Logical Certifier
White Paper

VERSION 2022

Copyright©2025 Jade Software Corporation Limited. All rights reserve d.

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2025 Jade Software Corporation Limited.
All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.

Contents

GO NS . iii
Logical Certifier ... 4
Referential INtegrityl 4
Possible Issues with Referential Integrity 4
Consequences of Referential Integrity Problems 5

The Jade Logical Certifier and Referential Integrity 5
Manually Maintained References 5
Examples of User Data Errors and FiXes 5

User Data Metadata DistinCtion 6

Metamodel EXample ErrOrs 7
Running the Logical Certifier ... 8
Tasks Performed by the Logical Certifier 8
PrECaUtIONS .. 8

BacKUD S rat e gy ... 9

When to Run the Logical Certifier e 9

When to Run the Logical Certifier to Analyze Metadata 9

When to Run the Logical Certifier to Analyze UserData 9

Restricting the Analysis CoVerage 10
Analysis and Repair ProCess ... 11
Effect of Update Mode 11

A Repairthatis Not ACtioNed 11

Fixes are Evaluated Independently 12
Summary of Analysis and Repair ProCess 12
Practical EXerCISeS 13
Before YOU Begin ... 13
Exercise One: Creating an Inverse and ExaminingMetadata 13
Exercise Two: Breaking Referential Integrity 14
Exercise Three: Analyzing the Damage 15
Exercise Four: Interpreting the Analysis Output 16
Exercise Five: Repairing the Damage 17
Exercise Six: Additional Referential Integrity EXamples 17

Part A: Nulling the Manual Side 17

Part B: Reverse Update Mode 18

Part C: Indeterminate Update Mode Results in Choices 18

Part D: Dictionary that Has a Member at Invalid Keys 19

Part E: Repair that Fails due to Duplicate Entry 20

WP_LogicalCertifier - 2022

Logical Certifier

The Jade Logical Certifier is a tool (application) that is used to verify and, if necessary, restore the referential integrity
in a Jade database.

This white paper discusses the Jade Logical Certifier and its usage; that is:

m Why the Jade Logical Certifier is needed

® What the Jade Logical Certifier does

® How to run the Jade Logical Certifier

= How to interpret and repair the errors the Jade Logical Certifier produces
® How often you should run the Jade Logical Certifier

® How to restrict analysis coverage

This document uses an example that describes a simple domain model (managing a hardware company’s products)
from which you can create a corresponding simple schema with some database objects.

Exercises towards the end of this document demonstrate some examples of broken referential integrity in this simple
schema and how you can use the Jade Logical Certifier to restore referential integrity.

For more details about the Jade Logical Certifier, see the following subsections.

Referential Integrity

A Jade inverse reference defines a contract specifying the knowledge that two types of entities have about each other.
Jade supports cardinalities one-to-one, one-to-many, and many-to-many.

In Jade, the relationships are managed using object identifiers (oids); for example, consider the following one-to-many
relationship.

Company <—> Product

Company::allMyProducts is an automatic inverse reference of Product::myCompany. If a Product instance P
exists that references a Company instance C, the contract requires that P is a member of C::allMyProducts. The
absence of this member constitutes a lack of referential integrity and would be detected by the Jade Logical Certifier
as an error (identified as error 1 in "Logical Certifier Errors and Repairs", in Chapter 5 of the Object Manager Guide).

Conversely, if P is a member of C::allMyProducts, P::myCompany must reference C.

Possible Issues with Referential Integrity

Jade should maintain referential integrity when a relationship is set up with a Jade-defined inverse. In the rare event
that such an inverse was not maintained correctly, that could be indicative of a Jade fault. If it can be shown that an
error in user data occurred in a recent Jade release and it is not a historical issue, if your Jade licenses include
support, contact your local Jade support center or Jade Support.

Sometimes data is lost through corruption in database storage media. In such cases, it is expected that a backup
should be recoverable from a separate storage medium. In the event that a correct backup is not available, running the
Logical Certifier to restore referential integrity is usually part of the repair procedure.

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Logical Certifier 5

Consequences of Referential Integrity Problems

Referential integrity problems can result in data inaccessibility, the wrong data being accessed, or runtime exceptions
being generated.

The business impact of a referential integrity problem is not determined by the classification of that problem (as
identified in "Logical Certifier Errors and Repairs", in Chapter 5 of the Object Manager Guide). Business impact is
determined by how the anomaly impacts upon workflows associated with the entities concerned.

The Jade Logical Certifier and Referential Integrity

The Logical Certifier is run in two modes.

= |nanalysis mode, the Logical Certifier checks referential integrity, records errors found, and generates
corresponding fixes.

= |nrepair mode, the Logical Certifier performs the fixes generated in the prior analysis.

The logical certification process analyzes each class in a schema and performs various cross-checks on each
instance, to verify its logical/referential integrity.

The term certify is ambiguous, since it is an incomplete term used in the context of both the Jade Logical Certifier
(performing a logical certify) and also in the context of the Jade Database utility (performing a file certify via the Certify
Files operation that checks on the physical structure and format of .dat files). To avoid confusion, it is preferable to
use the complete term.

Manually Maintained References

The Logical Certifier does not check for errors in cases when there is no inverse defined. It is your responsibility to
ensure referential integrity for manually maintained collections (not managed via a Jade inverse relationship).

A manually maintained collection can contain invalid object references or invalid keys, and these will not be reported
by the Logical Certifier.

Examples of User Data Errors and Fixes

There are a number errors for which the Logical Certifier checks. This document briefly discusses three of these. See
"Logical Certifier Errors and Repairs", in Chapter 5 of the Object Manager Guide), for a complete list of the checks.
Consider again the case of the following inverse relationship.

Company: :allMyProducts <—> Product::myCompany

In this inverse relationship:

= |faproduct (for example, "box of nails") references its company but the product is not held in the collection of
products known to the company, this would be reported by the Logical Certifier as an Error 1 (Missing Reference
to a Collection).

The fix provided by the Logical Certifier is to insert the product into the collection by performing a collection
rebuild. This scenario is the subject of Exercise Two.

®m |faproduct has since been removed from stock (the product instance has been removed from the database) but
the product was not removed from the company’s collection of products, the reference to the product in the
collection is invalid.

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Logical Certifier 6

This circumstance would be reported by the Logical Certifier Error 12 (Collection contains invalid reference). The
fix provided by the Logical Certifier is to remove the invalid product reference from the collection by performing a
collection rebuild.

®m |faproduct (for example, "box of nails") is included in the company’s collection of products but is stored at the
wrong key (for example, "carton of nails™), the product would not be found in the collection using the member’s
key property value. This might occur if the product key (product::description) was changed; however, the
collection was not updated correctly. The Logical Certifier will identify two errors in this scenario.

When analyzed from the Company side of the inverse, the Logical Certifier will report Error 3 (Collection
contains object at invalid keys). The fix provided by the Logical Certifier is to move the product in the collection
and correct the key by performing a collection rebuild. When analyzed from the Product side, the Logical
Certifier will report Error 1 (Collection does not include reference to inverse object), the same error as reported in
example 1, above. This is because the Logical Certifier implicitly does a lookup in the dictionary using the actual
key property value (using the description "carton of nails"). The nature of this fix depends on the update mode
for the inverse; this aspect of how the Logical Certifier works is discussed in "Effect of Update Mode", later in this
document. The fix for this error will not be run, however, because the execution of the fix is conditional upon the
circumstance still existing. The rebuild fix generated for the Error 3 will be run first, meaning that the product will
then be found so that the second fix will be skipped. This scenario is the subject of Exercise Six, part D, later in
this document.

Tip If you want to perform an online repair of a collection while it is concurrently updated, call the repairCollection
method of the Application class, to remove invalid object references and fix up dictionary keys in a specified
collection. This is sometimes faster than a Logical Certifier rebuild repair.

For more details, see "Chapter 5 — The Jade Logical Certifier Diagnostic Utility", in the Object Manager Guide.

User Data Metadata Distinction

User data objects are instances of user classes defined by you. The example in the previous section describes using
the Logical Certifier to analyze the referential integrity of such objects (that is, Company and Product).

The Logical Certifier includes support for analyzing the logical integrity of the metamodel. The metamodel consists of
Jade system classes that describe the user model (user schemas). The term metamodel is appropriate, because itis a
self-describing system; Jade system classes are used to describe classes (and class methods and properties). The
metamodel consists of instances of classes such as Class, ExplicitinverseRef, Inverse, JadeMethod, Parameter,
ReturnType, and so on. These metamodel entities are created, modified, and deleted during development or during a
schema deployment. In Exercise One, a schema is created that represents the relationship between a company and
its products, and some of the metamodel elements used to represent this model are inspected.

Metadata errors can have application runtime consequences, but typically result when making changes to the user
model, either via the Jade Platform development environment or during a schema load; for example, an error 4
(Object not found) or 1090 (Attempted access via null object reference) may be raised when performing a
reorganization). Often the role of the Logical Certifier in such cases is to analyze the referential integrity of the
metamodel prior to the model change, and repair the errors so that the required model changes can then be
implemented.

Performing a logical certify of metadata can take a long time to complete. Similarly, performing a logical certify of user
data can take a long time to complete, due to the number of objects that will be analyzed. For this reason, analysis
coverage can be restricted by schema or class (for details, see "Restricting the Analysis Coverage", later in this
document).

When metadata is analyzed, the opening line of the _logcert.log file will have an entry of the form:

21 September 11:53:00: Analysis of user schemas meta-structure started

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Logical Certifier 7

This provides a means by which you can quickly verify that you have initiated the intended function. You can abort the
operation if you selected the wrong function.

Metamodel Example Errors

This section contains examples of metadata errors.

Caution If your Jade licenses include support, contact your local Jade support center or Jade Support before
attempting metaschema repairs.

® Anobject that has a reference (manual) to its parent but the object is missing from the inverse collection on the
parent.

The add action provided by the Logical Certifier repairs the anomaly.

*** Error 1l: Collection does not include reference to inverse object
JadeUserProfile/1749.135->UserProfile: :typesChanged (inverse of
GUIClass/1284.1155)

FIX40: add 1429.135.1749.2.4 1284.1155

®m Acollection has an invalid member type, which the Logical Certifier will report as:
***% Error 2: CollClass::memberType references invalid object.

The appropriate action to take depends on other circumstances reported by the Logical Certifier, which is an
example of why it is a good idea to contact your local Jade support center or Jade Support for advice if your Jade
licenses include support.

WP_LogicalCertifier - 2022

Running the Logical Certifier

You can run the Logical Certifier from a GUI application (accessed from the Jade Logical Certifier shortcut in the
Jade Utilities submenu of your Jade installation in the Start menu). Alternatively, you can run the Logical Certifier as a
RootSchema application in a single-user development session, by clicking the Run Application toolbar button or in
batch mode. In batch mode, which has the following format, the operation argument specifies the mode for the
invocation.

jadclient path=database-path ini=Jade-initialization-file-path schema=RootSchema
app=JadelogicalCertifierNonGuil server=SingleUser startAppParameters
operation=certify|certifyMetal|repair logDir=log-file-disk-path

The logDir parameter specifies the path to which the various log files are created (for details, see the following
section). It is also the location in which a _logcert.in file is placed when running an analysis of a subset of the
database (for details, see "Restricting the Analysis Coverage", later in this document).

Tasks Performed by the Logical Certifier

The Logical Certifier examines metadata to determine classes and their relationships, and builds a transient method
that performs all of the integrity checks when executed.

The analysis results in the following four files being output to the specified directory.

m _logcert.err, which provides a description of the errors found and gives repairs

m _logcert.fix, which contains the fixes executed when the Logical Certifier is run in repair mode
= _logcert.log, which provides a running commentary of the analysis

m _Jogcert.cls, which provides a list of classes for which errors were detected

When the repair is run, the following files are created.

m _repair.log, which provides a commentary of the repair process
®m _repair.err, which lists repairs that were unable to be actioned (normally none)

In addition, the fix file is renamed _logcertBackup.fix.

Although many errors can be repaired without your input, some situations require you to decide between alternative
repairs (for details, see Exercise Six, Part C). In addition, situations involving duplicate keys require you to write a
script to repair the error. This is discussed in the section "Analysis and Repair Process". (See also Exercise Six, Part
E.)

Precautions

It is important that no reorganization of the database has been performed after the analysis, as the reorganization may
invalidate the repairs.

The Logical Certifier does not take into account the significance of all combinations of errors, nor the significance of
the types involved. The fixes provided by the analysis process are prescriptive and are derived from the classification
of the error type (documented in "Logical Certifier Errors and Repairs", in Chapter 5 of the Object Manager Guide).

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Running the Logical Certifier 9

The Logical Certifier also applies rules that take into account the update mode (manual, automatic, or man/auto) in
determining what fix is reasonable.

For these reasons, if your Jade licenses include support, contact your local Jade support center or Jade Support
before attempting metadata repairs.

Often when providing files documenting analysis of metadata to Jade Support, it is useful to also provide the files
constituting the system description (that is, _user*.dat and _control.dat) so that the model can be examined
first-hand.

As with any database-affecting operation, a sound backup and change management process is required.

Backup Strategy

A full user data analysis is usually performed on a recent backup copy of the database.
For the repair, the following strategies are recommended.

® Run the repair on a backup copy of the system and test the result before running the repair against the
production system.

You should still have a backup copy that you can restore.

m Take a backup immediately prior to running the repair against the production system (the backup should be
verified).

Test the result and restore from backup, if necessary.

When to Run the Logical Certifier

This section describes when to run the Logical Certifier diagnostic utility.

® When to Run the Logical Certifier to Analyze Metadata

® When to Run the Logical Certifier to Analyze User Data

When to Run the Logical Certifier to Analyze Metadata

In a production system, metadata would typically be analyzed following a deployment of schema changes.

In development systems, metadata should be analyzed regularly, especially during the development phase in which
the model changes are frequent.

When to Run the Logical Certifier to Analyze User Data

In production systems, user data should be analyzed regularly, since this data is volatile and affects the end-user’s
business.

In development systems, user data would typically be analyzed regularly, to ensure the validity of the testing process.

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Running the Logical Certifier 10

Restricting the Analysis Coverage

Itis sometimes useful to perform an analysis on a subset of the model. The restriction is defined through selections
you make in the user interface if you are running the GUI Logical Certifier or via specifications in a _logcert.in file if
you are running the Logical Certifier in batch mode. Examples of situations requiring this are when:

= Aruntime anomaly suggests a problem in a specific area.

®m Performing a follow-up analysis after a repair.

You can rename the _logcert.cls file produced by the prior analysis that lists classes for which errors were
detected to _logcert.in, which is read by the subsequent analysis.

®m Checking an area of the model that is known to have encountered errors in the past.

Typically, the analysis coverage would be limited by specifying a subset of classes, but you can restrict the analysis by
specifying:

® Aninstance range
® Aninstance date-created range
®m |nclusion or exclusion of subclasses

For a meta-certify operation, you can use the _metacert.in file to specify the RootSchema classes that are to be
certified. The format of the _metacert.in file is the same as that of the _logcert.in file except that the Schema and
AllSchemas values are not valid, because the certification of meta data is performed at RootSchema level so you
cannot filter the schema selection.

For more details, see "Chapter 5 — The Jade Logical Certifier Diagnostic Utility", in the Object Manager Guide.

Note Itis important to run a full logical certify and repair on occasion, so that known clean points are established.
This is important because fixing the errors promptly minimizes potential runtime negative consequences. In addition,
knowing the version of Jade in which an error was induced is relevant to determining whether the error is the result of a
known cause that has been addressed.

A reproducer involves taking a database from a known clean state to an erroneous state through a set of well-defined
steps. A Logical Certifier analysis is required to verify the start and end states.

WP_LogicalCertifier - 2022

Analysis and Repair Process

This document earlier described the analysis and repair modes in which you can run the Logical Certifier. In practice,
some decision-making is sometimes involved and a process that is iterative and that includes manual checking of the
generated logs is recommended.

The following sections provide some analysis and repair scenarios and suggest a general process that is appropriate.

Effect of Update Mode

As the "Precautions” section earlier in this document stated, when two entities are inconsistent, the following question
arises.

Which entity is correct and which needs amendment?

The Logical Certifier decides which fix is appropriate, by treating the manual side of an inverse reference as being
correct.

In Exercise Six, Part A, the scenario is provided in which a product does not know its company but the company’s
collection of products includes this product. When the Logical Certifier analyzes this scenario, the error reported and
the fix generated depend on the update mode of the following relationship.

Product: :myCompany <—> Company::allMyProducts

If the reference Product::myCompany is defined as manual (and the collection is automatically updated), the
assumption made by the Logical Certifier is that the reference was intentionally set to null and for some reason inverse
maintenance failed, so the product was not removed from the company’s collection of products. In this case, the repair
action is to remove the product from Company::allMyProducts.

However, if the collection is manually updated and the reference on Product is automatically set, the fix generated by
the Logical Certifier is to set the reference Product::myCompany (based on the assumption that the product was
intentionally added to the collection of products referenced by the company).

If the inverse is defined as man/auto on both sides, the rule of assuming the manual side to be correct does not apply.
In such cases, you will be required to edit the repair file to select the correct repair option presented (when options are
commented out). This scenario is demonstrated in Exercise Six, Part C. Which of these two repairs is correct depends
on the model and requires your decision. You may know, for example, that even though the inverse is defined as
man/auto, the update is always performed from one side, so that side should be regarded as the correct reference.

Tip Examine the error file before the repair is run, to see if you need to make fix choices.

A Repair that is Not Actioned

A repair may not be actioned because it violates some other principle. For example, the repair may resultin a
duplicate key for a dictionary that is defined as not allowing duplicates.

The _repair.err file reports the fact that the fix was not run as a result of the condition encountered, as follows.

Error: FIX1 rebuild AllProductsByDescription/2976.1.2973.2.1: size before=2, size
after=2 results in duplicate

Tip After arepairis run, check the _repair.err log for the details of any fixes that were not run, before you decide
what action to take next.

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Analysis and Repair Process 12

This scenario is the subject of Exercise Six, Part E, later in this document.

Fixes are Evaluated Independently

As described earlier in this document, the Logical Certifier iterates through instances of each class and performs
various checks after looking at what properties are defined on the class that have inverses. This means that for a
specific inverse, checks are performed on instances of both classes participating in the relationship, with the result
that errors reported often occur in pairs (one for each side of the inverse).

When finding an error, the Logical Certifier does not link this to an error discovered earlier while investigating the
relationship from the other side. Each repair does, however, come with a check clause that specifies the condition that
gave rise to the fix. If this condition no longer applies, the fix is not run (perhaps because the fix applied as the result of
analyzing the other side of the relationship resolved the issue).

When an object is stored at a key different from its key property value, two errors are reported. An error that the
member is not stored at the correct key is reported from the collection owner side. Another error that the member
cannot be found in the collection on the other side is reported from the member side. It is not known whether the object
reference is absent or if it is stored at the wrong key. The fix generated for this depends on the update mode of the
inverse. When the rebuild fails (as described earlier in this document), the final state is determined by the fix that the
Logical Certifier applies in accordance with the update mode.

Because you should perform this investigation on a backup copy of the system, typically you would decide to write a
script that deals with the key property value that results in a duplicate key. (It may be possible to identify the
appropriate unique value from other identifiers on the member, and set the correct key value.)

Tip Evaluate what other changes may have occurred as the result of a fix not running. Typically the last action you
perform is not a repair; it is a final Logical Certifier analysis that confirms that there are no more errors.

This scenario is the subject of Exercise Six, Part E, later in this document.

Summary of Analysis and Repair Process

When considering the scenarios described in earlier sections of this document, it is advisable to analyze the files
created by the Logical Certifier after each invocation before deciding what to do next.

After each analysis phase, check for fixes that require a choice to be made, and also consider whether any scripted
solutions are appropriate.

After each repair, check the repair log and repair error log for fixes that were not executed, and evaluate the cause of
this while also giving consideration to how this affects the end state.

An iterative process that terminates with an error-free analysis is recommended.

WP_LogicalCertifier - 2022

Practical Exercises

The following subsections contain practical exercises, which are provided so that you can step through the process of
analyzing and repairing a small system. Part of this process involves using the Logical Certifier with a crafted fix file, to
intentionally break referential integrity.

Before You Begin

We recommend that you use a throw-away system for these exercises.

You can decide to extract the schema following the completion of Exercise One. This will enable you to establish a
clean initial state by removing the schema, loading the schema extract, and then running the JadeScript::setup
method from Exercise One, to recreate data.

You can use this procedure where an exercise step states "Ensure that existing errors have been repaired".

Exercise One: Creating an Inverse and Examining
Metadata

In this exercise, you will create a schema having a simple 1-M (one-to-many) inverse and observe elements of the
metamodel that Jade creates to describe the user model. This schema will later be intentionally damaged and then
repaired using the Logical Certifier.

1.

P w0 DN

Create a new schema called LogCertTester.

Create classes Company and Product.

Add public property Product::productPrice of type Real.

Add public key property Product::productDescription of type String [30].

Create class AllProductsByDescription as a subclass of MemberKeyDictionary.

This subclass should have a membership of type Product and be keyed by Product::productDescription.

Add an auto reference Company::allMyProducts of type AllIProductsByDescription and a manual public
inverse Product::myCompany.

Define and then save the following JadeScript::setup method.

vars
prod : Product;
comp : Company;
begin
beginTransaction;
create comp;
create prod;
prod.productDescription := "Box of nails";
prod.productPrice := 12;
prod.myCompany := comp;
create prod;
prod.productDescription := "2m ladder";
prod.productPrice := 260;

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Practical Exercises 14

prod.myCompany := comp;
commitTransaction;
end;

8. Runthe JadeScript::setup method and then use the inverse to navigate the objects in the Jade Object
Inspector, to demonstrate that referential integrity is correct.

9. Inspect the Company class in the Jade Object Inspector, by running the code Company.inspect(); inside a
Workspace.

10. Select properties in the left pane of the inspector. Note that the type is PropertyNDict and that it contains
allMyProducts.

11. Double-click on properties and then double-click allMyProducts.

Note The oid 1000014.x in the title bar. 1000014 is the class number of the ExplicitinverseRef class.

12. Select the inverses property. Note that it has type InverseSet and that it contains one inverse.

13. Double-click on inverses. Note that the Inverse object has oid 1000035.x, where 1000035 is the class number
of the Inverse class.

14. Extract the schema, for use in later exercises.
You will now have observed some of the glue that is the metamodel that defines the user schema.

In the next exercise, referential integrity will be intentionally broken so that we can demonstrate using the Logical
Certifier to analyze and repair the damage.

Exercise Two: Breaking Referential Integrity

Jade normally ensures that referential integrity is maintained. However, as discussed earlier, the Logical Certifier
repair mechanism necessarily disables inverse maintenance, which provides the ability to break referential integrity
through the use of a hand-crafted, erroneous fix file.

1. Open anew Workspace and then define and run the following method to generate an erroneous fix.

vars
fixLine : String;
begin
//Remove first instance of Product from company's collection of products
fixLine := "FIXl: remove ";
fixlLine := fixLine & AllProductsByDescription.number.String;
fixLine := fixLine & ".l1." & Company.number.String;
fixLine := fixLine & ".2.1 ";
fixLine := fixLine & Product.firstInstance.getOidString;

write fixLine;
end;

The output from this method should have the following form. (These class numbers will vary, depending on what
other schemas have been loaded.)

FIX1l: remove 2976.1.2973.2.1 2975.1
In this fix:

o 2976 is the class number of the AllProductsByDescription class

o 2973 is the class number of the Company class

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier

White Paper

Practical Exercises 15

o o &

9.

o 2975 s the class number of the Product class

If required, save the Workspace.

Create a _logcert.fix fix file and then paste the output from step 1 of this instruction into that file.
Save the file to a directory where the output files will be created; for example, c:\temp.

Close the Jade database.

Run the Logical Certifier application in GUI or in batch mode, directing the application to the fix file created in the
previous step of this instruction.

If you are using:

o The GUI application, select Repair in the Operation combo box and then browse to the location of the fix
file.

o Abatch file, modify the example provided in the "Running the Logical Certifier" section, earlier in this
document, so that logDirPath=c:\temp (if that is where you saved the erroneous fix file) and
operation=repair.

The repair will have renamed logCert.fix to logcertBackup.fix and generated:

o repair.err, which contains entries indicating repairs that failed. No errors should be listed.

o repair.log, which shows repair actions that were performed. This log should end with Repair complete: 0
errors (0 warnings).

o _logcert.fix, which should be empty.

Examine the error file and log file to ensure that the repair completed successfully. The repair log should contain
a line similar to the following.

FIX1 Removed Product/2975.1 from collection
AllProductsByDescription/2976.1.2973.2.1

Open the Jade Platform development environment and use the Object Inspector to verify that the Product
instance has been removed from the company’s products.

Verify that the removed Product instance has a valid reference to its company. This inconsistency shows that
referential integrity is broken.

Save the generated files (for example, to c:\temp\firstCorruption) and then close the database.

In the next exercise, the Logical Certifier will be used to identify the (artificially) induced anomaly.

Exercise Three: Analyzing the Damage

In this exercise, the Logical Certifier will be used to analyze the inverse relationship between Company and Product.

1.

Run the Logical Certifier application in the GUI or the batch mode. Direct the application to the appropriate
location where the output will be saved. If you are using:

o The GUI application, select Certify Selected Schemas in the Operation combo box and select
LogCertTester in the Schema list box.

o Abatch file, modify the example provided in the "Running the Logical Certifier" section, earlier in this
document, so that logDirPath=c:\temp (if that is where you saved the erroneous fix file) and
operation=certify.

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Practical Exercises 16

2. Observe that the following four files have been produced in the specified output directory.

o logcert.err, which identifies the errors that were discovered
o logcert.cls, which indicates which classes have instances that require repair
o logcert.fix, which is the file that will be used in repair mode to repair the identified error

o logcert.log, which is the file that records the analysis procedure

Exercise Four: Interpreting the Analysis Output

When you have completed Exercise Three, an error file is produced (that is, _logcert.err), which contains lines in the
following format.

---- Errors for LogCertTester::Product -------—-—————-—

*** FError 1l: Collection does not include reference to inverse object
Company/2973.1->Company: :allMyProducts (inverse of

Product/2975.1->Product: :myCompany) does not include Product/2975.1 (error
coll=All1ProductsByDescription/2976.1.2973.2.1)

FIX1l: add 2976.1.2973.2.1 2975.1

CHECK: '2975.1'.as0Oid.getPropertyValue ('myCompany') .Object="'2973.1"'.as0id and not
'2973.1"'.asOid.getPropertyValue ('allMyProducts') .Object.Collection.includes
('2975.1"'.as0id)

—-—-— Summary

Product/2975.1->Product: :myCompany [1]

The problem is clearly identified by the statement indicating that a product instance is not included in the collection of
products held by a company instance. The fix of adding the product instance is also given. This is informational, only.

A possible runtime application consequence is that the product will be absent from a list box that displays products for
the company and thus be inaccessible for updating.

Note The erroris identified as being of type Error 1. The classification of error types is documented in "Logical
Certifier Errors and Repairs", in Chapter 5 of the Object Manager Guide.

Open the fix file; that is, _logcert.fix. This is the file that is used by the Logical Certifier to perform the repair. It
contains a line in the following format.

FIX1l: add 2976.1.2973.2.1 2975.1

CHECK: '2975.1'.as0Oid.getPropertyValue ('myCompany') .Object="'2973.1'.as0id and not
'2973.1".as0id.getPropertyValue ('allMyProducts') .Object.Collection.includes
('2975.1"'.as01id)

Note the presence of the CHECK phrase, following the repair action. This check is used by the Logical Certifier to
verify that the condition identified during the analysis phase is still present in the database when the repair is run. This
is important because the analysis phase would typically be performed on a backup copy of the database due to the
length of time required. It also offers some protection against the possibility of running a repair when the analysis was
performed against a different system.

The informational log (that is, _logcert.log), among other things, contains the following information.

= Adescription of what relationships were checked.

m Adescription of the memory requirements for checking each relationship. Increasing transient cache and
interpreter cache will generally result in reduced analysis times.

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Practical Exercises 17

® The number of instances of each class checked. If an exception was generated that prevented completion of
analysis for a specific class, you can compare this figure with the total number of instances.

® The number of errors detected.

The _logcert.cls file defines the set of classes in which errors were detected. You can rename this file to _logcert.in
and use it to perform a subsequent restricted analysis.

Exercise Five: Repairing the Damage

To run the repair, repeat step 6 in Exercise Two. Use the logs to verify that the repair completed successfully.

Use the Jade Platform development environment Object Inspector to independently verify that logical integrity has
been restored. Alternatively, run another Logical Certifier analysis and verify that no errors are reported.

Exercise Six: Additional Referential Integrity Examples

Exercises Three through Five demonstrated analysis, interpretation, and repair of a specific referential integrity
problem identified as Error 1.

In this exercise, other error types are investigated so that you can see how these are reported and repaired. Parts A,
B, and C demonstrate the effect of inverse update mode that was discussed in "Analysis and Repair Process", earlier
in this document.

For more details about the examples in this exercise, see the following subsections.

Part A: Nulling the Manual Side

1. Ensure that existing errors have been repaired.

As mentioned earlier, you should remove the schema, restart Jade, and then reload the schema before creating
fresh data.

2. This time we will intentionally break referential integrity by using the following Workspace script to generate a
different erroneous fix.

vars
fixLine : String;

begin
// A product does not know its owning company
fixLine := "FIX1l: null " & Product.firstInstance.getOidString

& " myCompany";
write fixLine;
end;

A consequence of this anomaly is that a 1090 exception (Attempted access via null object reference) would be
raised if you attempt to reference Product::myCompany from this instance of Product.

3. Runthe erroneous repair created from the script in the previous step.

4. Analyze the damage by running the Logical Certifier in analysis mode. This anomaly will be reported in the
following way.

*** Error 15: No inverses found for Company/2973.1->Company::allMyProducts
(colll=AllProductsByDescription/2976.1.2973.2.1, member=Product/2975.1)
(2976.1.2973.2.1 created 01 January 1970, 12:00:00, parent 2973.1 created 17

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Practical Exercises 18

July 2009, 14:48:39)

FIX1l: remove 2976.1.2973.2.1 2975.1

CHECK: 2973.1'.asOid.getPropertyValue

('allMyProducts') .Object.Collection.includes ('2975.1"'.as0id)

Note The repair action to perform a remove is a consequence of the Product::myCompany reference being
defined as manual, so the assumption made by the Logical Certifier is that the reference was intentionally set to null
and for some reason, inverse maintenance failed and the object was not removed.

Part B: Reverse Update Mode

1. Ensure that you have repaired existing errors.
2. Change the update mode of Company::allMyProducts from automatic to manual.

3. Adjust the JadeScript::setup method to perform a dictionary addition Company::allMyProducts::add as
opposed to setting Product::myCompany, and then run setup.

4. Run the erroneous fix from "Part A", in the previous section.
The anomaly is now reported in the following way.

—-——— Errors for LogCertTester::Company —--—--——----—-——-——-————-

*** Error l4a: Collection member does not reference inverse object
Product/2975.1->Product: :myCompany (inverse of Company::allMyProducts) does

not reference Company/2973.1 (references Object/0.0)

FIX1l: set 2975.1 myCompany 2973.1 CHECK: '2973.1'.asOid.getPropertyValue

('allMyProducts') .Object.Collection.includes ('2975.1'.as0id) and

'2975.1"'.asOid.getPropertyValue ('myCompany') .Object=null

As in Part A, the manual side of the inverse is assumed to be correct and the repair is performed against the automatic
side, to restore referential integrity.

Part C: Indeterminate Update Mode Results in Choices

1. Ensure that existing errors have been corrected.

2. Change the update mode of Company::allMyProduct from automatic to manual/automatic.
3. Runthe JadeScript::setup method (no change to this method is required).

4. Run the erroneous fix from Part A.

The anomaly is now reported in the following way.

—-——— Errors for LogCertTester::Company —--——-—---—-—-—-————-

*** Error 15: No inverses found for Company/2973.1->Company::allMyProducts
(colll=AllProductsByDescription/2976.1.2973.2.1, member=Product/2975.1)
(2976.1.2973.2.1 created 01 January 1970, 12:00:00, parent 2973.1 created 20 July
2009, 16:54:32)

//FIX1l: Choose either first fix if man/auto reference Company::allMyProducts acts
as auto else following 1 line(s)

//FIX1l: remove 2976.1.2973.2.1 2975.1 CHECK: '2973.1'.asOid.getPropertyValue
('allMyProducts') .Object.Collection.includes ('2975.1"'.as01id)

//FIX1l: set 2975.1 myCompany 2973.1 CHECK: '2973.1'.asOid.getPropertyValue
('allMyProducts') .Object.Collection.includes ('2975.1"'.as01id)

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier

White Paper

Practical Exercises 19

Various fix alternatives are presented. To activate the appropriate fix, you must remove the comment (that is, //) in the
_logcert.fix file.

Part D: Dictionary that Has a Member at Invalid Keys

If you run the erroneous repair from Exercise Six, Part A, it will prevent the automatic dictionary from being updated
when a member’s key is changed.

If you change the key property of the member, dictionary maintenance will not occur so the member will be stored at
the old, incorrect key value. You can then run a repair that resets the reference Product::myCompany. The end state
then is one in which the problem is purely that a member is stored at an incorrect key.

1.
2.

Ensure that existing errors have been corrected.
Run the erroneous repair created in Part A.
Run the following Workspace script to alter the key property values of the first instance of Product.

beginTransaction;
Product.firstInstance.productDescription := "Box of screws";
commitTransaction;

Obtain the fix to reset Product::myCompany, by running the following script.

vars
fixLine : String;
begin
fixLine := "FIX1l: set " & Product.firstInstance.getOidString

& " myCompany " & Company.firstInstance.getOidString;
write fixLine;
end;

The form of the fix should be as follows.
FIX1: set 2975.1 myCompany 2973.1
Run the repair constructed from the output of the previous step.

Note that attempting to retrieve the first product, a box of screws, via the key value "Box of screws" results in a
null object referenced being returned.

Company.firstInstance.allMyProducts.getAtKey ("Box of screws")
Conversely, attempting to retrieve a "Box of nails" results in a "Box of screws™ being returned.
Run the Logical Certifier in analysis mode. This anomaly will be reported in the following manner.

---- Errors for LogCertTester::Company —-------——————--—

*** Error 3: Collection contains object at invalid keys
AllProductsByDescription/2976.1.2973.2.1 Company::allMyProducts contains

Product/2975.1 at invalid keys (2976.1.2973.2.1 created 01 January 1970,

12:00:00, parent 2973.1 created 05 August 2009, 16:37:59)

FIX1: rebuild 2976.1.2973.2.1

After running the repair, the first product will be accessible via its "Box of screws" key value.

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Practical Exercises 20

Note The Logical Certifier will also report a second error, stating that the Product instance cannot be found in the
collection. The nature of the corresponding fix depends on the update mode specified for the inverse. This second fix
will not be run, however, since its execution is conditional upon still being unable to find the product in the collection,
and the rebuild fix will be run first to address this. If an error prevents the first fix from being run, the second fix will then
be run and the update mode determines the final outcome. This is the subject of the next exercise.

Part E: Repair that Fails due to Duplicate Entry

If you run the erroneous repair from Exercise Six, Part A, it will prevent the automatic dictionary from being updated
when a member’s key is changed. If you change the key property of the member to be the same as that of another
member, dictionary maintenance will not occur. You can then run a repair that resets the reference
Product::myCompany.

The end state is then one in which the member is stored at an incorrect key. However, this is different from Part D, as
there is the additional fact that the key property value is the same as that of another member so attempting to insert
the member at its key property value will cause a duplicate key exception and the rebuild action will be aborted. In
contrast to Part D, the second fix generated will run as a consequence of the first fix not being implemented.

1. Ensure that existing errors have been corrected.
2. Runthe erroneous repair created in Part A.
3. Run the following Workspace script to alter the key property values of the first instance of Product.

beginTransaction;
Product.firstInstance.productDescription :=
Product.lastInstance.productDescription;

commitTransaction;

4. Obtain the fix to reset the Product::myCompany by running the following script.

vars
fixLine : String;

begin
fixLine := "FIX1l: set " & Product.firstInstance.getOidString

& " myCompany " & Company.firstInstance.getOidString;
write fixLine;
end;

The form of the fix should be as follows.
FIX1l: set 2975.1 myCompany 2973.1
5. Run the repair constructed from the output of the previous step.

6. Verify in the Object Inspector that both Product instances now have the same name and that the reference to
the parent company is set.

7. Runthe Logical Certifier in analysis mode.
Save the output in a new folder named according to the update mode for the inverse.

8. Runtherepair.

WP_LogicalCertifier - 2022

jJadeplatform Logical Certifier
White Paper

Practical Exercises 21

Observe that the rebuild fix to address the invalid key fails due to a duplicate key being encountered. This is
documented in the repair error log, as follows.

Error: FIX1 rebuild AllProductsByDescription/2976.1.2973.2.1: size before=2,
size after=2 results in duplicate

The end state of the system will be determined by the second fix, which in turn depends on the update mode in
place. At this point, you would typically evaluate the situation and determine that the two errors reported in the
analysis phase come from the same condition (an object at the wrong key). You may be able to determine that
the key property value is incorrect (as is the case here) and the correct value from other information (the product
price, in this example).

You would then set the correct key property value (for example, by a JadeScript) and then go ahead with the
rebuild, if required.

9. Verify that the second error reported (and corresponding fix) will vary, according to the update mode (Company
<-> Product), as follows.

o Collection is automatically updated. (Both fixes will fail.)

---- Errors for LogCertTester::Product -------——————-

**% Error 1l: Collection does not include reference to inverse object
Company/2973.1->Company: :allMyProducts (inverse of

Product/2975.1->Product: :myCompany) does not include Product/2975.1

(error coll=AllProductsByDescription/2976.1.2973.2.1)

FIX2: add 2976.1.2973.2.1 2975.1 CHECK: '2975.1'.as0Oid.getPropertyValue

('myCompany') .Object="'2973.1"'.as0id and not

'2973.1"'.as0id.getPropertyValue

('allMyProducts') .Object.Collection.includes ('2975.1"'.as01id)

o Reference Product::myCompany is automatically updated. (Removes part of the relationship.)

-—-——- Errors for LogCertTester::Product - -———-—-—-—-—-————-

*** Error 8: No inverses found for Product/2975.1->Product: :myCompany
(obj=Product/2975.1, related=Company/2973.1) (2975.1 created 22 September
2009, 11:32:51)

FIX2: null 2975.1 myCompany CHECK: '2975.1'.asOid.getPropertyValue
("myCompany') .Object="'2973.1"'.as0id

o Both sides man/auto. (No outcome unless a choice is made. Choices match first two cases.)

—-—-—— Errors for LogCertTester::Product -—-—-——-—-—-—-—-—-————-

*** Error 8: No inverses found for Product/2975.1->Product::myCompany
(obj=Product/2975.1, related=Company/2973.1) (2975.1 created 22 September
2009, 11:32:51)

//FIX2: Choose either first fix if man/auto Product::myCompany acts as
auto else following 1 line(s)

//FIX2: null 2975.1 myCompany CHECK: '2975.1'.asOid.getPropertyValue
('myCompany') .Object="'2973.1"'.as0id

//FIX2: add 2976.1.2973.2.1 2975.1 CHECK:
'2975.1".as0id.getPropertyValue ('myCompany') .Object='2973.1"'.as0id and
not '2973.1'.asOid.getPropertyValue

('allMyProducts') .Object.Collection.includes ('2975.1"'.as01id)

WP_LogicalCertifier - 2022

	Contents
	Logical Certifier
	Referential Integrity
	Possible Issues with Referential Integrity
	Consequences of Referential Integrity Problems
	The Jade Logical Certifier and Referential Integrity
	Manually Maintained References
	Examples of User Data Errors and Fixes
	User Data Metadata Distinction

	Metamodel Example Errors

	Running the Logical Certifier
	Tasks Performed by the Logical Certifier
	Precautions
	Backup Strategy
	When to Run the Logical Certifier
	When to Run the Logical Certifier to Analyze Metadata
	When to Run the Logical Certifier to Analyze User Data

	Restricting the Analysis Coverage

	Analysis and Repair Process
	Effect of Update Mode
	A Repair that is Not Actioned
	Fixes are Evaluated Independently
	Summary of Analysis and Repair Process

	Practical Exercises
	Before You Begin
	Exercise One: Creating an Inverse and Examining Metadata
	Exercise Two: Breaking Referential Integrity
	Exercise Three: Analyzing the Damage
	Exercise Four: Interpreting the Analysis Output
	Exercise Five: Repairing the Damage
	Exercise Six: Additional Referential Integrity Examples
	Part A: Nulling the Manual Side
	Part B: Reverse Update Mode
	Part C: Indeterminate Update Mode Results in Choices
	Part D: Dictionary that Has a Member at Invalid Keys
	Part E: Repair that Fails due to Duplicate Entry

