
Copyright©2021 Jade Software Corporation Limited. All rights reserved.

Web Application Guide
 V E R S I O N 2020.0.02

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information
or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations
of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright © 2021 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the JADEReadme.txt file.

WebApps - 2020.0.02

Contents

Contents iii

Before You Begin vi
Who Should Read this Guide vi
What's Included in this Guide vi
Related Documentation vi
Conventions vii

Chapter 1 Implementing Web Applications 8
Overview 8
Creating Web Pages 10

Adding Controls to a Web Page 11
Generating HTML 12

Enhanced Web Functionality 12
Application::webMinimumResponseTime Property 13
Application Class Methods 13
Form Class Methods 14
WebSession Class Properties 14
WebSession Class Methods 14
Window::userScript Property 15
Window Class Web-Related Methods 15

Generating a Web Image 16
Handling Web Forms in Your JADE Code 16
Handling Events on Web Pages 16
Multiple Selections in List Boxes on Web Forms 17

Enabling Your JADE Application for HTML Thin Client Access 17
Specifying Your HTML Thin Client Access Options 19

Enabling Event Handling on Web Pages 23
Using a Web Browser to Access Your JADE Application 24
Accessing a JADE Application from an HTML Thin Client 24

Invoking a User Method 24
JADE Connectivity from the Internet 25
Managing Your Web Sessions 26

Initiation and Process Flow 26
JADE Processing of an HTML Client Request 27
Message Logging 27

Suppressing the Logging of Messages 28
Handling Exceptions in an HTML-Enabled Application 28

Message Box Handling 28

Chapter 2 Monitoring Your Web Sessions 29
Overview 29
Opening a Browser for a Web Services Application 30
Shutting Down the Web-Enabled Application 31
Clearing the Displayed Information 31
Specifying the Content of Logged Messages 31
Disabling Logging 31
Directing Web Monitor Information to a File 32
Restarting a Web Session 32
Closing a Session 32
Displaying Session Details 33
Listing Active Web Sessions 33
Displaying Session Statistics 33
Accessing Online Help 34

Displaying Information about Your HTML Thin Client Application 34

WebApps - 2020.0.02

Chapter 3 Configuring Web Applications 35
Overview 35
Structure of the Application Configuration File 36

Elements in the Application Configuration File 37
jade_config element 37
application element 37
web_config element 38
connection_name element 38
application_copies element 38
protocol_family 38
session_timeout element 39
minimum_response_time element 39
disable_messages element 39
output_maximum_length element 39
log_file_name element 39
logmessagecontent element 39
disable_logging element 40
lock_retries element 40
prompt_on_shutdown element 40
firewall element 40
monitor_font element 40
base_uri element 40
protocol element 40
machine_name element 41
virtual_directory element 41
support_library element 41
jade_forms element 41
physical_directory element 41
maximum_HTML_size element 41
scrolling_text element 41
show_modal element 41
cross_browser element 42
form_style element 42
use_html4 element 42
web_events element 42
control_name element 42
image_type element 42
page_sequencing element 42
html_documents element 42
home_page element 42
html_page_sequencing element 43
web_services_provider element 43
read_timeout element 43
use_session_handling element 43

Structure of the Web Services Consumer Configuration File 43
Elements in the Web Services Consumer Configuration File 44

jade_config element 44
web_services_consumer element 44
web_config element 45
consumer element 45
endpoint element 45
maximum_connections element 45
connection_timeout element 45
send_timeout element 45
receive_timeout element 45

Creating and Maintaining the Configuration Files 45
Using the Web Configuration Application 45

Web Configuration Application File Menu 47
New Command 47

Application Command 48

Web Application Guide

Contents iv

WebApps - 2020.0.02

Consumer Command 49
Open Command 50
Append New Command 51
Save Command 51
Save As Command 52
Exit Command 52

Web Application Configuration Examples 52
Configuration 1: Minimum 52

Configuration 1 - JadeHttp.ini File 53
Configuration 1 - Web Application Configuration File 53

Configuration 2: Parallel Requests 54
Configuration 2 - JadeHttp.ini File 54
Configuration 2 - Web Application Configuration File 54

Configuration 3: Multiple Connection Groups 55
Configuration 3 - JadeHttp.ini File 55
Configuration 3 - Web Application Configuration File 55

Configuration 4: Multiple JADE Nodes 56
Configuration 4 - JadeHttp.ini File 57
Configuration 4 - Web Application Configuration File 57

Configuration 5: Multiple Application Copies in Multiple Nodes 58
Configuration 5 - JadeHttp.ini File 58
Configuration 5 - Web Application Configuration File 58

Configuration 6: Multiple JADE Servers 59
Configuration 6 - JadeHttp.ini File 60
Configuration 6 - Web Application Configuration File 60

Configuration 7: Multiple Web Servers 61
Configuration 7 - JadeHttp.ini File 61
Configuration 7 - Apache Configuration File 61
Configuration 7 - Web Application Configuration File 62

Chapter 4 Using the Rich Internet Application (RIA) Framework 63
Overview 63
JavaScripts Generated from Web Services 64
Generating JavaScript 64
Asynchronous Responses and Callbacks 66
Client-Side Caching 66
Restricted Cross-Domain Calls 67
JavaScript Object Notation 67
Example of JavaScript to Invoke Web Services 67
Generated JavaScript API for a Web Service 68

WSUtil.js 69
Classes.js 69
Web-service_api.js 72

Callbacks, Preprocessors, and Exception Handlers 73
Web-service_types.js 74
Web-service_testharness.html 74

Web Application Guide

Contents v

WebApps - 2020.0.02

Before You Begin

The JADE Web Application Guide is intended as a main source of information when you are developing,
administering, and implementing Web JADE applications; that is, JADE forms, HTML documents, Web services,
and REST services.

Who Should Read this Guide
The main audience for the JADE Web Application Guide is expected to be system administrators.

What's Included in this Guide
The JADE Web Application Guide has four chapters.

Chapter 1 Covers implementing HTML-enabled applications

Chapter 2 Covers monitoring Web applications

Chapter 3 Covers configuring Web applications and Web service consumers

Chapter 4 Covers Rich Internet Application (RIA) framework support

Related Documentation
Other documents that are referred to in this guide, or that may be helpful, are listed in the following table, with an
indication of the JADE operation or tasks to which they relate.

Title Related to…

JADE Database Administration Guide Administering a JADE database

JADE Developer’s Reference Developing or maintaining JADE applications

JADE Development Environment User’s Guide Using the JADE development environment to development
JADE applications

JADE Encyclopaedia of Classes System classes (Volumes 1 and 2), Window classes
(Volume 3)

JADE Encyclopaedia of Primitive Types Primitive types and global constants

JADE Initialization File Reference Maintaining JADE initialization file parameter values

JADE Installation and Configuration Guide Installing and configuring JADE

JADE Report Writer User’s Guide Using the JADE Report Writer to develop and run reports

JADE Runtime Application Guide Administering JADE deployed runtime applications

JADE Thin Client Guide Administering JADE thin client environments

WebApps - 2020.0.02

Conventions
The JADE Web Application Guide uses consistent typographic conventions throughout.

Convention Description

Arrow bullet () Step-by-step procedures. You can complete procedural instructions by using either
the mouse or the keyboard.

Bold Items that must be typed exactly as shown. For example, if instructed to type foreach,
type all the bold characters exactly as they are printed.

File, class, primitive type, method, and property names, menu commands, and dialog
controls are also shown in bold type, as well as literal values stored, tested for, and
sent by JADE instructions.

Italic Parameter values or placeholders for information that must be provided; for example,
if instructed to enter class-name, type the actual name of the class instead of the
word or words shown in italic type.

Italic type also signals a new term. An explanation accompanies the italicized type.

Document titles and status and error messages are also shown in italic type.

Blue text Enables you to click anywhere on the cross-reference text (the cursor symbol
changes from an open hand to a hand with the index finger extended) to take you
straight to that topic. For example, click on the "Handling Events on Web Pages"
cross-reference to display that topic.

Bracket symbols ([]) Indicate optional items.

Vertical bar (|) Separates alternative items.

Monospaced font Syntax, code examples, and error and status message text.

ALL CAPITALS Directory names, commands, and acronyms.

Small font Keyboard shortcut keys.

Key combinations and key sequences appear as follows.

Convention Description

Key1+Key2 Press and hold down the first key and then press the second key. For example, "press
Shift+F2" means to press and hold down the Shift key and press the F2 key. Then
release both keys.

Key1,Key2 Press and release the first key, then press and release the second key. For example,
"press Alt+F,X" means to hold down the Alt key, press the F key, and then release both
keys before pressing and releasing the X key.

Web Application Guide

Before You Begin vii

WebApps - 2020.0.02

Chapter 1 Implementing Web Applications

This chapter covers the following topics.

Overview

Creating Web Pages

Adding Controls to a Web Page

Generating HTML

Enhanced Web Functionality

Generating a Web Image

Handling Web Forms in Your JADE Code

Handling Events on Web Pages

Multiple Selections in List Boxes on Web Forms

Enabling Your JADE Application for HTML Thin Client Access

Specifying Your HTML Thin Client Access Options

Enabling Event Handling on Web Pages

Using a Web Browser to Access Your JADE Application

Accessing a JADE Application from an HTML Thin Client

Invoking a User Method

JADE Connectivity from the Internet

Managing Your Web Sessions

Initiation and Process Flow

JADE Processing of an HTML Client Request

Message Logging

Handling Exceptions in an HTML-Enabled Application

Message Box Handling

Overview
The HTML thin client mode enables you to use the Internet to access your JADE applications. Web browsers, such
as Microsoft Explorer, provide a convenient client interface to JADE data on distributed servers.

WebApps - 2020.0.02

The HTML thin client mode provides the following features.

Automatic generation of the Web interface

The JADE development environment enables you to create Web pages. You can create a JADE application
in one complete graphical environment, and deploy this application on the Web. HyperText Markup
Language (HTML) code is generated automatically.

Session management

JADE creates a session for each user who accesses a JADE application from an HTML thin client. The
TCP/IP communications protocol is used to access JADE applications from the Internet through a Web
server.

Import of external HTML files

JADE enables you to import external HTML files by using a JADE development environment wizard.
Corresponding classes and properties are created for each HTML file that is imported. For details, see
"Adding and Maintaining HTML Documents", in Chapter 12 of the JADE Development Environment User’s
Guide.

Web browsers

The dynamically generated HTML code enables you to generate a single user interface that is compatible
with multiple browsers (that is, with any browser that is compliant with HTML 3.2).

Web server

The Microsoft Internet Information Server (IIS) or the Apache HTTP Server is used as the Web server.

The HTTP or HTTPS communication protocol is used to send and receive messages between the Internet
and a Web server for Web services, REST services, and Web-enabled applications.

The connection between the JADE Web application and the jadehttp module can be over TCP/IP or a
named pipe. When running JADE in HTML thin client mode using a named pipe, your JADE application and
IIS must reside on the same workstation. When using a TCP/IP connection, the machine hosting IIS or
Apache HTTP Server can be different from the machine that is running the JADE application, to provide
greater security via firewalls.

If you are uploading images from another machine for a JADE Web-enabled form over a TCP/IP connection,
the Firewall parameter in the [Jadehttp Files] section of the JadeHttp initialization file or the Firewall
configuration directive in the JADE mod_ jadehttp module and the Firewall parameter in the [WebOptions]
section of the JADE initialization file must both be set to true.

Direct Web services

Use the TCP communication protocol for direct Web services.

Notes The TCP protocol for direct Web services communication works only between JADE systems.

For direct Web services, the machine name must contain the machine name or the IP address followed by a
colon (:) character then by a TCP port number on which this service is offered.

JADE clients

The user interface for a standard (fat) JADE client can be the same as that defined for an HTML thin client, or
it can be different, enabling you to have one object model but with different views of that model. The JADE
clients can run Web-enabled applications, Web services, and REST services.

Web Application Guide

Chapter 1 Implementing Web Applications 9

WebApps - 2020.0.02

Security

You can implement security using:

Operating system security and IIS or Apache HTTP Server security for data access

Secure Sockets Layer (SSL) for data transmission

For details, see "Internet Access Support", in Chapter 2 of the JADE Object Manager Guide.

To ensure that an application specified in a Web browser cannot cause an attachment to a non-JADE
environment within a Windows operating system, you must specify the name of the Web application to which
users can connect as a section name within the jadehttp.ini file, as follows.

[application-name]

An attempt to attach to an application is made only to the applications whose names are specified as section
names in the jadehttp.ini file.

For details about the paths that the jadehttp library file derives for files, see [Jadehttp Files] Section" under
"Configuring JadeHttp for Remote Connections", in Chapter 2 of the JADE Installation and Configuration
Guide. See also "Configuring JadeHttp for Remote Connections" and "Controlling the Location of Files
Uploaded via a Web Application" under "Configuring Your JADE Software", in Chapter 2 of the JADE
Installation and Configuration Guide.

Tips If you want to restrict the number of Web-enabled, Web services, or REST services applications, you can
set the LimitPortRange parameter in the [WebOptions] section of the JADE initialization file to true. This prevents
applications from using a port number that exceeds the starting port number plus the number of copies of the
application. When you set this parameter to true, an application cannot be started when the port limit is exceeded,
and a message is output to the jommsg.log file.

If you want to change the number of seconds after which Web-enabled, Web services, or REST services
applications wait for message transfers to complete before timing out, specify the ReadTimeout parameter in the
[WebOptions] section of the JADE initialization file with the appropriate number of seconds. The default value is
600 seconds (10 minutes) but you can specify this parameter and set it to zero (0) if you do not want the
application to time out waiting for message transfers to complete. (You can prefix this parameter with the name of
the application if you want different applications to have different message transfer timeout values.)

Creating Web Pages
The New Form dialog in the JADE Painter provides the Web form style option, to enable you to define your Web
pages.

As HTML does not allow for exact placement of controls nor the exact width and height, forms painted for the
Internet are not "what you see is what you get" (WYSIWYG). Your HTML-generated page may therefore look
different from your painted form. Experimentation and experience will enable you to design your forms to achieve
the best results.

The paint event is not called when running a Web-enabled JADE application, as no JADE forms are created and
displayed. Your Web page may look different from your painted form for the following reasons.

The JADE Painter allows the exact placement of controls, but HTML does not. HTML tables are used
extensively to try to place controls.

In HTML, font sizes are specified as being between sizes 1 and 7, whereas there is greater control over font
sizes in JADE. This requires a mapping of font sizes.

Web Application Guide

Chapter 1 Implementing Web Applications 10

WebApps - 2020.0.02

The actual width of input items (for example, combo boxes) is dependent on the content and cannot be
controlled using HTML. Other controls, while giving some level of flexibility, also fall into the same category.

Tip Ultimately, the layout of the Web page is determined by the Web browser. The same form can therefore look
different in two different browsers. Even a Web-specific painter cannot always accurately generate HTML to reflect
what has been painted. For this reason, keep your Web forms simple and always check the output against the
Web browsers in which you expect your application to be used.

To reduce the amount of memory being used by Web sessions, JADE creates a physical window only for Ocx,
OleControl, ActiveXControl, and MultiMedia controls and a form only if an Ocx, OleControl, ActiveXControl, or
MultiMedia control is created. In most cases, the Window class hwnd method returns a null value unless a
physical window or a form is created for an Ocx, OleControl, ActiveXControl, or MultiMedia control.

For report-type Web pages, the writeHTML method of the Frame class functions like the print method of the
Printer class, except that HTML code is generated instead of output being directed to the printer or print preview
when a Web session is active. If there is no active Web session, the behavior is that of the print method (that is,
output is directed to the printer or print preview).

To create a Web page from the JADE Painter

1. Select the New Form command from the File menu.

Alternatively, click the New Form toolbar button.

The New Form dialog is then displayed, to enable you to define your Web page.

2. Specify a form name in the Form Name text box. You must specify a form name, which cannot be the name
of another class in the current schema. The form name can be no longer than 29 characters. It can include
numbers and underscore characters, but cannot include punctuation or spaces. The first letter of the name is
converted to an uppercase character, if it is lowercase.

3. If your form is a subform, perform one of the following actions.

Specify its superform in the Sub-Form of combo box.

Select its superform from the Sub-Form of combo box.

Select its superform from the Existing Forms list box.

4. In the Form Style group box, select the Web option button. The JADE Painter switches to a mode that
supports HTML-style windows. The grid is automatically set to support character mode painting (that is,
snap-to-grid, with grid coordinates of 8 by 20 pixels for a 640 by 480 pixel display).

5. Click the OK button. Alternatively, click the Cancel button to abandon your selections.

Adding Controls to a Web Page
Use the Add Control command from the JADE Painter Controls menu to add a new control to your current form.
The Add Control Type combo box is then displayed, to enable you to select the type of control that you want to
add. (You can also add a Web control by using the appropriate Painter palette button.) For details, see "Adding
Controls to Your Form", in Chapter 5 of the JADE Development Environment User’s Guide.

Web Application Guide

Chapter 1 Implementing Web Applications 11

WebApps - 2020.0.02

In addition to the Painter controls listed under "Generating HTML", later in this chapter, the Web controls listed in
the following table are also provided. (For details, see Chapter 2 of the JADE Encyclopaedia of Classes.)

Control Palette Button Description

WebHotSpot Inserts a rectangular hotspot directly on to a picture control

WebHTML Inserts text directly into the generated HTML

WebInsert Inserts the contents of a file as part of the HTML generation

WebJavaApplet Inserts a Java applet into the generated HTML

The following controls are not supported on Web pages, and are ignored in the HTML generation process.

Base controls, subclassed to create your own controls

Browse buttons

Horizontal and vertical scroll bars

OLE control

Progress bar

User-defined subclassed controls

Tip Use the Table class borderStyle property setting of BorderStyle_None if you want to turn off the display of
borders around tables on your Web pages.

Generating HTML
The generation of your HTML code starts when the show method of a form is called or the start-up form is initiated,
as follows.

1. The load method of the form is invoked. This method must set up all required information in the controls; for
example, a combo box must be populated.

2. When the load process has completed, the HTML generation is started. This generation creates a string
containing HTML text.

3. The string of generated HTML text is then returned to the Web browser, which displays the information.

See also "Adding and Maintaining HTML Documents", in Chapter 12 of the JADE Development Environment
User’s Guide.

Enhanced Web Functionality
The Application, WebSession, Form, and Window classes provide methods and properties that enable you to
enhance the handling of your JADE applications deployed on a Web browser.

For details, see Chapters 1 and 2 of the JADE Encyclopaedia of Classes. For a summary, see the following
subsections.

Web Application Guide

Chapter 1 Implementing Web Applications 12

WebApps - 2020.0.02

Application::webMinimumResponseTime Property
The Application class webMinimumResponseTime property is summarized in the following table.

Property Description

webMinimumResponseTime Contains the maximum time (in seconds) that a Web browser user waits
before a response must be sent back to that browser user

This property can be set dynamically at run time or you can set it in the JADE development environment by using
the Minimum Responses Time text box in the Web Options sheet of the Define Application dialog.

Application Class Methods
The Application class provides methods that you can reimplement in your applications; for example, so that
messages are displayed on Web browsers to advise users of Web session events. These methods are
summarized in the following table.

Method Description

executeMethodNotFoundMessage Returns a default HTML string to a Web browser user when the
method specified for execution cannot be found or it is invalid

createSessionErrorMessage Returns the message displayed on Web browsers when a Web
session cannot be created

getCurrentSession Returns a reference to the WebSession object of the specified
Web session identifier

getCurrentSessionId Returns a string of up to 16 characters that identifies the current
Web session

getSessionTimeout Returns the Web session timeout value specified for the
application

htmlPageNotFoundMessage Returns the error message that is sent to the receiver when the
requested page for the Web application is not found

invalidWebSessionMessage Returns an HTML string that is to be displayed on the Web
browser when a session is invalid

licencesExceededMessage Returns the message that is displayed on Web browsers when
your licences have been exceeded

minimumResponseTimeExceededMsg Returns a default HTML string to a Web browser user when the
maximum wait time or a response is exceeded

removeSessionMessage Returns the message that is displayed on Web browsers when
your Web session ends

setSessionTimeout Dynamically sets the period in minutes at which the Web session
ends if no requests have been received within that time

setStatusLineDisplay Dynamically changes scrolling text displayed in the Web browser
status line

timedOutSessionMessage Returns the message that is displayed on Web browsers when
your Web session times out

Web Application Guide

Chapter 1 Implementing Web Applications 13

WebApps - 2020.0.02

Form Class Methods
The Form class allowWebPrinting, generateHTML and generateHTMLStatic methods are summarized in the
following table.

Method Description

allowWebPrinting Enables you to set the allow parameter to true so that Microsoft Internet Explorer 4
and higher Web browsers generate slightly different code. (This parameter is set to
false, by default.)

Setting the allow parameter to true for these Web browsers enables the correct
printing of the contents of the Web page when the Print command is selected in the
Web browser File menu. The requirement of this setting is content-dependent (for
example, sometimes Internet Explorer 5.5 or higher may not print segments or pages
of the displayed Web page because of the way that Internet Explorer handles the
style sheet settings).

generateHTML Generates the HTML string for the form, which can be subsequently manipulated
before being sent back to the Web browser. It can also be saved as a file to obtain a
snapshot and this file can then be periodically updated (using notifications, for
example). This helps reduce generation and Graphics Device Interface (GDI)
overhead in situations where the data seldom changes or it is not necessary to have
the most current data available.

When the generateHTML method is called to generate an HTML string, the HTML is
generated without word wrapping when the wordWrap property is set to the default
value of false. Set this property to true if you want an HTML string in a table cell
generated with word wrapping.

generateHTMLStatic Generates the static HTML string for the form and builds the full Uniform Resource
Locator (URL) action line using the specified Web server machine name, virtual
directory on the Web server, and protocol for transmitting data (for example, HTTP or
HTTPS).

WebSession Class Properties
The WebSession class properties are summarized in the following table.

Property Contains the …

lastAccessTime Timestamp of the last access of the JADE schema in the session.

sessionId Unique random number identifier of the session.

startTime Timestamp of the time that the session was started.

WebSession Class Methods
The WebSession class provides the methods summarized in the following table.

Method Description

browserType Returns a string containing the type of Web browser.

createVirtualDirectoryFile Passes image files created by a JADE application to the JadeHttp library or
JADE mod_jadehttp module.

deleteVirtualDirectoryFile Deletes specified files from the virtual directory used by the jadehttp library.

Web Application Guide

Chapter 1 Implementing Web Applications 14

WebApps - 2020.0.02

Method Description

getHttpParam Returns the value associated with the specified HyperText Transfer Protocol
(HTTP) parameter.

getHttpString Returns the HTTP string that is returned from the Web browser.

getServerVariable Returns the HyperText Transfer Protocol (HTTP) header information for your
Web request from the Web server (that is, Microsoft Internet Information
Server (IIS) or Apache HTTP Server).

getSessionForm Keeps track of all open form instances in the current session in a Web-
enabled application that uses JADE forms.

getWebSessionCount Returns the total number of active Web sessions for all nodes connected to
the JADE server.

isVDFilePresent Returns whether the requested file is present on the Web server side of the
firewall when using the JADE Web interface via the jadehttp library file or
the JADE mod_jadehttp module.

processRequest Executed when a request is received from the Web. The appropriate form is
then updated with the information received from the incoming string and a
reply is sent back to the Web browser after all processing is complete.

removeSession Removes the current Web session.

removeSessionWithMessage Enables you to remove the current Web session and send the specified
message.

reply Executed when all processing is complete and the JADE system is ready to
send a response back to the Web browser.

setCurrentLocale Dynamically sets the current locale to the specified value.

Window::userScript Property
The Window class userScript property is summarized in the following table.

Property Description

userScript String containing set up scripts that are to be included as part of the HTML generation.

Window Class Web-Related Methods
The Window class Web-related methods are summarized in the following table.

Method Description

addWebEventMapping Adds functions to be invoked when a specified event occurs

clearWebEventMappings Removes all Web event mappings for a specified window

getWebEventMappings Returns all of the Web event mappings for a specified window

removeWebEventMapping Removes the specified event for window

Web Application Guide

Chapter 1 Implementing Web Applications 15

WebApps - 2020.0.02

Generating a Web Image
When an image, or picture, is encountered on a Web page, the image file is created as part of the HTML
generation at run time, and stored in Graphics Interchange Format (GIF), Joint Photographic Experts Group
(JPEG), or Portable Network Graphics (PNG) image format for use with Web browsers.

Handling Web Forms in Your JADE Code
If your JADE application is HTML-enabled and it is invoked as a Web application, the display of your Web page is
determined by the methods of the Form class listed in the following table.

Method Action

show Executes the load method, generates the HTML, and returns the HTML to the Web server.

showModal Not supported, and generates an error at run time or actions the show method. (For details,
see "Enabling Your JADE Application for HTML Thin Client Access", later in this chapter.)

unloadForm Removes the form from the Web session list of open forms.

In addition, you can use the Form class:

webBrowserAutoRefreshInterval property, to specify the number of seconds after which the Web page is
automatically refreshed and when that property is set to a non-zero value.

The default value of zero (0) for the automatic refresh interval indicates that the Web page does not refresh
automatically. If you specify an automatic refresh interval and you do not specify the URL to invoke when the
number of seconds is reached, control is returned to the JADE application.

webBrowserAutoRefreshURL property, to specify the URL to invoke when the automatic refresh interval is
reached.

webBrowserDisableBackButton property, to specify whether the currently displayed Web page refreshed
instead of displaying the previous page when the user clicks the Web browser Back button. As it is not
possible to disable the Back button or the menu item from scripting, set this property to true if you want to
prevent the user from going to a previous Web page.

Handling Events on Web Pages
The click events for controls on your Web page are executed if they are present in your JADE code, with the
exceptions that instead of the click event, the sheetChg event is executed for a folder control on a Web page if it
is present in your JADE code.

If a click event is present, the generated HTML sets up the Uniform Resource Locator (URL) to cause a click
event on the control to send a request back to the JADE application.

No other event is processed, unless it is explicitly called from the click event method.

Web Application Guide

Chapter 1 Implementing Web Applications 16

WebApps - 2020.0.02

Notes Because of HTML restrictions, the click event cannot be executed for text box controls. Excessive use of
the click event significantly slows HTML thin client interaction, as each event is passed back to the JADE
application for processing.

The paint event is not called when running a Web-enabled JADE application, as no JADE forms are created and
displayed.

Events are supported only on Web pages accessed by using Internet Explorer 4.0 (or higher).

The transient RootSchemaSession class provides the protected allowHiddenControlEvents property, which
specifies whether hidden controls on Web pages can invoke event methods. As this property is false by default,
set it to true to specify that event methods can be invoked by hidden controls.

For details about handling supported event methods in controls on Web pages, see "Enabling Event Handling on
Web Pages", later in this chapter.

When a request is sent to the JADE application, the Web browser waits for a reply. If the JADE code that is
processed does not initiate the creation of another Web page, the form that was previously displayed and not
unloaded is displayed again. If there were no previous forms, the start-up form is displayed so that the Web
browser does not wait indefinitely for a response.

Multiple Selections in List Boxes on Web Forms
You must use the Ctrl key or Shift key to select multiple items in a list box on a Web form, as HTML does not
support the MultiSelect_Simple functionality. Multiple selections are therefore regarded as extended multiple
selections (that is, MultiSelect_Extended, where the Shift+click or Shift+arrow key extends the selection from the
previously selected item to the current item or Ctrl+click selects or deselects an item in the list).

Enabling Your JADE Application for HTML Thin Client
Access

You can enable your JADE application for HTML thin client access when you first define your application or you
can access the Define Application dialog at any time to enable HTML thin client access or to maintain your
application preferences.

For more details about the Define Application dialog, see "Defining Applications", in Chapter 3 of the JADE
Development Environment User’s Guide.

To access the Web Options sheet of the Define Application dialog

1. Perform one of the following actions to open an Application Browser window.

Click the Browse Applications button from the browse toolbar

Select the Applications command from the Browse menu, or press Ctrl+L

2. From the Application menu of the Application Browser, select the Add command to add a new application to
your current schema or the Change command to enable HTML thin client access or to maintain the
preferences of your current application.

The Application sheet of the Define Application dialog is then displayed.

3. Select the Web-Enabled or Web-Enabled Non-GUI option in the Application Type combo box, to specify that
the application can be accessed from the Web using an HTML thin client. The Web Options sheet is then
enabled.

Web Application Guide

Chapter 1 Implementing Web Applications 17

WebApps - 2020.0.02

The start-up form defined for the application is the first Web page that is displayed when the application is
invoked from a Web browser. Application features such as Multiple Document Interface (MDI) forms and
three-dimensional controls are ignored for HTML-enabled applications.

In addition, as applications of type Web-Enabled Non-GUI do not display the Web Application Monitor
window, this type of application can be run in the background.

4. Click the tab of the Web Options sheet.

The Web Options sheet is then displayed. Now that you have enabled your application for HTML thin clients, you
can specify your access options.

Tip Use the currentSession system variable in a JADE method to determine if a transaction is from another
workstation or from an HTML thin client. The currentSession system variable is set to null if there is no current
Web session.

For details, see "System Variables", in Chapter 1 of the JADE Developer’s Reference. See also Chapter 12 of the
JADE Development Environment User’s Guide, "Adding and Maintaining HTML Documents".

Web Application Guide

Chapter 1 Implementing Web Applications 18

WebApps - 2020.0.02

Specifying Your HTML Thin Client Access Options
An example of the Web Options sheet of the Define Application dialog is shown in the following image.

For more details about the Define Application dialog, see "Defining Applications", in Chapter 3 of the JADE
Development Environment User’s Guide. For details about defining a Web services application, see "Defining a
Web Services Provider Application", in Chapter 11 of the JADE Developer's Reference. For details about defining
a REST services application, see "Defining a REST Service Application", in Chapter 11 of the JADE Developer's
Reference.

Web Application Guide

Chapter 1 Implementing Web Applications 19

WebApps - 2020.0.02

To specify your HTML thin client options

1. In the Connection Name text box, specify the appropriate TCP/IP address in the format
TCP-address:port-number (for example, 143.67.78.90:6014).

Tip If you want to get the IP address, call the WebSession class getServerVariable method to return the IP
address of the current Web session as determined by the Web server, as follows.

currentSession.getServerVariable('REMOTE_ADDR');

For details about using the ConnectionName parameter in the [WebOptions] section of the JADE
initialization file, see your JADE Initialization File Reference.

Note The connection name defaults to the application name. (The application name is displayed in the title
bar of the Web Application Monitor window.) If you have more than one application with the same name,
specify a unique name to identify the connection. The connection name can include any character or number
in the ranges A through Z, a through z, or 0 through 9. The first character must be uppercase.

2. In the Application Copies text box, specify the maximum number of copies that you require for your HTML
thin client application. When the HTML thin client application starts, the number of copies specified in this
text box are started. The default value is 1. You can specify a maximum of 62 copies, which is a
Windows-imposed limit.

Note All application copies use the same port number. If you specify 6014 as the starting port number in
the Connection Name text box and specify three in the Application Copies text box, the application copies
use port numbers 6014, 6015, and 6016.

For details about using the ApplicationCopies parameter in the [WebOptions] section of the JADE
initialization file to specify or change the number of copies of the application to start up, see your JADE
Initialization File Reference.

3. In the Session Timeout text box, specify the period in minutes at which the Web session is to end if no
requests have been received within that time. The default value of zero (0) indicates infinity; that is, you do
not want your Web session to time out.

The Application class getSessionTimeout and setSessionTimeout methods enable you to get and
dynamically set the current Web session timeout value, respectively.

4. In the Minimum Response Time text box, specify the maximum time (in seconds) that a Web browser user
has to wait before a response must be sent back to that user from the JADE application, triggered by a timer
event.

By default, requests do not time out; that is, the default value of zero (0) indicates infinity.

When the timer event occurs, a default message is sent back to the browser and the current request is
terminated. You can override the default message that is sent to the browser user by reimplementing the
Application class minimumResponseTimeExceededMsg method in the Application subclass of your
user-defined schema.

You can also set the minimum response time value dynamically at run time, by setting the Application
subclass webMinimumResponseTime property in your logic.

5. Check the Disable Messages check box to specify that your Web session messages are not displayed in a
message box on your client workstation; for example, in a confirmation dialog when the Web session is shut
down.

By default, message boxes are enabled; that is, this check box is unchecked. Regardless of the setting of this
parameter, any message that is raised is displayed in the Web Application Monitor window.

Web Application Guide

Chapter 1 Implementing Web Applications 20

WebApps - 2020.0.02

6. If you selected the HTML Documents option button on the Application sheet of the Define Application dialog
(that is, you want HTML generated based on HTML documents in your Web application), the HTML
Documents sheet on the Web Options sheet is enabled. (For details about the Applications sheet, see
"Defining Applications", in Chapter 3 of your JADE Development Environment User’s Guide.)

Perform the following actions to define your HTML document requirements.

a. In the Machine Name text box, specify the physical location to be used when generating the HTML for
the JadeHTMLClass class buildFormActionOnly and buildLink methods.

b. In the Virtual Directory text box, specify the Uniform Resource Location (URL) to be used when
generating the HTML for the JadeHTMLClass class buildFormActionOnly and buildLink methods.

For details about using the URLSpecifications parameter in the [WebOptions] section of the JADE
initialization file to specify Internet server virtual directories for HTML documents for all of your
Web-enabled applications or for a specific Web-enabled application, see the JADE Initialization File
Reference.

c. Use the Home Page combo box to select the HTML home page that is to be the start-up page when
you run your Web-enabled application. (If you do not select a home page, an error is displayed when
you click the OK button on the Define Application dialog.)

See also "Adding and Maintaining HTML Documents", in Chapter 12 of the JADE Development Environment
User’s Guide.

7. If your Web application uses JADE forms from which you want HTML dynamically generated and you did not
change the default value of JADE Forms in the Web Application Type group box on the Application sheet of
the Define Application dialog, specify your Web application form options on the JADE Forms sheet.

Note The JADE Forms sheet is enabled only when your application does not use HTML documents; that
is, you selected the form that is to be displayed when the new application is started in the Start-up Form
combo box on the Application sheet of the Define Application dialog and you did not change the default
Web application type of JADE Forms.

Perform the following actions to define your JADE form requirements.

a. In the Virtual Directory text box, specify the Uniform Resource Location (URL) if you want your images
and Java applets located in a directory other than the working directory of the JADE application. There
is no default base URL. If you do not specify a URL in this text box, the virtual directory specified in the
Microsoft IIS is used as the URL.

When setting up IIS for JADE, you must specify a virtual directory and the physical location of this
directory. By default, the virtual directory is used as a work area for generating image files.

If the Base URL is set up, the generated HTML code uses this URL to set up locations for these files,
rather than the default work area.

To enable JADE to determine the physical location of this base URL, you must also specify the physical
directory in the Physical Directory text box. To create the physical directory, click the Create button. In
IIS, this physical directory must be set up as a virtual directory, by using the base URL that you specify
in this text box.

The VirtualDirectory parameter in the JADE initialization file [WebOptions] section enables you to
specify a location for your images and Java applets other than the working directory specified in this
text box, if required. (For details, see "Web Options Section [WebOptions]", in the JADE Initialization File
Reference.)

Web Application Guide

Chapter 1 Implementing Web Applications 21

WebApps - 2020.0.02

For details about using the URLSpecifications parameter in the [WebOptions] section of the JADE
initialization file to specify Internet server virtual directories for HTML documents for all of your
Web-enabled applications or for a specific Web-enabled application, see the JADE Initialization File
Reference.

b. In the Physical Directory text box, specify the name of the physical working directory for your
HTML-enabled application; for example, s:\jade\webtest\bin. The working-directory is usually the
directory in which the JADE executable file (jade.exe) is located but you can specify another working
directory when you install JADE, if required. This is used by JADE to generate images for the Web.

The PhysicalDirectory parameter in the JADE initialization file [WebOptions] section enables you to
specify a physical directory to override the working directory specified in this text box, if required. You
can specify multiple physical directories in the same JADE initialization file. For details, see "Web
Options Section [WebOptions]", in the JADE Initialization File Reference.

Note This parameter, which is used to generate images for the Web, applies only to Web-enabled
(that is, HTML-enabled) applications and not to Web services or REST services applications.

c. In the Maximum HTML Size text box, specify the maximum size in K bytes of the HTML string that can
be generated before stopping the generation. Although you can specify 99,999K bytes as the size of
the maximum HTML string, this would have a considerable impact on performance.

The optimum HTML string size is dependent on the available memory of both your Internet and your
JADE server. 30K bytes is a recommended maximum string size.

If the specified maximum HTML string is generated, the HTML generation is then stopped and the
partially generated string is returned to the Internet browser with the following message appended to
the string.

Exceeded maximum lines

The default value of zero (0) specifies that there is no maximum HTML size.

d. In the Scrolling Text text box, specify the text that you want to scroll across the bottom of your Web
page, if required. By default, no text is scrolled across a Web page.

e. Check the Treat showModal as show check box to display Web pages in the application by using the
show method if the showModal method is encountered in your code. (The show method executes the
load method, generates the HTML, and then returns the HTML to the Web server.)

As the showModal method is not supported, by default, an error is raised at run time if the showModal
method is encountered.

f. Check the Cross Browser Compatibility check box to specify the version of HTML code that JADE
generates for your Web sessions. Check this box if you want compatibility across browsers for your
JADE Web sessions; that is, identical HTML code is generated for both Netscape and Internet Explorer.

By default, different HTML code is generated for Internet Explorer 4.0 (that is, this check box is
unchecked).

g. Check the Form Style Display (IE 4) check box to specify that your Web pages are displayed as
windows (that is, with captions and borders) when using Internet Explorer 4.0. By default, your JADE
forms are displayed as Web browser pages (that is, this check box is unchecked).

h. Click the Web Events button on the JADE Forms sheet if you want to specify the handling of:

The click event method in check box, combo box, list box, table, and option button controls on
Web pages, and in your user-defined subclasses of those five controls types only.

The sheetChg event method in folder controls and your user-defined folder control subclasses.

Web Application Guide

Chapter 1 Implementing Web Applications 22

WebApps - 2020.0.02

Note Events are supported on Web pages only when using Microsoft Internet Explorer 4.0 or higher.

The Web Events dialog is then displayed. For details, see "Enabling Event Handling on Web Pages",
later in this chapter.

8. Click the OK button. Alternatively, click the Cancel button to abandon your selections.

For details about implementing a TCP/IP connection to your JADE applications, see "Connecting to JADE
Applications from Internet Information Server (IIS)", in Chapter 2 of the JADE Installation and Configuration Guide.

Tips If you want to restrict the number of Web-enabled, Web services, or REST services applications, you can
set the LimitPortRange parameter in the [WebOptions] section of the JADE initialization file to true. This prevents
applications from using a port number that exceeds the starting port number plus the number of copies of the
application. When you set this parameter to true, an application cannot be started when the port limit is exceeded,
and a message is output to the jommsg.log file.

If you want to change the number of seconds after which Web-enabled, Web services, or REST services
applications wait for message transfers to complete before timing out, specify the ReadTimeout parameter in the
[WebOptions] section of the JADE initialization file with the appropriate number of seconds. The default value is
600 seconds (10 minutes) but you can specify this parameter and set it to zero (0) if you do not want the
application to time out waiting for message transfers to complete. (You can prefix this parameter with the name of
the application if you want different applications to have different message transfer timeout values.)

Enabling Event Handling on Web Pages
The Web Events dialog, shown in the following image, is displayed when you click the Web Events button in the
Define Application dialog Web Options sheet.

When you are using Internet Explorer 4.0 (or higher) for your HTML thin client applications, you can enable:

The click event for the list box, combo box, option button, table, and check box controls or your user-defined
subclasses of those five control types only.

Web Application Guide

Chapter 1 Implementing Web Applications 23

WebApps - 2020.0.02

The conditions that must be satisfied to enable the click event for controls displayed on Web pages are as
follows.

The subclassed control must be selected in the Web Events dialog.

Browser compatibility mode must be turned off, by ensuring that the Cross Browser Compatibility
check box on the Web Options sheet of the Define Application dialog is unchecked.

There must be a click event for the control on the form.

The sheetChg event method in folder controls and your user-defined folder control subclasses.

To enable support for events on your Web pages

1. In the list box, select the control or controls for which the applicable click or sheetChg event is to be enabled
on Web pages. (By default, these events are not supported on the controls on Web pages.)

If you have subclassed any of these controls in your JADE application, those subclasses are also listed to
enable you to support the appropriate event on your user-defined controls.

Tip Use the Ctrl key to make multiple selections, if required.

2. Click the OK button. Alternatively, click the Cancel button to abandon your selections.

Using a Web Browser to Access Your JADE Application
The HTML code that is generated by JADE conforms to the HTML 3.2 Specification. Specific Netscape or Explorer
extensions are not used. You can add these extensions (for example, ActiveX controls) by inserting raw HTML into
a Web page, if required.

For details about generating HTML code that is compatible across browsers for your JADE Web sessions (that is,
identical HTML code is generated for both Netscape and Internet Explorer), see "Specifying Your HTML Thin
Client Access Options", earlier in this chapter. See also "Form Class Methods" under "Enhanced Web
Functionality", earlier in this chapter, for details about the allowWebPrinting method.

Accessing a JADE Application from an HTML Thin Client
To access JADE from an HTML thin client, set up a virtual directory in your Internet Service Manager, as
appropriate. For details about invoking a user method, see the following subsection.

Invoking a User Method
To allow a Web session to bypass the standard processing loop, you can set up a command in the http string
returned from the Web browser. This command has the following format.

_executeMethod=class-name::web_method-name

Note When you invoke a user method that bypasses the standard processing loop, your method name must
consist of the web_ name prefix.

For example, if the http string is like that shown in the following example, the web_generateXML method in the
Transaction class will be executed, passing the http string as a parameter.

http://persephone/jade/jadehttp.dll?MyWebApp&_executeMethod=Transaction::web_
generateXML&TransactionType=CashOnly

Web Application Guide

Chapter 1 Implementing Web Applications 24

WebApps - 2020.0.02

The method that is executed must return a primitive type, which is converted to a Binary primitive type before
being sent back to the Web browser. It is expected that the method will return a String value. In a Unicode JADE
system, the contents of the returned string are converted from Unicode to UTF-8 before being sent back to the
Web browser.

If the method does not exist or the return type is invalid, a default message is sent back to the Web browser. To
override this message, you can reimplement the executeMethodNotFoundMessage method in the Application
class of a user-defined schema.

JADE Connectivity from the Internet
When using a Web service consumer or the JadeHTTPConnection class, the default communications protocol is
the WinHTTP library. WinHTTP is more appropriate for server-type environments; WinINet is more appropriate for
low-performance client situations.

The processing of requests from the Web server is handled as follows.

The jadehttp library file, supplied with JADE on the release medium and located on your Internet server, is
directly called by the Web server for each HTML client request that is made. This library connects to a JADE
client node by a named pipe or a TCP/IP connection.

The jadehttp library file sends the received request over the channel to the JADE application, which
processes the request and then returns an HTML page for transmission to the HTML thin client user.

The InternetPipe or JadeInternetTCPIPConnection class enables JADE to establish a communications
channel with another program. To communicate with the jadehttp library file, the JADE application creates an
instance of the appropriate class, and then offers the named pipe or TCP/IP for opening.

When the library opens the other end of the channel, JADE waits for input from the library. When input
arrives, JADE processes that input and then sends the reply back to the library. JADE then waits for more
input.

As JADE asynchronously waits for input from the named pipe or TCP/IP, the JADE client node can perform other
tasks when it is idle; for example, monitoring and displaying the system processing status.

Connections from the jadehttp module and JADE Web application can be over TCP/IP or a named pipe
connection. JADE systems use the named pipe connection by default. For details about specifying that the HTML
generation for Netscape and Mozilla browsers is similar to that for Internet Explorer, see the
UseHTML4ForNetscape parameter in the [WebOptions] section of the JADE initialization file, in the JADE
Initialization File Reference.

Note The main advantage of a TCP/IP connection over a named pipe connection is that the machine hosting IIS
or Apache HTTP Server can be different from the machine that is running the JADE application, to provide greater
security via firewalls. A TCP/IP connection is also slightly faster than a named pipe connection and an Apache
HTTP Server cannot connect over a named pipe.

For details, see "Connecting to JADE Applications from Internet Information Server (IIS)", in Chapter 2 of the JADE
Installation and Configuration Guide.

WinHTTP and WinINet are operating system libraries that perform lower-level network communications. WinINet
proxy settings are set the same way as proxy settings for Internet Explorer (that is, by using the Internet Options
dialog accessed from the Control Panel).

For details about setting Internet proxy settings, see Microsoft documentation. WinHTTP proxy settings are
configured using the netsh.exe tool. To obtain help, specify the following command.

netsh winhttp set proxy help

Web Application Guide

Chapter 1 Implementing Web Applications 25

WebApps - 2020.0.02

See also the EnableWinHTTP and EnableWinINET parameters in the [JadeEnvironment] section of the JADE
initialization file. If you set both parameters to true, WinHTTP is used in preference. If you set both parameters to
false, the support of both protocols is disabled and a Web service consumer can use only the JADE Direct
scheme; that is, jadehttp.tcp.

Managing Your Web Sessions
When an HTML client request is received by your JADE application, the Web session manager determines
whether the session is for an existing session. If there is no existing session, a new instance of WebSession
subclass is created. (For details, see "WebSession Class", in Chapter 1 of the JADE Encyclopaedia of Classes.)

The last access timestamp determines the disconnect status. If there is no activity for the session for the period of
time specified in the Session Timeout text box of the Define Application dialog, the session is terminated. If you
transmit a request after the specified timeout period, you are informed that the Web session has timed out, you
must reconnect to the JADE application, and then sign on again.

You can reimplement the Application::createSessionErrorMessage method if you want to display a different
session error message on the Web browser when a Web session cannot be created. The returned string should
be in HTML format, for correct rendering on the browser.

The Application class provides the getCurrentSession, getCurrentSessionId, getSessionTimeout, and
setSessionTimeout methods, to enable you to return the current Web session, its identifier, the Web session
timeout value specified for the application, and dynamically set the timeout period for all Web sessions that are
subsequently created, respectively. For details, see Chapter 1 of the JADE Encyclopaedia of Classes.

Initiation and Process Flow
You can make each schema in the JADE database HTML thin client-capable, by defining an HTML-enabled
application instance. When it is initiated, this JADE application then communicates with the jadehttp library that is
located on the Internet server.

By default, this application opens an instance of the NamedPipe or JadeInternetTCPIPConnection class with the
name of the JADE application as its name, and waits for the jadehttp library to connect to the other end of the pipe
or TCP/IP. When the pipe or TCP/IP is connected, it waits for HTML client requests to be sent over the pipe or
TCP/IP. For details about implementing a TCP/IP connection, see "Connecting to JADE Applications from Internet
Information Server (IIS)", in Chapter 2 of the JADE Installation and Configuration Guide.

When the first request for the JADE application is received, the IIS initiates the jadehttp library, and then calls the
GetExtensionVersion entry point in the library to obtain the Internet Server Application Programming Interface
(ISAPI) version that is being used. The library is initialized as part of this call, and it attempts to open a pipe or
TCP/IP connection by using the JADE server node name.

Note To process multiple HTML client requests simultaneously, run additional copies of the JADE application.
For details, see "Handling Multiple Copies of the JADE Program", in Chapter 1 of the JADE Installation and
Configuration Guide. Each copy of the JADE application opens its own instance of the named pipe. The jadehttp
library uses the additional pipe channels, as required. (By default, there are 10 pipe channels.)

If the connected JADE application terminates and breaks a pipe or TCP/IP channel, the library removes that pipe
or TCP/IP from the list of available channels. When the JADE application is restarted, the library reestablishes the
channel without any required intervention.

Web sessions are not closed when an application is terminated. They are closed only when the WebSession
class removeSession method is called, a session timeout specified in the Session Timeout text box on the Web
Options sheet of the Define Application dialog occurs (for details, see "Specifying Your HTML Thin Client Access
Options", earlier in this chapter), or when all of the Web-enabled applications terminate normally.

Web Application Guide

Chapter 1 Implementing Web Applications 26

WebApps - 2020.0.02

JADE Processing of an HTML Client Request
When the JADE system receives an HTML client request, the following actions are performed.

1. The TCP/IP address and the contents of a hidden field containing the encrypted session identifier are
obtained from the input data.

2. The TCP/IP address and the encrypted session identifier are used to search the session dictionary for an
existing session object for the client. If the entry is not found in the dictionary, a new client session object is
created.

3. A processRequest method of the WebSession class instance is then called, passing the request data to
JADE. This method processes the request, and sends a formatted HTML page back by the named pipe or
TCP/IP instance on which the input data was received.

The jadehttp library sends this page to the client, and the Web server is then informed that the request
processing is complete.

If you want to change the number of seconds after which Web-enabled applications wait for message transfers to
complete before timing out, specify the ReadTimeout parameter in the [WebOptions] section of the JADE
initialization file with the appropriate number of seconds. The default value is 600 seconds (10 minutes) but you
can specify this parameter and set it to zero (0) if you do not want the Web-enabled application to time out waiting
for message transfers to complete. (You can prefix this parameter with the name of the application if you want
different applications to have different message transfer timeout values.)

You can use the MaxMessageSize parameter in the [application-name] section of the jadehttp.ini file to specify
the maximum size allowed for a single-part Web message (that is, a single stream of data with minimal formatting)
if you want a value greater than 1,000,000 bytes. (For details, see "Configuring JadeHttp for Remote
Connections", in Chapter 2 of the JADE Installation and Configuration Guide.)

When you specify a maximum number of queued entries (which can be done using the MaxInUse[n] parameter in
the [application-name] section of the jadehttp.ini file), any additional request received that would also be queued
when the maximum queued entries is reached will be rejected. The user will be sent the contents of a file named
busy.htm from the same directory as the jadehttp.ini file (as it is for the jadehttp.htm error file, described in the
following section).

If that file is not available, the following text response will be sent.

The application is too busy

This request cannot be processed at this time due to heavy usage - please try again
shortly.

You can use the MinMessageSize parameter in the [application-name] section of the jadehttp.ini file or the
MinMessageSize directive in the Apache mod_ jadehttp.so library to specify the minimum size allowed for a Web
message received from JADE using the WebSession class reply method to send HTML string Web requests back
to the client node.

The minimum value is 1 byte, the maximum value 1024 bytes, and the default value 10 bytes. This value is read
the first time the specified application is accessed after jadehttp.dll has been loaded by Internet Information
Server (IIS) or it is read once, when the Apache Web server starts.

Message Logging
If communications cannot be established with the JADE system, a jadehttp.htm file is output, advising you that the
service is down. This file must be in the same directory as the jadehttp library file on the Internet server.

The jadehttp library file reads an initialization file called jadehttp.ini, located in the same directory as the library.

Web Application Guide

Chapter 1 Implementing Web Applications 27

WebApps - 2020.0.02

A new log file is always opened after the jadehttp.dll library has been initiated rather than appending to the
existing log file. The current date and time is always added to the file name when a new file is created (when the
library is initiated or when a log file switch occurs). When a jadehttp.log log file reaches 1M byte, a new log file is
created.

For details about the parameters available in the [Jadehttp Logging] section of the jadehttp.ini file that enable you
to specify your message logging requirements during Web-enabled applications, see "[Jadehttp Logging] Section"
under "Configuring JadeHttp for Remote Connections", in Chapter 2 of the JADE Installation and Configuration
Guide.

Processing problems in the jadehttp library are logged to the jadehttp.log file, located in the same directory as the
library. Failures that occur result from the unavailability of the JADE system.

The IIS server logs all HTML client requests to its own log file. You should enable IIS logging, and set the option to
automatically start a new file each day. The jadehttp library file also records routine messages to the log when it is
initiated and closed, and when connections to the named pipe or TCP/IP channels are made and broken.

Suppressing the Logging of Messages
To ensure the security of data, set the value of the Trace parameter in the [Jadehttp Logging] section of the
jadehttp.ini file for IIS or the JadeHttp_Trace directive in the JADE mod_ jadehttp module for Apache to true.

When the value is true, messages logged to the jadehttp.log file do not include any of the text sent or received
from the client, as this text could contain personal information, passwords, credit card details, and so on. Logged
messages then only acknowledges that a message has been received or sent, because it is not possible to
distinguish what is sensitive data and what is not.

Handling Exceptions in an HTML-Enabled Application
The HTML thin client application is armed with a global exception handler. When an unhandled exception occurs:

1. The error is reported to the HTML thin client user, logged on the JADE client workstation and a message is
displayed to inform the JADE client.

2. The operation is aborted.

3. The HTML thin client user is returned to the previous valid form.

You can reimplement the Application::createSessionErrorMessage method if you want to display a different
session error message on the Web browser when a Web session cannot be created.

Message Box Handling
When an exception occurs in an HTML-enabled JADE application, the msgBox method in the Application class
creates an HTML page and returns to the HTML thin client user.

Caution As there is no modal support with HTML thin client applications, any code following app.msgBox in
your JADE method continues to be executed.

You should therefore use app.msgBox sparingly and with care.

Web Application Guide

Chapter 1 Implementing Web Applications 28

WebApps - 2020.0.02

Chapter 2 Monitoring Your Web Sessions

This chapter covers the following topics.

Overview

Opening a Browser for a Web Services Application

Shutting Down the Web-Enabled Application

Clearing the Displayed Information

Specifying the Content of Logged Messages

Disabling Logging

Directing Web Monitor Information to a File

Restarting a Web Session

Closing a Web Session

Displaying Session Details

Listing Active Web Sessions

Displaying Session Statistics

Accessing Online Help

Overview
When you run an HTML-enabled application, the JADE Web Application Monitor is automatically initiated on the
client node workstation on which the HTML-enabled JADE application is running.

If a client node has more than one active HTML-enabled application, a Web Application Monitor window is
displayed for each active application on that workstation.

Use the Web Application Monitor to view the status of Web sessions, open your default browser for Web services
applications, and to reset or close Web sessions.

When the Web Application Monitor is initiated, the window displays session sign on information, including:

Internet protocol (IP) address

Session id

Query string

The Web Application Monitor menu bar contains the menus listed in the following table.

Menu Description

File Administers your HTML-enabled application

View Controls the display of information in your Web Application Monitor window

Session Controls your Web session

Help Accesses the standard Common User Access (CUA) help options

WebApps - 2020.0.02

The Web Application Monitor window is a multiple-line text window that logs and displays Web session
information. Information is appended to the window display with each user request and new session interaction,
as shown in the following image.

Note You can change the font name and size for the Web Application Monitor window by using the Editor sheet
of the Preferences dialog, accessed from the Preferences command in the Options menu of browse windows in
the development environment.

Use the scroll bar to scroll up and down the displayed HTML thin client information, if required.

When you exit from the HTML-enabled application, the Web Application Monitor window is closed, and all
displayed information is purged.

For details about running the JADE Monitor that provides system instrumentation and diagnosis, see Chapter 2,
"Using the JADE Monitor for System Instrumentation and Diagnosis", in the JADE Monitor User’s Guide.

Opening a Browser for a Web Services Application
To open a Web browser and test a Web services application

Select the Open Browser command from the Web Application Monitor File menu.

The following actions then occur.

1. Your default browser (for example, Microsoft Internet Explorer) is started

2. A browser session connects to your Web services application

3. A sample home page for your application is displayed

For details about Web services applications, see Chapter 11, "Building Web Services Applications", in the JADE
Developer's Reference.

Web Application Guide

Chapter 2 Monitoring Your Web Sessions 30

WebApps - 2020.0.02

Shutting Down the Web-Enabled Application
Select the Exit command from the Web Application Monitor File menu to shut down the HTML-enabled
application, clear all related sessions, and close the Web Application Monitor window.

If any users are accessing the application at the time that you select the Exit command, a message dialog advises
you that there are active users and asks you to confirm that you want to exit from the application.

When you confirm that you want to exit, active users are disconnected when all current transactions have
completed and the application is then closed down.

Any user who then tries to access the application again is informed that the application has been shut down.

Clearing the Displayed Information
Select the Clear Display command from the Web Application Monitor View menu to clear the information
displayed in the text window.

Specifying the Content of Logged Messages
When the JADE Web Application Monitor logging is turned on and the LogFileName parameter is specified in the
[WebOptions] section of the JADE initialization file, the output includes the content of the Web message, which
could include personal and privileged information; for example, user codes and passwords.

To control whether JADE logs the content of Web messages, use the LogMessageContent parameter in the
[WebOptions] section of the JADE initialization file. Alternatively, you can specify the XML logmessagecontent
parameter in the Web application configuration file; that is, the following configuration file parameter disables the
logging of message content.

<logmessagecontent>false</logmessagecontent>

When the LogMessageContent parameter in the [WebOptions] section of the JADE initialization file or the XML
logmessagecontent parameter in the Web application configuration file is set to true, any Web logging includes
the Query String = content and Http String = content output. When the value of the LogMessageContent
initialization file parameter or the XML logmessagecontent configuration file parameter is false, any Web logging
does not include this message content.

When you initiate the Web Application monitor and tracing is on, a message is displayed indicating the status of
the LogMessageContent parameter, as follows.

Message content logging is enabled|disabled

The message is also displayed if you turn logging on or off by toggling the Disable Logging|Enable Logging
command in the View menu of the Web Application Monitor window.

Note By default, the value of the DisableLogging parameter is false; that is, logging is enabled.

Disabling Logging
Select the Disable Logging command from the Web Application Monitor View menu to stop the display of
information in the monitor window. Web monitor information is logged to the window with each user request and
with new Web session information and statistics. For details, see "Displaying Session Details" and "Displaying
Session Statistics", later in this chapter, and "Monitoring Your Web Sessions", earlier in this chapter.

Web Application Guide

Chapter 2 Monitoring Your Web Sessions 31

WebApps - 2020.0.02

When you have selected this command to disable the logging of information to the monitor window, the menu
command is toggled to the Enable Logging command.

Select the Enable Logging command to cause the redisplay of logging information.

Note The DisableLogging parameter in the [WebOptions] section of the JADE initialization file specifies whether
logging in enabled in the JADE Web Application Monitor window. This parameter is set to false by default. You
can set it to true if you want to stop the display of logging information in the monitor window (for example, when
you are running an application as a service and the Web Application Monitor window View menu item cannot be
used).

Directing Web Monitor Information to a File
If you want to direct the log information displayed on the Web Application Monitor to a file, use the LogFileName
parameter in the [WebOptions] section of the JADE initialization file to specify the file name and the full path to
which the displayed information is directed for later analysis of transaction times, and so on.

If the specified file name cannot be written to or it is not valid (for example, you did not specify an absolute path or
the specified path does not exist), a file called websession.log is created in the physical directory specified in the
Physical Directory text box for your JADE forms on the Web Options sheet of the Define Application dialog or in
the PhysicalDirectory parameter in the [WebOptions] section of the JADE initialization file. (For details about
defining the physical directory, see "Specifying Your HTML Thin Client Access Options", in Chapter 1.)

Note The physical directory, which is used to generate images for the Web, applies only to Web-enabled (that
is, HTML-enabled) applications and not to Web services or REST services applications.

Restarting a Web Session
Select the Restart command from the Web Application Monitor Session menu to force users of a Web session to
sign back on to a Web session; for example, in situations where a user is getting unexpected errors.

The Session Id dialog is then displayed. Specify the required Web session identifier in the Enter Session Id text
box, and then click the OK button to force users to restart the session.

Tip Use the List command from the Session menu to list all current Web sessions in the Web Application
Monitor window. You can then view all current Web sessions, to determine the id of the session that you want to
restart.

When you have specified a valid session identifier, all session information relating to open forms is cleared; that
is, all currently open forms are unloaded.

The next HTML client request forces the user to the start-up form.

Closing a Session
Select the Close command from the Web Application Monitor Session menu to close a current Web session. The
Session Id dialog is then displayed.

Specify the required Web session identifier in the Enter Session Id text box and then click the OK button to force
the specified session to close down.

Web Application Guide

Chapter 2 Monitoring Your Web Sessions 32

WebApps - 2020.0.02

Tip Use the List command from the Session menu to list all current Web sessions in the Web Application
Monitor window. You can then view all current Web sessions, to determine the id of the session that you want to
close.

Any further requests using this session identifier cause the user of the Web browser to be notified that the Web
session has ended.

Displaying Session Details
Select the Details command from the Web Application Monitor Session menu to display the details of a specific
current Web session in the monitor window.

The Session Id dialog is then displayed. Specify the required Web session identifier in the Enter Session Id text
box and then click the OK button to display information for that session.

Tip Use the List command from the Session menu to list all current Web sessions in the Web Application
Monitor window. You can then view all current Web sessions, to determine the id of the session whose information
you want to view.

Each HTML-enabled application has its own list of sessions. The following information is displayed for your
specified session.

IP address

List of open forms

Time the session was started

Time of last access to the session

Listing Active Web Sessions
Select the List command from the Web Application Monitor Session menu to list the IP address and encrypted
session id of each active Web session.

Use the listed information to select the session that you want to specify in the Session Id dialog to display session
details, or to restart or close a Web session.

Displaying Session Statistics
Select the Statistics command from the Web Application Monitor Session menu to display statistics of the current
Web session in the monitor window.

The following information is displayed for the current Web session.

Total number of requests

Minimum response time

Maximum response time

Average response time

Transients remaining for any JadeHTMLClass subclasses

Web Application Guide

Chapter 2 Monitoring Your Web Sessions 33

WebApps - 2020.0.02

Accessing Online Help
Select the Index command in the Web Application Monitor Help menu to open online help. The JADE Web
Application Guide is then opened, providing access to the topics available in online help.

To access the online help, perform one of the following actions

Select the Index command from the Help menu

Press F1

The JADE online help is then displayed; for example, the WebApps.pdf) document is displayed in Adobe Reader.

Use the functions available in JADE online help to find the required topics. For details, see "JADE HTML5 Online
Help" or "JADE Product Information Library in Portable Document Format", in Chapter 2 of the JADE Development
Environment User’s Guide.

Displaying Information about Your HTML Thin Client Application
Select the About command from the Web Application Monitor Help menu to access information about the current
HTML-enabled application. The About form for your application is then displayed if you have specified an About
form for your application (by using the About Form combo box in the Application sheet of the Define Application
dialog).

If you have not specified an About form for your application, the JADE default About box is displayed. This dialog
displays the following information, and is for display purposes only.

Application name

Current JADE release

Current year

When you use the JADE Painter menu designer to create a standard Help menu that contains an About menu
item, JADE displays a message box at run time if you do not set the Application class aboutForm property. This
message box displays the following information.

----------- Title:
"About Application: application-name"

----------- Contents:
Application: application-name

Release: application-release-property

Jade Version: nn.nn.nn

Web Application Guide

Chapter 2 Monitoring Your Web Sessions 34

WebApps - 2020.0.02

Chapter 3 Configuring Web Applications

This chapter covers the following topics.

Overview

Structure of the Application Configuration File

Elements in the Application Configuration File

Structure of the Web Services Consumer Configuration File

Elements in the Web Services Consumer Configuration File

Creating and Maintaining the Configuration Files

Using the Web Configuration Application

Web Configuration Application File Menu

Web Application Configuration Examples

Configuration 1: Minimum

Configuration 2: Parallel Requests

Configuration 3: Multiple Connection Groups

Configuration 4: Multiple JADE Nodes

Configuration 5: Multiple Application Copies in Multiple Nodes

Configuration 6: Multiple JADE Servers

Configuration 7: Multiple Web Servers

Overview
You can use an XML-based configuration file to define runtime configurations for Web-enabled applications, Web
services consumers, and REST services applications. The advantages of using XML instead of standard
initialization file syntax are as follows.

Flexibility; for example, nesting is allowed

Standards-based

Development tools such as .NET primarily uses XML-based configuration files

If the [WebOptions] section in the JADE initialization file has a reference to the XML-based configuration file, the
settings in the XML-based configuration file are used. If not, the settings in the [WebOptions] section are used.

Note There are additional runtime configuration parameters that you can specify. These can be defined only by
using the XML format configuration file.

WebApps - 2020.0.02

You can define two types of configuration file: one for Web-enabled applications (JADE forms, HTML documents,
and Web service providers) and REST services applications, and one for Web service consumers.

For Web-enabled applications and REST services applications, the JADE initialization file setting required to
use the XML-based configuration file is as follows.

[WebOptions]
ApplicationConfigFile=file-name

For Web service consumers, the JADE initialization file setting required to use the XML-based configuration
file is as follows.

[WebOptions]
ConsumerConfigFile=file-name

For details about the ApplicationConfigFile and ConsumerConfigFile initialization file parameters, see the JADE
Initialization File Reference.

Structure of the Application Configuration File
The following XML document represents a blank configuration file for a Web-enabled application.

<?xml version="1.0"?>
<jade_config>

<application schema="" name="" id="">
<web_config>

<connection_name/>
<protocol_family/>
<application_copies/>
<session_timeout/>
<minimum_response_time/>
<disable_messages/>
<output_maximum_length/>
<log_file_name/>
<logmessagecontent/>
<disable_logging/>
<lock_retries/>
<prompt_on_shutdown/>
<firewall/>
<monitor_font/>
<base_uri>

<protocol/>
<machine_name/>
<virtual_directory/>

</base_uri>
<support_library/>
<jade_forms>

<physical_directory/>
<maximum_HTML_size/>
<scrolling_text/>
<show_modal/>
<cross_browser/>
<form_style/>
<use_html4/>
<web_events>

<control_name/>

Web Application Guide

Chapter 3 Configuring Web Applications 36

WebApps - 2020.0.02

</web_events>
<image_type/>
<page_sequencing/>

</jade_forms>
<html_documents>

<home_page/>
<html_page_sequencing/>

</html_documents>
<web_services_provider>

<read_timeout/>
<use_session_handling/>

</web_services_provider>
</web_config>

</application>
</jade_config>

The empty XML elements represent parameters that you can configure; for example, you can configure the
<connection_name/> element with the value WebApp, by replacing the empty element with a non-empty
element, as follows.

<connection_name>WebApp</connection_name>

In addition, the application XML element has three empty attributes that you can configure.

<application schema="BankingSchema" name="global" id="">

Elements in the Application Configuration File
The XML elements in the application configuration file are described in the following subsections.

jade_config element
The jade_config XML element is the root element for the document.

application element
The application XML element contains the following attributes.

schema specifies the schema name

name specifies the name of the Web-enabled application to which the settings apply

id specifies an identifier string that enables copies of the same Web-enabled application to run with different
configuration parameters

The application type can be a JadeForms application, an HTMLDocuments application, a WebServices provider
application, or a RestServices application. For details, see "Connecting to JADE Applications from Internet
Information Server (IIS)" or "Connecting to JADE Applications from an Apache HTTP Server", in Chapter 2 of the
JADE Installation and Configuration Guide.

You can repeat the application element to specify configuration information for a number of applications. The
special name global is used for configuration information that applies to all applications.

In the following example, there is configuration that applies globally to all applications, specific configuration
information for WebApp1, and specific configuration information for WebApp2.

<?xml version="1.0"?>
<jade_config>

Web Application Guide

Chapter 3 Configuring Web Applications 37

WebApps - 2020.0.02

<application schema="WebAppSchema" name="global" id="">
// configuration info applying to all applications

</application>
<application schema="WebAppSchema" name="WebApp1" id="">

// configuration info specific to WebApp1
</application>
<application schema="WebAppSchema" name="WebApp2" id="">

// configuration info specific to WebApp2
</application>

</jade_config>

The id attribute is used to enable the same application to be run with different configuration settings. In the
following example, the WebApp application can be run with the id="200" configuration settings or the id="300"
configuration settings.

<?xml version="1.0"?>
<jade_config>

<application schema="WebAppSchema" name="WebApp" id="200">
// configuration info specific to WebApp run with id "200"

</application>
<application schema="WebAppSchema" name="WebApp" id="300">

// configuration info specific to WebApp run with id "200"
</application>

</jade_config>

The following shortcut runs the WebApp application with the id="300" configuration settings.

jade.exe path=d:\webapp ini=c:\jade\system\jade.ini schema=WebAppSchema app=WebApp
startAppParameters id=300

web_config element
The web_config XML element is the root element for the general Web-enabled application settings.

connection_name element
The connection_name XML element specifies the name of a named pipe name or the TCP/IP address of the host
system. The TCP/IP address is of the form host:port number, as shown in the following example.

<connection_name>168.212.226.204:50000</connection_name>

application_copies element
The application_copies XML element specifies the number of copies of the application to start up on initiation.
The default value is 1.

In the following example, five copies of the application would be started up. All copies would use the same IP port
number, as specified in the connection_name element.

<application_copies>5</application_copies>

protocol_family
The protocol_family XML element specifies the TcpIp scheme that the Web server uses. The allowed values are
TcpIP, TcpIPv4, TcpIPv6, or TcpIPAny. (TcpIp is a synonym for TcpIpAny.)

Web Application Guide

Chapter 3 Configuring Web Applications 38

WebApps - 2020.0.02

session_timeout element
The session_timeout XML element is the period in minutes after which a Web session is deleted if there has
been no activity for that session. The default value of zero (0) indicates that the session does not time out. This
setting is ignored if session handling is not turned on.

Web sessions are optional for Web services and do not apply to REST services.

minimum_response_time element
The minimum_response_time XML element specifies the maximum time in seconds before a response must be
sent back to the requestor. The default of zero (0) indicates that there is no minimum response time.

disable_messages element
The disable_messages XML element specifies that messages will not be displayed in message boxes on the
client workstation running the application. An example of a message box being displayed is a user, accessing a
JadeForms application through a browser, making a repeat request. A message box warns that the repeated
message will be ignored.

This element applies only to Web-enabled applications run as GUI applications. The default value for this element
is false.

output_maximum_length element
The output_maximum_length XML element specifies the maximum number of characters to be displayed in the
Web-enabled application monitor window. If you do not specify a maximum length for output or specify a value of
zero (0), there is no restriction on the amount of text that is output.

log_file_name element
The log_file_name XML element specifies the file to which all logging that is displayed on the Web-enabled
application monitor window is written. If the file name is invalid or the file could not be created, a file with the
default name of websessions.log is used. If you do not specify a log file name, no logging to disk takes place.

logmessagecontent element
The logmessagecontent XML element specifies whether Web message content is logged in the JADE Web
Application Monitor window. By default, any Web logging includes the Query String = content and Http String =
content output. The default value for this element is true.

Set this element to false if you do not want to include the Query String = content and Http String = content
message content.

This element applies only if the disable_logging element in the Web application configuration file or the
DisableLogging parameter in the [WebOptions] section of the JADE initialization file is set to true, or tracing is
turned on when the Enable Logging command is displayed in the View menu of the JADE Web Application
Monitor window. (The value of this command toggles between Enable Logging and Disable Logging.)

When you initiate the Web Application monitor and tracing is on, a message is displayed indicating the status of
the LogMessageContent element, as follows.

Message content logging is enabled|disabled

Web Application Guide

Chapter 3 Configuring Web Applications 39

WebApps - 2020.0.02

disable_logging element
The disable_logging XML element specifies whether the JADE Monitor application logs and displays information
relating to requests and whether responses for Web-enabled applications run as GUI applications. Setting a value
for this element has no impact on Web-enabled non-GUI applications. Disabling logging has a significant positive
impact on throughput.

Tip Use Web-enabled non-GUI applications for production systems and Web-enabled GUI applications for
debugging purposes.

The default value for this element is false.

lock_retries element
The lock_retries XML element specifies the number of times to retry a lock exception before aborting a request.
The default value for this element is 20.

prompt_on_shutdown element
The prompt_on_shutdown XML element specifies whether a message is displayed when the application is shut
down and there are active Web sessions. Setting a value for this element has no impact on Web-enabled non-GUI
applications.

If the value of the prompt_on_shutdown element is true (which is the default value), a message is displayed and
the application does not shutdown until a response is made to the message.

firewall element
The firewall XML element specifies whether the jadehttp support library is outside a firewall.

If the value of the firewall element is true, any images that are generated must be transferred to jadehttp so that it
can create the files in a directory outside the firewall (as the Web-enabled application is inside the firewall, it
cannot see the directory).

The default value for this element is false.

monitor_font element
The monitor_font XML element specifies the font used in the Web Application Monitor window. The font is
specified as a comma-delimited string specifying the font name, font size, font bold, and font color respectively.

The following example displays monitor output in red using the 15 point bold Tahoma font.

<monitor_font>Tahoma,15,true,255</monitor_font>

base_uri element
The base_uri XML element is the root element for specifying the various parts of the Uniform Resource Identifier
(URI).

protocol element
The protocol XML element specifies the default protocol to be used. The value of this element can be http (which
is the default value) or https.

Web Application Guide

Chapter 3 Configuring Web Applications 40

WebApps - 2020.0.02

The values of the protocol, machine_name, and virtual_directory elements are used for generating hyperlinks
and the form action value.

machine_name element
The machine_name XML element specifies the machine name or TCP/IP address of the target host. The default
value for this element is null.

The values of the protocol, machine_name, and virtual_directory XML elements are used for generating
hyperlinks and the form action value.

virtual_directory element
The virtual_directory XML element is the directory as specified to the Web server and it is the directory where the
jadehttp module is located. The default value for this element is null.

The values of the protocol, machine_name, and virtual_directory XML elements are used for generating
hyperlinks and the form action value.

support_library element
The support_library XML element is the library or module used for communicating between the Web server and
the JADE Web-enabled application.

jade_forms element
The jade_forms XML element is the root element for specifying configuration parameters that apply only to
JadeForms applications.

physical_directory element
The physical_directory XML element specifies the physical directory that corresponds to the virtual directory
specified by the value of the virtual_directory element. Image and script files that are generated by the framework
are placed in this directory. The default value for this element is null.

maximum_HTML_size element
The maximum_HTML_size XML element specifies the maximum length of the HTML string that is to be
generated. The default value for this element is zero (0), which means there is no limit.

scrolling_text element
The scrolling_text XML element specifies the scrolling text that is to appear in the status window of the browser.
The default value for this element is null.

show_modal element
The show_modal XML element specifies whether an instruction in the code to display a form by using the
showModal method actually displays the form by using the show method, or whether an error is generated.

The default value for this element is false, which results in an error being generated.

Web Application Guide

Chapter 3 Configuring Web Applications 41

WebApps - 2020.0.02

cross_browser element
The cross_browser XML element specifies whether cross-browser compatibility is required. If you set the value of
this element to true, the generated code for all browsers is HTML version 3.2. The default value for this element is
false.

form_style element
The form_style XML element specifies whether Web pages are displayed as windows (that is, with captions and
borders) when using Internet Explorer browsers or simply as Web browser pages.

The default value for this element is false.

use_html4 element
The use_html4 XML element specifies whether HTML 4.0 generation is required for all browsers. The default
value for this element is false.

web_events element
The web_events XML element is the root element that enables you to specify (for Internet Explorer 4.0 and above
only) whether events other than clicking a submit button or a hyperlink can be captured.

control_name element
The control_name XML element specifies controls that can participate in a click event other than the standard
default values. Separate control names with commas.

image_type element
The image_type XML element is the format of the image files that are displayed on the generated Web pages.
The default generated image type is jpg (Joint Photographic Experts Group). You can also specify a png (Portable
Network Graphics) or gif (Graphics Interchange Format) file type.

page_sequencing element
The page_sequencing XML element specifies that forms that are generated have a hidden field with a sequence
number, which is incremented with each request. If the value of this element is set to true, an exception is raised if
requests arrive in an incorrect sequence. The exception must be handled by user code. The default value for this
element is false.

html_documents element
The html_documents XML element is the root element that enables you to specify configuration parameters that
apply only applications of HTMLDocuments type.

home_page element
The home_page XML element specifies the first page to be displayed when a request is made to the application.
The value of this element overrides the value set for the application. The default value for this element is null.

Web Application Guide

Chapter 3 Configuring Web Applications 42

WebApps - 2020.0.02

html_page_sequencing element
The html_page_sequencing XML element specifies that generated forms have a hidden field with a sequence
number, which is incremented with each request. If the value of this element is set to true, an exception is raised if
requests arrive in an incorrect sequence. The exception must be handled by user code. The default value for this
element is false.

web_services_provider element
The web_services_provider XML element is the root element for specifying configuration parameters that apply
only to Web services provider applications.

read_timeout element
The read_timeout XML element is the length of time in seconds to wait before terminating a read request. The
default value for this element is 120.

use_session_handling element
The use_session_handling XML element to specify that a SOAP header is to be generated automatically with a
session id for every request in a Web services application.

Structure of the Web Services Consumer Configuration
File

The following XML document represents a blank configuration file for a Web-enabled application.

<?xml version="1.0"?>
<jade_config>

<web_services_consumer schema="" name="" id="">
<web_config>

<consumer>
<endpoint></endpoint>
<maximum_connections></maximum_connections>
<connection_timeout></connection_timeout>
<send_timeout></send_timeout>
<receive_timeout></receive_timeout>

</consumer>
</web_config>

</web_services_consumer>
</jade_config>

The empty XML elements represent parameters that can be configured; for example, you can configure the
<connection_name/> element with the value WebApp, by replacing the empty element with a non-empty
element, as follows.

<connection_name>WebApp</connection_name>

In addition, the application XML element has three empty attributes that you can configure, as follows.

<application schema="WebConsumer" name="global" id="200">

Web Application Guide

Chapter 3 Configuring Web Applications 43

WebApps - 2020.0.02

Elements in the Web Services Consumer Configuration File
The XML elements in the Web services consumer configuration file are described in the following sections.

jade_config element
The jade_config XML element is the root element for the document.

web_services_consumer element
The web_services_consumer XML element contains the following attributes.

schema specifies the schema name

name specifies the name of the Web services consumer to which the settings apply

id specifies an identifier string that enables copies of the same Web services consumer application to run
with different configuration parameters

You can repeat the web_services_consumer element to specify configuration information for a number of Web
services consumers. The special name global is used for configuration information that applies to all Web services
consumers. Only settings that need to be changed are defined in a specific consumer section.

In the following example, there is configuration information that applies globally to all Web services consumers,
specific configuration information for WebConsumer1, and specific configuration information for WebConsumer2.

<?xml version="1.0"?>
<jade_config>

<web_services_consumer schema="WebSchema" name="global" id="">
// configuration info applying to all consumer applications

</web_services_consumer>
<web_services_consumer schema="WebSchema" name="WebConsumer1" id="">

// configuration info specific to WebConsumer1
</web_services_consumer>
<web_services_consumer schema="WebSchema" name="WebConsumer2" id="">

// configuration info specific to WebConsumer2
</web_services_consumer>

</jade_config>

The id attribute is used to enable the same Web services consumer to be run with different configuration settings.
In the following example, the application WebConsumer can be run with the id="200" configuration settings or
the id="300" configuration settings.

<?xml version="1.0"?>
<jade_config>

<web_services_consumer schema="WebSchema" name="WebConsumer" id="200">
// configuration info specific to WebConsumer run with id "200"

</web_services_consumer>
<web_services_consumer schema="WebSchema" name="WebConsumer" id="300">

// configuration info specific to WebConsumer run with id "300"
</web_services_consumer>

</jade_config>

The following shortcut runs the WebConsumer application with the id="300" configuration settings.

jade.exe path=d:\webapp ini=c:\jade\system\jade.ini schema=WebSchema
app=WebConsumer startAppParameters id=300

Web Application Guide

Chapter 3 Configuring Web Applications 44

WebApps - 2020.0.02

web_config element
The web_config XML element is the root element for the general Web-enabled application settings.

consumer element
The consumer XML element is the root element for the general Web consumer application settings.

endpoint element
The endpoint XML element specifies the endpoint Uniform Resource Locator (URL) to be used when calling this
consumer Web service.

maximum_connections element
The maximum_connections XML element specifies the maximum number of allowed simultaneous connections.
The default value for this element is two (2), which comes from the HTTP 1.1 standard.

For example, setting the value of the maximum_connections XML element to eight (8) enables a maximum of
eight (8) simultaneous connections on the Windows platform.

connection_timeout element
The connection_timeout XML element specifies the length of time in seconds to wait before terminating a
connection attempt. The default value for this element is 120.

send_timeout element
The send_timeout XML element specifies the length of time in seconds to wait before terminating a send attempt.
The default value for this element is 120.

receive_timeout element
The receive_timeout XML element specifies the length of time in seconds to wait before terminating a receive
attempt. The default value for this element is 120.

Creating and Maintaining the Configuration Files
The Web Configuration application enables you to create and maintain the XML configuration files for
Web-enabled applications, REST services applications, and Web service consumers, by entering values for the
elements on a form.

Using the Web Configuration Application
You can create and maintain configuration files using any text editor (for example, Notepad).

The following XML document represents a blank configuration file for a Web-enabled application.

<?xml version="1.0"?>
<jade_config>

<application schema="" name="" id="">
<web_config>

<connection_name/>

Web Application Guide

Chapter 3 Configuring Web Applications 45

WebApps - 2020.0.02

<application_copies/>
<session_timeout/>
<minimum_response_time/>
<disable_messages/>
<log_file_name/>
<disable_logging/>
<lock_retries/>
<prompt_on_shutdown/>
<firewall/>
<base_uri>

<protocol/>
<machine_name/>
<virtual_directory/>

</base_uri>
<support_library/>
<jade_forms>

<physical_directory/>
<maximum_HTML_size/>
<scrolling_text/>
<show_modal/>
<cross_browser/>
<form_style/>
<use_html4/>
<web_events>

<control_name/>
</web_events>
<image_type/>
<page_sequencing/>

</jade_forms>
<html_documents>

<home_page/>
<html_page_sequencing/>

</html_documents>
<web_services_provider>

<read_timeout/>
</web_services_provider>

</web_config>
</application>

</jade_config>

The empty elements represent parameters that you can configure; for example, you can configure the
<connection_name/> element with the value WebApp, by replacing the empty element with a non-empty
element, as follows.

<connection_name>WebApp</connection_name>

In addition, the application element has three empty attributes that you can configure, as follows.

<application schema="BankingSchema" name="global" id="">

Tip You do not have to edit the XML directly, as JADE provides the Web Configuration application that enables
you to create and maintain the configuration files.

The shortcut to run the Web Configuration application has the schema parameter set to JadeMonitorSchema and
the application parameter set to JadeWebConfigurator.

You can pass an optional filename command line parameter to specify the name of the file to edit.

Web Application Guide

Chapter 3 Configuring Web Applications 46

WebApps - 2020.0.02

The filename parameter must be separated from the standard parameters by the startAppParameters
parameter, as follows.

c:\jade\bin\jade.exe schema=JadeMonitorSchema
app=JadeWebConfigurator
path=c:\jade\system
ini=c:\jade\system\jade.ini
startAppParameters
filename=c:\temp\webservice.xml

Running the application (without startAppParameters and filename parameters) displays the Web Runtime
Configurator window with no data displayed.

Web Configuration Application File Menu
The File menu in the Web Runtime Configurator window provides the following commands.

Command Description

New Provides a submenu containing the Application and Consumer commands

Application Enables you to configure a Web-enabled or REST services application

Consumer Enables you to configure a Web services consumer

Open Displays the common File Open dialog

Append New Defines multiple Web applications or consumers in the one configuration file

Save Displays the common File Save dialog

Save As Displays the common Save As dialog

Exit Exits from the Web Configuration application

For details, see the following subsections.

New Command
To configure a newWeb application or Web service consumer

Select the New command from the Web Runtime Configurator File menu.

A submenu containing the Application and Consumer commands is then displayed. For details, see the following
subsections.

Web Application Guide

Chapter 3 Configuring Web Applications 47

WebApps - 2020.0.02

Application Command

To configure a newWeb application

1. Select the Application command from the New command submenu.

The list in the pane at the left of the Web Runtime Configurator window is then populated with items in blue
and items in black, as shown in the following image.

The black items (for example, schema, name, and id) represent configuration parameters. You can enter a
value for a configuration parameter in the corresponding cell in the pane at the right of the window.

The blue items (for example, jade_config, application, and web_config) represent groupings of
configuration parameters. When you click the plus sign (+) to the left of a blue item, the display expands to
show the configuration parameters of the item and possibly other grouping items.

For details about the elements in a Web application configuration file that you can configure, see "Elements
in the Application Configuration File", earlier in this chapter.

2. Expand the node in the pane at the left of each configuration file entity whose values you want to display in
the pane at the right of the window.

3. To edit the configuration file, click in the appropriate row in the pane at the right of the window and maintain
the value in that row to meet your requirements.

4. Repeat step 3 of this instruction for each value that you want to maintain.

5. Save the file.

Web Application Guide

Chapter 3 Configuring Web Applications 48

WebApps - 2020.0.02

Consumer Command

To configure a newWeb service consumer

1. Select the Consumer command from the New command submenu.

The list in the pane at the left of the Web Runtime Configurator window is then populated with items in blue
and items in black, as shown in the following image.

The black items (for example, schema, name, and id) represent configuration parameters. You can enter a
value for a configuration parameter in the corresponding cell in the pane at the right of the window.

The blue items (for example, jade_config, application, and web_config) represent groupings of
configuration parameters. When you click the plus sign (+) to the left of a blue item, the display expands to
show the configuration parameters of the item and possibly other grouping items.

For details about the elements in a Web services consumer configuration file that you can configure, see
"Elements in the Web Services Consumer Configuration File", earlier in this chapter.

Web Application Guide

Chapter 3 Configuring Web Applications 49

WebApps - 2020.0.02

Open Command
To edit an existing Web application configuration file or Web services consumer configuration file

1. Select the Open command from the Web Runtime Configurator File menu.

2. In the common File Open dialog that is then displayed, select the configuration file that you want to edit. The
pane at the right of the Web Runtime Configurator window is then populated with the appropriate
information, as shown in the example in the following image in which a file called
e:\temp\webappconfig.xml was selected.

3. Expand the node in the pane at the left of each configuration file entity whose values you want to display in
the pane at the right of the window.

4. To edit the configuration file, click in the appropriate row in the pane at the right of the window and maintain
the value in that row to meet your requirements.

5. Repeat step 4 of this instruction for each value that you want to maintain.

6. Save the file.

Web Application Guide

Chapter 3 Configuring Web Applications 50

WebApps - 2020.0.02

Append New Command
To define multiple Web applications or consumers in one configuration file

1. Select the Append New command from the Web Runtime Configurator File menu. For example, to add two
more applications to a file called e:\temp\webappconfig.xml, select the Append New command twice, in
which case the example shown in the following image is then displayed.

2. Expand the node in the pane at the left of each Web application configuration file entity (or Web services
consumer configuration file) whose values you want to display in the pane at the right of the window.

3. To edit the configuration files, click in the appropriate row in the pane at the right of the window and maintain
the value in that row to meet your requirements.

4. Repeat step 3 of this instruction for each value that you want to maintain.

5. Use the File menu Save As command to save the file to an .xml file name and location of your choice.

Save Command
To save your Web application or Web service consumer configuration file

Select the Save command from the File menu.

The common File Save dialog is then displayed, enabling you to save your .xml file.

Web Application Guide

Chapter 3 Configuring Web Applications 51

WebApps - 2020.0.02

Save As Command
To save your configuration file to a specified name and location

Select the Save As command from the File menu.

The common Save As dialog is then displayed, enabling you to save your .xml file to a name and location of your
choice.

If you are editing an existing file, the file name defaults to the name of this file. If it is not an existing file, specify the
file name that you require.

Exit Command
Select the Exit command from the Web Runtime Configurator File menu to shut down the Web Configuration
application and close the Web Runtime Configurator window.

Web Application Configuration Examples
The following discussion of Web application configurations assumes that a JADE Web service application named
MyWebService is defined in the MySchema schema.

The sections of the jadehttp.ini file and the Web application configuration file included with each configuration are
incomplete. They include only the elements required to illustrate each configuration; you may require additional
elements to build a running environment.

For examples, see the following subsections.

Configuration 1: Minimum

This image shows the simplest configuration. The Web service is offered to consumers at a single URL
(http://www.Company.com/Jade/jadehttp.dll?MyWebService...) supplied by IISWebServer-1. A single copy of the
Web application running in JadeNode-N1 on JadeServer-S1 handles all requests, one at a time.

Web Application Guide

Chapter 3 Configuring Web Applications 52

WebApps - 2020.0.02

The TCP port number used by jadehttp.dll to connect to the Multi Worker TCP Transport (MWTT) group of the
application is 21001 (TcpConnection and TcpPort parameter values). A maximum of 10 outstanding requests is
permitted (MaxInUse parameter value).

The jadehttp.dll queues a request to the Web application by opening a new connection or by reusing an idle
connection. When the jadehttp.dll has received the reply from a connection, it adds the connection to the idle list.
In this case, up to ten connections can be open between the jadehttp.dll and the MWTT for the Web application.
When ten requests are outstanding (and therefore ten connections are in use), additional requests are rejected
with an application is busy error.

If you specify a host name for the TcpIpConnection parameter, all DNS-provided address will be attempted. Both
the TcpIPv6 and TcpIPv4 protocols will be attempted on the provided IP addresses. Each connection failure will
be logged, and the next available combination tried.

Configuration 1 - JadeHttp.ini File
[MyWebService]
ApplicationType = WebServices
TcpConnection = JadeServer-S1
TcpPort = 21001
MaxInUse = 10

Configuration 1 - Web Application Configuration File
<jade_config>
<application schema="MySchema" name="MyWebService" id="Group-M1">
<web_config>
<connection_name>JadeServer-S1:21001</connection_name>
<application_copies>1</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>

</jade_config>

Web Application Guide

Chapter 3 Configuring Web Applications 53

WebApps - 2020.0.02

Configuration 2: Parallel Requests

This image shows a configuration that splits the request processing workload between two copies of the Web
application running in a single JADE node. A maximum of 20 outstanding requests is permitted (MaxInUse).
When an application copy completes a request on a connection, it selects the next queued connection from the
MWTT connection queue and reads and processes the request. Each application copy is a JADE process and
requires a process license.

You can run more application copies in parallel, which will reduce the average overall elapsed time for each
request but increase contention for resources.

Configuration 2 - JadeHttp.ini File
[MyWebService]
ApplicationType = WebServices
TcpConnection = JadeServer-S1
TcpPort = 21001
MaxInUse = 20

Configuration 2 - Web Application Configuration File
<jade_config>
<application schema="MySchema" name="MyWebService" id="Group-M1">
<web_config>
<connection_name>JadeServer-S1:21001</connection_name>
<application_copies>2</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>

</jade_config>

Web Application Guide

Chapter 3 Configuring Web Applications 54

WebApps - 2020.0.02

Configuration 3: Multiple Connection Groups

This image shows a configuration that splits the request processing workload between two independent copies of
a Web application. Each copy has a separate independent connection queue. The jadehttp.dll distributes
requests by selecting a new or idle connection from the next group that has not yet reached MaxInUse
connections (round-robin selection).

Two application sections (each with a unique id) are defined, because the MWTT associated with each Web
application listens on a different TCP address and port.

It is unusual to use this configuration to expose a single Web application as it is possible that the request
processing load is not equally shared between the Web application copies. Configuration 2 in the previous
section is much more effective at sharing the processing load between multiple copies of a Web application.

The configuration in this section is more likely when several unrelated Web applications are exposed from the
same database environment. In that case, the jadehttp.ini file will contain a separate section for each of the Web
applications rather than the dual group section shown in the example in the following subsection.

Configuration 3 - JadeHttp.ini File
[MyWebService]
ApplicationType = WebServices
TcpConnection1= JadeServer-S1
TcpPort1 = 21001
MaxInUse1 = 20
TcpConnection2 = JadeServer-S1
TcpPort2 = 21002
MaxInUse2 = 20

Configuration 3 - Web Application Configuration File
<jade_config>
<application schema="MySchema" name="MyWebService" id="Group-M1">
<web_config>

Web Application Guide

Chapter 3 Configuring Web Applications 55

WebApps - 2020.0.02

<connection_name>JadeServer-S1:21001</connection_name>
<application_copies>1</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>
<application schema="MySchema" name="MyWebService" id="Group-M2">
<web_config>
<connection_name>JadeServer-S1:21002</connection_name>
<application_copies>1</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>

</jade_config>

Configuration 4: Multiple JADE Nodes

This image shows a configuration that splits the request processing workload between two independent copies of
a Web application, each running in separate JADE node within the same machine. This configuration avoids the
contention issues that arise when multiple JADE processes execute within a node but it requires more resource
such as memory.

Web Application Guide

Chapter 3 Configuring Web Applications 56

WebApps - 2020.0.02

Configuration 4 - JadeHttp.ini File
[MyWebService]
ApplicationType = WebServices
TcpConnection1= JadeServer-S1
TcpPort1 = 21001
MaxInUse1 = 20
TcpConnection2 = JadeServer-S1
TcpPort2 = 21002
MaxInUse2 = 20

Configuration 4 - Web Application Configuration File
<jade_config>
<application schema="MySchema" name="MyWebService" id="Group-M1">
<web_config>
<connection_name>JadeServer-S1:21001</connection_name>
<application_copies>1</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>
<application schema="MySchema" name="MyWebService" id="Group-M2">
<web_config>
<connection_name>JadeServer-S1:21002</connection_name>
<application_copies>1</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>

</jade_config>

Web Application Guide

Chapter 3 Configuring Web Applications 57

WebApps - 2020.0.02

Configuration 5: Multiple Application Copies in Multiple Nodes

This image shows a configuration that splits the request processing workload between multiple copies of a Web
application running in separate JADE nodes within the same machine. This configuration has less resource
contention than a configuration that has all Web application copies running in the same node.

You can use this configuration when a large number or requests must be processed in parallel but the local
resource usage (for example, CPU) per request is low, in which case the number of copies for each node will be
much higher (for example, 30 to 40). In addition, the outstanding request limit will be high (in this example, 500 for
each node).

Configuration 5 - JadeHttp.ini File
[MyWebService]
ApplicationType = WebServices
TcpConnection1= JadeServer-S1
TcpPort1 = 21001
MaxInUse1 = 500
TcpConnection2 = JadeServer-S1
TcpPort2 = 21002
MaxInUse2 = 500

Configuration 5 - Web Application Configuration File
<jade_config>
<application schema="MySchema" name="MyWebService" id="Group-M1">
<web_config>
<connection_name>JadeServer-S1:21001</connection_name>
<application_copies>2</application_copies>

Web Application Guide

Chapter 3 Configuring Web Applications 58

WebApps - 2020.0.02

<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>
<application schema="MySchema" name="MyWebService" id="Group-M2">
<web_config>
<connection_name>JadeServer-S1:21002</connection_name>
<application_copies>2</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>"

</web_config>
</application>

</jade_config>

Configuration 6: Multiple JADE Servers

Web Application Guide

Chapter 3 Configuring Web Applications 59

WebApps - 2020.0.02

This image shows a configuration that splits the request processing workload between two servers (that is, S1 and
S2). A single JADE node is running in each server. Although only two copies of the Web application are shown for
each node, it is more usual to run two or three copies for each logical CPU, depending on the resource usage for
each request. Each node (and therefore each server) can have up to 200 outstanding requests.

You could extend this configuration by running multiple nodes in one or more of the servers.

Configuration 6 - JadeHttp.ini File
[MyWebService]
ApplicationType = WebServices
TcpConnection1= JadeServer-S1
TcpPort1 = 21001
MaxInUse1 = 200
TcpConnection2 = JadeServer-S2
TcpPort2 = 21002
MaxInUse2 = 200

Configuration 6 - Web Application Configuration File
<jade_config>
<application schema="MySchema" name="MyWebService" id="Group-M1">
<web_config>
<connection_name>JadeServer-S1:21001</connection_name>
<application_copies>2</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>
<application schema="MySchema" name="MyWebService" id="Group-M2">
<web_config>
<connection_name>JadeServer-S2:21002</connection_name>
<application_copies>2</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>Jade</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>

</jade_config>

Web Application Guide

Chapter 3 Configuring Web Applications 60

WebApps - 2020.0.02

Configuration 7: Multiple Web Servers

This image shows a configuration that exposes the Web service via two Web servers. In this example, one is IIS
and the other is Apache. A reason for using this configuration is to allow one Web server to expose the service
within your company and the other to expose the service to the Internet.

Configuration 7 - JadeHttp.ini File
[MyWebService]
ApplicationType = WebServices
TcpConnection1= JadeServer-S1
TcpPort1 = 21001
MaxInUse1 = 200
TcpConnection2 = JadeServer-S1
TcpPort2 = 21002
MaxInUse2 = 200

Configuration 7 - Apache Configuration File
<Location /MyWebService>
Apache directives
SetHandler jadehttp-handler
Order allow,deny
Allow from all
Jade directives
Application MyWebService
ApplicationType WebServices
TcpConnection1 JadeServer-S1 21001 1 200

Web Application Guide

Chapter 3 Configuring Web Applications 61

WebApps - 2020.0.02

TcpConnection2 JadeServer-S1 21002 1 200
</Location>

Configuration 7 - Web Application Configuration File
<jade_config>
<application schema="MySchema" name="MyWebService" id="Group-M1">
<web_config>
<connection_name>JadeServer-S1:21001</connection_name>
<application_copies>2</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>MyWebService</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>
<application schema="MySchema" name="MyWebService" id="Group-M2">
<web_config>
<connection_name>JadeServer-S1:21002</connection_name>
<application_copies>2</application_copies>
<base_uri>
<protocol>http</protocol>
<machine_name>www.Company.com</machine_name>
<virtual_directory>MyWebService</virtual_directory>

</base_uri>
<web_services_provider/>

</web_config>
</application>

</jade_config>

Web Application Guide

Chapter 3 Configuring Web Applications 62

WebApps - 2020.0.02

Chapter 4 Using the Rich Internet Application
(RIA) Framework

This chapter covers the following topics.

Overview

JavaScripts Generated from Web Services

Generating JavaScript

Asynchronous Responses and Callbacks

Client-Side Caching

Restricted Cross-Domain Calls

JavaScript Object Notation

Example of JavaScript to Invoke Web Services

Generated JavaScript API for a Web Service

WSUtil.js

Classes.js

Web-service_api.js

Web-service_types.js

Web-service_testharness.html

Overview
The classic JADE Web application framework centered all activity on a client-server round-trip architecture with a
Web service architecture. Under this system all processing is done on the server, and the client is only used to
display static HTML content. The biggest drawback with this approach is that all interaction with the application
must pass through the server; that is, data is sent to the server, the server responds, and a full page refresh occurs
on the client with the response, when only a small part of the display requires updating.

By using a client-side technology that can execute instructions on the client’s computer, Rich Internet Applications
(RIAs) can circumvent this slow and synchronous loop for many user interactions and perform partial page
updates.

The main characteristic of an RIA is that it has an intermediate layer of code, often called a client engine, between
the user and the server. This client engine is usually downloaded at the beginning of the application, and can be
supplemented by further code downloads as the application progresses. The client engine acts as an extension of
the Web browser, and usually takes over responsibility for rendering the user interface and for server
communication.

In a RIA, it is not uncommon for a large number of messages to be sent between a browser client and the server,
but the size of each message is typically small. An example of the way this strategy works would be a user
completing address and phone number details on a form in a Web browser. When the user tabs out of the phone
number field, a message can be generated to validate the number that was entered. The message is sent to the
appropriate JADE Web service method and the response is sent back to the browser. The browser client
processes the response and takes any action that is necessary.

WebApps - 2020.0.02

The JADE Rich Internet Application framework uses the JavaScript language. It is a client-side language that can
run code and is installed on most Web browsers. JavaScript code is used to facilitate the messaging and event
handling and the JADE Web service framework is the client-server communication link in this Rich Internet
Application strategy.

The browser client, by executing JavaScript, manipulates the displayed page with incremental updates avoiding
the traditional full page refreshes.

Note Although the generated JavaScript should work in most current browser versions, we recommend one of
IE 6.0, IE 7.0, Firefox 2.0, Firefox 3.0, Chrome 1.0, or Safari 3.2.

JavaScripts Generated from Web Services
The JavaScript Web Service Consumer Generator is primarily designed to aid JavaScript developers invoke
JADE Web services. Within the JADE development environment, the developer selects a Web service to be
accessed from JavaScript and the generator creates a number of JavaScript files, which enable the JavaScript
developer to invoke that Web service.

The generator supports only Web services in the document/literal SOAP 1.1 format.

The generated files are downloaded and used on the client. The JavaScript developer can simply interact with the
messages as though they were static methods. For example, a Web service provider application named
CustomerService provides a JADE Web service method with the following signature.

addCustomer(firstName: String; lastName: String; age: Integer) webService;

The JavaScript code to add a customer would be as follows.

Jade.CustomerService.addCustomer("John", "Smith", 40);

In this example, Jade is the namespace specified by the user who generated the JavaScript.

The generated API also provides the following functionality.

Client-side cache

Session handling

Exception handling

Message preprocessing

A type-checked class framework

Generating JavaScript
You can generate JavaScript for a Web service provided by or consumed by JADE.

To generate JavaScript for a Web service consumer

1. In the Web Service Consumer Browser, select the consumer subclass with which you want to interact.

2. Select the Generate JavaScript command from the Consumer menu.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 64

WebApps - 2020.0.02

The Web Service JavaScript Generation dialog, shown in the following example, is then displayed.

3. If you want the JavaScript files created in a directory other than the program directory, enter the location in
the Output Directory text box. Alternatively, click the Browse button and the common file Open dialog is
then displayed to enable you to select the appropriate location.

4. Enter a namespace in the Module Namespace text box. The namespace refers to the root JavaScript
variable name that the generated scripts use. For example, if the namespace is Jade, the instruction to call a
Web service from JavaScript would be in the following format.

Jade.<provider>.<method>(<parameters>);

5. Click the Generate button. Alternatively, click the Cancel button to abandon your selections.

A number of JavaScript (.js) files are created in the specified directory.

To generate JavaScript for a Web service exposure

1. In the Exposure Browser, select the Web service exposure for which you want to generate JavaScript.

2. Select the Generate JavaScript command from the Exposure menu.

The Web Service JavaScript Generation dialog, shown in the following example, is then displayed.

3. If you want the JavaScript files created in a directory other than the program directory, enter the location in
the Output Directory text box. Alternatively, click the Browse button and the common file Open dialog is
then displayed to enable you to select the appropriate location.

4. Enter a namespace in the Module Namespace text box. The namespace refers to the root JavaScript
variable name that the generated scripts use. For example, if the namespace is Jade, the instruction to call a
Web service from JavaScript would be in the following format.

Jade.<provider>.<method>(<parameters>);

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 65

WebApps - 2020.0.02

5. Select a Web service provider application that uses the exposure in the Web service application combo
box. This enables the generated JavaScripts to access the correct application.

6. Click the Generate button. Alternatively, click the Cancel button to abandon your selections.

A number of JavaScript (.js) files are created in the specified directory.

Asynchronous Responses and Callbacks
Within the generated framework, all responses to Web service calls are received asynchronously. Consequently,
you must provide the equivalent of an event handler, called a callback function, to handling a response.

The following example shows the definition and registration of a callback function.

function handleResponse (xml) {
alert("The Web service replied");

}

Jade.CustomerService.getAge("John", "Smith", {callback: handleResponse});

The framework enables you to pass a config object as an additional parameter to each Web service call. You can
set properties on the config object to specify how the framework deals with the call.

In the previous example, the callback property is set to refer to a function that will be invoked when the Web
service replies. The function is passed the XML returned by the Web service. You could then extract the parts of
the reply in which you are interested (for example, by using a helper library such as jQuery) and carry out
processing based on the response.

Client-Side Caching
For Web service calls that repeatedly request the same, static information (for example, post codes), the RIA
framework has a built-in cache to store the information. Response times for the client application can be reduced
by eliminating unnecessary traffic across the Web. You can set the following options in the config object for the
cache.

cache: true

This setting causes the result of the Web service to be stored in the cache. Further calls to the same service
that also have cache: true perform a simple cache lookup rather than invoke the Web service.

cacheExpiry: number-of-seconds

This setting specifies the number of seconds the entry remains in cache before it expires. When an entry
expires, the next call to the Web service method invokes the Web service rather than using the cached value.

cacheKey: String

This setting is an optional secondary key for a Web service method.

The primary key is the method name, so that multiple calls to the same method use the same cached value.
For a method with parameters, you would almost certainly not want to use the same cached value for all calls
to that method. If a cacheKey value is specified, only an entry in the cache that matches the method and the
cacheKey is considered to match the request.

Note Individual method calls with unusual parameters can bypass the cache, by not using the cache: true
option.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 66

WebApps - 2020.0.02

Restricted Cross-Domain Calls
A security feature of modern Web browsers is the inability of JavaScript to communicate with a Web site other than
its home site. For example, JavaScript at www.jadeworld.com can send messages to the server at
www.jadeworld.com but not to the server at www.google.com, which has a different address.

This places severe restrictions on the use of JavaScript to invoke Web services. The service provider must reside
on the same domain as the JavaScript; that is, the JADE service provider and the server on which the JavaScript
is located must share the same domain name.

In a simple case, where the directory containing the jadehttp.dll file is the JADE binary directory c:\jade\bin and
has the alias jade in Microsoft Internet Information Server (IIS), the JavaScript must reside in a subdirectory of the
JADE binary directory.

The browser can access the JavaScript files using the following IIS address, as follows.

http://webserver/jade/Provider_testharness.html

Web browser security prevents direct access through the file URL, as follows.

file:///c:/Jade/bin/Provider_testharness.html

The accepted way to invoke cross-domain Web services from JavaScript is through your Web server; that is,
arrange for the JADE Web service provider on your Web server to consume the external service (for example, the
Google search service) and then create a provider in JADE to provide that service to your JavaScript.

The JavaScript performs a Web service call to the JADE service provided by your Web server, which acts as an
intermediary and requests the data from Google.

JavaScript Object Notation
JavaScript Object Notation (JSON) is a way of creating an object in JavaScript with its properties initialized to
specified values. A comma-separated list of key:value pairs is enclosed in braces, as shown in the following JSON
example.

var person = {name:"Harry", age:17};

Note Do not leave a trailing comma after the last key:value pair in your JSON, as some Web browsers may not
behave correctly.

An object is created with properties name and age, which are initialized to "Harry" and 17, respectively. It is
equivalent to the following JavaScript code.

var person = new Object();
person.name = "Harry";
person.age = 17;

JSON notation helps in making JavaScript code simpler and easier to read.

Example of JavaScript to Invoke Web Services
The following code shows the use of the framework to invoke two Web services from the Erewhon system, which
is the JADE example system.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 67

http://www.jadeworld.com/jade
http://www.jadeworld.com/jade
http://www.google.com/

WebApps - 2020.0.02

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>

<title>JavaScript Web Service Consumer test</title>
<script type="text/javascript" src="Classes.js"></script>
<script type="text/javascript" src="WSUtil.js"></script>
<script type="text/javascript"

src="WebServiceOverHttpApp_types.js"></script>
<script type="text/javascript"

src="WebServiceOverHttpApp_api.js"></script>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">

var client = new Jade.WebServiceOverHttpApp_Types.Client(
{ // Construct the parameter
name:"Barry Ogen",
address1:"123 Straight St",
address2:"Newtown",
address3:"Te Anau",
home:"031234123",
fax:"03987654",
email:"barry@gmail.com",
webSite:"www.BarryOgen.com"});

Jade.WebServiceOverHttpApp.updateClientWithProxy(client);
// Invoke the service
Jade.WebServiceOverHttpApp.getClient("Barry Ogen", {cache:true,

callback:function(xml) { // invoke the service
var email = $(xml).find("email").text();
// use jQuery to extract information we are interested in
alert("Barry's e-mail address is now: " + email);}});

</script>
</head>
<body>
</body>
</html>

Generated JavaScript API for a Web Service
When the generation function is performed, the following files are generated.

File Provides

Classes.js Generic type-safe class framework

WSUtil.js Generic essentials required to invoke Web services

Web-service_types.js Types exposed by the Web service

Web-service_api.js JavaScript methods to invoke the Web service methods

Web-service_testharness.html Sample Web application used to check the framework is
functioning correctly

Note There are dependencies among these files. When including them within an HTML file, include the .js files
in the order listed in the above table.

The WSUtil.js and Classes.js files are independent of the specific Web service. If the JavaScript needs to invoke
two or more separate Web services, it therefore requires only one copy of these files.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 68

WebApps - 2020.0.02

For each Web service, the corresponding Web-service_api.js and Web-service_types.js files are required.

For details about the generated JavaScript, see the following subsections.

WSUtil.js
The WSUtil.js file provides the following public methods and properties:

Method or Property Description

defaultCacheExpiry: Number, or false
(default value is 300)

The number of seconds after which entries in the cache expire
if no cacheExpiryconfig option is set. Set this to false for
infinite expiry time (that is, it never expires).

incomingSoap: String A copy of the most-recently received message.

outgoingSoap: String A copy of the most-recently sent message.

pre-processor: Function (default value is null) This function is called whenever a Web services returns, prior
to the callback function being invoked. The preprocessing
function can return true to prevent the callback being invoked.
The config option settings can override this value for individual
calls.

exceptionHandler: Function, or false (default
value is null)

If the service provider returns an exception, the RIA framework
invokes the exception handler rather than the normal callback.
The config option settings can override this value for individual
calls. If no override is provided, the exceptionHandler is called.
Set this to false, to ignore the exception, and null to use the
default exception handler, which displays a simple message
box reporting the error to the user.

convertTextToXMLDOM(String): DomNode Parses the provided string and returns a Document Object
Model (DOM) of the XML.

xmlSerialize(DomNode): String Takes a Document Object Model of the XML and serializes it
into text.

shallowCopy(Object): Object Makes a copy of an object.

flushCache() Clears out all cache entries.

createRequest(…) Internal method, which is used by the RIA framework and
should not be invoked directly.

Classes.js
The Classes.js file provides the public Class.New() method, which has the following signature.

New(classname: String, superclass: Class)

The Class.New() method creates a new JavaScript class. After the class has been created, it has a number of
methods and properties that can be invoked.

As a general rule, call the setProperties() method after calling the Class.New() method, to make the class a class
with properties, or the isArrayOf() method, to make an array class. After invoking one of these methods, you can
create instances of the class by using the new keyword.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 69

WebApps - 2020.0.02

Classes with properties have set and get methods for each property. In the following example, a class is created
with a color property. If the corresponding color() method is called with a parameter, the method sets the value of
the color property. If it is called without a parameter, the method gets the value of the color property. The method
checks the types of values used.

The following example shows the use of the Class.New() method to create a class with properties.

var Animal = Jade.Class.New("Animal"); // define the class
Animal.setProperties({color:String, age:Number}); // give it properties

var myAnimal = new Animal({color:"blue",age:14}); // instantiate it
myAnimal.age(); // get a property - returns 14
myAnimal.color("red"); // change a property
myAnimal.color(); // now returns "red"
myAnimal.age(Animal); // throws exception - fails type-check

var Lion = Jade.Class.New("Lion", Animal); // subclass Animal
Lion.setProperties({kills:Number}); // add subclassed properties

var myLion = new Lion({kills:12,color:"yellow"}); // instantiate it
// can set properties defined in superclass

myLion.kills(45); // set the kills
myLion.color(); // returns "yellow"
myLion.Classname(); // returns "Lion"
myLion instanceof Lion; // returns true
myLion instanceof Animal; // returns true

// a subclass is an instance of its superclass
myLion.Superclass(); // returns Animal
myLion.Properties(); // returns {kills:Number, color:String, age:Number}

If the isArrayOf() method is called instead of the setProperties() method, the class is an array class. After
invoking this method, you can create instances of the array by using the new keyword.

The following example shows the use of the Class.New() method to create an array.

var AnimalArray = Jade.Class.New("AnimalArray");
AnimalArray.isArrayOf(Animal); // make it into an array

var myAA = new AnimalArray([myAnimal, myLion]); // instantiate it
// Can set initial contents

myAA.Array(); // returns [myAnimal,myLion]
myAA.Array([]); // sets the array to empty
myAA.Add(myAnimal); // adds to the array

var LionArray = Jade.Class.New("LionArray", AnimalArray);
// subclasses AnimalArray

LionArray.isArrayOf(Lion); // make it into an array

var myLA = new LionArray([myLion]); // instantiate it
myLA.Add(myAnimal); // throws type-check exception

The Class.New() method creates a Class object with the following properties and methods.

Method or Property Description

ClassName(): String Returns the name of the class.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 70

WebApps - 2020.0.02

Method or Property Description

IsArray(): Boolean Returns whether the class is an array class (by default, they are not,
unless isArrayOf(memberType) has been called.

SuperClass(): Class Returns a reference to the superclass.

isArrayOf(memberType: Class) Makes the class into an array class (can be called once only), with
members of the specified type. Methods are added to conform to the
TypedArrayClass interface.

setProperties(properties: Object) For example, setProperties({name:String, age:Number, dob:Date,
children:PersonArray}); gives the class new properties, and can be
called once only. The names and types of the class properties are
those of the properties of the parameter. Methods are added to the
class to conform to the TypedPropertyClass interface.

Instances of the Class Class (that is, the actual objects created when you use the new keyword to create an
instance of the class) have the following properties.

Property Description

ClassName(): String Returns the name of the class.

IsArray(): Boolean Returns whether the class is an array class (by default, classes are not
array classes, unless isArrayOf(memberType) has been called).

SuperClass(): Class Returns a reference to the superclass.

The TypedArrayClass interface provides the following additional functions.

Function Description

MemberType(): Class Returns the member type of the array.

<constructor>(valueArray: Array of MemberType) Optionally invokes the Array(valueArray) function in
the TypedArrayClass interface, if a parameter is
provided.

Instances of the TypedArrayClass interface have the following additional functions.

Function Description

MemberType(): Class Returns the member type of the array.

Array(valueArray: Array of MemberType) Replaces the array with the values passed, after type-
checking.

Array(): Array Returns a copy of the private internal type-checked
array object.

Add(value: MemberType) Adds a value to the array. If the value is not of
MemberType, an exception is raised.

The TypedPropertyClass interface provides the following additional functions.

Function Description

Properties(): Object Returns the properties passed to the setProperties() function when
the class was defined.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 71

WebApps - 2020.0.02

Function Description

<constructor>(values: Object) Invokes the SetProperties(values) function on the instance, if the
parameter is provided.

Instances of the TypedPropertyClass interface have the following additional functions:

Function Description

Properties(): Object Returns the properties passed to setProperties() when the class was
defined.

SetProperties(values: Object) Sets the values of any number of properties after type-checking. For
example, {name: "Andrew", age: 21, children: myChildrenArray}.

Instances of the TypedPropertyClass interface also have get and set methods with the names specified in the
setProperties() method, as shown in the following example if the Person class has name and age properties.

Person.setProperties({name:String, age:Number});

You can set and get the value of the name property of an instance of the Person class, as follows.

emp.name("Bill"); // sets the value of the name property
emp.name(); // gets the value of the name property

Web-service_api.js
The Web-service_api.js file provides one method for each method defined by the Web service. Each method has
parameters identical to those provided by the Web service, with an additional config parameter that is optional.

The OnSessionTimeout() method provided in the Web-service_api.js file enables you to specify a function to be
invoked when a Web session times out. Typically, you could code a JavaScript function that asks the user to log
on again. When the function is called with a null parameter, the callback is unset.

Note Setting an OnSessionTimeout callback when using a Web service that does not support session handling
results in all return messages being sent to that callback function.

You can set the following properties for the config object.

Property Description

callback: Function This function is invoked when the Web service responds.

preprocessor: Function, or false This function is invoked before the callback function. The specified
function is invoked instead of any general preprocessor set in the
WSUtil.js file. Setting this value to false means that no preprocessor
function is invoked. The preprocessor function itself can return true, to
prevent the callback being invoked.

exceptionHandler: Function, or false This function is invoked instead of preprocessor and callback functions
if the service provider returns an exception. Setting this value to false
means that the exception is ignored and no handler function is called. If
this value is not specified, the handler specified in the WSUtil.js file is
used.

cache: Boolean If true, checks whether the value is in the local cache before invoking
the Web service. If it is not in cache, it stores the value in the cache
when the service responds.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 72

WebApps - 2020.0.02

Property Description

cacheExpiry: Number, or false Only relevant if cache: true is set. Indicates the number of seconds the
entry remains in the cache before expiring. A value of false indicates
that the entry never expires. If a value is not specified, the default cache
expiry setting defined in the WSUtil.js file is used. The expiry time for
an item in cache is governed by the lowest value of cacheExpiry
specified by the config objects of any of the calls that use it.

cacheKey: String Provides a secondary dictionary key for entries in the cache. An entry
in the cache is considered a match only if the method being invoked is
the same and the value of cacheKey is the same.

Callbacks, Preprocessors, and Exception Handlers
For most preprocessor and callback functions, the only parameter that needs to be specified is the XML DOM tree
returned by the Web service; for example:

function handleResponse(xml) { ... }

Note There is no requirement in JavaScript for the parameters of a function to match the number of parameters
with which it is invoked, although a parameter cannot be used if it is not included in the signature.

The other parameters passed to these functions are:

InvocationArguments

CacheObject

With these additional parameters, the signature would be as follows.

function handleResponse(xml, InvocationArguments, cacheObject) { ... }

The InvocationArguments parameter is the parameters with which the Web service call was invoked, and is an
array containing the following entries.

The string name of the method being invoked

An instance of one of the classes from the Web-service_types.js file of the Web service containing the
parameters passed to the Web service method

The config object, which enables the handler to determine which method call it is handling

An easier way to pass information from the caller to the handler is to declare the handler function within the scope
of the caller, as shown in the following example.

var outerVar = "abc";
Jade.Service.GetData("mydata",{cache: true, callback: function(xml){

alert("This is the callback function. The value of outerVar is: " +
outerVar);

}});

This example uses an anonymous function, which is generally the easiest way to write Web service calls. In
JavaScript, a function definition can be supplied where a function reference is expected. Instead of defining a
function called handleResponse and specifying it by name as the callback function, you can simply define the
function in-line without a name. Such anonymous functions can access all of the data that is accessible within the
parent function.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 73

WebApps - 2020.0.02

If the call uses the cache, a third parameter is passed to the handler (its value is undefined if the cache is not
used). The third parameter is cacheObject, which is the entry in the cache representing the data. You can store
data that can be accessed during subsequent cache calls on this object. For example, when XML is received by
the preprocessor function of a user, data can be extracted and changed into a more-useful format. The
preprocessor adds a property to the cacheObject object, to store the data. All subsequent calls to the Web service
method see the data on cacheObject and do not need to repeatedly transform the XML.

Note All data stored on the cacheObject object is lost if the cache entry expires or if the cache is flushed.

Web-service_types.js
The Web-service_types.js file uses the class structure provided by the Classes.js file to construct all the classes
used by the Web service. This includes both Array classes and normal classes. These classes are exposed to the
user and are needed to invoke Web service calls where the parameters of the method are not primitive types; for
example, a CustWeb provider in JADE has the following Web service method.

addCustomers(CustomerArray) webService;

The CustomerArray class is an array of Customer objects. The Customer class has name and age properties
defined. The Web service is invoked from JavaScript, using the generated framework as follows.

var cust1 = new Jade.CustWeb_Types.Customer(); // Create the customer
cust1.name("Harold");
cust1.age(31);
var custArr = new Jade.CustWeb_Types.CustomerArray(); // Create the array
custArr.Add(cust1);
Jade.CustWeb.addCustomers(custArr, {callback:function(){// Invoke service

alert("Successfully added the customer");}
});

Web-service_testharness.html
The test harness application is an HTML and JavaScript application that behaves similarly to the standard JADE
Web service test harness. For details about the standard test harness, see "Testing the Web Services Interface", in
Chapter 11 of the JADE Developer’s Reference.

You can use the JavaScript Web service test harness to test that the generated framework is working. You cannot
simply double-click the generated file to load it into the browser, as the browser prevents the Web service calls
because of cross-domain security restrictions. Instead, you can copy the generated files to a Web server and
access them through it. For details, see "Restricted Cross-Domain Calls", earlier in this chapter.

Web Application Guide

Chapter 4 Using the Rich Internet Application (RIA) Framework 74

	Contents
	Before You Begin
	Who Should Read this Guide
	What's Included in this Guide
	Related Documentation
	Conventions

	Chapter 1 Implementing Web Applications
	Overview
	Creating Web Pages
	Adding Controls to a Web Page

	Generating HTML
	Enhanced Web Functionality
	Application::webMinimumResponseTime Property
	Application Class Methods
	Form Class Methods
	WebSession Class Properties
	WebSession Class Methods
	Window::userScript Property
	Window Class Web-Related Methods

	Generating a Web Image
	Handling Web Forms in Your JADE Code
	Handling Events on Web Pages
	Multiple Selections in List Boxes on Web Forms

	Enabling Your JADE Application for HTML Thin Client Access
	Specifying Your HTML Thin Client Access Options

	Enabling Event Handling on Web Pages
	Using a Web Browser to Access Your JADE Application
	Accessing a JADE Application from an HTML Thin Client
	Invoking a User Method

	JADE Connectivity from the Internet
	Managing Your Web Sessions
	Initiation and Process Flow

	JADE Processing of an HTML Client Request
	Message Logging
	Suppressing the Logging of Messages

	Handling Exceptions in an HTML-Enabled Application
	Message Box Handling

	Chapter 2 Monitoring Your Web Sessions
	Overview
	Opening a Browser for a Web Services Application
	Shutting Down the Web-Enabled Application
	Clearing the Displayed Information
	Specifying the Content of Logged Messages
	Disabling Logging
	Directing Web Monitor Information to a File
	Restarting a Web Session
	Closing a Session
	Displaying Session Details
	Listing Active Web Sessions
	Displaying Session Statistics
	Accessing Online Help
	Displaying Information about Your HTML Thin Client Application

	Chapter 3 Configuring Web Applications
	Overview
	Structure of the Application Configuration File
	Elements in the Application Configuration File
	jade_config element
	application element
	web_config element
	connection_name element
	application_copies element
	protocol_family
	session_timeout element
	minimum_response_time element
	disable_messages element
	output_maximum_length element
	log_file_name element
	logmessagecontent element
	disable_logging element
	lock_retries element
	prompt_on_shutdown element
	firewall element
	monitor_font element
	base_uri element
	protocol element
	machine_name element
	virtual_directory element
	support_library element
	jade_forms element
	physical_directory element
	maximum_HTML_size element
	scrolling_text element
	show_modal element
	cross_browser element
	form_style element
	use_html4 element
	web_events element
	control_name element
	image_type element
	page_sequencing element
	html_documents element
	home_page element
	html_page_sequencing element
	web_services_provider element
	read_timeout element
	use_session_handling element

	Structure of the Web Services Consumer Configuration File
	Elements in the Web Services Consumer Configuration File
	jade_config element
	web_services_consumer element
	web_config element
	consumer element
	endpoint element
	maximum_connections element
	connection_timeout element
	send_timeout element
	receive_timeout element

	Creating and Maintaining the Configuration Files
	Using the Web Configuration Application
	Web Configuration Application File Menu
	New Command
	Application Command
	Consumer Command

	Open Command
	Append New Command
	Save Command
	Save As Command
	Exit Command

	Web Application Configuration Examples
	Configuration 1: Minimum
	Configuration 1 - JadeHttp.ini File
	Configuration 1 - Web Application Configuration File

	Configuration 2: Parallel Requests
	Configuration 2 - JadeHttp.ini File
	Configuration 2 - Web Application Configuration File

	Configuration 3: Multiple Connection Groups
	Configuration 3 - JadeHttp.ini File
	Configuration 3 - Web Application Configuration File

	Configuration 4: Multiple JADE Nodes
	Configuration 4 - JadeHttp.ini File
	Configuration 4 - Web Application Configuration File

	Configuration 5: Multiple Application Copies in Multiple Nodes
	Configuration 5 - JadeHttp.ini File
	Configuration 5 - Web Application Configuration File

	Configuration 6: Multiple JADE Servers
	Configuration 6 - JadeHttp.ini File
	Configuration 6 - Web Application Configuration File

	Configuration 7: Multiple Web Servers
	Configuration 7 - JadeHttp.ini File
	Configuration 7 - Apache Configuration File
	Configuration 7 - Web Application Configuration File

	Chapter 4 Using the Rich Internet Application (RIA) Framework
	Overview
	JavaScripts Generated from Web Services
	Generating JavaScript
	Asynchronous Responses and Callbacks
	Client-Side Caching
	Restricted Cross-Domain Calls
	JavaScript Object Notation
	Example of JavaScript to Invoke Web Services
	Generated JavaScript API for a Web Service
	WSUtil.js
	Classes.js
	Web-service_api.js
	Callbacks, Preprocessors, and Exception Handlers

	Web-service_types.js
	Web-service_testharness.html

