
Copyright©2025 Jade Software Corporation Limited. All rights reserved.

Packages
White Paper

VERSION 2022



Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2025 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.



WP_Packages - 2022

Contents

Contents iii

Packages 4
A Simple Diary Package 4
Scope Rules for Method Calls 13
Switching app on Exported Method Call 16
Exporting GUI Subclasses 19
Combined Appointment Book Example 22
How do Packages Call User Methods? 24
Summary 26



WP_Packages - 2022

Packages

This document discusses the use of packages in a Jade system. Since the introduction of subschemas, Jade has
allowed a class, along with the properties and methods of a class, to be used through the single inheritance of
schemas. Packages are an adjunct to the existing schema structure that allows similar access but in a more controlled
manner and without the need for the schema defining the class to be a superschema of the schema using it.

The developer of a package decides what functionality needs to be implemented in an exporting schema and then
decides which classes, properties, and methods should be exported in one or more packages. Usually only a small
subset of the classes, properties, and methods are exported in the package; only those necessary to expose the
functionality required.

Users of the package can then load the exporting schema into their system, usually into an unrelated schema branch,
and then import the package into their schema. They then have access to the functionality provided by the package
via the classes, properties, and methods exported by the package.

This document covers some of the issues you should consider when both developing and using packages in your
Jade applications. For more details, see the following subsections.

A Simple Diary Package
In order to explain how a package is written and used, let us develop a small example package and work our way
through the issues involved in design, implementation, and use. The example package we create uses a simple diary
system that allows the storage of appointments, their retrieval, and display.

The schema we will be using to export our package is called DiarySchema. It provides two basic classes and their
corresponding properties and methods. Note that there is nothing special about a schema that exports a package, and
as such, it can be used and tested as a standalone schema before it is converted to a package.



WP_Packages - 2022

Packages
White Paper

Packages 5

The two major classes will be a DiaryEntry class that will represent an appointment and a Diary class that will hold a
collection of these. Any system can have a number of instances of Diary, one for each user for example. The simple
system is shown in the following image.

The DiaryEntry class records the time of an appointment with the startTime and duration attributes. The startTime
is a TimeStamp containing the exact time an appointment is expected to start. The duration attribute is an Integer
representing the expected number of minutes that the appointment will take.

Thewhat attribute (of type String) contains a brief description of the appointment. The index attribute (of type
Integer) provides a unique number for each appointment within the diary.

The manual referencemyDiary (of type Diary) has an inverse allDiaryEntries reference of type DiaryEntryDict,
which is a member key dictionary with keys startTime and index.

The durationmethod returns a String (for example, "30mins") showing the timespan of an appointment that is used
by the displaymethod, which provides further details such as the index, day, time, duration, and description as in:

0 Thu 24 Jul 2003 12:30 30mins Dentist

The Diary class has a single attribute nextIndex (of type Integer) that tracks the next-highest unique index for a
DiaryEntry and two methods. The getAllEntriesmethod returns a String containing all appointments formatted one
for each line in the above format.

ThemakeAppointmentmethod has the following signature.

makeAppointment(startTime : TimeStamp;
durationInMinutes : Integer;
what : String) updating;

This method creates a new DiaryEntry object, sets all of the attributes of the object, and finally sets themyDiary
reference to self to add the new entry to the diary’s allDiaryEntries collection.

The unit tests in the included DiaryTests class provide examples of the DiarySchema in use.

Having tested our schema thoroughly, we now decide to make it available to other users. Without packages, users
would need either to load the classes directly into their schema or include DiarySchema somewhere in their schema
hierarchy. If they included the complete schema, they would then be able to use these classes in any subschemas
below the DiarySchema schema.

However, inserting a schema into an existing schema hierarchy, especially one not designed with this in mind, can be
impractical. Firstly, it is not trivial to insert a new schema, and the class names used in the schema may already exist
in the schema hierarchy below the level at which you want to insert it. This would preclude the schema from being
inserted, as class names must be unique in a schema branch.

A better solution is to create and export a package from DiarySchema and then import it into the schema or schemas
where we want to use it. The first step is to decide which classes, properties, and methods we want to export and
which should remain hidden. In general, it is good practice to export only those parts of the system that are essential
for the package to be useful and to hide all non-essential details.



WP_Packages - 2022

Packages
White Paper

Packages 6

In our example, we have decided to hide the manner in which the collection of DiaryEntry objects are stored. The user
of the package does not need this information, so we do not need to export the DiaryEntryDict class, the
allDiaryEntries collection property, or its inversemyDiary. An advantage of not exporting this information is that if we
decide at a later date to change the manner in which these are stored, we can do so without any changes to any code
that imports the package. Such a change may require a reorganization of any persistent instances of these classes
that the user has created. Another property that we do not need to export is the nextIndex property on Diary.

Having decided on what classes, properties, and methods to export, we can now use the Export Package Definition
wizard to define the package. This wizard is available from the Browsemenu via the Packages and Export Browser
menu items. This brings up the DiarySchema Export Packages Browser form, which enables you to select Add from
the Packages menu to display a series of wizard forms, shown in the following images.

The wizard proceeds through the following steps.

1. The package is named DiaryPackage and an application from the schema is selected.



WP_Packages - 2022

Packages
White Paper

Packages 7

2. The classes to be exported, Diary and DiaryEntry, are selected. Note that we have not selected
DiaryEntryDict or DiaryTests, and the system classes (for example, Collection), are greyed out, indicating
they cannot be exported. Classes that have been selected to be exported are shown in green.



WP_Packages - 2022

Packages
White Paper

Packages 8

3. The properties and methods to be exported are selected. Note that the protected members (for example,
properties nextIndex, index, andmyDiary) are not available for export. In addition, we have chosen not to
export the method setMyDiary, which we want to be purely internal to DiarySchema. (The method setMyDiary
could not be made protected, as it must be visible to the methodmakeAppointment on Diary.)

Any methods or properties can be excluded from a package and will not be visible to the importing schema. The
only exception to this is that the createmethod for a class must be exported if it requires parameters.

4. When you have selected the features for inclusion in the exported package working set and clicked the Next >
button, the Select Interfaces for Package sheet of the Export Package Definition Wizard is then displayed.
This fourth sheet enables you to select the interfaces that you want to include in the exported package, if
required.



WP_Packages - 2022

Packages
White Paper

Packages 9

5. Choose lifetimes and default persistence for the exported classes and access modes for their properties. By
default, these are the same as those declared in the exporting schema and can be made only "more restrictive"
than their declaration.



WP_Packages - 2022

Packages
White Paper

Packages 10

The Export Package Browser, shown in the following image, is then displayed.

When a package has been exported, it can be modified using the Export Package Definition wizard or the Export
Package Browser. To open the Export Package Browser for a package, first ensure the Export Packages Browser is
open and then double-click an existing package or select Browse from the Packages menu while an existing package
is selected.

The Export Package Browser is similar to a standard Class Browser but limited to the classes, properties, and
methods exported in the package. Properties and methods can be added to the package by dragging and dropping
them between the normal schema class and package class browsers.

Having defined our exporting package, we can now import it into another schema and use it to create and manipulate
diaries. The importing schema need not be a subschema of the exporting schema and would normally have only the
RootSchema as a common ancestor in our example schema DiaryTester. We can now import the DiaryPackage
into this schema using the Browsemenu from the Packages and Import Browsermenu items. This displays the
DiaryTester Import Packages Browser.

Select the Addmenu item from the Packagesmenu, and then select which exported packages to import.

The Rename Package To text box in the Import Package form enables you to rename the package if the name of the
package conflicts with another package that has already been imported.



WP_Packages - 2022

Packages
White Paper

Packages 11

As we will see, it is not a problem if the names of any of the imported classes conflict with classes already defined in
the schema or imported from other packages, as long as the imported classes that have the same names represent
different classes. For example, if the same class is imported in two packages, only those packages can be imported
into a specific schema.

If you want to allow a circular dependency between packages in the schema hierarchy, check the Include Circular
Packages check box. This permits the loading of an incomplete package (for example, Schema1 exports Package1
and imports Package2, while Schema2 exports Package2 and imports Package1).

When you subsequently create a package that would result in circularities, you are prompted to confirm that you want
to continue and allow a circular dependency between packages in the schema hierarchy.

Check the Show Details check box to display the package contents.

Having imported the DiaryPackage, opening a normal Class Browser for the schema DiaryTester displays the
imported classes along with their properties and methods in green, as shown in the following image. These imported
entities cannot be modified.



WP_Packages - 2022

Packages
White Paper

Packages 12

If the package schema has been encrypted when it was extracted, the source of any exported methods would not be
shown in the browser.

The imported classes and methods can now be referenced, as shown in the following JadeScriptmethod example.

createDiary();
vars

diary : DiaryPackage::Diary;
today : TimeStamp;

begin
beginTransaction;
if app.diary = null then

create app.diary;
endif;
commitTransaction;
today.setTime('12:30'.Time);
app.diary.makeAppointment(today, 30, 'Dentist');
today.setTime('18:00'.Time);
app.diary.makeAppointment(today, 60, 'Squash');
write app.diary.getAllEntries();

end;

The reference to the imported class Diary uses the double colon (::) scope operator as in DiaryPackage::Diary. If
there is no ambiguity as to which class Diary represents, as in our schema where there is no local Diary class and no
other imported Diary class, Diary can be used without the prefix.



WP_Packages - 2022

Packages
White Paper

Packages 13

When the method call app.diary.getAllEntries is made in this script, a switch is made from the DiaryTester schema
into the exporting DiarySchema. Along with this switch is a change in the environmental context of the process. In
particular, there is a switch in the meaning of environmental variables such as app, global, and currentSession to
those of the schema that exported the package. As a result, while executing the getAllEntriesmethod, the app.diary
environment variable of the DiaryTester schema is not available to the getAllEntriesmethod. However, any
environment variables on the DiarySchema application class become available. This enables the package developer
to use references to these in their code. A common use of this is to access the properties and methods of app in the
package, to save context information.

To illustrate this switch of context, suppose we add the following method to class Diary and export it in DiaryPackage.

printAppGlobal();
begin

write 'App and Global in Diary::printAppGlobal';
write ' app=' & app.getName & ' global=' & global.getName;

end;

We then run the following JadeScriptmethod in the DiaryTester schema.

showSwitch();
vars

diary: DiaryPackage::Diary;
begin

diary := DiaryPackage::Diary.firstInstance;
write 'App and Global in showSwitch before call';
write ' app=' & app.getName & ' global=' & global.getName;
diary.printAppGlobal;
write 'App and Global in showSwitch after call';
write ' app=' & app.getName & ' global=' & global.getName;

end;

The output of this JadeScriptmethod is:

App and Global in showSwitch before call
app=DiaryTester global=GDiaryTester

App and Global in Diary::printAppGlobal
app=DiarySchema global=GDiarySchema

App and Global in showSwitch after call
app=DiaryTester global=GdiaryTester

Notice that both app and global have switched from those that apply in the importing schema DiaryTester to those
that apply in the exporting schema DiarySchema while executing the exported method printAppGlobal, and are then
switched back.

Scope Rules for Method Calls
Having imported the class DiaryEntry along with its associated imported properties and methods, we are able to add
local methods to the class. These methods can be called from the importing schema and any subschemas, just like
normal methods without any schema switch. For example, we could add the following method to the class.

weekendEvent(): Boolean;
constants
   Saturday = 6;
   Sunday = 7;
vars
   eventDay : Integer;
begin
   // write app.getName();



WP_Packages - 2022

Packages
White Paper

Packages 14

   eventDay := startTime.date.dayOfWeek;
   return eventDay = Saturday or eventDay = Sunday;
end;

ThisweekendEventmethod can be called from a JadeScriptmethod, as follows.

testWeekendEvent();
vars
   entry : DiaryEntry;
begin
   self.createDiary();
   entry := DiaryEntry.firstInstance;
   write entry.weekendEvent();
end;

If the commented outwrite statement in theweekendEventmethod was uncommented, it would yield DiaryTester,
showing that the app had not been switched from the schema in which the JadeScript was executed.

However, what if we add a local method to an imported class that has the same name as a method that already exists
on the class in the exporting schema? Note that the importer of the package may not even know this has happened, as
the method with the same name may not have been exported. Adding a local method with the same name is allowed,
and the local method does not even have to have the same signature as the method in the exporting schema. For
example, although a displaymethod is exported on DiaryEntry, we could also add a local displaymethod with a
different implementation, as follows.

Exported displaymethod:

display(): String;
begin
   return index.String & " " & startTime.String & " " &
         getDuration() & " " & what;
end;

This exported method produces the following output.

0 Wed 6 Aug 2003 12:30 30mins Dentist

Local displaymethod:

display(): String;
begin
   return what & Tab & getDuration() & " at " &
         startTime.time.format("hh:mm") & CrLf;
end;

This local method produces the following output.

Dentist 30mins at 12:30



WP_Packages - 2022

Packages
White Paper

Packages 15

After this, two displaymethods show in the method frame of the Class Browser for the DiaryEntry class: one green
for the imported method and one black for the local method. So which displaymethod gets called? More precisely,
the question should be which displaymethod gets invoked in which context?

The resolution of this is that the most-local definition of the method is called. In particular, this means that when the
method is called from within the DiaryTester schema (from a JadeScriptmethod, for example), the local version is
invoked. However, when execution has switched to the exporting schema (for example, as a result of invoking the
exported method getAllEntries on class Diary, which invokes display to produce the String of all appointments), the
displaymethod defined within and exported from DiarySchema is used.



WP_Packages - 2022

Packages
White Paper

Packages 16

Note It is useful to understand why the scope rules are defined in this manner.

The rule that the local definition (which may or not be exported) is used within the exporting package schema protects
the developer of the package. The developer knows that the functionality of the package will not be changed and
potentially compromised by any user of the package adding local methods to the exported class.

The rule that the local definition is used within the importing schema allows the developer of the importing schema to
control how that imported class behaves. For example, it may be that within their schema, all classes must have a
method display that behaves in a specific way so that code such as that shown in the following method will behave
correctly.

displayAllObjectsInSet(oSet: ObjectSet);
vars

o: Object;
begin

foreach o in oSet do
write o.display;

endforeach;
end;

Suppose we now removed the local displaymethod on the imported DiaryEntry call and executed the call
entry.display on a DiaryEntry object entry. What output would be expected? It might be surprising that the output
would be something like the following.

---Diary/2683.7---

This is because the displaymethod defined on classObject in the DiaryTester schema has been called. This is
regarded as the "most-local definition", because it is defined on a superclass of DiaryEntry. Only if no definition was
found in the local schema or inherited from a superschema would the imported displaymethod be called.

However, what if we really wanted to call the imported displaymethod rather than the method onObject? How can
this be done?We can achieve this by defining a local displaymethod on DiaryEntry, as follows.

callImportedDisplayMethod(): String;
begin

return importMethod display();
end;

The keyword importMethod tells the compiler that we want the imported displaymethod of the current class to be
invoked, rather than any local displaymethod.

Switching app on Exported Method Call
As noted in a previous section, when a method in another package is called, a switch is made from the current schema
into the package's exporting schema along with a change in the environmental context of the process. In this section,
we will see how the resulting switch of app enables us to store context information.

In our running Diary example, we made a decision to hide the manner in which DiaryEntry objects were stored.
Although a method getAllEntries was supplied to return all appointments as a formatted list, this would be
inconvenient for users of the package. To extract appointments for a specific day or the details of a specified
appointment, the user of the package would need to parse this string.

We decide we want to provide methods on Diary that will allow the user of the package to specify which appointments
to see, and then return them one at a time as DiaryEntry objects. To do this, we will add two properties to the
DiarySchema application subclass. These properties are savedDiaryEntries of type DiaryEntryArray (a subclass
of Array with membership DiaryEntry) and iterator of type Iterator. Neither of these properties or the
DiaryEntryArray class will be exported, but are available within the package code and can be accessed via app.



WP_Packages - 2022

Packages
White Paper

Packages 17

We can now export methods on Diary like those in the following examples.

getDayEntriesBegin(date: Date);
// initialize iterator over all diary entries occurring on day
vars

diaryEntry: DiaryEntry;
begin

app.savedDiaryEntries.clear;
foreach diaryEntry in allDiaryEntries where diaryEntry.isOnDate(date) do

app.savedDiaryEntries.add(diaryEntry);
endforeach;
app.iterator.reset;

end;

getNextDiaryEntry(diaryEntry: DiaryEntry output): Boolean;
// Return the next DiaryEntry object, if any, from the iterator
begin

return app.iterator.next(diaryEntry);
end;

These two properties on app will need to be initialized before any importer of the package calls them. After a package
is imported into a schema (for example, the DiaryPackageinto the DiaryTester schema), when any app is run from
the importing schema, all packages are initialized. This initialization consists of calling the initialize method for the
application, which by default is the method initialize. Similarly, the finalize method of the application, which by default
is the method finalize, is called when the application finishes execution. This gives the package designer the
opportunity to perform any initialization and finalization required for the package to function correctly. Note that the
application might have different initialization and finalization methods defined for when it is run in its own schema. For
our package, we will add the following methods to the DiarySchemaapplication subclass and use the Define
Application form shown in the following image to set them as the initial and final methods.

initializeDiaryPackage() updating;
// Initialize the Diary package properties on app
begin

savedDiaryEntries.clear;
iterator := savedDiaryEntries.createIterator;

end;

finalizeDiaryPackage() updating;
// Finalize the Diary package properties on app
begin

delete iterator;
end;

These can be used in the importing schema such as in the following JadeScript testing method.

printAllForDay();
vars

diaryEntry: DiaryEntry;
today: Date;

begin
process.initializePackages;
app.initialize;
if app.diary <> null then

app.diary.getDayEntriesBegin(today);
while app.diary.getNextDiaryEntry(diaryEntry) do

write diaryEntry.display;
endwhile;

endif;



WP_Packages - 2022

Packages
White Paper

Packages 18

process.finalizePackages;
end;

The initialization and finalization of packages does not occur for JadeScript or Workspace methods, just as the
default app is not initialized. This ensures that these are lightweight operations and also because the default appmay
not be the appropriate application to initialize. The calls to process.initializePackages and app.initialize at the start,
and process.finalizePackages at the end, of the above JadeScriptmethod force this initialization and finalization to
occur.

An observant reader will have noted that our design is somewhat limiting, as it allows only a single Diary to be iterated
at a time, and a schema importing our DiaryPackagemay want to iterate multiple Diary objects simultaneously. This
could be accommodated by having a collection of transient DiaryContext objects on app, each of which holds a Diary
reference along with any context information such as the iterator and savedDiaryEntries collections. Such a
collection could be keyed on a name or id property added to Diary.



WP_Packages - 2022

Packages
White Paper

Packages 19

When a new Diary instance is created, the constructor method create, defined on the exported Diary class, is called.
(Note that it is not allowed to add a local constructor or destructor method in the importing schema and all of the
constructor and destructor methods for the class and superclasses are called in the exporting package schema when
an exported class instance is created or deleted.) This would mean the package could create a new transient instance
of the DiaryContext class when a new Diary object was constructed, initialize it, and then add it to the collection of
those held on the app.

A similar creation and initialization would occur the first time a new Diary instance was seen inside the package; for
example, instances that came from Diary.firstInstance calls.

Exporting GUI Subclasses
In the examples earlier in this document, the classes exported by our packages are all subclasses ofObject. In this
section, we will develop a DateSelector schema that defines a DateSelectorPackage, which exports a
DateTableSelector control that can be added to forms to allow a date to be selected. Having done this, we will import
it into our DiaryTester schema. This will expose a number of further issues relevant to the use of packages.

The DateTable class is a control that is a subclass of Table, and builds a control that has the form of a table without
tabs.

The control class has a protected property startOfMonth of type Date, which specifies which month is being
displayed and is used to determine on which day of the week the month starts and the number of days in the month.
ThewindowCreatedmethod, which is called when the control is placed on a form or when a form containing the
control is painted, sets the startOfMonth property based on the current date. It then calls fillTable to fill in the details
of the table, as shown in the following example.

windowCreated(cntrl: Control input; persistCntrl: Control) updating,
clientExecution;
begin

setStartOfMonth(app.actualTime.date);
fillTable;
inheritMethod(cntrl, persistCntrl);

end;

The DateTableSelector class is a subclass of the DateTable class, with its ownwindowCreated and fillTable
methods.

ThewindowCreatedmethod has the same code as the previous method example but the fillTablemethod has code
to add the month tabs to the table. In addition, the class has a property dateSelected of type Date. A clickmethod is
also defined, which moves the table to show the next or previous month if the appropriate tab of the table is clicked, or
sets the dateSelected property to the date selected if one of the days in the month is selected.



WP_Packages - 2022

Packages
White Paper

Packages 20

The Class Browser for the DateSelector schema is shown in the following image.

The following example is the generic clickmethod for the DateTableSelector control.

click(table: DateTableSelector input) updating, clientExecution;
vars

startDay, endDay: Integer;
begin

dateSelected := null;
if sheet=1 then

self.setStartOfMonth(prevMonth(self.startOfMonth));
fillTable;
return;

elseif sheet=3 then
self.setStartOfMonth(nextMonth(self.startOfMonth));
fillTable;
return;

elseif sheet=2 then
accessCell(row, column);
if accessedCell.foreColor = Gray or not accessedCell.selected then

return;
endif;
dateSelected.setDate(accessedCell.text.Integer,

self.startOfMonth.month, self.startOfMonth.year);
endif;
inheritMethod(table);

end;

We can test whether this control works correctly within the DateSelector schema by creating a form containing the
control. We can then check that the table is painted correctly, that it moves to the correct month when the previous and
next month tabs are clicked, and that the dateSelected property of the control is correctly set when a date is clicked.



WP_Packages - 2022

Packages
White Paper

Packages 21

We now want to export this control as part of a package DateSelectorPackage, so we must decide which classes and
features to expose. Clearly, we want to export the DateTableSelector class, but there seems to be no compelling
reason to export its DateTable superclass. As to what features to export, we decide that only the dateSelected
property needs to be exported, to allow users of the control to determine which date of the control has been clicked.

To test this package, we create a DateSelectorTester schema, import DateSelectorPackage, and then use the Jade
Painter to create a DateTableSeclectorTestForm on which we paint an instance of the imported control.

Opening a Class Browser for this schema shows that the imported DateTableSelector control class appears with a
superclass of Table. The superclass of an imported class is defined to be the superclass of the class in the exporting
schema if that superclass is also exported in the same package. If that superclass is not exported, as in our current
case, the superclass of the imported class is the first system class in the superclass hierarchy; in this case, the Table
system class. Note that if we had also exported the DateTable class in the DateSelectorPackage, it would have been
the superclass of DateTableSelector. If instead we had exported the DateTable class in a completely different
package and then imported that into our DateSelectorTester schema, both the DateTable and DateTableSelector
classes would have the same superclass; that is, Table.

The consequence of these rules means that when a method is searched for locally on an object of the imported class
DateTableSelector, it will be searched for locally on the chain of classes DateTableSelector, Table, Control,
Window,Object. If no method of that name is found on that chain, a switch will be made into the exporting schema
and the method will be searched for on the chain DateTableSelector, DateTable, Table, Control,Window,Object.



WP_Packages - 2022

Packages
White Paper

Packages 22

For example, if the statementwrite dts.display; is executed in the DateSelectorTester schema, where the variable
dts is of type DateTableSelector, a displaymethod would be found within the local hierarchy (by default, the one on
classObject). The following image is an example of the DateSelectorTester schema Class Browser.

However, there are a number of additional rules that need to be kept in mind when importing classes.

Implementing locally any constructor (create), destructor (delete), or mapping method is not permitted. When
the statement create dts; is therefore executed, the context is switched to the exporting schema, and all create
methods on the chain DateTableSelector, DateTable, Table, Control,Window,Object are executed.

Event messages cannot be implemented locally. This includes methods such as click and paint on GUI classes,
and timer and notification handlers such as timerEvent, userNotification, and sysNotification.

One reason for this is that such methods would always be found locally, as they are defined on system classes,
and the wrongmethod would invariably be found. For example, if the timerEventmethod were searched for
locally, a method would always be found locally as there is an abstract method by that name on the classObject.
Another reason for looking only for the method in the exporting schema is to avoid compromising the behavior
defined by the package implementation.

Although we cannot override the generic clickmethod defined on the exported DateTableSelector class, we can
define a dateTableSelect1_clickmethod to the local instance of the control dateTableSelect1 that appeared as a
result of painting an instance of the control on the form. As can be seen from the definition of this method in the
previous image, this method writes the date held in the property dateSelected if the user clicked on a date in the table.
This method would be called when the generic clickmethod calls inheritMethod(table) near the end of the method.

Combined Appointment Book Example
Having written both a DateSelectorPackage and a DiaryPackage, we can use both of these to implement a simple
appointment book by extending our DiaryTester schema.



WP_Packages - 2022

Packages
White Paper

Packages 23

After importing both, the DiaryTester schema Class Browser shown in the following image displays all three imported
classes.

We now add a MakeAppointment form, as shown in the following image.



WP_Packages - 2022

Packages
White Paper

Packages 24

The form includes a date selector control that has a dateTableSelect2_clickmethod. This method is called when the
user selects a day on the calendar. This calls a local method fillTableForDay, which uses imported methods
getDayEntriesBegin and getNextDiaryEntry on Diary to obtain the DiaryEntry instances from the Diary and fill the
table on the right of the form with the appointments. Appointments can be added to the Diary by filling in the details
and then using the imported methodmakeAppointment on Diary.

Although this is a rather rudimentary appointment book, it would be straightforward to extend it to provide additional
facilities such as multiple diaries, importing or exporting appointments, and the other features that are normally
provided by appointment books.

By using packages to develop the basic facilities rather than building them all into a single schema, we can clearly
separate the implementation of the basic facilities from their use, and they can easily be imported into other schemas
that require diary or date-selecting facilities. Note that it would be easy to package up the final schema to produce an
AppointmentBookPackage, which could also be imported into schemas to provide a complete appointment book
facility.

How do Packages Call User Methods?
Finally, we address the question of how a package can cause actions to occur back in the schema that imported them.
This topic, which covers issues that are more advanced than those covered earlier in this document, can be skipped
on an initial reading.

A feature common to many appointment book systems is the ability to associate an alarm with an appointment so that
it is activated when the starting time is reached. This alarm may send an e-mail message, bring up an alert form, or
perform some other action to alert the user of the impending appointment. How might this feature be added to our
example system?

We will create a new CronSchema schema that exports a CronPackage with classes Scheduler and
ScheduledEvent. The method scheduleEventAt on the root transient class Scheduler will be used to add new
events.

scheduleEventAt(when: Time; action: Object) updating;
vars

se: ScheduledEvent;
begin

create se transient;
se.whenToStart := when;
se.eventAction := action;
se.myScheduler := self;
updateTimer;

end;

Thewhen parameter specifies the time at which we want the event to occur and the action specifies what is to occur.
The scheduleEventAtmethod creates a new ScheduledEvent transient object, initializes thewhenToStart and
eventAction attributes, and then sets the referencemyScheduler. This adds it to the allScheduledEvents
collection, (which is a queue sorted in ascending time order), before calling updateTimer.



WP_Packages - 2022

Packages
White Paper

Packages 25

The following image shows the ScheduledEvent and Scheduler classes defined in the CronSchema schema.

The updateTimermethod shown in the following example begins by calling causeDueEvents to start any events that
are due to run. It then checks if a timer is set to fire when the first event in the queue is scheduled and if there is none,
calls setTimer to arm a timer by calling beginTimer.

updateTimer();
// Check that the timer will fire for the first event in the
// queue and if not, cancel existing timer and start another
vars

se: ScheduledEvent;
option: Integer;
timeLeft: Integer;

begin
causeDueEvents;
se := allScheduledEvents.first;
if se = null then

return;
endif;
if getTimerStatus(0, option, timeLeft) then

// already a timer, check it corresponds to time of se
if se.whenToStart - app.actualTime.time > timeLeft then

return;
endif;

endif;
// cancel current timer and start again
endTimer(0);
setTimer;

end;

When the timer fires, it calls the timerEventmethod, which in turn calls causeDueEvents to start any due events and
then setTimer to re-arm the timer.

How can the causeDueEventsmethod cause events to happen in the schema that called the package? It cannot call
a method in that schema, as it will have no knowledge of such methods. It does have access to the eventAction
object that was passed and saved when the event was initially scheduled, but does not know what type it is.

The approach we will take will be to use notifications. This approach will allow the actions to take place in the importing
schema with the correct context and also allow CronPackage to be imported into multiple schemas, because it does
not need to know anything about the type of the eventAction object. As the designer of the package, we must decide
on a receiver for the notifications. In this design, we will choose the user app for this object. The notification, shown in
the following example, will be registered in the constructor of the Scheduler.

create() updating;
begin

process.getProcessApp.beginNotification(process, Cron_Event_Type, 0, 0);
end;



WP_Packages - 2022

Packages
White Paper

Packages 26

This registers the notification on the object process.getProcessApp, which is the main process Application object,
(that is, the app in the importing schema) with process being the notification target object on which the notification is
invoked. The destructor terminates the notification, by calling endNotification. As can be seen in the following
causeDueEventsmethod, the notification is caused by the call to process.causeEvent, which will cause the method
userNotification on the importing schemas application class to be invoked, passing it the saved eventAction object.

causeDueEvents();
// Called when timer fires. Inspect all of the events at
// the start of the queue and call all those due.
vars

se : ScheduledEvent;
begin

foreach se in allScheduledEvents do
if se.whenToStart > app.actualTime.time then

return;
endif;
// cause event passing eventAction as action to perform
if se.eventAction <> null then

process.causeEvent(Cron_Event_Type, true, se.eventAction);
se.myScheduler := null;
delete se;

endif;
endforeach;

end;

The CronPackage will export only the Scheduler class and expose the scheduleEventAtmethod, hiding all of the
complications of how events are queued, the setting of timers, and the way events are caused to occur.

A schema CronTester that imports CronPackage can use it by adding a userNotificationmethod like that shown in
the following example to the application CronTester class.

userNotification(eventType: Integer; theObject: Object;
eventTag: Integer; userInfo: Any) updating;

begin
if not userInfo.isKindOf(Method) then

write 'Error...method expected';
return;

endif;
sendMsg(userInfo.Method.name);

end;

It can then create a transient instance of CronPackage::Scheduler and schedule an event at a specific time by code
like that shown in the following fragment.

scheduler.scheduleEventAt(app.actualTime.time + 5000, CronTester::eventOne);

This will result in the userNotificationmethod being called in five seconds, which will in turn call the method
eventOne defined on the application class CronTester.

Summary
In this document, we have seen how packages extend the existing schema structure to allow access to the
functionality provided, without the need for the schema to be among the superschemas. The package developer can
decide which classes, and which features of those classes, should be exposed by exporting just those classes and
features. This allows access to the functionality of the package in a controlled manner.



WP_Packages - 2022

Packages
White Paper

Packages 27

The user of the package can then import the package and need only be concerned with the exposed interfaces in a
type-safe manner, without being exposed to irrelevant implementation detail.

This document gives examples of how packages can be developed and used, by developing a simple appointment
book system. Some of the design decisions were made to expose new and pertinent features of packages, possibly at
the expense of efficiency or simplicity. However, the developed system could be extended to form the basis of a
realistic appointment book system.


	Contents
	Packages 
	A Simple Diary Package
	Scope Rules for Method Calls
	Switching app on Exported Method Call
	Exporting GUI Subclasses
	Combined Appointment Book Example
	How do Packages Call User Methods?
	Summary


