
Copyright©2021 Jade Software Corporation Limited. All rights reserved.

XML in JADE
White Paper

  VERSION 2020



Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2021 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadme.txt file.



WP_XML - 2020.0.02

Contents

Contents iii

XML in JADE 4
XML Structure 4

Well-formed XML 4
Valid XML 5

Why XML? 5
A Short History 5
XML versus Web Services 6

JADE XML 7
Objectives 7
Using XML in JADE 7
Creating and Manipulating XML 7

Overview 8
Example Reference 8
JadeXMLNode Class and Subclasses 11

JadeXMLDocument Class 11
JadeXMLElement Class 11
JadeXMLDocumentType Class 14
JadeXMLProcessingInstruction Class 14
JadeXMLAttribute Class 14
JadeXMLCharacterData Class 14
JadeXMLCDATA Class 15
JadeXMLComment Class 15
JadeXMLText Class 15

Interpreting XML 15
JadeXMLParser Class 16

JadeXMLDocumentParser Class 16
Examples 17

File In/File Out 17
Scenario 17
Instructions 18

General Setup 18
Exporting an XML Document 19
Importing an XML Document 19

Explanation 19
Export Explanation 20
Import Explanation 20

Data Streaming 22
Scenario 22
Instructions 22

General Setup 22
Setting Up IIS 23
Application Introduction 23

Explanation 25
Common Behavior 25
The Request 25
The Response 26
The Format 26
Authentication 27
Person Search and Export 29
Import Explanation 30

Conclusion 33

Appendix A - Persisting XML 34
Parsing an XML Document into a Persistent Structure 34
Parsing an XML Document into Multiple Persistent Structures 35



WP_XML - 2020.0.02

XML in JADE

Open communication - it’s the key to any successful relationship. In the mid-90s, with the proliferation of new,
enhanced, and increasingly divergent technologies, the question of how best to ensure ongoing interoperability
between systems was crying out for an answer. That answer was found in 1997, and Extensible Markup
Language (XML) was born.

Like HyperText Markup Language (HTML), XML is a markup language made up of sets of tags describing data.
These tags are in turn interpreted by applications. Unlike HTML, XML does not have a prescribed set of tags into
which you must shoehorn your information requirements. Rather than prescribing tags, XML defines a standard by
which you can, in effect, create your own markup languages. The result is that an infinite number of tags can be
created to describe information and used as part of an XML document. Unlike HTML, interpretation of XML is not
restricted to a specific set of applications.

All of this delivers flexibility, improved efficiency, and provides the mechanism by which to achieve that
all-important interoperability.

The XML framework in JADE has been implemented to enable rapid development of XML applications and XML
components. Its objective is to make XML construction, manipulation, and interpretation as easy and as intuitive
as possible.

This white paper and detailed examples illustrate just how the JADE XML framework achieves this objective.

XML Structure
Structurally, an XML document is an entity that "owns" a set of other XML nodes. Although it must have a root
element, you can optionally include any of the following nodes.

Declarations

Processing instructions

Elements

Character data

Elements are the essential individual components of XML content. They contain both the data and the markup that
describes that data. The ability to group and nest user-defined elements within one another provides much of the
extensibility of XML. The rest is provided by allowing you to define the rules by which the XML tree structure is to
be interpreted.

All languages have rules to which users must adhere in order to be understood. In spoken languages, this means:

Including the appropriate subjects, objects, and verbs

Using correct vocabulary

Applying the correct grammatical rules

Well-formed XML
"But XML allows me to create my own language. Surely there are no rules". Well, yes and no.



WP_XML - 2020.0.02

While XML is not restricted by a set of available tags and it allows you to create your own markup, there are still
overarching rules that you must follow. Adherence to these rules results in XML that is well-formed. By definition, a
well-formed XML document is one that syntactically conforms to the World Wide Web Consortium (W3C) XML
Specification.

Essentially, using the spoken language parallel, this means that the right components of a sentence must be
included and spelled correctly. An example in XML is that a processing instruction must always begin with the <?
characters.

Valid XML
Unfortunately, having a sentence that includes the correct components does not necessarily result in something
that makes sense. The words need to be included in the correct order and conform to grammatical rules. In this,
XML is no different. However, as users of XML are effectively creating their own markup language, these rules are
theirs to define. This is done through the Document Type Definition (a type of declaration) or more-recently, XML
Schema.

An XML Schema definition is effectively a DTD written in XML, with all of the accompanying benefits of
extensibility. Another added advantage is its support for data types in describing the rules for an XML document’s
content.

To be structured and interpreted correctly, XML documents must be both well-formed and valid.

Why XML?
The best way to answer this question is to outline the background to its emergence as a global standard for
communications between heterogeneous systems.

A Short History
The development of XML is a result of the evolution of markup languages, designed to capitalize on the
advantages while overcoming the disadvantages of its two precursors; that is, Standard Generalized Markup
Language (SGML) and HTML.

Like XML, SGML does not impose on you the use of specific tags, and therein lies its power and flexibility.
Unfortunately, there the similarities end. Simple, widely supported tools with a low cost of entry are not easy to
come by.

HTML was originally designed as a simplified version of SGML to be accessible to a wider range of users of
varying knowledge and abilities. Its simplicity, coupled with the fact it was free and compatible with Web browsers,
resulted in rapid widespread adoption. The downside is that in simplifying SGML, much of the associated power
and flexibility was lost. With its finite set of tags, primarily concerned with information presentation and layout in
browsers, use of HTML to structure any set of data for a range of uses is just not an option.

A clear need was identified for a markup language that delivered the flexibility, extensibility, and portability of
SGML, combined with the simplicity of HTML. That it should also be free was obvious and that it be developed in a
way that was easy for applications to develop functionality to support it was essential.

W3C sponsored a group of developers to come up with the solution, with XML being the result. In 1998, the W3C
XML Specification Version 1.0 was approved and it is still the standard. That this is the case is a strong testament
to the fact that the work carried out by the original group of developers of XML was right on the money. However,
developers the world over will be familiar with how quickly business needs evolve.

No sooner has one dream been delivered and a new one has been formulated, the predecessor is taken for
granted. While the XML specification has well and truly earned the title of a standard, the associated technology
that uses XML has rapidly evolved.

XML in JADE
White Paper

XML in JADE 5



WP_XML - 2020.0.02

XML versus Web Services
As a standard for communication between systems, by nature XML has limitless application, including:

Populating data on Web pages

Framing data used in complex inquiries and transactions

Producing files for interpretation by a wide range of systems

Streaming data from one application to another XML can be understood and interpreted by all

To explain the difference between XML and Web services, let’s look at a situation that presents itself to most of us
many times each day. You receive a phone call from a colleague or family member asking you to carry out a task
and get back to them with the result. Implicitly, all of the following decisions and abilities are in place.

1. You have both decided to use a common language (for example, English)

2. You both conform to grammatical rules and acceptable vocabulary (for example, English grammar and
words)

3. You both understand the meaning of that vocabulary (for example, please run the xyz report)

4. You both know what you can do for each other and how to get each other to do it (for example, that you can
provide the other person with the data to run the xyz report and he or she can run it)

5. You are able to act upon the request received (for example, you are able to run the report and provide him or
her with the information)

6. They are able to understand the information returned (for example, he or she can understand the report)

7. You have both agreed on a mechanism by which the exchange is facilitated (for example, you know each
other’s phone number)

All of the above can be broadly cast into the following three separate areas of understanding.

Language

Meaning and behavior

How to establish a dialog

The situation is similar when two systems need to communicate. Use of XML is effectively an agreement to use a
common language. However, both systems must be able to know all of the other details required to interact. To
continue with the analogy, you and your colleagues speak the same language, understand each other’s
capabilities, how to make contact, make meaningful requests, and understand responses. You know this through
experience with each other and training.

Use of Web services makes it possible for an application to publish language, behavior, and connection
information about itself. This information can then be used by other systems that want to interact with it. The
document that provides this description (also written in XML) is known as a Web Services Description Language
(WSDL) and includes the following.

Language

XML

Vocabulary and type definitions (for example, XML Schema)

Meaning and behavior

XML in JADE
White Paper

XML in JADE 6



WP_XML - 2020.0.02

Operations and messages

Exposed methods and properties

How to establish a dialog

Connection types

Connection ports

Communication method; for example, Simple Object Access Protocol (SOAP)

Use of Web services is equivalent to you publishing who you are, what language you speak, what you can do for
anyone, what you need to do it for them, how you will respond, where they can contact you, and how they should
communicate.

XML on its own is only the language component of the broader Web services functionality, but it is significant in
that it’s the foundation on which it’s all built. It can also be used effectively by itself, and this white paper covers
how you can do this in JADE.

JADE provides SOAP Web services functionality. For details, see the SOAP Web Services White Paper.

JADE XML
The JADE XML framework has been developed to provide the ability to create, interpret, and manipulate XML
using JADE code, and designed with the JADE developer in mind.

Objectives
The objectives of the JADE XML framework are to:

Enable rapid development of XML applications and XML components in JADE

Make the most-common XML development tasks easy and intuitive

Using XML in JADE
How do you actually go about working with XML in JADE? What’s involved? Most importantly, how the is use of
XML in JADE made easier?

A number of classes exist in the RootSchema that contain all of the methods, references, and properties you
require to create, manipulate, and interpret well-formed and valid XML using JADE code.

These classes can be separated into two groups with two distinct purposes.

1. The first group is primarily concerned with the creation and manipulation of XML.

2. The second relates to the processing or interpretation of XML.

Creating and Manipulating XML
The XML framework in JADE allows you to create and manipulate XML through the creation of objects upon which
you can carry out operations, and to which you can make property alterations, just like anything else you might do
in JADE. As these objects are treated and behave in the same way as other JADE objects, there is very little new
material for you to learn.

XML in JADE
White Paper

XML in JADE 7



WP_XML - 2020.0.02

The inherent ease and flexibility of JADE, coupled with the extensibility of XML, makes for a powerful partnership.
This section and its subsections discuss how the XML framework in JADE has been implemented, its individual
components, and how they are used to generate XML.

Overview
As discussed earlier, an XML document is comprised of a set of entities, with components that can include:

Declarations

Processing instructions

Elements

Attributes

Character data

All of these components and their variants have corresponding classes provided in the JADE RootSchema. It is
with these classes that you can use JADE to model an XML tree structure from an external XML document source
or from your own JADE database.

The objects created when modeling XML actually mirror the visual structure of the real-life document, making use
intuitive.

Including the document itself, all of the XML entities have properties in common with each other and common
actions are taken upon them.

All XML classes are grouped under one abstract superclass, JadeXMLNode, as shown in the following image.

A full class diagram is provided in the following topic.

As useful as these system classes are for creating and manipulating XML, it was important to us to ensure that you
have the flexibility to adapt and extend what has been provided to suit your own unique needs. The result is that
you can add your own methods and user subclasses, allowing you to capitalize on existing functionality without
being restricted in any way.

Before giving an example of JADE code creating an XML document, we will look at each of the JadeXMLNode
subclasses and how they relate to XML components.

Example Reference
The following is an example XML document, complete with declarations, processing instructions, elements, and
attributes. This example is used as a reference in discussing each of the JadeXMLNode subclasses.

XML in JADE
White Paper

XML in JADE 8



WP_XML - 2020.0.02

Note that the numbers at the left of the example are not part of the XML document; rather they are used as a
reference tool.

1. <?xml version="1.0"?>
2. <?xml-stylesheet type="text/xsl" href="peopleresults.xsl"?>
3. <!DOCTYPE PEOPLE_DETAILS [

<!ELEMENT PEOPLE_DETAILS ANY>
<!ELEMENT PERSON_DETAILS (PERSON_FIRST_NAME, PERSON_LAST_NAME, OCCUPATION,

CONTACT_DETAILS)>
<!ELEMENT PERSON_FIRST_NAME (#PCDATA)>
<!ELEMENT PERSON_LAST_NAME (#PCDATA)>
<!ELEMENT OCCUPATION (#PCDATA)>
<!ELEMENT CONTACT_DETAILS (EMAIL+, PHONE+)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)> ]>

4. <!--This document includes Person Details-->
5. <PEOPLE_DETAILS>
6. <PERSON_DETAILS>
7. <PERSON_FIRST_NAME>Joanne</PERSON_FIRST_NAME>
8. <PERSON_LAST_NAME>Howard</PERSON_LAST_NAME>
9. <OCCUPATION>Chief Executive Officer</OCCUPATION>
10. <CONTACT_DETAILS>
11. <EMAIL TYPE="Work">j.howard@company.com.au</EMAIL>
12. <PHONE TYPE="Home">+61 2 9256 2222</PHONE>
13. <PHONE TYPE="Work">+61 2 9246 4621</PHONE>
14.             <PHONE TYPE="Cell">+61 41 378 6787</PHONE>

</CONTACT_DETAILS>
</PERSON_DETAILS>

</PEOPLE_DETAILS>

Note The use of capital letters in the above XML tags (and other examples throughout this white paper) is only a
convention and not at all a requirement.

XML in JADE
White Paper

XML in JADE 9



The following diagram shows the structure of the JadeXMLNode class and its subclasses.

WP_XML - 2020.0.02

XML in JADE
White Paper

XML in JADE 10



WP_XML - 2020.0.02

JadeXMLNode Class and Subclasses
As stated earlier, all XML nodes share common properties and are subject to common operations. Perhaps the
most demonstrable example of this is illustrated in the recursive structure of XML documents.

All XML nodes can be both a parent and child of other nodes in an XML tree structure, and they can all belong to
an owning document. These relationships are specified in the parentNode and childNodes reference properties,
while the document reference property links the node with its owning JadeXMLDocument class.

Every numbered item in the XML document in "Example Reference", earlier in this white paper, represents an
instance of a JadeXMLNode subclass. Each node can be copied, moved, or removed, and it can output its XML
representation.

The abstract JadeXMLNode class provides you with the reference properties and methods that are inherited and
available for use across its subclasses.

Note You can create your own persistent user subclasses of the JadeXMLNode subclasses. For more details,
see "Appendix A – Persisting XML", later in this white paper.

JadeXMLDocument Class
You can represent an XML document as a tree structure in JADE, with each node in the tree corresponding to an
object.

The JadeXMLDocument class acts as the owning object of those objects. In other words, it’s the ultimate parent
node. Once instantiated, you can treat it as you would any other object in JADE.

As management of the document and its contents is a key part of utilizing XML effectively, methods have been
provided to assist you with adding, copying, moving, and getting nodes within the document structure.

Each of the elements, processing instructions, and declarations in the XML document in "Example Reference",
earlier in this white paper, belong to an instance of JadeXMLDocument.

JadeXMLElement Class
Equally as important as the document itself, the elements it contains are responsible for describing and recording
the data in your XML tree structure. These elements are represented by instances of the JadeXMLElement class
and are associated with one another in a tree of objects, reflecting their physical layout in an XML document.

The importance of elements is reflected by the methods provided by JADE to support the actions you will most
frequently take upon them as a developer, while allowing you to implement your own behaviors as well.

When looking at the XML document in "Example Reference", earlier in this white paper, every opening tag pair,
including PEOPLE_DETAILS, is an element. PEOPLE_DETAILS is known as the root element of the document. In
JADE, defining the data or textual content for an element is usually done through updating the textData property
of the JadeXMLElement object. Using this approach results in reduced processing time and improves parsing
performance. However, there is another option, which is discussed in "JadeXMLText Class", later in this white
paper.

The following code example creates an XML document and constructs a tree of elements within it.

vars
xmlDoc : JadeXMLDocument;
elmnt : JadeXMLElement;

begin
create xmlDoc transient;
elmnt := xmlDoc.addElement("PEOPLE_DETAILS");
elmnt := elmnt.addElement("PERSON_DETAILS");

XML in JADE
White Paper

XML in JADE 11



WP_XML - 2020.0.02

elmnt := elmnt.addElement("PERSON_FIRST_NAME");
elmnt.setText("John");
write xmlDoc.writeToString;

epilog
delete xmlDoc;

end;

Note Unless otherwise specified, XML objects are created as transient objects.

The above code example results in a tree of objects being created, as displayed in the diagram of the JADE XML
nodes created by the above code.

The addElement method is used repeatedly and is available on both the JadeXMLDocument and
JadeXMLElement classes. Essentially, the two methods are the same. The only difference is that on
JadeXMLDocument, the method also sets the rootElement reference to the element that is created. A document
can have one root element only.

The method creates a new instance of JadeXMLElement as a child node of the object for which it is called, but it
also returns the newly created element, making it available to be assigned to a local variable. This allows you to
work with it further. The above code therefore creates PEOPLE_DETAILS as a child node (and the root element)
of the XML Document and then assigns that element to the elmnt variable.

The addElement method, which has the following format, is used in the same way throughout the examples in this
white paper. The element-to-work-with variable is always of type JadeXMLElement and the
parent-node-you-are-adding-to variable is of type JadeXMLDocument or JadeXMLElement.

element-to-work-with :=
parent-node-you-are-adding-to.addElement("element-to-work-with-tag-name");

element-to-work-with.setText("element-to-work-with-data");

All methods that begin with add but do not end in Object behave in the same way as addElement. Those methods
that do end in Object are similar, but are generally used in the context of user subclasses. For details, see
"Appendix A – Persisting XML", later in this white paper.

XML in JADE
White Paper

XML in JADE 12



WP_XML - 2020.0.02

The writeToStringmethod, when called for the xmlDoc object, produces the following XML tree structure.

XML in JADE
White Paper

XML in JADE 13



WP_XML - 2020.0.02

The following is an example of the XML String created by the previous JADE code example.

<?xml version="1.0"?>
<PEOPLE_DETAILS>

<PERSON_DETAILS>
<PERSON_FIRST_NAME>John</PERSON_FIRST_NAME>

</PERSON_DETAILS>
<PEOPLE_DETAILS>

JadeXMLDocumentType Class
As mentioned in "Valid XML" earlier in this white paper, XML Document Type Definitions determine the grammar
and vocabulary of the markup used in the XML document. It is the mechanism by which rules are established to
validate XML structure, inclusions, exclusions, and so on.

Item 3 in the XML document in "Example Reference", earlier in this white paper, covers the Document Type
Definition. It states that the PERSON_DETAILS element must have children elements of PERSON_FIRST_NAME,
PERSON_LAST_NAME,OCCUPATION, and CONTACT_DETAILS. An additional rule is specified regarding the
CONTACT_DETAILS element, stating that it must have one or more EMAIL child elements, followed by one or
more PHONE child elements. To be considered valid, the XML tree structure must conform to these rules;
however, the JADE parser is non-validating.

The JadeXMLDocumentType class represents the document type declaration in an XML document tree. A
reference to the document type (if the document has one) is stored in the docType property of the
JadeXMLDocument class.

JadeXMLProcessingInstruction Class
The JadeXMLProcessingInstruction class represents a processing instruction in an XML document tree.
Processing instructions are application-specific instructions on how to handle an XML document after the
document has been parsed.

Item 2 in the XML document in "Example Reference", earlier in this white paper, represents a processing
instruction. In this case, it is providing style sheet information that can be applied by an application such as an
Internet browser. This means that XML can be sent to the browser and it can present the included information in
the intended format.

Creating XML processing instructions is a simple matter of calling the addProcessingInstructionmethod for the
JadeXMLDocument or JadeXMLElement class to which you want to add the instruction. The target application
and instructions are then passed into the method as parameters.

JadeXMLAttribute Class
As with HTML, XML elements can have attributes.

Each of the elements with a parentNode property value of CONTACT_DETAILS has a TYPE attribute. This
attribute is used to describe the type of contact detail that the element contains, whether it is a home or work
contact, and so on.

The JadeXMLAttribute class is used to represent an attribute of an XML element in your XML document tree. It
will have a name, an optional namespace, and a value. It is added by calling the addAttribute method for the
element to which you want to add the attribute.

JadeXMLCharacterData Class
XML defines Character Data to be the text that falls within XML start and end tags. It can be any Unicode character
with the exception of <, which is reserved to denote the beginning of a tag.

XML in JADE
White Paper

XML in JADE 14



WP_XML - 2020.0.02

This sounds fairly simple, but why have a class, or indeed a set of classes, to cover it?

The JadeXMLCharacterData class is the abstract superclass of character-based nodes in an XML document
tree. These nodes include the text, CDATA, and comment nodes.

JadeXMLCDATA Class
There are times when you may want to use certain characters inside XML tags that are reserved for specific
markup purposes; for example, quotation marks. These are used in markup to surround the attribute values of
XML elements. If, however, you want to use actual quotation marks within an attribute value (that is, within another
set of markup quotation marks), you must replace it with an entity reference or create a CDATA string with those
quotation marks included.

Instances of the JadeXMLCDATA class automatically escape blocks of text for correct representation in XML.

The JadeXMLCDATA class is a subclass of the JadeXMLCharacterData class but it does not add any additional
properties or methods.

JadeXMLComment Class
In JADE, single-line comments are preceded by //, while multiple-line comments are surrounded by /* and */.

XML also provides the facility for including comments in the body of XML documents. Comment tags begin with <!-
- and end with -->. To create an XML comment in JADE, an instance of the JadeXMLComment class is created
and the data property set to the String value of the comment.

Item 4 in the XML document in "Example Reference", earlier in this white paper, is an XML comment. In JADE, the
data property would be the equivalent of "This document includes Person Details".

The JadeXMLComment class is a subclass of JadeXMLCharacterData, but it does not add any additional
properties or methods.

JadeXMLText Class
The JadeXMLText class represents the textual content within an XML document tree.

Normally, to set the value for a JadeXMLElement, you would simply set the textData property of that
JadeXMLElement instance. Using this approach reduces the size of the XML document tree and improves
parsing performance.

However, an alternative has been provided that allows you to create instances of the JadeXMLText class as child
nodes of the element for which they represent a value. Where multiple instances exist, the values of their
respective data properties are concatenated and returned within the start and end tags of their parent node
element.

Interpreting XML
In most cases, you will find that simply creating and manipulating XML isn’t enough to meet your requirements.
Conversations are much more rewarding if they are two-way, which means that you need to be able to interpret
XML as well. With an in-built XML document parser and facilities in place that enable you to build your own, the
JADE XML framework makes this easy for you.

XML in JADE
White Paper

XML in JADE 15



WP_XML - 2020.0.02

The following diagram shows the JadeXMLParser class with its JadeXMLDocument subclass.

JadeXMLParser Class
The purpose of the abstract JadeXMLParser class is to provide a base on which you can create your own parser
subclasses that can be used as the interface for parsing XML documents.

The fundamental properties and methods required to parse XML documents are provided with this class.

JadeXMLDocumentParser Class
One parser implementation is already provided. The JadeXMLDocumentParser class is a transient-only class
that provides the interface for parsing XML documents into a tree of objects. The parser reads an XML file and
creates a tree of object nodes that are instances of JadeXMLNode subclasses or your own subclasses.

This class enables you to take an XML file or String and create a tree of XML nodes, like that shown in the XML
tree structure diagram under "JadeXMLElement Class", earlier in this white paper. The following JADE code is an
example of parsing an XML document.

vars
xmlDoc : JadeXMLDocument;
parser : JadeXMLDocumentParser;

begin
create xmlDoc transient;
create parser transient;
parser.parseDocumentFile(xmlDoc, "c:\XMLDocument.xml");
xmlDoc.inspectModal;

epilog
delete xmlDoc;
delete parser;

end;

XML in JADE
White Paper

XML in JADE 16



WP_XML - 2020.0.02

Executing this code takes the file XMLDocument.xml file, parses it, and creates an XML tree structure with
xmlDoc as the owning document object. These objects can then be used and manipulated in the same way as
any other JADE objects. The inspectModalmethod invokes the Schema Inspector, allowing you to review the tree
of objects created.

Examples
This section and its subsection explore two different examples of XML creation, manipulation, and interpretation
using JADE code.

There will be times when you will want to create an XML tree structure using information in your database, and
write it to file. While very useful, it will also be imperative to import an XML file from which you can build an XML
tree structure.

Other situations will call for a greater level of direct interaction. You will have two applications that will need to
communicate on a real-time basis, with one retrieving information from the database of the other and sending
instructions for specified updates.

File In/File Out
This section and its subsections demonstrate how the first of these situations can be supported in JADE.

Scenario
You have a database that stores details of people, and you would like to export that information as an XML
document. You would also like the ability to import an XML document structured in the same way as the one you
have output, and create person records according to the information it contains.

In your database, each instance of the Person class contains the following information.

First name

Last name

Occupation

Address

Home phone number

Work phone number

Cell phone number

E-mail address

XML in JADE
White Paper

XML in JADE 17



WP_XML - 2020.0.02

The following scenario class diagram shows how the information is structured in the database.

Instructions
This section and its subsections contain the instructions that result in the export and import of an XML document
using JADE.

General set-up instructions are covered first, followed by an export and import scenario. The "Explanation" section
later in this white paper explains what happens programmatically in each of the scenarios.

General Setup

To set up XML in JADE

1. Download the XML white paper files from the JADE-WP-XML link at https://github.com/jadesoftwarenz. to
your c:\ drive.

As a new directory is created, we recommend that you don’t change the extract path to anything other than
c:\, because instructions and methods throughout this "Examples" section rely on the path remaining the
same.

2. Navigate to c:\JadeXMLWhitePaper. This new directory contains:

People to Import 1.xml

People to Import 2.xml

XML in JADE
White Paper

XML in JADE 18

https://github.com/jadesoftwarenz


WP_XML - 2020.0.02

Persistent XML Structure.xml

XMLWhitePaper.scm

XMLWhitePaper.ddb

XMLWeb (directory)

XMLWeb_jadehttp (directory)

3. Load the XMLWhitePaper schema and forms definition files into your JADE development environment.

4. Navigate to the JadeScript class, select the setupAllData method, and then execute the script by pressing
the F9 key.

Exporting an XML Document

To export an XML document

1. Select the listPeople method and then execute the script by pressing the F9 key.

This method outputs a list of the Person objects from the database. The list is output to a Jade Interpreter
Output Viewer.

The XML document created in the next step contains details of all these objects, including contact
information. Use the output to check that all objects are represented in the XML document that is produced.

2. Select the createPeopleXMLDocument method, which iterates through all instances of the Person class
and creates an XML file.

The file is called People Exported.xml in your c:\JadeXMLWhitePaper directory.

3. Execute the script by pressing the F9 key.

4. Review the XML file that is produced.

Importing an XML Document

To import an XML document

1. Review the c:\JadeXMLWhitePaper\People to Import 1.xml file.

This file contains the details of people that will be imported.

2. Select the JadeScript class importPeople method and then press the F9 key to execute the script.

This method processes the specified People to Import.xml file and creates instances of the Person class,
populating them with the details contained in the file.

3. Select the JadeScript class listPeople method.

The output of this script shows the details of all people, including those added to the database by the
importPeople method.

Explanation
This section and its subsections covers what happened when you ran the scripts in previous sections of this white
paper, and illustrates how easily the JADE XML framework enables production and interpretation of XML.

XML in JADE
White Paper

XML in JADE 19



WP_XML - 2020.0.02

Export Explanation
JadeScript::createPeopleXMLDocument Method

The JadeScript class createPeopleXMLDocument method begins by creating a transient instance of the
JadeXMLDocument class, adding a comment and a document type declaration. The next step is to add a root
element to the document.

As the document will contain details of person objects, the element will be named PEOPLE_DETAILS; that is:

rootElement := xmlDoc.addElement("PEOPLE_DETAILS");

The addElement method is available on both the JadeXMLDocument and JadeXMLElement classes and is
explained further in "JadeXMLElement Class", earlier in this white paper.

The next step is to move through each instance of Person and add the details under the root element in a logical
structure, as shown in the following code fragment.

foreach person in root.allPersons do
pers := rootElement.addElement("PERSON_DETAILS");
elmnt := pers.addElement("PERSON_FIRST_NAME");
elmnt.setText(person.firstName);
elmnt := pers.addElement("PERSON_LAST_NAME");
elmnt.setText(person.lastName);

In the above code fragment, pers is used to denote the element that frames the information associated with an
individual person. For every Person instance, an element of PERSON_DETAILS is therefore added to the root
element (PEOPLE_DETAILS) of the document.

Details directly associated with the person are then added as child nodes of the PERSON_DETAILS element. In
the above code fragment, PERSON_FIRST_NAME is added as a child node of PERSON_DETAILS. The created
element is then assigned to the elmnt variable. The text for elmnt is then set to the database value of firstName
for the Person instance. The elmnt variable is then changed with the addition of the PERSON_LAST_NAME
element as a child node of the PERSON_DETAILS element, and the process is repeated.

We next step through each of the contact details for the person record and then group those details together.
Consideration needs to be given to the different types of contact details, as shown in the following code fragment.

contact := pers.addElement("CONTACT_DETAILS");
foreach contDet in person.allContactDetails do

if contDet.isKindOf(Address) then
address := contDet.Address;
addr := contact.addElement("ADDRESS_DETAILS");
addr.addAttribute("TYPE", address.contactType);
elmnt := addr.addElement("ADDRESS_LINE_1");
elmnt.setText(address.addressLine1);
elmnt := addr.addElement("ADDRESS_LINE_2");
elmnt.setText(address.addressLine2);

The above code fragment creates an element of CONTACT_DETAILS under the PERSON_DETAILS element
within which to group address, phone, and e-mail information.

Once the method has iterated through all instances of the Person class, the XML document tree that has been
created is written to file by the JadeXMLDocument class writeToFile method. In this example, it is written to the
People Exported.xml file in the c:\JadeXMLWhitePaper directory.

Import Explanation
JadeScript::importPeople Method

XML in JADE
White Paper

XML in JADE 20



WP_XML - 2020.0.02

The JadeScript class importPeople method parses the XML document and creates an XML tree structure with
transient JADE objects.

Once this is done, instances of Person are created and updated based on the details of those JADE objects.

vars
xmlDoc : JadeXMLDocument;
parser : JadeXMLDocumentParser;

begin
create xmlDoc transient;
create parser transient;
parser.parseDocumentFile(xmlDoc, "c:\JadeXMLWhitePaper\People to

Import 1.xml");
createPeopleRecords(xmlDoc);

epilog
delete xmlDoc;
delete parser;

end;

JadeXMLDocumentParser::parseDocumentFile Method

The JadeXMLDocumentParser class parseDocumentFile method parses the specified file and builds a tree
structure of XML node objects in JADE, based on the information the file contains. The resulting instance of the
JadeXMLDocument class is then returned for further use.

JadeScript::createPeopleRecords Method

The JadeScript class createPeopleRecords method begins by assigning a value to the root variable and then
creates transient instances of the JadeXMLElementArray class.

The next step is to evaluate the JadeXMLDocument provided in the method’s parameter, as follows.

pXMLDocument.getElementsByTagName("PERSON_DETAILS", people);

All of the elements in the XML document with a tagName value of PERSON_DETAILS are found and added into
the JadeXMLElementArray object represented by the people variable.

Because each PERSON_DETAILS element represents details associated with an individual person, a persistent
instance of the Person class is created for each one, as shown in the following code fragment.

foreach elmnt in people do
create person persistent;

The method then assigns values to the properties of the Person instance based on the childNodes of the
PERSON_DETAILS element, as shown in the following code fragment.

firstName := elmnt.getElementByTagName("PERSON_FIRST_NAME").textData;
lastName := elmnt.getElementByTagName("PERSON_LAST_NAME").textData;
occupation := elmnt.getElementByTagName("OCCUPATION").textData;
person.setDetails(firstName, lastName, occupation);

The contact details of the person are then added one by one. First the parent contact details node is found and
assigned to the contDet variable, as shown in the following code fragment.

contDet := elmnt.getElementByTagName("CONTACT_DETAILS");

Of the contact details, the address is processed first, as follows.

eladdr := contDet.getElementByTagName("ADDRESS_DETAILS");
if eladdr <> null then

XML in JADE
White Paper

XML in JADE 21



WP_XML - 2020.0.02

create address persistent;
contactType := eladdr.getAttributeByName("TYPE").value;
addressLine1 := eladdr.getElementByTagName("ADDRESS_LINE_1").textData;
addressLine2 := eladdr.getElementByTagName("ADDRESS_LINE_2").textData;

suburb := eladdr.getElementByTagName("SUBURB").textData;
city := eladdr.getElementByTagName("CITY").textData;
country := eladdr.getElementByTagName("COUNTRY").textData;
postCode := eladdr.getElementByTagName("POSTCODE").textData;
address.setDetails(contactType, addressLine1, addressLine2,

suburb, city, country, postCode);

The values of the textData properties of the various address elements are assigned to the properties of the
Address instance that is created. When the address details have been updated, it is added to the
allContactDetails collection on the Person, as follows.

person.allContactDetails.add(address);

All of the other contact details are processed in a similar way.

Data Streaming
While the preceding file in/file out example goes some way to demonstrating how to create and interpret XML files
using JADE code, it is important for you to be able to interact on a real-time basis.

Note This example is designed only to work on a Windows operating system and to operate on the local host
computer, rather than across a network.

Scenario
Using the same details as the file in/file out example, you require the ability to search over the Person objects in
your database over the Internet. A Web browser will be used as the application with which to interact with your
database.

Following good design practice, you want to decouple the database and presentation by returning XML from the
server and using EXtensible Stylesheet Language (XSL) to generate the HTML.

You will search by first name and last name for the Person objects you want. An option will be included that
allows you to produce an XML file based on the results of your search.

An import facility allows you to import an XML file, from which the application will create Person objects.

Note For this example to work, Microsoft Internet Information Server (IIS) must be installed on your machine.

Instructions
This section and its subsections contain the instructions that enable you to interact with XML files on a real-time
basis.

General set-up instructions are covered first, followed by setting up IIS and an introduction to the application. The
"Explanation" section later in this white paper explains the actions that are carried out, reviews the code, and
explains how this communication takes place.

General Setup
If you haven’t already done so, complete the general set-up steps, as follows.

XML in JADE
White Paper

XML in JADE 22



WP_XML - 2020.0.02

1. Download the XML white paper files from the JADE-WP-XML link at https://github.com/jadesoftwarenz. to
your c:\ drive.

As a new directory is created, we recommend that you don’t change the extract path to anything other than
c:\, because instructions and methods throughout this "Examples" section rely on the path remaining the
same.

2. Navigate to c:\JadeXMLWhitePaper.

This new directory contains:

People to Import 1.xml

People to Import 2.xml

Persistent XML Structure.xml

XMLWhitePaper.scm

XMLWhitePaper.ddb

XMLWeb (directory)

XMLWeb_jadehttp (directory)

3. Load the XMLWhitePaper schema and forms definition files into your JADE development environment.

4. Navigate to the JadeScript class, select the setupAllData method, and then execute the script by pressing
the F9 key.

Setting Up IIS

To set up IIS

1. In the Administrative Tools in the Windows Control Panel, select the Internet Information Services (IIS)
Manager option.

2. Select Default Web Site, right-click, and then select New, Virtual Directory.

3. Specify xmlweb as the alias.

4. Click Next.

5. Browse to the XMLWeb subdirectory of your c:\JadeXMLWhitePaper directory, click OK, and then click Next.

6. Ensure that Read, Run Scripts, Execute, and Browse are selected.

7. Click Next, and then click Finish.

Application Introduction

To access the application

1. From the JADE development environment, click the Run Application toolbar button and ensure that the
XMLWhitePaper application is selected.

2. Click OK.

3. Navigate to the XMLWeb subdirectory of your c:\JadeXMLWhitePaper directory.

XML in JADE
White Paper

XML in JADE 23

https://github.com/jadesoftwarenz


WP_XML - 2020.0.02

To authenticate your access to the application

1. Open index.htm in your Web browser.

2. Enter test in the User Name field, xmlweb in the Password field, and then click Login.

At this point, a page is presented that enables you to search for people and optionally produce the results as
an XML file that is created locally, or to import people from an XML file.

Note If you experience any problems, copy the jadehttp.dll file from your bin directory into the XMLWeb
subdirectory of your c:\JadeXMLWhitePaper directory.

To search for a person

1. Enter Dolce in the Last Name field and then click Person Search.

2. Right-click in the results area of the page and then click View Source.

You will see that the source is an XML document despite its formatted presentation in the Web browser. How
this is achieved is explained later in this white paper.

3. Click the Back button in your browser.

To export an XML file

1. Ensure that the First Name and Last Name search criteria fields are blank.

2. Check the Create File check box and then enter c:\JadeXMLWhitePaper\Search Results.xml in the File
Name text box.

3. Click the Person Search button.

The details of the Person objects returned in the search have also been produced as an XML document
called Search Results.xml in your c:\JadeXMLWhitePaper directory.

4. Click the Back button in your browser.

To import an XML file

1. Navigate to your c:\JadeXMLWhitePaper directory.

2. Open the People to Import 2.xml file and then review its contents.

3. Close the file.

4. In your Web browser, click the Browse button so that you can select a file to import.

5. Browse to your c:\JadeXMLWhitePaper directory and then select People to Import 2.xml.

6. Click the Import button.

A confirmation screen then lists the people who have been imported.

7. Click the Back button in your browser.

8. Clear all of the search fields, including the Create File and File Name fields.

9. Click the Person Search button.

The details of those people in the People to Import 2.xml file is now displayed among the search results.

XML in JADE
White Paper

XML in JADE 24



WP_XML - 2020.0.02

Explanation
How exactly does all of the above happen? You have a Web page within a Web browser, and a JADE application.
How are they communicating? How is it that raw XML can be passed back to the browser and be interpreted and
displayed in a formatted way?

This section and its subsections explore each of the actions carried out in the previous data streaming instruction
steps, reviews the code, and explains how this communication takes place.

Common Behavior
While each of the actions results in a different logical process, there are some common behaviors across all
actions. Broadly speaking, these common behaviors are encapsulated in three separate actions.

The request

The response

The formatting

For details, see the following sections.

The Request
In this scenario, the request of the JADE application is being made through a Web browser. This is the case for
authentication, searching for people, and for both exporting and importing files.

How does the browser place this request? If you are familiar with HTML, you will be familiar with the <form> tag.
These typically take details entered by users and execute an action on those details. The action is often defined
by some kind of script, such as a CGI. In this example, all forms presented in the Web browser have the same
action attribute value; that is:

http://localhost/xmlweb/jadehttp.dll?XMLWhitePaper

This is effectively providing the destination to which details entered in the various forms are sent once their submit
buttons have been clicked.

A subclass of JadeWebServiceProvider has been created to act as the entry point for this information once it
arrives. It is important to note that we are merely using the Web services framework to facilitate HTTP
communications. No WSDL or SOAP functionality has been utilized.

XML in JADE
White Paper

XML in JADE 25



WP_XML - 2020.0.02

WPXMLWebServiceProvider::processRequest Method

Navigate to theWPXMLWebServiceProvider class processRequest method, which is the first to receive the
incomingMessage and is a re-implementation of a superclass method. However, inheritMethod has been
commented out, meaning that we have overridden the standard Web service provider processing. Our goal is
simply to receive the message and carry out a series of actions based on that message.

vars
message : String;

begin
rawXML := true;
message := incomingMessage;
procMessage(message);
// inheritMethod();

end;

This method takes the information received and passes it into theWPXMLWebServiceProvider class
procMessage method.

WPXMLWebServiceProvider::procMessage Method

The procMessage method takes the information received as a String and separates it out into its substrings that
contain the separate components of the request. The method then assigns the values of these components to
properties of the global transient Application object for later use.

The Response
WPXMLWebServiceProvider::reply Method

A re-implementation of a superclass method, theWPXMLWebServiceProvider class reply method sends an XML
string back to the Web browser. Before it is ready to do this, however, it must carry out the necessary processing
based on the information received in the request phase, and then build the response, as follows.

vars
xml : String;

begin
xml := buildXMLReply;
return xml;
// return inheritMethod();

end;

WPXMLWebServiceProvider::buildXMLReply Method

With details of the request stored in the Application object, theWPXMLWebServiceProvider class
buildXMLReply method can:

Authenticate users

Perform person searches

Export details of person records to an XML file

Import details of person records from an XML file

We will look at each of theses actions in more detail, considering the HTML, XSL, and most importantly, the JADE
code involved in providing the required behavior.

The Format
If JADE is passing back raw XML to the browser, how does it present it in the browser in the way it does?

XML in JADE
White Paper

XML in JADE 26



WP_XML - 2020.0.02

This is the only part that is handled externally from JADE, and it decouples the server-side from the presentation.
For example, upon a successful login, the following dialog is displayed.

However, the source of this page and the information passed back from JADE is simply:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="welcome.xsl"?>
<!—Welcome Details-->
<USER>

<FIRSTNAME>Test</FIRSTNAME>
<LASTNAME>User</LASTNAME>

</USER>

The key to the formatting is in the href="welcome.xsl" part of the XML processing instruction. Your browser
recognizes this statement and applies the welcome.xsl style sheet to the XML in the document, which results in
the Welcome, Test User parameter search dialog shown in the previous image.

All responses sent to the Web browser in this example have an XSL style sheet to apply. The separation of the
presentation from the data results in increased flexibility for the customer and for you. This way, the responsibility
of the system is to provide the data and the customers are free to format it in their own way with their own
branding, without requiring development extensions to the application.

Authentication
Having covered the common behavior, this section looks at what the JADE code is doing in the XMLWhitePaper
application to authenticate the user and how it is building the XML response.

WPXMLWebServiceProvider::buildXMLReply Method

As stated in "Common Behavior", earlier in this white paper, theWPXMLWebServiceProvider class
buildXMLReply method takes the values set on the global transient instance of Application and carries out the
appropriate actions. In this case, we are looking at what happens when you log on.

XML in JADE
White Paper

XML in JADE 27



WP_XML - 2020.0.02

When information is received from the search form, the procMessage method set the xmlAction value of
Application to AUTHENTICATE (an Integer global constant of 1), so this is where we begin the review.

if app.xmlAction = AUTHENTICATE then
username := app.login_username;
password := app.login_password;
if username <> null and password <> null then

xmldoc := buildLoginResponse(username, password);
xmlReply := xmldoc.writeToString;

endif;
app.resetValues;

WPXMLWebServiceProvider::buildLoginResponse Method

The applicable values from the Application instance are assigned to local variables. These are then used as
parameters in calling theWPXMLWebServiceProvider class buildLoginResponse method.

user := root.allUsers.getAtKey(pUsername);
create xmlDoc transient;
if user <> null then

if user.password = pPassword then
xmlDoc.addProcessingInstruction('xml:stylesheet
type="text/xsl"', 'href="welcome.xsl"');
xmlDoc.addComment('Welcome Details');
rootElmnt := xmlDoc.addElement('USER');
// the root element elmnt := rootElmnt.addElement('FIRSTNAME');
elmnt.setText(user.firstname);
elmnt := rootElmnt.addElement('LASTNAME');
elmnt.setText(user.lastname);

This method begins by finding a User object with a user name that matches that received as a parameter from the
buildXMLReply method. It then creates a transient instance of JadeXMLDocument. The method then carries out
different actions. depending on whether there is a:

User with the provided user name

User and the provided password matches the actual password

In all cases, information is added to the JadeXMLDocument object.

The previous code fragment shows what happens when a matching user is found and the supplied password
matches the value of the password property of the User object.

The first thing that happens is that a processing instruction is added to the document, followed by a comment. The
next step is to add a root element to the document. To that root element, two further elements are added:
FIRSTNAME and LASTNAME. The User details from the database are used to populate the textData properties
of these elements.

WPXMLWebServiceProvider::buildXMLReply Method

The resulting JadeXMLDocument is then returned to theWPXMLWebServiceProvider class buildXMLReply
method.

xmldoc := buildLoginResponse(username, password);
xmlReply := xmldoc.writeToString;

The instance of JadeXMLDocument returned by the buildLoginResponse method is then assigned to the xmldoc
local variable. This is then written to a String and assigned to the xmlReply variable that is returned to the reply
method.

XML in JADE
White Paper

XML in JADE 28



WP_XML - 2020.0.02

As stated in "Common Behavior", earlier in this white paper, the reply method then sends this string to the
browser.

The browser receives the XML String, initiates the processing instruction (XSL style sheet) that runs through the
XML document, and then appropriately presents the information it contains.

Person Search and Export
In addition to the common behavior outlined earlier in this white paper, this section looks at what the JADE code is
doing in the XMLWhitePaper application to search for person records, export the details of those records to file,
and how it is building the XML response.

WPXMLWebServiceProvider::buildXMLReply Method

As stated in "Common Behavior", earlier in this white paper, theWPXMLWebServiceProvider class
buildXMLReply method takes the values set on the global transient instance of Application and carries out the
appropriate actions. In this case, we are looking at what happens when you conduct a person search.

When information is received from the search form, the procMessage method set the xmlAction value of
Application to SEARCH (an Integer global constant of 2), so this is where we begin the review.

elseif app.xmlAction = SEARCH then
firstname := app.srchFirstName;
lastname := app.srchLastName;
createFile := app.createFile;
filename := app.xmlFilename;
people := findPeople(firstname, lastname);
xmldoc := buildPersonSearchResponse(people);
xmlReply := xmldoc.writeToString;
if createFile = EXPORT and filename <> null then

createXMLFile(xmldoc, filename);
endif;
app.resetValues;

The applicable values of Application class properties are assigned to local variables prior to calling the
findPeople method.

WPXMLWebServiceProvider::findPeople Method

TheWPXMLWebServiceProvider class findPeople method takes two of those properties (that is, firstname and
lastname) to search for people who match the parameters. Those that match are added to a transient instance of
PersonsByLastNameDict by theWPXMLWebServiceProvider class buildXMLReply method.

people := findPeople(firstname, lastname);
xmldoc := buildPersonSearchResponse(people);

WPXMLWebServiceProvider::buildXMLReply Method

The buildXMLReply method then takes the PersonsByLastNameDict collection returned by the findPeople
method, and assigns it to the people local variable.

This collection of person objects is then passed into the buildPersonSearchResponse method.

WPXMLWebServiceProvider::buildPersonSearchResponse Method

It is theWPXMLWebServiceProvider class buildPersonSearchResponse method that actually constructs the
XML tree structure. It begins by adding processing instructions and declarations before adding the root element of
PEOPLE_DETAILS. This tag encapsulates all data in the XML document.

XML in JADE
White Paper

XML in JADE 29



WP_XML - 2020.0.02

It then iterates through the objects included in the PersonsByLastNameDict collection passed into it as a
parameter from the buildXMLReply method. For every member of the collection, it creates a PERSON_DETAILS
element under which it adds a tree structure of elements containing person information from the database.

The resulting JadeXMLDocument is then passed back to the buildXMLReply method.

WPXMLWebServiceProvider::buildXMLReply Method

TheWPXMLWebServiceProvider class buildXMLReply method then takes the JadeXMLDocument created in
the buildPersonSearchResponse method, converts it to a String, and assigns it to the xmlReply local variable.

xmlReply := xmldoc.writeToString;

The xmlReply variable is the String value returned to the reply method.

As stated in "Common Behavior", earlier in this white paper, the reply method then returns this String to the
browser. The browser receives the XML string, initiates the processing instruction (XSL style sheet) that runs
through the XML document, and then presents the appropriate information it contains.

There is an additional action taken in this section of the buildXMLReply method that is dependent on a parameter
entered by the user.

if createFile = EXPORT and filename <> null then
createXMLFile(xmldoc, filename);

endif;

If the user has checked the Create File check box and provided a file name, the createXMLFile method is called.
The XML document created by the buildPersonSearchResponse method is then passed to the createXMLFile
method, along with the specified file name.

WPXMLWebServiceProvider::createXMLFile Method

TheWPXMLWebServiceProvider class createXMLFile method takes the JadeXMLDocument it receives as a
parameter and removes the processing instruction that links the XML document to the XSL style sheet. (This is
done because the processing instruction is not applicable outside of a Web browser context.)

The method then calls the writeToFile method for the JadeXMLDocument class.

Import Explanation
In addition to the common behavior stated in "Common Behavior", earlier in this white paper, this section looks at
what the JADE code is doing in the XMLWhitePaper application to import person details from an XML file, and
how it is building the XML response.

WPXMLWebServiceProvider::buildXMLReply Method

TheWPXMLWebServiceProvider class buildXMLReply method takes the values set on the global transient
instance of Application and carries out the appropriate actions. In this case, we are looking at what happens
when you import person details from an XML file.

When information was received from the search form, the procMessage method set the xmlAction value of
Application to IMPORT (an Integer global constant of 3), so this is where we begin the review, as shown in the
following code fragment.

elseif app.xmlAction = IMPORT then
filename := app.xmlFilename;
if filename <> null then

xmldoc := importPeople(filename);
endif;

XML in JADE
White Paper

XML in JADE 30



WP_XML - 2020.0.02

xmlReply := xmldoc.writeToString;
app.resetValues;

This method sets the filename local variable to that set on the Application earlier by the procMessage method.
When it is set, the importPeople method is called and it is provided with the specified file name as a parameter.

WPXMLWebServiceProvider::importPeople Method

To begin with, theWPXMLWebServiceProvider class importPeople method needs to create three transient
instances of two different classes; that is, JadeXMLDocument and JadeXMLDocumentParser.

create xmlDoc transient;
create parser transient;
create response transient;
parser.parseDocumentFile(xmlDoc, pFilename);
persDict := createPeopleRecords(xmlDoc);

The next step is to create a JADE XML tree structure from the specified file. This is done by calling the
parseDocumentFile method for the JadeXMLDocumentParser class. The parseDocumentFile method reads
the specified file and populates the instance of JadeXMLDocument passed into it as a parameter with nodes
based on the information in that file.

When we have the XML tree structure, the next step is to navigate through it, creating database information based
on the data it contains. The createPeopleRecords method does this.

WPXMLWebServiceProvider::createPeopleRecords Method

TheWPXMLWebServiceProvider class createPeopleRecords method takes the XML tree structure (that is,
JadeXMLDocument) as a parameter, as shown in the following code fragment.

create persDict transient;
create people transient;
create contacts transient;
pXMLDocument.getElementsByTagName("PERSON_DETAILS", people);
beginTransaction;
foreach elmnt in people do

This method begins by creating transient instances of the PersonsByLastNameDict and
JadeXMLElementArray classes. Next, all elements with a tagName of PERSON_DETAILS are collected and
placed into the JadeXMLElementArray. In the previous code fragment, this is represented by the people local
variable.

As each PERSON_DETAILS element contains details for one person, the method then moves through each of
these elements and processes its childNodes, as shown in the following code fragment.

create person persistent;
firstName := elmnt.getElementByTagName("PERSON_FIRST_NAME").textData;
lastName := elmnt.getElementByTagName("PERSON_LAST_NAME").textData;
occupation := elmnt.getElementByTagName("OCCUPATION").textData;
person.setDetails(firstName, lastName, occupation);

To begin with, a persistent instance of Person is created. The getElementByTagName method is then used to
retrieve the data associated with child node elements by tag name. This data is then assigned to the appropriate
property of the Person instance, as shown in the following code fragment.

contDet := elmnt.getElementByTagName("CONTACT_DETAILS");
eladdr := contDet.getElementByTagName("ADDRESS_DETAILS");

XML in JADE
White Paper

XML in JADE 31



WP_XML - 2020.0.02

With the details of the Person set, the next step is to add contact information. The code then navigates its way to
the ADDRESS_DETAILS element, as shown in the following code fragment.

if eladdr <> null then
create address persistent;
contactType := eladdr.getAttributeByName("TYPE").value;
addressLine1 :=

eladdr.getElementByTagName("ADDRESS_LINE_1").textData;
addressLine2 :=

eladdr.getElementByTagName("ADDRESS_LINE_2").textData;
suburb := eladdr.getElementByTagName("SUBURB").textData;
city := eladdr.getElementByTagName("CITY").textData;
country := eladdr.getElementByTagName("COUNTRY").textData;
postCode := eladdr.getElementByTagName("POSTCODE").textData;
address.setDetails(contactType, addressLine1, addressLine2, suburb,

city, country, postCode); person.allContactDetails.add(address);
endif;

Where an ADDRESS_DETAILS element is found, a persistent instance of Address is created. The values of the
textData properties of the child node elements are then assigned to the Address properties.

When complete, the address is added to the allContactDetails collection against the Person. The same process
is followed for phone and e-mail details, as shown in the following code fragment.

persDict.add(person);

At the conclusion of processing each PERSON_DETAILS element, they are added to persDict. When all
PERSON_DETAILS elements are processed, this instance of PersonsByLastNameDict is returned to the
importPeople method.

WPXMLWebServiceProvider::importPeople Method

When returned to theWPXMLWebServiceProvider class importPeople method, it is assigned to the persDict
local variable. The persDict variable is then passed to the buildImportResponse method.

WPXMLWebServiceProvider::buildImportResponse Method

create xmlDoc transient;
if pPeople.size > 0 then

xmlDoc.outputDeclaration := true;
xmlDoc.addProcessingInstruction('xml:stylesheet type="text/xsl"',

'href="confirmation.xsl"');
rootElement := xmlDoc.addElement("PEOPLE_DETAILS");
foreach person in pPeople do

pers := rootElement.addElement("PERSON_DETAILS");
elmnt := pers.addElement("PERSON_FIRST_NAME");
elmnt.setText(person.firstName);
elmnt := pers.addElement("PERSON_LAST_NAME");
elmnt.setText(person.lastName);
elmnt := pers.addElement("OCCUPATION");
elmnt.setText(person.occupation);

endforeach;
endif;
return xmlDoc;

The next thing theWPXMLWebServiceProvider class buildImportResponse method does is traverse the
dictionary of Person objects that has just been created.

XML in JADE
White Paper

XML in JADE 32



WP_XML - 2020.0.02

The details of these Person objects are then used to create an XML document to confirm creation, as shown in the
previous code fragment. The href="confirmation.xsl" statement indicates the XSL style sheet that should be
applied to the XML document created, to ensure appropriate presentation in an Web browser. This XML document
is then returned to the importPeople method and assigned to its response local variable, as shown in the
following code fragment.

WPXMLWebServiceProvider::importPeople Method

response := buildImportResponse(persDict); return response;

TheWPXMLWebServiceProvider class importPeople method takes the JadeXMLDocument represented by the
response local variable and returns it to the builXMLReply method.

WPXMLWebServiceProvider::buildXMLReply Method

TheWPXMLWebServiceProvider class buildXMLReply method takes the JadeXMLDocument and writes it to a
String for the reply method to send back to the browser, as shown in the following code fragment.

xmlReply := xmldoc.writeToString;

Conclusion
JADE enables the rapid development of XML applications with a framework that is intuitive in its use and powerful
in its application. The XML framework in JADE takes advantage of all benefits of XML, while exploiting the very
best JADE has to offer.

Using JADE, the creation, manipulation, and interpretation of XML just got easier.

For more details about using the JADE XML framework, see the JADE product information library available from
https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation.

XML in JADE
White Paper

XML in JADE 33

https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation


WP_XML - 2020.0.02

Appendix A - Persisting XML

This appendix covers two examples of how a persistent structure of JADE objects is created through parsing an
XML document. One of the advantages of this approach is that you do not need to store an XML document in its
raw format and re-parse it every time you need to use its contents. When created, you can use the created tree
structure in the same way you would any other set of JADE objects.

The two examples provided in this appendix demonstrate how an:

Entire XML document can be parsed into a persistent structure

XML document can be parsed, with JADE creating persistent structures based on sections of the raw XML
document

Parsing an XML Document into a Persistent Structure
The XML document file contains details of staff working within two departments. This exercise imports the
document in its entirety.

JadeScript::persistentImport Method

The JadeScript class persistentImport method parses the XML document and creates an XML tree structure with
persistent JADE objects, as shown in the following code fragment.

vars
parser : JadeXMLDocumentParser;
xmlDoc : WPXMLDocument;
root : Root;

begin
root := Root.firstInstance;
beginTransaction;
create xmlDoc persistent;
create parser transient;

We begin by creating a persistent instance ofWPXMLDocument represented by the xmlDoc variable and a
transient instance of JadeXMLDocumentParser represented by the parser variable, as shown in the following
code fragment.

parser.setClassMapping(JadeXMLAttribute, WPXMLAttribute);
parser.setClassMapping(JadeXMLCDATA, WPXMLCDATA);
parser.setClassMapping(JadeXMLComment, WPXMLComment);
parser.setClassMapping(JadeXMLText, WPXMLText);
parser.setClassMapping(JadeXMLDocumentType, WPXMLDocumentType);
parser.setClassMapping(JadeXMLElement, WPXMLElement);
parser.setClassMapping(JadeXMLProcessingInstruction, WPXMLProcessingInstruction);

Class mapping is a necessary part of parsing XML documents into a structure composed of instances of persistent
user subclasses. As a system class such as JadeXMLElement can have multiple user subclasses, JADE needs to
know which subclass should be used to create persistent objects when an XML element is found in the document;
for example, you may have two persistent user subclasses of JadeXMLElement, one to store information
regarding cars and one related to car manufacturers. When parsing an XML document containing car information,
the setClassMappingmethod is used to tell JADE to create instances of the car-related subclass of
JadeXMLElement, rather than that related to car manufacturers.



WP_XML - 2020.0.02

To parse XML documents into a persistent structure, JADE requires you to specify the mapping for all real
JadeXMLNode system subclasses, regardless of whether there is an intent to use them all. This is done to prevent
runtime exceptions if the file does in fact contain an XML node for which no mapping has been specified.
Needless to say, parsing XML documents into a persistent structure requires you to have actually created user
subclasses for all system subclasses first. The only exception is the JadeXMLDocument subclass, which is
declared explicitly when the document is created prior to calling the parseDocumentFile method, as shown in the
following code fragment.

parser.parseDocumentFile(xmlDoc,
"c:\JadeXMLWhitePaper\Persistent XML Structure.xml");

xmlDoc.setName("All People");
root.allWPXMLDocuments.add(xmlDoc);
commitTransaction;
epilog

delete parser;
end;

When the mapping is complete, the file is parsed and theWPXMLDocument is populated with an XML tree
structure. As the document is stored persistently, it is added to a collection for easy retrieval later.

Parsing an XML Document into Multiple Persistent
Structures

This section covers an example of how an XML document is evaluated and multiple persistent structures created
to contain separate sections of the document. This example takes the same file as that used in the previous
section ("Parsing an XML Document into a Persistent Structure)" and creates two persistent XML documents
(which are instances ofWPXMLDocument), into which the details of staff for each department are separated.

JadeScript::persistentSplitImport Method

The JadeScript class persistentSplitImport method parses the XML document and creates two XML tree
structures with persistent JADE objects populated from two separate sections of the XML document.

root := Root.firstInstance;
create xmlDoc transient;
create elmntArray transient;
create parser transient;
parser.parseDocumentFile(xmlDoc,

"c:\JadeXMLWhitePaper\Persistent XML Structure.xml");
xmlDoc.getElementsByTagName("DEPT_PEOPLE", elmntArray);
beginTransaction;
foreach elmnt in elmntArray do

name := elmnt.getAttributeByName("NAME").value;
create newXMLDoc persistent;

This section of the script code fragment creates the following transient instances.

1. xmlDoc, which is passed as a parameter into the parseDocumentFile method and represents the transient
XML tree structure created by the method

2. elmntArray, which is used as a transient container for the elements that delimit the sections of the XML file
in which we have an interest

3. parser, which is used to actually parse the XML file

XML in JADE
White Paper

Appendix A - Persisting XML 35



WP_XML - 2020.0.02

The specified file (that is, Persistent XML Structure.xml) is parsed as usual. The method then gets the delimiting
elements from which we want to create our separate documents and then adds them to the elmntArray. As we
are creating a separate document for each element in this array, the method then steps through each element and
creates a persistent XML document in JADE.

A name attribute has been added to our subclass of JadeXMLDocument (that is,WPXMLDocument), to allow us
to identify them for retrieval purposes. The name for each document is to be derived from the NAME attribute of
the DEPT_PEOPLE element. We assign it to the name variable at this point for later use, as shown in the following
code fragment.

rootElmnt := elmnt.makePersistent(WPXMLElement, WPXMLAttribute,
WPXMLComment, WPXMLCDATA, WPXMLText, WPXMLDocumentType,
WPXMLProcessingInstruction, newXMLDoc).WPXMLElement;

This code fragment takes the selected element from the array and calls the makePersistent method to, oddly
enough, make it persistent.

JadeXMLNode::makePersistent Method

With the exception of newXMLDoc, which has a type ofWPXMLDocument, all parameters passed into the
JadeXMLNode classmakePersistent method are classes. In a similar way to class mapping covered in the
previous section of this appendix, it is necessary to specify what user subclasses are to be instantiated when
creating a persistent copy of a transient class. It is when calling this method that those user subclasses are
specified.

As we potentially need to create persistent instances of all of the different XML nodes, this method shown in the
following code fragment is placed on the JadeXMLNode class.

makePersistent(elmnt, attr, comment, cdata, text, docType, pi : Class;
xmlDoc : JadeXMLDocument input) : JadeXMLNode updating;

vars
newNode, newChildNode, childNode : JadeXMLNode;
attribute, newAttr : JadeXMLAttribute;

begin
if self.isKindOf(JadeXMLElement) then

newNode := self.makePersistentIndividual(elmnt);

This method evaluates the transient object for which it is called and calls the makePersistentIndividualmethod,
passing the user subclass that is used to create a persistent instance.

JadeXMLNode::makePersistentIndividual Method

The JadeXMLNode classmakePersistentIndividualmethod actually creates the persistent JADE object based
on the transient object created as a result of the parsing process. When created, it is returned to the
makePersistent method and assigned to the newNode variable, as shown in the following code fragment.

xmlNode := copySelfAs(class, false).JadeXMLNode; return xmlNode;

JadeXMLNode::makePersistent Method

When the new persistent XML node has been created, it is necessary to continue traversing the transient structure
to ensure that the childNodes (and the childNodes of the childNodes, and so on) are processed, as shown in the
following code fragment.

foreach childNode in self.childNodes do
newChildNode := childNode.makePersistent(elmnt, attr, comment, cdata,

text, docType, pi, xmlDoc);
newChildNode.parentNode := newNode;

endforeach;

XML in JADE
White Paper

Appendix A - Persisting XML 36



WP_XML - 2020.0.02

foreach attribute in self.JadeXMLElement.attributes do
newAttr := attribute.makePersistent(elmnt, attr, comment, cdata,

text, docType, pi, xmlDoc).JadeXMLAttribute;
newAttr.setElement(newNode.JadeXMLElement);

endforeach;
elseif self.isKindOf(JadeXMLAttribute) then

newNode := self.makePersistentIndividual(attr);

It is also important to note that the copySelfAs method does not copy references and that collections are empty on
the copy created. As a result, the JadeXMLNode classmakePersistent method then assigns values to the
appropriate parentNode, document, element, and docType references.

XML in JADE
White Paper

Appendix A - Persisting XML 37


	Contents
	XML in JADE
	XML Structure
	Well-formed XML
	Valid XML

	Why XML?
	A Short History
	XML versus Web Services

	JADE XML
	Objectives
	Using XML in JADE
	Creating and Manipulating XML
	Overview
	Example Reference
	JadeXMLNode Class and Subclasses
	JadeXMLDocument Class
	JadeXMLElement Class
	JadeXMLDocumentType Class
	JadeXMLProcessingInstruction Class
	JadeXMLAttribute Class
	JadeXMLCharacterData Class
	JadeXMLCDATA Class
	JadeXMLComment Class
	JadeXMLText Class


	Interpreting XML
	JadeXMLParser Class
	JadeXMLDocumentParser Class



	Examples
	File In/File Out
	Scenario
	Instructions
	General Setup
	Exporting an XML Document
	Importing an XML Document

	Explanation
	Export Explanation
	Import Explanation


	Data Streaming
	Scenario
	Instructions
	General Setup
	Setting Up IIS
	Application Introduction

	Explanation
	Common Behavior
	The Request
	The Response
	The Format
	Authentication
	Person Search and Export
	Import Explanation



	Conclusion

	Appendix A - Persisting XML
	Parsing an XML Document into a Persistent Structure
	Parsing an XML Document into Multiple Persistent Structures


