Developing a Backup Strategy
White Paper

VERSION 2022

Copyright©2025 Jade Software Corporation Limited. All rights reserved.

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2025 Jade Software Corporation Limited.
All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.

Contents

CON NS iii
Developing a Backup Strategy 1
WAt IS @ BaCKUD 2 1

Why Are Backups ImMportant? 1

Do I Need a Backup Strategy ? 1

Whatis @ Backup Strategy ? 2

External Flat Files .. 3

Availability RequUirements 3
ReCoVery ReqUITEMENTS . 3
Transaction JoUrnal BaCkUps o 4

OffliNe FUIl BaCKUDS .. 5

Online Updating Full BaCKUDS 5

Online Quiesced FUll BaCKUPSo 6
NON-Jade BaCKUDS ..o 6

N arm S ANy SOV T 8
Synchronized Database Service 9

Verify, Verify, Verify . .. 9

Don't Be Afraid to Ask FOr AdVICE 10
Appendix A Database Backup 'Best Practice' Checklist 1
Appendix B Backup Strategy Considerations ... 12
Data LoSS Strateqyo 12

Storing Data Externaltothe Database 13

Referential INtegrity ... 13

P eI OrMaNCE .. . 13

WP_BackupStrategy - 2022

Developing a Backup Strategy

The objective of this white paper is to provide guidance in developing a backup strategy for a Jade database.
Hardware and operating system software selection and configuration are outside the scope of this article; however,
we assume the requirements outlined in the Environmental Considerations for Deploying Jade white paper will be
met.

Consider the information presented in this white paper when you construct your disaster recovery strategy. We
assume that you are familiar with the operational characteristics of the database, and the available backup and
recovery mechanisms as described in the Database Administration Guide.

Finally, Appendix A of this document includes a checklist of best practice actions to use to qualify your backup strategy
and Appendix B contains considerations for your database backup strategy.

For details about developing a backup strategy, see the following subsections.

What is a Backup?

A database backup is a representative copy of data. The copy includes important parts of your database such as the
control file and data files, and your backed up transaction journals. When the original data is lost, use the backup to
reinstate the physical files that constitute your Jade database.

In the event of a catastrophic failure, your database backup is the key to successfully recovering your data.
Additionally, restoring and recovering a database from a backup can be operationally useful. By backing up a
database from one computer and restoring and recovering the database from the backup to another computer, a copy
of a database can be made quickly and easily.

By default, transaction journals are automatically removed. You must set the Jade initialization file
EnableArchivalRecovery parameter to true so that the journals can be retained for recovery purposes.

Why Are Backups Important?

To establish that backups are important, consider the impact to revenue and customer satisfaction if your production
database suddenly became unavailable, even for just five or ten minutes.

What if data files were lost due to media failure and you could not restore or recover them because you did not have a
backup? From the perspective of your enterprise, the results could be grim.

To resume operations, you must be able to restore and recover your data quickly. A key factor to your success in this
situation is a well-defined backup strategy.

Do | Need a Backup Strategy?

If you can confidently say to yourself "l don’t need the data in this database", then no, you don’t need a backup
strategy.

If the data in the database is of any value to you or your business, it is imperative that a backup strategy be putin
place.

You should assume that the database may at some time become damaged or unusable, whether from hardware
failure, environmental instability, improper program operation, human error, or malicious intervention.

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 2

To get the backup in place, recovered, and online, you must have a valid database backup and sets of procedures to
follow.

What is a Backup Strategy?

A backup strategy is more than simply taking a backup of a database and storing it somewhere so it can be fetched
and loaded when trouble strikes.

Notes You must be able to get your database back, verified, and online within an expected timeframe. These are
the important aspects of a backup strategy.

We cannot stress enough that the requirements outlined in the Environmental Considerations for Deploying Jade
white paper must be met in order to have some confidence that your database can be restored, recovered, and
brought on-line as expected.

It is most important that you verify all data that has been moved. Backed up files or restored files that were corrupted
by hardware while they were being written are useless. A cable fault can corrupt data blocks being written to disk.

Knowing how long it takes to backup and verify the database, to restore and verify the database, to restore and verify
transaction journals and to perform recovery is also important.

A backup strategy has four components:
m Backing up the database

This involves making available verified copies of the database files and transaction journals. Available means
accessible for use in getting your database online. Your requirements determine the forms and frequencies of
the backups. They may be offline backups, online backups (or a mix of the two), or you may elect to implement a
warm standby server or a Synchronized Database Environment (SDE), which would be immediately available.
For details about SDE, see the Synchronized Database Service (SDS) white paper.

m Restoring the database

This involves loading and verifying the database files and transaction journals so that a recovery can be
performed. The number and size of your transaction journals is governed by your determination of how much
database update activity you can afford to lose.

In warm standby server and SDE implementations, the database is already resident and ready for recovery once
any additional transaction journals are made available and verified. (Additional journal loading is unnecessary on
SDS secondaries processing in journal block write mode.)

= Recovering the database

This involves activating the database to perform roll-forward recovery through the transaction journals. This is a
continuous state for warm standby server and SDS secondary implementations where takeover operations can
be performed. The failure mode might be such that the transaction journal that was current is not retrievable. In

this case, that journal contained the database update activity that you have lost.

= Proving the strategy

This involves initial and periodic failure drills with critical post-mortem analysis. You must prove the integrity of
the strategy by picking a failure mode, dropping the database, and announcing to your team that the database
has become unusable. You must prove that every step of your strategy is appropriate, executable, and produces
the desired outcome in the expected timeframe.

These periodic catastrophes highlight any flaws in your processes and enable you to confirm your ability to meet
the established critical timeframe for ‘getting back online’.

WP_BackupStrategy - 2022

WP_SDS.pdf

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 3

External Flat Files

You need to be aware of potential mismatches between data stored in the database and data stored in flat files
following recovery using stored backups. These mismatches may require addressing with application-specific code.
Generally, if data is essential to the integrity of the information contained in the database, then it should be stored in
the database, not in external flat files.

As a general concept, where an application has dependencies on volatile external flat files, you may need to store
some sort of history or header information in the database for such files, so that the database can be linked to the state
of the flat file; for example:

®m Has the file been processed yet?

®m |[sthe file on disk the same version as the database thinks it is?
= Should the file actually be there?

= Does the file even exist?

You may need to provide application code that can handle any or all of the above conditions.

Notes If no backup and recovery strategy is in place for files related to this database instance (for example, Jade
binaries, third-party binaries, and miscellaneous files), consider including the backup and restoration of those files
appropriately within your chosen database backup and restore processes.

Making your database available again in the most up-to-date state as is possible in the timeframe your business can
accept is the reason you implement a backup strategy.

The up-time requirements of your database, how long you are prepared to accept it being unavailable when disaster
strikes, and how much updating can be lost are the major factors you must consider when developing your strategy.

Availability Requirements

If your database can regularly be taken offline without impacting your business during some quiet period, you can
implement a strategy utilizing offline backups captured during this downtime.

If your database is required to be online and available at all times, you must either implement a strategy utilizing online
backups captured regularly during some lower-volume transaction processing period, or a warm standby server or
SDE-based strategy.

Where online or offline backups are used, the volume of updating transactions and your recovery requirements
determine the frequency of your database and transaction journal backups.

Recovery Requirements

When formulating your strategy, try to answer the following questions.
= How much data can | lose? (committed transactions recovery point)

You can minimize the chances of losing journal data (and where practicable, you should) using various
techniques such as mirroring to a separate physical volume. You cannot, however, eliminate the possibility that
an event will occur that makes immediate access to the journal data on your drives impossible.

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 4

Generally, the frequency with which you want the transaction journal to switch, be verified, and transferred to a
backup medium and re-verified is governed by the number of transactions on the database and the acceptable
amount of journal data that can be lost if the system has a critical failure. The upper limit of journal data that may
be lost is proportional to the number of transactions that occur in the period between journal switches.

The Jade initialization file [PersistentDb] section JournalMaxSize parameter specifies the journal file size, which
when reached, will cause a switch to a new journal. Once writing focus has been switched from a journal, the
journal can be verified and backed up.

It is common to view the issue in terms of time. A database may have a specified JournalMaxSize value of 30M
bytes and produce one transaction journal per hour for the 10 hours per day that the database is online. Naturally
there are busy and less-busy periods, but it is the human way to relate this to one journal being roughly an hour
worth of updates.

Itisn’t true that you always lose this data, but in the worst case, is it acceptable to require the re-entry of about an
hour’s worth of business operation? Halve the journal file size and it is half the re-entry work. The cost of
establishing what exactly requires re-entry is the same, in any case.

If the maximum amount of data loss that can be tolerated is close to zero, you should give serious consideration
to implementation of an SDS environment. (See "Synchronized Database Service", later in this document.)

How much data will you risk losing?
= How quickly must | complete the recovery? (recovery time)

The frequency of database backups has some bearing on the length of time it takes to recover from a failure. If a
database with a high rate of transactions is backed up offline only once a week, it can take a significant amount of
time to restore and verify the database and to restore and verify the transaction journals in preparation for
recovery from a crash occurring late in the week. The recovery processing itself is normally only a fraction of the
total overall time it takes to get the database back online.

Supplementing the weekly offline backups mentioned above with mid-week overnight online backups would
approximately halve the number of transaction journals requiring reloading, verification, and reapplication.

If the maximum down-time that can be tolerated is measured in minutes rather than hours, you should give
serious consideration to implementation of an SDS environment. (See "Synchronized Database Service", later in
this document.)

How long can your system be down?

Transaction Journal Backups

Automatic restart recovery after a system failure utilizes the current (online) transaction journal set to recover the
database to an operational state.

In a full recovery from a backup, all necessary transaction journal files are used. To effect a full recovery of the
database to an operational state from the backup, all archived (offline) journal files created since the backup was
performed are required, as well as the current (online) transaction journal set.

For protection against media failure in production systems, always locate the online and archived transaction journals
on a different physical volume to the database files, and mirror the transaction journal volume.

You may not be able to fully recover your database if you do not backup consecutively numbered journal files.

Caution Ensure that archived transaction journals are backed up.

Use automated journal close actions, the Jade Database utility, or the Jade database administration framework to
perform transaction journal backups. The transaction journal files can be optionally verified (which we recommend).

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 5

Specify automated close actions using the Jade initialization file [PersistentDb] section JournalCloseAction
parameter.

The Jade database administration framework provides the JournalTransferEvent event, which is caused when a
transaction journal is transferred. This event is signaled to notify a monitoring application that an active journal has
become offline and can be backed up. You can use the backupJournal method, which supports verification and
compression, for this purpose.

The resultant backup file can be verified using the verifyJournal method. For details, see the JadeDatabaseAdmin
class in the Encyclopaedia of Classes).

You can perform scripted or manual journal verification by using the Jade Database utility verifyJournal function.

Note We cannot stress enough the importance of validating the content of the files written.

If you have adequate disk space, don’t remove the archived journals after they have been backed up. Keeping the
archived journals resident facilitates faster recovery from a backup, should the need arise.

Offline Full Backups

An offline backup involves shutting down the database server before starting the backup and then restarting the
database after the backup is complete.

As the database is shut down during the backup process, neither online users nor background processes can access
the database for the duration of the backup. You must therefore schedule sufficient time to perform the backup and
ensure that the periods when the database is unavailable are acceptable to users.

Use the Jade Database utility to perform offline backups. This ensures that the database is in the correct state and that
all necessary database files are backed up. The database files can be optionally verified while being read (which we
recommend) and the backup files compressed while being written.

When a file backup completes, the MD5 checksum is automatically recomputed and compared with the value
calculated when writing the file.

If you move database backups across media (for example, from disk to disk or tape to disk), it is essential that you
verify the resulting files. Use the Jade Database utility verifyChecksums function to recalculate and compare the file
checksums with those that were originally written to the backupinfo file.

Note We cannot stress enough the importance of validating the content of the files written.

Itis possible that the operational window of time you have during which you would like to be able to perform an offline
backup is too small, due to the size of the database. If so, you will need to perform online backups or to implement a
warm standby server or SDE-based strategy.

Online Updating Full Backups

A backup that is performed while the database is active for both read and write access is referred to as a full online, or
hot, backup. As the database can be updated during the backup, the backed up data may be in an inconsistent state.
Special begin and end backup records are written to the transaction journal, to bound the backup operation.

The transaction journal file or files must be retained so that backup recovery may occur; that is, the recovery process
can recover the restored database files to the fully consistent state as at the time the end backup record was written.

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 6

Use the Jade database administration framework to integrate online backup services into your applications or to build
standalone database administration applications. Alternatively, the RootSchema provides a database backup service
that you can incorporate directly into any of your applications. For details, see Chapter 7 of the Developer's
Reference.

When a file backup completes, the MD5 checksum is automatically recomputed and compared with the value
calculated when writing the file.

If you move database backups across media (for example, from disk to disk or tape to disk), it is essential that you
verify the resulting files. Use the Jade Database utility verifyChecksums function to recalculate and compare the file
checksums with those that were originally written to the backupinfo file.

Note We cannot stress enough the importance of validating the content of the files written.

Online Quiesced Full Backups

A backup that is performed while the database is in a read-only state is referred to as a quiesced online, or warm,
backup.

The database is placed in a quiescent state by allowing current active transactions to complete and then flushing
modified buffers from cache to the stable database. In this mode, the physical database files contain all committed
updates to the database and as the database files are opened with shared read access, external backup processes
can safely copy the database files as a consistent database image.

During a quiesced backup, updating transactions are not permitted and attempts to execute database transactions
raise an exception. When a backup is performed in a quiescent state, the physical database files are guaranteed to
contain all database updates. Unlike a full online backup, a quiesced online backup does not require backup recovery
when the database files are restored.

Use the Jade database administration framework to integrate online backup services into your applications or to build
standalone database administration applications. Alternatively, the RootSchema provides a database backup service
that you can incorporate directly into any of your applications. For details, see Chapter 7 of the Developer's
Reference.

The database files are verified while being read and optionally compressed while being written.

When a file backup completes, the MD5 checksum is automatically recomputed and compared with the value
calculated when writing the file.

If you move database backups across media (for example, from disk to disk or tape to disk), it is essential that you
verify the resulting files. Use the Jade Database utility verifyChecksums function to recalculate and compare the file
checksums with those that were originally written to the backupinfo file.

Non-Jade Backups

Itis never valid to backup a Jade database that is not closed, quiesced, or conditioned for external third-party
snapshot, by using non-Jade backup software.

When a third-party tool is used to backup a Jade database, the backup must be taken when the database is closed,
quiesced, or conditioned for an external third-party snapshot.

The preferred option is that the backup should be taken when the database is closed, as this allows use of the batch
Jade Database utility (jdbutilb) custom backup support convertToBackup feature.

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 7

This verifies the files and creates the restoreinfo file that contains MD5 file checksums, and an operational log in the
database directory. If the convertToBackup operation is successful, you can then perform the required action with
the database image; for example, copy the files to tape.

If ever the files are copied to a new disk location, they can be verified using the Jade Database utility
verifyChecksums function, which will recalculate and compare the file checksums with those that were originally
written to the restoreinfo file.

If the backup is to be taken while the database is quiesced, call the JadeDatabaseAdmin class
changeDbAccessMode method, specifying Mode_Archive and Usage_ReadOnly. To return the database to
operational state when the backup is complete, call the changeDbAccessMode method, specifying Mode_Default
(the usage parameter value is not used when the mode is specified as Mode_Default). For details, see the
JadeDatabaseAdmin class in the Encyclopaedia of Classes.

You can also do this externally, by using the jomChangeAccessMode Application Programming Interface (API) call.
For details, see "Changing the Database Access Mode", in Chapter 3 of the Object Manager Guide. This process
results in a consistent image of the database being backed up, but the database was not verified during the backup
and the resultant image does not contain the checksum information necessary to check the integrity of the image
when it is restored.

Note When a primary changes to archive mode, the SDS service, if active, is stopped. The service is restarted as
necessary when exiting from archive mode.

If the backup is to be taken while the database is being updated, call the JadeDatabaseAdmin class
changeDbAccessMode method, specifying Mode_Snapshot and Usage_Update. This conditions the database for
snapshot recovery, as follows.

1. Asystem quietpoint is established and a checkpoint taken (reason=start snapshot).

2. Acopy of the control file conditioned for snapshot recovery is made (_control.snap), and control state is marked
as snapshot active.

The _control.snap file must be copied in the backup.

To exit from snapshot mode when the backup is complete, call the JadeDatabaseAdmin class
changeDbAccessMode method, specifying Mode_Default. This transitions the database out of snapshot mode, as
follows.

1. Acheckpoint is taken (reason=end snapshot).

2. An END_SNAPSHOT record is written to the journal (recovery from the start snapshot checkpoint record up to
this record is necessary to restore file integrity).

3. Snapshot active control state is cleared.
You can also do this externally, by using the:

= jomChangeAccessMode Application Programming Interface (API) call. For details, see "Changing the
Database Access Mode", in Chapter 3 of the Object Manager Guide.

= jdbadmin program StartSnapshot and EndSnapshot database actions, to condition the database for recovery
from a non-Jade backup and to take the database out of snapshot mode, respectively. (For details, see
"StartSnapshot" and "EndSnapshot”, respectively, in Chapter 2 of the Database Administration Guide.)

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 8

Caution Itis essential that the backup processing occurs entirely while the database is in snapshot mode, and that
as a minimum, journals from the start snapshot checkpoint to the END_SNAPSHOT record will be available for
snapshot recovery.

If the database is accidentally closed while it is in snapshot mode, do not restart the database until the backup has
completed. When restarted, the database will perform a snapshot recovery.

To recover from a third-party backup taken while in snapshot mode, perform the following actions.
1. Restore the system using the backup software tools.

2. Copy any necessary journals into place.

3. Initiate recovery with the Jade Database utility or by starting the database.

Snapshot recovery is performed when database recovery (from database open, or Jade Database utility-initiated
recovery) detects the database is in snapshot mode. The _control.dat file is replaced with the _control.snap file and
a roll-forward recovery is performed. If the recovery was Jade Database utility-initiated, the roll-forward termination
condition is that specified by you; otherwise the roll-forward recovery is to end-of-last-journal.

Roll-forward recovery logic looks for the END_SNAPSHOT audit record. This indicates the point at which file integrity
is known to be restored, assuming that the snapshot completed and the recovery is not due to restart.

Recovery due to restart will encounter the LOG_TRAILER or a header discontinuity, set snapshot state to incomplete,
and then continue recovery as normal.

Note If a roll-forward termination condition was specified and that condition is met before the database can establish
an end-snapshot condition, the recovery will fail with a 3192 error (Snapshot recovery terminated before end-snapshot
condition established).

The end-snapshot condition is satisfied when an END_SNAPSHOT record is encountered, or in its absence, a
DATABASE_CLOSE or DATABASE_OPEN record is encountered. Snapshot state is set to recovered, and recovery
then continues as normal.

If the third-party backup tool is file-based rather than block-based, it will not be able to copy _control.dat, which is
opened in exclusive mode by the database. This file can be excluded from the backup and when the database is
restored, the _control.dat file can be recreated by copying _control.snap as _control.dat.

Itis usual for third-party block-based backup tools to copy blocks changed since the last backup, and blocks that
change during the backup. Therefore at the end of the backup, the image will contain all updates to journals in the
journals\current directory.

Restoring such a backup and initiating the system without otherwise restoring journals will behave as a snapshot
recovery due to restart.

To achieve the same behavior when the third-party backup tool is file-based, however, requires that the backup tool
copies the journals after the data files have been copied.

Warm Standby Server

It may be desirable to maintain a copy of your database on another machine in standby mode. You can quickly and
easily make a standby copy of a database by restoring and recovering a backup on another machine.

As transaction journals become archived (or offline) on your primary system, you can then copy them to the standby
system, verify them, and apply them to the database.

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 9

When a transaction journal switch occurs, a journal switch control record is written to the end of the journal. When this
record is processed by roll-forward recovery and it is the final record in the transaction journal, the recovery process
knows that later transaction journals can exist so the database state is maintained such that a further roll-forward
recovery from that point is possible.

When the batch Jade Database utility (jdbutilb) is run to recover the database, it processes the next journal and
whatever in-order later journals exist in the directory.

The interactive Jade Database utility (jdbutil) processes journals in the same manner except that if a journal switch
control record is found at the end of the last journal in the directory, it waits for the next journal file to be provided or for
the user to finish or abort the recovery processing.

Both versions of the Jade Database utility support continuing roll-forward recovery over multiple process executions.
Any other open of the database cancels the preserved state that enables continuous roll-forward recovery.

While warm standby servers can provide adequate functionality, a fully automated and capability-rich standby server
implementation is available with the Synchronized Database Service, described in the next section.

Because of byte ordering or operating system differences, the format of physical database files differs between
hardware architectures and/or operating systems. You therefore cannot interchange database files directly by backing
up a database on one machine and then restoring the database on a machine with a different operating system or
hardware byte order.

Synchronized Database Service

The Synchronized Database Service (SDS) is the name given to the optional software service in a Jade system that
keeps one or more secondary databases automatically synchronized with a primary database.

SDS automates the otherwise-manual processes of maintaining a standby database server, which can be used if the
primary database is taken offline for routine maintenance, becomes damaged, or is lost entirely.

SDS provides several management interfaces, including an API, Jade initialization file parameters, and the Jade SDS
Administration utility that presents a graphical user interface for monitoring and controlling an SDS environment.

You can synchronize secondary databases to a journal file boundary or to a journal block boundary within the current
transaction journal, as specified in the Jade initialization file [SyncDbService] section SyncMode parameter, which
you can set to JournalSwitch or to JournalBlockWrite.

A Jade Synchronized Database Environment (SDE) combines loosely connected and geographically dispersed
primary and secondary databases into a robust, easily managed disaster recovery solution. It is a superior data
recovery solution compared to backup and recovery from tape, which is generally incapable of meeting
high-availability recovery time objectives. Jade’s SDS facility provides hot standby secondary databases, which you
can use for both disaster recovery and for offloading query workloads.

For further details, see the Synchronized Database Service (SDS) white paper and the Synchronized Database
Service (SDS) Administration Guide.

Verify, Verify, Verify...

If you do not incorporate verification into your strategy, you are courting disaster. For its intended purpose, a corrupt
database backup is worse than useless.

Whenever data is moved, verify the database before opening it (using the Jade Database utility verifyChecksums
function) and verify journals (using the Jade Database utility verifyJournal function).

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Developing a Backup Strategy 10

Don’t Be Afraid to Ask For Advice

The administration of databases was once the domain of specialists. It is a different world today, and the Jade
Platform is more than just a Database Management System (DBMS). You can be its administrator.

The decisions you are required to make when formulating, implementing, and proving your strategy might seem
daunting at first.

As you become more familiar with the concepts and the mechanics of the processes involved, you will find that while
you have to be particular and correctness is important, database administration isn’t foo difficult.

The strategy decisions you are making are data-based in that it is the nature of the data in the database and your
attachment to that data that drives your decisions.

Itis for this reason that you might implement different strategies for different databases in your organization.

Then again, for the sake of simplicity, you may decide to treat your smaller and less business-critical databases in the
same manner as your primary business database because it makes operational sense, piggy-backing on the primary
backup strategy.

Every set of circumstances is different.

If in doubt, ask the people who make Jade, by contacting your local Jade support center or Jade Support if your Jade
licenses include support. Alternatively, see the Jade Forums (https://forums.jadeworld.com).

WP_BackupStrategy - 2022

https://forums.jadeworld.com/

Appendix A Database Backup '‘Best Practice'

Checklist

The following is a checklist of database backup best practices.

Schedule and take backups on a regular basis.

When performing backups, never overwrite the last good backup until the current backup is completed and
verified.

Consider and implement the use of RAIDed disk volumes for storage of all volumes associated with your system,
including database files, journals, other flat files etc.

After journals have been released, verify them by using the Jade Database utility verifyJournal feature, and
back them up.

Place archived journals on a different physical disk and/or machine from the current journals.
Store backups and associated journals securely, both off-site and on-site.

Regularly perform a physical certification of the database, by using the Jade Database utility certify feature, and
investigate and address any errors or warnings.

Regularly test the restore and recovery process, using recent backups.

After you move database files from one location to another (for example, from disk-to-disk or tape-to-disk),
perform the Jade Database utility verifyChecksums feature before opening the database for recovery or for
other use.

After you move journals from disk to disk or from tape to disk, verify them again by using the Jade Database
utility verifyJournal feature.

WP_BackupStrategy - 2022

Appendix B Backup Strategy Considerations

This appendix elaborates further on considerations for your backup strategy.
m DataLoss Strategy

0 Storing Data External to the Database

Data Loss Strategy

Although there are many technical and procedural safeguards in place to protect against the loss of data, there
remains the remote possibility of a situation developing that results in the loss of previously captured or committed
data.

Complete data loss is unlikely, as long as regular copies are made and stored safely away from the production (or
main) system. In addition, a stand-by system might be employed using SDS, which enables a much faster recovery in
the event of a disaster. However, a hardware, low-level software, or firmware fault, or a combination of these faults
might provide a circumstance in which a system needs to be recovered from a previous backup, and for some reason
cannot be rolled forward to the last point of user data input. This would result in a period of recently applied
transactions being lost.

For any IT system, you need to consider the consequences of data loss prior to the event occurring, in order to decide
whether proactive strategies to mitigate the impact are warranted. Valid strategies might involve both technical and
procedural or business-related actions.

Importantly, you need to consider the impact of data loss not just in terms of the specific application in which the data
loss has occurred but also the effect on any other applications that interface with it. This can be a complicated situation
that developers need to consider at the design stage of any systems that receive or send updating transactions with
other systems.

Note There is no single solution available, but it must be given careful thought in the design of each interface from
each system’s perspective.

A basic design consideration in cases where separate systems update each other is to ensure that the interface has a
form of sequence checking that can detect whether one of the systems has lost data; that is, has gone backwards in
time. For example, if application A sends transactions to update application B, the interface at both ends might keep
an incrementing sequence reference of the last processed transaction, which is compared before processing any new
transaction. In the event that the sequence records are not synchronized, processing could be halted and action taken
to address the problem.

You should consider design functionality to assist in the recovery in such a situation. For example, if application B has
lost data, application A might be designed to retain the source of the transactions previously sent to application B in
such a way that it has the ability to safely re-send previously sent transactions, if required.

Your system must have the ability to deal with a situation in which application A has lost data and therefore application
B contains transactions as a result of data that longer resides in application A. The solution will be unique for each
situation, depending on the type and inter-relationships of the data concerned.

WP_BackupStrategy - 2022

jJadeplatform Developing a Backup Strategy
White Paper

Appendix B Backup Strategy Considerations 13

Storing Data External to the Database

All persistent data should be stored in the Jade database. You should consider at risk of full or partial loss any data
necessary for the operation of the solution that is represented in the form of non-database files (flat files), and you
must be able to be recreate those flat files somehow, whether that be from the Jade system itself or from an external
system or user.

If there are compelling reasons for the application to maintain data in the form of flat files external to the database, you
must be mindful of maintaining both integrity and performance.

Referential Integrity

Data retained outside the database is not protected to the same level as persistent database data. This is because the
database journaling process does not apply to flat files and also because the files could potentially be manipulated
outside the application. For example, in the event of a disk subsystem failure, it is highly possible that the database will
be restored to a timestamp that differs from that of the flat files. This will corrupt any references contained in the
database to the flat file data.

Another significant consequence of maintaining data external to the database is that Jade’s SDS functionality that can
be used to create warm standby systems for data recovery will not maintain the non-database files; that is, the data
recovery system will not have these files available.

You must consider the following suggestions to allow for unusual situations.

m [fthe database is to contain references to essential non-database file data, the application must provide check,
resynchronization, and repair facilities that can be run on a regular basis or in the event that the integrity is
suspect. Essentially, a facility must exist in the application to detect references (within the database) to missing
files or orphan files, as well as a means of repairing them.

Repair might be manual by the user once the corruptions have been identified. In order to achieve this
functionality, it is likely that the database will need to be able to authenticate each file. This necessitates the use
of algorithms such as MD5 file hashes and storing the result with the database reference to detect the
authenticity of each file.

m Write access to entire directory tree down to file level is to remain exclusively the domain of the application.
Read-only access can be permitted to other applications or users, if required.

Performance

In addition to the integrity issue discussed earlier in this appendix, there can also be performance issues if large
quantities of flat files are stored in a Windows NTFS file system. A high volume of small flat files has an adverse impact
on functions such as backup, defragmentation, virus checking, and general directory searching.

To avoid these issues, take the following precautions.

m Use a structured tree of data-dependent branches, to ensure that the quantity of files contained in any directory
or folder is kept to a nominal level of files for file system performance.

u Maintain references to the entire tree, including the files in the database.

® You should consider the maximum number of files that can be practically stored on an NTFS volume to be
approximately 250,000.

Path references to a reasonably low level should therefore be soft-coded in the application, to allow file system
separation, if required.

WP_BackupStrategy - 2022

	Contents
	Developing a Backup Strategy
	What is a Backup?
	Why Are Backups Important?
	Do I Need a Backup Strategy?
	What is a Backup Strategy?
	External Flat Files

	Availability Requirements
	Recovery Requirements
	Transaction Journal Backups
	Offline Full Backups
	Online Updating Full Backups
	Online Quiesced Full Backups
	Non‑Jade Backups
	Warm Standby Server
	Synchronized Database Service
	Verify, Verify, Verify…
	Don’t Be Afraid to Ask For Advice

	Appendix A Database Backup 'Best Practice' Checklist
	Appendix B Backup Strategy Considerations
	Data Loss Strategy
	Storing Data External to the Database
	Referential Integrity
	Performance

