.

When you are satisfied with the class names, click the Next button on the OpenAPI Wizard form.

Renaming Properties and Methods
In the Rename Properties and Methods step of the wizard, you can choose names for each of the properties of the
data model classes, and each of the methods of the resource proxy classes, as shown in the example in the following
image.

As in the previous step ("Renaming Proxy Classes"), any changed properties or methods are colored blue, and any
invalid names or name clashes result in an error message being displayed.

When you are satisfied with the property and method names, click the Next button.

WP_RestServices - 2022

REST Services
White Paper

REST Services 36

Excluding Resource Proxy Classes and Loading the API
The final step of the wizard, shown in the following image, enables you to remove any resource proxy classes that you
do not want to import.

To exclude a single class, select it in the left-hand list and then click the > button. To exclude all of the resource proxy
classes, click the >> button. You can use the < button to re-add a specific class or use the << button to re-add all
resource proxy classes.

Note Data model classes cannot be excluded, as resource proxy classes may depend on them.

When you are satisfied with the classes to import, you can click the Save to Schema File button to save the imported
API to a schema (.scm) file or you can click the Load Directly into Schema button to load the imported API directly
into the current schema.

When loading directly into the schema, the new classes are added to the latest version of the schema, with the
schema being versioned, if necessary.

WP_RestServices - 2022

REST Services
White Paper

REST Services 37

Using the Generated Proxy Classes
When the proxy classes have been generated into your schema, you can access the API as if it were your own
classes. For example, you can perform a POST operation on a pet by simply instantiating the pet and passing it to the
appropriate method of the appropriate resource proxy class, as shown in the following example.

exampleRest();
vars

pet : Pet;
api : Pets;

begin
create pet transient;
pet.name := "Fluffy";
pet.status := "For Sale";
pet.id := 314;

create api transient;
api.putPets(pet);

epilog
delete pet;
delete api;

end;

	Contents
	REST Services
	Why REST Web Services?
	REST Services in Jade
	REST Service Components
	The JadeRestService Class
	JadeRestService Class Methods
	GET Method Example
	POST Method Example
	PUT Method Example
	DELETE Method Example

	Syntax of a Direct REST Request
	Syntax of a Legacy IIS REST Request

	Defining a REST Service Application
	Defining a Direct REST Service Application
	REST Service Application Types
	Jade REST Service Application and SSL

	REST Message Handling
	Notes about REST Service Messages

	Generating and Parsing JSON independent of REST
	WADL-like Generated XML Description
	Jade REST Client
	The JadeRestClient Class
	JadeRestClient Class Methods
	Setting the Endpoint

	The JadeRestRequest Class
	JadeRestRequest Class Methods
	Setting the Resource Location
	Adding Authorization Headers
	Adding Object Parameters
	JSON or XML Serialization
	Form URL Data
	Multipart Form Data

	The JadeRestResponse Class
	JadeRestResponse Class Methods
	Deserializing an Object Result
	Standardizing a Primitive Result

	Putting it all Together
	GET Method Example
	POST Method Example
	PUT Method Example
	DELETE Method Example

	OpenAPI Imports
	What is OpenAPI?
	Importing an OpenAPI Specification
	The OpenAPI Import Wizard
	Loading an OpenAPI Specification
	Naming the REST API
	Renaming Proxy Classes
	Renaming Properties and Methods
	Excluding Resource Proxy Classes and Loading the API

	Using the Generated Proxy Classes

