
Copyright©2021 Jade Software Corporation Limited. All rights reserved.

SOAP Web Services
White Paper

  VERSION 2020



Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2021 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadme.txt file.



WP_SOAPWebServices - 2020.0.02

Contents

Contents iii

SOAP Web Services 4
Why Web Services? 4
SOAP 4
WSDL 5
UDDI 5
SOAP Web Services in JADE 6

Architecture 6
JADE SOAP Web Services Provider 7

Runtime Deployment 8
JADE Web Services Provider Message Flow 8
SOAP Message Formats 9
Versioning Options 10
SOAP Faults 11
Using SOAP Headers 11
Documenting Your Web Service 12

Mapping JADE Types to XML Schema Types 14
A Web Service Provider Example 15

Creating the Web Service Class 15
Creating the Web Service Methods 16
Creating the Exposure List 18
Creating the Web Service Application 20
Generating the WSDL 22
Using the Test Harness 23

JADE Web Services Client 25
Creating a JADE Web Services Client 25
Using a JADE Web Services Client 26
Message Flow 27
Web Service Styles 27
Transients 28
SOAP Headers 28
Updating a Consumer 28
Changing the End Point 28
Direct Web Services 30



WP_SOAPWebServices - 2020.0.02

SOAP Web Services

Web services are the fundamental building blocks in the move to distributed computing on the Internet. Open
standards and the focus on communication and collaboration among people and applications have created an
environment where Web services are becoming the platform for application integration.

This white paper provides an overview of Simple Object Access Protocol (SOAP) Web services and some of the
technologies used in Web services today. This paper also covers the JADE implementation of the SOAP-based
Web services provider and consumer features, along with a detailed example.

For details about RESTful Web services, see the REST Services white paper (which is also available from the
JADE Web site at https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers).

SOAP Web services generally provide the following features.

Expose useful functionality to Web users through a standards-based Web protocol.

Provide a way to describe their interfaces in enough detail to allow a user to build a client application to talk
to them. This is usually provided in an Extensible Markup Language (XML) document called a Web Services
Description Language (WSDL) document.

Are registered so that potential users can find them easily. This is done with Universal Discovery Description
and Integration (UDDI).

For more details, see the following subsections.

Why Web Services?
One of the primary advantages of the Web services architecture is that it allows programs written in different
languages on different platforms to communicate with each other in a standards-based way. SOAP is significantly
less complex than earlier approaches, so the barrier to entry for a standards-compliant SOAP implementation is
significantly lower. The other significant advantage that Web services have over previous efforts is that they work
with standard Internet protocols - XML, HTTP, and TCP/IP. A significant number of companies already have an
Internet infrastructure, and people with knowledge and experience in maintaining it, so again, the cost of entry for
Web services is significantly less than for previous technologies.

Exposing existing applications as Web services allows you to build new, more-powerful applications that use Web
services as building blocks. For example, you could develop a purchasing application to automatically obtain
price information from a variety of vendors, allow the user to select a vendor, submit the order, and then track the
shipment until it is received. The vendor application, in addition to exposing its services on the Web, could in turn
use Web services to check the customer's credit, charge the customer's account, and set up the shipment with a
shipping company.

SOAP
SOAP is a messaging protocol for Web services that defines a specification for how to send messages in a
standardized form. If you have a well-formed XML fragment enclosed within a pair of SOAP elements, you have a
SOAP message.

https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers


WP_SOAPWebServices - 2020.0.02

There are other parts of the SOAP specification that describe how to represent program data as XML and how to
use SOAP to do Remote Procedure Calls (RPCs). These optional parts of the specification are used to implement
RPC-style applications where a SOAP message containing a callable function, and the parameters to pass to the
function, is sent from the client and the server returns a message with the results of the executed function. Most
current implementations of SOAP support RPC applications because programmers who are used to doing
distributed applications with other technologies understand the RPC style.

SOAP also supports document-style applications where the SOAP message is just a wrapper around an XML
document. Document-style SOAP applications are very flexible and many new Web services take advantage of
this flexibility to build services that would be difficult to implement using RPC. JADE gives you the freedom to
choose between RPC and document styles.

The last optional part of the SOAP specification defines what an HTTP message that contains a SOAP message
looks like. This HTTP binding is important because almost all current operating systems support HTTP. The HTTP
binding is optional, but almost all SOAP implementations support it because it is the only standardized protocol for
SOAP.

By far the most compelling feature of SOAP is that it has been implemented on many different hardware and
software platforms. This means that SOAP can be used to link disparate systems.

SOAP is much smaller and simpler to implement than many of the previous protocols. For example, CORBA, one
of SOAP's precursors, took years to implement so only a few implementations were ever released. SOAP,
however, can use existing XML parsers and HTTP libraries to do most of the hard work, so a SOAP
implementation can be completed in a matter of months.

The ubiquity of HTTP and the simplicity of SOAP make them an ideal basis for implementing Web services that
can be called from almost any environment.

The JADE Web services framework provides support for the HTTP protocol. SOAP messaging is transparent, as
JADE handles the processing of incoming SOAP messages, creates the appropriate transient objects, and calls
the requested method. On return from the method call, a SOAP response message is then generated and sent
back to the requesting client. User exits are available via method reimplementation to override the default
processing and response.

WSDL
WSDL stands for Web Services Description Language. For our purposes, we can say that a WSDL file is an XML
document that describes a set of SOAP messages and how the messages are exchanged. In other words, WSDL
is to SOAP what OpenAPI Specification (OAS) is to REST. Since WSDL is XML, it can be read and edited, but in
most cases it is generated and consumed by software.

The notation that a WSDL file uses to describe message formats is based on the XML Schema standard, which
means it is both programming-language neutral and standards-based, making it suitable for describing Web
services interfaces that are accessible from a wide variety of platforms and programming languages. In addition to
describing message contents, WSDL defines where the service is available and what communications protocol is
used to talk to the service. This means that the WSDL file defines everything required to write a program to work
with a Web service. A WSDL document can be generated by JADE and consumed by another JADE or third-party
application. JADE provides the necessary tools to do this quickly and easily.

UDDI
Universal Discovery Description and Integration (UDDI) is the yellow pages of Web services. As with traditional
yellow pages, you can search for a company that offers the services you need, read about the service offered, and
contact someone for more information. You can, of course, offer a Web service without registering it in UDDI.

SOAPWeb Services
White Paper

SOAPWeb Services 5



WP_SOAPWebServices - 2020.0.02

A UDDI directory entry is an XML file that describes a business and the services it offers. There are three parts to
an entry in the UDDI directory.

The "white pages" describe the company offering the service: name, address, contacts, and so on.

The "yellow pages" include industrial categories based on standard taxonomies such as the North American
Industry Classification System and the Standard Industrial Classification.

The "green pages" describe the interface to the service in enough detail for someone to write an application
to use the Web service. The way services are defined is through a UDDI document called a Type Model or
tModel. In many cases, the tModel contains a WSDL file that describes a SOAP interface to a Web service,
but the tModel is flexible enough to describe almost any kind of service.

The UDDI directory also includes several ways to search for the services you need to build your applications. For
example, you can search for providers of a service in a specified geographic location or for a business of a
specified type. The UDDI directory will then supply information, contacts, links, and technical data to allow you to
evaluate which services meet your requirements.

JADE may provide UDDI discovery and publication in a future release. However, at present there is little usage of
this feature in the community. In fact, IBM, Microsoft, and SAP have now closed their public UDDI nodes.

SOAP Web Services in JADE
JADE has a full implementation of both the Web services provider and Web services consumer features.

JADE Web services currently support the XML 1.0, WSDL 1.1, SOAP 1.1, and SOAP 1.2 standards. In addition,
JADE Web services are also WS-I 1.0 compliant.

For more details, see the following subsections.

Architecture

SOAPWeb Services
White Paper

SOAPWeb Services 6



WP_SOAPWebServices - 2020.0.02

JADE SOAPWeb Services Provider
A SOAP Web service provider is a node on the network (Intranet or Internet) that provides access to a software
service that performs a specific set of operations. A service provider node provides access to the services of a
business system, a subsystem, or a component.

The JADE SOAP Web service provider framework uses the JADE Web application. An understanding of this
framework is assumed in the following discussion.

JADE uses the HTTP protocol for communicating with Web service clients or a direct connection over TCP for
communicating with other JADE systems. By method reimplementation, it is possible to cater for other protocols as
well.

The Web services framework in JADE shields you from the complexities of working with SOAP messages. As far
as you are concerned, you are creating JADE methods. The steps involved in creating a Web service in JADE are
as follows.

1. Add a Web service by creating a subclass of the JadeWebServiceProvider class. Each of these subclasses
will be a Web service. You can define multiple Web service classes within a single application.

2. Build the Web service by adding methods to this class. Methods that are to be exposed will require the
webservice option in the method signature. Any method added to a JadeWebServiceProvider subclass will
by default be a Web service method.

3. Define the properties to be exposed for the classes that will be returned by this service. A Web service
exposure form will list all classes that are required to be exposed and by default, all public and read-only
properties will be selected.

4. Create a Web-enabled Web service application. This application will receive and respond to client requests.
Set up the application options such as machine name, virtual directory, Web service exposure or exposures,
and secure service.

5. Extract the Web Services Description Language (WSDL) file. This file will have all of the necessary
information for a Web service client to create a SOAP message and communicate with your application. The
generated WSDL conforms to WSDL 1.1.

That is it from the development perspective. Of course, in order to successfully execute your application, you will
have to set up the virtual directory and the jadehttp.ini (IIS) or jadehttp.conf (Apache) file correctly for your Web
server. Once this has been done, you can test your Web service by using the built-in Web browser test harness or
a client application.

Although the development process is relatively simple, careful design of your Web service is important for the
following reasons.

Incorrect exposure of properties can lead to large response messages being generated. For example, in the
example Erewhon system, if all of the properties were exposed, what looks like a simple call (like getting a
single client by name) could end up returning almost all of the information in the database. This could end up
generating a response string that is about nineteen (19) megabytes!

Once the WSDL file is given to customers, it gets harder to change the interface as the interface is now
published. Version control will have to be enforced and multiple versions of the service may need to be
maintained.

As with most applications, performance, scalability, and reliability must be considered when designing your
Web service. This becomes particularly important because a Web service can be invoked without human
interaction.

For more details, see the following subsections.

SOAPWeb Services
White Paper

SOAPWeb Services 7



WP_SOAPWebServices - 2020.0.02

Runtime Deployment
The Web service URL settings can be set at run time in the [WebOptions] section of the jade.ini file or in the
XML-based configuration file.

In the jade.ini file, use application-name_WebServicesURL=url to set it for a specific JADE application and use
WebServicesURL=url to set a default value where there is no specific application value set. For example, in the
jade.ini file for the development environment:

[WebOptions]
ErewhonWebService_WebServicesURL=http,developmentServer,jade,jadehttp.dll

For the jade.ini for the production environment:

[WebOptions]
ErewhonWebService_WebServicesURL=http,productionServer,jade,jadehttp.dll

The XML configuration file allows several runtime configuration options, which can be created using a text editor
or the application that is provided with JADE.

For details about configuring Web services, refer to the [WebOptions] section in the JADE Initialization File
Reference or "Configuring Web Applications" in Chapter 3 of the JADE Web Application Guide for details about
the Web Configuration application and XML-based configuration file settings.

JADE Web Services Provider Message Flow

Consider the following points about the Web services provider message flow.

The Web server can be IIS or Apache.

The JADE application must be a Web-enabled or Web-enabled non-GUI application.

A non-GUI application can be run on any of the JADE-supported operating systems.

The Get Session session handling is optional and if used, will create a persistent instance of the session
subclass.

The Process Request method can be reimplemented. This can be used, for example, to inspect the incoming
SOAP message.

SOAPWeb Services
White Paper

SOAPWeb Services 8



WP_SOAPWebServices - 2020.0.02

The Send Reply method can be reimplemented. This can be used, for example, to inspect the response
message.

When the JADE application is executing, any exception that is raised will be converted to a SOAP fault and
returned to the calling application.

The message flow depicted in the above image is the default message flow when using the JADE-supplied
Web framework (which uses the HTTP protocol only).

SOAP Message Formats
WSDL 1.1 distinguishes between two message styles: document and RPC. Here's how each style affects the
contents of <soap:Body>.

Document

<soap:Body> contains one or more child elements called parts. There are no SOAP formatting rules for what
the <soap:Body> contains; it contains whatever the sender and the receiver agree upon.

RPC

RPC implies that <soap:Body> contains an element with the name of the method or remote procedure being
invoked. This element in turn contains an element for each parameter of that procedure.

For applications that use serialization and deserialization to abstract away the data wire format, there is one more
choice to be made: the serialization format. The current two popular serialization formats today are:

SOAP Encoding

SOAP encoding is a set of serialization rules defined in section 5 of SOAP 1.1 and is sometimes referred to
as "section 5 Encoding". The rules specify how objects, structures, arrays, and object graphs should be
serialized. Generally speaking, an application using SOAP Encoding is focused on remote procedure calls
and will likely use RPC message style.

Literal

Data is serialized according to a schema. In practice, this schema is usually expressed using W3C XML
Schema. Although there are no prescribed rules for serializing objects, structures, graphs, and so on, the
service's schema describes the application-level Infoset of each of the service's messages.

There are therefore four possible variations in the message format. By default, JADE uses the document/literal
format. If circular references are detected, the only way to currently represent this is in encoded format, so in this
case JADE defaults to document/encoded. You have a choice of changing either of these defaults to RPC format,
by using the application options. JADE’s RPC format is always encoded.

Many people believe that a shift away from SOAP encoding is inevitable. The W3C XML Protocol Working Group's
SOAP 1.2 specification makes support for SOAP encoding optional (that is, a toolkit can claim SOAP 1.2
compliance without supporting SOAP encoding), the WS-I Basic Profile Working Group's interoperability
guidelines (Basic Profile Version 1.0a) disallows the use of SOAP encoding with SOAP 1.1, and the W3C Web
Service Description Working Group has dropped support for encoding from the WSDL 1.2 specification.

Before JADE can drop support for encoded formats and conform to WS-I’s Basic Profile, there has to be an XML
schema-friendly way to handle circular references. A one-to-one relationship is an example of a circular
reference. If both properties in this relationship are exposed, the WSDL that JADE generates will be in encoded
format.

SOAPWeb Services
White Paper

SOAPWeb Services 9



WP_SOAPWebServices - 2020.0.02

Versioning Options
When implementing a new version of a Web service, there are some instances in which you can simply enhance
the existing class and others where you need to implement a new class that can use the previous version.

The most-common tasks you will face when updating a Web service are:

Adding extra methods. The new methods are conceptually related to the existing Web service and should be
implemented on the same endpoint.

Changing method signatures. In this case, the number of parameters, the type of a parameter, or the return
type changes.

Updating the data model. In this case, classes are added, properties are added or deleted, or have their
name or type changed.

For details, see the following subsections.

Adding Extra Methods
In this case, the new methods can be added to the current Web service class and existing clients will continue to
work without any problems. A new WSDL file can be generated from the new definitions for new clients and
existing clients who require the new functionality. A new JADE application need not be created.

Changing Method Signatures
There are at least three choices, as follows.

Create a method with a different name and add it to the existing class. This is the same as adding extra
methods.

Create a new class with the same method name. In JADE, this new class cannot be a subclass of the existing
class because the method signatures are different.

You will therefore need to copy the methods whose signatures have not changed to this new class as well, to
retain the existing functionality. Even though you can select multiple Web service classes to be defined for an
exposure, as the generated WSDL cannot contain two methods with the same name, creating a completely
new class and a new application is therefore necessary.

Change the current method’s signature, supply the updated WSDL to your Web service clients, and use
version control to check and reject invalid requests.

Updating the Data Model
Adding a property but not exposing it will not have any effect on existing client systems. However, exposing this
property will cause XML to be generated for it and then whether this works or not will depend on how the client
system handles the message. Similarly, if an exposed property is deleted or its name is changed, the client system
can ignore the fact that a property value it expects is not there or there is a property value with a name that it does
not recognize. However, if the type of a property changes, it is likely that the client system will fail, especially if the
change is significant; for example, changing a property type from a primitive type to a class, or the reverse.

In order to ensure compatibility with existing client systems, it is generally safer to assume that structural changes
to exposed classes may cause a problem. In this case, you have at least two choices.

Make the change in your existing system and provide your Web service clients with the updated WSDL file
and other relevant documentation for them to make the necessary changes in their application. Set up
version control in the JADE application so that requests that do not match the correct version can be rejected
(JADE does this for you, by returning a SOAP fault).

SOAPWeb Services
White Paper

SOAPWeb Services 10



WP_SOAPWebServices - 2020.0.02

Make the changes in a separate copy of the system and set up version control in the JADE application for
this system. You may need to set up other options such as the machine name and virtual directory so that the
requests are directed to the correct versions of the application.

SOAP Faults
When an error is raised during development, you will want to know where the error originated. Because this
information is not useful to consumers of the Web service, you won't want to return meaningless line numbers
when the service is deployed. Instead, you will want to provide other contextual information about what happened.

The SOAP Fault element has four separate pieces. In the following list, the bold names are for SOAP 1.1 and the
SOAP 1.2 names are shown in italics.

faultcode (Fault): Contains a value of VersionMismatch,MustUnderstand, Client, or Server.

faultstring (Reason): Provides an explanation of why the fault occurred.

faultactor (Role): Indicates the URI associated with the actor that caused the fault on the message path. In
RPC-style messaging, the actor should be the URI of the invoked Web service.

detail (Detail): Carries information about why the error happened. This element can contain more XML
elements or it could just be plain text.

The fault codes fall into the following categories.

VersionMismatch: The SOAP receiver saw a namespace associated with the SOAP envelope that it does
not recognize. When this fault code is received, the message should not be re-sent. The SOAP namespace
needs to be set to something the receiver does understand. JADE returns this code when the incoming
namespace does not match the namespace of the Web service application.

MustUnderstand: An immediate child of the SOAP header had MustUnderstand set to true. The receiver of
the message did not understand the header. The receiver will need to be updated somehow (new code, new
libraries, and so on) in order to make sense of the header. This fault code is currently not supported by JADE.

Client (Sender): Something about the way that the message was formatted or the data it contained was
wrong. The client needs to fix its mistake in order for the message to be sent back. When returning this fault
code, you should also fill in the details element with some specifics on what needs to happen in order for the
message to be processed. This fault code is returned by JADE if the service, method, or parameters are
invalid.

Server (Receiver): An error happened at the server. Depending on the nature of the error, you may be able
to resend the exact same message to the server and see it processed. JADE returns this fault code if the
method execution fails.

When a JADE exception is raised on the Web service provider, the fault is converted to a SOAP fault message and
returned to the client. SOAP faults are returned as HTTP 500 errors.

Using SOAP Headers
Those familiar with HTTP or MIME headers are probably used to seeing various sorts of metadata included with
the main data in the message. In a lot of ways, the SOAP header is similar, with one major difference.

HTTP uses the Content-Type header to indicate the MIME type of the data in the body of an HTTP request or
response. Similarly, an HTTP client can request what kind of data it wants in the response, by including the HTTP
Accept header. From a high level, SOAP messages always contain XML data, so in that sense there is no need to
specify a MIME type to describe the data. In fact, the structure of the data in SOAP messages is much better
defined through the use of XML schema.

SOAPWeb Services
White Paper

SOAPWeb Services 11



WP_SOAPWebServices - 2020.0.02

A Web service that defines its interface through WSDL defines the schema of its data along with the bindings that
specifies what response data types will be generated from which request data types.

The well-defined nature of SOAP messages is what allows them to be so easily used from within applications.
Therefore, because the data structure is already defined, using SOAP headers to describe the data structure in a
SOAP message is unnecessary.

The focus of the SOAP header should be to help process the data in the body. It makes sense to include
information about authentication or transactions, because this information will be involved in identifying the
person or company who sent the body and in what context it will be processed. Expiration data could be included
in the header, to indicate when the data in the body may need to be refreshed. User account information could be
included, to ensure that processing the message is performed only for a request that has been legitimately paid
for.

Another factor in determining whether information should be included in SOAP headers is whether that
information will have broad application to a wide variety of SOAP messages. If so, it should be included in the
header. It makes more sense to define a single schema and insert it into the definition of one header element than
to force inclusion of the same data into the body schemas of a large number of message definitions.
Authentication and routing are problems common to many Web services, so it makes sense that this information
lives in the header element.

In JADE, SOAP headers are defined as a subclass of the JadeWebServiceSoapHeader class. Properties that are
to be included in the header are then defined on this class. These classes can then be included in a Web service
definition, by adding properties to the service of this type. Individual methods can then be assigned these
headers.

When session handling is enabled for a Web service application, a SOAP header is automatically generated for
every method call. This header carries the current session id. The client system does not need to process this
header but it is required to return the header back to the JADE Web service provider. The header is defined as
input-output so that the client knows to do this.

Documenting Your Web Service
Documentation for a Web service needs to contain several different elements.

1. First and foremost, it should provide a Web Services Description Language (WSDL) file that
programmatically describes the Web service.

2. Secondly, it needs to provide written documentation describing how to use the Web service. This should
include various items, including an API reference, troubleshooting tips, and usage descriptions.

3. Finally, the documentation should provide sample code for all of the operations, preferably using the fewest
lines of code needed to call the specified method. Examples of SOAP messages going back and forth should
be included, along with the code. These sample messages will help developers to develop a client in
languages other than those outlined by the samples. Ideally, the documentation should also include a
sample client that uses the Web service, complete with source code.

For more details, see the following subsections.

WSDL Files
When documenting a Web service, you must provide a WSDL document. This document provides critical
information about the Web service that both the developers and programming tools need. In a compact, concrete
way, this document describes everything, including:

Messages that the Web service understands and the format of its responses to those messages

Protocols that the service supports

SOAPWeb Services
White Paper

SOAPWeb Services 12



WP_SOAPWebServices - 2020.0.02

Where to send messages

All of this information combines to give the programmer a view of how the system expects outside applications to
interact with the Web service. The WSDL is therefore the main piece of documentation your users need.

The WSDL file can be generated in JADE.

Usage Documentation
The documentation for your Web service should also describe how you expect people to use your Web service.
Explain how errors will be returned, how to initiate usage, and so on. This information will help get others up and
running with your Web service. Unless you are doing something simple like retrieving a stock quote based on
ticker symbol, people are going to need good documentation.

First, include an overview document. A good overview contains pointers to and summaries of the documentation
relating to the Web service: WSDL locations, developer guides, API reference, and so on. Within the developer
guide, explain how the Web service is to be used. Describe typical usage scenarios, as well as error handling.

When describing error handling, list errors that can be returned for everyWeb service method. Give the return
codes, so that client developers can look up the error number and display a meaningful message to their
end-users in either a display message or a log entry. You could add a method to the service that given an error
code, will return a message describing the error and how to correct it.

Besides error handling, you will also want to document the various operations in the Web service. This should
look like any other API documentation.

Explain what the operation does

Define the meaning and type of the parameters of the operation

Provide sample code

Give Helpful Hints
In addition to the above, give a sample SOAP message exchange dependent upon the communication pattern
used (one-way, request-response, and so on).

Finally, take some time to develop a sample client that uses most, if not all, of the operations exposed by the Web
service. Make sure that the sample actually looks like something you expect a client developer might want to
build. This reference may prove to be more useful than you think — the developer can use the sample to verify if
the problem is in his or her implementation or somewhere with the Web service itself.

Make use of the text feature for classes, methods, and properties to document your Web service. The text will be
extracted as part of the WSDL generation, thereby providing documentation in the WSDL file itself.

SOAPWeb Services
White Paper

SOAPWeb Services 13



WP_SOAPWebServices - 2020.0.02

Mapping JADE Types to XML Schema Types
The following image represents the XML built-in data type hierarchy.

SOAPWeb Services
White Paper

SOAPWeb Services 14



WP_SOAPWebServices - 2020.0.02

The mapping of JADE types to XML is as follows.

JADE Attribute XML Simple Type XML Examples (Delimited by Commas)

String, StringUtf8 string Confirm this is electric

Character unsigned byte 1, 126

Byte byte -1, 126

Binary base64Binary GpM7

Integer int -1, 12678967543233

Integer64 long -1, 12678967543233

Decimal decimal -1.23, 0, 123.4, 1000.00

Real double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

Boolean boolean true, false, 1, 0

Time time 13:20:00.000, 13:20:00.000-05:00

TimeStamp dateTime 1999-05-31T13:20:00.000-05:00

TimeStampInterval duration P5Y2M10D, P5Y2M10DT15H

TimeStampOffset dateTime 1999-05-31T13:20:00.000-05:00

Date date 1999-05-31

Note the different format for storing TimeStamp information in XML.

AWeb Service Provider Example
The SOAP Web service provider example in the following subsections is based on the Erewhon Investments
example system, available on the JADE public GitHub at https://github.com/jadesoftwarenz/JADE-Erewhon. Load
the schemas and generate the data. For details, see the Erewhon Demonstration System Reference document.

In this example, we will create a new application called CustomerService.

Note The Erewhon Investments example system already includes a Web service provider, which may be a
useful example as you complete the steps described in the following subsections. was built following the steps
described in the following subsections. In the Erewhon example schema there are two provider applications:
WebServiceOverHttpApp, which uses normal Web services over HTTP, andWebServiceOverTcpApp, which
uses JADE’s Direct Web Services over TCP/IP.

Both applications provide the same functionality.

Creating the Web Service Class
In the ErewhonInvestmentsViewSchema, we add a subclass to the JadeWebServiceProvider class. This class
is called Customer.

You can add properties to this class, but bear in mind that state information cannot be stored between requests
because the transient instance of this class that is created for the request is deleted when the response has been
sent.

SOAPWeb Services
White Paper

SOAPWeb Services 15

https://github.com/jadesoftwarenz/JADE-Erewhon


WP_SOAPWebServices - 2020.0.02

We also add the following text to this class.

This service is used to access client information on the Erewhon system.
A list of clients can be obtained as well as details for an individual client.
Client details can also be updated using this service.

Creating the Web Service Methods
We add four methods, described in the following subsections, to this class.

getClientNames

getClient

updateClientWithProxy

updateClient

Method 1: getClientNames
The getClientNames method will return an array of client names for a company. The company used is the
company defined for the application.

getClientNames(): StringArray webService;
vars

names: StringArray;
client: Client;

begin
create names transient;
foreach client in app.myCompany.allClients do

names.add(client.name);
endforeach;
return names;

end;

We also add the following text to this method.

This method will return a string array of client names.

Method 2: getClient
The getClient method will return a Client object, based on an input parameter that contains the name of the client
to search for. If the client does not exist, an error is returned.

getClient(clientName: String): Client webService, updating;
vars

client: Client;
begin

client := app.myCompany.allClients[clientName];
if client = null then

setError(23, clientName, "Client does not exist");
endif;
return client;

end;

SOAPWeb Services
White Paper

SOAPWeb Services 16



WP_SOAPWebServices - 2020.0.02

We also add the following text to this method.

Given a client name, this method will return a client object. If a client with the
supplied name does not exist, error 23 will be returned.

Method 3: updateClientWithProxy
The updateClientWithProxy method will update a client object based on an input parameter that is a transient
client object.

If the client does not exist or if the update fails, an error is returned.

The following method shows an example of using an input parameter that is not a primitive type.

updateClientWithProxy(proxyClient: Client) updating, webService;
vars

client : Client;
result : Integer;

begin
client := app.myCompany.allClients[proxyClient.name];
if client = null then

setError(23, proxyClient.name, "Client does not exist");
return;

endif;
result := app.myTA.trxUpdateClient(client, client.edition,

proxyClient.myAddress);
if result <> 0 then

setError(result, proxyClient.name, global.getErrorString
(app.getLastError));

endif;
end;

We also add the following text to this method.

This method takes a client proxy object as parameter and updates the persistent
copy of the client object with details from the proxy. If the persistent object
does not exist, error 23 is returned.

Method 4: updateClient
The updateClient method will update a client object based on several primitive type input parameters. If the client
does not exist, an error is returned. The following method is an alternative implementation to the method above.

updateClient(name, street, city, country, phone, fax, email,
website: String) webService, updating;

vars
client: Client;
result: Integer;
address: Address;

begin
client := app.myCompany.allClients[name];
if client = null then

setError(23, name, "Client does not exist");
return;

endif;
address := create Address(name, street, city, country, email, fax, phone,

website) transient;
result := app.myTA.trxUpdateClient(client, client.edition, address);

SOAPWeb Services
White Paper

SOAPWeb Services 17



WP_SOAPWebServices - 2020.0.02

if result <> 0 then
setError(result, name, "Client update failed");

endif;
epilog

delete address;
end;

We also add the following text to this method.

This method takes several string parameters and updates the persistent copy of the
client object with details from the parameters. If the persistent object does not
exist, error 23 is returned.

Note The framework will delete return types that are transients (for example, the StringArray in method 1
(getClientNames) when processing is complete.

If you do not want this behavior, set the deleteTransientReturnTypes property to false. You should set this
property in the create method of your JadeWebServiceProvider subclass.

Creating the Exposure List
The classes to be exposed in a Web service are deduced from the parameters and return types for every Web
service method exposed by the service.

When defining this exposure, the properties that are to be exposed for this service must also be defined. Use the
exposure wizard to do this. You can define multiple exposures for each application. In addition, you can use the
same exposure to define more than one Web service application. To achieve this, you must define the exposures
separately.

SOAPWeb Services
White Paper

SOAPWeb Services 18



WP_SOAPWebServices - 2020.0.02

To create a new exposure, use the Exposures BrowserWeb Services sheet, accessed by selecting Add from the
Exposures command when the Exposure Browser has focus and then selecting theWeb Services sheet. The
following dialog is then displayed.

The list of Web service classes defined for your schema will be displayed. You will need to select at least one of
these classes.

Other Web service options (for example, session handling and version control) are also set up in this dialog. For
details about specifying application Web services, see "Defining a Web Services Application", in Chapter 11 of the
JADE Developer's Reference.

SOAPWeb Services
White Paper

SOAPWeb Services 19



WP_SOAPWebServices - 2020.0.02

Clicking the Next button displays the second page of this dialog.

Select the properties that need to be exposed and then click the Update button, which will save the exposure.

Creating the Web Service Application
When you have added the required methods, you can now set up the application.

SOAPWeb Services
White Paper

SOAPWeb Services 20



WP_SOAPWebServices - 2020.0.02

From the Application Browser, add a new application and call it CustomerWebServiceApp. Set up this
application to be Web-enabled and the Web application type to be a Web service.

SOAPWeb Services
White Paper

SOAPWeb Services 21



WP_SOAPWebServices - 2020.0.02

In theWeb Options sheet, specify your Web service options and then select theWebServiceOverHttpApp as
your Web service exposure. In the example, scheme is kept at the default value of http, localhost is used as the
machine name, 6107 is used as the port, and JadeEval as the virtual directory.

You can also use JADE-to-JADE direct Web services, which allow a Web service consumer to connect directly to
the Web service provider without the need for a Web server. As the messaging protocol is specific to JADE, the
Web service consumer must be a JADE system. To use the JADE-to-JADE direct Web services option, change the
scheme to tcp and enter a machine name of localhost:1234, where localhost is used as the machine name and
1234 represents the TCP port number to be used.

Nothing else needs to be set to use this option. Note also that nothing needs be set up in the IIS or Apache Web
server, as the communication between the JADE Web service provider and consumer uses TCP directly and
bypasses the Web server.

Generating the WSDL
You can now generate the WSDL by clicking the Generate WSDL button.

Generate and save the WSDL file.

Note that you can select more than one exposure from this dialog. As each exposure needs to be written to a
separate WSDL file, selecting multiple exposures will prompt you for multiple file names.

SOAPWeb Services
White Paper

SOAPWeb Services 22



WP_SOAPWebServices - 2020.0.02

Using the Test Harness
JADE provides an in-built test harness whereby you can enter a URL containing the name of the Web service into
a browser and test the functionality of your Web service.

You will need to set up your virtual directory on your Web server and update the initialization file for the jadehttp
module. For more details, see "Configuring JadeHttp for Remote Connections", in Chapter 2 of your JADE
Installation and Configuration Guide. Once all of this is done, you can run the Web service application and use the
Browser menu item in the File menu to bring up the test harness on your browser.

The following images illustrate a sample session using the test harness.

SOAPWeb Services
White Paper

SOAPWeb Services 23



WP_SOAPWebServices - 2020.0.02

SOAPWeb Services
White Paper

SOAPWeb Services 24



WP_SOAPWebServices - 2020.0.02

The test harness cannot be used when any of the parameters to the method are not primitive types. For example,
the updateClientWithProxy method cannot be invoked using the test harness.

JADE Web Services Client
The JADE Web services framework shields you from the complexities of working with SOAP messages. As far as
you are concerned, you are using JADE methods. For more details, see the following subsections.

There are many tools available today to write a Web service client. A WSDL file that was generated in JADE can
be imported into a .NET application. Using the Add Web Reference dialog to load a WSDL file into a .NET
application creates a file of Web service method calls and proxy classes.

Using this generated proxy, you can then create a client application with a GUI front-end.

Creating a JADE Web Services Client
The steps involved in creating a Web service client in JADE are as follows.

1. Access the Web Service Consumer Browser from theWeb Service Consumer menu item in the Browse
menu and then add a consumer, by selecting the Addmenu item in the Consumer menu.

2. From the Web Service Consumer Wizard, enter a WSDL file name if the file is on disk or enter the URL of a
WSDL file that is available via the network.

SOAPWeb Services
White Paper

SOAPWeb Services 25



WP_SOAPWebServices - 2020.0.02

3. Click the Validate button. A default consumer name is generated and a list of Web service methods with
parameters and return types is displayed. The consumer name is used to create a subclass of
JadeWebServiceConsumer containing these methods.

4. Click the Next button. A list of class and property names is displayed. The names from the WSDL are shown
on the left and the corresponding JADE names on the right. The JADE names will be different and
highlighted in orange if the WSDL names do not conform to the JADE naming rules. You can change any
JADE name and add a prefix to all class names, property names, or method names. You can also change
the superclass of all created classes from the default ofObject. The Erewhon sample schema
WebServiceConsumerSchema has a superclass of ErewhonAdmin and a class prefix ofWS_ applied.

5. If you check the Generate methods for asynchronous calls check box, methods for consuming the Web
service asynchronously are generated in addition to the methods for synchronous execution.

Tip For details about and examples of running Web services synchronously and asynchronously, see
"Using the Imported Web Service Consumer", in Chapter 11 of the JADE Developer's Reference.

6. If you check the Generate new primitive types check box, the Web service consumer classes and methods
generated from the WSDL use the primitive types Integer64, Byte, and TimeStampInterval where
appropriate. (These primitive types were not available in earlier implementations of Web services.)

7. Click the Update button. These classes are then all automatically added to the current schema.

Using a JADE Web Services Client
To use the Web service consumer, write user logic to create an instance of the JadeWebServiceConsumer
subclass and call the required methods with the parameters. JADE will automatically package and send a SOAP
message with the method request and parameter values to the Web service provider, wait for the SOAP response,
and unpackage the values into the Web service method return value plus any io or output method parameters.

After the call to the Web service provider method, the return value will be automatically populated. If this is a class
with references to and collections of other classes, transient instances of these classes will have been created
with data from the incoming SOAP message. The references will be established and the collections populated,
including any primitive and object arrays.

The data can then be accessed and used as if the method accessed local JADE resources. If the Web service
provider is unavailable or there are connection problems, appropriate JADE exceptions are raised.

SOAPWeb Services
White Paper

SOAPWeb Services 26



WP_SOAPWebServices - 2020.0.02

Message Flow

Starting with the called JadeWebServiceConsumer subclass method:

sendRequest, which builds the SOAP request.

invoke, which sends the SOAP request out via HTTP (or TCP) and receives the response.

processReply, which raises a server error exception if the response is not a valid SOAP message, converts
a SOAP error message into a JADE exception, and populates the method return values.

You can reimplement the invoke method to examine and possibly change the input SOAP message (the value of
the inputMessage method parameter) before it is processed.

Web Service Styles
As explained for the Web service provider earlier in this document, JADE supports both Document- and RPC-style
Web services. In the consumer, this information is part of the WSDL definition, and JADE will build the Web
service consumer methods and classes differently for the two styles.

For RPC-style, classes are built for each definition in the WSDL that is not a primitive type; that is, all classes used
as Web service consumer method parameters and return types, plus all other classes to which they refer. The
Web service consumer parameters and return types are JADE primitives or the classes used as Web service
consumer classes. This gives a very natural JADE-like system, and for a simple JADE-to-JADE service, may be
the easiest way to code but it requires careful design of the Web service provider methods, to avoid frequent
reloads and changes in the consumer as method signatures are altered. In addition, the trend in Web services is
away from RPC-style towards Document-style.

For Document-style, classes are built as for RPC-style but two additional classes are built for each Web service
method: one containing the parameters and the other for the return value. The Erewhon schema
WebServiceConsumerSchema shows this. To call the Web service method, an input parameter object is created,
populated, and used as the method parameter, and an output parameter object is automatically created and
populated as needed by the method call.

SOAPWeb Services
White Paper

SOAPWeb Services 27



WP_SOAPWebServices - 2020.0.02

This requires a little more coding, but with careful design can be a much more flexible mechanism, as you can
write a few general-purpose Web service methods and use one or more of the parameters to determine the actual
processing.

Transients
The Web service consumer code keeps track of all transients that it creates, and these are deleted when the reset
method is called or the Web service consumer object is deleted. If the Web service consumer object is re-used for
multiple method calls, you should call the reset method before each such use.

Any transient objects that are created in your code for Web service consumer method parameters should be
deleted in your code when they are no longer required.

SOAP Headers
If the imported WSDL includes details for SOAP headers, they will be automatically built as subclasses of
JadeWebServiceSoapHeader and references created from the JadeWebServiceConsumer subclass to them.
To populate them on output, just set the values before calling the Web service consumer method.

If the target Web service provider returns values in the SOAP headers, they will be automatically updated from the
Web service consumer method call.

Updating a Consumer
To update a JADE Web service consumer from an updated WSDL, follow a similar procedure to the initial
consumer creation described earlier in this document, accessing theWeb Service Consumer Browser from the
Web Service Consumer menu item in the Browse menu. Select the required consumer and then the Reload
menu item in the Consumer menu. Click OK on the Warning message box that is displayed, then follow the rest of
the steps in the earlier description of the initial Web service consumer creation.

The existing classes and properties created from the prior consumer creation plus the consumer methods,
whether renamed or not, are retained if the new WSDL still includes definitions for these under their original
names. Your existing code referencing the created classes will need changing only if there are previous classes,
properties, or consumer methods that are no longer in the new WSDL or whose definitions have changed.

Changing the End Point
The URL for a Web service is composed of several parts, as follows.

Scheme

Within the URL of an object, the first element is the name of the scheme, separated from the rest of the object
by a colon. The rest of the URL follows the colon in a format depending on the scheme. Internet protocols are
then followed by //. In JADE, the Internet protocol can be one of the following values.

http

Use the HTTP protocol (default)

https

Use the secure HTTPS protocol (if the service is marked as secure)

tcp2

Use the JADE Direct protocol (for JADE-to-JADE systems)

User name and password

SOAPWeb Services
White Paper

SOAPWeb Services 28



WP_SOAPWebServices - 2020.0.02

Optional user name, if required. The password, if present, follows the user name, separated from it by a colon
(:). The user name and password are followed by an@ symbol. The use of user name and passwords that
are public is discouraged. You can set these values in the consumer, by setting the username and
password properties (not applicable to tcp2).

Domain name

The Internet domain name of the host or the IP address.

Port number

If it is not the default number for the protocol (80 for HTTP, 443 for HTTPS, must be specified for tcp2), is
specified after a colon.

Path

The rest of the locator is known as the path. It can define details of how the client should communicate with
the server, including information to be passed transparently to the server without any processing by the
client. The path is preceded by /. For example, a JADE Web service path consists of a virtual directory,
followed by /jadehttp.dll?, followed by the name of the Web service application, followed by the service
name, and optionally followed by an exposure list name (when using multiple exposures).

The full syntax of the Web service URL is as follows.

<scheme>://<user-name>:password@<domain>:<port>/<virtual-directory>
/jadehttp.dll?<application-name>&serviceName=<service-name>& listName=<list-name>

In this syntax, the required entities are marked in bold. If an exposure list name is not specified, the first exposure
in the list of exposures attached to the Web service application is selected (to maintain backwards compatibility).

The following are some JADE URL examples.

http://wilbur/jade/jadehttp.dll?WilburWebService&serviceName=InventoryService

http://smith:smithpass@wilbur:5695/jade/jadehttp.dll?WilburWebService&
serviceName=InventoryService&listName=FredsInventory

tcp2://wilbur:5700/jade/jadehttp.dll?WilburService&serviceName=InventoryService

The URL to which the SOAP request is sent is set in the imported WSDL. It can be subsequently changed in the
JADE development environment on theWeb Services sheet of the Define Classes dialog for the
JadeWebServiceConsumer subclass.

It can also be changed in the JadeWebServiceConsumer::setEndpointURLmethod; for example, to set the end
point for a regular Web service:

setEndPointURL("http://myserver/jade/jadehttp.dll?ErewhonWebServiceApp&
serviceName=ErewhonInvestmentsServiceAdmin")

To set the end point for a JADE direct Web service:

setEndPointURL("jadehttp.tcp2://myserver:8081/jade/jadehttp.dll?
ErewhonWebServiceAppDirect&serviceName=ErewhonInvestmentsServiceAdmin")

You can also change the end point URL in the XML-based runtime configuration file, by setting the endpoint
element. For details, see "endpoint element" in Chapter 3 of the JADE Web Application Guide.

SOAPWeb Services
White Paper

SOAPWeb Services 29



WP_SOAPWebServices - 2020.0.02

Direct Web Services
If the WSDL is imported from a JADE direct Web service provider, the end point will reflect this.

You do not need to set or change anything in the consumer; JADE will automatically communicate using the direct
Web service instead of the IIS or Apache Web server.

SOAPWeb Services
White Paper

SOAPWeb Services 30


	Contents
	SOAP Web Services
	Why Web Services?
	SOAP
	WSDL
	UDDI
	SOAP Web Services in JADE
	Architecture
	JADE SOAP Web Services Provider
	Runtime Deployment
	JADE Web Services Provider Message Flow
	SOAP Message Formats
	Versioning Options
	SOAP Faults
	Using SOAP Headers
	Documenting Your Web Service

	Mapping JADE Types to XML Schema Types
	A Web Service Provider Example
	Creating the Web Service Class
	Creating the Web Service Methods
	Creating the Exposure List
	Creating the Web Service Application
	Generating the WSDL
	Using the Test Harness

	JADE Web Services Client
	Creating a JADE Web Services Client
	Using a JADE Web Services Client
	Message Flow
	Web Service Styles
	Transients
	SOAP Headers
	Updating a Consumer
	Changing the End Point
	Direct Web Services




