
Copyright©2023 Jade Software Corporation Limited. All rights reserved.

Asynchronous Method Calls
White Paper

VERSION 2022



Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2023 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade Readme.txt file.



WP_AsynchMethodCalls - 2022.0.03

Contents

Asynchronous Method Calls 4
Purpose of this Document 4
Feature Overview 4
Using the Feature 5
Code Example 6

Preparing a Worker Process 7
Multiple Asynchronous Method Calls 7

Additional Information 9

Appendix 10
Example Application Overview 10

Using the Example Application 11
The Framework 11
Application GUI 12
Using the Application without the Predefined GUI 12

Modifying the Application 13
General Process Handling 13
Report System 14
Changing the Kind of Task Implementations 14
Constants 14

The Performance Output File 14
Worker Report 14
Caller Report 15
Request Report 15

Example Test Results 15
Hardware Configuration 16
Test Configuration 16
Results 16
Interpretation 16



WP_AsynchMethodCalls - 2022.0.03

Asynchronous Method Calls

The asynchronous method calls feature provides the ability to execute in parallel different tasks of an application. The
parallel execution of tasks provides more potential to achieve improved performance than that achieved by handling
tasks sequentially.

In essence, the feature is a framework around Generic Messaging, which enables you to perform parallel tasks in your
applications with a few simple calls.

For more details about asynchronous method calls, see the following subsections.

Purpose of this Document
This document outlines:

How the feature works

How to make best use of the feature

When it is or it is not appropriate to use the feature

An example application was written to simulate different execution scenarios and to measure the tasks that have to be
performed. The example AsynchMethodExample application, which can be downloaded from the
JADE-WP-Asynchronous-Method-Calls link at https://github.com/jadesoftwarenz, is described in the appendix of
this document and is available for you to use and modify, running it against your own specific hardware.

Example performance tests utilizing the described application are also contained in the appendix. The results of these
tests give an indication of possible performance gains that are achievable using asynchronous method calls.
However, the actual gains that can be obtained in practice are highly dependent on application characteristics and
hardware configuration.

Feature Overview
To make the best use of asynchronous method calls, your application must have tasks that can be executed in
parallel.

An asynchronous application generally sends multiple tasks to worker processes. Web service processes (for
example, web consumers or providers) are a good example of this feature.

https://github.com/jadesoftwarenz


WP_AsynchMethodCalls - 2022.0.03

The following image shows how you can achieve performance gains with four parallel tasks (blue, green, yellow, and
purple).

The red section of the bar represents the time utilized by the framework to manage the asynchronous method calls.

Using the Feature 
The use of this feature requires the following elements.

A caller process

A receiver object

An intermediate object (JadeMethodContext)

One or more worker application processes

The calling process creates a JadeMethodContext object (as a non-shared transient instance) and uses the
JadeMethodContext::invokemethod to queue the request, passing the receiver object for the method execution to
the worker process.

The object that is passed in must be a shared transient or a persistent object, or the app application environmental
variable.

The method called must be public.

All parameters for the target method must be constant or input.

The worker process must be launched in the same node as the caller process.

The application must pre-launch the worker processes that are intended to process the request queue. As a general
guideline, the more tasks that are required to be processed simultaneously, the more worker processes need to be
launched.

Asynchronous Method Calls
White Paper

Asynchronous Method Calls 5



WP_AsynchMethodCalls - 2022.0.03

The caller process does not specify which of the worker processes handles a specific request. When all worker
processes are busy and a new request is queued, the request waits in the queue until a worker process is available to
service the request.

Code Example
The code example in this section is not the same as the application example in the schema that accompanies this
white paper.

In the following code example, we have a class called Person. The Person class implements a method called
getAddress, which returns an address string for the specified date. The signature of the method is:

getAddress(time: TimeStamp input): String;

If we were to call the method asynchronously, we could implement it as follows.

asynchronousCall(aPerson: Person; ts: TimeStamp input);
vars

mtdCtx1, mtdCtxX : JadeMethodContext;
result : String;

begin
...
create mtdCtx1 transient;
mtdCtx1.workerAppName := "WorkerApplication";
mtdCtx1.invoke(aPerson, getAddress, ts);
mtdCtxX := process.waitForMethods(mtdCtx1);
if mtdCtxX.getErrorNumber() = 0 then

result := mtdCtxX.getReturnValue().String;
else

// handle call error
endif;
...

epilog
delete mtdCtx1;

end;

Asynchronous Method Calls
White Paper

Asynchronous Method Calls 6



WP_AsynchMethodCalls - 2022.0.03

The two conditions that must be true before this method will run to completion are as follows.

The aPerson object of the class Personmust be persistent or sharedTransient.

There must be a minimum of one worker application process with the nameWorkerApplication running on the
current node.

To invoke an asynchronous method call, you must utilize the JadeMethodContext class. You will need to create an
object of this class and define the name of the worker application, by assigning the propertyworkerAppName.
Initiation of the asynchronous call occurs when the invokemethod is called, at which time the request is inserted in
the queue. The first parameter for the invokemethod is the object on which to make the call and the second
parameter is the name of the method to be called. If the method to be called receives parameters (as is the case in the
previous example), you must also supply these parameters.

To receive the response, you must wait for the methods to complete. You should always call thewaitForMethods
method of the current Process object before retrieving the result to ensure the method has finished processing. This
method receives the JadeMethodContext object as a parameter. ThewaitForMethodsmethod blocks the current
sender process until a worker process processes the request and returns the specified object. In the earlier example,
we receive back the same JadeMethodContext object as the one we passed to thewaitForMethods method as a
parameter. If the call was successful, we can query the JadeMethodContext object for the return value of our
asynchronous method call.

In this example, there is no benefit from calling this one method asynchronously. Our current process has to wait until
the method has executed and does nothing else during this period. However, if two or more method calls are
performed asynchronously, as outlined under "Multiple Asynchronous Method Calls" later in this document, total
elapsed times may be reduced.

Preparing a Worker Process
A standard application process is not created with the necessary internal structure required to handle the processing
of asynchronous method calls. However, these internal structures can be constructed for any such process via a
single call to the Applicationmethod asyncInitialize. To disable this ability and to ensure that the process is cleaned
up appropriately when destroyed, the Applicationmethod asyncFinalize should be invoked.

Typically, these two method calls are made in the worker application’s specific initialize and finalize methods,
respectively. For example, a worker application could be defined as follows.

Application nameWorkerApplication

Initialize method init

init() updating;
begin

app.asyncInitialize();
end;

Finalize method finalize

finalize() updating;
begin

app.asyncFinalize();
end;

Multiple Asynchronous Method Calls
Continuing with the earlier example, we now show you how to call the same method as a parallel task and call the
same method for another instance of the Person class.

Asynchronous Method Calls
White Paper

Asynchronous Method Calls 7



WP_AsynchMethodCalls - 2022.0.03

Although you can call different methods for the same object, for this example we are simply outlining one scenario of
how parallel method calls can be handled.

asynchronousCall(aPerson1, aPerson2: Person; ts: TimeStamp input);
vars

mtdCtx1, mtdCtx2, mtdCtxX : JadeMethodContext;
result1, result2 : String;

begin
...
create mtdCtx1 transient;
create mtdCtx2 transient;
mtdCtx1.workerAppName := "WorkerApplication";
mtdCtx2.workerAppName := "WorkerApplication";
mtdCtx1.invoke(aPerson1, getAddress, ts);
mtdCtx2.invoke(aPerson2, getAddress, ts);
while true do

mtdCtxX := process.waitForMethods(mtdCtx1, mtdCtx2);
if mtdCtxX = null then

break; // all requests complete
endif;
if mtdCtxX.getErrorNumber() = 0 then

if mtdCtxX = mtdCtx1 then
result1 := mtdCtxX.getReturnValue().String;

endif;
if mtdCtxX = mtdCtx2 then

result2 := mtdCtxX.getReturnValue().String;
endif;

else
write "Error: " & mtdCtxX.getErrorNumber().String;

endif;
endwhile;
...

epilog
delete mtdCtx1;
delete mtdCtx2;

end;

As in the first code example earlier in this document, a number of conditions must be met before the above example
completes successfully. The aPerson1 and aPerson2 instances of the Person class must be persistent or
sharedTransient and there must be a minimum of one application with the nameWorkerApplication running on the
current node.

If only one application with the nameWorkerApplication is running, there will be no parallel processing of requests
observed, because the single worker process would handle the first asynchronous method call and after finishing it,
the process would then handle the second request. In other words, at least two worker processes must be run
concurrently to achieve parallel execution of the intended asynchronous method calls.

The above example is similar to the first code example, as we have to prepare all of the objects in a similar manner to
the first example. However, this example shows how results can be retrieved from each asynchronous method call. An
important point to note is that the order in which the results are received may not be the same as the order in which the
calls were invoked if you are running multiple server processes (that is, the result order is undefined). One
consequence of this is that you have to check which JadeMethodContext object is received after calling the invoke
method.

When you know which object has been received, you can assign the results for the different asynchronous method
calls. If all requests are handled and the invokemethod is invoked again, the current process no longer gets blocked
and the method immediately returns null, which confirms that all calls have been processed.

Asynchronous Method Calls
White Paper

Asynchronous Method Calls 8



WP_AsynchMethodCalls - 2022.0.03

Additional Information
The requests are sent to the queue for asynchronous method calls when the invokemethod is invoked and not when
thewaitForMethodsmethod of the current process is invoked. This is an important distinction, as it means that
requests are processed even if the sender process never asks for the result.

The completed request stays in a process queue until the sender process gets terminated or if a timeout has been
specified, the request can be deleted when the timeout expires.

If the invokemethod is invoked while there is no worker application running with the specified name, the invoke call
fails with an exception.

ThewaitForMethodsmethod accepts a comma-separated list of JadeMethodContext objects, an array of such
objects, or a mixture of array references and object references.

After invoking the asynchronous method call, you can use JadeMethodContext class methods to query the internal
state of the framework; for example, you can ask for requests already waiting in the queue by using the
getTimeStampsmethod.

Asynchronous Method Calls
White Paper

Asynchronous Method Calls 9



WP_AsynchMethodCalls - 2022.0.03

Appendix

This appendix contains the following topics.

Example Application Overview

Example Test Results

Example Application Overview
The example application demonstrates how to use the asynchronous method calls feature. The scenario the
application simulates is based on the use of web services. In addition, the application allows you to view the effects of
changing runtime parameters such as the number of workers and callers.

The above image depicts a number of worker and caller processes. The worker processes offer different services to
work on for the caller processes. The caller processes are waiting for a number of external requests. Every caller
process periodically receives an updated list of requests.

If a caller receives a request, the caller process sends this request to a queue. One of the worker processes takes the
request from the queue and processes it.

The example application allows you to change the number of caller and worker processes, the number of different
tasks per external request, the approximate time difference between every external request, the kind of tasks, and
finally, an operation parameter, which enables the application to specify the type of work the worker processes
perform.



WP_AsynchMethodCalls - 2022.0.03

The application offers four different kinds of task, as follows.

1. Use no resources

This option enables you to enter the operation parameter in milliseconds as the duration for a process to sleep.
None of the activity for the other task types occurs for this task.

2. Use CPU

The worker processes utilize an inefficient algorithm to count prime numbers lower than a specified number. For
this task, the operation parameter is the specified number. This is intended to be a CPU-intensive task.

3. Use I/O

The workers create the specified number of objects in the database and then delete them all again. The
operation parameter for this task is the number of objects. Each object create or delete is in its own transaction.
This is intended to be an IO-intensive task.

4. Use CPU and I/O

This combines the work done in task types 2 and 3, above. The operation parameter in this scenario represents
the number of objects to create and delete, along with the start number to begin the descending prime number
search.

The application writes a Comma-Separated Values (CSV) file on completion, with the run times for each worker
process, caller process, and for each single request.

Using the Example Application
This section describes the use of the example application, as follows.

The Framework

Application GUI

Using the Application without the Predefined GUI

The Framework
The framework offers you two distinct options to make use of the application.

1. The first option is a basic interface with a few method calls used to control the whole application. In this scenario,
you can view the application as a black box that is doing everything for you. You cannot start a new run of the
application if the previous one is not finished.

Caution Take care if you want to run multiple scenarios, as initiation of concurrent runs results in errors.

2. The second option uses the example GUI, which also makes use of the first option as the interface. You can
enter each of the described parameters and start the simulation.

The form receives regular updates, informing you of what is happening inside the application. At the completion
point, a Save File dialog prompts you to specify where the performance results should be saved.

Asynchronous Method Calls
White Paper

Appendix  11



WP_AsynchMethodCalls - 2022.0.03

Application GUI
The following form enables you to control the example application. The left side of the form represents the input area
for each of the parameters you can change. The right side of the form displays the execution output.

The first two input fields enable you to enter the number of workers and caller processes.

The option buttons enable you to select the kind of tasks that are received by the callers and that the worker processes
work on.

The first text box under the option buttons enables you to enter the operation parameter.

The second text box under the option buttons enables you to specify the number of requests for each external task.
This number starts a separate request for the worker processes every time an external task arrives at a caller process.

The third text box enables you to specify in milliseconds a time interval between caller tasks. In the above image, the
caller queues another request every millisecond.

The fourth text box enables you to specify the number of intervals before the application stops assigning new tasks to
the caller processes.

Using the Application without the Predefined GUI
To run the application, it is not necessary to start the GUI. The GUI is merely an example that shows how the
application framework can be used. If you want to develop your own user interface, consider the following.

Asynchronous Method Calls
White Paper

Appendix  12



WP_AsynchMethodCalls - 2022.0.03

A class that implements the IUIProcessingUnit interface needs to be implemented. The implementation of the
interface receives all of the callbacks from the framework. In the GUI implementation, theMainForm class
implements this interface.

An object of the ProcessingUnit class needs to be initialized by calling the initmethod, which needs the callback
object as a parameter. After initializing, you can perform the call for the asynchronous method calls. The two options
are as follows. To run your application:

Without defining a result output file, call the startAsynchronousCallsmethod of your ProcessingUnit object.
After the application finishes and all requests are completed, a Save File dialog prompts you for a folder and a file
name in which to save the performance results. This file must be a CSV file.

With an output CSV file defined at startup time, call the startAsynchrnousCallsAndSavemethod of your
ProcessingUnit object. The results are automatically written to the specified file, and no Save File dialog is
displayed after the application completes.

Take care not to delete the ProcessingUnit object (or your callback object that implements the IUIProcessingUnit
interface) before the callback object receives the finishedAction callback. After receiving the callback, you can call
the startAsynchronousCalls or startAsynchronousCallsAndSavemethod again, perhaps with different
parameters, or terminate it. In the latter case, you must call the finalizemethod of your ProcessingUnit object.

Modifying the Application
This section describes modification of the example application, as follows.

General Process Handling

Report System

Changing the Kind of Task Implementations

Constants

General Process Handling
If you start the application using the predefined GUI, there are four different kinds of processes or Jade applications
that can be launched.

The first is the process for the GUI. Each worker process and each caller process is also launched as a separate
process. These three kinds of process normally run continuously. When a new request arrives for a caller process the
application starts an additional process that tracks that request, puts the tasks from that request onto the queue, and
calls back to the caller when all the tasks from that request are complete.

The simulation first starts the GUI process and after the application has initialized, the worker and the caller processes
are launched. When the last of these processes is running, the application starts the first task for the callers.

When the application completes, the processes end in reverse order. A caller process terminates only when the last of
its requests has been finished. All of the worker processes run until the last caller process terminates. This leaves only
one process remaining after the simulation is finished: the GUI’s process.

Information about the start and the end of each process is sent via notifications.

Instances of theWorker and Caller classes hold the information about the application’s parameters.

Asynchronous Method Calls
White Paper

Appendix  13



WP_AsynchMethodCalls - 2022.0.03

Report System
A report class structure saves the individual times for the processes and the actions between them. The main class is
Report, which holds collections of other report units.

Each type of process has its own report unit class, which is derived from the abstract base ReportUnit class. The
associations are as follows.

Request process RequestReportUnit

Caller process CallerReportUnit

Worker processWorkerReportUnit

The worker process holds another report unit, ContinueableReportUnit, which collects all of the active working time
and the passive idling time.

The report system collects all of the units and after completion of an application run, you can print the report or write it
to a file.

Changing the Kind of Task Implementations
To change the implementations of the tasks, modify the methods of theWorker class. The methods are doNothing,
useCPU, useIO, and useCPUandIO. All of these methods receive an Integer parameter that represents the
operation parameter.

Constants
Several constants are defined that are used all over the framework. Most method parameters are Integer values.

The most-important constants are those used to represent the four different kinds of task and the different user event
numbers for the notifications.

The Performance Output File
At the end of each run of the application, a CSV file is written with the run times for the caller and worker processes
and for each request. Use spreadsheet software to view and edit CSV files.

The CSV file contains the following sections.

Worker Report

Caller Report

Request Report

Worker Report
The first section of the CSV file contains information about the worker processes. Each row of this section of the report
represents a single worker process, identified by an ID in the first column. The second column contains the elapsed
time of the process, which should be similar for each worker process.

Each worker process is started at the start of the application and terminates at the end, after all requests are
processed. As such, you can use these times to determine how long it took to process all of the requests.

Asynchronous Method Calls
White Paper

Appendix  14



WP_AsynchMethodCalls - 2022.0.03

The third column contains the number of request tasks the worker process processed. Adding all of the numbers in the
third column should give the total number of requests for your current application run.

The fourth and fifth columns contain the active work and the idle time in microseconds. The idle time is the time the
worker spends waiting for a request. This can happen only if the asynchronous method call queue was empty. The
active work time is the time the worker spends processing a request.

The last column mirrors the relationship between the two times and gives the percentage of busy time for the worker
process for the duration of the application execution.

Caller Report
In terms of performance, a caller process plays a secondary role in this example application. The caller processes wait
for incoming tasks (requests) and pass them to the request queue; they do not get blocked at all. Because of this, the
caller report section of the CSV file contains only the identifier of the caller processes and the elapsed run time.

Each of the caller processes’ run times are shorter than the run times of the worker processes in our scenario,
because the worker processes can terminate only if the last caller process has already terminated.

If a caller process has no additional tasks to perform, it terminates even if other caller processes are still waiting for
other tasks. Because of this, a caller process can have a significantly shorter run time than other caller processes.

Request Report
The requests report section of the CSV file includes the request information encountered for the selected application
parameters during the application’s execution. Elapsed time data is provided for each request.

Requests do not have an ID, as they are executed via a caller process and they are not aware of other caller
processes and their requests.

The report output for the callers is ordered by the ID of the caller process that initiated the request. The ID of this caller
process is displayed in the sixth column. The seventh column contains the ID of the worker process that processed the
request.

The first column of the request report section contains the number of requests that were already in the queue waiting
for a free worker process to get processed. The second column contains the number of microseconds that elapsed
from the application start to the start of the current request.

The third column of the requests report contains the elapsed response time in microseconds for the requests. This is
the time from when the request was queued until the response was returned. This time can be split into two parts. The
first part is the time that the request was queued waiting for a free worker process, which is the information in the
fourth column. The fifth column contains the second part: the active working time in milliseconds of a worker process
on this request.

The three columns can be summarized by the following formula.

Response time = Queue time + Active work time

Example Test Results
The section describes example test results, as follows.

Hardware Configuration

Test Configuration

Asynchronous Method Calls
White Paper

Appendix  15



WP_AsynchMethodCalls - 2022.0.03

Results

Interpretation

Hardware Configuration
The example application was run on the following configuration.

2 x Intel with hyperthreading, 2.4GHz, 4G bytes RAM, Windows 2000 Server

Test Configuration
A simple test was conducted to determine the potential savings in elapsed time that can be achieved by running
multiple workers.

One caller was used. It quickly queued a number of requests for the calculate primes task. A varying number of
workers processed the queue.

Results

There is a big saving in elapsed time going from one worker to two. Adding a third worker saved a little more, but
adding a fourth slowed it down slightly.

Interpretation
The calculate primes task uses a lot of CPU but it does not do any IO, nor does it use any shared Jade node resources
such as object caches. The overall performance is therefore highly dependent on the amount of CPU power available.
The machine used has two real CPUs and two hyper-threaded CPUs. Using two workers instead of one nearly cut the
elapsed time in half, as one might expect.

The hyper-threaded CPUs are not as quick as real CPUs for this workload, though, so four CPU-bound workers did
not run much quicker than the two workers.

Asynchronous Method Calls
White Paper

Appendix  16


	Asynchronous Method Calls
	Purpose of this Document
	Feature Overview
	Using the Feature
	Code Example
	Preparing a Worker Process
	Multiple Asynchronous Method Calls

	Additional Information

	Appendix
	Example Application Overview
	Using the Example Application
	The Framework
	Application GUI
	Using the Application without the Predefined GUI

	Modifying the Application
	General Process Handling
	Report System
	Changing the Kind of Task Implementations
	Constants

	The Performance Output File
	Worker Report
	Caller Report
	Request Report


	Example Test Results
	Hardware Configuration
	Test Configuration
	Results
	Interpretation



