
Copyright©2025 Jade Software Corporation Limited. All rights reserved.

Exception Handling
White Paper

VERSION 2022



Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2025 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.



WP_ExceptionHandling -2022

Contents

Contents iii

Exception Handling 4
The Basics 4

What is an Exception? 4
When Should You Raise Exceptions? 5
Exception Classes 5
Creating and Raising Exceptions 6
Exception Handlers 7

Writing a Simple Exception Handler 7
Local Exception Handlers 8
Global Exception Handlers 8
Exception Handler Scope 9

Exception Handling In-Depth 9
Exception Handler Stack 9
Exception Handler Return Values 10

Ex_Pass_Back 10
Ex_Abort_Action 10
Ex_Resume_Next 10
Ex_Resume_Method_Epilog 11
Ex_Continue 11

Summary of Exception Handling Behavior 12
Building Exception Handlers 13

File Exception Handling 14
Connection Exception Handling 15
Lock Exception Handling 16
Last-Chance Exception Handling 17

Context of Exceptions 17
Optional Exception Handler Parameters 18

Exception Handling Strategies 18
Summary 19



WP_ExceptionHandling -2022

Exception Handling

This white paper is intended to provide you with a sound understanding of the use of Jade exception handlers, and it
presents a number of ways in which exception handlers can be used to help produce robust, high-performance Jade
applications that properly encapsulate functionality within the application's classes.

The proper use of the exception handling mechanisms provided by Jade is fundamental to the building of
industrial-strength applications, and to the creation of reusable, highly-encapsulated classes. To achieve the
objectives of robustness, high performance and encapsulation requires a sound understanding of Jade's exception
handling features.

For the best results, the application project leader needs to establish an application exception handling strategy at the
outset of a project, and needs to ensure that all members of the development team understand and adhere to the
strategy.

Later in this paper, key points for your exception handling strategy are discussed.

If you are experienced in using exceptions in other languages (for example, C++ or C#), the concepts associated with
the material covered in this paper will be already familiar to you, as will the implications for the design of
object-oriented systems. However, you should still find the implementation aspects of using Jade exceptions to be
useful.

The Basics
This topic introduces the basics of using Jade exceptions and exception handlers; that is:

What is an Exception?

When Should You Raise Exceptions?

Exception Classes

Creating and Raising Exceptions

Exception Handlers

What is an Exception?
When errors occur in a Jade application, an exception object is created (either by Jade or by the application
developer's code) and control is automatically passed, along with the exception object, to a predefined method called
an exception handler. (Exception handlers are discussed in the next topic.)

An exception doesn't merely transfer control from one part of your program to another: it also transmits information.

Because the exception is an object, it usually contains information about the condition that resulted in the exception
being raised.

Depending on the type of exception, the exception object may contain a reference to the object that caused or was
involved in the error. For example, FileExceptions contain a reference to the file object in use at the time of the error,
and ConnectionExceptions contain a reference to the connection object that encountered the error.



WP_ExceptionHandling -2022

Examples of situations that can cause Jade to raise exceptions are:

Fatal errors, for example:

Wrong number of parameters in a method call

Normal exceptions, for example:

Jade system exceptions such as lock exceptions and integrity violations

File-handling exceptions

Connection exceptions

User-interface exceptions

When Jade detects an error (for example, a TCP/IP connection failure), it automatically creates an exception object of
the appropriate class, sets up the property values in the exception object that describe the nature of the error, then
passes control to the first appropriate exception handler method in the exception handler stack.

In addition to the above, you can create exception objects (subclasses of RootSchema exception classes, with
additional application-specific properties, if required) and use the exception object to raise an exception.

As we will see later, this feature provides an elegant way to handle error conditions (for example, when a persistent
class is editing input that originated from the user interface or a TCP/IP message). It also allows you to completely
encapsulate editing and other class-specific functionality in the affected class methods. This enhances the portability
and reusability of classes, and the integrity of the data held in class objects.

When Should You Raise Exceptions?
Jade raises exceptions whenever a method encounters an abnormal condition. Similarly, as the application
developer, you should raise exceptions whenever one of your methods encounters an error that your method can't
handle. For example, if a class method validates data passed as input to the method, it should raise an exception if it
finds an error that the method itself can't handle.

However, generally you shouldn't use exceptions where the method could handle the error. For example, when a
method of a form is validating user input and an error is detected, the method should handle the error directly rather
than raise an exception.

By using exceptions rather than clumsy mechanisms such as method return codes, you can ensure the integrity of the
data in your classes without impacting on system efficiency. By using exceptions, you also keep your mainline
application code comparatively free of error handling code, thus making it easier to understand and maintain.

Exception Classes
The Jade RootSchema defines a number of exception classes and associated methods, which are fully described in
Volume 1 of the Encyclopaedia of Classes.

The following table is a summary of the Exception class hierarchy and functions.

Class Function

Exception Superclass for all exceptions

FatalError Serious internal errors

NormalException Superclass for all non-fatal exceptions

Exception Handling
White Paper

Exception Handling 5



WP_ExceptionHandling -2022

Class Function

ConnectionException Exceptions relating to connecting to external systems

FileException Exceptions relating to file handling errors

JadeMessagingException Exceptions relating to the Jade messaging framework

JadeRegexException Transient class that defines behavior for exceptions that occur as
a result of Jade Regular Expression (JadeRegex) pattern
matching

JadeSOAPException Exceptions relating to web service handling

JadeXMLException Exceptions relating to XML processing

ODBCException Exceptions from ODBC connection to external databases

SystemException Superclass for exceptions for errors detected by Jade kernel

DeadlockException Deadlock errors

LockException Lock-related errors

NotificationException Exceptions relating to notification event delivery

IntegrityViolation Reserved for future use

UserInterfaceException Superclass for exceptions relating to the handling of windows

ActiveXInvokeException Exceptions relating to ActiveX properties and methods

JadeDotNetInvokeException Exceptions relating to .NET component properties and methods

WebSocketException Transient class that defines behavior for exceptions that occur as
a result of the WebSocket protocol

Creating and Raising Exceptions
As a Jade application developer, you can create exception objects (typically of type NormalException or a subclass
of), and having created an exception object, can then raise that exception so that control is passed to the appropriate
exception handler. A typical example of this is handling errors arising from edits of data passed as input to a method.
The following methods are examples of creating and raising a user exception.

raiseEditException(text: String); // my method of Application
vars

exObj : EditException; // my subclass of NormalException
begin

create exObj;
exObj.errorCode := Edit_Error;
exObj.extendedErrorText := text;
raise exObj; // using Jade 'raise' instruction

end;

setName(sName: String); // method of Customer
begin

if sName.trimBlanks = null then
app.raiseEditException("Customer name must be specified");

else
self.name := sName;

endif;
end;

Exception Handling
White Paper

Exception Handling 6



WP_ExceptionHandling -2022

In the first of these method examples, the RootSchema NormalException class was subclassed as EditException,
to allow additional properties to be added to the exception object and to allow reimplementation of superclass
methods.

Exception Handlers
An exception handler is a method to which control is passed, along with the exception object, when an exception is
raised. Jade provides a default exception handler, part of which is the Unhandled Exception dialog that you see when
errors occur in your application. However, a well-designed and implemented application should seldom, if ever,
display the default Jade dialog. You must write exception handler methods to catch most exceptions, and arm and
disarm these handlers as needed.

This section contains the following topics.

Writing a Simple Exception Handler

Local Exception Handlers

Global Exception Handlers

Exception Handler Scope

Writing a Simple Exception Handler
To demonstrate a simple use of exception handlers, the following is a handler written for the form whose bOK_click
method is documented in "Local Exception Handlers", later in this white paper. This handler is designed for use with
the GUI, so you would normally code it as a method of your form, or form superclass.

editExceptionHandler(exObj: EditException): Integer updating;
begin

abortTransaction; // if persistent database is in transaction state, then
// abort. This also releases any other transaction locks;
// for example, an explicit exclusiveLock. It is important
// to do this before displaying the message box.

app.msgBox(exObj.extendedErrorText,
"Application Error",
Msg_Box_OK + Msg_Box_Exclamation_Mark_Icon);

return Ex_Abort_Action; // cut back stack
end;

In this example, we abort any current persistent transaction then return Ex_Abort_Action, which cuts back all current
methods, essentially leaving the process in the state it was in before the methods currently on the stack were
executed. However, any transient objects (shared or process) that were updated by your method will retain the
updates, so you may also need to code a mechanism in your handler to undo those updates if that is important. In
addition, returning Ex_Abort_Action does not abort the database transaction. You must code the abortTransaction
instruction to cause that to happen.

Jade's abortTransaction instruction aborts the current persistent database transaction, if one is in progress, and also
releases all transaction duration locks on persistent objects held by the process.

The other values that you can return from an exception handler are Ex_Resume_Next, Ex_Resume_Method_
Epilog, Ex_Continue, and Ex_Pass_Back. These options are discussed later, in the "Exception Handling In-Depth"
section of this paper.

Exception Handling
White Paper

Exception Handling 7



WP_ExceptionHandling -2022

Local Exception Handlers
Local exception handlers stay armed only until the method in which the handler was armed terminates, or until the
handler is explicitly disarmed.

Caution Care should be taken when disarming a local exception handler. The search for a handler for exceptions of
the specified class is not limited to the current method. If a suitable exception handler is not found in the current
method, the exception handlers in calling methods are also checked. The getExceptionHandlerStackmethod of the
Process class can be used to determine what exception handlers are currently armed.

The following code fragment for a Button control on a form shows how a local exception handler is armed.

vars
cust : Customer;

begin
on EditException do self.editExceptionHandler(exception);
beginTransaction;
cust := app.myRoot.allCustomers[tbName.text.trimBlanks];
if cust = null then

create cust;
endif;
cust.setName(tbName.text.trimBlanks);
cust.setAddress(tbAddress.text);
commitTransaction;

end; // editExceptionHandler is disarmed here

If an exception is raised by the setNamemethod (an example of which is shown in "Creating and Raising Exceptions",
earlier in this document), control is passed to the form's editExceptionHandler.

Global Exception Handlers
Exception handlers can be designed and armed as global exception handlers; that is, once armed, they stay active
until they are disarmed or until the application terminates. Global exception handlers are useful for handling lock
exceptions, connection exceptions, and as handlers of last resort for unexpected application and system exceptions
such as String Too Long errors.

The following is an example of arming a global exception handler.

on ConnectionException do app.connectionExceptionHandler(exception) global;

To disarm a previously-armed global exception handler, write:

on ConnectionException do null global;

Typically, if you need a global exception handler, it is convenient to arm it in the application's initializemethod or
startup form load event. However, you need to be careful that the receiver of the handler doesn't get subsequently
deleted. For example, if a global exception handler is armed on a form (with the form as receiver) and that form is
subsequently closed and deleted, you will have a handler in the exception handler stack with an invalid receiver
object.

As an example, you could always code your global exception handlers as methods of the Application subclass,
although you could equally well use other classes such as your subclass ofGlobal or of Process.

Exception Handling
White Paper

Exception Handling 8



WP_ExceptionHandling -2022

Exception Handler Scope
When your Jade client arms an exception handler, be it global or local, it is armed only for that process. If you start
another process (using startApplication, startApplicationWithParameter, and so on), you also need to arm
exception handlers for that process.

Similarly, if you are using serverExecutionmethods, exception handlers need to be written and armed for the server
side of processing. These exception handlers can be armed globally or locally as for clientExecutionmethods, by
performing a serverExecutionmethod that executes an on Exception statement.

If you don't have a suitable exception handler armed for the server and an exception is raised during execution of a
server method, the following occurs.

1. A Jade default exception handler is invoked on the server before returning the error to the client. This exception
handler is similar to the system Unhandled Exception dialog, but it doesn't display a dialog; it only logs the
exception to a file.

2. Jade raises exception 1242 (Remote execution aborted) at the client. The extendedErrorText property of this
exception contains the text that corresponds to the original server method exception.

Exception Handling In-Depth
This section discusses exception handling in greater detail. The examples and strategies are based on the author's
experience so far. If you have alternative or better strategies for dealing with exceptions, please share them!

Exception Handler Stack

Exception Handler Return Values

Summary of Exception Handling Behavior

Building Exception Handlers

Context of Exceptions

Exception Handling Strategies

Exception Handler Stack
Jade allows the developer to arm up to 128 local exception handlers for each method for a specific process, and up to
128 global exception handlers for each process. As each handler is armed or disarmed it is added to or removed from
the local or global exception handler 'stack'. When an exception is raised, Jade passes the exception object to the
most-recently armed local exception handler in the stack that is armed to handle that type of exception and control is
passed to that handler. The class specified in the exception handler arming statement (on exception-class do
exception-handler-method-name) is what determines whether a specified exception is passed to a particular
handler.

If no local exception handler handles a specified exception (or all return Ex_Pass_Back), the global exception handler
stack is examined to look for a suitable global exception handler, starting with the most-recently armed handler.

If an exception handler returns Ex_Pass_Back (documented later in this white paper), control is passed down to the
next most-recently armed exception handler that is capable of handling the exception.

Note To examine the current exception handler stack, use the Process::getExceptionHandlerStackmethod.

Exception Handling
White Paper

Exception Handling 9



WP_ExceptionHandling -2022

Exception Handler Return Values
A Jade exception handler must return one of four Integer values. These values and their significance are discussed in 
the following subsections. 

Ex_Pass_Back

Ex_Abort_Action

Ex_Resume_Next

Ex_Resume_Method_Epilog

Ex_Continue

Ex_Pass_Back
This return value passes control back to any previously-armed local exception handler for this type of exception, or if a
local exception handler is not found, a global exception handler for this type of exception.

If no exception handler is found, the Jade default exception handler is invoked.

Ex_Abort_Action
This return value causes the currently-executing methods to be aborted. The execution stack is cut back, and the
application reverts to an idle state in which it is waiting for user input or some other event.

If the execution stack contains a method that results in the modal display of a form, the stack is cut back only to the
point of awaiting input to the modal form. In this latter case, take care where your beginTransaction and
commitTransaction instructions are coded if your exception handler performs an abortTransaction; otherwise input
subsequent to an exception could result in an 'update while not in transaction state' error.

Note If there is a persistent database transaction in progress, an abortTransaction instruction must be coded in the
exception handler if the database transaction is to be aborted. Returning Ex_Abort_Action does not in itself abort
database transactions.

The situation is similar for shared transient transactions. To abort the shared transient transaction and to discard any
uncommitted updates, use an abortTransientTransaction instruction.

Of course, ordinary process transient objects can also have been updated as a result of an executing method, and
returning Ex_Abort_Action does not undo such updates. If this is important, you must code a mechanism to undo any
updates that have been applied.

Ex_Resume_Next
This return value passes control back to the method that armed the exception handler. Execution resumes at the next
executable statement after the method call expression in which the exception occurred. Epilog sections are executed
for any methods on the call stack between the method that armed the handler and the method where the exception is
raised.

To use Ex_Resume_Next as the return value, the exception must be resumable; otherwise another exception 1238
(Exception handler invalid return code) is raised. For SystemExceptions, resumable is true by default, and false for
FatalErrors.

For exceptions that you raise yourself, you should set the value of resumable to meet your application requirements.

Exception Handling
White Paper

Exception Handling 10



WP_ExceptionHandling -2022

Ex_Resume_Next is useful only for local exception handlers. Since the method that armed the exception handler
may no longer be executing, if Ex_Resume_Next is returned from a global exception handler, it acts as if Ex_Abort_
Action was returned; that is, the execution stack is cut back, and the application reverts to an idle state.

Ex_Resume_Method_Epilog
This return value passes control back to the method that armed the exception handler. Execution resumes at the start
of the method epilog or at the end of the method if there is no epilog section. Execution resumes at the next statement
in the epilog if the exception was raised while executing the epilog. Epilog sections are executed for any methods on
the call stack between the method that armed the handler and the method where the exception is raised.

To use Ex_Resume_Method_Epilog as the return value, the exception must be resumable; otherwise, another
exception 1238 (Exception handler invalid return code) is raised. For SystemExceptions, resumable is true by
default, and false for FatalErrors.

For exceptions that you raise yourself, you should set the value of resumable to meet your application requirements.

Ex_Resume_Method_Epilog is generally useful only for local exception handlers. If you were to use this return value
with a global exception handler, the method that armed the exception handler may no longer be executing. If Ex_
Resume_Method_Epilog is returned by a global exception handler, the behavior is as if the return value is Ex_
Abort_Action; that is, the execution stack is cut back, and the application reverts to an idle state.

Applies to Version: 2022 and higher

Ex_Continue
This return value resumes execution from the next expression following the expression that caused the exception.
Apart from any effect arising from execution of code in the exception handler, the execution stack will be as it was
before the exception occurred.

In order to use Ex_Continue as the return value, the exception must be continuable; otherwise another exception
1238 (Exception handler invalid return code) is raised. For SystemExceptions and user exceptions, this property is
false by default. For exceptions that you raise yourself, you should set the value of continuable to meet your
application requirements. However, this does not apply to the LockException class, where continuable is
automatically set to true when your exception handler successfully retries the lock operation. If you return Ex_
Continue from a lock exception handler when you do not have the lock, Jade raises exception 1225 (Lock cannot be
continued) or 1224 (Automatic lock ignored) if it was an implicit or internal lock.

Note System exceptions 1146 (The object was updated before the lock upgrade completed) is also continuable.
This exception is related to the use of update locks.

Continuable exceptions assume that the cause of the problem has been fixed and the operation retried, so that the net
effect of the exception and exception handling is as if the exception never occurred. For example, a lock exception that
successfully retries the lock is transparent to the user code that requested the lock. Similarly, continuable user
exceptions and their handlers should have the same kind of provision to avoid skipping the execution of important
code. Such skipping could result in erratic behavior of the application.

Exception Handling
White Paper

Exception Handling 11



WP_ExceptionHandling -2022

Summary of Exception Handling Behavior
Consider the following method executions.

At the time thatmethod3 is executing, the exception handler stack could look like the following.

fileExceptionHandler (armed by method2) [LOCAL]
lockExceptionHandler (armed by method1) [LOCAL]
globalLockExceptionHandler (armed by initialize method) [GLOBAL]
globalExceptionHandler (armed by initialize method) [GLOBAL]

You will observe that the stack also includes two global exception handlers, in this case armed by the application's
initializemethod. We now discuss the various options that exist for the handling of an exception in this example
environment.

Exception Handling
White Paper

Exception Handling 12



WP_ExceptionHandling -2022

When the file.open statement is executed inmethod3, Jade raises a FileException. The following diagram shows
what happens to that exception, depending on the return code returned by the exception handler.

Referring to the above image, you will observe that when the fileExceptionHandler (armed bymethod2) returns Ex_
Abort_Action, the epilog is executed. When this has been performed, the call stack is cut right back (performing each
method's epilog as the stack is cut back), and the application essentially goes idle.

If the fileExceptionHandler returns Ex_Pass_Back, the exception is passed to the next appropriate exception
handler in the exception handler stack. In this case, this is the globalExceptionHandler.

If the fileExceptionHandler returns Ex_Resume_Next, the call stack is cut back to the method that armed the
exception handler (in this casemethod2), and execution resumes from the statement following the statement that
called the methods that resulted in the exception. Before each method is cut back off the call stack, its epilog is
performed.

Note that this epilog execution, while useful, is a potential source of secondary exceptions if the epilog references the
object that caused the initial exception. Jade allows multiple (nested) exceptions to occur while handling exceptions,
up to a limit of 20. To prevent stack overflows, Jade raises a fatal exception (which no other handler can intercept)
when the nested exception limit is exceeded.

Building Exception Handlers
This section contains the following topics.

File Exception Handling

Connection Exception Handling

Exception Handling
White Paper

Exception Handling 13



WP_ExceptionHandling -2022

Lock Exception Handling

Last-Chance Exception Handling

File Exception Handling
File exceptions occur when a method attempts an invalid operation on a file; for example, attempting to open a file that
is already opened exclusively by another process. For file exceptions, Jade raises an instance of FileException. This
class has an additional property, file, which is the File object that was being handled when the exception was raised.

There are at least two ways to handle FileExceptions. The examples in the following subsections may be helpful.

Global File Exception Handler
This approach is mainly useful for user interface methods, where Ex_Abort_Actionmay be an acceptable return
value from the exception handler; that is, the stack is cut back and the thread goes idle. Assuming that the following
exception handler had been armed globally, a user-friendly error result can be presented in response to a variety of file
related errors.

initialize() updating; // method of Application
begin

on FileException do app.globalFileExceptionHandler(exception);
end;

bTest_click(btn: input) updating;
vars

file : File;
begin

create file;
file.fileName := tbFileName.text;
file.mode := file.Mode_Output;
file.kind := file.Kind_ASCII;
file.writeLine("Just testing") // possible exception raised here
file.close;

end;

globalFileExceptionHandler(exObj: FileException): Integer updating;
begin

abortTransaction;
app.msgBox(exObj.text,

"File Exception in " & app.name,
Msg_Box_OK + Msg_Box_Exclamation_Mark_Icon);

return Ex_Abort_Action;
end;

Local File Exception Handler
Amore-common situation is that the application needs to handle file exceptions and allow the thread to continue
processing after the exception has been handled. For this situation, you need to use a local exception handler that
returns Ex_Resume_Next. (You will recall that Ex_Resume_Next returns control to the method that armed the
exception handler, following the statement that invoked the current method.)

Exception Handling
White Paper

Exception Handling 14



WP_ExceptionHandling -2022

For example, the isDatabaseClosedmethod that follows checks to see whether a target Jade database is closed, by
attempting an exclusive open of the database control file.

The transient class singleton CnKarmaCntrl is used to return information about the exception back to the method
after the exception handler completes, and returns control to the method that armed the exception handler.

localFileExceptionHandler(exObj: FileException): Integer updating;
vars

kc : CnKarmaCntrl;
begin

kc := app.myCnKarmaCntrl;
kc.setHadException(true);
kc.setExceptionErrorCode(exObj.errorCode);
kc.setExceptionText(exObj.text);
kc.setExceptionFileName(exObj.file.fileName);
return Ex_Resume_Next;

end;

isDatabaseClosed(dbPath: String): Boolean;
vars

file : File;
kc : CnKarmaCntrl; // transient singleton
cc : CnCntrl; // logging class

begin
kc := app.mCnKarmaCntrl;
cc := app.myCnCntrl;
on FileException do localFileExceptionhandler(exception);
create file;
file.kind := file.Kind_Binary;
file.mode := file.Share_Exclusive;
file.fileName := dbPath & "/_control.dat";
kc.setHadException(false);
file.open; // may cause exception
if kc.hadException then // Ex_Resume_Next returns control to here

return false;
else

file.close;
return true;

endif;
epilog

delete file;
end;

Connection Exception Handling
The author's experience with connections is limited mainly to TCP/IP connections controlled by a background process
that is not part of the application GUI, so the following discussion relates to handling exceptions in that environment.

Connection exceptions are a little different from other types of exceptions, because they often happen on an
asynchronous thread. For example, if your connection object performs a readBinaryAsynchmethod call, Jade forks
an additional operating system thread to handle the read, allowing the initiating method to continue processing. The
thread that is handling the readBinaryAsynch call may sit on the read instruction for minutes or hours until the
connection breaks, for example, at which time Jade raises a ConnectionException.

Since the method that performed the original readBinaryAsynch would normally have completed execution at this
time, a local exception handler cannot handle these types of exceptions. For this reason, use global exception
handlers for TCP/IP connection exceptions in the CardSchema class library.

Exception Handling
White Paper

Exception Handling 15



WP_ExceptionHandling -2022

This library, in order to provide for diagnostics and reconnection capabilities, subclasses the TcpIpConnection class
and adds extra properties, which you will see referenced in the following partial example of a ConnectionException
handler. This doesn't purport to be a fully-fledged handler, but should give you some idea of what is required.

globalTcpExceptionHandler(exObj: ConnectionException io): Integer;
vars

tcp : CnTcpConnection;
cc : CnCntrl; // CardSchema logging class

begin
if not exObj.connection.isKindOf(CnTcpConnection) then

return Ex_Pass_Back; // can't handle here
endif;
cc := app.myCnCntrl;
tcp := exObj.connection.CnTcpConnection;
cc.cnWriteLog(cc.CnLogErrors,

"Tcp connection error to host " & tcp.computerName &
" : error " & exObj.errorCode.String & " (" &
exObj.text & ") on connection #" & tcp.connectionNo.String,
tcp);

if tcp.connectionType = Opener then
tcp.reopenConnection;

else
delete tcp; // we use listenContinuousAsynch, so there will

// already be another listening object
endif;
return Ex_Abort_Action; // connection exceptions usually fatal to

// the current method execution anyway
end;

Lock Exception Handling
Lock exceptions are another special case for exception handling, because you usually want to handle the exception
(that is, retry the lock) and having obtained the lock, continue the method that caused the exception.

You can use the following code as a basis for a lock exception handler. This code retries the lock for a reasonable
number of times, but you may want to code it to retry for a maximum period of 60 seconds, for example. If the lock is
not obtained, the handler gives up and returns Ex_Pass_Back.

globalLockExceptionHandler(le: LockException io): Integer;
vars

lockedByUserCode : String;
retryCount : Integer;

begin
if global.isValidObject(le.targetLockedBy) then

// locking process could have gone away
lockedByUserCode := le.targetLockedBy.userCode;
if lockedByUserCode = null then

lockedByUserCode := 'not available';
endif;

endif;
// In CardSchema, for Jade clients, we put up a progress dialog here,
// showing text as follows:
// "Object " & le.lockTarget.String & " locked by " & lockedByUserCode
// & " : retrying, retry number=" & retryCount.String;
while not tryLock(le.lockTarget,

le.lockType,

Exception Handling
White Paper

Exception Handling 16



WP_ExceptionHandling -2022

le.lockDuration,
le.lockTimeout) do

retryCount := retryCount + 1;
if retryCount > 30 then // 30 secs if lock timeout is 1000 mS

return Ex_Pass_Back; // let another handler deal with it
endif;
// Update progress dialog here

endwhile;
return Ex_Continue; // must have the lock if we get to here

epilog
// Unload progress dialog here

end;

Note The global.isValidObject statement doesn't guarantee that the object will be there at the next reference. In
this example, there is still a small window where the targetLockedBy process could have gone away. In a highly
active system, you might need to cater for this possibility.

Last-Chance Exception Handling
All applications of any complexity have bugs that have not yet been detected. These can slip past your specific local
and global exception handlers, so it is often desirable to have a global exception handler that can catch these errors
and capture enough information to permit ready diagnosis of the problem.

Caution If your application is a background client running on a server, you should avoid the display of the Jade
default exception handler dialog, because this effectively halts execution of your application (possibly holding the
database in transaction state) until someone notices and takes appropriate action.

In the CardSchema application, which is the superschema for applications that are managed by Jade's Systems
Management service, we provide a global exception handler that is armed on the client and on the server by the
application initializemethod or startup form loadmethod. This handler performs the following actions.

1. Writes a diagnostic application state dump to log file

2. Optionally advises our monitoring system via SNMPmessage

3. Aborts the transaction and releases any locks

4. Determines whether the client is a web client or Jade client, and displays an appropriate user-friendly form
(non-modal, self-destructing) advising that a problem occurred

5. Returns Ex_Abort_Action

This gives the application a fighting chance of continuing operation without human intervention, while logging enough
information for later diagnosis of the problem.

Context of Exceptions
There are some aspects of exception handling that are not covered in this white paper. One of these is the issue of
context; that is, when an exception is being handled, occasionally the handler has no easy way to find out exactly what
the client was doing that resulted in the exception being raised. To address this need, some developers use a context
object that is used to keep track of the application context at any specific time. Of course, this means that you must
maintain the context object, which is a substantial and error-prone overhead.

The Jade Platform provides optional exception handler parameters that make it easier for you to manage exception
context. For details, see "Optional Exception handler Parameters", in the following subsection.

Exception Handling
White Paper

Exception Handling 17



WP_ExceptionHandling -2022

Optional Exception Handler Parameters
When arming an exception handler, following the first parameter (which must always be the reserved word
exception), you can specify any number of additional parameters that will be passed to the exception handler.

These parameters can be input or output, enabling you to pass information into the exception handler and return
information from the exception handler. For global exception handlers, the parameter values are evaluated when the
exception handler is armed. For local exception handlers, the parameter values are evaluated when the exception is
raised.

Optional exception handler parameters do more than just keeping track of context. For example, local exception
handlers can have a boolean parameter exceptionOccurred, which the handler can set to true. If the handler returns
Ex_Resume_Next, the Jade method that armed the handler can test the value of exceptionOccurred, to determine if
there was an error.

For more details and examples of contents of the parameter expressions passed to the global and local exception
handler methods, see "Creating an Exception Handler" in "Chapter 3 – Exceptions", of the Developer's Reference.

Exception Handling Strategies
Adoption of an exception handling strategy is an essential part of the Jade object-oriented design process. For the
best results, your designer or project leader needs to define and communicate a strategy to your development team
before implementation begins, not as an add-on later in the project.

Major aspects of the strategy should address the following objectives.

The overall strategy should be one of Optimistic Error Handling; that is, correct system behavior is assumed.
Errors are dealt with separately, as exceptions.

This approach enhances system efficiency, because checking for errors (for example, via method return codes)
is greatly reduced or eliminated. Error handling code is kept separate from normal application logic, which
simplifies maintenance.

For editing, error detection code should be encapsulated within the class whose data is being edited; that is,
classes should be responsible for precondition checks (that is, verifying inputs from clients).

When errors are detected, the class method should raise an exception. For example, editing code for a
persistent or model class should reside in that class, not in the client GUI or other client location. Not only does
this ensure the integrity of the data in the persistent class, but the code needs only to exist in one place.

This provides another benefit, where multiple developers work on the same project. The reduced coupling of
application classes arising from the use of exceptions allows fewer dependent, parallel development activities to
take place. For example, when the persistent database classes have been designed and their method signatures
defined, the implementation of those classes can be worked on reasonably independently of the GUI classes, for
example.

Define application exception classes, if necessary, as subclasses of NormalException.

If you want to add additional information to the exception objects that you raise, you need your own exception
subclasses and attendant properties. It is also useful to define your own exception classes so that your exception
arming method (using the on <Exception Class Name> syntax) can specify a specific type of exception that is
to be directed to your handler, rather than all exceptions.

Exception Handling
White Paper

Exception Handling 18



WP_ExceptionHandling -2022

Identify which application exceptions are resumable, continuable, or both, and set these properties appropriately
when raising exceptions.

Note When you instantiate NormalException or a subclass of it, the properties resumable and continuable
are both false, by default. If you want to allow the client's exception handler to return Ex_Resume_Next or Ex_
Continue after handling your exception, you must set these properties accordingly.

If your exception handler attempts to continue a non-continuable exception or to resume a non-resumable
exception, Jade raises a 1238 exception (Invalid exception handler return code). For more details, see the Ex_
Continue return value, earlier in this document.

Summary
Jade's exception classes and exception handling capabilities provide you with a powerful set of features, enhancing
your ability to build truly object-oriented systems. Exceptions and exception handlers are a fundamental part of a
well-designed Jade application, and need to be considered at the design stage of a project.

The use of this functionality can help you to meet desirable object-oriented development objectives such as
maintainability, reusability, and encapsulation, while achieving high levels of system performance and reliability.

Exception Handling
White Paper

Exception Handling 19


	Contents
	Exception Handling
	The Basics
	What is an Exception?
	When Should You Raise Exceptions?
	Exception Classes
	Creating and Raising Exceptions
	Exception Handlers
	Writing a Simple Exception Handler
	Local Exception Handlers
	Global Exception Handlers
	Exception Handler Scope


	Exception Handling In‑Depth
	Exception Handler Stack
	Exception Handler Return Values
	Ex_Pass_Back
	Ex_Abort_Action
	Ex_Resume_Next
	Ex_Resume_Method_Epilog
	Ex_Continue

	Summary of Exception Handling Behavior
	Building Exception Handlers
	File Exception Handling
	Connection Exception Handling
	Lock Exception Handling
	Last-Chance Exception Handling

	Context of Exceptions
	Optional Exception Handler Parameters

	Exception Handling Strategies

	Summary


