
Copyright©2021 Jade Software Corporation Limited. All rights reserved.

Encyclopaedia of Classes
Volume 3

 V E R S I O N 2020.0.02

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information
or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations
of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright © 2021 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the JADEReadme.txt file.

EncycloWin - 2020.0.02

Contents

Contents iii

Before You Begin xxi
Who Should Read this Encyclopaedia xxi
What's Included in this Encyclopaedia xxi
Related Documentation xxi
Conventions xxii

Chapter 2 Window Classes 23
Window Class 25

Window Class Constants 26
Window Properties 30
Window Methods 31

Form Class 34
Monitoring the Basic Operating Style of Forms 35
Floating, Docking, and Pinning MDI Child Forms 36
MDI Child Form Tabs 37
Form Class Constants 39
Form Properties 39
Form Methods 41
Form Events 42

Control Class 44
Testing Tools and Control Identification 45

Controls Saved in the JADE Painter 45
Controls Created by Runtime Logic 46
Internal Controls 46

Control Class Constants 47
Control Properties 48
Control Methods 49
Control Events 50
ActiveXControl Class 50

ActiveXControl Class Property 52
ActiveXControl Class Methods 52
ActiveXControl Class Event 53

BaseControl Class 53
BaseControl Properties 53
BaseControl Methods 54
BaseControl Events 54

BrowseButtons Class 55
BrowseButtons Class Constants 55
BrowseButtons Events 55

Button Class 56
Button Class Constants 57
Button Properties 57
Button Events 57

CheckBox Class 58
CheckBox Class Constants 59
CheckBox Properties 59
CheckBox Events 59

ComboBox Class 60
ComboBox Class Constants 62
ComboBox Properties 62
ComboBox Methods 64
ComboBox Events 64

Folder Class 66
Folder Class Constants 67
Folder Properties 68
Folder Methods 68

EncycloWin - 2020.0.02

Folder Events 69
Frame Class 69

Three-Dimensional Effects in Frame Controls 70
Frame Class Constants 71
Frame Properties 71
Frame Methods 72
Frame Events 72

GroupBox Class 73
GroupBox Properties 73
GroupBox Methods 74
GroupBox Events 74

JadeDockBar Class 74
JadeDockBar Class Constants 76
JadeDockBar Properties 76
JadeDockBar Events 77

JadeDockBase Class 77
JadeDockBase Class Constants 78
JadeDockBase Properties 78
JadeDockBase Methods 79
Floating a Docking Control 79
Docking a Control 81

JadeDockContainer Class 84
JadeDockContainer Property 85
JadeDockContainer Events 85

JadeDotNetVisualComponent Class 86
JadeDotNetVisualComponent Class Method 87

JadeEditMask Class 87
Right-Aligned or Left-Aligned Text Boxes 89
JadeEditMask Class Constants 91
JadeEditMask Properties 91
JadeEditMask Methods 91
JadeEditMask Events 92

JadeEditor Class 93
JadeEditor Methods 93
Using the JADE Editor 94

JadeMask Class 94
JadeMask Constants 96
JadeMask Properties 96
JadeMask Method 97
JadeMask Events 97

JadeRichText Class 98
JadeRichText Class Constants 98
JadeRichText Properties 100
JadeRichText Methods 101
JadeRichText Events 103
Using the JadeRichText Control Class 104

Fonts in JadeRichText Controls 104
Formatting and Selecting Text 105

Formatting Selected Characters 105
Formatting Paragraphs 105

Applying a Bullet to a Paragraph 105
URL Detection 105
Initializing the JadeRichText Control 106
Clipboard Operations 106
File Operations 107
Finding and Replacing Text 107
Printing Rich Text Control Contents 107
Scrolling JadeRichText Controls 107
Inserting Objects 107
Inserting Tables 107
Context Menu 108

Encyclopaedia of Classes
(Volume 3)

Contents iv

EncycloWin - 2020.0.02

Unsupported RTF Specification Features 108
JadeRichText Control Method Example 109

JadeTextEdit Class 112
JadeTextEdit Class Constants 116
JadeTextEdit Properties 122
JadeTextEdit Methods 124
JadeTextEdit Events 126
Using the JadeTextEdit Control 126

Contents of Text Edit Controls 127
Navigating Around the Text Editor 127

Using the Mouse within the Editor Text Area 127
Using the Mouse within the Line Number Margin 128
Using the Mouse within the Fold Margin 128
Using the Keyboard in the Text Editor 128

Coloring and Text Styling 130
Folding 130
Linemarks 131
Settings 132
Supported Languages 133
Unicode and ANSI Considerations 133

JadeXamlControl Class 134
JadeXamlControl Property 134
JadeXamlControl Methods 135
JadeXamlControl Events 135

Label Class 136
Label Class Constants 136
Label Properties 136
Label Method 137
Label Events 137

ListBox Class 138
Setting Properties for Individual Items in a List Box 139
Using a List Box to Display a Hierarchy or Tree 140
Copying Text from a List Box 141
Entering Characters to Find an Entry in a List Box 141
ListBox Class Constants 141
ListBox Properties 142
ListBox Methods 143
ListBox Events 144

MultiMedia Class 145
Using MultiMedia Controls 146
MultiMedia Device Types 147
MultiMedia File Types 147
MultiMedia Class Constants 147
MultiMedia Properties 148
MultiMedia Methods 148
MultiMedia Events 149

Ocx Class 150
Ocx Class Constants 151
Ocx Property 151
Ocx Methods 152
Ocx Events 152

OleControl Class 152
OleControl Class Constants 153
OleControl Properties 153
OleControl Methods 154
OleControl Events 154

OptionButton Class 155
OptionButton Class Constants 156
OptionButton Properties 156
OptionButton Events 156

Picture Class 157

Encyclopaedia of Classes
(Volume 3)

Contents v

EncycloWin - 2020.0.02

Picture Class Constants 157
Picture Properties 158
Picture Methods 158
Picture Events 159

ProgressBar Class 159
ProgressBar Properties 160
ProgressBar Method 160
ProgressBar Event 160

ScrollBar Class 160
ScrollBar Properties 161
ScrollBar Events 161

Sheet Class 162
Sheet Property 162
Sheet Methods 162

StatusLine Class 163
StatusLine Class Constants 164
StatusLine Properties 164
StatusLine Methods 165
StatusLine Events 165

Table Class 166
Directly Accessing Table Elements 169
Table Class Constants 170
Table Properties 171
Table Methods 173
Table Events 175

TextBox Class 176
TextBox Class Constants 179
TextBox Properties 179
TextBox Methods 180
TextBox Events 181
Value Round Trips through TextBox Controls 182

Number Round Trips 182
Currency Round Trips 183
Date Round Trips 183
Time Round Trips 184

WebHotSpot Class 184
WebHotSpot Method 184

WebHTML Class 184
WebHTML Properties 185

WebInsert Class 185
WebInsert Method 185

WebJavaApplet Class 185
WebJavaApplet Properties 186

Window, Form, and Control Properties 187
acceptTabs 187
accessedCell 187
accessedColumn 187
accessedRow 188
accessedSheet 188
accessMode 188
activation 189
activeColor 190
alignChildren 190
alignContainer 193
alignment 198
allowClose 201
allControlChildren 201
allMenuItems 201
allowDocking 201

Multiple Group Toolbar Example 203
Multiple Group Toolbar on a Non-MDI Form Example 205

Encyclopaedia of Classes
(Volume 3)

Contents vi

EncycloWin - 2020.0.02

Using Align All with Multiple Panes 206
allowDrag 207
allowInPlace 208
allowResize 208
alternatingRowBackColor 209
alternatingRowBackColorCount 210
appletName 210
automaticCellControl 211
autoSize 211
autoSpacingX 215
autoSpacingY 216
autoTab 216
autoURLDetect 217
backBrush 217
backBrushStyle 218
backColor 218
bevelColor 220
bevelInner 220
bevelInnerWidth 220
bevelOuter 221
bevelOuterWidth 221
bevelShadowColor 221
borderColorSingle 221
borderHeightBottom 222
borderHeightTop 222
borderStyle 222
borderWidthLeft 224
borderWidthRight 225
boundaryBrush 225
boundaryColor 225
boundaryWidth 225
bubbleHelp 226
bulletIndent 227
bulletStyle 227
buttonPicture 227
cachePictures 228
cancel 229
canHaveFocus 229
canPaste 230
canRedo 230
canUndo 230
caption 230
captionHeight 231
captionLeft 231
captionTop 232
captionWidth 232
case 232
cellControl 233
clientHeight 234
clientWidth 235
clipControls 235
code 236
codebase 236
column 236
columns 237
columnVisible 238
columnWidth 239
comboIndex 239
comboList 240
contextMenuOptions 240
controlBox 241

Encyclopaedia of Classes
(Volume 3)

Contents vii

EncycloWin - 2020.0.02

controlChildren 242
createRegionFromMask 242
currentColumn 243
currentLine 243
currentPosition 243
dataType 243
decimals 245
default 246
defaultLineHeight 246
defaultRowHeight 247
description 247
disabledForeColor 247
disableEvents 248
disableReason 248
displayAsIcon 248
displayHotKey 249
dragCursor 249
dragMode 249
drawGrip 250
dropDown 251
edgeColor 251
edgeColumn 251
edgeMode 251
editMask 252
enabled 252
endOfLineMode 253
expandedHeight 253
firstLineIndent 253
firstVisibleLine 254
fixed3D 254
fixedColumns 254
fixedRows 255
floatingStyle 255
focusBackColor 256
focusForeColor 257
foldFlags 259
foldSymbols 259
folding 260
fontBold 260
fontItalic 261
fontName 262
fontSize 262
fontStrikethru 263
fontUnderline 263
foreColor 264
form 265
formatOut 265
fullName 266
gridColor 267
gridLines 267
hasPictures 267
hasPlusMinus 268
hasTreeLines 269
height 270
helpContextId 271
helpKeyword 271
hintBackColor 273
hintForeColor 273
hintText 273
horizontalSpace 274
hyperlink 274

Encyclopaedia of Classes
(Volume 3)

Contents viii

EncycloWin - 2020.0.02

hyperlinkColumn 275
icon 275
ignoreHeight 276
ignoreSkin 276
ignoreWidth 276
indentGuides 276
indentWidth 277
index 277
initialContent 277
inputType 277
insertMode 280
integralHeight 281
itemBackColor 281
itemData 282
itemEnabled 282
itemExpanded 283
itemForeColor 284
itemLevel 284
itemObject 285
itemPicture 286
itemPictureType 286
itemSelected 287
itemText 287
language 288
languageId 289
largeChange 289
left 290
leftColumn 291
leftIndent 292
lineWidth 292
listIndex 292
listObject 293
listWidth 294
markerMargin 295
mask 295
max 299
maxButton 299
maximumHeight 300
maximumWidth 300
maxLength 301
mdiChild 302
mdiClientScrollHorzPos 303
mdiClientScrollVertPos 303
mdiFrame 304
mdiPinned 304
mediaData 304
mediaName 305
min 306
minButton 307
minimumHeight 307
minimumWidth 308
modalResult 309
modified 309
mouseCursor 309
mousePointer 310
multiSelect 311
name 312
nameSeparator 312
noPrefix 312
oleObject 313
parameters 313

Encyclopaedia of Classes
(Volume 3)

Contents ix

EncycloWin - 2020.0.02

parent 313
parentAspect 314
parentBottomOffset 317
parentRightOffset 318
partialTextIndication 318
partsDone 319
partsInJob 319
passwordField 320
picture 320
pictureClosed 322
pictureCount 323
pictureDisabled 323
pictureDown 323
pictureFocus 324
pictureFocusDown 324
pictureIndex 324
pictureLeaf 325
pictureMask 325
pictureMinus 325
pictureOpen 326
picturePlus 326
pictureRollOver 326
pictureRollUnder 326
position 327
promptCharacter 327
readOnly 328
relativeHeight 329
relativeLeft 330
relativeTop 331
relativeWidth 332
repeat 333
rightIndent 333
rotation 333
row 334
rowHeight 335
rows 335
rowVisible 336
scaleForm 336
scaleHeight 336
scaleLeft 337
scaleMode 337
scaleTop 338
scaleWidth 339
scrollBars 339
scrollHorizontal 340
scrollHorzPos 341
scrollVertical 342
scrollVertPos 342
secureForm 343
securityLevelEnabled 343
securityLevelVisible 343
selected 343
selectionStyle 344
selectMode 345
selBackColor 347
selFontBold 348
selFontItalic 348
selFontName 348
selFontSize 349
selFontStrikethru 349
selFontUnderline 349

Encyclopaedia of Classes
(Volume 3)

Contents x

EncycloWin - 2020.0.02

selFontUnderlineType 350
selForeColor 350
selLength 351
selLink 351
selStart 352
selText 352
selTextColor 352
selTextRTF 353
sheet 353
sheetCaption 354
sheets 355
sheetVisible 355
shortName 356
show3D 356
showFocus 357
showMdiCloseAllButPinnedMenu 357
showMdiCloseAllButThisMenu 358
showMdiCloseMenu 358
showMdiDockMenu 359
showMdiFloatMenu 359
showMdiPinMenu 360
showMenu 360
showMode 361
showName 361
showOpenMenu 361
showPlayBar 361
showPosition 362
showRecord 362
showResizeBar 362
showTaskBarProgress 362
sizeMode 363
skinCategoryName 363
smallChange 364
sortAsc 364
sortCased 365
sortColumn 366
sorted 367
sortType 367
speed 368
stretch 368
style 370
tabActiveColor 372
tabInactiveColor 374
tabIndex 375
tabKey 376
tabsAlignment 376
tabsFixedWidth 377
tabsHeight 377
tabsLines 377
tabsPosition 378
tabsRaggedRight 378
tabsStyle 379
tabStop 380
tabWidth 380
tag 380
targetDevice 381
text 381
textOffset 383
textRTF 383
textUser 383
thinClientUpdateInterval 384

Encyclopaedia of Classes
(Volume 3)

Contents xi

EncycloWin - 2020.0.02

timeFormat 384
timerPeriod 385
top 385
topIndex 386
topLevelMenuItems 386
topRow 386
topSheet 387
transparent 388
transparentColor 388
useDotNetVersion 389
usePresentationClient 390
userInputEnabled 390
userObject 391
userScript 391
useTabs 391
value 391
verticalSpace 392
viewEndOfLine 393
viewLineNumbers 393
viewWhitespace 393
visible 393
volume 394
wantReturn 394
webBrowserAutoRefreshInterval 395
webBrowserAutoRefreshURL 395
webBrowserDisableBackButton 395
webEncodingType 395
webFileName 396
webInputType 396
width 397
windowState 398
wordWrap 398
wrapIndent 399
wrapMode 400
wrapVisualFlags 400
xaml 401
zoom 401

Window, Form, and Control Methods 403
aboutBox 403
accessCell 403
accessColumn 404
accessRow 404
accessSheet 405
activeChild 405
addControl 405
addItem 407
addItemAt 408
addText 409
addWebEventMapping 409
allowWebPrinting 410
alwaysOnTop 410
animateWindow 410
append 412
applySettings 412
applyVerb 412
beginNotfiyAutomationEvent 413
bindKeyToCommand 413
bindKeyToNotification 414
bindKeyToText 415
callMethod 416
canBeChildOf 417

Encyclopaedia of Classes
(Volume 3)

Contents xii

EncycloWin - 2020.0.02

canControlHaveChildren 417
canEject 417
canHaveAsChild 418
canPaste_ 418
canPlay 418
canRecord 418
canSave 418
captureMouse 419
centreWindow 419
changeKeywords 419
clear 420
clearAllSelected 421
clearAllStyles 422
clearHTML 422
clearUndoBuffer 422
clearWebEventMappings 422
clientHeight 422
clientWidth 423
cloneSelf 423
close 423
closeDropDown 423
colorAs6Hex 424
configureFor_Jade 424
configureFor_Text 425
controlCount 426
controlNamePrefix 426
controls 427
convertEndOfLines 428
convertFormPosition 428
convertIndentWhitespace 428
copyDefaultToAllStyles 428
copyToClipboard 429
cutToClipboard 429
create 429
createEventNameMap 430
createPicture 430
createPictureAsType 431
createPictureIndirect 432
currentMaskColor 433
delete 434
deleteColumn 434
deleteRow 435
deleteSheet 435
discard 435
displayCollection 435
dockMdi 439
doLinemarker 439
doWindowEvents 443
dragColumn 444
dragListIndex 445
dragRow 445
dragSheet 445
eject 446
embedFromClass 446
embedFromFile 446
emptyUndoBuffer 446
enableEvent 447
endNotifyAutomationEvent 447
ensureCaptionIsVisible 448
eventItemName 448
find 449

Encyclopaedia of Classes
(Volume 3)

Contents xiii

EncycloWin - 2020.0.02

findAgain 451
findMarkAll 451
findObject 452
findReplaceDialog 453
findString 453
findStringCaseSensitive 454
findStringExact 454
findStringExactCaseSensitive 455
firstVisibleLine 455
flagControlForSave 455
float 456
floatMdi 456
generateHTML 457
generateHTMLStatic 458
getCellFromPosition 459
getCellSelected 459
getCellText 459
getCharacterFormat 459
getClipBuffer 460
getCollection 460
getControl 461
getControlByName 461
getControlWindowId 461
getCoordinates 462
getDeskTopWorkArea 462
getEndPosition 462
getFloatingPosition 463
getFormLeft 463
getFormTop 463
getControlByName 463
getFormParent 464
getGlobalSettings 464
getHwnd 464
getInterface 464
getLanguageName 464
getLength 465
getLine 465
getLineFromCharacterIndex 466
getLineHeight 466
getLineStartPosition 466
getLineText 467
getLinemarkLines 467
getListIndex 467
getListIndexText 468
getMdiFrame 468
getMode 468
getMonitorArea 469
getMonitorWorkArea 469
getNamedAttribute 470
getParagraphFormat 470
getPersistentObject 471
getPropertyDisplay 471
getRedoAndUndoState 472
getRegisteredFormKeys 472
getRegisteredKeys 473
getScrollRange 473
getStartPosition 474
getSystemColor 475
getSystemMetrics 475
getTabStops 475
getTextAsDate 475

Encyclopaedia of Classes
(Volume 3)

Contents xiv

EncycloWin - 2020.0.02

getTextAsCurrencyDecimal 476
getTextAsCurrencyReal 477
getTextAsDecimal 477
getTextAsInteger 478
getTextAsInteger64 479
getTextAsLongDate 480
getTextAsReal 480
getTextAsShortDate 481
getTextAsTime 481
getTextExtent 482
getTextHeight 483
getTextHeightForWidth 483
getTextLength 483
getTextProtection 484
getTextRange 484
getToggleKeyStates 484
getUserName 484
getValue 485
getWebEventMappings 486
getWindowHandle 486
getWordAt 486
hasAudio 487
hasPicture 487
hasPropertyPage 487
hasSystemTrayEntry 487
hasVideo 488
hwnd 488
initializeAppSettings 488
initializeJadeEditor 488
insertColumn 489
insertObject 489
insertObjectDialog 490
insertTable 490
is3D 490
isCaptionVisible 490
isDroppedDown 491
isEmpty 491
isEventEnabled 491
isFloating 491
isHyperlinkSet 491
isInPainter 492
isMdiFloating 492
isModal 492
isMoveable 492
isMySheetVisible 492
isObjectOpen 493
isPrinterForm 493
isSelectable 493
isSizeable 494
isValid 494
itemFullName 494
itemHasSubItems 494
itemVisible 495
lineCount 495
lines 495
linkFromFile 495
listCollection 496
listCount 498
load 499
loadCollectionEntries 499
loadControl 500

Encyclopaedia of Classes
(Volume 3)

Contents xv

EncycloWin - 2020.0.02

loadFile 500
loadFromDB 500
loadFromFile 501
loadPicture 502
loadTextFromFile 502
makeAutomationObject 502
makePicture 503
menuItemCount 503
menuItems 503
move 504
moveCaret 504
moveColumn 505
moveMdiClient 506
moveRow 506
newFile 507
newIndex 507
objectPropertiesDialog 508
objectType 508
ocxClassName 509
openDialog 509
pageMargins 509
paintIfRequired 509
pasteFromClipboard 510
paste_ 510
pause 510
pictureHeight 511
pictureType 511

Supported Picture Image Formats 511
pictureWidth 512
play 512
playFromTo 513
playReverse 514
popupMenu 514
positionCollection 516
positionLeft 516
positionTop 517
print 517
processInputFromWeb 518
record 518
recordReplay 518
redo 519
refresh 519
refreshEntries 520
refreshNow 521
registerFormKeys 522
registerKeys 523
registerWindowMsg 524
releaseMouse 525
removeItem 525
removeSystemTrayEntry 526
removeWebEventMapping 526
replace 526
replaceAll 528
replyAsBinary 529
resetAllHyperlinks 529
resetFirstChange 529
resetHyperlinkCell 530
resort 531
restyleText 531
resume 532
rgb 532

Encyclopaedia of Classes
(Volume 3)

Contents xvi

EncycloWin - 2020.0.02

save 532
saveInFile 533
savePicture 533
saveProperties 533
saveTextToFile 534
screenToWindow 534
selectedCount 534
selectedNext 535
selectAll 535
sendString 535
setApplicationSkin 536
setBackDrop 536
setCellSelected 537
setCellText 537
setCharacterFormat 538
setClipBuffer 539
setCollectionObject 539
setCurrentSchema 540
setDefaultPainterControlProperties 540
setDragAndDropFiles 540
setEventMapping 542
setEventMappingEx 543
setFocus 543
setFontProperties 544
setFormSkin 545
setFormParent 545
setHyperlinkCell 546
setIndicatorAttributes 546
setLinemarkAttributes 547
setLinemarkLines 548
setNamedAttribute 548
setOneColorText 550
setParagraphFormat 550
setPicture 551
setScrollRange 551
setSkin 552
setStyleAttributes 552
setSystemTrayEntry 554
setTabStops 555
setTaskBarProgress 555
setTaskBarState 555
setTextFromCurrencyDecimal 556
setTextFromCurrencyReal 557
setTextFromDate 557
setTextFromDecimal 558
setTextFromInteger 559
setTextFromInteger64 560
setTextFromLongDate 560
setTextFromReal 561
setTextFromShortDate 561
setTextFromTime 562
setTextProtection 562
setTextRangeToStyle 563
setValue 564
setWordCharactersets 565
setXamlEventMethod 566
shareDocumentFrom 566
sheets 567
show 567
showDropDown 568
showHelp 568

Encyclopaedia of Classes
(Volume 3)

Contents xvii

EncycloWin - 2020.0.02

showInsertForm 569
showModal 570
showMySheet 571
showPropertyPage 571
stepRelative 572
startDrawingCapture 573
stop 573
stopDrawingCapture 573
tabNext 574
tabPrior 574
undo 574
unloadForm 574
update 575
updateAppSettings 575
useImage 576
usesFiles 576
windowToScreen 576
writeHTML 577
zOrder 577

Window, Form, and Control Events 579
Windows Events and JADE Events 580
activate 582
browse 583
cellInputReady 583
change 584
click 584
closeup 586
contextMenu 586
dblClick 588
deactivate 588
displayEntry 589
displayRow 590
docked 593
dragDrop 593
dragOver 594
dropDown 594
firstChange 595
floated 596
formMove 596
gotFocus 597
keyDown 597
keyPress 598
keyUp 599
linkClicked 600
load 601
lostFocus 601
mdiDocked 602
mdiFloated 602
mouseDown 602
mouseEnter 603
mouseHover 604
mouseLeave 605
mouseMove 605
mouseUp 606
notifyMedia 607
notifyMode 608
notifyPosition 608
openup 608
paint 609
pictureClick 609
pictureDblClick 610

Encyclopaedia of Classes
(Volume 3)

Contents xviii

EncycloWin - 2020.0.02

protected 611
queryColumnMove 611
queryDock 612
queryRowColChg 613
queryRowMove 613
querySheetChg 614
queryUnload 614
resize 615
resizeColumn 616
resizeRow 616
rowColumnChg 616
scrolled 617
selChanged 617
sheetChg 617
sysNotify 618

eventType 619
theObject 619
eventTag 619

trayIconClicked 619
unload 620
updated 620
userNotify 620

eventType 621
theObject 622
eventTag 622
userInfo 622

userResize 622
validate 622
windowCreated 623

Graphics Properties and Methods 624
Graphics Properties 625

autoRedraw 625
drawFillColor 627
drawFillStyle 627
drawFontBold 631
drawFontItalic 631
drawFontName 632
drawFontSize 632
drawFontStrikethru 632
drawFontUnderline 633
drawMode 633
drawStyle 634
drawTextAlign 635
drawTextCharRotation 635
drawTextRotation 635
drawWidth 636
drawWindow 636

Graphics Methods 637
beginBatchDrawing 638
clearGraphics 638
drawArc 638
drawChord 639
drawDeskTopRectangle 640
drawDeskTopRectangleEx 642
drawEllipse 644
drawFilledPolygon 644
drawFilledRectangle 645
drawFloodFill 646
drawGrid 646
drawLine 647
drawPictureAt 648

Encyclopaedia of Classes
(Volume 3)

Contents xix

EncycloWin - 2020.0.02

drawPictureIn 649
drawPie 649
drawPoint 650
drawPolygon 650
drawRectangle 651
drawRoundRectangle 652
drawSize 652
drawSolidRectangle 652
drawTextAt 653
drawTextHeight 654
drawTextIn 654
drawTextWidth 655
drawUndo 655
endBatchDrawing 656
getPoint 656

Encyclopaedia of Classes
(Volume 3)

Contents xx

EncycloWin - 2020.0.02

Before You Begin

The JADE Encyclopaedia of Classes is intended as a major source of information when you are developing or
maintaining JADE applications.

Who Should Read this Encyclopaedia
The main audience for the JADE Encyclopaedia of Classes is expected to be developers of JADE application
software products.

What's Included in this Encyclopaedia
The JADE Encyclopaedia of Classes has two chapters, and is divided into three volumes.

Chapter 1 Gives a reference to system classes, and the constants, properties, and methods that they
provide

Chapter 2 Gives a reference to Window classes, and the constants, properties, methods, and events that
they provide

Note that this third volume contains Chapter 2 only. Chapter 1 is divided into two volumes: Volume 1 (that is,
EncycloSys1.pdf) contains system (non-GUI) classes in the range ActiveXAutomation class through JadeSkin
class, inclusive, and Volume 2 (that is, EncycloSys2.pdf) contains system (non-GUI) classes in the range
JadeSkinApplication class through WebSession class, inclusive.

Related Documentation
Other documents that are referred to in this encyclopaedia, or that may be helpful, are listed in the following table,
with an indication of the JADE operation or tasks to which they relate.

Title Related to…

JADE Database Administration Guide Administering JADE databases

JADE Development Environment
Administration Guide

Administering JADE development environments

JADE Development Environment User’s Guide Using the JADE development environment

JADE Encyclopaedia of Primitive Types Primitive types and global constants

JADE Installation and Configuration Guide Installing and configuring JADE

JADE Initialization File Reference Maintaining JADE initialization file parameter values

JADE Object Manager Guide JADE Object Manager administration

JADE Platform Differences Guide Platform differences when running JADE applications

JADE Synchronized Database Service (SDS)
Administration Guide

Administering JADE Synchronized Database Services (SDS),
including Relational Population Services (RPS)

EncycloWin - 2020.0.02

Conventions
The JADE Encyclopaedia of Classes uses consistent typographic conventions throughout.

Convention Description

Arrow bullet () Step-by-step procedures. You can complete procedural instructions by using either
the mouse or the keyboard.

Bold Items that must be typed exactly as shown. For example, if instructed to type foreach,
type all the bold characters exactly as they are printed.

File, class, primitive type, method, and property names, menu commands, and dialog
controls are also shown in bold type, as well as literal values stored, tested for, and
sent by JADE instructions.

Italic Parameter values or placeholders for information that must be provided; for example,
if instructed to enter class-name, type the actual name of the class instead of the word
or words shown in italic type.

Italic type also signals a new term. An explanation accompanies the italicized type.

Document titles and status and error messages are also shown in italic type.

Blue text Enables you to click anywhere on the cross-reference text (the cursor symbol
changes from an open hand to a hand with the index finger extended) to take you
straight to that topic. For example, click on the "borderStyle" cross-reference to
display that topic.

Bracket symbols ([]) Indicate optional items.

Vertical bar (|) Separates alternative items.

Monospaced font Syntax, code examples, and error and status message text.

ALL CAPITALS Directory names, commands, and acronyms.

Small font Keyboard shortcut keys.

Key combinations and key sequences appear as follows.

Convention Description

Key1+Key2 Press and hold down the first key and then press the second key. For example, "press
Shift+F2" means to press and hold down the Shift key and press the F2 key. Then
release both keys.

Key1,Key2 Press and release the first key, then press and release the second key. For example,
"press Alt+F,X" means to hold down the Alt key, press the F key, and then release both
keys before pressing and releasing the X key.

Encyclopaedia of Classes
(Volume 3)

Before You Begin xxii

EncycloWin - 2020.0.02

Chapter 2 Window Classes

This chapter covers the following topics.

Window Class

Form Class

Control Class

ActiveXControl Class

BaseControl Class

BrowseButtons Class

Button Class

CheckBox Class

ComboBox Class

Folder Class

Frame Class

GroupBox Class

– Sheet Class

JadeDockBase Class

– JadeDockBar Class

– JadeDockContainer Class

JadeDotNetVisualComponent Class

JadeEditMask Class

JadeRichText Class

JadeTextEdit Class

– JadeEditor Class

JadeXamlControl Class

Label Class

– ProgressBar Class

– WebHotSpot Class

– WebInsert Class

– WebJavaApplet Class

ListBox Class

MultiMedia Class

Encyclopaedia of Classes
(Volume 3)

Chapter 2 24

EncycloWin - 2020.0.02

Ocx Class

OleControl Class

OptionButton Class

Picture Class

– JadeMask Class

ScrollBar Class

StatusLine Class

Table Class

TextBox Class

– WebHTML Class

Window, Form, and Control Properties

Window, Form, and Control Methods

Window, Form, and Control Events

Graphics Properties and Methods

For details about JADE system (non-GUI) classes, see Chapter 1, "System Classes", in Volume 1 and Volume 2.

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 25

EncycloWin - 2020.0.02

Window Class
The Window class is the abstract superclass of all Form and Control classes. The Window class provides
properties and methods that apply to all forms and controls; for example, all graphical properties and methods are
defined at the Window class level and therefore apply to any form or control. You cannot add a subclass to the
Window class.

The backColor and borderStyle properties may have no effect in certain controls but are defined for internal
reasons; for example, showing three-dimensional effects. For example, the borderStyle property has no meaning
for a scroll bar control, as that control always has a border.

A local variable can be described as a window in logic and access all properties and methods of the Window
class.

Note Window, Form, and Control methods and events cannot be invoked from a server method.

JADE supports mouse wheel requests, as follows.

1. If the window under the mouse has a vertical scroll bar, the mouse wheel request is treated the same as a
scroll bar line up or line down, depending on the way that the wheel is turned (that is, the scroll wheel is
treated the same as clicking on the up or down arrow of the scroll bar).

2. If the window under the mouse has no vertical scroll bar but has a horizontal scroll bar, the mouse wheel
request is treated the same as a scroll bar line left or line right, depending on the way that the wheel is
turned (that is, the scroll wheel is treated the same as clicking on the left or right arrow of the scroll bar).

3. If the window under the mouse does not have scroll bars, the window that has focus or the first parent of that
window with a scroll bar is scrolled.

If the window has a vertical scroll bar, the mouse wheel request is treated the same as a scroll bar line up or
line down, depending on the way that the wheel is turned. If the window (or its parent) has no vertical scroll
bar but has a horizontal scroll bar, the mouse wheel request is treated the same as a scroll bar line left or
line right, depending on the way that the wheel is turned.

When a control receives focus and it is not within the visible region of a container (or containers) control that has
scroll bars (for example, a BaseControl or Picture control), the container is automatically scrolled to bring the
control into view. The scroll events for the container (or containers) are also called for this process. The position of
children within a ListBox, Table, or TextBox control remains absolute and is not affected by any scrolling within
those controls.

The automatic scrolling of a control into view does not occur if the focus is received as result of a mouse click (that
is, if the window is only partially visible, clicking on it does not cause the window to move to show more of the
window).

When multiple monitors are running on one workstation, the following points apply. (For details about terminating
GUI applications with no visible forms when running multiple desktops, see "Showing an Invisible Form", in
Chapter 1 of the JADE Runtime Application Guide.)

JADE handles only the first nine monitors running on one workstation. Additional monitors are ignored.

The Window::getDeskTopWorkArea method returns the available desktop area of the primary monitor.

When a form is created, it is created in the monitor area of the control with the current focus. If no control has
focus, the form is created in the same monitor as the mouse.

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 26

EncycloWin - 2020.0.02

If the control that has focus spans multiple monitors, the monitor containing the greater area of the control
that has focus is used. If the window does not fall within the bounds of any monitor, the primary monitor is
used.

By default, Microsoft Windows displays a message box on the monitor where the application last had focus.

The Form::centreWindow method centers a non-MDI form within the monitor on which the form resides. An
MDI child form continues to be centered within the client area of its parent MDI frame.

The Window::getMonitorArea method returns the full area of the current monitor on which the window
resides and the Window::getMonitorWorkArea method returns the position of the available desktop area of
the monitor on which the window resides.

When a form is saved in the JADE Painter, the values of the left and top properties are converted to be
relative to the top and left positions of the primary monitor.

Note For the arrays associated with control and menu item children (for example, the Window class
allControlChildren and MenuItem class children properties), the only methods that are implemented are at
(which allows the use of square brackets to access the elements), createIterator (which allows logic to do a
foreach over the array), size, and size64.

For a summary of the constants, properties, and methods defined in the Window class, see "Window Class
Constants", "Window Properties", and "Window Methods", in the following subsections. For details about the
graphics properties and methods defined in the Window class, see "Graphics Properties and Methods", later in
this document.

For details of system classes and their associated constants, properties, methods, and events, see "System
Classes", in Chapter 1. For details about primitive types and their associated methods, see "Primitive Types", in
Chapter 1 of the JADE Encyclopaedia of Primitive Types.

Inherits From: Object

Inherited By: Control, Form

Window Class Constants
The constants provided by the Window class are listed in the following table.

Constant Value Constant Value

AllowDocking_All #7f AllowDocking_AllHorizontal #10

AllowDocking_AllVertical #20 AllowDocking_AnyEdge #f

AllowDocking_Bottom #2 AllowDocking_Inside #40

AllowDocking_Left #4 AllowDocking_None 0

AllowDocking_Right #8 AllowDocking_Top #1

AnimateWindow_Flags_Activate #20000 AnimateWindow_Flags_Blend #80000

AnimateWindow_Flags_
BottomToTop

#8 AnimateWindow_Flags_Center #10

AnimateWindow_Flags_LeftToRight #1 AnimateWindow_Flags_RightToLeft #2

AnimateWindow_Flags_Slide #40000 AnimateWindow_Flags_
TopToBottom

#4

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 27

EncycloWin - 2020.0.02

Constant Value Constant Value

BackBrushStyle_Tile 0 BackBrushStyle_Stretch 1

BackBrushStyle_Center 2 BackBrushStyle_StretchProport 3

BorderStyle_Double 3 BorderStyle_None 0

BorderStyle_Single 1 BorderStyle_Sizable 2

Color_3DDkShadow 21 Color_3DFace 15

Color_3DHighlight 20 Color_3DLight 22

Color_3DShadow 16 Color_ActiverBorder 10

Color_ActiveCaption 2 Color_AppWorkspace 12

Color_Background 1 Color_BtnFace 15

Color_BtnHighlight 20 Color_BtnShadow 16

Color_BtnText 18 Color_CaptionText 9

Color_DeskTop 1 Color_GrayText 17

Color_Highlight 13 Color_HighlightText 14

Color_InactiveBorder 11 Color_InactiveCaption 3

Color_InactiveCaptionText 19 Color_InfoBk 24

Color_InfoText 23 Color_Menu 4

Color_MenuText 7 Color_Scrollbar 0

Color_Window 5 Color_WindowFrame 6

Color_WindowText 8 DragMode_Drag 1

DragMode_Drop 2 DragMode_None 0

DragOver_Continue 1 DragOver_Enter 0

DragOver_Leave 2 DrawFillStyle_4DotDiamond53 32

DrawFillStyle_4DotDiamond55 24 DrawFillStyle_4DotDiamond95 16

DrawFillStyle_4DotDiamond99 8 DrawFillStyle_8DotDiamond55 40

DrawFillStyle_8DotDiamond99 30 DrawFillStyle_AltSquares2 31

DrawFillStyle_AltSquares4 39 DrawFillStyle_Balls 55

DrawFillStyle_Checkered 25 DrawFillStyle_Cross 6

DrawFillStyle_Cross55 15 DrawFillStyle_Cross99 23

DrawFillStyle_DbleDownDiag 34 DrawFillStyle_DbleHorzLine 51

DrawFillStyle_DbleUpDiagonal 26 DrawFillStyle_DbleVertLine 43

DrawFillStyle_DiagonalCross 7 DrawFillStyle_DiagonalHatch 47

DrawFillStyle_DottedCross 22 DrawFillStyle_DownDiagonal 5

DrawFillStyle_DownDiagonal4 18 DrawFillStyle_DownRectangle 29

DrawFillStyle_EveryOther 9 DrawFillStyle_FilledDiamond 17

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 28

EncycloWin - 2020.0.02

Constant Value Constant Value

DrawFillStyle_HalfDownDiagonal 20 DrawFillStyle_HalfUpDiagonal 12

DrawFillStyle_HorzDash 28 DrawFillStyle_HorzLine 2

DrawFillStyle_HorzLine2 35 DrawFillStyle_HorzLine4 19

DrawFillStyle_HorzRectangle 37 DrawFillStyle_HorzWaves3 21

DrawFillStyle_HorzWaves4 13 DrawFillStyle_Interlocked 45

DrawFillStyle_InvertedCross 48 DrawFillStyle_PatchworkSquares 52

DrawFillStyle_Rev4DotDiamond55 33 DrawFillStyle_Rev4DotDiamond95 41

DrawFillStyle_Rev4DotDiamond99 49 DrawFillStyle_ReverseHorzDash 46

DrawFillStyle_ShinyBalls 54 DrawFillStyle_Solid 0

DrawFillStyle_Speckled 44 DrawFillStyle_Tartan 53

DrawFillStyle_Transparent 1 DrawFillStyle_Triangles 14

DrawFillStyle_TripleDownDiag 42 DrawFillStyle_TripleUpDiagonal 50

DrawFillStyle_UpDiagonal 4 DrawFillStyle_UpDiagonal4 10

DrawFillStyle_UpKeyShape 38 DrawFillStyle_VertDash 36

DrawFillStyle_VertLine 3 DrawFillStyle_VertLine2 27

DrawFillStyle_VertLine4 11 DrawGrid_Crosses 1

DrawGrid_Dots 2 DrawGrid_Lines 0

DrawMode_Black 1 DrawMode_Copy 13

DrawMode_Invert 6 DrawMode_MaskNotPen 3

DrawMode_MaskPen 9 DrawMode_MaskPenNot 5

DrawMode_MergeNotPen 12 DrawMode_MergePen 15

DrawMode_MergePenNot 14 DrawMode_Nop 11

DrawMode_NotCopyPen 4 DrawMode_NotMaskPen 8

DrawMode_NotMergePen 2 DrawMode_NotXorPen 10

DrawMode_White 16 DrawMode_Xor 7

DrawStyle_Dash 1 DrawStyle_DashDot 3

DrawStyle_DashDotDot 4 DrawStyle_Dot 2

DrawStyle_InsideSolid 6 DrawStyle_Solid 0

DrawStyle_Transparent 5 DrawTextAlign_Center 2

DrawTextAlign_Left 0 DrawTextAlign_Right 1

KeyState_Alt #4 KeyState_Ctrl #2

KeyState_Shift #1 MouseButton_Left 1

MouseButton_Middle 3 MouseButton_None 0

MouseButton_Right 2 MousePointer_Arrow 1

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 29

EncycloWin - 2020.0.02

Constant Value Constant Value

MousePointer_Cross 2 MousePointer_Cursor 4

MousePointer_Default 0 MousePointer_Drag 13

MousePointer_HandPointing 16 MousePointer_HorizontalLine 14

MousePointer_HourGlass 11 MousePointer_IBeam 3

MousePointer_NESW 6 MousePointer_NS 7

MousePointer_NWSE 8 MousePointer_NoDrop 12

MousePointer_Size 5 MousePointer_UpArrow 10

MousePointer_VerticalLine 15 MousePointer_WE 9

PictureType_Bitmap 1 PictureType_Cursor 5

PictureType_Gif 9 PictureType_Icon 3

PictureType_Jpeg 7 PictureType_Jpeg2000 10

PictureType_MetaFile 4 PictureType_None 0

PictureType_Png 8 PictureType_Tiff 6

RegisterKeys_Alt #80000000 RegisterKeys_Ctrl #40000000

RegisterKeys_Shift #20000000 SM_DBCSEnabled 42

SM_Debug 22 SM_MenuDropAlignment 40

SM_MousePresent 19 SM_PenWindows 41

SM_SwapButton 23 SM_cxBorder 5

SM_cxCursor 13 SM_cxDlgFrame 7

SM_cxDoubleClk 36 SM_cxFrame 32

SM_cxFullScreen 16 SM_cxHScroll 21

SM_cxHThumb 10 SM_cxIcon 11

SM_cxIconSpacing 38 SM_cxMin 28

SM_cxMinTrack 34 SM_cxScreen 0

SM_cxSize 30 SM_cxVScroll 2

SM_cyBorder 6 SM_cyCaption 4

SM_cyCursor 14 SM_cyDlgFrame 8

SM_cyDoubleClk 37 SM_cyFrame 33

SM_cyFullScreen 17 SM_cyHScroll 3

SM_cyIcon 12 SM_cyIconSpacing 39

SM_cyKanjiWindow 18 SM_cyMenu 15

SM_cyMin 29 SM_cyMinTrack 35

SM_cyScreen 1 SM_cySize 31

SM_cyVScroll 20 SM_cyVThumb 9

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 30

EncycloWin - 2020.0.02

Constant Value Constant Value

ScaleMode_Pixels 0 ScaleMode_Point 3

ScaleMode_Twip 2 ScaleMode_User 1

ScrollBar_Horizontal 1 ScrollBars_HorzPermanentVert 7

ScrollBars_PermanentBoth 6 ScrollBars_PermanentHorizontal 4

ScrollBars_PermanentVertical 5 ScrollBars_VertPermanentHorz 8

ScrollBar_Vertical 2 ScrollBars_Both 3

ScrollBars_Horizontal 1 ScrollBars_None 0

ScrollBars_Vertical 2 WebPageColumnWidth 10

WebPageRowHeight 25

For details about the system metrics (SM_) constants, see Win32 C++ online help.

Window Properties
The properties defined in the Window class are summarized in the following table.

Property Description

allControlChildren Contains an array of all controls contained in the window

backBrushStyle Specifies the way in which the Control class and Form class backBrush property
images are displayed

backColor Contains the background color of a window

borderStyle Contains the border style for a window

bubbleHelp Contains the text that can be displayed as bubble help

controlChildren Contains an array of the immediate children of the window

description Contains a textual description of the object of the window

disableEvents Specifies whether all events associated with a form or control are currently disabled

disableReason Contains the reason the control or menu is disabled

dragCursor Contains a specific cursor image for display during the drag process

dragMode Contains the drag mode for a form or control

enabled Specifies whether the object can respond to user-generated events

height Contains the height of an object

helpContextId Contains an associated context number for an object

helpKeyword Contains the text used to access the help file

ignoreSkin Specifies whether the window uses a skin

left Contains the distance between the internal left edge of an object and the left edge
of the client area of the container

mouseCursor Contains a cursor that is not provided by the system

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 31

EncycloWin - 2020.0.02

Property Description

mousePointer Contains the type of mouse pointer that is displayed

name Contains an application, form, control, or menu item object

scaleHeight Contains the number of units for the internal vertical measurement of an object

scaleLeft Contains the horizontal coordinates for the left edge of an object

scaleMode Contains the unit of measurement for coordinates of an object

scaleTop Contains the vertical coordinates for the top edges of an object

scaleWidth Contains the number of units for the internal horizontal measurement of an object

securityLevelEnabled Specifies whether the form, control, or menu is automatically disabled

securityLevelVisible Specifies whether the form, control, or menu is automatically made invisible

skinCategoryName Contains the name of the skin category

tag Contains a data value for the form or control

top Contains the distance between the internal top edge of an object and the top edge
of the client area

userObject Contains an object to associate with any form or control object

userScript Contains scripts that are included as part of the HTML generation

visible Specifies whether an object is visible or hidden

width Contains the width of an object

For details, see "Window, Form, and Control Properties", later in this document. See also the graphics properties
defined in the Window class, under "Graphics Properties and Methods", later in this document.

Window Methods
The methods defined in the Window class are summarized in the following table.

Method Description

aboutBox Calls the About box for the window

addWebEventMapping Adds functions to be invoked when a specified Web event occurs

animateWindow Enables special effects when showing or hiding a form or control

captureMouse Sets the mouse capture to the specified window

centreWindow Centers the window that is being opened

clearWebEventMappings Removes all Web event mappings for a specified window

controlNamePrefix Prototype method that you can reimplement to prefix your own control
names

createPicture Creates a picture for the form or control

createPictureAsType Creates a picture with the specified image type for the form or control

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 32

EncycloWin - 2020.0.02

Method Description

doWindowEvents Processes all pending Window events for this window and all its
children

enableEvent Provides control at run time of JADE logic execution of events
associated with forms or controls

getDeskTopWorkArea Returns the work area of the desktop

getHwnd Returns the Microsoft Windows handle for a form or control

getMonitorArea Returns the full area of the current monitor on which the window
resides

getMonitorWorkArea Returns the position of the available desktop area of the monitor on
which the window resides

getPersistentObject Returns a reference to the persistent object corresponding to the
receiver

getPropertyDisplay Returns the text displayed by the Painter’s Properties dialog for the
property

getSystemColor Returns a Windows system color

getSystemMetrics Returns a Windows metrics value

getTextExtent Returns the length required to display a text string

getTextHeight Returns the height required to display a text string

getTextHeightForWidth Returns the height of the text string in pixels as it would be displayed
when word wrapped within a rectangle of the specified width using the
font of the window

getWebEventMappings Returns all of the Web event mappings for a specified window

getWindowHandle Returns the Microsoft Windows handle as a MemoryAddress for a form
or control

hasPropertyPage Returns whether the window has its own property page dialog

hwnd Returns the Windows handle to a form or control

isEventEnabled Returns whether the specified event is currently enabled for the
window

move Enables logic to move and size a form or control from a single method
call

refresh Forces a repaint of a form or control

refreshNow Forces an immediate repaint or update of a form or control

releaseMouse Releases the mouse capture from a window

removeWebEventMapping Removes the specified Web event mapping for a specified window

screenToWindow Converts an absolute screen position into a position relative to the
window

setDefaultPainterControlProperties Called by the JADE Painter when a new control is created
(re-implement the method on the Control class or subclass to set any
user default properties)

Encyclopaedia of Classes
(Volume 3)

Window Class Chapter 2 33

EncycloWin - 2020.0.02

Method Description

setDragAndDropFiles Enables files and folders to be dragged and dropped onto a form or
control

setEventMapping Enables the method to be dynamically set at run time

setEventMappingEx Enables the method to be dynamically set at run time

setFocus Sets the focus to a window

showHelp Invokes Window’s help if the helpKeyword or helpContextId
properties of the object are set

showPropertyPage Displays the property page dialog for the window

windowToScreen Converts a position relative to the window into an absolute position on
the screen

zOrder Places a form or control at the front or back of the z-order within its
graphical level

For details, see "Window, Form, and Control Methods", later in this document. See also the graphics methods
defined in the Window class, under "Graphics Properties and Methods", later in this document.

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 34

EncycloWin - 2020.0.02

Form Class
A form is a window that acts as a container for controls that display information and that permit user input. As the
Form class is a subclass of the Window class, it inherits all of the properties and methods defined in that class. A
form can be one of the following types.

Standalone form

MDI frame that can contain other forms

MDI child form owned by an MDI frame (the default)

An MDI form without a caption can always be maximized programmatically. However, if the user switches between
MDI children (for example, by using the CTRL+F6 key combination), the next form is displayed in a maximized
state only if the value of the maxButton property for that form is true. This property is used for this situation even if
the value of the controlBox property is false, meaning that none of the MDI buttons or the control icon are
displayed on the menu line.

Forms have properties that determine aspects of their appearance (for example, position, size, and color), and
aspects of their behavior (for example, whether they can be resized). Forms can also respond to events initiated
by the user or triggered by the system. For example, you could write logic in the click event method of a form that
would enable the user to change the color of a form by clicking it. (For details about creating forms when a
workstation has multiple monitors, see "Window Class", earlier in this document.)

In addition to properties and events, you can use methods to manipulate forms from logic. For example, you can
use the move method of the Window class to change the location of a form or control. This effectively changes
more than one of the left, top, width, or height properties of the form or control. As each change causes the control
to resize, potentially each control resizes each time the properties are set (or the control is aligned to the form or
control if the window is a container of other controls). The move method ensures that one resize only occurs. For
example, if you individually change the left, top, width, or height properties for a folder, the folder resizes four
times. It then resizes the sheets four times, which can resize the contents, and so on.

If a form has the mdiFrame property set to true, that form is automatically created as an MDI frame; that is, a
special kind of form that can contain other forms (MDI child forms). If a form has the mdiChild property set to true,
that form is automatically placed in a special kind of form called an MDI frame that can contain these MDI child
forms.

New instances of a form can be created in logic by using the create method, and then displayed by using the
show method or the showModal method, as shown in the following example.

vars
form : InquiryForm; // declare the form to be of type InquiryForm

begin
create form; // create the form window
form.show; // display the window

end;

The show method or the showModal method causes the windows to be made visible. Using the showModal
method causes all other forms of that application to be disabled until that form is unloaded. Execution of the
showModal method completes only when the form is unloaded, or made invisible. The show method is invoked
and starts execution before the load event method is invoked.

Within the show method, it is the presence of an inheritMethod call that causes the load event method to be
invoked. Consequently, any user logic positioned prior to the inheritMethod call is executed before the load event
method executes.

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 35

EncycloWin - 2020.0.02

The load event of a form is executed when the first event for the form occurs. This is normally when the initial show
or showModal statements are executed. This delayed execution of the form load event means that logic can set
and alter properties and controls on the created form before the load event is executed.

Set the borderStyle property to define the border of a form, and set the caption property to put text in the title bar.
Setting the borderStyle property to BorderStyle_None removes the border (if the form does not have a menu). If
you want your form to have a border without the title bar, Control-Menu, Maximize button, or Minimize button,
delete any text from the caption property of the form, and set the controlBox, maxButton, and minButton
properties for the form to false.

Windows will not create a form that has a caption line with a single border but instead creates a form with a fixed
double border. If the value of the borderStyle property is set to BorderStyle_Single (1) and the form has a caption
line, the value of the borderStyle property is modified to fixed BorderStyle_Double (3), to reflect the actual border
style in use.

To force a form defined with the mdiChild property set to 0 (use application MDI default) to be specifically an MDI
form or non-MDI form, set the Application class defaultMdi property before the create method is used.

When printing the text of a control or displaying the text on a form, an ampersand character (&) is displayed as an
underscore to the next character of the text string, with the following exceptions.

When the ampersand character (&) is the last character of the text

When the control is a text box, combo box, or list box

When the control is a table and the displayHotKey property is set to false (the default)

When the drawTextAt or drawTextIn method is called for a window

For controls that display an ampersand character (&) as an underscore, two ampersand characters (&&) are
printed or displayed as a single ampersand character; for example, &&Print is printed or displayed as &Print.

For details about applying skins to forms in your application, see "JadeSkinApplication Class" and "JadeSkinForm
Class", in Chapter 1. For a summary of the constants, properties, methods, and events defined in the Form class,
see "Form Class Constants", "Form Properties", "Form Methods", and "Form Events", in the following subsections.

For details about programmatically providing the functionality to float, dock, and pin MDI child forms in your own
application logic and providing tabs on MDI forms, see "Floating, Docking, and Pinning MDI Child Forms" and
"MDI Child Form Tabs", respectively, in later subsections.

For details about testing controls on a form, see "Testing Tools and Control Identification", later in this document.
For details about the support of mouse wheel requests to scroll up, down, or across a form, see "Window Class",
earlier in this document. For details about monitoring the basic operating style of forms for a JADE application, see
"Monitoring the Basic Operating Style of Forms", in the following subsection.

Inherits From: Window

Inherited By: ControlAboutBox, JadeBackupDatabaseDialog, JadeFrameForm, JadePrintPreviewFind,
JadeSkinMaint, JadeSkinMaintenance, JadeSkinSelect, JadeSkinSelection, JadeTestDialog,
JadeWebServiceShowStats, and user-defined Form classes

Monitoring the Basic Operating Style of Forms
When you run a JADE application, a Microsoft Windows Window class is created for each kind of window, to
establish its basic operating style. This class is not visible to you unless you use a Windows or user-written utility
to monitor the style of forms.

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 36

EncycloWin - 2020.0.02

The Window classes for forms in a JADE application have the following names.

Jade::Form for a standard JADE form.

JadeMsgBox::Form for a message box created using the msgBox method of the Application class when
using skins or message box caption translations; otherwise, a standard Windows message box is used.

JadeException::Form for an exception dialog; that is, the standard exception, lock exception, lock retry, or
ODBC exception dialog.

Floating, Docking, and Pinning MDI Child Forms
You can programmatically provide the functionality to float, dock, and pin MDI child forms in your own application
logic, as follows.

You can control whether users can invoke an MDI menu on an MDI child form by right-clicking on the caption
of the form. The MDI popup menu can contain the following commands.

Menu Command Action

Close Closes the form (the same as clicking the Close button or the Context-Menu
Close command)

Close All But This Closes all other MDI children in the current MDI frame except for the current
form

Close All But Pinned Closes all MDI child forms that are not pinned and have the allowClose
property set to true

Float Floats the current MDI child form

Dock Re-docks the MDI child form in its MDI frame

Pin Toggles the pinned status of an MDI child form

The Form class provides the following Boolean primitive type properties, all of which have a default value of
false, which means that the MDI menu is not displayed by right-clicking the MDI child caption:

Property Contains the...

showMdiCloseAllButPinnedMenu Close All But Pinned command

showMdiCloseAllButThisMenu Close All But This command

showMdiCloseMenu Close command

showMdiDockMenu Dock command

showMdiFloatMenu Float command

showMdiPinMenu Pin command

If the value of all of these properties is true, right-clicking the MDI child caption displays a menu.

These properties are ignored if the form is not an MDI child form. In addition, the Close All But This, Close,
and Close All But Pinned commands are ignored if the allowClose property is set to false.

The property values can be set at run time and in the JADE Painter.

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 37

EncycloWin - 2020.0.02

Note The Float command is disabled if the form is floating and the Dock command is disabled if the MDI
child form is already docked in the MDI frame.

The Form class also provides the Boolean type mdiPinned property, which defaults to false. This property is
read-only at run time, to allow access from your application logic to the pinned status of a form.

The Form class provides the methods listed in the following table.

Method Description

floatMdi Floats an MDI child. It does nothing if the form is already floating or if the
form is not an MDI child.

dockMdi Docks an MDI child. It does nothing if the form is not floating or if the form is
not an MDI child.

isMdiFloating Returns true if the MDI child is floating or false if it is docked or it is not an
MDI child.

The Form class provides the event methods listed in the following table.

Event Method Description

mdiFloated Called after the user floats an MDI child. Appears in the Form Event
Methods list box in the JADE development environment. This event is not
called if the floatMdi method is called to float the form.

mdiDocked Called after the user docks an MDI child. Appears in the Form Event
Methods list box in the JADE development environment. This event is not
called if the dockMdi method is called to dock the form.

Note When floated, an MDI child form is positioned on the screen in the same position, except it is not a child
restricted to the MDI frame; for example, it can be dragged to another monitor.

The MDI child form is always on top of the MDI frame. To reposition the form programmatically, set the left and top
properties, or use the Window class move method.

When an MDI child form is docked, the position and size of the form is restored to the values it had when it was
floated, if the current top-most MDI child in the MDI frame is not maximized. If the current top-most MDI child in the
MDI frame is maximized, the docked form is also maximized.

Applies to Version: 2020.0.01 and higher

MDI Child Form Tabs
You can programmatically provide the functionality to display tabs for MDI child forms in user systems, by
controlling the style of MDI child form styles. The styles are:

Standard MDI child forms (the default).

Standard MDI child forms with a tab for each child form on the MDI frame. The child forms can be maximized,
minimized, and restored.

MDI with a tab only for each child form on the MDI frame. Only the top MDI child form is visible and it is
always maximized.

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 38

EncycloWin - 2020.0.02

For standard MDI child forms with a tab and MDI forms with a tab only, when tabs are displayed:

The tab contains the caption of the child form. Clicking on the tab brings that form to the top. The child form
with focus has its tab highlighted. If the caption is too long to fit in the tab, the first and last part of the caption
are displayed separated by points of ellipsis (...).

Moving the mouse over the tab displays the full caption in a bubble help display.

A down arrow button is displayed at the end of the tabs. Clicking the button displays the full list of captions of
open child forms.

Selecting an entry in the list brings that form to the front (that is, the same functionality that the Window menu
provides for arranging and manipulating child windows in the JADE development environment). The order of
the list can be alphabetic, the last-used, or creation order.

Not all tabs are displayed if there is not sufficient room. (Use the down arrow or Window menu to locate a
form that is not displayed.)

JADE provides the ability to pin selected tabs to the left of the displayed tabs. The user can also drag tabs to
another position, by clicking the tab and dragging it. (It can be dragged only within the pinned or non-pinned
grouping.)

The Application class provides the following properties and class constants.

Note These properties apply only to forms that have been created in version 2020.0.01 and higher.

The Integer type mdiStyle property, which defaults to MdiStyle_Mdi (0), sets the default MDI style for an
application at run time. You can also set the application style in the Mdi Style group box on the Form sheet of
the Define Application dialog in the JADE development environment.

Set this property to one of the following values.

MdiStyle_Mdi (0)

MdiStyle_Mdi_With_Tabs (1)

MdiStyle_Tabs_Only (2)

The Integer type mdiWindowListOrder property, which defaults to MdiWindowList_Order_Creation (0), sets
the order that child forms are displayed in the Window menu list of child forms and in the MDI Tabs down
arrow list. You can also set the application window list order in the Mdi Window List Order group box on the
Form sheet of the Define Application dialog in the JADE development environment. Set this property to one
of the following values.

MdiWindowList_Order_Creation (0)

The Window List menu and the MDI tabs down arrow show the list of MDI child forms in creation order.

MdiWindowList_Order_LastUse (1)

The Window list menu and the MDI tabs down arrow show the list of MDI child forms in last-use order.

MdiWindowList_Order_Alphabetic (2)

The Window list menu and the MDI tabs down arrow show the list of MDI child forms in caption
alphabetic order.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 39

EncycloWin - 2020.0.02

Form Class Constants
The constants provided by the Form class are listed in the following table.

Constant Integer Value Constant Integer Value

MdiChild_IsMdi 2 MdiChild_NotMdi 1

MdiChild_UseAppDefault 0 QueryUnload_MdiChild 4

QueryUnload_TaskManager 3 QueryUnload_UnloadMethod 1

QueryUnload_User 0 QueryUnload_Windows 2

TaskBar_State_Error 4 TaskBar_State_Indeterminate 1

TaskBar_State_NoProgress 0 TaskBar_State_Normal 2

TaskBar_State_Paused 8 TrayIcon_LeftClick 1

TrayIcon_LeftDblClick 3 TrayIcon_RightClick 2

TrayIcon_RightDblClick 4 WindowState_Maximized 2

WindowState_Minimized 1 WindowState_Normal 0

Form Properties
The properties defined in the Form class are summarized in the following table.

Property Description

allMenuItems Contains an array of all menu items on the form

allowClose Contains the status of the Control-Menu Close command

allowDocking Controls the type of docking that is allowed by the window

backBrush Contains the bitmap to tile the background of the form

caption Contains the text displayed in the title bar of the form

clientHeight Contains the height of the client area of a form in pixels

clientWidth Contains the width of the client area of a form in pixels

clipControls Specifies whether the Windows environment creates a clipping region
that excludes controls contained by the object

controlBox Specifies whether a Control-Menu icon is displayed on a form at run
time

icon Contains the icon displayed for a form or sheet at run time

maxButton Specifies whether a form has a Maximize button

mdiChild Specifies whether a form is displayed as an MDI child form inside an
MDI form

mdiClientScrollHorzPos Contains the horizontal scroll positions of the MDI client windows of a
form

mdiClientScrollVertPos Contains the vertical scroll positions of the MDI client windows of a form

mdiFrame Specifies whether the form is always built as an MDI frame

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 40

EncycloWin - 2020.0.02

Property Description

minButton Specifies whether a form has a Minimize button

mdiPinned Allows access from your application logic to the pinned status of a form

minimumHeight Specifies the minimum height of the form in pixels

minimumWidth Specifies the minimum width of the form in pixels

modalResult Contains the returned value for the showModal method call in runtime
forms that are initiated as modal

scaleForm Specifies whether the form and all of its contents are scaled to match
the current font scaling attribute

scrollBars Specifies whether an object has horizontal or vertical scroll bars

scrollHorzPos Contains the position of the horizontal scroll bar

scrollVertPos Contains the position of the vertical scroll bar

secureForm Specifies whether the form is secure

showMdiCloseAllButPinnedMenu Specifies whether the Close All But Pinned command is displayed in
the popup menu when a user right-clicks on the caption of an MDI child
form

showMdiCloseAllButThisMenu Specifies whether the Close All But This command is displayed in the
popup menu when a user right-clicks on the caption of an MDI child
form

showMdiCloseMenu Specifies whether the Close command is displayed in the popup menu
when a user right-clicks on the caption of an MDI child form

showMdiDockMenu Specifies whether the Dock command is displayed in the popup menu
when a user right-clicks on the caption of an MDI child form

showMdiFloatMenu Specifies whether the Float command is displayed in the popup menu
when a user right-clicks on the caption of an MDI child form

showMdiPinMenu Specifies whether the Pin command is displayed in the popup menu
when a user right-clicks on the caption of an MDI child form

topLevelMenuItems Contains an array of all top-level menu items on the form

webBrowserAutoRefreshInterval Specifies the number of seconds after which the Web page is
automatically refreshed

webBrowserAutoRefreshURL Specifies a string value containing the URL to invoke when the
automatic refresh interval is reached

webBrowserDisableBackButton Specifies whether the previous Web page is displayed when the user
clicks the Back button

webEncodingType Contains the content type used to submit the form to the JADE
application

webFileName Contains the name of the background image displayed on a Web page

windowState Contains the visual state of a form window at run time

For details, see "Window, Form, and Control Properties", later in this document.

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 41

EncycloWin - 2020.0.02

Form Methods
The methods defined in the Form class are summarized in the following table.

Method Description

activeChild Returns the current active MDI child for an MDI frame form

addControl Adds a control to a form at run time

allowWebPrinting Enables the correct printing of the contents of the Web page in Microsoft Internet
Explorer 4 and higher

alwaysOnTop Specifies whether the visible form is placed above all other forms on the desktop

centreWindow Centers the form in the window

controlCount Returns the number of controls on the form

controls Enables logic to access the controls on an active form at run time

create Calls a constructor that builds a description of the form

delete Calls a destructor that removes the form and its associated window

dockMdi Docks a floating MDI child form back into its MDI frame

ensureCaptionIsVisible Ensure the caption is visible on at least one monitor

flagControlForSave In Painter, saves the specified control that was not painted on the form using
Painter functionality

floatMdi Floats an MDI child form; that is, it takes the MDI child form out of the MDI frame
and allows it to be moved independently from the MDI frame

generateHTML Generates the HyperText Markup Language (HTML) string for the form

generateHTMLStatic Generates the static HyperText Markup Language (HTML) string for the form and
builds the full Uniform Resource Locator (URL) action line

getControlByName Returns the control on the form with the specified name

getFormParent Returns the parent of a form set by the setFormParent method or if the parent
form was set directly by using a Windows Application Programming Interface
(API) call

getMdiFrame Accesses the current MDI frame for a form

getRegisteredFormKeys Returns an array of the form keys that are in effect for the form

getScrollRange Returns the scroll range information for the window

hasSystemTrayEntry Specifies whether the form currently has a system tray entry

isCaptionVisible Specifies whether the caption is visible on at least one monitor

isMdiFloating Specifies whether an MDI child form is floating

isModal Specifies whether the form was displayed using the showModal method

isPrinterForm Returns whether the form was declared as a printer form on the New Form dialog
in the JADE Painter

menuItemCount Returns the number of items in the menu

menuItems Enables logic to access the menu items in a menu at run time

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 42

EncycloWin - 2020.0.02

Method Description

moveMdiClient Positions the client window

paintIfRequired Causes the form to be repainted if a repaint is required

popupMenu Invokes a popup menu for a form

registerFormKeys Establishes the entire set of key codes in which the key events of a form are
interested

removeSystemTrayEntry Removes the system tray entry for the form

registerWindowMsg Registers a Windows message with the JADE GUI environment

replyAsBinary Returns the Binary message to the Web browser without modification

resetFirstChange Resets the first change status of the referenced form and all TextBox,
JadeRichText, and JadeEditMask controls on the form

setApplicationSkin Sets the skin for a specific form and its controls

setBackDrop Sets the background image for the form

setFormParent Sets the parent of a form to be another form

setFormSkin Sets the skin for a specific form, regardless of the setting of the
skinCategoryName property

setScrollRange Enables control of the scroll ranges for form and picture controls

setSkin Sets a skin for the form, overriding any skin that is set for the application

setSystemTrayEntry Places an entry in the system tray for the form

setTaskBarProgress Sets the extent of the progress to be displayed on the application icon in the
taskbar

setTaskBarState Sets the state of the taskbar icon for the application

show Makes the form visible in its current state

showModal Makes the form visible in its current state, disabling all other application forms

tabNext Tabs to the next visible control that can have focus, in the enabled tab order

tabPrior Tabs to the prior visible control that can have focus, in the enabled tab order

unloadForm Unloads an active form

For details, see "Window, Form, and Control Methods", later in this document.

Form Events
The event methods defined in the Form class are summarized in the following table.

Event Description

activate Occurs when a form becomes the active window

click Occurs when the user presses and then releases the left mouse button

contextMenu Occurs after the right mouseUp event and after the keyUp event

Encyclopaedia of Classes
(Volume 3)

Form Class Chapter 2 43

EncycloWin - 2020.0.02

Event Description

dblClick Occurs when the user presses and releases the left mouse button and then presses and
releases it again

deactivate Occurs when a different form becomes the active window

dragDrop Occurs when a dragged window is dropped over a form belonging to the same
application

dragOver Occurs for each form of the application over which a window is dragged

firstChange Occurs when the contents of a control on the form change

formMove Occurs when a form is moved on the screen

gotFocus Occurs when a control receives the focus

keyDown Occurs when the user presses a key

keyPress Occurs when the user presses and releases an ANSI key

keyUp Occurs when the user releases a key

load First event called for the form and its controls (except the windowCreated event for the
controls)

lostFocus Occurs when a control loses the focus

mdiDocked Occurs after the user docks an MDI child form

mdiFloated Occurs after the user floats an MDI child form

mouseDown Occurs when the user presses a mouse button

mouseEnter Occurs when the user moves the mouse onto a form

mouseLeave Occurs when the user moves the mouse off a form

mouseMove Occurs when the user moves the mouse

mouseUp Occurs when the user releases a mouse button

paint Occurs when part or all of a form is exposed after it has been moved or enlarged

queryUnload Occurs before a form closes, to give the logic the opportunity to reject the closure

resize Occurs when the size of a form is changed

scrolled Occurs when the user scrolls a form

sysNotify Occurs when a specified JADE system event occurs

trayIconClicked Occurs when a user clicks a system tray entry created by the setSystemTrayEntry
method

unload Occurs when a form is about to be removed from the screen

userNotify Occurs when triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 44

EncycloWin - 2020.0.02

Control Class
The Control class enables you to define properties and methods that apply to all controls. As the Control class is
an abstract subclass of the Window class, it inherits all of the properties and methods defined in that class. A
control is a specialized child window that is resident on top of a form or another control. To create your own user-
defined controls, subclass the BaseControl class (for details, see Chapter 5 of the JADE Developer’s Reference).

For details about testing controls on a form, see "Testing Tools and Control Identification", in the following
subsection.

Some controls can be parents of other controls in the JADE Painter; for example, BaseControl, Frame,
GroupBox, JadeDockBar, JadeDockContainer, JadeMask, Picture, Sheet, and StatusLine.

Controls have properties that determine aspects of their appearance (for example, position, size, and color), and
aspects of their behavior (for example, whether they receive the focus). Controls can also respond to events
initiated by the user or triggered by the system. For example, you could write logic in the click event of a control
that would enable the user to indicate acceptance of a process by clicking it.

In addition to properties and events, you can use methods to manipulate controls from logic.

Note Use the move method of the Window class to change more that one of the left, top, width, or height
properties for a form or control. As each change causes the control to resize, if the window is a container of other
controls, potentially each control resizes each time the properties are set or the control is aligned to the form or
control.

The move method ensures that one resize only occurs. For example, if you individually change the left, top,
width, or height properties for a folder, the folder resizes four times. It then resizes the sheets four times, which can
resize the contents, and so on.

Some Control instance properties have no meaning for certain controls, but are defined for other reasons; for
example, as a scroll bar control does not have any text, the font properties have no relevance.

When printing the text of a control or displaying the text on a form, an ampersand character (&) is displayed as an
underscore to the next character of the text string, with the following exceptions.

When the ampersand character (&) is the last character of the text

When the control is a text box, combo box, or list box

When the control is a table and the displayHotKey property is set to false (the default)

When the drawTextAt or drawTextIn method is called for a window

For controls that display an ampersand character (&) as an underscore, two ampersand characters (&&) are
printed or displayed as a single ampersand character; for example, &&Print is printed or displayed as &Print.

For details about printing a background picture over which is drawn the report itself, see "Layering Print Output",
under the Printer class "Defining Your JADE Report Layouts", in Chapter 1.

User-defined subclassed controls are not supported on forms defined as Web pages, and are ignored when
HTML is generated.

When an event method defined at the Control class is deleted, the user is warned of this. If the deletion is
confirmed, the event methods that correspond to this control event are also deleted. Renaming a control event
method automatically renames all event implementations.

For details about applying skins to controls in your application, see "JadeSkinApplication Class" and
"JadeSkinControl Class and Subclasses", in Volume 2.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 45

EncycloWin - 2020.0.02

For a summary of the constants, properties, methods, and event defined in the Control class, see "Control Class
Constants", "Control Properties", "Control Methods", and "Control Event", in the following subsections. For details
about the support of mouse wheel requests to scroll up, down, or across a control, see "Window Class", earlier in
this document.

Inherits From: Window

Inherited By: ActiveXControl, BaseControl, BrowseButtons, Button, CheckBox, ComboBox, Folder, Frame,
GroupBox, JadeDockBase, JadeDotNetVisualComponent, JadeEditMask, JadeRichText,
JadeTextEdit, JadeXamlControl, Label, ListBox, MultiMedia, Ocx, OleControl, OptionButton,
Picture, ScrollBar, StatusLine, Table, TextBox, user-defined control classes

Testing Tools and Control Identification
JADE creates each control with an assigned identification number that is included in the creation description
passed to Windows. Windows accepts only 16-bit identifiers; that is, 1 through 65,535. This control identifier is
used by some testing tools to locate the control elements involved in the script processing via a Windows API call.

Call the Control class getControlWindowId method if you want to use the control identification number in your
JADE code.

Although Windows requires only that child identifiers be unique for their direct parent, JADE creates the identifiers
so that they are unique for the whole form. An identifier assigned to each control defined in the JADE Painter does
not change when the painted form is altered unless the control is deleted and re-added; that is, you do not need to
update testing scripts because the identifiers have changed.

Controls Saved in the JADE Painter
For controls painted on a form, an identifier is created based on the JADE feature number assigned to each
control property on a form and the subclass depth of the form on which the control is defined.

Feature numbers are persistent and are unique only within each class.

The identifier is assigned as follows.

(subclass-depth-from-the-Form-class - 1) * 2000 + control-property-feature-number

In the example in the following table, the form hierarchy consists of four forms, where Form1 is a subclass of the
Form class, Form2 is a subclass of Form1, and Form3 and Form4 are subclasses of Form2.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 46

EncycloWin - 2020.0.02

This allows for a subclass depth of up to 31 from the Form class. If more than 31 levels exist, controls defined on
subclasses beyond the 31 depth are assigned a sequential identifier starting at 31000. If the feature number of a
control exceeds the permitted range (which is initially 2000), the range for that Form subclass is increased by
another 2000 and the subclass depth that can be handled is reduced accordingly. For this to happen, more than
2000 properties, methods, and constants would need to have been defined specifically on that form subclass (not
counting superclass elements).

The extractControlIdsCSV and extractControlIdsCSVforSchema methods of the Schema class output to a file
comma-separated value (CSV) entries containing the control ids of controls, in the following format.

schema_name, form_name, control_name, control_id

Controls Created by Runtime Logic
Controls created at run time are sequentially assigned the next available number in the range beyond the last-
used form subclass range. In the previous table, the next available number would be set to 6000.

The number assigned to each dynamically created control is affected by the order in which the control is created.

Internal Controls
Some of the standard JADE controls create component controls that are implied by their definition. These child
controls do not have a JADE object and are accessed implicitly via logic through the parent control. The controls
in which this situation occurs are:

ComboBox, which has a list box associated with it. For a simple combo box or a spin box, the list box is a
child of the combo box. For all other combo box styles, the list box is a top-level window.

ComboBox, which can have a child text box.

JadeEditMask, which has from zero through n child text boxes, depending on the definition of the edit mask.

Table when the inputType property is used to determine the cell control input style, in which case a table can
create a text box, a combo box, and an edit mask child.

The control identifier is assigned in the same way as it is for controls that are created at run time; that is, they are
sequentially assigned the next available number in the range beyond the last-used form subclass range.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 47

EncycloWin - 2020.0.02

In the previous table, the next available number would be set to 6000. The number assigned to each internally
created control is affected by the order in which it is created, as shown in the example in the following table.

Control Class Constants
The constants provided by the Control class are listed in the following table.

Constant Integer Value Constant Integer
Value

BorderStyle_3DRaised 3 BorderStyle_3DSunken 2

ParentAspect_AnchorBoth #c ParentAspect_AnchorBottom #8

ParentAspect_AnchorRight #4 ParentAspect_CenterBoth #30

ParentAspect_CenterHorz #10 ParentAspect_CenterVert #20

ParentAspect_None 0 ParentAspect_StretchBoth #3

ParentAspect_StretchBottom #2 ParentAspect_StretchRight #1

Show3D_Not3D 1 Show3D_Use3D 2

Show3D_UseAppDefault 0 Show3D_UseBorderStyle 3

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 48

EncycloWin - 2020.0.02

Control Properties
The properties defined in the Control class are summarized in the following table.

Property Description

automaticCellControl Specifies whether cells of Table controls are handled automatically

backBrush Contains the bitmap to tile the background of the control

borderColorSingle Contains the RGB scheme color of the control border when the borderStyle
property is set to BorderStyle_Single (1)

focusBackColor Contains the background color of a control when that control has focus

focusForeColor Contains the foreground color of a control when that control has focus

fontBold Specifies whether the font style is bold

fontItalic Specifies whether the font style is italic

fontName Contains the font used to display text in a control

fontSize Contains the size of the font used for text displayed in a control

fontStrikethru Specifies whether the font style is strikethrough

fontUnderline Specifies whether the font style is underlined

foreColor Contains the foreground color used to display text in a window

form Provides access to a form of a control from the object

index Contains an identifier to differentiate between control copies that have the same
name

parent Contains the direct parent of the control

parentAspect Contains the aspect of the control in relation to its parent

parentBottomOffset Contains the pixel offset of the bottom edge of a control from the bottom of the client
area of its parent

parentRightOffset Contains the pixel offset of the right edge of a control from the right side of the client
area of its parent

relativeHeight Specifies whether the size and position of a control is relative to the size and
position of its parent

relativeLeft Specifies whether the size and position of a control is relative to the size and
position of its parent

relativeTop Specifies whether the size and position of a control is relative to the size and
position of its parent

relativeWidth Specifies whether the size and position of a control is relative to the size and
position of its parent

show3D Specifies whether automatic three-dimensional effects are added to the appearance
of a control

tabIndex Contains the tab order of a control within its parent form

tabStop Specifies whether a user can use the Tab key to set the focus to a control

For details, see "Window, Form, and Control Properties", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 49

EncycloWin - 2020.0.02

Control Methods
The methods defined in the Control class are summarized in the following table.

Method Description

aboutBox Calls the About box for the control

canBeChildOf Returns whether the control can be placed on the specified form or control

canControlHaveChildren Returns whether a control is permitted to be the parent of other controls

canHaveAsChild Returns whether the specified control can be placed on the control

centreWindow Centers the control on its parent

clientHeight Returns the height of the client area of a control in pixels

clientWidth Returns the width of the client area of a control in pixels

convertFormPosition Converts the specified horizontal and vertical positions into coordinates relative
to the control

createPicture Creates a picture for the control

createPictureIndirect Creates a short binary that contains an instruction concerning the window to be
copied

delete Deletes the control

getControl Accesses dynamically created controls of the same type as the receiver

getControlWindowId Returns the Windows identifier that JADE creates and assigns to each control
window

getFormLeft Returns the absolute left position of the control on the form in pixels

getFormTop Returns the absolute top position of the control on the form in pixels

getRegisteredKeys Returns an array of the keys that are in effect for the control

is3D Returns whether the control was drawn three-dimensionally

isInPainter Returns whether the control is on the Painter form

isMoveable Returns whether the control can be moved in the JADE Painter

isMySheetVisible Returns whether the sheet is the current visible sheet

isSelectable Returns whether instances of the control can be selected in the JADE Painter

isSizeable Returns whether the control can be resized in the JADE Painter

loadControl Enables an existing control to be cloned at run time

registerKeys Establishes the entire set of key codes in which the key events of a control are
interested

resetFirstChange Resets the firstChange event status of the control and all children of the control

saveProperties Allows local properties edited in the Painter to be saved with the painted form

setSkin Sets the skin for a specific control, regardless of the setting of the
skinCategoryName property

setFocus Sets the focus to a control

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 50

EncycloWin - 2020.0.02

Method Description

setFontProperties Sets the fontBold, fontName, and fontSize properties for text associated with
the control

showMySheet Provides a control with the ability to make the sheet the top sheet of a folder
control

For details, see "Window, Form, and Control Methods", later in this document.

Control Events
The event methods defined in the Control class are summarized in the following table.

Event Description

contextMenu Occurs after the right mouseUp event and after the keyUp event

windowCreated Called for all controls when the window for the control is created, so that a control can be
initialized when the window for the control is present

For details, see "Window, Form, and Control Events", later in this document.

ActiveXControl Class
The ActiveXControl class provided by JADE supports all interfaces of an ActiveX control type library imported into
JADE. An ActiveX control is a special type of COM object. It is a user interface object that implements an interface
that supports its use on forms. (This control was formerly known as an OCX control.)

An ActiveX control can optionally have a graphical user interface and can fire events. This enables existing third-
party functions, such as highly specialized controls, to be used within your JADE applications.

Caution To register and run an ActiveX control, all libraries used by the control must be available.

When you import an ActiveX control library into JADE, an abstract class of the specified library name is created as
a subclass of the ActiveXControl class. This abstract class becomes the superclass for all classes that are
subsequently generated corresponding to objects in the imported ActiveX control library. This ActiveX control
library class is the superclass that supports the control object classes within that library, which have properties,
methods, and events created that correspond to the default interfaces.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 51

EncycloWin - 2020.0.02

ActiveXControl subclasses inherit all of the standard properties and methods of the Window and Control classes,
although not all of these inherited properties and methods have meaning to the control. (For a caveat on the use
of SVG files when printing ActiveXControl controls, see "Portable Printing" under "Printer Class", in Chapter 1 of
the JADE Encyclopaedia of Classes.) The following example shows the hierarchy of the Microsoft Windows
Common Controls type library imported into the JADE ActiveXControl class.

Creating an instance of the ActiveX control in JADE does not create an instance of the ActiveXControl object,
which occurs only when the control is added to a form. At run time, JADE translates the property and method
requirements into ActiveX control equivalents and then calls the control to perform the function.

If you have added a property to an imported ActiveXControl object and flagged that property as a design time
property (for details, see "Selecting Your Design Time Properties", in Chapter 5 of the JADE Developer’s
Reference), any value assigned to that property by using the JADE Painter Properties dialog will not be
propagated through to the runtime instance of that control when the form is created.

If the property value is required in the runtime instance, you can copy it from the persistent instance to the runtime
instance in the windowCreated method on the ActiveXControl subclass. (As the windowCreated method will be
a reimplementation of the Control::windowCreated method, you must include an inheritMethod instruction in your
windowCreated method.)

To refresh an ActiveX control that has changed but is already imported into JADE, simply import the ActiveX
control type library again and give it the same name that it had previously.

An imported ActiveX control is added to the Control palette of the JADE Painter and cannot be distinguished from
standard JADE-supplied controls. The ActiveXControl class is supported on forms defined as Web pages only
when running on a Microsoft Internet Explorer browser.

Notes As ActiveXControl class methods run only on the client node (including when running in JADE thin
client mode), all methods generated for imported ActiveX controls include the clientExecution option in the
method signature.

In JADE thin client mode, ActiveX control objects run only on the presentation client.

As the ActiveX control is external to JADE, no documentation about the control is contained within JADE, and any
problems in functionality of the control should be taken up with the suppliers of that control. If an error occurs,
JADE is dependent on the control returning error information that can be displayed to the user.

Transparent sibling controls are painted before an ActiveXControl, regardless of their zOrder settings. It is not
possible to handle the painting of transparent controls in the correct zOrder when some controls are directly
painted by JADE and others are painted by Windows separately.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 52

EncycloWin - 2020.0.02

If the control object returns a reference to another ActiveX interface in response to a method call or the get of a
property, JADE creates an instance of the corresponding JADE interface class and returns a reference to that
instance instead. (A mapping is maintained between JADE interface instances and COM interface instances.) For
details about importing ActiveX control and automation type libraries into JADE, see Chapter 4 of the JADE
External Interface Developer’s Reference.

For a summary of the JADE property, methods, and event defined in the ActiveXControl class, see
"ActiveXControl Class Property", "ActiveXControl Class Methods", and "ActiveXControl Class Event", in the
following subsections. (Refer to your COM documentation for details about properties, methods, or constants
provided by imported ActiveX control type libraries.)

ActiveXControl Class Property
The property defined in the ActiveXControl class is summarized in the following table.

Property Description

usePresentationClient Specifies whether the ActiveX control runs on the presentation client (the default)
or application server if it was created by using the makeAutomationObject
method.

For details, see "Window, Form, and Control Properties", later in this document.

ActiveXControl Class Methods
The methods defined in the ActiveXControl class are summarized in the following table.

Method Description

beginNotifyAutomationEvent Registers the receiver to be notified when an event occurs on an ActiveX
control created as an automation object by using the
makeAutomationObject method

endNotifyAutomationEvent Terminates a previous beginNotifyAutomationEvent event

getInterface Returns the specified ActiveX interface.

loadPicture Creates a picture object from an external file.

makeAutomationObject Creates an ActiveX automation object instead of a control. Although the
ActiveX object was imported as a control, it can be used as an automation
object.

makePicture Creates a picture object from a JADE binary.

processInputFromWeb When reimplemented, processes ActiveX controls used on Web pages.

savePicture Saves the image of a picture to the specified external file.

setEventMapping Enables an event method to be dynamically set at run time

For details, see "Window, Form, and Control Methods", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 53

EncycloWin - 2020.0.02

ActiveXControl Class Event
The event method defined in the ActiveXControl class is summarized in the following table.

Event Description

paint Occurs when part or all of an ActiveX control needs to be painted

For details, see "Window, Form, and Control Events", later in this document.

BaseControl Class
The BaseControl class is an abstract control that you can subclass to create your own controls. For details, see
"Creating Your Own Control Classes", in Chapter 5 of the JADE Developer’s Reference.

Instances of the BaseControl class provide all of the base properties and methods available from the Window
and Control superclasses and have the following capabilities.

Can be a parent control.

If this is not wanted, override the canControlHaveChildren method defined for controls, returning false (the
default value is true).

Can have the focus.

If this is not wanted, set the canHaveFocus property to false (the default value is true).

Can have scroll bars and control of those scroll bars.

For details about the support of mouse wheel requests to scroll up, down, or across a base control, see
"Window Class", earlier in this document.

Can be transparent.

Can use the clipControls property.

Definition of all standard events for controls.

You need only add a subclass to the BaseControl class for it to be automatically added to the Painter toolbar. You
must write logic for each event controlling the subclass behavior.

The BaseControl class is not supported on forms defined as Web pages and is ignored when HTML is generated.

Note If you have mapping method logic on subclassed controls that rely on this logic when executing, you must
protect that logic from situations where properties of subclassed controls are accessed or referenced by JADE
processes such as the JADE Painter, JADE Translator utility, or the loading of schemas.

For a summary of the properties, methods, and events defined in the BaseControl class, see "BaseControl
Properties", "BaseControl Methods", and "BaseControl Events", in the following subsections.

BaseControl Properties
The properties defined in the BaseControl class are summarized in the following table.

Property Description

canHaveFocus Specifies whether the control can have focus

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 54

EncycloWin - 2020.0.02

Property Description

clipControls Specifies whether the Windows environment creates a clipping region that excludes
controls contained by the object

scrollBars Specifies whether an object has horizontal or vertical scroll bars

scrollHorzPos Contains the position of the horizontal scroll bar

scrollVertPos Contains the position of the vertical scroll bar

transparent Causes the control to be placed above all other sibling controls and the controls or form
underneath to be visible

For details, see "Window, Form, and Control Properties", later in this document.

BaseControl Methods
The methods defined in the BaseControl class are summarized in the following table.

Method Description

getScrollRange Returns the scroll range information for the window

setScrollRange Enables control of the scroll ranges for form and picture controls

For details, see "Window, Form, and Control Methods", later in this document.

BaseControl Events
The event methods defined in the BaseControl class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button, and then presses and releases
it again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each form or control of the application over which a window is dragged

gotFocus When a control receives the focus

keyDown When the user presses a key while the control has the focus

keyPress When the user presses and releases an ANSI key

keyUp When the user releases a key while the control has the focus

lostFocus When a control loses the focus

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 55

EncycloWin - 2020.0.02

Event Occurs…

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

scrolled When the user scrolls the control

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

BrowseButtons Class
The BrowseButtons class is a subclass of the Control class and inherits all of the properties and methods
defined in the Control and Window classes. Browse buttons are not supported on Web page forms and are
ignored when HTML is generated.

The BrowseButtons control consists of four buttons that can be clicked. The buttons are normally interpreted to
indicate:

First

Prior

Next

Last

Clicking a button invokes an event describing which button was clicked. If a button is painted in a StatusLine
control, that control resizes to position the browse control within the inner border of the StatusLine control.

For a summary of the constants and events defined in the BrowseButtons class, see "BrowseButtons Class
Constants" and "BrowseButtons Events", in the following subsections.

BrowseButtons Class Constants
The constants provided by the BrowseButtons class are listed in the following table.

Constant Integer Value Constant Integer Value

Browse_First 1 Browse_Last 4

Browse_Next 3 Browse_Prior 2

BrowseButtons Events
The event methods defined in the BrowseButtons class are summarized in the following table.

Event Occurs…

browse When the user presses the left mouse button over a browse button

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 56

EncycloWin - 2020.0.02

Event Occurs…

contextMenu After the right mouseUp event and after the keyUp event

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each control of the application over which a window is dragged

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a form or control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Button Class
The Button class is a subclass of the Control class and inherits all of the properties and methods defined in the
Control and Window classes.

The user selects a command button to begin, interrupt, or end a process. When selected, a command button
appears as though it was pushed in, and may also be called a push button. To display text on a command button,
set its caption property. A user can always choose a command button by clicking it.

The Button class has the following variations, which are controlled by the style property.

A normal push down and spring up button.

A two-state button. Press an up button to cause it to go and stay down. Press a down button to cause it to
come and stay up.

An automatic two-state button. Press the button to cause it to go and stay down. All other automatic two-state
buttons with the same parent come up; that is, only one button of a group can be down at any time.

A button is drawn with a border only when it has focus or it is the default button.

The Button control is drawn using the current Windows theme that is in use, unless the currently active JADE skin
defines the button look and feel. The exception to this is any button that has the button backColor value set to any
color other than the default. In this case, the button is drawn in the JADE style of earlier releases.

When a Button control is skinned and at least one of the skin images is 32-bit (which supports transparency), the
control is treated as though it is transparent; that is, the control is painted on its parent without the area being
erased with the effective value of the backColor property. Instead, the parent shows through any transparent
areas of the images (for rounded corners, for example). In addition, any semi-transparent parts of the images are
anti-aliased with the parent image so that they are displayed with smooth corners over any background color.

For a summary of the constants, properties, and events defined in the Button class, see "Button Class Constants",
"Button Properties", and "Button Events", in the following subsections.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 57

EncycloWin - 2020.0.02

Button Class Constants
The constants provided by the Button class are listed in the following table.

Constant Integer Value Constant Integer Value

AutoSize_Button 1 AutoSize_None 0

AutoSize_Picture 2 ButtonPicture_Asterisk 7

ButtonPicture_Bin 10 ButtonPicture_Cross 2

ButtonPicture_Door 8 ButtonPicture_Exclamation 6

ButtonPicture_No 3 ButtonPicture_None 0

ButtonPicture_Question 5 ButtonPicture_RecycleBin 9

ButtonPicture_Stop 4 ButtonPicture_Tick 1

Style_2State 2 Style_Auto2State 1

Style_Normal 0

Button Properties
The properties defined in the Button class are summarized in the following table.

Property Description

autoSize Specifies whether a control is automatically resized to fit its contents

buttonPicture Contains predefined bitmaps to be placed on a button control

cancel Marks the button as the Cancel button

caption Contains an access key to assign to a control

default Marks the button as the default button

picture Contains a graphic to be displayed in a control

pictureDisabled Contains the picture displayed when the picture box is disabled

pictureDown Contains the picture displayed when the button is down

style Contains the style of push button

value Specifies whether the state of the button is up (false) or down (true)

webFileName Contains the name of the image displayed on a button on a Web page

For details, see "Window, Form, and Control Properties", later in this document.

Button Events
The event methods defined in the Button class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 58

EncycloWin - 2020.0.02

Event Occurs…

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button, and then presses and releases it
again

dragDrop When a dragged window is dropped over a control belonging to the same application

dragOver For each form or control of the application over which a window is dragged

gotFocus When a control receives the focus

keyDown When the user presses a key while the control has the focus

keyPress When the user presses and releases an ANSI key

keyUp When the user releases a key while the control has the focus

lostFocus When a control loses the focus

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a button

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a button

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

CheckBox Class
A check box control displays a check mark. When selected, the check mark is removed when the check box is
cleared. Use the CheckBox control class to give the user a True/False or Yes/No option. You can use check
boxes in groups to display multiple choices from which the user can select one or more options.

As the CheckBox class is a subclass of the Control class, it inherits all of the properties and methods defined in
the Control class and the Window class.

Check boxes and option buttons function in a similar manner except that any number of check boxes on a form
can be selected at the same time. In contrast, only one option button in a group can be selected. To display text
next to the check box, set the caption property. Use the value property to determine the state of the selected box.

The check box automatically sets the height of the control to fit the caption.

Check boxes are drawn using the current Windows theme that is in use, unless the currently active JADE skin
defines the check box look and feel.

For a summary of the constants, properties, and events defined in the CheckBox class, see "CheckBox Class
Constants", "CheckBox Properties", and "CheckBox Events", in the following subsections.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 59

EncycloWin - 2020.0.02

CheckBox Class Constants
The constants provided by the CheckBox class are listed in the following table.

Constant Integer Value Constant Integer Value

Alignment_Left 0 Alignment_Right 1

CheckBox Properties
The properties defined in the CheckBox class are summarized in the following table.

Property Description

alignment Specifies whether the text is placed before or after the button bitmap image

autoSize Specifies whether a check box control is automatically resized to fit its contents

caption Contains a caption to assign to a check box control

readOnly Specifies whether a check box control is read-only for user input

transparent Causes a check box control to be placed above all other sibling controls and the controls
underneath to be visible

value Specifies whether the state of a check box control is checked or unchecked

For details, see "Window, Form, and Control Properties", later in this document.

CheckBox Events
The event methods defined in the CheckBox class are summarized in the following table.

Event Description

change Indicates that the contents of the control have changed

click Occurs when the user presses and then releases the left mouse button

contextMenu Occurs after the right mouseUp event and after the keyUp event

dragDrop Occurs when a dragged window is dropped over a window belonging to the same
application

dragOver Occurs for each window of the application over which a window is dragged

gotFocus Occurs when a control receives the focus

keyDown Occurs when the user presses a key while the control has the focus

keyPress Occurs when the user presses and releases an ANSI key

keyUp Occurs when the user releases a key while the control has the focus

lostFocus Occurs when a control loses the focus

mouseDown Occurs when the user presses a mouse button

mouseEnter Occurs when the user moves the mouse onto a control

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 60

EncycloWin - 2020.0.02

Event Description

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave Occurs when the user moves the mouse off a control

mouseMove Occurs when the user moves the mouse

mouseUp Occurs when the user releases a mouse button

paint Occurs when part or all of a control is exposed

sysNotify Occurs when a specified JADE system event occurs

userNotify Occurs when triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

ComboBox Class
A combo box control combines the features of a TextBox control and a ListBox control. Use a combo box to give
the user the choice of typing in the text box portion or selecting an item from the list portion of the control. As the
ComboBox class is a subclass of the Control class, it inherits all of the properties and methods defined in the
Control class and Window class.

If the ComboBox class with a style other than Style_Simple or Style_DropDown accepts text, the entry that is
alphabetically less than or equal to the entered text is selected, without issuing an event. The user then has only
to enter as much as required to uniquely identify a specific entry. (You can enter text in Style_Simple or Style_
DropDown combo boxes that does not relate to the entries in the list. For more details, see the style property.)

If the combo box list is open, the Esc key closes the combo box list. In addition, the Alt+UpArrow shortcut keys action
closes the combo box list when it has focus and the Alt+DownArrow shortcut keys action opens the combo box list
when it has focus.

Notes If the form has a Button control with the cancel property set to true and the open combo box has focus,
the Esc key is processed by the combo box; not by the Cancel button. The Cancel button action occurs only if the
combo box list is not open.

The alternatingRowBackColor and alternatingRowBackColorCount properties are available only for the
ListBox control and the JadeTableSheet class, and they do not exist for a ComboBox control. However, you can
achieve the alternating style on a combo box by using a skin. If a ComboBox skin references a ListBox skin that
has the alternatingRowBackColorCount property value set (that is, it is greater than zero (0)) for the list box, the
value of the alternatingRowBackColor list box skin property is used to draw the alternating background colors of
the displayed combo box list.

A combo box, which is case-insensitive, can have a maximum of 32,000 items, although the maximum number of
entries displayed in the list portion of the control is 20.

Tip It is much more efficient to copy a GUI value into a local variable for reuse rather than request the value
again; for example, comboBox.listCount requires the calling of a combo box method to retrieve the value. Storing
the value in a local property for reuse avoids a significant overhead for the second and subsequent requests for
that value when it will not change.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 61

EncycloWin - 2020.0.02

The first of the following examples is much more expensive than the second of these examples.

while count <= comboBox.listCount do // inefficient use of the variable

vars // recommended use of the variable
comboListCount : Integer;

begin
comboListCount := comboBox.listCount;
while count <= comboListCount do

...
endwhile;

end;

You can implement filtering of combo box and list box entries to enable users to locate a required list item more
quickly, using standard combo box and list box facilities to achieve this filtering. (For details, see "Filtering Entries
in Combo Box and List Box Text", in Chapter 2 of the JADE Development Environment User's Guide.) You can
achieve the filtering of entries in your own JADE systems, as follows.

Set the value of the style property for the ComboBox control class to ComboBox.Style_DropDown (0).

Set the value of the hasPictures, hasTreeLines, and hasPlusMinus properties to false.

The value of the sorted property must be set to false after the list is loaded.

A disabled description list item is added as the first entry in the list (after sorting is turned off).

The change event on the combo box or associated text box calls a filtering routine to hide or show the entries
based on the new text entered. Setting the level of the item to 2 hides the entries, which is why there has to
be an entry at item position 1 that is always at level 1. (A child item must have a parent.)

Note For a combo box, the click event is not normally implemented. The selection action is performed on the
closeup event so that nothing happens until the user completes the selection action.

If the list item entry in a combo box is too long to fit in the list box portion of the control, bubble help showing the
complete text is automatically displayed over the text portion of the entry when the mouse is moved over that entry.
Bubble help is no longer displayed if the mouse is moved off that entry or after approximately three seconds.

Notes Clicking on the bubble help generates a click event for that list entry.

The automatic display of bubble help does not occur if the combo box already has bubble help defined (by using
the Window class bubbleHelp property).

To disable the automatic bubble help for a combo box, set the bubbleHelp property of that control to a space.

Keystrokes that are entered while the list box area of a combo box has focus are concatenated into a string for
searching the contents of the list box. For example, when you entering the letter T followed by the letter O, focus
goes to the entry whose text began with T and then to an entry beginning with TO, provided that you enter the
letter O within one second of the letter T. If the gap between the entry of the letters T and O is more than one
second, focus goes to an entry whose text begins with T and then to an entry beginning with O. However, if the first
character of the sequence is repeated (that is, the letter T in this example), the search finds the next entry that
starts with that character (which is treated like two T characters separated by more than one second). For
example, if you have list items 6001, 6002, 6601, and 6602 and you quickly enter 66, 6001 is first selected and
then 6002, so that you can access each list item rather than going directly from 6001 to 6601.

Note The resulting search string for a series of keystrokes can be of any length, provided there is less than one
second gap between each keystroke.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 62

EncycloWin - 2020.0.02

To implement the handling of a ComboBox control to achieve the same functionality as the default Table class
InputType_ComboBox value, only the following is required when the combo box entries are already loaded:

In the click event for the combo box:

table1.text := combo1.text

In the cellInputReady event for the table:

combo1.text := table1.text

Note For the arrays associated with combo boxes (for example, itemBackColor), the only methods that are
implemented are at, atPut (which enables you to use the square brackets notation to access the elements),
createIterator (which allows logic to do a foreach over the array), size, and size64.

For more details, see the Table class inputType and cellControl properties. See also the Control class
automaticCellControl property.

As the combo box can have the functionality of a ListBox control, see also "Setting Properties for Individual Items
in a List Box" and "Using a List Box to Display a Hierarchy or Tree", later in this document.

For a summary of the constants, properties, methods, and events defined in the ComboBox class, see
"ComboBox Class Constants", "ComboBox Properties", "ComboBox Methods", and "ComboBox Events", in the
following subsections.

For details about the support of mouse wheel requests to scroll up, down, or across a combo box control, see
"Window Class", earlier in this document.

ComboBox Class Constants
The constants provided by the ComboBox class are listed in the following table.

Constant Integer Value Constant Integer Value

DisplayCollection_Forward 0 DisplayCollection_NoPrior 0

DisplayCollection_Prior 2 DisplayCollection_Reversed 1

ItemNotFound -1 ItemPictureType_Closed 0

ItemPictureType_Leaf 2 ItemPictureType_Open 1

PictureClick_ItemPicture 4 PictureClick_KeyBoard 5

PictureClick_Picture 3 PictureClick_PlusMinus 1

PictureClick_TreeLine 2 Style_DropDown 0

Style_DropDownComboList 3 Style_DropDownList 2

Style_Simple 1 Style_SpinBox 4

ComboBox Properties
The properties defined in the ComboBox class are summarized in the following table.

Property Description

defaultLineHeight Specifies the default height of lines in a combo box independent of the font size

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 63

EncycloWin - 2020.0.02

Property Description

hasPictures Specifies whether the picture images are displayed

hasPlusMinus Specifies whether plus/minus images are displayed

hasTreeLines Specifies whether the tree lines are drawn

itemBackColor Contains the background color of each item in a combo box

itemData Contains a specific number for each item in a combo box

itemEnabled Specifies whether individual items can be enabled in a combo box

itemExpanded Contains the expansion (or collapse) status of each item

itemForeColor Contains the text color to assign to each item in a combo box

itemLevel Contains the hierarchical level of each item

itemObject Contains an object for each entry in a combo box

itemPicture Contains a picture for individual items in a combo box

itemPictureType Contains the type of picture of each item

itemText Contains the text of an item in a combo box

listIndex Contains the index of the currently selected item in the combo box

listObject Contains the associated object of the currently selected item in the combo box

listWidth Contains the width of the drop-down list box portion of the combo box

maxLength Contains how much text can be entered into the text box part of a combo box

pictureClosed Contains the qualifying picture image displayed for an entry

pictureLeaf Contains the qualifying picture image displayed for an entry

pictureMinus Contains the qualifying picture image displayed for an entry

pictureOpen Contains the qualifying picture image displayed for an entry

picturePlus Contains the qualifying picture image displayed for an entry

selLength Contains the number of characters selected in a combo box

selStart Contains the starting point of selected text

selText Contains the string containing the currently selected text

sortCased Specifies whether the sorting is case-sensitive

sorted Specifies whether the elements of a combo box are automatically sorted alphabetically

style Contains the type of combo box, and the behavior of its list box portion

text Contains the text contained in the edit area of a combo box

For details, see "Window, Form, and Control Properties", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 64

EncycloWin - 2020.0.02

ComboBox Methods
The methods defined in the ComboBox class are summarized in the following table.

Method Description

addItem Adds a new item to a combo box

addItemAt Adds a new item at a specified item index to a combo box

clear Clears the contents of a combo box

closeDropDown Closes (hides) the drop-down list of the combo box

displayCollection Attaches the specified collection to the list portion of the combo box

findObject Searches the list entries of a combo box for the object specified in the object
parameter

findString Searches the entries in a combo box for an entry with the specified string

findStringCaseSensitive Searches the entries in a combo box for an entry with the specified
case-sensitive string

findStringExact Searches the entries in a combo box for an entry that exactly matches the
specified string

findStringExactCaseSensitive Searches the entries in a combo box for an entry that exactly matches the
specified case-sensitive string

getCollection Returns the collection attached to the combo box by the displayCollection
or listCollection method

isDroppedDown Returns true if the drop-down list of the combo box is visible

itemHasSubItems Returns a Boolean value that indicates whether an item has subitems

itemVisible Returns a Boolean value that indicates whether an item is visible

listCollection Enables combo boxes to have a collection attached to them

listCount Returns the number of items in the list portion of a combo box

newIndex Returns the index of the item most recently added to a combo box

refreshEntries Refreshes the displayed list of entries in the combo box

removeItem Removes an item (and its subitems) from a combo box

showDropDown Opens (shows) the drop-down list of the combo box

For details, see "Window, Form, and Control Methods", later in this document.

ComboBox Events
The event methods defined in the ComboBox class are summarized in the following table.

Event Description

change Indicates that the contents of the control have changed

click Occurs when the user presses and then releases the left mouse button

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 65

EncycloWin - 2020.0.02

Event Description

closeup Indicates that the list portion of a combo box has closed up

contextMenu Occurs after the right mouseUp event and after the keyUp event

dblClick Occurs when the user presses and releases the left mouse button and then presses and
releases it again

displayEntry Occurs when a combo box is attached to a collection object and the text to be displayed
for an entry in the collection is required

displayRow Occurs for each entry in the collection of the list portion of the current combo box, to
display the contents of the row

dragDrop Occurs when a dragged window is dropped over a window belonging to the same
application

dragOver Occurs for each control of the application over which a window is dragged

dropDown Occurs when the list portion of a combo box is about to drop down, and returns true if the
drop-down list is visible

gotFocus Occurs when a control receives the focus

keyDown Occurs when the user presses a key while the window has the focus

keyPress Occurs when the user presses and releases an ANSI key

keyUp Occurs when the user releases a key while the window has the focus

lostFocus Occurs when a control loses the focus

mouseDown Occurs when the user presses a mouse button

mouseEnter Occurs when the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave Occurs when the user moves the mouse off a control

mouseMove Occurs when the user moves the mouse

mouseUp Occurs when the user releases a mouse button

paint Occurs when part or all of a control is exposed

pictureClick Occurs when the picture area before the text of an item is clicked with the mouse

pictureDblClick Occurs when the picture area before the text of an item is double-clicked with the mouse

scrolled Occurs when the user scrolls a combo box

sysNotify Occurs when a specified JADE system event occurs

userNotify Occurs when triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 66

EncycloWin - 2020.0.02

Folder Class
A folder control is a special container that has one or more sheets. A sheet is the same as a GroupBox control, in
that it holds a series of painted controls. One sheet only is visible at any time, but tabs for each sheet are
displayed at the top of the folder or at a user-specified edge. These tabs can be clicked to make the selected sheet
visible. When the user clicks on a tab, the corresponding sheet of the folder is displayed (that is, both the click and
the sheetChg event methods occur). A specific sheet can also be selected by using the keyboard if the caption of
the sheet includes an accelerator sequence (for example, keying Alt+C selects the sheet labeled &Customers).

A folder control provides the following standard behavior.

The Ctrl+Page Down shortcut keys move the focus of a folder to the next enabled visible sheet when that folder
or a child of the folder has focus.

The Ctrl+Page UP shortcut keys move the focus of a folder to the prior enabled visible sheet when that folder
or a child of the folder has focus.

For a user not using accessibility software (for example, Freedom Scientific's JAWS), if the form with the focus
is:

A Multiple Document Interface (MDI) form, Ctrl+Tab moves to the next MDI child form and Ctrl+Shift+Tab
moves to the previous MDI child form.

Not an MDI form, Ctrl+Tab moves to the next sheet of the folder containing the focus or to the next folder
in the tab order if the focus is not within a folder and Ctrl+Shift+Tab moves to the previous sheet of the
folder containing the focus or to the previous folder in the tab order if the focus is not within a folder.

For a user using accessibility software, regardless of whether the form is an MDI form or not, Ctrl+Tab moves
to the next sheet of the folder containing the focus or to the next folder in the tab order if the focus is not within
a folder and Ctrl+Shift+Tab moves to the previous sheet of the folder containing the focus or to the previous
folder in the tab order if the focus is not within a folder.

If a child of a Folder control has focus and the current sheet is changed, focus is moved to the folder and the
activated sheet is highlighted.

The left and right arrow keys enable you to cycle forwards and backwards through all sheets in the folder
when focus is currently on a folder.

The up and down arrow keys enable you to cycle up and down rows of sheets in the folder when focus is
currently on a folder.

The Folder control uses the same area of the screen for multiple sheets, with the user and developer able to
select the sheet that is visible.

For a form defined as a Web page, the folder control does not directly generate HTML, but the sheets of the folder
are arranged horizontally and vertically.

The Folder control provides the following features.

Choice of tab or button style for selecting the active sheet.

Sheets can be displayed with or without simulated multiple sheet edges.

Tabs can be displayed in multiple lines or in a single scrollable line.

Tabs can be variable or fixed in size.

Tabs can be stretched to fill each tab line or left as a ragged edge.

The height of the tab area can be controlled or even hidden, if required.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 67

EncycloWin - 2020.0.02

Icons can be assigned to each sheet and displayed on the appropriate tab. JADE creates a large and a small
icon for use with a form if they are present in the icon file when the app.icon and form.icon properties are
set.

The alignment of the icon and the text on the tabs can be controlled.

For a Folder control with the tabsStyle property set to Folder.TabsStyle_Buttons, tabs are drawn using the skin
of the Button control if the application has defined a button skin. As the Folder class is a subclass of the Control
class, it inherits all of the properties and methods defined in the Control class and the Window class. In the JADE
Painter, a folder has two sheets by default. Deleting a sheet also deletes all controls on that sheet.

For details about the support of mouse wheel requests to scroll up, down, or across a folder control, see "Window
Class", earlier in this document.

To addmore sheets

1. Select the folder.

2. Click the sheet button.

3. Click on the tabs area of the folder.

To display a specific sheet

Click the tab of the appropriate sheet

Controls can then be painted on that sheet in the normal way.

Note The sheets in the folder are ordered according to their tabIndex values.

For a summary of the constants, properties, methods, and events defined in the Folder class, see "Folder Class
Constants", "Folder Properties", "Folder Methods", and "Folder Events", in the following subsections.

Folder Class Constants
The constants provided by the Folder class are listed in the following table.

Constant Integer Value Constant Integer Value

TabsAlignment_Center 0 TabsAlignment_IconLeft 2

TabsAlignment_Left 1 TabsLines_MultiLine 1

TabsLines_MultiLineEdged 0 TabsLines_SingleLine 2

TabsPosition_Bottom 3 TabsPosition_Left 1

TabsPosition_Right 2 TabsPosition_Top 0

TabsStyle_Buttons 1 TabsStyle_RightSloped 2

TabsStyle_Tabs 0

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 68

EncycloWin - 2020.0.02

Folder Properties
The properties defined in the Folder class are summarized in the following table.

Property Description

tabActiveColor Contains the color drawn for the active tab of multiple sheet folders

tabInactiveColor Contains the color drawn for the inactive tabs of multiple sheet folders

tabsAlignment Contains the placement of the icon and text in the tab

tabsFixedWidth Contains the width of tabs

tabsHeight Contains the height of each line of tabs

tabsLines Specifies whether the tabs are displayed in multiple or single lines

tabsPosition Contains the position of folder tabs

tabsRaggedRight Specifies whether the tabs in a line are stretched to fill the available space for the tab
line

tabsStyle Specifies whether a folder control is displayed with sculptured tabs or push buttons

topSheet Contains the sheet that is currently visible

For details, see "Window, Form, and Control Properties", later in this document.

Folder Methods
The methods defined in the Folder class are summarized in the following table.

Method Description

canHaveAsChild Returns whether the control can be placed on the folder, to ensure that only sheets
are placed on folders

dragSheet Returns the sheet of the tab that corresponds to the x and y location of the drag
operation

sheets Returns the number of sheets

Additionally, the methods summarized in the following table are defined in the Control superclass.

Method Description

isMySheetVisible Determines if the sheet on which it is placed is the current visible sheet

showMySheet Makes the sheet on which it is placed the top sheet

For details, see "Window, Form, and Control Methods", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 69

EncycloWin - 2020.0.02

Folder Events
The event methods defined in the Folder class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and
releases it again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

gotFocus When a control receives the focus

keyDown When the user presses a key while the control has the focus

keyPress When the user presses and releases an ANSI key

keyUp When the user releases a key while the control has the focus

lostFocus When a control loses the focus

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for
one second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

querySheetChg Before the user causes a sheet change using the keyboard or mouse, to give the logic
the opportunity of rejecting the change

sheetChg When the user clicks on the tab of a sheet of a folder that is not currently the top sheet, to
enable that sheet to become visible

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Frame Class
The Frame control provides a way of grouping controls in a container, aligning the frame positionally or by size
within its container, and for the use of three-dimensional effects.

Frame text is displayed in the area bounded by the three-dimensional (3D) borders. If the borders are too large,
the text area of the frame may not exist and no text is displayed.

Note The StatusLine control is a variation on the Frame control.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 70

EncycloWin - 2020.0.02

The frame can be a container for groups of controls. Use a frame or a group box when multiple groups of option
buttons are required on the same form. An option button toggles other option buttons within the same container.

The frame (and the status line control) has several custom properties that enable you to adjust the three-
dimensional appearance of the control.

To add controls to a frame

1. Select the frame in the Painter.

2. Draw the new controls inside the frame.

When the frame is moved, all of the child controls move with it. The top and left position of the child controls are
relative to the internal area of the frame (that is, the client area).

For details about three-dimensional effects, see "Three-Dimensional Effects in Frame Controls", in the following
subsection. For details about docking frame controls, see the JadeDockBar, JadeDockBase, and
JadeDockContainer classes, later in this document.

For a summary of the constants, properties, methods, and events defined in the Frame class, see "Frame Class
Constants", "Frame Properties", "Frame Methods", and "Frame Events", later in this section.

Three-Dimensional Effects in Frame Controls
The following image is an example of three-dimensional (3D) effects in a Frame control:

The following table lists the properties defined in the Frame class that enable you to create three-dimensional
effects.

Region Property Description

Black border borderStyle The frame can be enclosed with a border.

Outer bevel rectangle bevelOuter, bevelOuterWidth The outer bevel can be empty, inset, or raised.

Second outer rectangle boundaryWidth,
boundaryColor,
boundaryBrush

The boundary region between the inner and the
outer bevels can be empty. It can also be a plain
color or a dotted pattern.

Inner bevel rectangle bevelInner, bevelInnerWidth The inner bevel can be empty, inset, or raised.

Half of outer and inner
bevel rectangles

bevelColor The color of the bevel section. The position
depends on whether the bevel is inset or raised.

Half of outer and inner
bevel rectangles

bevelShadowColor The color of the bevel shadow section. The position
depends on whether the bevel is inset or raised.

Rectangle containing
text

backColor, alignment, caption,
foreColor

The actual client area of the frame surface, where
any child controls are placed.

A frame also has properties that are designed to automatically resize the frame and its children when the
container of the frame is resized. For a frame or status line control, the position (0,0) is the top left of the area
inside the 3D frame. Controls with the frame as its parent are not painted in the border area.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 71

EncycloWin - 2020.0.02

Note The position (0,0) is the top left corner of the client area. Mouse positions are also relative to this, and
negative position values may result when the mouse is in the top or left border area.

Frame Class Constants
The constants provided by the Frame class are listed in the following table.

Constant Integer Value Constant Integer Value

AlignChildren_All 2 AlignChildren_None 0

AlignChildren_Width 1 AlignContainer_AllHorizontal 5

AlignContainer_AllVertical 6 AlignContainer_All 5

AlignContainer_Bottom 2 AlignContainer_None 0

AlignContainer_Stretch 4 AlignContainer_Top 1

AlignContainer_Width 3 Alignment_Center_Bottom 8

Alignment_Center_Middle 7 Alignment_Center_Top 6

Alignment_Left_Bottom 2 Alignment_Left_Middle 1

Alignment_Left_Top 0 Alignment_Right_Bottom 5

Alignment_Right_Middle 4 Alignment_Right_Top 3

Bevel_Inset 1 Bevel_None 0

Bevel_Raised 2 BoundaryBrush_Dotted 1

BoundaryBrush_Solid 0

Frame Properties
The properties defined in the Frame class are summarized in the following table.

Property Description

alignChildren Specifies whether child controls placed inside the frame are aligned

alignContainer Specifies whether the control aligns itself to its parent container so that the frame
automatically resizes with the container

alignment Contains the alignment of the text in a control

allowDocking Controls the type of docking that is allowed by the window

bevelColor Contains the color used to paint the bevel areas of a 3D control

bevelInner Contains the style of the inner bevel of the frame and status line controls

bevelInnerWidth Contains the width of the bevel along the four sides of the frame to determine the
height of the three-dimensional shadow effect

bevelOuter Contains the style of the outer bevel of the frame

bevelOuterWidth Contains the width of the bevel along the four sides of the frame to determine the
height of the three-dimensional shadow effect

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 72

EncycloWin - 2020.0.02

Property Description

bevelShadowColor Contains the color used to paint the bevel areas of a 3D control

boundaryBrush Specifies whether the boundary area is a plain color or is painted with a dotted brush

boundaryColor Contains the color of the boundary area

boundaryWidth Contains the width of the boundary area

caption Contains the text displayed in the title bar

clipControls Specifies whether the Windows environment creates a clipping region that excludes
controls contained by the object

transparent Causes the control to be placed above all other sibling controls and the controls
underneath to be visible

wordWrap Specifies whether text displayed in a caption advances to the next line when the
current line is filled

For details, see "Window, Form, and Control Properties", later in this document.

Frame Methods
The methods defined in the Frame class are summarized in the following table.

Method Description

clearHTML Clears previously generated HTML code from the frame

writeHTML Generates HTML code when a Web session is active, or outputs the frame to the printer if
there is no active Web session

For details, see "Window, Form, and Control Methods", later in this document.

Frame Events
The event methods defined in the Frame class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and releases it
again

dragDrop When a dragged window is dropped over a control belonging to the same application

dragOver For each control of the application over which a window is dragged

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 73

EncycloWin - 2020.0.02

Event Occurs…

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

GroupBox Class
The group box control provides a way of grouping controls in a container.

Group box text is drawn within the top border.

The GroupBox class can be a container for groups of controls. Use a GroupBox class when multiple groups of
option buttons are required on the same form. An option button toggles other option buttons within the same
container.

To add controls to a group box

1. Select the group box in the Painter.

2. Draw the new controls inside the group box.

When the group box is moved, all of the child controls move with it. The top and left position of the child controls
are relative to the internal area of the group box (that is, the client area).

The GroupBox control class provides the Sheet subclass.

For a summary of the properties, methods, and events defined in the GroupBox class, see "GroupBox Properties",
"GroupBox Methods", and "GroupBox Events", in the following subsections.

GroupBox Properties
The properties defined in the GroupBox class are summarized in the following table.

Property Description

caption Contains the text displayed in the title bar

clipControls Specifies whether the Windows environment creates a clipping region that excludes controls
contained by the object

transparent Causes the control to be placed above all other sibling controls and the controls underneath
to be visible

For details, see "Window, Form, and Control Properties", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 74

EncycloWin - 2020.0.02

GroupBox Methods
The methods defined in the GroupBox class are summarized in the following table.

Method Returns false to specify that the control cannot be…

isMoveable Moved in the JADE Painter

isSizeable Resized in the JADE Painter

For details, see "Window, Form, and Control Methods", later in this document.

GroupBox Events
The event methods defined in the GroupBox class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and releases it
again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

JadeDockBar Class
The JadeDockBar control class is a subclass of the JadeDockBase class. The JadeDockBar control is intended
as a container for a logical grouping of other standard JADE controls that can be dragged and docked at another
position on the form or it can be floated.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 75

EncycloWin - 2020.0.02

The JadeDockBar control provides the following functionality.

The control is a container for other controls.

The ability to define a border with borderStyle property value of the:

Window class constant BorderStyle_None (0) or BorderStyle_Single (1)

Control class constant BorderStyle_3DRaised (3) or BorderStyle_3DSunken (2)

The ability to define extra spacing in the border area to the left, top, right, and bottom positions.

The ability to define how it is aligned to its parent container (that is, none, top, bottom, left, right, all vertical, or
all horizontal). For details, see the form example in the image in the JadeDockBase class alignContainer
property and the JadeDockBase class drawGrip property.

The ability to define whether a grip bar is drawn on the control. The grip is drawn vertically, unless the control
or its parent is aligned left or right, in which case it is drawn horizontally. The grip bar provides the user with a
visible area on which to click for dragging.

The ability to define whether the control can become a floating window, and if so, what type of floating
window (that is, one that can or cannot be closed). The control must also have visible children before it can
be floated or dragged. If the control is allowed to become a floating window, by definition it could also be
dragged and docked into another window.

The caption displayed in its floating window.

The ability to dock the control into any docking position (with one exception), regardless of the value of its
alignContainer property. The docking control then adopts the new alignContainer property value implied by
the docking mode. For details, see the alignContainer property.

The ability to define whether resize bars can be added to the control. Resize bars allow the user to drag that
bar to increase or decrease the size of the control. A resize bar is displayed on the:

Right of the control if all of the controls that border the control on the right and that share the same
parent know how to handle a user resize and they fill the entire right edge. (For details, see the
alignChildren property.)

Bottom of the control for most cases if all of the controls bordering that control on the bottom edge and
that share the same parent know how to handle a user resize and they fill the entire edge. (For details,
see the JadeDockBase class alignContainer property.)

The ability to define whether the children of the control are aligned. The possible values for the alignChildren
property of the JadeDockBar control are AlignChildren_None, AlignChildren_AllHorizontal,
AlignChildren_AllVertical, and AlignChildren_Auto.

Automatic alignment means that the control repositions its children in the order of the tabIndex property, to
achieve the minimum size that is required. The control is also automatically sized to show all of the children.

Where the alignment of a child control within a container (using the alignContainer property) conflicts with
the how the container specifies the child control should be aligned (using the alignChildren property), the
alignContainer specification takes precedence.

The ability to define the number of pixels between each control horizontally and vertically when automatic
child alignment is on.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 76

EncycloWin - 2020.0.02

A JadeDockBar control with a non-zero value of the alignChildren property does not need a
JadeDockContainer control as its parent. It can be floated and docked by itself. However, to be able to re-
dock the control after floating, it must have a target Form, Frame, or JadeDockContainer control that will
accept its presence.

Note If the control is a JadeDockBar control with an AlignChildren_None (0) value of the alignChildren
property and it is being docked at the top, left, bottom, or right position of a Form or Frame control, it requires
a JadeDockContainer control as its parent. Such a control is created (as a JADE object by cloning the
original JadeDockContainer control parent of the dock bar or by creating a new one), unless the original
JadeDockContainer is available as a hidden control (with the visible property set to false). The
JadeDockContainer control is aligned as required and assigned as a child of the window into which it is
being docked. The JadeDockBar control is made a child of the JadeDockContainer control.

The parentAspect property is ignored for a JadeDockBar control except when the container has the
alignChildren property set to AlignChildren_None (0). This setting means that it is your responsibility to
position the children. All other settings cause the children to be automatically positioned.

The ability to programmatically float the control.

The ability to programmatically determine whether the control is floating.

The ability to programmatically determine the floating position of the floating form.

For a summary of the constants, properties, and event methods defined in the JadeDockBar class, see
"JadeDockBar Class Constants", "JadeDockBar Properties", and "JadeDockBar Events", in the following
subsections. See also the JadeDockBase and JadeDockContainer control classes.

JadeDockBar Class Constants
The constants provided by the JadeDockBar class are listed in the following table.

Class Constant Value Class Constant Value

AlignChildren_AllHorizontal 1 AlignChildren_AllVertical 2

AlignChildren_Auto 3 AlignChildren_None 0

JadeDockBar Properties
The properties defined in the JadeDockBar class are summarized in the following table.

Property Description

alignChildren Controls the alignment of the children within the control

autoSpacingX Determines the horizontal spacing (in pixels) between each child in the control

autoSpacingY Determines the vertical spacing (in pixels) between each child in the control

For details, see "Window, Form, and Control Properties", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 77

EncycloWin - 2020.0.02

JadeDockBar Events
The event methods defined in the JadeDockBar class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and releases it
again

docked When the user has caused a control to be docked

dragDrop When a dragged window is dropped over a control belonging to the same application

dragOver For each control of the application over which a window is dragged

floated When the user has caused a control to float

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

queryDock When the user drags a docking control into a valid docking position accepted by the
JadeDockContainer class allowDocking property of the window

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

userResize When the user drags the resize bar of the dock control to a new position or resizes a floating
window

For details, see "Window, Form, and Control Events", later in this document.

JadeDockBase Class
The JadeDockBase control is an abstract superclass of the JadeDockBar and JadeDockContainer classes.
Most of the functionality for the two control subclasses is defined in the JadeDockBase class. The two docking
subclasses are very similar in operation and differ mostly in regard to the default values for the properties, the way
that the children are aligned, and whether docking is allowed within the control subclass.

The control subclasses are as follows.

A JadeDockBar control is a container for other standard JADE controls and it defines the logical unit that
can be dragged and floated.

A JadeDockContainer control is a container for JadeDockBar controls that are not aligned to their container
but can also be used in many other circumstances. This control can also be dragged and floated.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 78

EncycloWin - 2020.0.02

Note As docking and floating features are not available in Web forms, you should treat docking controls in the
same way as a Frame control.

You can use control docking if you want to drag a docking control (and all of its children) to a new position on the
form or to cause that control to float in an independent floating window.

The horizontal and vertical minimum and maximum sizes of controls are always honored. This can mean that the
client area of the parent may not be filled or the controls may not all fit the client area if all of the children have the
horizontal and vertical maximum and minimum sizes set. If at least one child does not have a maximum or
minimum size set, the filling of the client area of the parent occurs.

Docking controls enable you to have multiple StatusLine controls, multiple Frame controls aligned to the top or
bottom of the form, to align all controls that use the space remaining on the parent, and to align all multiple
controls in the same parent so that they share the space remaining after other siblings have been aligned.

Although docking and floating functionality is usually associated with the painter and tool-type actions, you can
utilize this functionality in many other situations.

For a summary of the constants, properties, and methods defined in the JadeDockBase class, see
"JadeDockBase Class Constants", "JadeDockBase Properties", and "JadeDockBase Methods", in the following
subsections. See also "Floating a Docking Control" and "Docking a Control", later in this section.

JadeDockBase Class Constants
The constants provided by the JadeDockBase class are listed in the following table.

Class Constant Value Class Constant Value

AlignContainer_AllHorizontal 5 AlignContainer_AllVertical 6

AlignContainer_Bottom 2 AlignContainer_Left 3

AlignContainer_None 0 AlignContainer_Right 4

AlignContainer_Top 1 DrawGripBar_Double 2

DrawGripBar_None 0 DrawGripBar_Single 1

FloatingStyle_Close 1 FloatingStyle_NoClose 2

FloatingStyle_None 0

JadeDockBase Properties
The properties defined in the JadeDockBase class are summarized in the following table.

Property Description

alignContainer Controls how the control is aligned within its parent container so that the control
automatically resizes with its container

borderStyle Contains the border style for the control

borderHeightBottom Indicates how many extra pixels are drawn in the border area at the bottom of the
control

borderHeightTop Indicates how many extra pixels are drawn in the border area at the top of the control

borderWidthLeft Indicates how many extra pixels are drawn in the border area at the left of the control

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 79

EncycloWin - 2020.0.02

Property Description

borderWidthRight Indicates how many extra pixels are drawn in the border area at the right of the
control

caption Determines the caption of the floating form parent of the control

drawGrip Indicates whether a grip bar is drawn in the border area of the control

floatingStyle Determines whether the control can be floated and dragged

maximumHeight Specifies the maximum height of the control in pixels

maximumWidth Specifies the maximum width of the control in pixels

minimumHeight Specifies the minimum height of the control in pixels

minimumWidth Specifies the minimum width of the control in pixels

showResizeBar Defines whether resize bars can be added to the control

For details, see "Window, Form, and Control Properties", later in this document.

JadeDockBase Methods
The methods defined in the JadeDockBase class are summarized in the following table.

Method Description

centreWindow Centers the docking control

float Causes the docking control to be floated by creating a floating form at the specified
screen position

getFloatingPosition Returns the most recent screen position and size of the floating form on which the
control resides

isFloating Returns whether the dock control is the first child of a floating form

For details, see "Window, Form, and Control Methods", later in this document.

Floating a Docking Control
To float a docking control

1. Left-click the mouse on any part of the docking control.

2. Drag the control to a non-docking position (indicated by a double dotted border on the dragging rectangle).

3. Release the mouse.

Alternatively, you can also float a control by clicking on the docking control, dragging the control while holding
down the Ctrl or Shift key, and then releasing the mouse. The Ctrl key causes the floating window to adopt its
current horizontal size and the Shift key causes the floating window to adopt the smallest possible horizontal size.

The JadeDockBase class drawGrip property optionally displays a grip bar on the control so that it is easier for the
user to click on the control. It can also indicate to the user that the control can be dragged.

Note Pressing the Esc key before releasing the mouse abandons the dragging process so that docking or
floating does not occur.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 80

EncycloWin - 2020.0.02

A docking control can be floated only if its floatingStyle property is not FloatingStyle_None (0) and it has visible
children. If the floating style is FloatingStyle_None (0), the control is then effectively just another container with
additional alignment capabilities.

Floating a docking control causes the following actions.

A new form is created at the position and size shown by the last dragging rectangle. This form has no
associated JADE object. The position is modified only if it is necessary to ensure that the top and left position
of the form is on the screen.

Like the Form class setFormParent method, the form is created as a child of the original form. The floating
form therefore always sits above the JADE form on the screen. Minimizing the JADE form also minimizes the
floating form. No entry is displayed on the taskbar for the form.

The caption for the docking control is used as the title of the form. The caption line of the form is slightly
smaller than that of a standard JADE form.

The docking control becomes a child of this form. The control does not display any border area (including the
grip bar) while it is floating. However, any children of the control are displayed normally.

The floatingStyle property of the JadeDockBase class controls whether the form has a Close button.

If the parent of the control is a JadeDockContainer control and the control that is being floated is the only
visible child, the parent JadeDockContainer control is made invisible.

As the Control class parent property of the docking control is a child of the floating form and has no JADE
object associated with it, it is set to null. However, the Control class form property remains set to the original
JADE form. Use the JadeDockBase class isFloating method of the docking control to determine whether the
control is on a floating form.

The position and size of the controls on the form are re-evaluated for the effects on their alignments caused
by the removal of the control from the form.

The floated event method of the docking control is called when the floating process has completed, enabling
you to make the required programmatic adjustment to the JADE form.

Floating a docking control causes the form to re-evaluate the alignment of controls affected by the control that is
being removed from the form. Floating a control does not cause the form size to be changed or non-aligned
controls to be repositioned.

The userResize event method is called on a floating JadeDockBar or JadeDockContainer control if a user
resizes a floating form (JadeDockBase control). If you want to differentiate between the userResize event being
called when the user drags the resize bar of a control and when the user has resized the floating window, call the
isFloating method.

To handle the removal of the docking control from the form, you should place other non-aligned controls on a
Frame control that has the alignContainer property set to AlignContainer_All (5) and that is a sibling of the
docking control. The alignContainer property automatically handles many floating and docking requirements. (For
details, see the alignContainer property.)

If the form is an MDI frame, by default, the MDI client window that hosts the MDI child forms is automatically
repositioned and resized (unless Form::moveMdiClient has been called, in which case it is your responsibility to
handle this in your logic).

When floating docking controls, you should be aware of the following.

All controls on the floating form logically belong to the original JADE form so that all logic associated with
those controls is executed.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 81

EncycloWin - 2020.0.02

The floating form passes only the gotFocus, lostFocus, keyDown, keyUp, and keyPress events to the
parent JADE form. All other events on the floating form are ignored.

The original JADE form and its floating forms are activated when any of those forms is activated.

Accelerator keys function for controls that reside on the floating form.

The Tab key cannot be used to switch between the JADE form and the floating form.

Any number of docking controls can become floating windows.

You can float a docking control programmatically, by using the JadeDockBase class float method.

All JADE forms are constructed with all controls attached to a form in the JADE Painter. Floating a control can
be done only by the user or dynamically by logic at run time.

Clicking on the caption of a floating form enables the floating form to be dragged. Holding the Shift key down
causes the size of the dragging rectangle to toggle between the controls being positioned horizontally and
vertically after releasing the mouse.

The size of the floating form is always the minimum that is required to host the docking control in its current
alignment. The form can be resized only if the controls within the docking control can be automatically
repositioned or if the alignContainer property of the docking control is set to AlignContainer_AllHorizontal
(5) or AlignContainer_AllVertical (6).

The floating form can only be resized in one direction at a time.

If the form does not have a Close button, the form is destroyed only when the control is re-docked
somewhere else or when the JADE form is closed.

If the floating form has a Close button and it is closed, the docking control is transferred back to being an
invisible child of the original JADE form and requires a JADE logic action to make the control visible to the
user again.

The dock control that is being hidden receives a docked event. To determine this situation, check the value
of the visible property of the control.

Use the JadeDockBase class getFloatingPosition method to obtain the most recent size and position of the
floating form.

You can re-dock floating controls by using logic to change the parent of the control parent back to a window
of the JADE form.

A floating JadeDockContainer control can also be docked; that is, another docking control could be docked
into the floating window if the floating dock control allows such a docking.

Before a docking container can be floated, it must have visible children.

Docking a Control
Docking a control changes the parent of the control and it may alter the alignment of the control to its parent.

To dock a docking control

1. Left-click the mouse on any part of the docking control.

2. Drag the control to a docking position (indicated by a single-line border on the dragging rectangle).

3. Release the mouse.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 82

EncycloWin - 2020.0.02

A docking rectangle is drawn in the approximate docking position that will result when the mouse is released.
Holding down the Ctrl or Shift key ensures that a floating window will result. The Ctrl key causes the floating
window to adopt its current horizontal size and the Shift key causes the floating window to adopt the smallest
horizontal size possible.

The JadeDockBase control provides a drawGrip property that optionally displays a grip bar on dock controls to
make it easier for the user to click on the control and possibly indicating to the user that the control can be
dragged.

Notes Pressing the Esc key before releasing the mouse abandons the dragging process and no docking or
floating results.

The only Window subclasses that accept docking are Form, Frame, and JadeDockContainer classes. The
allowDocking property of these classes defines the type of docking that the window allows.

When a user drags a control around on the form, the process drills down through the windows under the mouse
position to assess whether the windows are possible docking targets and whether that type of docking is allowed
(for example, docking on the left of the window). This occurs even if non-eligible children cover the window.

If an eligible window is located, the queryDock event method is called for the docking control that is being
dragged. That event passes the window with which docking is being requested and the type of docking. The
queryDock event method must return whether the docking is accepted or rejected. If the method is not
implemented, docking is accepted by default. The queryDock method allows you stricter control over what control
can be actually docked where. The dragging rectangle is drawn in a way to indicate docking is possible only
when the queryDock method returns true. The queryDock event method is called only once for each potential
docking candidate and docking position combination during a dragging episode.

When a user drags a control and releases the mouse in a docking position, the following occurs.

1. The parent of the control is changed to the window that is accepting the docking.

2. The value of the alignContainer property of the control that is being docked is changed to the docking type.

3. If the control is the only visible child of a floating form, the floating form is destroyed.

4. If the control is the only visible child of a JadeDockContainer control, that container is hidden.

5. The position and size of the controls on the form are re-evaluated for the effects on their alignments caused
by the removal of the control from the form.

Note You can dock a JadeDockBar or JadeDockContainer control into any docking position (with one
exception), regardless of the value of its alignContainer property. The docking control then adopts the new
alignContainer property value implied by the docking mode. The exception is that a JadeDockBar control
that has its alignContainer property set to AlignContainer_None cannot be docked AlignContainer_
AllHorizontal or AlignContainer_AllVertical.

A JadeDockBar control whose alignContainer property is set to AlignContainer_None is mostly useful as a
toolbar sitting on a JadeDockContainer control as its parent and when docked somewhere else, it remains
at its current size or the size derived from its children if the value of the alignChildren property is set to
AlignChildren_Auto. Even when dragged and docked left, right, top, or bottom, it requires
JadeDockContainer control as its parent. If it is not docked into a JadeDockContainer control, it clones its
original JadeDockContainer parent or creates a new JadeDockContainer control if it did not have one.

In addition, if the JadeDockBar control alignChildren property is not set to AlignChildren_Auto and the
width of the control is greater that its height and the control is dragged to a left or right docking position (and
it is not currently docked left or right), the values of width and height properties are exchanged when
considering the docking position.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 83

EncycloWin - 2020.0.02

Similarly, if the height of the control is greater than its width and the control is dragged to a top or bottom
docking position (and it is not currently docked top or bottom), the values of width and height properties are
exchanged when considering the docking position. This is necessary because the control does not know
how to resize itself. For example, if the control were docked at the top and then dragged to the left position
and these exchanges were not done, the control would retain its current width, stretch its height, and
therefore probably use all of the space in its parent.

6. The docked event method of the JadeDockBar or JadeDockContainer control that is being docked is
called on completion of the process, allowing any JADE logic adjustments that may be required.

Floating a docking control causes the form to re-evaluate the alignment of controls affected by the control being
removed from the form. Floating a control does not cause the form size to be changed or a non-aligned control to
be repositioned.

To handle the removal of the docking control from the form, you should place other controls on a Frame control
that is aligned ‘all’ and that is a sibling of the docking control. For details, see the alignContainer property.

If the form is an MDI frame, the MDI client window that hosts the MDI child forms will be automatically repositioned
and resized by default (unless Form::moveMdiClient has been called, in which case it is your responsibility).

The rules for displaying a resize bar to the right or on the bottom of JadeDockBar and JadeDockContainer
controls when the value of the showResizeBar property is true are as follows.

A resize bar is displayed on the right of the control if all of the controls that border the control on the right and
that share the same parent know how to handle a user resize and they fill the entire right edge. The specific
cases handled are:

The value of the alignContainer property is AlignContainer_AllVertical and there is another control
with the same parent directly to its right (this could be a JadeDockBar, JadeDockContainer, or a
Frame control) and whose alignContainer property is also set to AlignContainer_AllVertical.

The control is a JadeDockBar control, the value of the alignContainer property is AlignContainer_
Left, the value of its alignChildren property is not set to AlignChildren_Auto (otherwise the control
automatically resizes), and there is another JadeDockBar control with the same parent directly to its
right with the value of the alignContainer property also set to AlignContainer_Left and its
alignChildren property also not set to AlignChildren_Auto.

Note A left-aligned JadeDockContainer control cannot do this, because it always resizes the control
to the required minimum width.

The control is a JadeDockBar, the value of the alignContainer property is AlignContainer_Left, the
value of its alignChildren property is not AlignChildren_Auto (otherwise the control automatically
resizes), and all controls bordering the right edge with the same parent have the value of the
alignContainer property set to AlignContainer_Top, AlignContainer_Bottom, AlignContainer_
AllHorizontal, or AlignContainer_AllVertical and there is at least one AlignContainer_AllHorizontal or
AlignContainer_AllVertical aligned control.

Note A StatusLine control is aligned AlignContainer_Bottom by default.

A resize bar is displayed on the bottom of the control for most cases if all of the controls bordering that control
on the bottom edge and that share the same parent know how to handle a user resize and they fill the entire
edge. The specific cases handled are:

The value of the alignContainer property is AlignContainer_AllHorizontal and there is another control
with the same parent directly below the control (this could be a JadeDockBar, JadeDockContainer, or
a Frame control) and whose alignContainer property is also set to AlignContainer_AllHorizontal.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 84

EncycloWin - 2020.0.02

The control is a JadeDockBar control, the value of the alignContainer property is AlignContainer_Top,
the value of its alignChildren property is not set to AlignChildren_Auto (otherwise the control
automatically resizes), and there is another JadeDockBar control with the same parent directly below it
with the value of its alignContainer property also set to AlignContainer_Top and its alignChildren
property also not set to AlignChildren_Auto.

Note A top-aligned JadeDockContainer control cannot do this, because it always resizes the control
to the required minimum height.

The control is a JadeDockBar, the value of the alignContainer property is AlignContainer_Top, the
value of its alignChildren property is not AlignChildren_Auto (otherwise the control automatically
resizes), and all of the controls bordering the bottom edge with the same parent with the values of the
alignContainer property also set to AlignContainer_Left, AlignContainer_Right, AlignContainer_
AllHorizontal, or AlignContainer_AllVertical and there is at least one AlignContainer_AllHorizontal or
AlignContainer_AllVertical aligned control.

Note To restore the form view without a resize bar, set the value of the showResizeBar property to false in the
JADE Painter or in your JADE code.

When using docked controls, you should be aware of the following points.

A dock container must have visible children before it can be dragged.

A dock control can be docked only in its original parent form. It cannot be docked into another form because
the logic associated with the control has been compiled against the original form.

A control can be moved from a floating window by changing its parent in your JADE code.

A floating JadeDockContainer control is also a candidate for docking; that is, another docking control can be
docked into the floating window if the floating dock control allows such a docking.

Unless you set the appropriate values of the JadeDockContainer, Frame, or Form class allowDocking
property for containers, a floated control does not have any suitable docking position available.

A docking control that is aligned to its parent by using the alignContainer property will not scroll and it
remains in place in its parent when the scroll bar of the parent is shifted. The control therefore remains visible
and unchanged when the scroll bar of the parent is adjusted.

Parent windows are evaluated as docking targets if their children are not valid targets, they do not have the
appropriate allowDocking permission, or if the queryDock event method request of the child is rejected.

JadeDockContainer Class
The JadeDockContainer control class is a subclass of the JadeDockBase class and is intended as a container
for JadeDockBar controls. The JadeDockContainer control provides functionality that is very similar to that of a
JadeDockBar control, with the following differences.

Children of the JadeDockContainer control that have no alignContainer property setting are automatically
positioned into rows if the control is aligned horizontally or into columns if the control is aligned vertically.

The children (which are usually JadeDockBar controls) are shifted if they overlap or if the container can
shrink the number of rows or columns that are required.

The spacing between the children cannot be defined.

The control allows docking, depending on the value of its allowDocking property.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 85

EncycloWin - 2020.0.02

The control allows docking when floating, depending on the value of its allowDocking property.

The control has different initial values for the JadeDockBase class floatingStyle, drawGrip, and
alignContainer properties.

The JadeDockContainer control is hidden when the last visible child of the control is removed, floated, or
docked elsewhere.

The control is reused and reinstated if a previous child JadeDockBar control that has no alignContainer
property setting is docked into a top, bottom, left, or right position again. The container adopts the
alignContainer property value implied by the docking and the JadeDockBar is made a child of the
container.

For more details, see the JadeDockBar class. For examples of docking containers, see "Multiple Group Toolbar
Example" and "Multiple Group Toolbar on a Non-MDI Form Example", and "Using Align All with Multiple Panes",
under the allowDocking property.

For a summary of the property and event methods defined in the JadeDockContainer class, see
"JadeDockContainer Property" and "JadeDockContainer Events", in the following subsections. See also the
JadeDockBase control class.

JadeDockContainer Property
The property defined in the JadeDockContainer class is summarized in the following table.

Property Description

allowDocking Controls the type of docking that is allowed by the window

For details, see "Window, Form, and Control Properties", later in this document.

JadeDockContainer Events
The event methods defined in the JadeDockContainer class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and releases it
again

docked When the user has caused a control to be docked

dragDrop When a dragged window is dropped over a control belonging to the same application

dragOver For each control of the application over which a window is dragged

floated When the user has caused a control to float

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 86

EncycloWin - 2020.0.02

Event Occurs…

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

queryDock When the user drags a docking control into a valid docking position accepted by the
JadeDockContainer class allowDocking property of the window

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

userResize When the user drags the resize bar of the dock control to a new position or resizes a floating
window

For details, see "Window, Form, and Control Events", later in this document.

JadeDotNetVisualComponent Class
The JadeDotNetVisualComponent class is the superclass for classes that are proxies for GUI .NET classes; that
is, .NET controls. This enables you to use existing third-party functions such as highly specialized controls within
your JADE applications.

The corresponding .NET object is created in one of three ways, as follows.

When the control is dropped onto a form in the JADE Painter

When a form (with the .NET control) is loaded at run time

When the addControl method of the Form class is used to add a dynamically created control

Some controls include a designer, which is usually a form that enables you to set the properties of the control.
These are particularly useful when the control is made up of a number of sub-controls or when properties have
dependencies on other properties. The first time a control with a designer is dropped onto a form in the JADE
Painter, the designer form is displayed. When the designer form is closed, the control modified by the designer is
shown on the form being painted.

When a control with a designer has been displayed in the JADE Painter, the designer can usually be reactivated
by using the context menu. The context menu in the JADE Painter can include up to 10 extra entries
corresponding to the first 10 available designer verbs when it is activated over a .NET control. These are options
defined in the designer that perform various designer options, including re-activating the designer, or altering the
control in some way.

Transparent sibling controls are always painted before a JadeDotNetVisualComponent control, regardless of
their zOrder settings. It is not possible to handle the painting of transparent controls in the correct zOrder when
some controls are directly painted by JADE and others are painted by Windows separately.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 87

EncycloWin - 2020.0.02

When you import a .NET assembly that contains controls into JADE, an abstract class of the specified assembly
name is created as a subclass of the JadeDotNetVisualComponent class. This abstract class becomes the
superclass for all of the control classes that are subsequently generated, corresponding to controls in the imported
.NET assembly, as shown in the following image.

JadeDotNetVisualComponent subclasses inherit all of the standard properties and methods of the Window and
Control classes, although not all of these inherited properties and methods have meaning to the control. (For a
caveat on SVG files when printing JadeDotNetVisualComponent controls, see "Portable Printing" under "Printer
Class", in Chapter 1 of the JADE Encyclopaedia of Classes.)

To refresh a .NET control that has changed but is already imported into JADE, simply import the .NET assembly
again and give it the same name that it had previously.

An imported .NET control is added to the Control palette of the JADE Painter and cannot be distinguished from
standard JADE-supplied controls.

The JadeDotNetVisualComponent class is supported on forms defined as Web pages only when running on a
Microsoft Internet Explorer browser.

Note In JADE thin client mode, .NET controls run only on the presentation client.

For a summary of the JADE method defined in the JadeDotNetVisualComponent class, see
"JadeDotNetVisualComponent Class Method", in the following subsection. (Refer to your .NET documentation for
details about properties, methods, or constants provided by imported .NET assembly.)

JadeDotNetVisualComponent Class Method
The method defined in the JadeDotNetVisualComponent class is summarized in the following table.

Method Description

createEventNameMap Defines a mapping between .NET events and JADE methods to be invoked

For details, see "Window, Form, and Control Methods", later in this document.

JadeEditMask Class
The JadeEditMask class is a subclass of the Control class and inherits all of the properties and methods defined
in the Control and Window classes. The JadeEditMask class provides a number of features that improve the
types of validation that can be performed as data is entered and the presentation of those data entry fields. (The
TextBox control provides basic numeric data types for controlling the characters that can be entered as input.)

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 88

EncycloWin - 2020.0.02

The JadeEditMask class provides the following functionality.

Improves thin client performance due to the removal of validation requirements

Ability to define an edit mask that dictates the type of data that can be entered by the user for each character
position in the text box

Presentation of input fields of the control using multiple text boxes that make up the logical text value

Ability to define one or more labels as part of the control

Ability to include literal values that remain in the text box text as visual prompts to the user

Automatic thousand-separator insertion into a keyed numeric value

Display of a prompt character at the position of each character that can be entered

As edit mask facilities are not provided by the Web browser, Web-enabled applications treat the control as another
text box.

If a JadeEditMask is a cell control, the JadeEditMask uses its own mask definition if the cell on which it is
activated does not have a mask defined. (Note, however, that if the cell control is activated on a cell that has a
defined mask, its pre-defined mask is replaced by the cell's mask and the original JadeEditMask mask is lost.)

Examples of the use of the JadeEditMask control are listed in the following table.

Example Description

Empty date field with prompts and date slashes

Same field with the date entered

Date split into three separate fields

Date split into three separate fields with slash characters displayed as labels

By default, the control functions as a normal text box when you have not specified an edit mask (by using the
mask property).

You can define an edit mask:

In the JADE Painter at application development time, by using the Properties dialog to define a mask of the
JadeEditMask control selected on the Painter form, specifying the edit mask that you require for the control
in the mask property on the Specific sheet of the dialog

Dynamically at run time, by constructing it in your JADE application logic

When running in JADE thin client mode and the EnhancedLocaleSupport parameter in the [JadeEnvironment]
section of the JADE initialization file is set to true, the JadeEditMask class validates the setting and entry of text
based on the mask property, using the current locale of the client with regional overrides on both the presentation
client and the application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 89

EncycloWin - 2020.0.02

An edit mask is simply a concatenated series of symbols that can define the following.

The type of data that can be entered at a specific character position.

The size and position of each field of the layout of the control (a label or text box). If you do not specify size
and position values for each field, these are automatically calculated based on the potential size of that field.

Note The size may be larger than required for two reasons: the prompt character can require more space
than the character for which it is prompting and the control must allow space for the widest character. For
example, WWW takes considerably more space than iii if you do not use a monospaced font.

An indication to start a new label or text box section.

Literal text to be displayed as the label caption or in the current text box field.

Lists of characters that can be entered at a character position.

Actions to be taken; for example, uppercase, lowercase, or numeric separator display.

Right-aligned fields.

The numeric range that is permitted for a numeric portion of a text box or label.

When a user presses a key, the control determines the validity of the keyboard action and updates the contents of
the control accordingly.

As the JadeEditMask control is numeric-aware, you cannot place the cursor into an invalid empty position before
or after numeric data. The cursor automatically positions itself appropriately when the focus is gained (if the entire
text is not selected). The Home key also positions the cursor at the beginning of the numeric text, while the End key
positions the cursor at the end of the numeric value. In addition, pressing the Delete key when the cursor is
positioned directly before a thousands separator deletes the character after the separator.

Pressing the Backspace key when the cursor is positioned directly after a thousands separator deletes the
character before the separator.

For a summary of the constants, properties, methods, and events defined in the JadeEditMask class, see
"JadeEditMask Class Constants", "JadeEditMask Properties", "JadeEditMask Methods", and "JadeEditMask
Events", later in this document. See also "Right-Aligned or Left-Aligned Text Boxes", in the following subsection.

Right-Aligned or Left-Aligned Text Boxes
The following applies when using right-aligned or left-aligned text boxes of the JadeEditMask class.

If the character generated by the key is invalid according to the rules defined in the mask property, a beep is
emitted and the character is ignored.

Selecting text that includes literal text and prompt characters includes those characters in any text saved in
the clipboard. Deleting or cutting text removes only the characters that can be entered and leaves the literal
characters in place.

The Backspace key, when positioned to the right of a literal value, acts like a left arrow key press.

For a left-aligned text box, the following applies.

If the character is valid and the character position has a prompt character displayed or Insert mode is off, that
character or prompt is overwritten.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 90

EncycloWin - 2020.0.02

If the entered character is valid, not replacing a prompt, and Insert mode is on (the default value), the
character is inserted into the text, shifting the following text along one character up to the start of the next edit
type, literal, or the end of the text. For example, for the text '1_/10/2001', where the first two characters are a
day number followed by a / date delimiter, entering a 2 before the 1 results in 21/10/2001 (_ is the default
prompt character).

Entering a valid character into a field where the next character in the mask is a literal causes the caret to
automatically skip to the start of the next character position that can be entered. In the preceding example,
entering 21 into the day field of the preceding example automatically positions the caret at the start of the
10/2001 sequence.

Similarly, using the right arrow key skips literal characters unless the Ctrl or Shift key is also held down
(selecting text). The left arrow key steps through the text one character at a time, regardless of type, to allow
the user to position the caret at any character position.

Deleting a character is the reverse of the above procedure. The deletion stops at the first character that has a
different mask type. For example, deleting the 2 in 21/10/2001 results in 1_/10/2001.

If the caret is placed before a literal character, pressing the key for that literal character causes the caret to
move to the next position in the text. The literal character cannot be replaced or removed.

If all character positions from the caret up to the next literal are empty and the literal that is entered is invalid
at the current position, the caret moves to after the literal. For example, if 1/ is entered in a date field of __/__
/__, the caret is positioned after the first / character.

For a right-aligned text box, the following applies.

Characters are entered into right-aligned fields to the left of the current caret position instead of to the right,
as is the case for a left-aligned field. After any insertion, the caret remains at the same position in the text.

If the entered character is valid and the character position has a prompt displayed or Insert mode is off, that
character is overwritten. The caret remains at the same position.

If the entered character is valid, it is not replacing a prompt, and Insert mode is on (the default value), the
character is inserted into the text and the characters to the left are shifted to the start of the current edit field or
the preceding literal. For example, entering 5 for text '12/03/_4' when the caret is positioned to the right of the
4 results in 12/03/45 (_ is the default prompt character). On completion, the caret remains after the 5.

Right and left arrow keys operate as they do in a standard TextBox control, moving one character at a time.

When deleting a character, the deletion stops at the first character that has a different edit mask type. For
example, deleting the 5 in 12/03/45 results in 12/03/_4.

Because of a Windows limitation, right-aligned text boxes do not scroll horizontally if they are not large
enough to display the full text field.

Right-aligned fields are used mostly for numeric-only entry because the caret remains at the same position after
entry. Users must use the arrow key to position the caret before a literal segment (that is, the / solidus character in
the previous examples).

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 91

EncycloWin - 2020.0.02

JadeEditMask Class Constants
The constants provided by the JadeEditMask class are listed in the following table.

Constant Integer Value Description

SelectionStyle_None 0 Text box portion of the edit mask is not selected (default
value)

SelectionStyle_Select 1 Text box portion of the edit mask control that receives focus
is selected, except when using the mouse to gain focus

SelectionStyle_Select_Always 2 Entire text box portion of the edit mask control that receives
focus is selected, regardless of how the focus was
achieved when the text box gains focus (by logic, the
mouse, or keyboard)

JadeEditMask Properties
The properties defined in the JadeEditMask class are summarized in the following table.

Property Description

autoSize Specifies whether a control is automatically resized to fit its contents

autoTab Specifies whether focus is automatically moved to the next control in the tab order of the
form, or to the next accessible cell (for a JadeEditMask control in a table)

insertMode Contains the initial setting of the control that indicates whether the control is in Insert or
Overwrite mode

languageId Specifies the locale associated with the language identifier to be used by the control

mask Contains a concatenated series of symbols defining the characteristics of the editing
requirement and the actions to be taken

promptCharacter Contains the character to fill the enterable character positions of the text in the text box
fields of the control

readOnly Specifies whether a control is read-only for user input

selectionStyle Determines whether a text box portion of the edit mask control that receives focus is
selected

text Contains the text contained in the edit area

textUser Contains the concatenated user text of the text box fields on the control, excluding any
literals

For details, see "Window, Form, and Control Properties", later in this document.

JadeEditMask Methods
The methods defined in the JadeEditMask class are summarized in the following table.

Method Description

getTextAsDate Returns the text value from the textUser property converted to a Date value

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 92

EncycloWin - 2020.0.02

Method Description

getTextAsDecimal Returns the text value from the textUser property converted to a Decimal value

getTextAsInteger Returns the text value from the textUser property converted to an Integer value

getTextAsInteger64 Returns the text value from the textUser property converted to an Integer64 value

getTextAsReal Returns the text value from the textUser property converted to a Real value

getTextAsTime Returns the text value from the textUser property converted to a Time value

isEmpty Specifies whether there is any data in the character positions in which text can be
entered

isValid Specifies whether the text is valid and complete

setTextFromDate Sets the text from the textUser property value to a Date value converted to a String
in the format of the locale that the control is using

setTextFromDecimal Sets the text from the textUser property value to a Decimal value converted to a
String in the format of the locale that the control is using

setTextFromInteger Sets the text from the textUser property value to an Integer value converted to a
String in the format of the locale that the control is using

setTextFromInteger64 Sets the text from the textUser property value to an Integer64 value converted to a
String in the format of the locale that the control is using

setTextFromReal Sets the text from the textUser property value to a Real value converted to a String
in the format of the locale that the control is using

setTextFromTime Sets the text from the textUser property value to a Time value converted to a String
in the format of the locale that the control is using

For details, see "Window, Form, and Control Methods", later in this document.

JadeEditMask Events
The events defined in the JadeEditMask class are summarized in the following table.

Event Occurs…

change When the text contents of a text box have been changed by the user. It does not occur when
you change the text property from logic (that is, dynamically).

click When the user presses and then releases the left mouse button.

contextMenu After the right mouseUp event and after the keyUp event.

dblClick When the user presses and releases the left mouse button and then presses and releases it
again.

dragDrop When a dragged window is dropped over a window belonging to the same application.

dragOver For each form or control of the application over which a window is dragged.

firstChange When the user makes the first change on the displayed control text or the isEmpty status of
the control changes. It does not occur when you change the text property from logic.

gotFocus When a control receives the focus.

keyDown When the user presses a key while the control has the focus.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 93

EncycloWin - 2020.0.02

Event Occurs…

keyPress When the user presses and releases an ANSI key.

keyUp When the user releases a key while the control has the focus.

lostFocus When a control loses the focus.

mouseDown When the user presses a mouse button.

mouseEnter When the user moves the mouse onto a control.

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a form.

mouseMove When the user moves the mouse.

mouseUp When the user releases a mouse button.

paint When part or all of a form is exposed after it has been moved or enlarged.

sysNotify When a specified JADE system event occurs.

userNotify When triggered from the JADE Object Manager by a user call.

validate When the user attempts to shift the focus to another control or form.

For details, see "Window, Form, and Control Events", later in this document.

JadeEditor Class
The JadeEditor control class is a subclass of the JadeTextEdit class that provides a control for displaying and
editing JADE source. The JadeEditor class therefore inherits all of the properties, methods, and events defined in
the JadeTextEdit superclass.

If the JadeEditor control is not read-only, the editor receives the return (Enter) key when the editor has focus.

For a summary of the methods defined in the JadeEditor class, see "JadeEditor Methods", in the following
subsection. For details about integrating the JADE editor into your applications, see "Using the JADE Editor", later
in this section.

JadeEditor Methods
The methods defined in the JadeEditor class are summarized in the following table.

Method Description

initializeJadeEditor Initializes the control for JADE source editing

setCurrentSchema Sets the color of text in method source for classes, global constants, imported
packages, and JADE interfaces for a specific schema

For details, see "Window, Form, and Control Methods", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 94

EncycloWin - 2020.0.02

Using the JADE Editor
If you design forms that contain JadeEditor controls, you can create the control and initialize it by calling the
initializeJadeEditor method. If the options set in the control are to be used in your application, set the useProfile
parameter to false.

Note Call the initializeJadeEditor method before you call the setCurrentSchema method, to ensure that the
form displays entities in the correct color.

To set the text editor keyword lists for classes, global constants, imported packages, and JADE interfaces for a
specific schema, call the setCurrentSchema method so that recognized keywords in method source can be
displayed in the appropriate color.

The JadeEditor control overrides the keyboard settings of the JadeTextEdit control superclass listed in the
following table.

Setting Description

Ctrl+Shift+I Indents text at the caret position.

When the selected text includes at least one end-of-line sequence (for example, CR+LF),
the keystroke sequences Ctrl+Shift+I or Tab indent the lines included in the selection. If the
selected text does not include an end-of-line sequence, the selected text is replaced by a
Tab character.

Ctrl+Shift+U Removes the indent at the caret position.

Ctrl+K Deletes the line on which the caret is positioned.

CTRL+N Inserts a line above the line on which the caret is positioned.

You can dynamically create and manipulate JADE editor controls when a form is running.

JadeMask Class
The JadeMask control is a combination picture, button, and label. This control enables you to define images that
are automatically presented when the mouse moves over the control and when the button is down or disabled.

The JadeMask control supports user-specified Web events (that is, you can write a function and use the Window
class addWebEventMapping method to invoke it when a specified event occurs).

In addition, this control provides:

A mask picture that defines a region within the control (the presentation can create the effect of a button of
any shape)

The ability to return the color of the pixel that the mouse is currently over in the mask

As the JadeMask class is a subclass of the Picture class, it inherits all of the properties and methods of the
Picture, Control, and Window classes.

You can define the control as a single button, a two-state button, or an automatic two-state button based on the
style property. You can also define the control as the Cancel button or the default button.

The canHaveFocus property determines whether the control can have focus. When the control has focus, it can
be clicked with the mouse, the accelerator defined on the caption can be used, or the space key or return key
pressed. If the control is also the Cancel button, pressing the Esc key also fires the click event.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 95

EncycloWin - 2020.0.02

The following examples show the bitmaps that can be provided.

These images represent the following states, respectively.

Normal

Disabled

Down

Roll over

Roll under (when the button is down)

Focus up

Focus down

The mask picture, which is never visible

These images are placed on a background picture so that the button gives the impression that it consists of the
swirl shown by the mask in the above examples. The control responds only when the mouse is over that logical
area.

A skinned button does not display the focus rectangle if the focus picture is included in the skin. If these pictures
are not defined, the pictureRollOver state is displayed when the control has focus or the normal control picture
property state if that pictureRollOver is not provided.

When an image containing transparency is displayed in a browser as part of a Web-enabled application, the
following conditions must be true for the transparency to be displayed:

The drawing methods of the Window class, such as drawLine, are not used on the control

The value of the caption property of the control is null

The client area of the control is the same size as the image, which is true when the stretch property of the
control is set to Stretch_ToControl (1)

When a JadeMask control is skinned and at least one of the skin images is 32-bit (which supports transparency),
the control is treated as though it is transparent; that is, the control is painted on its parent without the area being
erased with the effective value of the backColor property. Instead, the parent shows through any transparent
areas of the images (for rounded corners, for example). In addition, any semi-transparent parts of the images are
anti-aliased with the parent image so that they are displayed with smooth corners over any background color.

For a summary of the constants, properties, method, and events defined in the JadeMask class, see "JadeMask
Constants", "JadeMask Properties", "JadeMask Method", and "JadeMask Events", in the following subsections.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 96

EncycloWin - 2020.0.02

JadeMask Constants
The constants provided by the JadeMask class are listed in the following table.

Constant Integer Value Constant Integer Value

Alignment_Center_Bottom 8 Alignment_Center_Middle 7

Alignment_Center_Top 6 Alignment_Left_Bottom 2

Alignment_Left_Middle 1 Alignment_Left_Top 0

Alignment_Right_Bottom 5 Alignment_Right_Middle 4

Alignment_Right_Top 3 Style_2State 2

Style_Auto2State 1 Style_Mask_Color 3

Style_Normal 0

JadeMask Properties
The properties defined in the JadeMask class are summarized in the following table.

Property Description

activeColor Contains the color to be matched in the mask picture for the definition of the
logical area

alignment Contains the alignment of the caption

canHaveFocus Specifies whether the control can have focus

cancel Specifies whether the control is the Cancel button

caption Contains the caption for the mask control

captionHeight Contains the height of the caption region

captionLeft Contains the left position of the caption region

captionTop Contains the top position of the caption region

captionWidth Contains the width of the caption region

createRegionFromMask Specifies whether a region is created around the mask picture on a control

default Specifies whether the control is the default button

disabledForeColor Determines the color of disabled displayed text in a JadeMask control unless the
value of this property is zero (0)

pictureFocus Contains the picture that defines the mask for the control when it has focus and it
is in the up position

pictureFocusDown Contains the picture that defines the mask for the control when it has focus and it
is in the down position

pictureMask Contains the picture that defines the mask for the control

pictureRollOver Contains the picture used when the mouse is over the control in the up position

pictureRollUnder Contains the picture used when the mouse is over the control in the down
position

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 97

EncycloWin - 2020.0.02

Property Description

style Contains the style of the mask control

value Specifies whether the button is up (false) or down (true)

For details, see "Window, Form, and Control Properties", later in this document.

JadeMask Method
The method defined in the JadeMask class is summarized in the following table.

Method Description

currentMaskColor Returns the color of the pixel in the mask picture corresponding to the last position of
the mouse when it was over the control

For details, see "Window, Form, and Control Methods", later in this document.

JadeMask Events
The event methods defined in the JadeMask class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and releases it
again

dragDrop When a dragged window is dropped over a control belonging to the same application

dragOver For each form or control of the application over which a window is dragged

gotFocus When a control receives the focus

keyDown When the user presses a key while the control has the focus

keyPress When the user presses and releases an ANSI key

keyUp When the user releases a key while the control has the focus

lostFocus When a control loses the focus

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 98

EncycloWin - 2020.0.02

For details, see "Window, Form, and Control Events", later in this document.

JadeRichText Class
The JadeRichText control is a type of TextBox control that allows the input and display of rich text. As the
JadeRichText class is a subclass of the Control class, it inherits all of the properties and methods defined in the
Control and Window classes.

Rich text consists of unformatted text and a set of control words and symbols (encoding) that format the text for
display. These control words and symbols support a wide variety of formatting (for example, bulleting, fonts, and
tables) and the insertion of other objects (for example, bitmaps or Word documents).

Note Like all third-party ActiveX controls for rich text, extensive use of the JadeRichText control to store large
rich text documents in the JADE database may significantly increase the disk requirements of a user.

Transparent sibling controls are always painted before a JadeRichText control, regardless of their zOrder
settings. It is not possible to handle the painting of transparent controls in the correct zOrder when some controls
are directly painted by JADE and others are painted by Windows separately.

You can translate captions for the following system forms and dialogs that are related to the JadeRichText control
by using the getRootSchemaFormTranslation method of the Application class.

Find and Replace dialog

Paragraph formatting dialog

Insert Table dialog

Popup menu

The getRootSchemaFormTranslation method dynamically loads the captions of all required entities when a form
is created and when logic dynamically changes a caption.

The JadeRichText control, which supports both Unicode and ANSI formats, applies only to client nodes.

For a summary of the constants, properties, methods, and events defined in the JadeRichText class, see
"JadeRichText Class Constants", "JadeRichText Properties", "JadeRichText Methods", and "JadeRichText
Events", in the following subsections.

For details about designing forms containing JadeRichText controls and an example of a method that
dynamically creates and formats text in a control at run time, see "Using the JadeRichText Control Class" and
"JadeRichText Control Method Example", later in this section. See also Chapter 3, "Using Rich Text Controls on
Runtime Forms", of the JADE Runtime Application Guide.

JadeRichText Class Constants
The constants provided by the JadeRichText class are listed in the following table.

Constant Value Constant Value

Alignment_Center 2 Alignment_Justify 3

Alignment_Left 0 Alignment_Right 1

BulletStyle_Dot 1 BulletStyle_Lowercase 3

BulletStyle_LowercaseRoman 5 BulletStyle_None 0

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 99

EncycloWin - 2020.0.02

Constant Value Constant Value

BulletStyle_Number 2 BulletStyle_Uppercase 4

BulletStyle_UppercaseRoman 6 CharacterFormat_AutoColor -1

CharacterFormat_NotSet 0 CharacterFormat_Set 1

CharacterFormat_Undefined #80000000 Find_BeginningOfText 0

Find_Default 0 Find_EndOfText -1

Find_MatchCase 4 Find_SearchBack 2

Find_WholeWord 8 GetLine_PlainText 1

GetLine_RTF 0 LoadFromFile_PlainText 1

LoadFromFile_RTF 0 LoadFromFile_ReplaceAll 0

LoadFromFile_ReplaceSelection 1 LoadFromFile_UnicodeText 2

Load_Append 3 Load_ReplaceAll 1

Load_ReplaceSelection 2 MenuOption_All #7FFFFFFF

MenuOption_Bullet #00008000 MenuOption_Copy #00000008

MenuOption_Custom #80000000 MenuOption_Cut #00000004

MenuOption_Find #00000020 MenuOption_Font #00000080

MenuOption_InsertObject #00010000 MenuOption_InsertTable #00020000

MenuOption_None 0 MenuOption_Object #00800000

MenuOption_ObjectProperties #00040000 MenuOption_PageSetup #00000200

MenuOption_Paragraph #00000100 MenuOption_Paste #00000010

MenuOption_Print #00000400 MenuOption_Redo #00000001

MenuOption_Replace #00000040 MenuOption_SepCutCopyPaste #02000000

MenuOption_SepFindReplace #04000000 MenuOption_SepFontParaBullet #08000000

MenuOption_SepInsert #10000000 MenuOption_SepPrint #20000000

MenuOption_SepRedoUndo #01000000 MenuOption_Undo #00000002

ParagraphFormat_Undefined #80000000 Redo_Cut 4

Redo_Delete 2 Redo_DragDrop 3

Redo_Paste 5 Redo_Typing 1

Redo_Unknown 0 Replace_ReplaceAll 64

SaveInFile_All 0 SaveInFile_PlainText 1

SaveInFile_RTF 0 SaveInFile_Selection 1

SaveInFile_UnicodeText 2 SelectionStyle_Hide 1

SelectionStyle_Retain 0 SelectionStyle_SelectAll 2

TargetDevice_Printer 1 TargetDevice_Screen 0

TextProtection_Mixed #80000000 TextProtection_NotSet 0

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 100

EncycloWin - 2020.0.02

Constant Value Constant Value

TextProtection_Set 1 Underline_Type_Dash 5.Byte

Underline_Type_DashDot 6.Byte Underline_Type_DashDotDot 7.Byte

Underline_Type_Dotted 4.Byte Underline_Type_Invert 254.Byte

Underline_Type_None 0.Byte Underline_Type_Thick 9.Byte

Underline_Type_Underline 1.Byte Underline_Type_Wave 8.Byte

Undo_Cut 4 Undo_Delete 2

Undo_DragDrop 3 Undo_Paste 5

Undo_Typing 1 Undo_Unknown 0

JadeRichText Properties
The properties defined in the JadeRichText class are summarized in the following table.

Property Description

acceptTabs Specifies whether the Tab key inserts a tab character in the control instead of
moving the focus to the next control in the tab order

alignment Contains the alignment of the current paragraph

autoURLDetect Specifies whether the control automatically formats a URL

bulletIndent Contains the indentation used when a bullet is applied to the current paragraph

bulletStyle Contains the bullet style of the current paragraph

contextMenuOptions Contains the context menu items that are visible when the popup menu is
displayed

firstLineIndent Contains the distance (in pixels) between the left edge of the first line of text in the
selected paragraph and the left edge of subsequent lines in the same paragraph

initialContent Contains the content of the control when it is initialized

leftIndent Contains the distance (in pixels) between the left edge of the control and the left
edge of the current text selection or text added after the insertion point

lineWidth Contains the maximum width (in pixels) of the current line of text

maxLength Contains the maximum number of characters that can be entered in the control

readOnly Specifies whether the contents of the control can be updated

rightIndent Contains the distance in pixels between the right edge of the control and the right
edge of the text that is selected or added at the current insertion point

scrollBars Contains the scroll bars that can be displayed when text extends beyond the client
window co-ordinates of the control

scrollHorzPos Contains the horizontal position in the virtual text space corresponding to the point
shown on the left side of the control

scrollVertPos Contains the vertical position in the virtual text space corresponding to the point
shown at the top of the control

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 101

EncycloWin - 2020.0.02

Property Description

selectionStyle Specifies whether selected text remains highlighted when the control loses focus

selBackColor Specifies the background color of the currently selected text

selFontBold Specifies whether the font of the selected text has the bold attribute applied

selFontItalic Specifies whether the font of the selected text has the italics attribute applied

selFontName Contains the name of the font used for the selected text

selFontSize Contains the size of the font used for the selected text

selFontStrikethru Specifies whether the font of the selected text has the strikethrough attribute
applied

selFontUnderline Specifies whether the font of the selected text has the underline attribute applied

selFontUnderlineType Specifies the underline style of the currently selected text

selLength Contains the length of the selected text

selLink Specifies whether the currently selected text is a link that will be drawn as a URL

selStart Contains the starting position of the selected text

selText Contains the selected text in plain text format

selTextColor Contains the color of the selected text

selTextRTF Contains the selected text in rich text format

targetDevice Contains the device used for "what you see is what you get" (WYSIWYG) printing

text Contains the text of the control in plain text format

textRTF Contains the text of the control in rich text format

wantReturn Specifies whether carriage returns are passed to the rich text control when an
enabled and visible default button is defined on the same form

zoom Contains the factor by which the contents of the control are zoomed

For details, see "Window, Form, and Control Properties", later in this document.

JadeRichText Methods
The methods defined in the JadeRichText class are summarized in the following table.

Method Description

append Loads the specified text into the control, appending it to the end of the current
contents

canPaste_ Returns whether there is content such as text or an image in the Windows
clipboard that can be pasted into the JadeRichText control

clearUndoBuffer Clears information from the undo buffer

find Searches for the specified text within the contents of the control

firstVisibleLine Returns the first visible line displayed at the top of the control

findReplaceDialog Opens a find and replace dialog and returns a reference to the dialog

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 102

EncycloWin - 2020.0.02

Method Description

getCharacterFormat Retrieves the formatting attributes of the selected text

getLine Returns a string containing the specified line as rich text or plain text

getLineFromCharacterIndex Returns the number of the line that contains the character at the specified
position

getParagraphFormat Retrieves the common formatting attributes of the paragraph

getRedoAndUndoState Retrieves whether redo, undo, and pasting actions can be performed and the
type of redo and undo operations that can be performed

getScrollRange Retrieves the scrolling range for the specified scroll bar

getTabStops Returns the tab stop position values of the control

getTextProtection Returns the protection state of a specified range of text in the control

insertObject Inserts a COM object at the current position

insertObjectDialog Invokes the OLE Insert Object dialog

insertTable Inserts a table

lineCount Returns the number of lines of text in the control

load Loads text into the control

loadFromFile Loads the contents of the specified file into the control

objectPropertiesDialog Invokes the OLE Properties dialog

pageMargins Sets the margins around a printed page

paste_ Pastes the content from the Windows clipboard into the JadeRichText
control at the current cursor position

print Outputs the contents of the control to the printer

redo Reapplies the last edit operation that was undone

replace Replaces text within the control

saveInFile Saves the contents of the control to the specified file

setCharacterFormat Sets common character formatting attributes to the selected text

setParagraphFormat Sets common character formatting attributes to the paragraph text

setTabStops Sets the values of the tab stop positions in the control

setTextProtection Sets the protection state of a specified range of text in the control

undo Undoes the last edit operation

For details, see "Window, Form, and Control Methods", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 103

EncycloWin - 2020.0.02

JadeRichText Events
The event methods defined in the JadeRichText class are summarized in the following table.

Event Occurs…

change When text within the control has changed.

click When the user presses and then releases the left mouse button.

contextMenu When the user right-clicks within the control and the contextMenuOptions property has a
value of MenuOption_Custom. If this method returns true, the control displays its built-in
menu.

dblClick When the user presses and releases the left mouse button and then presses and
releases it again.

dragDrop When a dragged window is dropped over a window belonging to the same application.

dragOver For each window of the application over which a window is dragged.

firstChange When the contents of the control change.

gotFocus When a control receives the focus.

keyDown When the user presses a key while the control has the focus.

keyPress When the user presses and releases an ANSI key.

keyUp When the user releases a key while the control has the focus.

linkClicked When the user clicks on a URL within the text of the JadeRichText control.

lostFocus When a control loses the focus.

mouseDown When the user presses a mouse button.

mouseEnter When the user moves the mouse onto a control.

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control.

mouseMove When the user moves the mouse.

mouseUp When the user releases a mouse button.

paint When part or all of a control is exposed.

protected When the user attempts to alter text that is marked as protected.

scrolled When the user scrolls.

selChanged When the selection of text within the control has changed.

sysNotify When it is triggered when a specified JADE system event occurs.

userNotify When triggered from the JADE Object Manager by a user call.

windowCreated When the window for the control is created, so that the control can be initialized when the
window for the control is present.

For details, see "Window, Form, and Control Events", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 104

EncycloWin - 2020.0.02

Using the JadeRichText Control Class
If you design forms that contain JadeRichText controls and you make the context (popup) menu and some or all
of its menu items available to users, users can access edit, character formatting, and basic paragraph formatting
operations (for example, setting bulleting, fonts, and indents). See also "JadeRichText Control Method Example",
later in this section, and Chapter 3, "Using Rich Text Controls on Runtime Forms", in the JADE Runtime
Application Guide.

You can dynamically create and manipulate rich text in controls when a form is running, by using the functionality
provided by the JadeRichText class. For details, see the following subsections.

Fonts in JadeRichText Controls

Formatting and Selecting Text

URL Detection

Initializing the JadeRichText Control

Clipboard Operations

File Operations

Finding and Replacing Text

Printing Rich Text Control Contents

Scrolling JadeRichText Controls

Inserting Objects

Inserting Tables

Context Menu

Unsupported RTF Specification Features

Fonts in JadeRichText Controls
All JADE controls have a set of font properties (that is, fontName, fontSize, fontBold, fontItalic, fontStrikethru,
and fontUnderline), which are defined in the Control class as they are attributes of the control.

In the JadeRichText class, each character can have its own font because the font is an attribute of the actual text.
The getCharacterFormat and setCharacterFormat methods and the selFontName, selFontBold, selFontItalic,
selFontUnderline, and selFontStrikethru properties are used to get and set the font style in the JadeRichText
control.

The font properties defined in the Control class define the initial font of the rich text control and should be used
only to set the font at design time (that is, by using the JADE Painter Properties dialog).

The setCharacterFormat method sets only the attributes of the currently selected text or the next inserted text at
that point. It does not become the default for subsequent inserted or appended text.

The zoom property requires a scalable font; for example, the Microsoft Sans Serif font is not a True Type font and
therefore it cannot be scaled.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 105

EncycloWin - 2020.0.02

Formatting and Selecting Text
You can apply formatting attributes to and retrieve formatting attributes from both characters and paragraphs in
JadeRichText controls.

Although individual properties enable you to get and set both paragraph and character formatting attributes, you
should consider the number of requests made to the control, particularly when running the JADE application in
thin client mode. For example, calling the getCharacterFormat method involves one request from the application
server but making individual calls from the application server to the presentation client for specific formatting
information within the control requires seven requests.

For an example of a method that dynamically sets character and paragraph attributes at run time, see
"JadeRichText Control Method Example", later in this section. See also "Formatting Selected Characters" and
"Formatting Paragraphs", in the following subsections.

Formatting Selected Characters

The character formatting getCharacterFormat and setCharacterFormat methods retrieve attributes from and
apply attributes to the currently selected text. If no text is selected, these methods apply to the insertion point. The
character formatting of the insertion point is applied to newly inserted text if the current selection is empty. When
the selection changes, the default formatting changes to match the first character in the new selection.

The text and selText properties contain plain text for the control. The textRTF and selTextRTF properties contain
all rich text, including all RTF codes. Use the append or the load method to add additional plain text or RTF text to
the current contents of the control. When accessing formatting attributes of selected text and the attributes have
mixed values (for example, you have different font sizes in a block of selected text), the appropriate property has a
value of CharacterFormat_Undefined. You cannot assign an undefined value to an attribute.

Formatting Paragraphs

Paragraph formatting attributes include alignment, tabs, indents, and numbering.

Use the getParagraphFormat and setParagraphFormat methods to retrieve and set the formatting attributes of
the current paragraph. (The current paragraph is the paragraph that contains the insertion point.)

Applying a Bullet to a Paragraph
Use the JadeRichText class bulletIndent property to specify the indentation used when a bullet is applied to the
current paragraph and the bulletStyle property to specify the style of bullet to apply.

By default, a bullet is not applied to a paragraph.

URL Detection
You can enable automatic detection of a Uniform Resource Locator (URL), by setting the JadeRichText class
autoURLDetect property to true in the Properties dialog of the JADE Painter at design time or dynamically at run
time. (By default, automatic detection is disabled.)

For an example of a method that dynamically sets the automatic detection of a URL at run time, see "JadeRichText
Control Method Example", later in this section.

When enabled:

The control scans any modified text to determine whether the text matches the format of a URL.

The control highlights the URL string by underlining it and setting the text color.

Clicking on a URL generates a linkClicked event and double-clicking on a URL activates the link.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 106

EncycloWin - 2020.0.02

Initializing the JadeRichText Control
When you insert or paste the JadeRichText control onto a form in the JADE Painter, it is not running in a mode
that allows text to be entered in the control.

Use the initialContent property, accessed from the Properties dialog in the JADE Painter, to initialize the control. If
the text of this property starts with a valid RTF header sequence (for example, "{\rtf"), the RTF reader loads that
text when the form is run. All other text is displayed as plain text. Although you would normally type the text with
which the control is initialized into the Properties dialog initialContent property in the JADE Painter, this requires
you to have some knowledge of RTF codes (that is, control words and symbols).

You could use the JadeRichText control itself to supply the RTF string, by performing the following actions.

1. Create another form (for example, TempRTF) containing a JadeRichText control and a Button control.

2. Add the following code to the click event of the Button control of the TempRTF form.

begin
// rtfControl is value of the name property for the RTF control
app.copyStringToClipboard(rtfControl.selTextRTF);

end;

3. In the JADE Painter, run the second form (TempRTF, in this example) and then enter the text, formatting it to
meet your requirements.

4. When the appearance of the control meets your requirements, press Ctrl+A to select all text and then click the
form button.

The click event then copies the selection to the clipboard as encoded text that contains RTF control words
and symbols.

5. In the Properties dialog for the RTF control on your original form, press Ctrl+V in the initialContent text box so
that the RTF text string, including its control words and symbols, is then displayed.

Clipboard Operations
The JadeRichText control supports standard clipboard operations and multiple levels of undo and redo
operations, to a maximum of 100 undo or redo operations.

The output parameters of the getRedoAndUndoState method indicate whether a paste, redo, or an undo
operation can be performed. The getRedoAndUndoState method also indicates the type of undo or redo action
that can be performed.

You can call the undo or redo method to undo an action or reapply the last edit operation dynamically at run time.

From release 2020.0.01, you can programmatically paste from the Windows clipboard into a JadeRichText
control.

The canPaste_ method returns whether there is content such as text or an image in the Windows clipboard
that can be pasted into the JadeRichText control. (You can also obtain this status by calling the
JadeRichText class getRedoAndUndoState method.)

If there is suitable content such as text or an image in the Windows clipboard, the paste_ method pastes that
content into the JadeRichText control at the current cursor position. If the clipboard does not contain suitable
content, the method does not result in any change. (This method is equivalent to selecting the Paste
command in the context menu of the JadeRichText control at run time.)

Before you call the paste_ method, call the canPaste_ method to confirm there is suitable content available.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 107

EncycloWin - 2020.0.02

File Operations
The JadeRichText class loadFromFile and saveInFile methods enable you to load text from and save text to a file
outside of JADE. You should consider the location of these files, especially in thin client mode.

As the RTF specification is not particularly compact, moving large amounts of RTF data between the presentation
client and the application server can sometimes be time-consuming.

Finding and Replacing Text
Use the JadeRichText class find and replace methods to search for and replace text dynamically at run time.
Alternatively use the JadeRichText class findReplaceDialog to display a dialog allowing the user to enter search
and replacement text.

Use the getLine method to return a string containing the specified line as rich text or plain text.

Printing Rich Text Control Contents
Use the JadeRichText class pageMargins and print methods to specify the margins around a printed page and
to output the contents of the control to the printer.

You can specify the output name used in the print queue and whether the whole control or only the selected
portion of the control is printed. By default, the whole control is printed.

For a caveat on the use of SVG files when printing JadeRichText controls, see "Portable Printing" under "Printer
Class", in Chapter 1 of the JADE Encyclopaedia of Classes.

Scrolling JadeRichText Controls
The JadeRichText control automatically supports scrolling when the text to be displayed exceeds the dimensions
of the control. The actual display of scroll bars is dependent on the value of the scrollBars property.

No horizontal scrolling takes place by default, as the text is wrapped horizontally within the bounds of the control.
Use the lineWidth property to specify the width of a line. If the line width exceeds the client area width of the
control, horizontal scrolling is enabled and horizontal scroll bars are displayed, if required.

Inserting Objects
You can insert any COM object (for example, an Excel spreadsheet, bitmap, or Word document) into the
JadeRichText control, either by embedding or linking to it.

An embedded object is edited within the JadeRichText control itself and a linked object is edited in the source file
location. The COM object can be displayed as a view of the object or as an icon. Double-clicking an inserted
object activates its server. (In-place activation is not supported.)

If you want to dynamically insert a COM object at run time, call the insertObject method to insert an existing object
or the insertObjectDialog method to bring up the OLE Insert Object dialog that enables you to create or insert
COM objects.

You cannot insert text or objects to the right of a table in a JadeRichText control.

Inserting Tables
If you want to dynamically insert a table into the rich text control at run time, call the JadeRichText class
insertTable method. (Although JADE enables you to insert a table containing 99 columns or fewer, Microsoft
currently restricts you to 32 columns.)

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 108

EncycloWin - 2020.0.02

Context Menu
A context (popup) menu built into the JadeRichText control gives application users access to edit operations and
it supports basic paragraph formatting; for example, setting bulleting, fonts, and indents.

You can use the contextMenuOptions property to specify the menu options that are visible to application users.
You can also use this property to suppress the popup menu or to indicate that the JadeRichText control class
contextMenu event should be fired instead of displaying the popup menu. Options that are not available are
automatically disabled (grayed out).

You can control the menu items that are visible when users right-click in the JadeRichText control, by using the
contextMenuOptions property to store the menu items that are displayed.

If the context menu does not provide you with the functionality that you require, you could use the JADE Painter to
create a standard JADE context menu and then use the contextMenu event method to display the menu. Menu
items that are followed by the points of ellipsis symbol (…) access a dialog relevant to that option.

Unsupported RTF Specification Features
Although the JadeRichText control can load any document that conforms to the RTF specification, you will not be
able to fully edit some documents or they will not be displayed correctly.

The features contained in the following subsections are not supported.

Headers and Footers

JADE does not support headers and footers. Any header or footer contained in a document loaded into the
JadeRichText control is preserved but is not visible and cannot be updated.

Tables

The display of a table inside a JadeRichText control is limited and table dimensions cannot be edited.

Users can insert and delete table rows using the keyboard but they cannot insert or delete columns.

As text does not wrap within a cell, text can overflow into neighboring cells.

Rulers and Toolbars

Most rich text applications (including Word and WordPad) provide a ruler and toolbar to assist in formatting text
within the work area. These are generally other controls that work with the rich text control and are not part of it.
JADE does not provide ruler and toolbar controls.

Miscellaneous

There are some minor restrictions when displaying rich text inside the JadeRichText control. Anything that
conforms to the RTF specification is preserved.

Tip To determine the abilities of the JadeRichText control, use the Microsoft WordPad application, which
displays an RTF document with similar functionality to that provided by the JadeRichText control. (If WordPad can
do it, the JadeRichText control can do it.)

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 109

EncycloWin - 2020.0.02

JadeRichText Control Method Example
The following example shows a JadeRichText class click event method that dynamically creates and
manipulates rich text in a control when the btnRTFByLogic button is clicked on the running form.

btnRTFByLogic_click(btn: Button input) updating;
vars

str : String;
begin

// Clear text box
rtfRichText.text := "";

// Change some text and end up with one
// line reading "WednesdayFriday"
rtfRichText.load("Monday", JadeRichText.Load_Append);
rtfRichText.load("Tuesday", JadeRichText.Load_Append);
rtfRichText.load("Wednesday",JadeRichText.Load_ReplaceAll);
rtfRichText.load("Thursday", JadeRichText.Load_Append);
rtfRichText.selStart := 9;
rtfRichText.selLength := 5;
rtfRichText.load("Fri", JadeRichText.Load_ReplaceSelection);

// Change the font of ALL text so far, leaving font size,
// color, and other attributes unchanged
rtfRichText.setCharacterFormat(false,

"Comic Sans MS",
JadeRichText.CharacterFormat_Undefined,
JadeRichText.CharacterFormat_Undefined,
JadeRichText.CharacterFormat_Undefined,
JadeRichText.CharacterFormat_Undefined,
JadeRichText.CharacterFormat_Undefined,
JadeRichText.CharacterFormat_Undefined);

// Try some plain bullets
rtfRichText.load(Cr, JadeRichText.Load_Append);
rtfRichText.bulletStyle := JadeRichText.BulletStyle_Dot;
rtfRichText.load("One" & Cr, JadeRichText.Load_Append);
rtfRichText.load("Two" & Cr, JadeRichText.Load_Append);
rtfRichText.load("Three" & Cr, JadeRichText.Load_Append);

// Do numbered bullets, with text in its matching color
rtfRichText.bulletStyle := JadeRichText.BulletStyle_Number;
rtfRichText.setCharacterFormat(true, // apply to selection

null, // use current font name
JadeRichText.CharacterFormat_Undefined, // font size
#000000FF, // text color = Red
JadeRichText.CharacterFormat_NotSet, // not bold
JadeRichText.CharacterFormat_Set, // italic
JadeRichText.CharacterFormat_NotSet, // no strikethru
JadeRichText.CharacterFormat_Set); // underline

rtfRichText.load("RED" & Cr, JadeRichText.Load_Append);
rtfRichText.setCharacterFormat(true,

null,
16,
#0000FF00,
JadeRichText.CharacterFormat_Set,

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 110

EncycloWin - 2020.0.02

JadeRichText.CharacterFormat_NotSet,
JadeRichText.CharacterFormat_Set,
JadeRichText.CharacterFormat_NotSet);

rtfRichText.load("GREEN" & Cr, JadeRichText.Load_Append);
rtfRichText.selTextColor := 256;
rtfRichText.setCharacterFormat(true,

null,
20,
#00FF0000,
JadeRichText.CharacterFormat_Undefined,
JadeRichText.CharacterFormat_Undefined,
JadeRichText.CharacterFormat_Set,
JadeRichText.CharacterFormat_Set);

rtfRichText.load("BLUE" & Cr, JadeRichText.Load_Append);

// Create some text that exceeds the control width
rtfRichText.bulletStyle := JadeRichText.BulletStyle_None;
str := "1 2 3 4 5 6 7 8 9 0 ";
str := str & str & str & str & str & str & str & str & str;
rtfRichText.load(str & Cr, JadeRichText.Load_Append);

// Try a different font
rtfRichText.setCharacterFormat(true,

"MS Sans Serif", // Not a True Type font so cannot be scaled
8.25,
JadeRichText.CharacterFormat_AutoColor, // System color
JadeRichText.CharacterFormat_NotSet,
JadeRichText.CharacterFormat_NotSet,
JadeRichText.CharacterFormat_NotSet,
JadeRichText.CharacterFormat_NotSet);

// Different alignments, with left and right indents
rtfRichText.setParagraphFormat(100, 75, 0, JadeRichText.Alignment_Left);
rtfRichText.load("This is LEFT aligned" & Cr, JadeRichText.Load_Append);

rtfRichText.setParagraphFormat(JadeRichText.ParagraphFormat_Undefined,
JadeRichText.ParagraphFormat_Undefined,
JadeRichText.ParagraphFormat_Undefined,
JadeRichText.Alignment_Right);

rtfRichText.load("This is RIGHT aligned" & Cr,JadeRichText.Load_Append);

rtfRichText.setParagraphFormat(JadeRichText.ParagraphFormat_Undefined,
JadeRichText.ParagraphFormat_Undefined,
JadeRichText.ParagraphFormat_Undefined,
JadeRichText.Alignment_Center);

rtfRichText.load("This is CENTERED" & Cr, JadeRichText.Load_Append);

// Justified text with hanging indent
rtfRichText.setParagraphFormat(JadeRichText.ParagraphFormat_Undefined,

JadeRichText.ParagraphFormat_Undefined,
-20,
JadeRichText.Alignment_Justify);

rtfRichText.load("This is JUSTIFIED text. It also shows how text is "
& " displayed when paragraph indenting is used. Note "
& " that the first line indent value is relative to "

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 111

EncycloWin - 2020.0.02

& " the left indent. Therefore you can create a "
& " hanging indent by using a negative first line "
& " indent value." & Cr,
JadeRichText.Load_Append);

// Turn off hanging indent (or use the setParagraphFormat method)
rtfRichText.firstLineIndent := 0;
rtfRichText.alignment := JadeRichText.Alignment_Left;

// Add a URL that is displayed as a link
rtfRichText.autoURLDetect := true;
rtfRichText.append(Cr & "www.jadeworld.com");

// Replace all 'www.microsoft.com' with 'www.jadeworld.com'
rtfRichText.replace("www.microsoft.com",

"www.jadeworld.com",
JadeRichText.Find_BeginningOfText,
JadeRichText.Find_EndOfText,
JadeRichText.Replace_ReplaceAll);

// Insert a picture
rtfRichText.append(Cr); // Make on a new line
rtfRichText.insertObject("c:\schema\images\jadelogo.bmp", false, false);

// Scroll the whole control up by 20 pixels
rtfRichText.scrollVertPos := 20;

end;

The following image shows the result of this method in a JadeRichText control on a form when the
btnRTFByLogic button is clicked.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 112

EncycloWin - 2020.0.02

JadeTextEdit Class
The JadeTextEdit control is a type of multiple-line TextBox control that allows the display and editing of text such
as program source code. The underlying editor engine of the JadeTextEdit control is based on an Open Source
project called Scintilla. For details about Scintilla and the Scintilla-based text editor SciTE, see
http://scintilla.sourceforge.net/SciTEDoc.html or http://scintilla.sourceforge.net/ScintillaDoc.html.

As the JadeTextEdit class is a subclass of the Control class, it inherits all of the properties and methods defined
in the Control and Window classes (for example, the fontBold, fontItalic, fontName, fontSize, fontUnderline,
foreColor, backColor, borderStyle, enabled, height, left, top, visible, and width properties and the
getRegisteredKeys and registerKeys methods defined in the Control and Window classes).

The JadeTextEdit control class provides the JadeEditor subclass.

For a summary of the constants, properties, methods, and events defined in the JadeTextEdit class, see
"JadeTextEdit Class Constants", "JadeTextEdit Properties", "JadeTextEdit Methods", and "JadeTextEdit Events", in
the following subsections. See also "Using the JadeTextEdit Control", later in this section.

The JadeTextEdit class provides you with:

Programming language-sensitive text coloring and styling

Programming language-sensitive text block folding

Linemarks, to bookmark specific lines in a text edit control as go-to points

Keystroke binding to editor actions, text insertion, or notification generation

Load and save text buffer contents in local files

Support for sharing the text buffer between multiple controls

Visible indent guides, whitespace, and ends of lines

Rectangular selection, by pressing the:

Alt key when dragging the mouse

Shift+Alt+ arrow keys

You can copy the rectangle selection area to the Windows or the JADE editor clipboard. Pasting the text in
the clipboard adds the text at the selected position and starts a new line for lines 2 and greater.

You can also use this functionality to add tab characters into multiple lines, by pressing Shift+Alt+↓ to select
the lines into which the tab characters are added (without selecting any characters) and then pressing Tab to
enter tabs on each of the selected lines. Similarly, to remove tabs, press Shift+Alt+↓ to select the lines from
which the tabs are removed (without selecting any characters) and then press Backspace, to move text back to
the prior tab position.

If no text is selected and the cursor is over an identifier, all matching occurrences of that identifier (full-word
and case-sensitive) are highlighted.

When text is selected, the result is determined by the value of the Only highlight whole words matching
selection check box on the Editor Options sheet of the Preferences dialog. If the check box is:

Unchecked (the default value), any other text matching the case-sensitive selection is also highlighted
using the Additional Selections color specified on the Editor sheet of the Preferences dialog (lime
green, by default), unless the selection contains only space-type characters; for example, selecting the
word to highlights any occurrence of to in the editor pane.

http://scintilla.sourceforge.net/SciTEDoc.html
http://scintilla.sourceforge.net/ScintillaDoc.html

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 113

EncycloWin - 2020.0.02

Checked, any selection causes other text matching text in the editor pane to be highlighted if the
selection is a full-word identifier and there are other occurrences of that word in the editor pane. This
match is case-sensitive and full-word; for example, selecting the word caption highlights any other
occurrence of the full word caption.

Parentheses (()) and bracket ([]) pairs are highlighted when editing a JADE method or schema file when the
cursor is positioned before the starting or closing () parenthesis or [] bracket character, making it quicker to
resolve the omission of the closing parenthesis or bracket.

The back ground of the two parentheses (()) and bracket ([]) bracket characters is colored using the
Additional Selections value specified on the Editor sheet of the Preferences dialog. The default value is
bright green. If the cursor is positioned before a parenthesis or bracket character that does not have a
matching starting or closing bracket, the background of the character is highlighted in red. (There is no user
preference available for this.)

Notes The JadeTextEdit control uses between four and five times the size of the text contained in the control for
memory buffer and tables. The maximum size of a file that you can load into the control by using the
loadTextFromFile method is the smaller of 50M bytes or a tenth of the physical memory.

Although there is no limit on the maximum number of characters in one line of text, only the first 8190 characters
are displayed. This limit also applies when wrapping is enabled. The remainder of the line can be edited and the
caret (insertion point) can be moved into those areas so that new line characters can be inserted.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 114

EncycloWin - 2020.0.02

The following image shows some of the functionality available in text editor controls.

This image illustrates the following settings that have been defined in an application.

The current language is JADE. As text is styled using the JADE language settings, the color of words is
determined by the type (for example, comments, keywords, numeric literals, global constants, and so on).

The example in this image uses the following code fragment.

language := SCLEX_JADE;
applySettings;

A wrapped line has a line number displayed in margin zero (0) only in the first line. Subsequent wrapped
lines of the same line are indicated by optional indentation and visual markers, whose positioning you can
specify (for example, before or after the wrapped text).

The example in this image uses the following code fragment.

wrapMode := SC_WRAP_WORD;
wrapIndent := 4;
wrapVisualFlags := SC_WRAPVISUALFLAG_END;

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 115

EncycloWin - 2020.0.02

The linemarks in margin 1 serve as bookmarks in the current text editor.

You can bind editor commands to keystrokes that allow a user to toggle (set or reset) a linemark in the
current line (for example, Ctrl+F7) or to move to the next linemark (for example, F7) or to the previous linemark
(for example, Shift+F7).

The example in this image uses the following code fragment.

markerMargin := true;
setLinemarkAttributes(MARKER_JAD_LINEMARK, SC_MARK_ROUNDRECT,

Black, LightGreen);
bindKeyToCommand(J_key_F7+KEYMOD_CTRL, SCI_TOGGLE_JADE_LINEMARK);
bindKeyToCommand(J_key_F7, SCI_GONEXT_JADE_LINEMARK);
bindKeyToCommand(J_key_F7+KEYMOD_SHIFT,SCI_GOPRIOR_JADE_LINEMARK);

Note Going to a linemark that contains folding on or following that line and before the next marked line
expands any folded lines that were hidden (that is, folded).

Fold marks optionally displayed in margin 2 of the margin enable you to suppress the display of specific text
editor lines (for example, if you want to hide the details of an if instruction), by:

Clicking margin 2 within a fold mark to contract an expanded fold mark (that is, hide the display of lines)

Clicking on a collapsed fold symbol to display all lines within that fold

Going to a linemark whose following lines contain folds, to expand the folded lines.

The example in this image uses the following code fragment.

folding := true;
foldFlags := 16;
foldSymbols := SC_FOLDSYM_TREESQUARE;

Whitespace is visible, spaces are indicated by the centered dots, and tabs by right-pointing arrows.

The example in this image uses the following code fragment.

viewWhitespace := SCWS_VISIBLEALWAYS;
viewEndOfLine := true;

The background color of margins, the edge mode line, selected text, background color, and the text edit
control window can all be specified to meet your requirements.

The example in this image uses the following code fragment.

self.setStyleAttributes(STYLE_LINENUMBER, "", ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, Purple, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

setNamedAttribute("fold.margin.color", Pink);
selBackColor := LightBlue;

You can specify that lines that exceed a specified number of characters are visibly marked.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 116

EncycloWin - 2020.0.02

The example in this image, which uses the following code fragment, uses line mode where a vertical line is
drawn after the specified column. The line is offset by the amount of wrap indentation when wrapping is
enabled.

edgeMode := SC_EDGE_LINE;
edgeColumn := 65;
edgeColor := Black;

The debug breakpoint line is displayed using a linemark. The example in this image uses the following code
fragment.

setLinemarkAttributes(MARKER_JAD_BREAKPOINT, SC_MARK_BACKGROUND,
Yellow, Yellow);

For details about the function key and shortcut keys in the JADE editor pane, see "Using Function Keys and
Shortcut Keys" under "Using the JADE Development Environment", in Chapter 2 of the JADE Development
Environment User's Guide.

JadeTextEdit Class Constants
The constants provided by the JadeTextEdit class are listed in the following table.

Constant Value

ADDTXT_ADD 2

ADDTXT_APPEND 3

ADDTXT_INSERT 1

ADDTXT_INSERTREPLACESEL 4

ATTRIB_DEFAULT -1

ATTRIB_FALSE 0

ATTRIB_NOCHANGE -2

ATTRIB_TRUE 1

CLIPBUFFER_MAX 9

EVENTTYPE_ALTERREADONLY #80001002

EVENTTYPE_BOUNDKEY #80001001

EVENTTYPE_CANCEL #80001003

EVENTTYPE_CLIPBUFFCHG #80001005

EVENTTYPE_CLIPBUFFETC #80001006

EVENTTYPE_OPENFINDREPLACE #80001007

EVENTTYPE_OPENMACROLIBRARY #80001008

EVENTTYPE_PLAYSAVEDMACRO #80001009

EVENTTYPE_SELECTIONSTATE #80001004

FIND_INTERP_NONE 0

FIND_INTERP_POSIXREGEXPR 3

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 117

EncycloWin - 2020.0.02

Constant Value

FIND_INTERP_REGEXPR 2

FIND_INTERP_UNSLASH 1

FIND_RANGE_ALL 0

FIND_RANGE_CARET 1

FIND_RANGE_SELECTION 2

KEYMOD_ALT #40000

KEYMOD_CTRL #20000

KEYMOD_SHIFT #10000

KEYWORDSET_MAX 9

KEYWORDS_ADD 2

KEYWORDS_DELETE 3

KEYWORDS_SET 1

KEYWORDS_TOLANGDEF 4

KMACRO_GETCOMMANDS 6

KMACRO_GETISRECORDING 8

KMACRO_GETTEMPORARY 4

KMACRO_PLAYTEMPORARY 1

KMACRO_PLAYTEXT 7

KMACRO_RECORDSTART 2

KMACRO_RECORDSTOP 3

KMACRO_SETTEMPORARY 5

KWL_JADE_GLOBALCONSTANTS 5

KWL_JADE_IMPORTEDCLASSES 8

KWL_JADE_INTERFACES 9

KWL_JADE_KEYWORDS 1

KWL_JADE_METHODWORDS 2

KWL_JADE_PACKAGES 7

KWL_JADE_SYSTEMCLASSES 4

KWL_JADE_SYSTEMVARS 3

KWL_JADE_USERCLASSES 6

LMACT_ADD 1

LMACT_ADDATPOSITION 14

LMACT_DELETE 2

LMACT_DELETEALL 3

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 118

EncycloWin - 2020.0.02

Constant Value

LMACT_DELETEBYHANDLE 4

LMACT_GETBITMASK 5

LMACT_GETLINEFROMHANDLE 6

LMACT_GOHANDLE 11

LMACT_GONEXTBYNUMBER 7

LMACT_GONEXTINBITMASK 9

LMACT_GOPRIORBYNUMBER 8

LMACT_GOPRIORINBITMASK 10

LMACT_MOVESINGLETOLINE 12

LMACT_MOVESINGLETOPOSITION 13

LOCAT_CARET 1

LOCAT_MOUSEPOINTER 0

MARKER_JAD_BREAKPOINT 20

MARKER_JAD_DEBUGCURRENT 22

MARKER_JAD_LINEMARK 1

MARKER_MAXMAX 31

MARKER_USERMAX 24

MVCRT_VIEWCARET 1

MVCRT_VIEWSELECTION 2

MVCRT_WORDEND 3

MVCRT_WORDSTART 4

SCE_JAD_BINARYLITERAL 22

SCE_JAD_COMMENT 6

SCE_JAD_COMMENTLINE 7

SCE_JAD_DEFAULT 4

SCE_JAD_DOCTEXT 21

SCE_JAD_DOLLARIDENT 23

SCE_JAD_GLOBALCONST 17

SCE_JAD_IDENTIFIER 11

SCE_JAD_INTERFACE 20

SCE_JAD_KEYWORD 12

SCE_JAD_METHODWORD 13

SCE_JAD_NUMBER 10

SCE_JAD_PACKAGE 18

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 119

EncycloWin - 2020.0.02

Constant Value

SCE_JAD_PACKAGECLASS 19

SCE_JAD_PUNCTUATION 5

SCE_JAD_SINGLECOLOR 0

SCE_JAD_STRING1 8

SCE_JAD_STRING2 9

SCE_JAD_SYSTEMCLASS 15

SCE_JAD_SYSTEMVAR 14

SCE_JAD_USERCLASS 16

SCI_BACKTAB 2328

SCI_COPYTOCLIPBUFF 2961

SCI_FINDAGAIN 2953

SCI_FINDNEXT 2954

SCI_FINDPREV 2955

SCI_GONEXT_JADE_BRKPNT SCI_MARKERNEXT20

SCI_GONEXT_JADE_LINEMARK SCI_MARKERNEXT01

SCI_GOPRIOR_JADE_BRKPNT SCI_MARKERPRIOR20

SCI_GOPRIOR_JADE_LINEMARK SCI_MARKERPRIOR01

SCI_INSERTLINEABOVE 2956

SCI_LINEDELETE 2338

SCI_MARKERNEXT00 2800

SCI_MARKERNEXT01 2801

SCI_MARKERNEXT20 2820

SCI_MARKERPRIOR00 2850

SCI_MARKERPRIOR01 2851

SCI_MARKERPRIOR20 2870

SCI_NEWLINE 2329

SCI_NULL_COMMAND 0

SCI_OPENFINDREPLACE 2963

SCI_PASTEFROMCLIPBUFF 2962

SCI_TAB 2327

SCI_TOGGLEFOLDERHERE 2951

SCI_TOGGLEMARKER00 2900

SCI_TOGGLEMARKER01 2901

SCI_TOGGLEMARKER20 2920

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 120

EncycloWin - 2020.0.02

Constant Value

SCI_TOGGLEMARKER22 2922

SCI_TOGGLEMARKER24 2924

SCI_TOGGLE_JADE_BREAKPOINT SCI_TOGGLEMARKER20

SCI_TOGGLE_JADE_DEBUG SCI_TOGGLEMARKER22

SCI_TOGGLE_JADE_LINEMARK SCI_TOGGLEMARKER01

SCI_XLATEHEXTOUNICODE 2959

SCI_XLATEUNICODETOHEX 2960

SCI_ZOOMIN 2333

SCI_ZOOMOUT 2334

SCLEX_BASH 62

SCLEX_BATCH 12

SCLEX_CONF 17

SCLEX_CPP 3

SCLEX_CSS 38

SCLEX_DIFF 16

SCLEX_HTML 4

SCLEX_JADE 65

SCLEX_JAVA 65539

SCLEX_JAVASCRIPT 131075

SCLEX_MAKEFILE 11

SCLEX_PERL 6

SCLEX_PROPERTIES 9

SCLEX_PS 42

SCLEX_PYTHON 2

SCLEX_TEXT 1

SCLEX_VB 8

SCLEX_VBSCRIPT 28

SCLEX_XML 5

SCWS_INVISIBLE 0

SCWS_VISIBLEAFTERINDENT 2

SCWS_VISIBLEALWAYS 1

SC_EDGE_BACKGROUND 2

SC_EDGE_LINE 1

SC_EDGE_NONE 0

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 121

EncycloWin - 2020.0.02

Constant Value

SC_EOL_CR 1

SC_EOL_CRLF 0

SC_EOL_LF 2

SC_FOLDSYM_ARROWS 0

SC_FOLDSYM_PLUSMINUS 1

SC_FOLDSYM_TREEROUND 2

SC_FOLDSYM_TREESQUARE 3

SC_INDIC0_MASK #20

SC_INDIC1_MASK #40

SC_INDIC2_MASK #80

SC_INDICS_MASK #E0

SC_INDIC_BOX 6

SC_INDIC_DIAGONAL 3

SC_INDIC_HIDDEN 5

SC_INDIC_PLAIN 0

SC_INDIC_SQUIGGLE 1

SC_INDIC_STRIKE 4

SC_INDIC_TT 2

SC_MARK_ARROW 2

SC_MARK_ARROWDOWN 6

SC_MARK_ARROWS 24

SC_MARK_BACKGROUND 22

SC_MARK_BOXMINUS 14

SC_MARK_BOXMINUSCONNECTED 15

SC_MARK_BOXPLUS 12

SC_MARK_BOXPLUSCONNECTED 13

SC_MARK_CHARACTER 10000

SC_MARK_CIRCLE 0

SC_MARK_CIRCLEMINUS 20

SC_MARK_CIRCLEMINUSCONNECTED 21

SC_MARK_CIRCLEPLUS 18

SC_MARK_CIRCLEPLUSCONNECTED 19

SC_MARK_DOTDOTDOT 23

SC_MARK_EMPTY 5

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 122

EncycloWin - 2020.0.02

Constant Value

SC_MARK_LCORNER 10

SC_MARK_LCORNERCURVE 16

SC_MARK_MINUS 7

SC_MARK_PLUS 8

SC_MARK_ROUNDRECT 1

SC_MARK_SHORTARROW 4

SC_MARK_SMALLRECT 3

SC_MARK_TCORNER 11

SC_MARK_TCORNERCURVE 17

SC_MARK_VLINE 9

SC_STYLES_MASK #1F

SC_WRAPVISUALFLAG_END 1

SC_WRAPVISUALFLAG_END_BY_TXT 3

SC_WRAPVISUALFLAG_NONE 0

SC_WRAPVISUALFLAG_START 2

SC_WRAPVISUALFLAG_START_BY_TXT 4

SC_WRAP_NONE 0

SC_WRAP_WORD 1

STYLE_BRACEBAD 35

STYLE_BRACELIGHT 34

STYLE_CONTROLCHAR 36

STYLE_DEFAULT 32

STYLE_INDENTGUIDE 37

STYLE_LINENUMBER 33

STYLE_MAX 127

JadeTextEdit Properties
The properties defined in the JadeTextEdit class are summarized in the following table.

Property Description

canPaste Specifies whether the clipboard contains text and it can be pasted into the buffer

canRedo Specifies whether editor actions exist that can be redone

canUndo Specifies whether editor actions exist that can be undone

currentColumn Contains the column in which the caret is positioned

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 123

EncycloWin - 2020.0.02

Property Description

currentLine Contains the line in which the caret is positioned

currentPosition Contains the character offset at which the caret is positioned

edgeColor Contains the color of the marker used to show a line has exceeded the edgeColumn
length

edgeColumn Contains the number of the column at which the long linemark indicator is displayed

edgeMode Contains the mode that is used to display long lines in the text editor

endOfLineMode Contains the type of end-of-line sequence that is used when new lines are inserted

firstVisibleLine Contains the number of the first line that is visible in the text editor

foldFlags Contains the flags that influence text folding behavior

foldSymbols Contains the symbol set used in the fold margin when line folding is enabled

folding Specifies whether text block folding is enabled in the editor

indentGuides Specifies whether vertical indentation guidelines are displayed in the editor

indentWidth Contains the width in characters of the text editor indent

language Contains the programming language used in the text editor

markerMargin Specifies whether the marker margin containing linemarks is displayed

modified Specifies whether the text has been modified

readOnly Specifies whether the text is read-only for user input

selBackColor Contains the background color of text selected in the text editor

selForeColor Contains the color of text selected in the text editor

selLength Contains the number of characters selected in the text editor

selStart Contains the starting character offset of selected text in the text editor

selText Contains the string of the currently selected text in the text editor

tabWidth Contains the width of a tab in the text editor

text Contains the text in the text editor

useTabs Specifies whether tabs are used in the text editor to indent lines to the next indent
position

viewEndOfLine Specifies whether end-of-line characters are displayed in the text editor

viewLineNumbers Specifies whether line numbers are displayed in the first margin of text editor lines

viewWhitespace Specifies whether space and tab characters are visible in the text editor

wrapIndent Contains the number of spaces by which continuation lines of wrapped lines are
indented in the text editor

wrapMode Contains the way in which lines of text that exceed the text editor control width are
wrapped

wrapVisualFlags Contains the way in which visual flags indicating wrapped text are displayed in the text
editor

zoom Contains the zoom factor of the text editor

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 124

EncycloWin - 2020.0.02

For details, see "Window, Form, and Control Properties", later in this document.

JadeTextEdit Methods
The methods defined in the JadeTextEdit class are summarized in the following table.

Method Description

addText Adds the specified text to the contents in the specified manner

applySettings Applies the application settings to the text editor

bindKeyToCommand Assigns a key combination to a text editor command

bindKeyToNotification Assigns a key combination to a notification message

bindKeyToText Assigns a key combination to the specified text string

changeKeywords Modifies one of the current keyword lists

clearAllStyles Clears all text styles defined for the control

colorAs6Hex Returns a six-character hexadecimal string in the RGB format of the specified
color

configureFor_Jade Performs basic configuration for JADE methods

configureFor_Text Performs basic configuration for plain text

convertEndOfLines Replaces all end-of-line characters in the contents with the specified characters

convertIndentWhitespace Changes the indentation whitespace as specified

copyDefaultToAllStyles Copies the default text style and all of its attributes to all other text styles

copyToClipboard Copies the selected text to the clipboard

cutToClipboard Cuts the selected text from the contents and moves it to the clipboard

doLinemarker Performs linemark actions (for example, set, go-to, and so on)

emptyUndoBuffer Clears the undo and redo action list

find Searches for the specified text in the contents

findAgain Searches for the text and parameter values reused from the most recent find,
findMarkAll, or replaceAll method

findMarkAll Searches for the specified text and places linemarks where that text is found

getClipBuffer Returns the contents of the specified editor text buffer

getCoordinates Returns the coordinates of the requested location (in pixels) relative to the client
area

getGlobalSettings Returns a copy of the global settings table

getLanguageName Returns the name of the specified programming language number

getLineHeight Returns the height in pixels of the specified line

getLineStartPosition Returns the zero-based character offset of the first character in the specified line

getLineText Returns the text contained in the specified line

getLinemarkLines Populates an array with each occurrence (position) of the specified linemark

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 125

EncycloWin - 2020.0.02

Method Description

getNamedAttribute Returns the value of the specified named attribute

getTextLength Returns the number of characters of text in the contents

getTextRange Returns the text in the specified range

getToggleKeyStates Returns the on or off state of the Insert, CAPS LOCK, NUM LOCK, and SCROLL
LOCK keys

getWordAt Returns the word at the specified location (that is, the mouse pointer or the caret
position)

initializeAppSettings Removes all entries from the application settings table

lineCount Returns the number of lines of text in the contents

lines Returns the height of the client area in lines

loadTextFromFile Replaces the contents of the text editor with the contents of the specified file

moveCaret Moves the caret to the specified position

pasteFromClipboard Pastes the contents of the clipboard into the text editor buffer at the caret
position

recordReplay Reapplies the last operation that was undone

redo Reapplies the last operation that was undone

replace Replaces the most recent find match with the specified replacement text

replaceAll Searches for all occurrences of specified text in the contents and replaces it
with the specified replacement text

restyleText Recalculates all of the text styling information for the contents using the current
language setting

rgb Returns the red, green, and blue color values as an Integer value

saveTextToFile Saves the contents to the specified file

selectAll Selects all of the text in the text editor

setClipBuffer Sets the specified editor text buffer with specified text

setIndicatorAttributes Sets type and color attributes for an text editor indicator

setLinemarkAttributes Sets type and color attributes for text editor linemarks

setLinemarkLines Adds a linemark to each line in the specified list

setNamedAttribute Sets the specified named attribute to the specified value

setStyleAttributes Sets the attributes of a text style

setTextRangeToStyle Updates the current text styling for each character in the specified range with
the specified value

setWordCharactersets Sets the characters that are treated as words, white space, and punctuation in
the text editor

shareDocumentFrom Specifies the text editor control whose content is shared by this text editor
control

undo Undoes the last edit operation

updateAppSettings Updates the application JadeTextEdit settings table

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 126

EncycloWin - 2020.0.02

For details, see "Window, Form, and Control Methods", later in this document.

JadeTextEdit Events
The event methods defined in the JadeTextEdit class are summarized in the following table.

Event Occurs when…

change Text within the control changes

click The user presses and then releases the left mouse button

contextMenu The user right-clicks within the control

dblClick The user presses and releases the left mouse button and then presses and releases it again

firstChange The contents of the control change for the first time

gotFocus The control receives the focus

keyDown The user presses a key while the control has the focus

keyPress The user presses and releases an ANSI key

keyUp The user releases a key while the control has the focus

lostFocus A control loses the focus

paint Part or all of a control is exposed

sysNotify A specified JADE system event occurs

userNotify A specified user-defined event or bound key notification occurs

For details, see "Window, Form, and Control Events", later in this document.

Using the JadeTextEdit Control
This section contains the following topics.

Contents of Text Edit Controls

Navigating Around the Text Editor

Using the Mouse within the Editor Text Area

Using the Mouse within the Text Editor Margin

Using the Mouse within the Fold Margin

Using the Keyboard in the Text Editor

Coloring and Text Styling

Folding

Linemarks

Settings

Supported Languages

Unicode and ANSI Considerations

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 127

EncycloWin - 2020.0.02

Contents of Text Edit Controls
As illustrated in the image under "JadeTextEdit Class", earlier in this section, text edit controls can contain the
following.

Zero to three margins, as follows.

a. Line number (margin 0)

b. Linemark (margin 1)

c. Fold mark (margin 2)

Text area

Horizontal and vertical scroll bars, if required

Navigating Around the Text Editor
The caret marks the current position.

The caret is a vertical bar displayed before the current character when the insert mode is true. Conversely, it is an
underline displayed under the current character when the insert mode is false.

This section contains the following topics.

Using the Mouse within the Editor Text Area

Using the Mouse within the Text Editor Margin

Using the Mouse within the Fold Margin

Using the Keyboard in the Text Editor

Using the Mouse within the Editor Text Area

The mouse actions that you can perform in the text area of the JadeTextEdit control text editor are listed in the
following table.

Mouse Action Result

Left-click Moves the caret (insertion point) to the cursor location and cancels the selection

Double-click Selects the word at the cursor location

Triple-click Selects the line at the cursor location

Left down and move Anchors the selection at the down position and extends to follow the cursor
location

Right-click Opens the popup (context) menu

Shift+left-click Moves the caret (insertion point) to the cursor location and extends the selection
to the new location

Alt+left down and move Anchors a rectangular selection at the down position and extends to follow the
cursor location

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 128

EncycloWin - 2020.0.02

Using the Mouse within the Line Number Margin

The mouse actions that you can perform within the line number margin of the JadeTextEdit control text editor are
listed in the following table.

Mouse Action Result

Left-click Selects the line at the cursor location

Ctrl+left-click Selects all text in the text editor

Shift+left-click Extends the line-based selection from the current anchor point to the line at the
cursor location

Using the Mouse within the Fold Margin

The mouse actions that you can perform within the fold margin of the JadeTextEdit control text editor are listed in
the following table.

Mouse Action Result

Ctrl+Shift+left-click Toggles (expands or contracts) the fold point and all lower-level (child) fold
points to match

Shift+left-click Toggles (expands or contracts) all outer (parent) fold points

Left-click Toggles (expands or contracts) the nearest fold point

Using the Keyboard in the Text Editor

The keyboard and shortcut commands in the JadeTextEdit control follow standard conventions. All move keys
(that is, arrows, Page Up, Page Down, Home, and End keys) enable the extension or reduction of the stream selection
when holding down the Shift key and of the rectangular selection when holding the Shift and Alt keys.

Note The setting of the wrapMode property changes the behavior of the Home key. When the value of the
wrapMode property is SC_WRAP_WORD, the Home key moves the caret to the start of the text line rather than to
the start of the display line.

In addition to the keyboard zoom functionality commands listed in the following table, you can use the Ctrl key and
the mouse to increase, decrease, or restore text size; that is, Ctrl+ scrolling the mouse wheel forward increases the
zoomed size, Ctrl+ scrolling the mouse wheel backward decreases the zoomed size, and Ctrl+ clicking the middle
mouse button (pressing the mouse wheel) restores the editor pane to normal.

The keyboard commands are listed in the following table.

Action Key

Magnify text size (zoom functionality) Ctrl+numeric + symbol

Reduce text size (zoom functionality) Ctrl+numeric - symbol

Restore text size to normal (zoom functionality) Ctrl+numeric / symbol

Indent block Tab

Remove indent block Shift+Tab

Delete to start of word Ctrl+Backspace

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 129

EncycloWin - 2020.0.02

Action Key

Delete to end of word Ctrl+Delete

Delete to start of line Ctrl+Shift+Backspace

Delete to end of line Ctrl+Shift+Delete

Go to start of document Ctrl+Home

Go to the start of a newly inserted line without performing
automatic indenting

Ctrl+Enter

Extend selection to start of document Ctrl+Shift+Home

Go to start of display line Alt+Home

Extend selection to start of text within a line Alt+Shift+Home

Extend selection to start of line Alt+Shift+Home pressed twice

Go to end of document Ctrl+End

Extend selection to end of document Ctrl+Shift+End

Go to end of display line Alt+End

Scroll down Ctrl+down arrow

Scroll up Ctrl+up arrow

Line cut Ctrl+L

Line copy Ctrl+Shift+T

Line delete Ctrl+Shift+L

Line transpose with previous Ctrl+T

Line duplicate Ctrl+D

Previous paragraph (press Shift to extend the selection) Ctrl+[

Next paragraph (press Shift to extend the selection) Ctrl+]

Previous word (press Shift to extend the selection) Ctrl+left arrow

Next word (press Shift to extend the selection) Ctrl+right arrow

Previous word part (press Shift to extend the selection) Ctrl+/

Next word part (press Shift to extend the selection) Ctrl+\

Toggle fold point Ctrl+numeric keyboard * (asterisk)

Magnifies text size (zoom functionality) Ctrl+numeric + (plus) symbol

Reduces text size (zoom functionality) Ctrl+numeric – (minus) symbol

Restores text size to normal (zoom functionality) Ctrl+numeric / (divide) symbol

Toggles all outer fold points Ctrl+Shift+numeric keyboard * (asterisk)

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 130

EncycloWin - 2020.0.02

Coloring and Text Styling
Each language supported by Scintilla has an associated lexical analyzer, which understands that language. It is
responsible for examining the text contained in the control and determining, with the help of up to nine keyword
tables, which characters in the text make up a keyword, numeric literal, string literal, or a comment, and setting
appropriate style information about that text.

Each character of text has an associated byte of style information, which includes a style number and up to three
indicator bits. Each language specifies its own table of style numbers. For example, the JADE lexer uses style
SCE_JAD_KEYWORD (12) for keywords such as if, while, and endif, and style SCE_JAD_COMMENTLINE (7)
for line-based comments beginning with a double slash (//).

Each character in a line of text is displayed using the attributes associated with its style number. The style
attributes include font, font size, bold, italic, foreground color, and background color. The indicator bits provide an
additional way to highlight text independent of the basic styling. Indicator bits can highlight a section of text with a
red wavy underline symbol, to indicate a syntax error without overriding keyword coloring.

Style numbers in the range 32 (STYLE_DEFAULT) through 39 provide style attributes for non-text-related items
such as line numbers. You can use style 32 (STYLE_DEFAULT) to initialize all possible styles (in the range zero
through 127) to a common setting before language-specific style settings are applied.

The clearAllStyles method initializes the default style to the attributes specified on the control (that is, the
fontName, fontSize, fontBold, fontItalic, fontUnderline, foreColor, and backColor property values) and then
copies the default style to all other styles. The setStyleAttributes method alters one or more of the attributes of a
specific style. The copyDefaultToAllStyles method copies the default style to all other styles.

The changeKeywords method can set one of the nine keyword lists to a specified list of words (separated by
whitespace). It can also add or delete one or more words from a specified list and it can set all of the keyword lists
to language-specific entries taken from the application and global setting tables.

The applySettings method loads the text styles table and the keywords lists with entries taken from the application
and global settings tables, which are specific to the current language.

The minimum code required to have the text styled according to a fully supported language (for example, C++) is
as follows.

control-name.language := SCLEX_CPP;
control-name.applySettings();
control-name.restyleText();

Folding
Folding is primarily used with block structured languages. In addition to colorization, the language lexical analyzer
(lex analyzer) performs fold point calculations. It scans the text for keywords or characters that indicate statement
blocks.

The line introducing a statement block is marked as a fold point. The following lines through to, and sometimes
including, the line where the block ends are linked to the fold point header line. Statement blocks can have other
statement blocks embedded inside them.

Programming languages like C and C++ use brace characters ({ }) to mark the extent of statement blocks. The
JADE language uses matched pairs of keywords (for example, the if and endif instruction pair) to mark the extent
of statement (instruction) blocks. The JADE language lex analyzer also recognizes //{ and //} as fold block
markers.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 131

EncycloWin - 2020.0.02

Some languages (including JADE) support the following styles of fold calculation (selected by using the named
attribute fold.compact). See also the setNamedAttribute method.

NORMAL

The fold point is placed on the line containing the end of the header statement. For an if instruction, this is the
line containing the then clause.

The lines that can be hidden by using this fold point extend to, but do not include, the line that contains the
matching block terminator word (for example, endif).

COMPACT

The fold point is placed on the line containing the first word of the instruction (for example, if). The lines that
can be hidden by using this fold point extend to and include the line that contains the matching block
terminator word and any following blank lines.

A fold point can be in two states, as follows.

Expanded, in which the text lines of the statement block are visible. Blocks embedded inside this block can
be independently expanded or contracted.

Contracted, in which the text lines of the statement block are all hidden, including the lines in embedded
blocks.

A fold point can optionally have a horizontal line drawn above or below it, to indicate its current state. The
suggested setting for a fold point (used by the JadeEditor class) is a line drawn below a contracted fold point
(foldFlags := 16).

The fold point symbols drawn in the fold margin can be completely customized, by using the
setLinemarkAttributes method to modify the attributes of linemarks in the range 25 through 31.

Use the foldSymbols property to select one of the four available sets of fold point markers. The symbol set
represented by the SC_FOLDSYM_TREESQUARE constant is recommended.

To contract and expand fold points:

Use the mouse in the fold margin

Press Ctrl+* (the asterisk on the numeric keypad).

Linemarks
Linemarks are indicators on specific lines in a text edit control and are normally used as go-to points. You can
assign style and color attributes to any of the 32 text editor linemarks, numbered zero (0) through 31, which you
can assign in any combination to each text editor line. (See also the JadeTextEdit class setLinemarkAttributes
method.)

Linemarks are displayed in the selection margin at the left of text in a line. If the selection margin is hidden, the
background color of the whole line is changed instead. Linemarks numbered 25 through 31 are used by the text
folding feature and are bound to margin 2 by default. You should not use the line folding linemarks in this range
for other purposes.

The remaining linemark numbers in the range zero (0) through 24 are bound to margin 1 and have no predefined
function, so you can use them as bookmarks for indicating syntax errors or breakpoints, for example.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 132

EncycloWin - 2020.0.02

You can bind editor commands to key combinations, which allow a linemark to be toggled on the current line (for
example, Ctrl+F7), move the caret to the next line with a specified linemark (for example, F7), or move the caret to
the previous line with a specified linemark (for example, Shift+F7). Note that when the caret moves to a linemark on
a line that is hidden in a contracted fold block, that fold block and any embedded fold blocks are expanded to
show that line.

Each linemark number can have a different symbol, foreground color, and background color. If a line has more
than one linemark set on it, they are drawn in order on top of each other, starting with zero (0). If low numbers are
set to large symbols, they are partially visible when over-drawn by smaller symbols assigned to higher linemark
numbers. If the linemark margin (1) is not visible and lines have linemarks set on them, each of those lines is
displayed with the background color overridden with the background color of the highest linemark set on that line.
A linemark with the type SC_MARK_BACKGROUND (22) is always displayed this way, even when the linemark
margin is visible.

Linemarks are also known as bookmarks in other languages; for example, in MS Visual Studio.

Settings
The settings is a textual table that contains information for customizing the text editor for a specific programming
language (for example, JADE, C, Perl, HTML, and so on). Each language has its own set of text styles and
keyword lists, as well as some other language-specific items.

A built-in table of settings contains the information for the directly supported languages. You can retrieve this for
display by calling the JadeTextEdit class getGlobalSettings method or the Application class
getJadeTextEditGlobalSettings method. There are approximately 80K bytes of global settings. As the settings
table is read-only, you cannot modify it.

In addition to the global table, each JADE application has a separate settings table, which is initially empty. A
setting in the application table with the same key value overrides a matching setting in the global table. The
application table is modified by using the Application class updateJadeTextEditAppSettings method or the
JadeTextEdit class updateAppSettings method. The application settings table is shared by all instances of the
JadeTextEdit control (or its subclasses) within the same JADE application. Use the JadeTextEdit class
initializeAppSettings method to clear all entries from the application settings table.

The settings text consists of a series of key=value entries, separated by line delimiters (for example, the CrLf
end-of-line sequence). Each entry consists of a key/value pair, separated by an equals (=) character. The value
text can be split over multiple lines, using a backslash (\) character as the last character in a line to indicate
continuation.

Both the key and value text can include text substitution, which is indicated by another key enclosed in
parentheses preceded by a dollar character (for example, $(another.key)).

Comments can also be embedded, by using a crosshatch (#) character as the first non-blank character in the line.

The global setting table is generated from a selection of SciTE properties files.

You can add settings for other languages not included in the global properties table, by extracting the contents of
the appropriate SciTE properties file.

Use the Application class getJadeTextEditOneSetting method to retrieve the value associated with a specific
key.

Note Text substitution is performed on the value text but not on the key text.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 133

EncycloWin - 2020.0.02

Supported Languages
All Scintilla lexical analyzers are built-in, but keyword list and style settings are available only for a subset of the
65 languages available to Scintilla. The fully supported languages are:

JADE

C and C++ family

Java

JavaScript

Perl

Python

Shell script (for example, Bash)

Windows command files (.bat, .cmd)

HTML, XML, SVG, PHP

CCS

Properties, INI, cfg, cnf

Diff

PostScript

Visual Basic

VBScript

Use the JadeEditor subclass of the JadeTextEdit control to edit JADE method source, as it has facilities that help
with the building and real-time maintenance of the keyword lists.

Keyword sets and text styles for other languages are contained in the appropriate properties files included with
the SciTE program that the reference application built around the Scintilla editor engine.

Unicode and ANSI Considerations
When the text edit control is used in an ANSI system, the text is limited to single 8-bit characters. Characters
inserted from the keyboard with a decimal value greater than 254 are ignored.

Pasting Unicode characters from the clipboard has no defined behavior, as it is operating system-dependent. The
loadTextFromFile method reads from ANSI text files only.

When the control is used in a Unicode system, the text is held and manipulated internally in UTF8 format.
Conversion to and from wide characters is performed as text enters and leaves the control.

In a Unicode system, an exception (15645) is raised if an invalid wide character is found in the text. Valid
characters are limited to the range U+0000 through U+10FFFF (that is, the UTF-16-accessible range) as specified
in RFC 3629 - UTF-8, a transformation format of ISO 10646.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 134

EncycloWin - 2020.0.02

JadeXamlControl Class
A JadeXamlControl control enables JADE systems to utilize the facilities offered by .NET 3 Foundation. The
content of this control type is defined entirely by a Windows Presentation Foundation (WPF) Extensible
Application Markup Language (XAML) definition. The control is essentially an empty canvas on which the XAML
definition is displayed. It has a WPF dock panel that causes the XAML element or elements to be sized to the
control size.

A JadeXamlControl control can have child controls (including in the JADE Painter). A child of a XAML control
cannot be transparent (that is, the transparent property is ignored).

Transparent sibling controls are always painted before a JadeXamlControl control, regardless of their zOrder
settings. It is not possible to handle the painting of transparent controls in the correct zOrder when some controls
are directly painted by JADE and others are painted by Windows separately.

As the JadeXamlControl class is a subclass of the Control class, it inherits all of the properties and methods
defined in the Control class and Window class. However, the following JADE control properties are ignored, as
they are not relevant or they are ignored in favor of the defined XAML setup.

Control Description

automaticCellControl Use of a XAML control as a Table cell control is not supported

autoRedraw Dynamic drawing on the control is not supported

backColor Used only if the XAML content is not set

backBrush Not supported

borderStyle Ignored in favor of the XAML definition

draw-related properties Dynamic drawing on the control is not supported

font-related properties Ignored in favor of the XAML definition

ignoreSkin Skinning a XAML control is not supported

show3D Ignored in favor of the XAML definition

For a summary of the property, methods, and events defined in the JadeXamlControl class, see
"JadeXamlControl Property", "JadeXamlControl Methods", and "JadeXamlControl Events", in the following
subsections.

JadeXamlControl Property
The property defined in the JadeXamlControl class is summarized in the following table.

Property Description

xaml Defines the content of the control in the WPF Extensible Application Markup Language (XAML)

For details, see "Window, Form, and Control Properties", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 135

EncycloWin - 2020.0.02

JadeXamlControl Methods
The methods defined in the JadeXamlControl class are summarized in the following table.

Method Description

callMethod Executes a WPF method on a specified entity of the XAML control

eventItemName Determines the element of the XAML contents that issued the JADE event

getValue Returns the value of a WPF method or property for the specified XAML entity

setValue Sets the value of a WPF property for the specified XAML entity

setXamlEventMethod Registers for other WPF control events apart from the standard JADE events

For details, see "Window, Form, and Control Methods", later in this document.

JadeXamlControl Events
The event methods defined in the JadeXamlControl class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and
releases it again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

gotFocus When a control receives the focus

keyDown When the user presses a key while the control has the focus

keyPress When the user presses and releases an ANSI key

keyUp When the user releases a key while the control has the focus

lostFocus When a control loses the focus

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control (only called at the JadeXamlControl
level)

mouseLeave When the user moves the mouse off a control (only called at the JadeXamlControl level)

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

windowCreated Called for all controls when the window for the control is created, so that a control can be
initialized when the window for the control is present

For details, see "Window, Form, and Control Events", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 136

EncycloWin - 2020.0.02

Note The paint method is never called.

Label Class
A label is a control that you can use to display text that cannot be directly changed by the user.

As the Label class is a subclass of the Control class, it inherits all of the properties and methods defined in the
Control class and Window class.

You can write logic that changes a label in response to events at run time. For example, if your application takes a
while to commit a change, you could display a processing-status message in a label. You can also use a label to
identify a control (for example, a TextBox control) that does not have its own caption property.

A label can be set to automatically resize to the caption size.

The Label class provides the following subclasses.

ProgressBar

WebHotSpot

WebInsert

WebJavaApplet

For a summary of the constants, properties, method, and events defined in the Label class, see "Label Class
Constants", "Label Properties", "Label Method", and "Label Events", in the following subsections.

Label Class Constants
The constants provided by the Label class are listed in the following table.

Constant Integer Value Constant Integer Value

Alignment_Center_Bottom 8 Alignment_Center_Middle 7

Alignment_Center_Top 6 Alignment_Left_Bottom 2

Alignment_Left_Middle 1 Alignment_Left_Top 0

Alignment_Right_Bottom 5 Alignment_Right_Middle 4

Alignment_Right_Top 3

Label Properties
The properties defined in the Label class are summarized in the following table.

Property Description

alignment Contains the placement of the text in the control

autoSize Specifies whether a control is automatically resized to fit its contents

caption Contains the control caption

formatOut Contains system-defined formats of data when printing labels

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 137

EncycloWin - 2020.0.02

Property Description

hyperlink Contains a hyperlink string that is programmatically attached to the label control

noPrefix Specifies whether the character following a single ampersand (&) is underlined in the caption
of a label

transparent Causes the control to be placed above all other sibling controls and the controls or form
underneath to be visible

wordWrap Specifies whether text displayed in a caption advances to the next line of the control when the
current line is filled

For details, see "Window, Form, and Control Properties", later in this document.

Label Method
The method defined in the Label class is summarized in the following table.

Method Description

isSizeable Returns false to specify that the control cannot be resized in the JADE Painter

For details, see "Window, Form, and Control Methods", later in this document.

Label Events
The event methods defined in the Label class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and releases it
again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 138

EncycloWin - 2020.0.02

ListBox Class
A list box control displays a list of items from which the user can select one or more items. If the number of items
exceeds the number that can be displayed, a vertical scroll bar is automatically added to the list box.

To add an item to a list

Use the addItem or addItemAt method.

To delete an item from a list

Use the removeItem method.

If no item is selected, the listIndex property value is -1. The first item in the list has a listIndex of 1, and the
listCount method returns the number of items in the list. The text property returns the text for the currently selected
item.

When multiple items are currently selected, the value of the listIndex property is the last of the items selected. One
or more items can be selected, with the value of the listIndex property being none of those items (for example,
when you select an item, press the Shift key and select another item, then press the Ctrl key and remove the
selection of one of the previously selected items).

Tip It is much more efficient to copy a GUI value into a local variable for reuse rather than request the value
again. For example, listBox.listCount requires the calling of a list box method to retrieve the value. Storing the
value in a local property for reuse avoids a significant overhead for the second and subsequent requests for that
value when it will not change. The first of the following examples is much more expensive than the second of
these examples.

while count <= listBox.listCount do // inefficient use of the variable

vars // recommended use of the variable
listBoxCount : Integer;

begin
listBoxCount := listBox.listCount;
while count <= listBoxCount do

...
endwhile;

end;

If the width of any displayed item exceeds the width of the list box and the scrollHorizontal property is set to 1
(automatic), a horizontal scroll bar is added to the list box. The scroll ranges for the list box are set automatically
and cannot be changed. For details about the support of mouse wheel requests to scroll up, down, or across a list
box control, see "Window Class", earlier in this document. A list box can have a maximum of 32,000 items.

You can implement filtering of combo box and list box entries to enable users to locate a required list item more
quickly, using standard combo box and list box facilities to achieve this filtering. (For details, see "Filtering Entries
in Combo Box and List Box Text", in Chapter 2 of the JADE Development Environment User's Guide.) You can
achieve the filtering of entries in your own JADE systems, as follows.

Set the value of the style property for the ComboBox control class to ComboBox.Style_DropDown (0).

Set the value of the ListBox control hasPictures, hasTreeLines, and hasPlusMinus properties to false.

The value of the sorted property must be set to false after the list is loaded.

A disabled description list item is added as the first entry in the list (after sorting is turned off).

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 139

EncycloWin - 2020.0.02

The change event on the combo box or associated text box calls a filtering routine to hide or show the entries
based on the new text entered. Setting the level of the item to 2 hides the entries, which is why there has to
be an entry at item position 1 that is always at level 1. (A child item must have a parent.)

Press Ctrl+Home to move a list box with an associated collection to the first entry in the collection. Conversely,
press Ctrl+End to move the display to the last entry in the collection.

Note Pressing the Home key on a list box moves the display to the first entry that has been loaded in the control.
Pressing the End key moves the display to the last entry currently loaded in the control. Using the Ctrl key for a list
box that does not have a collection attached has the same result as pressing the Home or End key without the Ctrl
key. For details about dragging the scroll bar thumb of a list box when an Array, Dictionary, or Set collection is
attached to the list box, see the displayCollection method.

If the list item entry in a list box is too long to fit in the list, bubble help showing the complete text is automatically
displayed over the text portion of the entry when the mouse is moved over that entry. Bubble help is no longer
displayed if the mouse is moved off that entry or after approximately three seconds.

Notes Clicking on the bubble help generates a click event for that list entry.

The automatic display of bubble help does not occur if the list box already has bubble help defined (by using the
Window::bubbleHelp property).

To disable the automatic bubble help for a list box, set the bubbleHelp property of that control to a space.

Note For the arrays associated with list boxes (for example, itemBackColor), the only methods that are
implemented are at, atPut (which enables you to use the square brackets notation to access the elements),
createIterator (which allows logic to do a foreach over the array), size, and size64.

For a summary of the constants, properties, methods, and events defined in the ListBox class, see "ListBox Class
Constants", "ListBox Properties", "ListBox Methods", and "ListBox Events", later in this section. See also "Setting
Properties for Individual Items in a List Box", "Using a List Box to Display a Hierarchy or Tree", and "Copying Text
from a List Box", in the following subsections.

Setting Properties for Individual Items in a List Box
The properties summarized in the following table can be set for an individual item in a ListBox control.

Property Description

itemBackColor Contains the background color of each item

itemData Contains a specific number for each item

itemEnabled Specifies whether individual items are disabled or enabled

itemExpanded Contains the expansion (or collapse) status of each item

itemForeColor Contains the text color of each item

itemLevel Contains the hierarchical level of each item

itemObject Contains an object for each entry

itemPicture Contains a picture for individual items

itemPictureType Contains the type of picture of each item

itemSelected Contains the selection status of each item

itemText Contains the text of an item

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 140

EncycloWin - 2020.0.02

Each of these properties is an array of values, with the same number of entries as items in the list box. To set a
property for an item in a list box, you must also specify the index of the item; for example:

myListBox.itemText[1]

The previous example returns the text for the first item in a list box called myListBox.

The code fragment in the following example sets the itemText property for the tenth item in this list box.

myListBox.itemText[10] := "Fred";

See also "Using a List Box to Display a Hierarchy or Tree", in the following subsection.

Using a List Box to Display a Hierarchy or Tree
The ListBox class also provides features to display items in a hierarchy. Each item in the list can have
subordinate items visually represented by indentation levels. When an item is expanded, its subordinate items are
visible. When an item is collapsed, its subordinate items are hidden.

Items in the ListBox control can also display graphical elements to provide visual cues about the state of the item.
Picture images in a list box are transparent only if the image type in JADE handles transparency; for example,
icons or Graphics Interchange Format (GIF) files. If the image is a bitmap, the list box treats any white pixels on the
outside of the image as transparent.

The following image shows an example of the types of the extended feature display.

The display is made up of the parts listed in the following table.

Display Part Description

Tree lines The tree lines are displayed if the hasTreeLines property is set to true. Clicking on this
image causes a pictureClick event, in which logic can expand or collapse the item.

Plus or minus An icon or bitmap is displayed if the hasPlusMinus property is set to true and the list item
has subitems. A different image is normally displayed, depending on whether the item is
expanded or collapsed. The default images are shown in the above image. These images
can be changed by using the picturePlus and the pictureMinus properties. Clicking this
portion of an item has the same impact as tree lines.

Picture The picture image is present if the hasPictures property is set to true. The type of image that
is displayed depends on whether the item has subitems, or is closed or expanded. The
default images are shown in the above image. These images can be changed by using the
pictureClosed, pictureOpen, and pictureLeaf properties. Clicking this portion of an item has
the same impact as tree lines.

Item picture If the list item has a picture (set by the itemPicture property), that picture is placed after all
other images, just before the text. The picture is scaled to fit the list item height.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 141

EncycloWin - 2020.0.02

Display Part Description

Text The text portion of the list item is always present. An item is selected only (setting the
listIndex property) when the text is clicked, or when arrow keys, the Page Up, Page Down,
Home, or End key selects a new item. Clicking the text area causes a click event and selects
that item as the current item.

If the sorted property is set to true, the hierarchical properties (hasPictures, hasPlusMinus, and hasTreeLines)
are set to false. See also "Setting Properties for Individual Items in a List Box", in the previous subsection.

Copying Text from a List Box
When a ListBox control has focus, you can copy the contents of the list box to the clipboard, by using the Ctrl+C or
Ctrl+Insert shortcut key combination. The copy action starts with the first entry currently displayed in the list box and
ends with the last entry in the list box.

A carriage return / line feed character (CrLf) is added to the end of each entry’s text.

Note In the JADE development environment, the Edit menu includes a Ctrl+C menu accelerator for the Copy
command. The list boxes displaying classes, properties, and methods will therefore not receive a Ctrl+C copy
request because such a request is sent to the editor pane. To copy the contents of the classes, properties, or
methods list box, use the Ctrl+Insert key combination.

Entering Characters to Find an Entry in a List Box
When a list box has focus, entered characters are accumulated as a string and are used to select the current entry.

If the user delays for more than a half a second between keystrokes, the current accumulation is discarded and
restarted. For example, to find an element beginning SP, enter P within half a second of entering S. If you delay
longer than this, you are effectively starting a new selection for an element beginning with P.

ListBox Class Constants
The constants provided by the ListBox class are listed in the following table.

Constant Integer Value Constant Integer Value

DisplayCollection_Forward 0 DisplayCollection_NoPrior 0

DisplayCollection_Prior 2 DisplayCollection_Reversed 1

ItemNotFound -1 ItemPictureType_Closed 0

ItemPictureType_Leaf 2 ItemPictureType_Open 1

MultiSelect_Extended 2 MultiSelect_None 0

MultiSelect_Simple 1 PictureClick_ItemPicture 4

PictureClick_KeyBoard 5 PictureClick_Picture 3

PictureClick_PlusMinus 1 PictureClick_TreeLine 2

ScrollHorizontal_Auto 1 ScrollHorizontal_None 0

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 142

EncycloWin - 2020.0.02

ListBox Properties
The properties defined in the ListBox class are summarized in the following table.

Property Description

alternatingRowBackColor Specifies an alternate row background color

alternatingRowBackColorCount Specifies the number of list entry or table rows at which the alternating
background color of each visible list entry, non-fixed row, and non-fixed
cell is displayed

defaultLineHeight Specifies the default height of lines in a list box independent of the font
size

hasPictures Specifies whether the picture images are displayed

hasPlusMinus Specifies whether plus/minus images are displayed

hasTreeLines Specifies whether the tree lines are drawn

integralHeight Specifies whether the list box height shows partial lines

itemBackColor Contains the background color of each item

itemData Contains a specific number for each item

itemEnabled Specifies whether individual items are disabled or enabled

itemExpanded Contains the expansion (or collapse) status of each item

itemForeColor Contains the text color of each item

itemLevel Contains the hierarchical level of each item

itemObject Contains an object for each entry

itemPicture Contains individual items to assign to a picture

itemPictureType Contains the type of picture of each item

itemSelected Contains the selection status of each item

itemText Contains the text of an item

listIndex Contains the index of the currently selected item

listObject Contains the associated object of the currently selected item

multiSelect Specifies whether a user can make multiple selections

nameSeparator Contains the item delimiter string used when accessing the itemFullName
method

pictureClosed Contains the qualifying picture image displayed for an entry

pictureLeaf Contains the qualifying picture image displayed for an entry

pictureMinus Contains the qualifying picture image displayed for an entry

pictureOpen Contains the qualifying picture image displayed for an entry

picturePlus Contains the qualifying picture image displayed for an entry

scrollBars Contains the scroll bars that can be displayed when text extends beyond
the client window co-ordinates of the control

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 143

EncycloWin - 2020.0.02

Property Description

scrollHorizontal Specifies whether a horizontal scroll bar is added when a line item does
not fit horizontally

scrollHorzPos Contains the position of the horizontal scroll bar

sortAsc Specifies whether the sorting is ascending or descending

sortCased Specifies whether the sorting is case-sensitive

sorted Specifies whether the elements are automatically sorted alphabetically

text Contains the text of an item

topIndex Contains the item that is the first item displayed in the list

For details, see "Window, Form, and Control Properties", later in this document.

ListBox Methods
The methods defined in the ListBox class are summarized in the following table.

Method Description

addItem Adds a new item

addItemAt Adds a new item at a specified item index

clear Clears the contents

clearAllSelected Clears all selected items in the list box

displayCollection Attaches the specified collection to the list box

dragListIndex Provides the listIndex property of an entry during drag and drop actions

findObject Searches the itemObject property values of the list entries for the specified
object

findString Searches the entries for an entry that matches the specified string

findStringCaseSensitive Searches the entries for an entry that matches the specified case-sensitive
string

findStringExact Searches the entries for an entry with an exact match to the specified string

findStringExactCaseSensitive Searches the entries for an entry with an exact match to the specified
case-sensitive string

getCollection Returns the collection attached to the list box by the displayCollection or
listCollection method

getLineHeight Returns the height in pixels of each list box entry

getListIndex Returns the index of the displayed list entry corresponding to the position x,
y

getListIndexText Returns the list index that corresponds to the specified position within the
text portion of a list entry

getScrollRange Returns the scroll range information for the window

itemFullName Returns the fully qualified name of an item

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 144

EncycloWin - 2020.0.02

Method Description

itemHasSubItems Returns a Boolean value that indicates whether an item has subitems

itemVisible Returns a Boolean value that indicates whether an item is visible

lines Returns the number of lines available for display in the list box

listCollection Enables controls to have a collection attached to them

listCount Returns the number of items in the list

newIndex Returns the index of the item most recently added

positionCollection Positions the collection attached to the ListBox control to an object in that
collection and to a position within the list box

positionLeft Returns the displayed left position in pixels of the start of text in the specified
list entry

positionTop Returns the displayed top position in pixels of the specified list entry

refreshEntries Refreshes the displayed list of entries in the list box

removeItem Removes an item (and its subitems) from a list box

selectedCount Returns the number of entries selected in the list box

For details, see "Window, Form, and Control Methods", later in this document.

ListBox Events
The event methods defined in the ListBox class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and
releases it again

displayEntry When a control is attached to a collection object and the text to be displayed for an
entry in the collection is required

displayRow For each entry in the collection of the current list, to display the contents of the row

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

gotFocus When a control receives the focus

keyDown When the user presses a key while the control has the focus

keyPress When the user presses and releases an ANSI key

keyUp When the user releases a key while the control has the focus

lostFocus When a control loses the focus

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 145

EncycloWin - 2020.0.02

Event Occurs…

mouseHover When the user moves the mouse onto a control and then the mouse remains static for
one second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

pictureClick When the picture area before the text of an item is clicked with the mouse

pictureDblClick When the picture area before the text of an item is double-clicked with the mouse

scrolled When the user scrolls

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

MultiMedia Class
The MultiMedia control provides the ability to play sound and video files. It also allows the control of devices such
as audio compact discs (CDs), image scanners, and MIDI sequencers. The MultiMedia control is a wrapper for the
standard Microsoft Video for Windows MCIWnd window class.

The MultiMedia control provides options that enable the file to be played in its window with or without a playbar,
title bar, and controlling popup menus. The playbar enables a user to start or stop the playback. (For details about
the file types that can be handled by this control, see "MultiMedia File Types", later in this section.) The control
also provides the ability to:

Play portions of the medium

Position and step the playback

Pause and continue the playback

Record data when the device is capable

To control the device in a more complex fashion, the sendString method enables commands to be issued. For
examples of the commands that are available in a Windows GUI environment, see the "Multimedia Command
Strings" section under "Reference", in the Microsoft Developer Network product documentation.

Caution Not all commands issued by the sendString method are valid and available for all device types; for
example, changing the volume is not valid for a device that has no sound. Check the device documentation for
compliance. (For details about the device types that can be accessed from the MultiMedia class, see "MultiMedia
Device Types", later in this section.)

If the medium name is set at development time and involves a file, that file is copied into the database. As JADE
handles only binary data that has a length less than the maximum database cache size, an attempt to store large
files in the database may fail. To cover situations where the data is copied by logic, ensure that only files of a size
less than half the cache size are stored.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 146

EncycloWin - 2020.0.02

Transparent sibling controls are always painted before a MultiMedia control, regardless of their zOrder settings. It
is not possible to handle the painting of transparent controls in the correct zOrder when some controls are directly
painted by JADE and others are painted by Windows separately.

The MultiMedia control provides notify events that inform JADE logic of changes of media, operating mode, and
playback position. For details about using a MultiMedia control, see "Using MultiMedia Controls", in the following
subsection.

For a summary of the constants, properties, methods, and events defined in the MultiMedia class, see "MultiMedia
Class Constants", "MultiMedia Properties", "MultiMedia Methods", and "MultiMedia Events", later in this section.

Using MultiMedia Controls
The steps that you perform to use the MultiMedia control are:

1. Add a MultiMedia control to your form, and then set the required properties.

2. Set the mediaName property, by performing one of the following actions.

Specify the file or device in the Specific sheet of the Properties dialog in Painter.

Call the openDialog method to enable the user to select the file or device to be loaded.

Explicitly assign a value to the property in your logic.

3. Reimplement event methods.

4. Use the MultiMedia methods to control the behavior of the file or device, or use the sendString method to
control the file or device in a more complex fashion.

Notes When the playbar is visible on the control, no JADE events are issued for mouse actions over that
playbar area. In addition, if the playbar is visible and the useDotNetVersion property is set to true, it is drawn
using WPF entities and it has a different appearance from the playbar drawn using an MP3 file type.

Setting the zoom property to zero (0) when the value of the autoSize property is false stretches the media image
to the current size of the client area of the control.

The MultiMedia control is not supported on forms defined as Web pages and is ignored when HTML is generated.

To play a video file, you need only perform the following actions.

1. Set the mediaName property to the file name that is to be played

2. Call the play method, as shown in the code fragment in the following example.

mmcontrol.mediaName := "c:\image.avi";
mmcontrol.play;

If the useDotNetVersion property is set to true, media attribute values position (obtained by calling the
getEndPosition or getStartPosition method) and length (obtained by calling the getLength method) are not
available until the medium has been opened and the notifyMedia or notifyMode event has been received. For
details about using the MP4 version of a control, see the useDotNetVersion property.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 147

EncycloWin - 2020.0.02

MultiMedia Device Types
The device types that can be accessed by the MultiMedia class are listed in the following table.

Device Type Description

animation Animation device

cdaudio Audio CD player

dat Digital audio tape player

digitalvideo Digital video in a window

overlay Overlay device (analog video in a window)

scanner Image scanner

sequencer MIDI sequencer

vcr Videotape recorder or player

videodisc Videodisc player

waveaudio Audio device that plays digitized waveform files

MultiMedia File Types
The file types that can be handled by the MultiMedia class depend on the software that is installed on the
workstation, and can include the types of files listed in the following table.

File Type Description

wav Sound files

mid MIDI sequence

avi Video with or without sound

mp3 MPEG-1 Audio Layer-3

mp4 MPEG Layer-4 Audio

mpg Mpeg

For details about using the MP4 version of a control, see the useDotNetVersion property.

MultiMedia Class Constants
The constants provided by the MultiMedia class are listed in the following table.

Constant Integer Value Constant Integer Value

Mode_Not_Ready 1 Mode_Open 7

Mode_Paused 6 Mode_Playing 3

Mode_Recording 4 Mode_Seeking 5

Mode_Stopped 2

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 148

EncycloWin - 2020.0.02

MultiMedia Properties
The properties defined in the MultiMedia class are summarized in the following table.

Property Description

autoSize Specifies whether the control is automatically resized to fit its contents

mediaData Contains the data associated with the current device

mediaName Contains the name of the currently installed device

position Contains the current position of the medium with the content of the device

repeat Specifies whether continuous playback mode is set

showMenu Specifies whether a menu button is displayed on the playbar

showMode Specifies whether the control includes a caption including the device status

showName Specifies whether the control includes a caption including the medium name

showOpenMenu Specifies whether a menu item enabling the opening of a file is displayed

showPlayBar Specifies whether a playbar is included

showPosition Specifies whether the control includes a caption including the current position

showRecord Specifies whether a record button is displayed on the playbar

speed Contains the playback speed of the device

timeFormat Contains the time format of the device

timerPeriod Contains the timer period used for the notify events

useDotNetVersion Specifies whether the control uses .NET, providing access to new style media
files such as an MPEG Layer-4 Audio (MP4) file

volume Contains the playback volume of the device

zoom Contains the zoom factor of the video image

For details, see "Window, Form, and Control Properties", later in this document.

MultiMedia Methods
The methods defined in the MultiMedia class are summarized in the following table.

Method Description

canEject Returns whether the device can eject its media

canPlay Returns whether the device can play its media

canRecord Returns whether the device supports recording

canSave Returns whether the device supports saving data

close Closes the associated device or file

eject Requests the device to eject its media

getEndPosition Returns the end position of the content of the medium in the device

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 149

EncycloWin - 2020.0.02

Method Description

getLength Returns the length of the content of the medium in the device

getMode Returns the current operating mode of the device

getStartPosition Returns the start position of the content of the medium in the device

hasAudio Returns whether the current device type supports audio.

hasVideo Returns whether the current device type supports video

isSizeable Returns false to specify that the control cannot be resized in the JADE Painter

newFile Creates a new file for the current device

openDialog Displays a version of the common Open File dialog

pause Pauses the playing or recording of the device or file

play Starts the device playing from the current position in the content

playFromTo Plays the content of the current device or file from and to specified positions

playReverse Starts the device playing for the current position in the content in the reverse direction

record Begins recording content at the current position of the content of the device

resume Resumes playback or recording content from the paused mode

save Saves the content currently used by a device

sendString Enables commands to be issued directly to the device driver

stepRelative Moves the current position in the content forward or backwards

stop Stops the playing or recording if the device

usesFiles Returns whether the data storage used by the device is a file

For details, see "Window, Form, and Control Methods", later in this document.

MultiMedia Events
The event methods defined in the MultiMedia class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

dblClick When the user presses and releases the left mouse button and then presses and
releases it again

dragDrop When a dragged window is dropped over a control belonging to the same application

dragOver For each form or control of the application over which a window is dragged

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 150

EncycloWin - 2020.0.02

Event Occurs…

notifyMedia When there is a change in the media

notifyMode When there is a change in the status of the MultiMedia control

notifyPosition When there is a change in the position of the content

paint When part or all of a control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Ocx Class
The Ocx system class provided by JADE handles any external OLE objects that are registered on your
workstation and added to JADE by the interface to external ActiveX controls (formerly known as external Object
Linking and Editing, or OCX, controls).

Caution To register and run an ActiveX control, all libraries used by the control must be available.

An ActiveX control is contained in a library written in a language like C++ by an external developer. This library
defines the behavior of a Window class OCX control.

When an ActiveX control is imported using the earlier import option, a JADE subclass of the Ocx class is created
that describes the properties, methods, and events defined and exposed by the ActiveX control. This information is
obtained from the control itself. At run time, JADE translates the property and method requirements into ActiveX
control equivalents and then calls the control to perform the function.

Notes As the ActiveX control is external to JADE, no documentation about the control is contained within JADE,
and any problems in the functionality of the control should be taken up with the suppliers of that control. If an error
occurs, JADE is dependent on the control returning error information that can be displayed to the user.

This class has now been superseded by the ActiveXControl class, but it is still valid.

Transparent sibling controls are always painted before an Ocx control, regardless of their zOrder settings. It is not
possible to handle the painting of transparent controls in the correct zOrder when some controls are directly
painted by JADE and others are painted by Windows separately.

All ActiveX controls are defined as subclasses of the JADE abstract Ocx class. OCX subclasses inherit all of the
standard properties and methods of the Window, Control, and Ocx classes, although not all of these properties
and methods have meaning to the control.

To refresh an ActiveX control that has changed but is already imported into JADE, simply import the ActiveX again
and give it the same name that it had previously.

The following OCX standard properties are handled automatically by JADE, using the Window class or Control
class properties summarized in the following table. The control may not have implemented these standard ActiveX
properties, and changing them by using JADE logic may then have no effect.

OCX Property JADE Property

DISPID_BACKCOLOR backColor

DISPID_BORDERSTYLE borderStyle

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 151

EncycloWin - 2020.0.02

OCX Property JADE Property

DISPID_FORECOLOR foreColor

DISPID_ENABLED enabled

DISPID_FONT fontBold, fontName, fontSize, fontUnderline, fontStrikethru, fontItalic

DISPID_TABSTOP tabStop

The following ActiveX properties are assumed to be the equivalent JADE Window properties when the property
types match.

enabled

mousePointer

borderStyle

fontBold

fontSize

fontName

fontItalic

fontStrikethru

fontUnderline

For a summary of the constants, property, method, and events defined in the Ocx class, see "Ocx Class
Constants", "Ocx Property", "Ocx Method", and "Ocx Events", in the following subsections.

Ocx Class Constants
The constants provided by the Ocx class are listed in the following table.

Constant Integer Value Constant Integer Value

AutoSize_Control 0 AutoSize_Object 1

Ocx Property
The property defined in the Ocx class is summarized in the following table.

Property Description

autoSize Specifies whether a control is automatically resized to fit its contents

For details, see "Window, Form, and Control Properties", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 152

EncycloWin - 2020.0.02

Ocx Methods
The methods defined in the Ocx class are summarized in the following table.

Method Description

ocxClassName Returns the Windows Registry name of the control

processInputFromWeb When reimplemented, processes ActiveX controls used on Web pages

For details, see "Window, Form, and Control Methods", later in this document.

Ocx Events
The event methods defined in the Ocx class are summarized in the following table.

Event Occurs…

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

gotFocus When a control receives the focus

lostFocus When a control loses the focus

paint When part or all of a control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

OleControl Class
The OleControl class allows attachment of objects that are actually edited or controlled by other applications. For
example, a Word document, an Excel spread sheet, a video clip, or a Paintbrush picture can be stored in JADE,
but editing or playing the object invokes the controlling application.

The OleControl class handles any objects for which an Object Linking and Editing (OLE) Server is registered in
the database of your operating system registry. An application that is capable of being an OLE Server has a .reg
file associated with it. To load the registration information, double-click on the .reg file in File Manager or Explorer.

The following objects can be handled by the OleControl class.

Word for Windows

Excel

Media Player (for sound and videos)

Sound Recorder

Paintbrush

Word Art 2

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 153

EncycloWin - 2020.0.02

Equation 2

MS Graph

Notes The OleControl class is not supported on forms defined as Web pages and is ignored when HTML is
generated. For details about interfacing to OLE, see "Interfacing to OLE 2.0", in Chapter 2 of the JADE External
Interface Developer’s Reference.

The JADE extract process extracts a definition of the OleControl object (as it does with other controls painted at
design time when the form definitions are extracted) but it does not extract the user data associated with the
control. It is your responsibility to extract the user data and load it into a deployed database, if required.

For a caveat on the use of SVG files when printing OleControl controls, see "Portable Printing" under "Printer
Class", in Volume 1 of Chapter 1 of the JADE Encyclopaedia of Classes.

Transparent sibling controls are always painted before an OleControl control, regardless of their zOrder settings.
It is not possible to handle the painting of transparent controls in the correct zOrder when some controls are
directly painted by JADE and others are painted by Windows separately.

For a summary of the constants, properties, methods, and events defined in the OleControl class, see "OleControl
Class Constants", "OleControl Properties", "OleControl Methods", and "OleControl Events", in the following
subsections.

OleControl Class Constants
The constants provided by the OleControl class are listed in the following table.

Constant Integer Value Constant Integer Value

Activation_DblClick 2 Activation_Manual 0

Activation_SetFocus 1 GetUsername_App 3

GetUsername_Full 1 GetUsername_Short 2

ObjectType_Embedded 1 ObjectType_Linked 2

ObjectType_None 0 SizeMode_AutoSizeControl 2

SizeMode_ClipToControl 0 SizeMode_Proportional 3

SizeMode_StretchToControl 1

OleControl Properties
The properties defined in the OleControl class are summarized in the following table.

Property Description

activation Specifies whether the application of the object can be activated by its primary verb

allowInPlace Specifies whether in-place editing can occur

displayAsIcon Specifies whether only the icon of the application is displayed

fullName Contains the full name of the OLE object in the control

oleObject Contains an OLE object

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 154

EncycloWin - 2020.0.02

Property Description

shortName Contains the short name of the OLE object in the control

showMenu Specifies whether the control displays a popup menu when the right mouse button
is clicked over the inactive control

sizeMode Contains the automatic sizing of the control or image

For details, see "Window, Form, and Control Properties", later in this document.

OleControl Methods
The methods defined in the OleControl class are summarized in the following table.

Method Description

applyVerb Calls the application with the specified verb

cloneSelf Creates a new instance of the same type as the receiver

close Closes the presentation of the object

discard Closes and discards the OLE object presentation

embedFromClass Initiates the specified server application to create or attach a new OLE object

embedFromFile Embeds an OLE object from the specified file into a control

getUserName Returns the OLE internal names for the object

isObjectOpen Determines whether the OLE server application has the object open for editing

linkFromFile Links to an OLE object based on the specified file

loadFromDB Loads the control from its oleObject property

objectType Returns the loaded object type

showInsertForm Enables the user to select the OLE object to be loaded into the control

update Updates the OLE object

For details, see "Window, Form, and Control Methods", later in this document.

OleControl Events
Although the standard Window event methods summarized in the following table are defined in the OleControl
class, when the OLE object is active, the server application rather than the OLE control receives the Windows
messages, and the JADE events do not occur.

Event Occurs…

click When the user presses and then releases the left mouse button

dblClick When the user presses and releases the left mouse button and then presses and
releases it again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 155

EncycloWin - 2020.0.02

Event Occurs…

gotFocus When a control receives the focus

lostFocus When a control loses the focus

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

sysNotify When a specified JADE system event occurs

updated When an OLE object is saved in the JADE database

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

OptionButton Class
An option button (radio button) control displays an option that can be turned on or off. Only one of a group of
option buttons can be turned on. As the OptionButton class is a subclass of the Control class, it inherits all of the
properties and methods defined in the Control and Window classes.

Usually, option buttons are used as part of a group to display multiple options from which the user can select only
one. You can group option buttons by drawing them inside another control that accepts children (for example, a
Frame control or GroupBox control), or you can add them directly to a form.

To group option buttons in a parent control, draw the parent first and then draw the option buttons inside it. All
option buttons within the same parent are treated as a group. Option buttons on a form are also treated as a
separate group from any option buttons in a control.

While option buttons and check boxes may appear to function similarly, there is an important difference: when a
user selects an option button, the other option buttons in the same group are automatically cancelled. In contrast,
any number of check boxes can be selected.

The height of the option button is automatically set to fit the caption.

When focus is on an option button, the right and down arrow keys move the focus to the next option button in the
tab order in the group and set the option button on, generating a click event. Similarly, the left and up arrow keys
move the focus to the prior option button in the tab order in the group and set the value on, generating a click
event.

Option buttons (radio buttons) are drawn using the current Windows theme that is in use, unless the currently
active JADE skin defines the option button look and feel.

For a summary of the constants, properties, and events defined in the OptionButton class, see "OptionButton
Class Constants", "OptionButton Properties", and "OptionButton Events", in the following subsections.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 156

EncycloWin - 2020.0.02

OptionButton Class Constants
The constants provided by the OptionButton class are listed in the following table.

Constant Integer Value Constant Integer Value

Alignment_Left 0 Alignment_Right 1

OptionButton Properties
The properties defined in the OptionButton class are summarized in the following table.

Property Description

alignment Specifies whether the text is placed before or after the button bitmap image

autoSize Specifies whether an option button control is automatically resized to fit its contents

caption Contains the caption of an option button control

transparent Causes the option button control to be placed above all other sibling controls and the
controls underneath to be visible

value Specifies whether the state of the button is up or down

For details, see "Window, Form, and Control Properties", later in this document.

OptionButton Events
The events defined in the OptionButton class are summarized in the following table.

Event Description

change Indicates that the contents of the control have changed

click Occurs when the user presses and then releases the left mouse button

contextMenu Occurs after the right mouseUp event and after the keyUp event

dragDrop Occurs when a dragged window is dropped over a window belonging to the same
application

dragOver Occurs for each window of the application over which a window is dragged

gotFocus Occurs when a control receives the focus

keyDown Occurs when the user presses a key while the control has the focus

keyPress Occurs when the user presses and releases an ANSI key

keyUp Occurs when the user releases a key while the control has the focus

lostFocus Occurs when a control loses the focus

mouseDown Occurs when the user presses a mouse button

mouseEnter Occurs when the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 157

EncycloWin - 2020.0.02

Event Description

mouseLeave Occurs when the user moves the mouse off a control

mouseMove Occurs when the user moves the mouse

mouseUp Occurs when the user releases a mouse button

paint Occurs when part or all of a control is exposed

sysNotify Occurs when a specified JADE system event occurs

userNotify Occurs when triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Picture Class
A picture box control can display a graphic from a bitmap, icon, cursor, or metafile. It displays only as much of the
graphic image as fits into the rectangle that you have drawn with the Painter Picture box tool, unless the stretch
property is set.

In JADE thin client mode, all picture properties set by logic are cached on both the application server and in the
form file on the presentation client. When a picture has been transmitted to the client, subsequent use of that
picture is achieved by use of an identifier to that picture, eliminating the need to transmit the picture data.

When an image containing transparency is displayed in a browser as part of a Web-enabled application, the
following conditions must be true for the transparency to be displayed:

The drawing methods of the Window class, such as drawLine, are not used on the control

The value of the caption property of the control is null

The client area of the control is the same size as the image, which is true when the stretch property of the
control is set to Stretch_ToControl (1)

As the Picture class is a subclass of the Control class, it inherits all of the properties and methods defined in the
Control and Window classes. The Picture control class provides the JadeMask subclass.

For a summary of the constants, properties, methods, and events defined in the Picture class, see "Picture Class
Constants", "Picture Properties", "Picture Methods", and "Picture Events", in the following subsections.

For details about the support of mouse wheel requests to scroll up, down, or across a picture control, see "Window
Class", earlier in this document.

Picture Class Constants
The constants provided by the Picture class are listed in the following table.

Constant Integer Value Constant Integer Value

Stretch_CenterPicture 5 Stretch_ControlTo 2

Stretch_None 0 Stretch_Pic_Proportional 4

Stretch_Proportional 3 Stretch_ToControl 1

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 158

EncycloWin - 2020.0.02

Picture Properties
The properties defined in the Picture class are summarized in the following table.

Property Description

cachePictures Specifies whether pictures are stored in a cache file when running in JADE thin client
mode

clipControls Specifies whether the Windows environment creates a clipping region that excludes
controls contained by the object

hyperlink Contains a hyperlink string that is programmatically attached to the picture control

picture Contains the graphic to be displayed

pictureCount Contains the maximum index of the picture array of the control

pictureDisabled Contains a graphic to be displayed when the control is disabled

pictureDown Contains a graphic to be displayed when the left mouse button is down over the control

pictureIndex Contains the picture that is displayed in a picture box

rotation Provides ability to rotate the current picture in the control

scrollBars Specifies whether an object has horizontal or vertical scroll bars

scrollHorzPos Contains the position of the horizontal scroll bar

scrollVertPos Contains the position of the vertical scroll bar

stretch Determines how a picture stretches to fit the size of the control

transparent Causes the control to be placed above all other sibling controls and the controls
underneath to be visible

transparentColor Contains the color to be made transparent in a bitmap

webFileName Contains the name of the image that is to be displayed on the Web page

For details, see "Window, Form, and Control Properties", later in this document.

Picture Methods
The methods defined in the Picture class are summarized in the following table.

Method Description

getScrollRange Returns the scroll range information for the window

pictureHeight Returns the height (in pixels) of the current image in the Picture control

pictureType Returns the type of picture loaded into a picture control

pictureWidth Returns the width (in pixels) of the current image in the Picture control

play Starts cycling through the pictures in an array with a pause between the display of
each picture in the array

setPicture Sets the specified index entry of an array of pictures for the control

setScrollRange Enables control of the scroll ranges

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 159

EncycloWin - 2020.0.02

Method Description

startDrawingCapture Enables drawing on a Picture control with the mouse

stop Stops the current animation process started by the play method

stopDrawingCapture Disables drawing on a Picture control with the mouse

useImage Sets the image to be displayed without creating a copy of the image in transient
cache

For details, see "Window, Form, and Control Methods", later in this document.

Picture Events
The event methods defined in the Picture class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and
releases it again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

mouseDown When hen the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for
one second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

scrolled When the user scrolls the picture control

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

ProgressBar Class
The ProgressBar class enables you to display a progress bar in your label controls. As the ProgressBar class is
a subclass of the Label class, it inherits all of the properties and methods defined in the Label, Control, and
Window classes.

The ProgressBar control is not supported on forms defined as Web pages and is ignored when HTML is
generated.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 160

EncycloWin - 2020.0.02

For a summary of the properties, method, and event defined in the ProgressBar class, see "ProgressBar
Properties", "ProgressBar Method", and "ProgressBar Event", in the following subsections.

ProgressBar Properties
The properties defined in the ProgressBar class are summarized in the following table.

Property Description

partsDone Contains information about the percentage of the task that is completed

partsInJob Contains information about the number of parts in the job

showTaskBarProgress Specifies whether the progress bar state is shown on the taskbar icon of the
application as well as in the progress bar

thinClientUpdateInterval Specifies how often the progress bar is redrawn when the percentage changes
when running the application in thin client mode

For details, see "Window, Form, and Control Properties", later in this document.

ProgressBar Method
The method defined in the ProgressBar class is summarized in the following table.

Method Description

create Creates the progress bar

For details, see "Window, Form, and Control Methods", later in this document.

ProgressBar Event
The event method defined in the ProgressBar class is summarized in the following table.

Event Description

paint Occurs when part or all of the form or control is exposed

For details, see "Window, Form, and Control Events", later in this document.

ScrollBar Class
The scroll bar control provides easy navigation through a long list of items or a large amount of information. It can
also provide an analog representation of current position.

You can use a scroll bar as an input device or as an indicator of speed or quantity.

The HScroll and VScroll classes (the horizontal and vertical scroll bar control classes) are subclasses of the
ScrollBar class (a subclass of the Control class). These classes therefore inherit all of the properties and
methods defined in the ScrollBar, Control, and Window classes.

The horizontal and vertical scroll bar controls are not supported on forms defined as Web pages and they are
ignored when HTML is generated.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 161

EncycloWin - 2020.0.02

When you use a scroll bar as an indicator of quantity or speed or as an input device, use the max property and the
min property to set the appropriate range of the control.

As scroll bars use the Windows scroll bar API calls that set the thumb size to a size that reflects the size of the
scroll bar range and the value of the largeChange property, the larger the value of the largeChange property, the
larger the thumb size. To specify the amount of change to report in a scroll bar, use the largeChange property for
clicking in the scroll bar and the smallChange property for clicking the arrows at the ends of the scroll bar. The
value property increases or decreases by the amounts set for the largeChange and smallChange properties.

You can position the scroll bar at run time, by setting the value property.

For details about the support of mouse wheel requests to scroll up, down, or across a form or control, see "Window
Class", earlier in this document. For details about dragging the scroll bar thumb of ListBox and Table controls
when an Array, Dictionary, or Set collection is attached to the list box or table, see the displayCollection method.

For a summary of the properties and events defined in the ScrollBar class, see "ScrollBar Properties" and
"ScrollBar Events", in the following subsections.

ScrollBar Properties
The properties defined in the ScrollBar class are summarized in the following table.

Property Description

largeChange Contains the amount of change when the user clicks the area between the scroll box
and scroll arrow

max Contains a scroll bar position when the scroll box is in its lowest position or farthest right
position

min Contains a scroll bar position when the scroll box is in its highest position or farthest left
position

smallChange Contains the amount of change when the user clicks a scroll arrow

value Contains the current position of the scroll bar

For details, see "Window, Form, and Control Properties", later in this document.

ScrollBar Events
The event methods defined in the ScrollBar class are summarized in the following table.

Event Occurs…

change At the end of the scrolling process to indicates that the scroll box portion of the scroll bar
has moved

contextMenu After the right mouseUp event and after the keyUp event

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

gotFocus When a control receives the focus

keyDown When the user presses a key while the control has the focus

keyPress When the user presses and releases an ANSI key

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 162

EncycloWin - 2020.0.02

Event Occurs…

keyUp When the user releases a key while the control has the focus

lostFocus When a control loses the focus

paint When part or all of a form or control is exposed

scrolled As the scroll bar control is scrolled

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Sheet Class
The Sheet class enables you to create a sheet control for a folder.

A sheet is the same as a GroupBox control, in that it holds a series of painted controls. Only one sheet is visible at
any time, but tabs for each sheet are displayed at the top of the folder or at a user-specified edge. These tabs can
be clicked to make the selected sheet visible. When the user clicks on a tab, the corresponding sheet is displayed
(that is, both the click and the sheetChg event methods occur).

A specific sheet can also be selected, by using the keyboard if the caption of the sheet includes an accelerator
sequence (for example, pressing Alt+C selects the sheet labeled &Customers), or you can use the Ctrl+Page Up or
Ctrl+Page Down shortcut keys to move the focus of a folder to the prior or next enabled visible sheet when that
folder or a child of the folder has focus.

As the Sheet class is a subclass of the GroupBox control class, it inherits all of the properties and methods
defined in the GroupBox, Control, and Window classes.

For a summary of the property and methods defined in the Sheet class, see "Sheet Property" and "Sheet
Methods", in the following subsections.

Sheet Property
The property defined in the Sheet class is summarized in the following table.

Property Description

icon Contains the icon displayed for a sheet at run time

For details, see "Window, Form, and Control Properties", later in this document.

Sheet Methods
The methods defined in the Sheet class are summarized in the following table.

Method Description

canBeChildOf Returns whether the control can be placed on the specified form or control

isMoveable Returns false to specify that the control cannot be moved in the JADE Painter

isSizeable Returns false to specify that the control cannot be resized in the JADE Painter

For details, see "Window, Form, and Control Methods", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 163

EncycloWin - 2020.0.02

StatusLine Class
A status line control is a special frame control that aligns itself to the bottom and width of its container by default,
providing a status line for the container.

Use the status line to display text that the user cannot directly change.

The status line has 3D effects by default. The status line text is always displayed within the area bounded by the
3D borders.

As the StatusLine class is a subclass of the Control class, it inherits all of the properties and methods defined in
the Control and Window classes.

The status line is in effect a Frame control with the alignContainer property set to align to the bottom of the
container. When the container is resized, the status line control is also resized. A StatusLine control that is
aligned to their parent by using the alignContainer property will not scroll and it will remains in place in its parent
when the scroll bar of the parent is shifted. It therefore remains visible and unchanged when the scroll bar of the
parent is adjusted.

The status line has additional auto-size features beyond those of a label. Because the status line can also be a
container, when controls are placed inside the status line, the control resizes in height to fit the controls placed
inside it when the autoSize property is set to true. For example, multiple text boxes or labels could be inserted into
the status line to display discrete pieces of information on the status line.

When the value of the StatusLine control autoSize property is true:

If a child control left property value position is less than zero, the control is moved to be zero (0) when the
parentAspect, relativeLeft, and relativeWidth property values of the child do not affect the horizontal
position (not stretch horizontal, anchor right, and centered horizontal, and the relativeLeft and relativeWidth
property values are false).

If a child control is not fully visible horizontally, the child is right-aligned in the status line control if it can be
fully displayed or positioned at zero (0) if it cannot when the parentAspect, relativeLeft, and relativeWidth
property values of the child do not affect the horizontal position (not stretch horizontal, anchor right, and
centered horizontal, and the relativeLeft and relativeWidth property values are false).

If a child control top position is less than zero (0), the control is moved to be zero when the parentAspect
property value of the child does not affect the vertical position (not stretch vertical, anchor bottom, or centered
vertical).

If a child control is not fully visible vertically, the child is bottom-aligned in the StatusLine control when the
parentAspect property value of the child does not affect the vertical position (not stretch vertical, anchor
bottom and centered vertically).

The values of the relativeTop and relativeHeight properties of child controls are always set to false, as their
functionality is not compatible with auto-sizing the height of the StatusLine control (as has always been the
case).

All parentAspect flag values and relativeLeft and relativeWidth values are applied.

The height of the StatusLine control is then determined by analyzing the child control as follows, to determine the
maximum height required. For a child control that does not have a fixed height and has the parentAspect
property with the:

ParentAspect_StretchBottom flag set, the height required is the top position, height, and
parentBottomOffset property values of the child.

ParentAspect_AnchorBottom flag set, the height required is the height and parentBottomOffset property
values of the child; otherwise, the height of the child control.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 164

EncycloWin - 2020.0.02

Note For a frame control or status line control, the position (0,0) is the top left of the area inside the 3D frame.
Controls with the StatusLine class as its parent are not painted in the border area.

For a summary of the constants, properties, methods, and events defined in the StatusLine class, see "StatusLine
Class Constants", "StatusLine Properties", "StatusLine Methods", and "StatusLine Events", in the following
subsections.

For details about docking status line controls, see the JadeDockBar, JadeDockBase, and JadeDockContainer
classes, earlier in this document.

StatusLine Class Constants
The constants provided by the StatusLine class are listed in the following table.

Constant Integer Value Constant Integer Value

Alignment_Center_Bottom 8 Alignment_Center_Middle 7

Alignment_Center_Top 6 Alignment_Left_Bottom 2

Alignment_Left_Middle 1 Alignment_Left_Top 0

Alignment_Right_Bottom 5 Alignment_Right_Middle 4

Alignment_Right_Top 3 Bevel_Inset 1

Bevel_None 0 Bevel_Raised 2

BoundaryBrush_Dotted 1 BoundaryBrush_Solid 0

StatusLine Properties
The properties defined in the StatusLine class are summarized in the following table.

Property Description

alignment Contains the placement of text in the control

autoSize Specifies whether a control is automatically resized to fit its contents

bevelColor Contains the color used to paint the bevel areas of a 3D control

bevelInner Contains the style of the inner bevel of the control

bevelInnerWidth Contains the width of the bevel along the four sides of the control to determine the
height of the three-dimensional shadow effect

bevelOuter Contains the style of the outer bevel of the control

bevelOuterWidth Contains the width of the bevel along the four sides of the control to determine the
height of the three-dimensional shadow effect

bevelShadowColor Contains the color used to paint the bevel areas of a 3D control

boundaryBrush Specifies whether the boundary area is of a plain color or is painted with a dotted
brush

boundaryColor Contains the color of the boundary area

boundaryWidth Contains the width of the boundary area

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 165

EncycloWin - 2020.0.02

Property Description

caption Contains the caption for the control

clipControls Specifies whether the Windows environment creates a clipping region that excludes
controls contained by the object

wordWrap Specifies whether text displayed in a caption advances to the next line of the control
when the current line is filled

For details, see "Window, Form, and Control Properties", later in this document.

StatusLine Methods
The methods defined in the StatusLine class are summarized in the following table.

Method Description

isMoveable Returns false to specify that the control cannot be moved in the JADE Painter

isSizeable Returns false to specify that the control cannot be resized in the JADE Painter

For details, see "Window, Form, and Control Methods", later in this document.

StatusLine Events
The event methods defined in the StatusLine class are summarized in the following table.

Event Occurs…

click When the user presses and then releases the left mouse button

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and releases it
again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a form or control is exposed

sysNotify When a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 166

EncycloWin - 2020.0.02

Table Class
A Table control enables you to display entries in a table using rows and columns. As the Table class is a subclass
of the Control class, it inherits all of the properties and methods defined in the Control and Window classes.

The table control also enables you to have many different sheets in the table, of which only one is visible at any
time. The heading for each sheet is displayed in a selectable tab at the top of the control. When the user clicks on
that tab, the corresponding sheet of the table is displayed (that is, both the click and the sheetChg events occur).

The number of rows and columns on a sheet is controlled by the rows and columns properties. Changing the
value of the column or row property does not cause the table to be repainted. Table control subclasses do not
reference mousePointer in a mouseDown event to determine if the mouse is in the resize position (that is,
positioned over the dividing lines between fixed columns or rows).

Use the allowResize property to specify whether users can resize the rows and columns of a table. (The
resizeColumn and resizeRow event methods are called when a resize operation has been performed using the
mouse on a table column or row, respectively.)

The Table control class has the following behavior.

Clicking on an enabled fixed row or column cell draws the cell in a slightly darker background color. When
the mouse is released, the original background color is restored.

This gives the user a visual indication that the cell was clicked.

Clicking on a disabled cell generates table mouseDown and mouseUp events, but does not generate a
click event after the mouse is released.

Resizing a row or column generates table mouseDown, mouseUp, and resizeRow or resizeColumn
events, but does not generate a click event after the mouse is released.

Resizing a row or column does not resort the row or column.

Moving a row or column generates table mouseDown, mouseUp, and queryRowMove or
queryColumnMove events, but does not generate a click event after the mouse is released.

Moving a row or column does not resort the row or column.

Table cells on a form defined as a Web page can contain pictures and labels only.

The table enables you to control the background color, text color, alignment, and picture displayed for each cell.
Each cell can also be input-capable.

Although the table control can display a maximum of 63 sheets, the resulting size of the tabs prevents this limit
being a reasonable option. Each sheet can have a maximum of 16,000 columns and 32,000 rows. These
maximum limits cannot be achieved, however, as too much memory is required to be able to be run the
application effectively.

The table can also be defined with fixed rows and columns. Fixed columns are usually the headings for each row
and column. These rows and columns are always displayed, and do not scroll with the rest of the table.

Set the dropDown property to enable the table to fold up when focus is lost, showing only the current row.

Each sheet can be sorted by using the contents of one through six columns. Rows and columns on a sheet can be
hidden.

By default, a table has one defined sheet. Use the sheets property to control the number of sheets in the table.
The current sheet that is being accessed by logic is defined by the sheet property. The current sheet that is
displayed is defined by the topSheet property.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 167

EncycloWin - 2020.0.02

The rows and columns properties control the number of rows and columns in each sheet. Rows can also be
added to the table by using the addItem and addItemAt methods. If you add rows by using either of these
methods, the text for each cell should be concatenated into one string, with the text of each cell separated by a tab
character.

Use the text property to access the text for each cell. The current sheet, row, and column are then used to access
the text in that cell. When setting the text property, the current cell in the current row is filled with the text that is
passed. If the text contains tab characters, this character is assumed to be the end of the text for a cell, and the
next cell is then filled with the remainder of the text, and so on. If all cells in the row are filled and there is more
text, the remainder is ignored.

As table controls do not support a row height larger than the table, only the visible part of the row is displayed.

Move around the cells of a table by using the mouse, arrow keys, or Home, End, Page Up, or Page Down keys. Tables
are scrolled by rows, not by pixels. When an input-capable cell has the focus, it may be necessary to also press
the Alt key, as navigation keys may also have meaning to the text or combo boxes in these cells.

Press Ctrl+Home to move a table with an associated collection to the first entry in the collection. Conversely, press
Ctrl+End to move the display to the last entry in the collection.

Note Pressing the Home key on a table moves the display to the first entry that has been loaded in the control.
Pressing the End key moves the display to the last entry currently loaded in the control. Using the Ctrl key for a list
box that does not have a collection attached has the same result as pressing the Home or End key without the Ctrl
key.

You can set the width of a column to a percentage of the client width of a table. For details, see the widthPercent
property of the JadeTableColumn class. To control how any columns percentages set on the table sheet using the
widthPercent property are interpreted, use the widthPercentStyle property of the JadeTableSheet class.

When writing your logic to handle Table controls, you can:

Set object references on sheets, rows, columns, and cells by using the accessSheet, accessRow,
accessColumn, and accessCell methods to set the respective accessedSheet, accessedRow,
accessedColumn, and accessedCell properties.

Note The effect of logic changing a font property for a sheet, row, column, or cell that has no font settings of its
own is that all the other font properties are also set from the default font that applies.

The accessMode property provides multiple meanings for the alignment, backColor, comboIndex, foreColor,
fontName, fontSize, fontBold, fontItalic, fontUnderline, fontStrikethru, inputType, maxLength,
partialTextIndication, and wordWrap properties of Table controls.

Search the itemObject property values of rows, columns, and cells for an object reference.

Select or deselect an entire sheet, row, or column by using the selectMode property.

Sort columns based on the type of cell data (that is, alphanumeric, numeric, date, time, or timestamp), by
using the sortType property.

Control automatic row and column sizing based on the text content of cells, by using the autoSize property.

Note Text in table cells wraps only when the value of the autoSize property is set to AutoSize_Row (1).

Control vertical or horizontal alignment within a cell, by using Table class constant values for the alignment
property; for example, Alignment_Center_Bottom.

Control tabbing within a table, by using the tabKey property.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 168

EncycloWin - 2020.0.02

Specify a numeric input type allowing decimals and negative values, by using the decimals property and
Table class constant values for the inputType property; for example, InputType_SignedNumeric.

Handle user-created controls for input, by using the cellControl and userInputEnabled properties and the
cellInputReady event method. Alternatively, you can use the Control class automaticCellControl property to
control table cells (for example, when running in JADE thin client mode over a slow link).

Optionally allow automatic dragging and dropping of a column or row, by using the allowDrag property.

Provide the displayCollection method to invoke the displayRow event that automatically attaches a
collection to the current sheet of a table and displays it.

For details about dragging the scroll bar thumb of tables when an Array, Dictionary, or Set collection is
attached to the table, see the displayCollection method.

Retrieve the cell that corresponds to a position on the table, by using the positionLeft and positionTop
methods.

Control the optional display of the points of ellipsis symbol (…) on the end of the visible text when the column
is not wide enough to show all the text, by using the partialTextIndication property.

Use the foreColor property of a sheet to display the caption of a sheet in a table.

Enable or disable all set inputType or cellControl properties, by using the userInputEnabled property.

Control what automatic selections are made when the user clicks the table or uses the Shift key or the Ctrl
key, by using the selectMode property.

Specify whether the picture or text is truncated when there is insufficient room to display both in a cell, by
using Table class constant values for the stretch property; for example, Stretch_Cell_Picture_First.

Note When the text of a sorted column changes, the automatic sorting of rows occurs only when the Table class
addItem method adds a new row or the Table class resort method is used.

When a collection is attached to a table and the current row is scrolled so that it will be discarded (outside of the
displayed virtual window over the collection), the queryRowColChg and rowColumnChg event methods are
called. If the queryRowColChg event is rejected, the scroll action is discarded. (Note that the queryRowColChg
event passes the current row and column values as parameters, because the actual current row number remains
unchanged after scrolling.)

For an example and details about merging cells in a table, see the JadeTableCell class mergeCells property and
getCellWidth method. For details about the support of mouse wheel requests to scroll up, down, or across a table
control, see "Window Class", earlier in this document.

Note For the arrays associated with tables (for example, Table.columnVisible), the only methods that are
implemented are at, atPut (which enables you to use the square brackets notation to access the elements),
createIterator (which allows logic to do a foreach over the array), size, and size64.

For an overview of directly accessing properties and methods in a table element (for example, a cell or a row)
without using the accessMode property, see "Directly Accessing Table Elements". For a summary of the
constants, properties, methods, and events defined in the Table class, see "Table Class Constants", "Table
Properties", "Table Methods", and "Table Events", in the following subsections.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 169

EncycloWin - 2020.0.02

Directly Accessing Table Elements
The Table control provides access to an internally created sheet, row, column, and cell object; that is, the
JadeTableElement class and its JadeTableCell, JadeTableColumn, JadeTableRow, and JadeTableSheet
subclasses. You can use these objects to directly access the properties and methods of the object without using
the accessMode property to access the tables (and therefore reducing the amount of JADE logic required to
handle tables).

Using instances of these subclasses is equivalent to setting the accessMode property of the Table control,
summarized in the following table.

JadeTableElement Subclass Equivalent to the accessMode value for the Table class…

JadeTableCell Table.AccessMode_Cell

JadeTableColumn Table.AccessMode_Column

JadeTableRow Table.AccessMode_Row

JadeTableSheet Table.AccessMode_Sheet

For details, see the appropriate class in Chapter 1.

To eliminate the overhead of creating an object for each cell, column, row, and sheet of the table, only one object
of each type is created, which is essentially a proxy object that holds the last reference to the cell, column, row, or
sheet that was last accessed.

Accessing a cell, column, row, or sheet sets a corresponding property in the Table class that you can then use to
subsequently access that table element, as follows.

accessCell method sets the accessedCell property to the returned cell

accessColumn method sets accessedColumn property to the returned column

accessRow method sets accessedRow property to the returned row

accessSheet method sets accessedSheet property to the returned sheet

The following code fragments show examples of accessing the last table elements that were accessed.

table1.accessCell(2, 3).inputType := Table.InputType_TextBox;
table1.accessedCell.foreColor := Red;

table1.accessSheet(2).accessCell(1, 4).text := "Company";
table1.accessedCell.alignment := Table.Alignment_Right_Middle;

Storing a reference to a returned cell causes problems unless you take a copy of that cell, as shown in the
following example in which both cell1 and cell2 refer to the same object, which is referencing cell(3, 4).

cell1 := table1.accessCell(2, 3);
cell2 := table1.accessCell(3, 4);
cell1.text := "abc";

In the following example, cell1 has been cloned and still refers to cell(2, 3).

cell1 := table1.accessCell(2, 3).cloneSelf(true);
// the cloned cell must be deleted by your logic
cell2 := table1.accessCell(3, 4);
cell1.text := "abc";

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 170

EncycloWin - 2020.0.02

Table Class Constants
The constants provided by the Table class are listed in the following table.

Constant Integer Value Constant Integer Value

AccessMode_Cell 1 AccessMode_Column 2

AccessMode_Row 3 AccessMode_Sheet 0

Alignment_Center 3 Alignment_Center_Bottom 9

Alignment_Center_Middle 3 Alignment_Center_Top 6

Alignment_Default 0 Alignment_Left 1

Alignment_Left_Bottom 7 Alignment_Left_Middle 1

Alignment_Left_Top 4 Alignment_Right 2

Alignment_Right_Bottom 8 Alignment_Right_Middle 2

Alignment_Right_Top 5 AllowDrag_Both 3

AllowDrag_Columns 2 AllowDrag_None 0

AllowDrag_Rows 1 AllowResize_Any 0

AllowResize_Column 1 AllowResize_None 3

AllowResize_Row 2 AutoSize_Both 3

AutoSize_BothColumnMinimum 5 AutoSize_Column 2

AutoSize_ColumnMinimum 4 AutoSize_None 0

AutoSize_Row 1 DisplayCollection_Forward 0

DisplayCollection_NoPrior 0 DisplayCollection_Prior 2

DisplayCollection_Reversed 1 DisplaySorting_AllColumns 2

DisplaySorting_First 1 DisplaySorting_None 0

DisplaySorting_Numbers 3 DropDown_Auto 2

DropDown_Click 1 DropDown_None 0

InputType_CheckBox 1 InputType_ComboBox 3

InputType_Default 5 InputType_EditMask 7

InputType_None 0 InputType_SignedNumeric 6

InputType_TextBox 2 InputType_TextNumeric 4

MergeCells_Available 0 MergeCells_Merge 1

MergeCells_MergeSelectable 2 MergeCells_NotAvailable 3

ScrollMode_Both_Pixel 3 ScrollMode_Cell 0

ScrollMode_HorzPixel_VertCell 1 ScrollMode_VertPixel_HorzCell 2

SelectMode_Column 5 SelectMode_CurrentColumn 10

SelectMode_CurrentRow 8 SelectMode_Default 0

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 171

EncycloWin - 2020.0.02

Constant Integer Value Constant Integer Value

SelectMode_FixedColumn 2 SelectMode_FixedRow 1

SelectMode_Multiple 3 SelectMode_None 7

SelectMode_Row 4 SelectMode_Single 6

SelectMode_WholeColumns 11 SelectMode_WholeRows 9

SortType_Alpha 0 SortType_Date 2

SortType_Numeric 1 SortType_Time 3

SortType_TimeStamp 4 Stretch_Cell 1

Stretch_Cell_Picture_First 3 Stretch_None 0

Stretch_None_Picture_First 2 TabInitialPosition_First 1

TabInitialPosition_First_Last 3 TabInitialPosition_Last 2

TabInitialPosition_None 0 WidthPercent_Style_ClientWidth 0

WidthPercent_Style_NoSetWidths 1

Table Properties
The properties defined in the Table class are summarized in the following table.

Property Description

accessedCell Contains a reference to the cell returned by the accessCell method

accessedColumn Contains a reference to the column returned by the accessColumn method

accessedRow Contains a reference to the row returned by the accessRow method

accessedSheet Contains a reference to the sheet returned by the accessSheet method

accessMode Enables table cells to have different colors, fonts, alignments, and input modes

alignment Contains the placement of text in a cell

allowDrag Enables a row or column to be dragged to a new position within the table

allowResize Specifies whether users can resize the rows and columns of a table

autoSize Controls whether the table automatically sets the width of columns and the height of
rows to fit the size of the contents of the cells

cellControl Controls the input and display within a table by defining a user-specified control that
is placed over the cell when that cell becomes current

column Contains the current column on the current sheet

columns Contains the number of columns on the current sheet

columnVisible Specifies whether a column is displayed or hidden, or the visibility status

columnWidth Contains the size of a column to be accessed

comboIndex Contains the index of a combo box in a cell

comboList Contains the list entries displayed in a combo box in the sheet, column, row, or cell

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 172

EncycloWin - 2020.0.02

Property Description

decimals Specifies that a cell controlled by the accessMode property can accept decimal input
for cells with a numeric text or signed numeric input type

defaultRowHeight Specifies the default height of rows in a table independent of the font size

displayHotKey Specifies whether the character following an ampersand (&) character is underlined

dropDown Specifies that a table need only occupy the space required for one row and yet still
provide all the features of an expanded display

editMask Sets the mask used for edit mask input for a cell, row, column, or sheet

expandedHeight Contains the height of the table in pixels when it is expanded

fixed3D Specifies whether a 3D button image is painted on the cells in the fixed area

fixedColumns Contains the number of fixed columns in a table

fixedRows Contains the number of fixed rows in a table

gridColor Contains the color of grid lines

gridLines Specifies whether lines are drawn between the rows and columns of the current
sheet

hyperlinkColumn Contains an array of integers that represent a column in each row of the table

inputType Contains the type of input (if any) that is accepted by a cell, row, column, or sheet

itemObject Contains an object for each cell

leftColumn Contains the column that is displayed at the left edge of the non-fixed area of the
current sheet

maxLength Contains the amount of text that can be entered into a cell

partialTextIndication Specifies if an indication is displayed when there is insufficient room to show all text
of a cell

picture Contains a graphic to be displayed in a cell

readOnly Specifies whether a control is read-only for user input

row Contains the current row on the current sheet

rowHeight Contains the size of a row of a table control

rows Contains the number of rows on the current sheet

rowVisible Specifies whether a row is displayed or hidden

scrollBars Specifies whether the table has horizontal or vertical scroll bars when required

selected Contains the selected status of the current cell on the current sheet

selectMode Specifies the selections that are made automatically when the user selects a cell in
the table

sheet Contains the index of the current sheet

sheetCaption Contains the caption for the current sheet

sheets Contains the number of sheets

sheetVisible Specifies whether a sheet is visible

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 173

EncycloWin - 2020.0.02

Property Description

showFocus Specifies whether the focus rectangle is shown on the current cell of a table when it
has focus

sortAsc Specifies whether the sorting is ascending or descending

sortCased Specifies whether the sorting is case-sensitive

sortColumn Contains the column number for which the text is to be sorted

sortType Specifies the type of data the cell text represents

stretch Specifies whether pictures placed in the cells are drawn to fit the cell

tabActiveColor Contains the color drawn for the active tab of multiple sheet table

tabInactiveColor Contains the color drawn for the inactive tabs of multiple sheet tables

tabKey Specifies the key that is used to tab within cells of the table

text Contains the text in the current cell on the current sheet

topRow Contains the row that is displayed at the top edge of the non-fixed area of the current
sheet

topSheet Contains the sheet that is currently visible

userInputEnabled Specifies whether input (inputType and cellControl property actions) for the table
cells is enabled or disabled

wordWrap Specifies whether text displayed in a cell is displayed using word wrap when the
width of the cell is less than the length of the text

For details, see "Window, Form, and Control Properties", later in this document.

Table Methods
The methods defined in the Table class are summarized in the following table.

Method Description

accessCell Returns a reference to the cell that is currently accessed at run time

accessColumn Returns a reference to the column that is currently accessed at run time

accessRow Returns a reference to the row that is currently accessed at run time

accessSheet Returns a reference to the sheet that is currently accessed at run time

addItem Adds a new row to a table control

addItemAt Adds a specified new row to a table control

clear Clears the contents of the current sheet

clearAllSelected Clears all the selected properties of all cells for the current sheet

create Creates the table

deleteColumn Deletes the specified column from the current sheet

deleteRow Deletes the specified row from the current sheet

deleteSheet Deletes the specified sheet

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 174

EncycloWin - 2020.0.02

Method Description

displayCollection Attaches the specified collection to the current sheet of the table

dragColumn Provides table-specific location information of the drag and drop processes

dragRow Provides table-specific location information of the drag and drop processes

dragSheet Provides table-specific location information of the drag and drop processes

getCellFromPosition Returns the cell at the specified position and the row and column of that cell

getCellSelected Returns the selected status of the cell

getCellText Returns the text of the cell

getCollection Returns the collection attached to the current sheet of the table by the
displayCollection method or ListBox class listCollection method

hasPicture Returns true if the current cell indicated by the sheet, column, and row properties
has a picture displayed

insertColumn Enables a single column to be inserted into the current sheet

isHyperlinkSet Specifies whether a HyperText link is set for the specified row and column

loadCollectionEntries Accesses any collection entries required to fill the display size of the table sheet

moveColumn Moves a column of the current sheet

moveRow Moves a row of the current sheet

positionLeft Returns the displayed position of the current cell in pixels

positionTop Returns the displayed position of the current cell in pixels

removeItem Removes a row from the current sheet at run time

refreshEntries Refreshes the displayed list of entries on the current sheet of the table

resetAllHyperlinks Clears all HyperText links that were set by using the setHyperlinkCell method

resetHyperlinkCell Clears the HyperText link from the specified row and column

resort Resorts the contents of the current sheet

selectedCount Returns the number of cells with the selected status set

selectedNext Returns the next selected cell

setCellSelected Sets the selected status of a cell

setCellText Sets the text of the cell

setCollectionObject Sets the object in the collection attached to the table, ensuring that the object
referenced is in the displayed list of collection entries for the table

setHyperlinkCell Sets up a HyperText link for the cell in the specified row and column

For details, see "Window, Form, and Control Methods", later in this document.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 175

EncycloWin - 2020.0.02

Table Events
The event methods defined in the Table class are summarized in the following table.

Event Description

cellInputReady Occurs when the cell is selected and after it has been resized to overlay the cell and
made visible, to allow the control specified by the cellControl property to be initialized

change Occurs when the contents of a cell have been changed by user input

click Occurs when the user presses and then releases the left mouse button

closeup Occurs when the table folds up

contextMenu Occurs after the right mouseUp event and after the keyUp event

dblClick Occurs when the user presses and releases the left mouse button and then presses
and releases it again

displayRow Occurs for each entry in the collection of the current sheet, to display the contents of
the row

dragDrop Occurs when a dragged window is dropped over a window belonging to the same
application

dragOver Occurs for each window of the application over which a window is dragged

gotFocus Occurs when a control receives the focus

keyDown Occurs when the user presses a key while the control has the focus

keyPress Occurs when the user presses and releases an ANSI key

keyUp Occurs when the user releases a key while the control has the focus

lostFocus Occurs when a control loses the focus

mouseDown Occurs when the user presses a mouse button

mouseEnter Occurs when the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for
one second or longer

mouseLeave Occurs when the user moves the mouse off a control

mouseMove Occurs when the user moves the mouse

mouseUp Occurs when the user releases a mouse button

openup Occurs when the table opens up to its full size

paint Occurs when part or all of a control is exposed

queryColumnMove If defined, occurs when the user releases the mouse after dragging a fixed column to a
new position when set to true

queryRowColChg Occurs when the user selects a new cell or sheet using the keyboard or the mouse

queryRowMove If defined, occurs when the user releases the mouse after dragging a fixed row to a
new position when set to true

resizeColumn Occurs after the user has resized a table column using the mouse

resizeRow Occurs after the user has resized a table row using the mouse

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 176

EncycloWin - 2020.0.02

Event Description

rowColumnChg Occurs when the user selects a different cell

scrolled Occurs when the user scrolls

sheetChg Occurs when the user clicks on the tab of a sheet that is not currently the top sheet, to
enable that sheet to become visible

sysNotify Occurs when a specified JADE system event occurs

userNotify Occurs when triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

TextBox Class
A text box control, sometimes called an edit field or edit control, can display information entered in the JADE
development environment, entered by the user, or assigned to the control by logic at run time.

As the TextBox class is a subclass of the Control class, it inherits all of the properties and methods defined in the
Control and Window classes. The TextBox class provides the WebHTML subclass.

The TextBox class validates the setting and entry of text based on the dataType property value, using the current
locale of the client with regional overrides on both the presentation client and the application server when the
EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is set to true.

By setting appropriate property values, the text box control can:

Be a single-line data entry text box

Be a multiple-line data entry text box

Allow the word wrap feature (implied when the scrollHorizontal property is set to false)

Allow scrolling of the text both horizontally and vertically

For details about the support of mouse wheel requests to scroll up, down, or across a text box control, see
"Window Class", earlier in this document.

Align the text left, right, or centrally

Be a password entry text box, where the characters entered are displayed as asterisk (*) characters

Be declared as a numeric text box, preventing the entry of invalid characters or non-numeric characters

Automatically convert the case of the entered characters

Be a read-only display text box

Offset the left and right margins, to improve the appearance of the displayed text

Tip Use the firstChange event to move logic from other key events when that logic is relevant only to the first
time the text changes. (This reduces the number of events that must be sent and processed for each key that is
pressed.)

The text box is always created as a multiple line text box, unless the passwordField property is set to true. In a
text box, CrLf and Lf are recognized as end-of-line sequences.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 177

EncycloWin - 2020.0.02

The text box functions as a single-line text box when:

The height of the text box leaves room only for one line of text to be displayed and the scrollVertical property
is set to false

The dataType property is set to that of a numeric text box

Control the functionality of the text box as a multiple-line control by setting the scrollHorizontal, scrollVertical,
and scrollBars properties. If the scrollHorizontal property is set to true, word wrapping does not occur, and each
line must be terminated by the Enter key. If the scrollVertical property is set to false, the entry of text is limited to
the number of visible text lines.

The text box does not receive tab characters from Windows unless the text box is the only enabled visible control
that has the tabStop property set, as the tab functions is interpreted by Windows as a skip to the next text box. If
there is no other text box to tab to, the character is passed to the text box. Use Ctrl+Tab to enter a tab when the tab
is interpreted as a control skip.

Note By default, the text box does not respond to the Enter key if an enabled and visible default button is defined
on the same form. Use the TextBox class wantReturn property to make the text box respond to the Enter key.

If the text box is defined as numeric data type, the text cannot be set to a value that is an invalid numeric
(according to the dataType, decimals, and maxLength properties). Additionally, as each character is entered, the
character is rejected with a beep if the resulting text would result in an invalid number (including the deletion of a
character).

If the case property is set to Case_UpperFirst (3) or Case_LowerFirst (4), the text box control accepts only an
alphabetic character as the first character entered in the text box and automatically changes the case of the
entered character to the required type, if applicable. If the case property is set to any value other than the default
value of Case_None (0), the dataType property is set to the default value of DataType_AlphaNumeric (0) and
the decimals property is set to zero (0); that is, no exception is raised.

You can specify hint text and colors for a text box; for example, text that can be displayed when the text property is
empty, to advise the user what data is required. The TextBox control provides the properties listed in the following
table.

Property Value Default Description

hintText String An empty string Text that is displayed in an empty text box as a hint

hintBackColor Integer #80000000 Background color of hint text

hintForeColor Integer #80000000 Color of the hint text

If the value of the hintText property is:

Empty, these properties have no impact on the text box display

Not empty, the specified hint text is displayed in the text box when the value of the text property is empty

When the value of the hintText property is displayed, the:

text and selText properties return an empty string

Text cannot be selected or deleted, and the cursor is always positioned at the beginning of the text

As soon as text is entered or pasted into the text box, the hint text is removed and replaced with the specified or
pasted text. If the entire text is removed, the hint text is displayed again.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 178

EncycloWin - 2020.0.02

When hint text is displayed, the:

Back ground of the text box is drawn using the value of the hintBackColor property except when it is
#80000000, in which case the TextBox control backColor property value is used.

Text of the text box is drawn using the value of the hintForeColor property except when it is #80000000, in
which case the TextBox control foreColor property value is used.

The values of the dataType, case, and selectionStyle properties are ignored when the hint text is displayed; for
example, hint text can be displayed for a numeric field. The hint text, which is always displayed in the case of its
defined string, can never be selected. In addition, for a password text box, the hint text is displayed as clear text
(that is, it is not displayed using asterisk (*) characters).

When the value of the hintBackColor or hintForeColor property is #80000000, the value of the respective
hintBackColor or hintForeColor property in the JADE Painter Properties dialog is displayed as Use backColor
Value or Use foreColor Value, with an image at the left of the text displaying the current value of the respective
backColor or foreColor property. The combo box drop-down list of colors includes an entry for Use backColor
Value or Use foreColor Value that sets the property value to the default.

If the values of the hintBackColor and hintForeColor properties are both zero (0), the default values of
#80000000 (that is, transparent) are used instead.

Note A text box automatically handles the clipboard copy, cut, and paste key sequences (that is, Ctrl+Insert,
Ctrl+C, Ctrl+Delete, Ctrl+X, and Shift+Insert).

If text is pasted into or cut from a text box and the resulting text is no longer valid according to the automatic
validation rules, the text in the text box is cleared; for example, when pasting non-numeric text into a numeric text
box. This ensures that JADE logic can always assume the resulting text complies with the validation rules. This
situation occurs only with paste or cut operations that involve numeric text boxes and when the first character must
be alphabetic (case property). When data is entered from the keyboard, the validation rules are applied, and the
entered character is ignored (with a beep) if the resulting text would be invalid.

Note When text with trailing carriage return and line feed characters (the CrLf end-of-line sequence) is pasted
after the current text of a text box, the CrLf characters are removed if the:

Resulting text would be invalid (for example, pasting '1234' followed by a CrLf character into a numeric text
box results in '1234' only being pasted)

Text box has the scrollVertical property set to false and the CrLf characters would cause the number of
lines of text to exceed the height of the available area in the text box (for example, pasting 'No' followed by a
CrLf character into a single-line text box with the scrollVertical property set to false results in 'No' being
pasted)

To implement the handling of a TextBox control to achieve the same functionality as the default Table class
InputType_TextBox value, only the following is required.

In the change event for the text box:

table1.text := textbox1.text

In the cellInputReady event for the table:

textbox1.text := table1.text

Note You can use the Windows key + period (.) function keys combination to paste a selected emoji or selection
of emojis from the emoji selection window into TextBox controls in a Unicode JADE system. For details, see
"Unicode Surrogate Pair Characters, including Emojis", in Chapter 1 of the JADE Developer's Reference.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 179

EncycloWin - 2020.0.02

Pastes a selected emoji or selection of emojis from the emoji selection window into TextBox controls or the
editor pane in a Unicode JADE system. For more details, see "Unicode Surrogate Pair Characters, including
Emojis", in Chapter 1 of the JADE Developer's Reference.

For more details, see the Table class inputType and cellControl properties. See also the Control class
automaticCellControl property and "Value Round Trips through TextBox Controls", elsewhere in this document.
For a summary of the constants, properties, methods, and events defined in the TextBox class, see "TextBox
Class Constants", "TextBox Properties", "TextBox Methods", and "TextBox Events", in the following subsections.

TextBox Class Constants
The constants provided by the TextBox class are listed in the following table.

Constant Value Constant Value

Alignment_Center 2 Alignment_Left 0

Alignment_Right 1 Case_Lower 1

Case_LowerFirst 4 Case_None 0

Case_Upper 2 Case_UpperFirst 3

DataType_AlphaNumeric 0 DataType_Currency 3

DataType_LongDate 5 DataType_Numeric 1

DataType_ShortDate 4 DataType_SignedNumeric 2

DataType_Time 6 SelectionStyle_Hide 1

SelectionStyle_Retain 0 SelectionStyle_SelectAll 2

SelectionStyle_SelectAllAlways 3 Web_InputType_File 'F'

Web_InputType_Hidden 'H' Web_InputType_Password 'P'

Web_InputType_Text 'T' Web_InputType_TextArea 'A'

TextBox Properties
The properties defined in the TextBox class are summarized in the following table.

Property Description

alignment Contains the text position in the control

autoTab Specifies whether focus is automatically moved to the next control in the tab order of the
form, or to the next accessible cell (for a TextBox control in a table)

case Contains the automatic case conversion of entered text

dataType Contains the type of data that can be entered by the user

decimals Specifies whether text is a decimal type numeric and the maximum number of decimal
places text can have

formatOut Contains system-defined formats of data in text boxes during printing

hintBackColor Contains the text box back ground color when hint text is displayed

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 180

EncycloWin - 2020.0.02

Property Description

hintForeColor Contains the hint text color when hint text is displayed

hintText Contains the text displayed in an empty text box as a hint

integralHeight Specifies whether the text box height is an exact number of lines of text

maxLength Contains how much text can be entered

passwordField Specifies whether the characters typed by a user or placeholder characters are displayed

readOnly Specifies whether a control is read-only for user input

scrollBars Specifies whether an object has horizontal or vertical scroll bars

scrollHorizontal Specifies whether the text scrolls horizontally

scrollHorzPos Contains the position of the horizontal scroll bar

scrollVertical Specifies whether the text scrolls vertically

scrollVertPos Contains the position of the vertical scroll bar

selectionStyle Specifies whether selected text is highlighted when a control loses or gains the focus

selLength Contains the number of selected characters

selStart Contains the starting point of selected text

selText Contains the string containing the currently selected text

text Contains the text contained in the edit area

textOffset Contains the pixel offset of the left and right margins for text displayed in a text box

wantReturn Specifies whether carriage returns are passed to the text box when an enabled and
visible default button is defined on the same form

webInputType Contains the type of input that is accepted by a text box control on a Web page

For details, see "Window, Form, and Control Properties", later in this document.

TextBox Methods
The methods defined in the TextBox class are summarized in the following table.

Method Description

firstVisibleLine Returns the first visible line

getRegisteredKeys Returns an array of the keys that are in effect for the text box

getScrollRange Gets the scroll ranges

getTextAsCurrencyDecimal Returns the value of the text property in currency format converted to a
Decimal value

getTextAsCurrencyReal Returns the value of the text property in currency format converted to a
Real value

getTextAsDecimal Returns the value of the text property converted to a Decimal value

getTextAsInteger Returns the value of the text property converted to an Integer value

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 181

EncycloWin - 2020.0.02

Method Description

getTextAsInteger64 Returns the value of the text property converted to an Integer64 value

getTextAsLongDate Returns the value of the text property in long date format converted to a
Date value

getTextAsReal Returns the value of the text property converted to a Real value

getTextAsShortDate Returns the value of the text property in short date format converted to a
Date value

getTextAsTime Returns the value of the text property converted to a Time value

isValid Returns whether the value of the text property is valid according to the
value of the dataType property

lineCount Returns the number of lines of text

lines Returns the number of lines available for display in the text box

registerKeys Establishes the entire set of key codes in which the key events of a text box
are interested

setTextFromCurrencyDecimal Sets the text property value to a Decimal value converted to a String in the
currency format of the locale under which the control is running

setTextFromCurrencyReal Sets the text property value to a Real value converted to a String in the
currency format of the locale under which the control is running

setTextFromDecimal Sets the text property value to a Decimal value converted to a String in the
format of the locale under which the control is running

setTextFromInteger Sets the text property value to a Integer value converted to a String in the
format of the locale under which the control is running

setTextFromInteger64 Sets the text property value to a Integer64 value converted to a String in
the format of the locale under which the control is running

setTextFromLongDate Sets the text property value to a Date value converted to a String in the
long date format of the locale under which the control is running

setTextFromReal Sets the text property value to a Real value converted to a String in the
format of the locale under which the control is running

setTextFromShortDate Sets the text property value to a Date value converted to a String in the
short date format of the locale under which the control is running

setTextFromTime Sets the text property value to a Time value converted to a String in the
time format of the locale under which the control is running

For details, see "Window, Form, and Control Methods", later in this document.

TextBox Events
The event methods defined in the TextBox class are summarized in the following table.

Event Occurs…

change When the contents of the control have changed

click When the user presses and then releases the left mouse button

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 182

EncycloWin - 2020.0.02

Event Occurs…

contextMenu After the right mouseUp event and after the keyUp event

dblClick When the user presses and releases the left mouse button and then presses and releases it
again

dragDrop When a dragged window is dropped over a window belonging to the same application

dragOver For each window of the application over which a window is dragged

firstChange When the user performs keyboard or cut and paste actions

gotFocus When a control receives the focus

keyDown When the user presses a key while the control has the focus

keyPress When the user presses and releases an ANSI key

keyUp When the user releases a key while the control has the focus

lostFocus When a control loses the focus

mouseDown When the user presses a mouse button

mouseEnter When the user moves the mouse onto a control

mouseHover When the user moves the mouse onto a control and then the mouse remains static for one
second or longer

mouseLeave When the user moves the mouse off a control

mouseMove When the user moves the mouse

mouseUp When the user releases a mouse button

paint When part or all of a control is exposed

scrolled When the user scrolls

sysNotify When it is triggered when a specified JADE system event occurs

userNotify When triggered from the JADE Object Manager by a user call

For details, see "Window, Form, and Control Events", later in this document.

Value Round Trips through TextBox Controls
The following subsections provide code fragment examples of round trips (converting back and forth to and from
primitive types in TextBox controls).

Number Round Trips
val : Integer, Byte, Integer64, Decimal, Real;
str : String;
txb : TextBox;
errOffset : Integer;

//Binary to String
txb.dataType := DataType_Numeric, DataType_SignedNumeric;

txb.decimals := <as-required>;
txb.setTextFromType(val) // direct

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 183

EncycloWin - 2020.0.02

str := val.numberFormat(); // indirect
txb.text := str;

//String to Binary
val := txb.getTextAsType(); // direct

str := txb.text; // indirect
if val.parseNumberWithCurrentLocale(str, errOffset) <> 0 then

// invalid text
endif;

Currency Round Trips
val : Decimal, Real;
str : String;
txb : TextBox;
errOffset : Integer;

//Binary to String
txb.dataType := DataType_Currency; // overrides decimals

txb.setTextFromCurrencyDecimal(val); // direct
txb.setTextFromCurrencyReal(val);

str := val.userCurrencyFmtAndLcid(null, 0); // indirect
txb.text := str;

//String to Binary
val := txb.getTextAsCurrencyDecimal(); // direct
val := txb.getTextAsCurrencyReal();

str := txb.text; // indirect
if val.parseCurrencyWithCurrentLocale(str, errOffset) <> 0 then

// invalid text
endif;

Date Round Trips
val : Date;
str : String;
txb : TextBox;

//Binary to String
txb.dataType := DataType_ShortDate, DataTypeLongDate;

txb.setTextFromShortDate(val);
txb.setTextFromLongDate(val);

str := val.shortFormat(); // indirect
str := val.longFormat();
txb.text := str;

//String to Binary
val := txb.getTextAsShortDate();

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 184

EncycloWin - 2020.0.02

val := txb.getTextAsLongDate();

str := txb.text; // indirect
if not val.parseForCurrentLocale(str) then

// invalid text
endif;

Time Round Trips
val : Time;
str : String;
txb : TextBox;
errOffset : Integer;

//Binary to String
txb.dataType := TextBox.DataType_Time;

txb.setTextFromTime(val);

str := val.userFormatAndLcid(null, 0); // indirect
txb.text := str;

//String to Binary
val := txb.getTextAsTime(); // direct

str := txb.text; // indirect
if val.parseWithFmtAndLcid(str, null, 0, errOffset) <> 0 then

// invalid text
endif;

WebHotSpot Class
The WebHotSpot class enables you to insert rectangular hotspots directly on to picture controls.

As the WebHotSpot class is a subclass of the Label class, it inherits all of the properties and methods defined in
the Label, Control, and Window classes.

For a summary of the method defined in the WebHotSpot class, see "WebHotSpot Method", in the following
subsection.

WebHotSpot Method
The method defined in the WebHotSpot class is summarized in the following table.

Method Description

canBeChildOf Specifies whether the control can be placed on the specified form or control

For details, see "Window, Form, and Control Methods", later in this document.

WebHTML Class
The WebHTML class enables you to enter free-form text directly into generated HyperText Markup Language
(HTML) text.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 185

EncycloWin - 2020.0.02

The HTML code that is dynamically generated conforms to the HTML 3.2 standard and enables you to generate a
single user interface that is compatible with multiple browsers.

Note Your HTML is not syntax-checked.

As the WebHTML class is a subclass of the TextBox class, it inherits all of the properties and methods defined in
the TextBox, Control, and Window classes.

For a summary of the properties defined in the WebHTML class, see "WebHTML Properties", in the following
subsection.

WebHTML Properties
The properties defined in the WebHTML class are summarized in the following table.

Property Description

ignoreHeight Specifies whether text is resized to fit the height of HTML on a Web page accessed using
Internet Explorer 4.0 (or higher)

ignoreWidth Specifies whether text is resized to fit the width of HTML on a Web page accessed using
Internet Explorer 4.0 (or higher)

transparent Causes the control to be placed above all other sibling controls and the controls or form
underneath to be visible

For details, see "Window, Form, and Control Properties", in the following section.

WebInsert Class
The WebInsert class enables you to insert the contents of a file as part of the HTML generation. The file contents
are copied as is; that is, they are not edited in any way.

As the WebInsert class is a subclass of the Label class, it inherits all of the properties and methods defined in the
Label, Control, and Window classes.

For a summary of the method defined in the WebInsert class, see "WebInsert Method", in the following subsection.

WebInsert Method
The method defined in the WebInsert class is summarized in the following table.

Method Description

loadFile Dynamically loads the specified text file as part of the HTML generate process

For details, see "Window, Form, and Control Methods", later in this document.

WebJavaApplet Class
The WebJavaApplet class enables you to insert a Java applet into your Web page as part of the HTML
generation.

As the WebJavaApplet class is a subclass of the Label class, it inherits all of the properties and methods defined
in the Label, Control, and Window classes.

Encyclopaedia of Classes
(Volume 3)

Control Class Chapter 2 186

EncycloWin - 2020.0.02

For a summary of the properties defined in the WebJavaApplet class, see "WebJavaApplet Properties", in the
following subsection.

Note If your Java applet is contained in an archive file, set the hyperlink attribute to the name of the .jar file.

WebJavaApplet Properties
The properties defined in the WebJavaApplet class are summarized in the following table.

Property Description

appletName Contains the case-sensitive name of the Java applet

code Contains the compiled code of the applet

codebase Contains the base Uniform Resource Locator (URL), or code directory, of the applet

horizontalSpace Contains the number of pixels on each side of the applet

parameters Contains applet parameters

verticalSpace Contains the number of pixels above and below the applet

For details, see "Window, Form, and Control Properties", in the following section.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 187

EncycloWin - 2020.0.02

Window, Form, and Control Properties
This section describes the properties defined in the following classes.

Window

Form

Control class and subclasses

acceptTabs
Type: Boolean

Availability: Read or write at any time

The acceptTabs property of the JadeRichText control specifies whether the Tab key inserts a tab character in the
control instead of moving the focus to the next control in the tab order.

By default, a tab character is inserted (that is, the default value is false).

accessedCell
Type: JadeTableCell

Availability: Read or write at run time only

The accessedCell property of the Table class contains a reference to the cell returned by the accessCell method
of the Table class or the accessCell method of the JadeTableSheet class.

The code fragments in the following examples show the use of the accessedCell property.

table1.accessCell(2,3).inputType := Table.InputType_TextBox;
table1.accessedCell.foreColor := Red;

table1.accessSheet(2).accessCell(1,4).text := "Company";
table1.accessedCell.alignment := Table.Alignment_Right_Middle;

See also the Table class accessedColumn, accessedRow, and accessedSheet properties.

accessedColumn
Type: JadeTableColumn

Availability: Read or write at run time only

The accessedColumn property of the Table class contains a reference to the column returned by the
accessColumn method of the Table class or the accessColumn method of the JadeTableSheet class.

The code fragment in the following example shows the use of the accessedColumn property.

table1.accessedColumn.visible := false;

See also the Table class accessedCell, accessedRow, and accessedSheet properties.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 188

EncycloWin - 2020.0.02

accessedRow
Type: JadeTableRow

Availability: Read or write at run time only

The accessedRow property of the Table class contains a reference to the row returned by the accessRow
method of the Table class or the accessRow method of the JadeTableSheet class.

The code fragment in the following example shows the use of the accessedRow property.

table1.accessedRow.visible := false;

See also the Table class accessedCell, accessedColumn, and accessedSheet properties.

accessedSheet
Type: JadeTableSheet

Availability: Read or write at run time only

The accessedSheet property of the Table class contains a reference to the sheet returned by the accessSheet
method of the Table class.

The following example shows the use of the accessedSheet property.

begin
table1.accessSheet(1);
if chkboxFontBold.value = true then

table1.accessedSheet.fontBold := true;
else

table1.accessedSheet.fontBold := false;
endif;

end;

See also the Table class accessedCell, accessedColumn, and accessedRow properties.

accessMode
Type: Integer

Availability: Read or write at run time

The accessMode property provides multiple meanings for the alignment, backColor, comboIndex, foreColor,
fontName, fontSize, fontBold, fontItalic, fontUnderline, fontStrikethru, inputType, maxLength,
partialTextIndication, and wordWrap properties of Table controls.

The accessMode property enables table cells to have different colors, fonts, alignments, and input modes. The
values of the accessMode property are listed in the following table.

Table Class Constant Value Contains the …

AccessMode_Sheet 0 Default value for the current sheet. The default value is that initially set
for the table at development time or the current sheet for added
additional sheets.

AccessMode_Cell 1 Effective value for the current cell of the current sheet.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 189

EncycloWin - 2020.0.02

Table Class Constant Value Contains the …

AccessMode_Column 2 Default value for the current column of the current sheet.

AccessMode_Row 3 Default value for the current row of the current sheet.

The font setting for value AccessMode_Sheet (0) applies to all sheets in the table. Set the accessMode property
to AccessMode_Cell (1), AccessMode_Column (2), or AccessMode_Row (3), to cause the values to be
returned for the current cell, current column, or current row respectively, reflected by the row, column, or sheet
property.

Note You can directly access a table element using an instance of the JadeTableCell, JadeTableColumn,
JadeTableRow, or JadeTableSheet class or by using the appropriate Table class accessedSheet,
accessedRow, accessedColumn, or accessedCell property without using the appropriate accessMode
property value.

When the Table control obtains the value of one of the properties affected by accessMode for a cell, the following
rules apply when retrieving the value of that property.

1. If the cell value is specifically set, that value is returned.

2. If the cell value is not set, the value of the column is returned if that is set.

3. If the column value is not set, the value of the row is returned if that is set.

4. If the row value is not set, the default value for the sheet is returned.

The value returned when the accessMode property is set to AccessMode_Cell (1) is the effective value of that
property for the current cell.

Cells in the fixed part of a column have the backColor and inputType properties set only if those properties are
specifically set for a cell or the fixed column.

The default value is AccessMode_Sheet (0); that is, changing any of these properties affects the default values
for the current sheet of the table. Each cell of its owner sheet uses these default values.

The code fragment in the following example shows the use of the accessMode property.

table1.accessMode := Table.AccessMode_Sheet;
table1.alignment := Table.Alignment_Right;
table1.column := 1;
table1.accessMode := Table.AccessMode_Column;
table1.alignment := Table.Alignment_Left;

See also the Table class accessedCell, accessedColumn, accessedRow, and accessedSheet properties.

activation
Type: Integer

The activation property of the OleControl class controls how or if the application of the object can be activated by
its primary verb (usually edit or play). The values of the activation property are listed in the following table.

OleControl Class Constant Value Actioned…

Activation_Manual 0 Programmatic initiation only by the applyVerb method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 190

EncycloWin - 2020.0.02

OleControl Class Constant Value Actioned…

Activation_SetFocus 1 When the control gains focus.

Activation_DblClick 2 When the control is double-clicked (the default).

activeColor
Type: Integer

Availability: Read or write at any time

The activeColor property of the JadeMask class contains the color to be used in the mask picture for the
definition of the logical area of the control. Any pixel of this color in the mask picture defines a pixel within the
control. A pixel of any other color in the mask is considered not to be on the control, and the control will not
respond while the mouse is over that pixel.

The default color value for this property is black (0).

Note The masking ability is disabled if the values of the rotation and stretch properties are non-zero or the
style property value is Style_Mask_Color (3).

alignChildren
Type: Integer

Availability: Read or write at any time

The alignChildren property of the Frame class and JadeDockBar class enables the frame or dock bar control to
align child controls placed inside the frame or dock bar. The controls are automatically resized when the frame or
dock bar resizes. If the three-dimensional (3D) effects are turned on for a Frame control, the children are placed
inside the 3D border area.

For details about floating and docking container controls, see "Floating a Docking Control" and "Docking a
Control", under the "JadeDockBase Class", earlier in this document. See also the docking examples under the
allowDocking property, later in this document.

Tip If it is difficult positioning docking controls to meet your requirements in the JADE Painter when the
alignChildren and alignContainer properties are set, use theSuspend Parent Alignments command from the
JADE Painter Layout menu. The alignContainer and alignChildren properties of controls are then treated as
though the property values are zero (0) so that no automatic alignment occurs.

When this command is unchecked (the default), the alignChildren and alignContainer properties of controls
behave as normal.

The settings of the Frame class alignChildren property are listed in the following table.

Frame Class Constant Value Description

AlignChildren_None 0 No alignment is performed (the default). Resizes of the frame have no
effect.

AlignChildren_Width 1 Aligns width. When the frame is resized, each child control is sized to
exactly fit the width of the client area of the frame (the area inside the
3D border).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 191

EncycloWin - 2020.0.02

Frame Class Constant Value Description

AlignChildren_All 2 Aligns all. When the frame is resized, any child controls are also
resized to exactly fit the height and width of the client area of the
frame. If there is more than one child, they are all aligned.

Use this property to place a Frame in a form with the alignContainer property set to AlignChildren_All (2).

When a ListBox control is placed inside the frame and the alignChildren property set to AlignChildren_All, the
frame and the list box are resized to fit when the form is resized.

By turning off the 3D effects and the frames border, the entire frame can be hidden and yet still make use of the
alignment features.

The integralHeight property of TextBox and ListBox controls is ignored if the parent of those controls has the
alignChildren property set.

Some controls, such as a check box, do not permit their size (usually the height) to change. The recalculation of
the positions of the children occurs only if the size or position of the frame is altered. Changing the size and
position of a child does not reposition the set of child controls within the frame, unless that child is also a frame
control. To force the realignment, change to the size and position of the frame, or set the alignChildren property
within logic (even if unchanged).

Dock controls that are aligned to their parent by using the JadeDockBar class alignChildren or alignContainer
property and that have scroll bars are not scrolled and remain in place in their parent when the scroll bar of the
parent is shifted. They therefore remain visible and unchanged when the scroll bar of the parent is adjusted.

The settings of this property for the JadeDockBar class are listed in the following table.

JadeDockBar Class Constant Integer Value

AlignChildren_None 0

AlignChildren_AllHorizontal 1

AlignChildren_AllVertical 2

AlignChildren_Auto 3

For the JadeDockBar class, the AlignChildren_None (0) constant value has the following rules.

The children within the dock bar remain in the positions allocated by the developer.

The dock bar size is also unaffected by its children.

Because the control has fixed positions for its children, docking the control cannot alter the position of the
children or the size of the control itself. The current width is therefore retained and the docking could cause
the waste of space in its parent.

If the alignChildren property is not set to AlignChildren_Auto and the width of the control is greater that its height
and the control is dragged to a left or right docking position (and it is not currently docked left or right), the values
of width and height properties are exchanged when considering the docking position.

Similarly, if the height of the control is greater than its width and the control is dragged to a top or bottom docking
position (and it is not currently docked top or bottom), the values of width and height properties are exchanged
when considering the docking position. This is necessary because the control does not know how to resize itself.
For example, if the control were docked at the top and then dragged to the left position and these exchanges were
not done, the control would retain its current width, stretch its height, and therefore probably use all of the space in
its parent.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 192

EncycloWin - 2020.0.02

For the JadeDockBar class, the AlignChildren_AllHorizontal (1) constant value has the following rules.

If there is only one child, the child is positioned at the left and top of that area with a width and height equal to
the remaining width and height of that area.

If there is more than one child, the children are positioned at the left of the remaining area with a width equal
to the width of the remaining area. The child with the lowest top value is positioned at the top of the area,
immediately followed by the next top-most child, and so on.

The height of each child is the minimum of the gap between the initial top position and the top position of the
next child, and the initial height of the child itself.

If the combined height of the children exceeds the total available height, each child is equally reduced in
height so that exactly the entire available area of the parent is used. If the combined height of the children is
less than the total available height, each child is equally increased in height so that exactly the entire
available area of the parent is used.

When the children are aligned so that they share all of the remaining area of the parent, they retain their
relative heights if the parent is subsequently resized. If the user resizes the form, no resize logic is therefore
required when the parent height is affected by the height of the form.

For the JadeDockBar class, the AlignChildren_AllVertical (2) constant value has the following rules.

If there is one child only, that child is positioned at the left and top of that area with a width and height equal
to the remaining width and height of that area.

If there is more than one child, the children are positioned at the top of the remaining area with a height
equal to the height of the remaining area. The child with the lowest left value is positioned at the left of the
area, immediately followed by the next left-most child, and so on.

The width of each child is the minimum of the gap between the initial left position and the left position of the
next child, and the initial width of the child itself.

If the combined width of the children exceeds the total available width, each child is equally reduced in width
so that exactly the entire available area of the parent is used. If the combined width of the children is less
than the total available width, each child is equally increased in width so that exactly the entire available
area of the parent is used.

When the children have been aligned so that they share all of the remaining area of the parent, they retain
their relative widths if the parent is subsequently resized. If the user resizes the form, no resize logic is
therefore required when the parent width is affected by the width of the form.

For the JadeDockBar class, the AlignChildren_Auto (3) constant value has the following rules.

The dock bar automatically positions the child controls in the order of the tabIndex property.

The dock bar automatically resizes itself to the size required for its children.

If the dock bar is aligned vertically, the controls are positioned in columns.

If the dock bar is aligned horizontally, the controls are positioned horizontally in rows.

Additional columns or rows result if the position of the controls would cause the dock bar to exceed the size
of the area available within its parent.

The spacing between the controls is determined by the value of the JadeDockBar class autoSpacingX and
autoSpacingY properties.

The spacing of a control from the edges of the dock bar area is half the value of the autoSpacingX property
horizontally and half the value of the autoSpacingY property vertically.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 193

EncycloWin - 2020.0.02

alignContainer
Type: Integer

Availability: Read or write at any time

The alignContainer property of the Frame class and JadeDockBase class enables the control to align itself to its
parent container so that the control automatically resizes with the container. For example, if the container of a
frame is the form, any form resize causes the frame to also resize automatically to fit the new form size.

If the frame has children, those children could also be resized automatically (another frame with the
alignContainer property set or this frame with the alignChildren property set).

This property is handled the same way for Frame and JadeDockBar controls except that the handling is defined
by the parent of the JadeDockBar control rather than by the control itself.

When aligning controls, you should be aware of the following functionality.

Sibling controls that have the alignContainer property set do not occupy the same area on their parent. If so,
use the visible property to control the window that is currently displayed.

Controls that are aligned to their parent by using the alignContainer or alignChildren property and that have
scroll bars are not scrolled and remain in place in their parent when the scroll bar of the parent is shifted.
Dock controls and StatusLine controls, for example, therefore remain visible and unchanged when the scroll
bar of the parent is adjusted.

The relativeTop, relativeLeft, relativeWidth, and relativeHeight properties are ignored when a control is
aligned.

The integralHeight property of TextBox and ListBox controls is ignored if the parent of those controls has
the alignChildren property set.

Tip If it is difficult positioning docking controls to meet your requirements in the JADE Painter when the
alignContainer and alignChildren properties are set, use theSuspend Parent Alignments command from the
JADE Painter Layout menu. The alignContainer and alignChildren properties of controls are then treated as
though the property values are zero (0) so that no automatic alignment occurs.

When this command is unchecked (the default), the alignContainer and alignChildren properties of controls
behave as normal.

For the Frame class, any non-zero alignment setting causes the frame to align to the width of its parent container.
The setting then determines the vertical size and position of the frame.

The alignContainer property values for Frame controls are listed in the following table.

Frame Class Constant Value Description

AlignContainer_All 5 Aligns container. The frame aligns itself to its entire container
size.

AlignContainer_AllHorizontally 5 Children share the entire remaining client area of the parent
horizontally. (For details, see the following table of values for
the JadeDockBase class alignContainer property.)

AlignContainer_AllVertically 6 Children share the entire remaining client area of the parent
vertically. (For details, see the following table of values for the
JadeDockBase class alignContainer property.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 194

EncycloWin - 2020.0.02

Frame Class Constant Value Description

AlignContainer_Bottom 2 The frame retains its current height and aligns the bottom of the
frame to the bottom of its container.

AlignContainer_None 0 No alignment is performed (the default). Resizes of the frame
container have no effect.

AlignContainer_Stretch 4 Stretches to next control below. The frame retains its current top
position and stretches downwards until it encounters another
control or the bottom of its container.

AlignContainer_Top 1 The frame retains its current height and aligns the top of the
frame to the top of its container.

AlignContainer_Width 3 Aligns width. The frame retains its current height and top
position.

For the Frame control, the AlignContainer_All (5) constant value for the alignContainer property is treated as the
AlignContainer_AllHorizontal (5) value. Use this property to place a frame in a form with the alignContainer
property set to AlignContainer_All (5) or AlignContainer_AllHorizontal (5).

When a ListBox control is placed inside the frame and the alignChildren property is also set to AlignChildren_All
(2), the frame and the list box are resized to fit when the form is resized. By turning off the three-dimensional (3D)
effects and the frames border, the entire frame can be hidden and yet still make use of the alignment features.

Note For the AlignContainer_Stretch (4) value, vertically adjacent frames and status line controls merge their
borders if they both have the Window class borderStyle property set.

Additionally, if adjacent frames both have the borderStyle and bevelOuter properties set to BorderStyle_None
(0) and Bevel_None (0) and the same boundaryBrush and boundaryColor property settings, the frames or status
line controls merge their boundary areas.

For the JadeDockBase class, the alignContainer property values are listed in the following table.

Class Constant Value Description

AlignContainer_AllHorizontally 5 For this value of the alignContainer property, the children share
the entire remaining client area of the parent horizontally. If there
is one child only, the child is positioned at the left and top of that
area with a width and height equal to the remaining width and
height of that area.

If there is more than one child, the children are positioned at the
left of the remaining area with a width equal to the width of the
remaining area. The child with the lowest top value is positioned
at the top of the area, immediately followed by the next top-most
child, and so on. The height of each child is the minimum of the
gap between the initial top position and the top position of the
next child, and the initial height of the child itself.

If the combined height of the children exceeds the total available
height, each child is equally reduced in height so that exactly the
entire available area of the parent is used. If the combined height
of the children is less than the total available height, each child is
equally increased in height so that exactly the entire available
area of the parent is used.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 195

EncycloWin - 2020.0.02

Class Constant Value Description

When the children have been aligned so that they totally share
the remaining area of the parent, they retain their relative heights
if the parent is subsequently resized. If the user resizes the form,
no resize logic is therefore required when the parent height is
affected by the height of the form.

AlignContainer_AllVertically 6 For this value of the alignContainer property, the children share
the entire remaining client area of the parent vertically. If there is
one child only, the child is positioned at the left and top of that
area with a width and height equal to the remaining width and
height of that area.

If there is more than one child, the children are positioned at the
top of the remaining area with a height equal to the height of the
remaining area. The child with the lowest left value is positioned
at the left of the area, immediately followed by the next left-most
child, and so on. The width of each child is the minimum of the
gap between the initial left position and the left position of the
next child, and the initial width of the child itself.

If the combined width of the children exceeds the total available
width, each child is equally reduced in width so that exactly the
entire available area of the parent is used. If the combined width
of the children is less than the total width available, each child is
equally increased in width so that exactly the entire available
area of the parent is used.

When the children have been aligned so that they share all of the
remaining area of the parent, they retain their relative widths if the
parent is subsequently resized. If the user resizes the form, no
resize logic is therefore required when the parent width is
affected by the width of the form.

AlignContainer_Bottom 2 Positioned at the left and bottom of the remaining client area of
the parent of the control, with a width equal to the width of the
remaining area. The control retains its height unless its children
can be automatically positioned and resized.

AlignContainer_Left 3 Positioned at the left and top of the remaining client area of the
parent of the control, with a height equal to the height of the
remaining area. The control retains its width unless its children
can be automatically positioned and resized.

AlignContainer_None 0 There is no alignment to the parent of the control.

AlignContainer_Right 4 Positioned at the right and top of the remaining client area of the
parent of the control, with a height equal to the height of the
remaining area. The control retains its width unless its children
can be automatically positioned and resized.

AlignContainer_Top 1 Positioned at the left and top of the remaining client area of the
parent of the control, with a width equal to the width of the
remaining area. The control retains its height unless its children
can be automatically positioned and resized.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 196

EncycloWin - 2020.0.02

You can dock a JadeDockBar or JadeDockContainer control into any docking position (with one exception),
regardless of the value of its alignContainer property. The docking control then adopts the new alignContainer
property value implied by the docking mode. The exception is that a JadeDockBar control that has its
alignContainer property set to AlignContainer_None cannot be docked AlignContainer_AllHorizontal or
AlignContainer_AllVertical.

A JadeDockBar control whose alignContainer property is set to AlignContainer_None is mostly useful as a
toolbar sitting on a JadeDockContainer control as its parent and when docked somewhere else, it remains at its
current size or the size derived from its children if the value of the alignChildren property is AlignChildren_Auto.
Even when dragged and docked left, right, top, or bottom, it requires a JadeDockContainer control as its parent. If
it is not docked into a JadeDockContainer control, it clones its original JadeDockContainer parent or creates a
new JadeDockContainer control if it did not have one.

Setting the alignContainer property to AlignContainer_AllHorizontal causes all other siblings with the property
set to AlignContainer_AllHorizontal to also be set to AlignContainer_AllVertical.

Similarly, setting the alignContainer property to AlignContainer_AllVertical causes all other siblings with the
alignContainer property set to AlignContainer_AllHorizontal to also be set to AlignContainer_AllVertical. In
addition, a Frame control could be aligned to the top, bottom, width, or stretched to the next control or to its entire
parent container area. If multiple controls were added to the same parent with the same alignment type, they
occupy the same positions within the parent.

You can have a number of different controls all aligned in the same or in different ways within the parent, to allow
the dock bar containers to co-exist with each other, with StatusLine controls, and with aligned Frame controls.

In addition, controls with the same alignment type (and therefore the same alignment priority) are ordered by their
position. For example, the order of two controls aligned to the top of the parent is based on the current top
positions of the controls. If the top positions are the same, the control that is placed above the other is undefined.
Similarly, controls aligned to the bottom are ordered in reverse order of their top positions, left-aligned controls by
their left positions, and right-aligned controls are ordered in reverse order of their left position.

To enable multiple controls to be aligned in different ways within the same parent, the values of the
alignContainer property have a priority.

Each control is aligned in the following priority order so that the control is positioned using the remaining space
after each previous alignment within that parent.

1. Dock control top-aligned

2. Dock control bottom-aligned

3. Dock control left-aligned

4. Dock control right-aligned

5. Frame control top-aligned

6. Frame or status line bottom-aligned

7. Frame width-aligned

8. Frame stretched to the next control

9. Frame or dock control aligned-all horizontally

10. Frame or dock control aligned-all vertically

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 197

EncycloWin - 2020.0.02

Controls with such alignments are automatically re-evaluated and resized, when required, under the following
conditions.

A control is moved

A control is resized

A control is added to the form

A control is deleted from the form

The visible property of the control is changed

The alignContainer property of the control is changed

The alignChildren property of the control is changed

A docking control is floated

A docking control is docked

The parent of a control is changed

The following image is an example of a form that includes docking container controls.

In this image:

A docking container is aligned to the top (with a dock bar inside, holding pictures and a combo box)

A docking container is aligned on the right (with a dock bar inside, holding pictures)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 198

EncycloWin - 2020.0.02

Frame1 is aligned to the top

Two status lines are aligned to the bottom

Frame2 is aligned all, containing a list box and a table, and the Frame control has the alignChildren
property set to AlignChildren_All (2)

Frame3 is aligned all

If the user resizes the form in this example, all of the aligned containers are readjusted without JADE logic being
required. In addition, the ListBox and Table controls are also resized, because Frame2 uses the value
AlignChildren_All (2) of the alignChildren property.

Frame2 and Frame3 demonstrate the align ‘all’ concept so that they are stretched vertically and they share the
remaining space horizontally in the form. The left position of Frame3 determines how much space the Frame2
control is given. Similarly, Frame2 has the alignChildren property set to AlignChildren_All (2), which aligns the
list box and table within the Frame2 area with the left position of the table, determining how much width the list
box is assigned.

Notes Frames aligned to the width and stretched to the next control (that is, those with priority 7, in which the
frame width is aligned, and priority 8, in which the frame is stretched to the next control) do not adjust the
remaining space used for alignment and therefore should not be mixed with align ‘all’ types (that is, those with
priority 9, in which the frame or dock control are aligned-all horizontally, and priority 10, in which the frame or dock
control are aligned-all vertically).

The value of the alignContainer property of a control can be defined by using its own alignContainer property
value and the alignChildren property of its parent. If the alignContainer property of a control is set, that setting
takes precedence over the value of the alignChildren property of its parent.

If a container contains controls that are docked both ‘all’ vertically and horizontally, they are aligned horizontally.

For details about floating and docking container controls, see "Floating a Docking Control" and "Docking a
Control", under the "JadeDockBase Class", earlier in this document. See also the docking examples under the
allowDocking property. For details about adding resize bars to docking controls that are all aligned horizontally or
vertically, see the showResizeBar property.

alignment
Type: Integer

Availability: Read or write at any time

The alignment property determines whether the text is placed before or after the button bitmap image for
CheckBox and OptionButton classes. For other control classes, it sets the alignment of the text in a control.

For a check box or option button control, the alignment property settings are listed in the following table.

Class Constant Value Description

Alignment_Left 0 Control aligns to the left with text on the right (the default)

Alignment_Right 1 Control aligns to the right with text on the left

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 199

EncycloWin - 2020.0.02

For the Table class, the alignment property settings, which affect the text and picture components of table cells,
are listed in the following table. (In this table, the constants with two integer values in the range 1 through 3 are
compatible and are the values for vertical or horizontal alignment in each case.)

Table Class Constant Value Description

Alignment_Default 0 Uses default alignment (left for a sheet, or the alignment value of the
cell)

Alignment_Left 1 Text aligns to the left of the cell after any cell picture

Alignment_Left_Middle 1 Text is left-justified in the vertical middle of the cell

Alignment_Right 2 Text aligns to the right with any cell picture on its left

Alignment_Right_Middle 2 Text is right-justified in the vertical middle of the cell

Alignment_Center 3 Text and any picture are centered within the cell

Alignment_Center_Middle 3 Text is centered horizontally at the middle of the cell

Alignment_Left_Top 4 Text is left-justified at the top of the cell

Alignment_Right_Top 5 Text is right-justified at the top of the cell

Alignment_Center_Top 6 Text is centered horizontally at the top of the cell

Alignment_Left_Bottom 7 Text is left-justified at the bottom of the cell

Alignment_Right_Bottom 8 Text is right-justified at the bottom of the cell

Alignment_Center_Bottom 9 Text is centered horizontally at the bottom of the cell

The Table control accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell property
determines whether the alignment for the current sheet, cell, column, or row is being accessed. If the cell is too
small to fit both the text and the picture, the text takes precedence over the picture unless the stretch property is
set to Stretch_None_Picture_First (2) or Stretch_Cell_Picture_First (3), where the picture takes precedence.

The size of the text is determined by taking the cell size and calculating the text size required using the word wrap
option. The space left over is used to scale the image proportionally so that the whole image is displayed. (See
also the partialTextIndication and stretch properties.)

For the TextBox class, the alignment property settings are listed in the following table.

TextBox Class Constant Value Description

Alignment_Left 0 Text aligns to the left (the default).

Alignment_Right 1 Text aligns to the right (setting this value resets the scrollBars and
scrollHorizontal properties to exclude horizontal scrolling)

Alignment_Center 2 Text aligns to the center (setting this value resets the scrollBars and
scrollHorizontal properties to exclude horizontal scrolling)

Note If the value of the alignment property of a text box is Alignment_Right or Alignment_Center, setting the
value of the scrollHorizontal property to true has no effect.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 200

EncycloWin - 2020.0.02

For the Frame, JadeMask, Label, or StatusLine class, the alignment property settings are listed in the following
table.

Class Constant Value Description

Alignment_Left_Top 0 Left justify, top of the control (the default)

Alignment_Left_Middle 1 Left justify, middle (vertically) of the control

Alignment_Left_Bottom 2 Left justify, bottom of the control

Alignment_Right_Top 3 Right justify, top of the control

Alignment_Right_Middle 4 Right justify, middle (vertically) of the control

Alignment_Right_Bottom 5 Right justify, bottom of the control

Alignment_Center_Top 6 Center horizontally at the top of the control

Alignment_Center_Middle 7 Center horizontally at the middle (vertically) of the control

Alignment_Center_Bottom 8 Center horizontally at the bottom of the control

For JadeMask controls, the alignment occurs within the rectangle defined by the captionLeft, captionTop,
captionHeight, and captionWidth properties. If the value of the captionWidth property is zero (0), the width of the
caption region is the value of the clientWidth property less the value of the captionWidth property. If the value of
the captionHeight property is zero (0), the height is the value of the clientHeight property less the value of the
captionTop property.

For frame and status line controls, the text is always displayed inside the area bounded by the 3D borders.

The code fragment in the following example shows the use of the alignment property.

tblPortfolio.alignment := Table.Alignment_Right;

For the JadeRichText control, the alignment property contains the alignment of the current paragraph. (For an
example of the use of this property, see "JadeRichText Control Method Example", earlier in this document.)

The alignment property values for the JadeRichText control are listed in the following table.

JadeRichText Class Constant Value Paragraph…

Alignment_Center 2 Is centered in the control

Alignment_Justify 3 Is aligned relative to the left and right margins

Alignment_Left 0 Aligns to the left with text on the right (the default)

Alignment_Right 1 Aligns to the right with text on the left

ParagraphFormat_Undefined #80000000 Alignment cannot be assigned but is returned to indicate
that the selected text contains multiple paragraphs with
different alignment values

Although you can define values other than those listed in this table, if you do so, the paragraph is displayed as
left-aligned.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 201

EncycloWin - 2020.0.02

allowClose
Type: Boolean

Availability: Read or write at run time only

The allowClose property of the Form class enables access to the status of the Control-Menu Close command. By
default, a form can be closed by selecting the Close command from the Control Menu. To disable the ability to
close a form by using the Close command, set the allowClose property to false. The user then cannot specifically
close that form by using the Control-Menu, and the form can only be closed programmatically by using the
unloadForm method.

If the form is an MDI child, closing the MDI frame of the form also closes the child form.

Setting the allowClose property to false does not affect the calling of the unloadForm method when the form is
unloaded.

If the controlBox property of the form is set to false, the allowClose property is always false. If the controlBox
property is changed from false to true, the allowClose property is reset to true.

allControlChildren
Type: ControlArray

Availability: Read at run time only

The allControlChildren property of the Window class contains a reference to an array of all of the controls that are
contained in the window (form or control), including children of children. The collection is in no particular order
except that children come after parents.

The array is changed if the z-order of a control is changed by logic or if the parent of a control is changed.

Applies to Version: 2016.0.01 and higher

allMenuItems
Type: MenuItemArray

Availability: Read at run time only

The allMenuItems property of the Form class contains a reference to an array of all of the menu items on the form.
The collection is ordered according to the defined menu item list. This is the equivalent of using the Form class
menuItems method.

Applies to Version: 2016.0.01 and higher

allowDocking
Type: Integer

Availability: Read or write at any time

The allowDocking property of the Form, Frame, and JadeDockContainer classes controls the type of docking
allowed by the window.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 202

EncycloWin - 2020.0.02

The value of the allowDocking property is a bit mask of the allowable docking types that are accepted by the
window, and it is used when the user drags a JadeDockBar or JadeDockContainer control into a potential
docking position within the Form, Frame, or JadeDockContainer control.

Docking is automatically rejected if the appropriate bit is not set within the value of the allowDocking property.

The allowDocking property allows any combinations of the Window class constants listed in the following table.

Window Class Constant Value Description

AllowDocking_None 0 No docking allowed

AllowDocking_Top #1 Allow top docking

AllowDocking_Bottom #2 Allow bottom docking

AllowDocking_Left #4 Allow left docking

AllowDocking_Right #8 Allow right docking

AllowDocking_AllHorizontal #10 Allow all horizontal docking

AllowDocking_AllVertical #20 Allow all vertical docking

AllowDocking_Inside #40 Allow docking inside

AllowDocking_All #7f All of the above

AllowDocking_AnyEdge #f Allow top, bottom, left, and right docking

Note The AllowDocking_Inside value, which means that the control is docked without any special alignment
applying, is intended for use with a JadeDockContainer that has multiple JadeDockBar controls as children (for
example, a toolbar that has several JadeDockBar controls, each holding a logical grouping of controls).

To simplify the setting of the allowDocking property during painting

1. Select a Form, Frame, or JadeDockContainer control on a form in the JADE Painter.

2. Click the allowDocking property on the Specific sheet of the Properties dialog.

3. Select the Change value from the drop-down list in the right column of the allowDocking property row.

The Allow Docking Property Page dialog, shown in the following image, is then displayed.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 203

EncycloWin - 2020.0.02

4. To specify the docking that you require for the control, clear all docking options by checking the None check
box, set all docking options by checking the All check box, or specify individual options by checking or
unchecking the values that you require or do not want to apply, respectively.

Although the allowDocking property indicates that a docking type is permitted, the queryDock event method is
still called for the JadeDockBar or JadeDockContainer control. The queryDock event method passes the
window into which the control will be docked and the type of docking as parameters and returns whether that type
of docking is permitted (that is, true or false).

The default value of the allowDocking property for Form and Frame classes is AllowDocking_None (that is, only
the None check box is checked when you access the Allow Docking Property Page dialog and a Form or Frame
control has focus in the JADE Painter).

The default value for JadeDockContainer controls is AllowDocking_Inside (that is, only the Inside check box is
checked when you access the dialog when a docking container has focus in the Painter).

For examples, see "Multiple Group Toolbar Example", "Multiple Group Toolbar on a Non-MDI Form Example", and
"Using Align All with Multiple Panes", in the following subsections. For details about floating and docking
container controls, see "Floating a Docking Control" and "Docking a Control", under the "JadeDockBase Class",
earlier in this document.

Multiple Group Toolbar Example
The following image is an example of a form that has a JadeDockContainer control aligned at the top and that
contains two JadeDockBar controls. As the form is an MDI frame, there is no need to consider the situations in
which the dock bars are floated.

Note The dock bars can be positioned anywhere on the JadeDockContainer control, provided that they do not
overlap and that only one row is required for the JadeDockBar class.

The following image is an example of the result if one dock bar is floated.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 204

EncycloWin - 2020.0.02

The following image is an example of the result if the width of the form is reduced to the point where the
JadeDockContainer control would require more than one row.

The following image is an example of the result if the JadeDockContainer control is aligned to the right (that is,
the JadeDockBase class alignContainer property is set to AlignContainer_Right).

The following image is an example of shrinking the height of the form so that two columns are required.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 205

EncycloWin - 2020.0.02

Multiple Group Toolbar on a Non-MDI Form Example
The following image is an example of a form with a JadeDockContainer control aligned at the top and containing
two JadeDockBar controls.

The form in this example contains other controls that are placed on a Frame control with the alignContainer
property set to AlignContainer_AllHorizontal (5).

In the following image, the JadeDockContainer control is docked on the right.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 206

EncycloWin - 2020.0.02

Using Align All with Multiple Panes
The following image is an example of a form with multiple panes and which allows the use of the AlignContainer_
AllVertical (6) and AlignContainer_AllHorizontal (5) values of the alignContainer property and the
AlignChildren_AllVertical (2) value of the alignChildren property.

The form in the previous example has three layers, as follows.

1. Three JadeDockContainer controls with the alignContainer property set to AlignContainer_AllHorizontal
and the form as parent.

The JadeDockContainer controls have no border drawn except two that have resize bars drawn across the
form, allowing the user to resize these base panes.

2. JadeDockBar controls in each JadeDockContainer control with the value of the alignContainer property
set to AlignContainer_AllVertical. Two of the JadeDockBar controls are in the top and bottom
JadeDockContainer control panes and the other is in the middle pane. Each of the JadeDockBar controls
has the alignChildren property set to AlignChildren_AllVertical.

Note the resize bar that is drawn vertically in the top and bottom panes between the two JadeDockBar
controls.

3. Each JadeDockBar control then has a TextBox or a Table control as a child that has the alignChildren
property set to AlignChildren_AllVertical.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 207

EncycloWin - 2020.0.02

The form in the following image allows any of the JadeDockBar control panes to be floated, docked into another
position, resized, or created as a new horizontal pane on the form if the allowDocking property of the form permits
it.

allowDrag
Type: Integer

Availability: Read or write at any time

The allowDrag property of the Table class enables rows and columns of a table to be dragged to new positions
within the table.

The Table class constants that represent the allowDrag property values are listed in the following table.

Table Class Constant Integer Value Description

AllowDrag_None 0 Neither columns nor rows can be dragged (the default)

AllowDrag_Rows 1 Rows can be dragged

AllowDrag_Columns 2 Columns can be dragged

AllowDrag_Both 3 Rows and columns can both be dragged

Rows and columns can be dragged only if they have fixed rows and fixed columns, respectively.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 208

EncycloWin - 2020.0.02

To drag a row or column, the user:

1. Clicks on the heading of the fixed column or row that is to be moved.

2. Drags the selected heading to the new position. The column or row is then inserted in front of the column or
row to which it was dragged.

3. Releases the mouse.

The code fragment in the following example shows the use of the allowDrag property.

table1.allowDrag := Table.AllowDrag_Both;

The Table class queryRowMove or queryColumnMove event method is then called. If neither of these event
methods is defined, the move is performed. If these event methods are defined, the move is performed only if a
value of true is returned by the events. The move is aborted if a value of false is returned.

Note By default, clicking on a fixed row or column also causes all non-fixed cells of that row or column to be
selected. To avoid this, set the selectMode property to the appropriate value.

allowInPlace
Type: Boolean

The allowInPlace property of the OleControl class specifies whether in-place editing can occur.

This property is ignored if any of the following conditions applies.

The OLE Server is not in-place-capable

The object is linked

There is no room for the server to place its toolbar

The default value is true.

allowResize
Type: Integer

The allowResize property of the Table class specifies whether the users can resize the rows and columns of a
table. Resizing is achieved by using the mouse to drag the dividers between the fixed rows and columns of a
table.

By default, both the rows and columns can be resized by the user.

The Table class constants and permitted values for the allowResize property are listed in the following table.

Table Class Constant Value Description

AllowResize_Any 0 Allow any resizing

AllowResize_Column 1 Allow column width resizing only

AllowResize_Row 2 Allow row height resizing only

AllowResize_None 3 Resizing is not permitted

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 209

EncycloWin - 2020.0.02

The code fragment in the following example shows the use of the allowResize property.

// Set up column heading and sizes
tbl.allowResize := Table.AllowResize_None; // No resize allowed
tbl.row := 1;
tbl.column := 1;
tbl.text := "Name";
tbl.columnWidth [1] := 155;
tbl.column := 2;
tbl.text := "Code";
tbl.columnWidth [2] := 80;
tbl.column := 3;
tbl.text := "Date Released";
tbl.columnWidth [3] := 155;

alternatingRowBackColor
Type: Integer

Availability: Read or write at any time

The alternatingRowBackColor property of the ListBox control (and the JadeTableSheet class) specifies an
alternate row background color. By default, alternating list box entry and table rows have a background color of
Azure. When you set this property to a value other than Azure, the specified value is used as the default
background color of each alternate non-fixed row.

If the value of the alternatingRowBackColorCount property is 2, the first, third, and so on, list box entry and
non-fixed row default background color is the backColor property value of the list box or table sheet. The second,
fourth, and so on, list box entry and non-fixed row default background color is the alternatingRowBackColor
property value when it is not the default value (otherwise the backColor property value of the list box or sheet is
used).

If the value of the backColor property of a list box entry, cell, row, or column is specifically set and it is not
#800000000 (that is, transparent), the default value of the entry or cell is ignored and the specific value of the
backColor property is used.

Note When a list box entry or cell is drawn, the backColor property value is overridden by any specified
backColor value set for that list box entry, cell, its row, or its column.

Note that when the list box or table is scrolled, the colors do not move with a row. The color scheme is applied to
the rows, starting with the first visible non-fixed row; for example:

table1.accessSheet(1).alternatingRowBackColorCount := 2;
table1.accessSheet(1).alternatingRowBackColor := Azure;

listbox1.alternatingRowBackColorCount := 3;
listbox1.alternatingRowBackColor := DarkGray;

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 210

EncycloWin - 2020.0.02

alternatingRowBackColorCount
Type: Integer

Availability: Read or write at any time

The alternatingRowBackColorCount property of the ListBox control (and the JadeTableSheet class) specifies
the number of list box entry or table rows at which the alternating background color of each visible list box entry
row, non-fixed row, and non-fixed cell is displayed.

If the value of the alternatingRowBackColorCount property is:

Less than or equal to zero (0), the background color of each list box entry or non-fixed cell defaults to the
value of the backColor property of the list box or sheet, or of the list box or table itself if the value of the sheet
is not specifically set. The alternatingRowBackColor property value is ignored.

Greater than zero (0), for each visible alternatingRowBackColorCount list entry, non-fixed row, and
non-fixed cell, the background color defaults to the value of the alternatingRowBackColor property.

For example, if the count is 2, the first, third, fifth, and so on, list box entries, non-fixed rows, and the non-fixed cells
in that row default to the value of the backColor property of the list box or sheet, while the second, fourth, sixth,
and so on list entries, non-fixed rows, and the non-fixed cells in that row default to the value of the
alternatingRowBackColor property.

If the value of the backColor property of a list box entry, cell, row, or column is specifically set and it is not
#800000000 (that is, transparent), the default value of the row or cell is ignored and the specific value of the
backColor property is used.

Note that when the list box or table is scrolled, the colors do not move with a row. The color scheme is applied to
the rows, starting with the first visible non-fixed row; for example:

table1.accessSheet(1).alternatingRowBackColorCount := 2;
table1.accessSheet(1).alternatingRowBackColor := Azure;

listbox1.alternatingRowBackColorCount := 3;
listbox1.alternatingRowBackColor := DarkGray;

Applies to Version: 2018.0.01 and higher

appletName
Type: String[128]

Availability: Run time only

The appletName property of the WebJavaApplet class contains the name of the compiled Java applet that is to
be inserted into the generated HTML. The applet name is case-sensitive and has the following format.

<Java-applet-name>.<class>

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 211

EncycloWin - 2020.0.02

automaticCellControl
Type: Boolean

Availability: Run time only

The automaticCellControl property of the Control class specifies whether the Table class handles the
cellControl property automatically (for example, when performance is an issue when you are running in JADE
thin client mode over a slow link). When this property is set to the default value of false, the cellInputReady event
must set the text box value from the cell text if a text box is assigned to a table cell and the TextBox class change
event must then set the cell text as it is changed, which may impact on JADE thin client performance, as an event
has to be processed for each keystroke.

The automaticCellControl property has no meaning unless the control is assigned to a Table control as a
cellControl property. See also the Table class editMask property.

The default value of false means that you must write logic to handle the cellControl property, but you can set the
automaticCellControl property to true if you want the Table class to manage the cellControl property
automatically, as follows.

For a TextBox or JadeEditMask control, the table loads the text box with the value of the current cell. When
the text box is changed, the table cell is updated and the Table class change event is called. All events are
still called if they are defined, but they are generally not needed.

For a ComboBox control, the table sets the combo box listIndex property using the text of the current cell. If a
new combo box entry is selected, the table cell text is updated and the Table class change event is called.

The automaticCellControl property is currently ignored for any other type of control.

Note When the automaticCellControl property is set to true, arrow keys can be used to step to other cells for a
text box or combo box in a table. If the caret is at the beginning of the text, the left arrow key steps to the prior cell.
If the caret is on the top line, the up arrow key steps to the prior row. If the caret is at the end of the text, the right
arrow key steps to the next cell or column. If the caret is on the last line of the text, the down arrow key steps to the
next row.

In addition, pressing the Alt key and an arrow key performs the requested action regardless of where the caret is
placed.

autoSize
Type: Integer (button, OCX, and table controls), Boolean (check box, option button, label, edit mask, status line,
and multimedia controls)

Availability: Read or write at any time

The autoSize property determines whether a control is automatically resized to fit its contents. The following
example shows the use of the autoSize property.

cb_autoSize_click(checkbox: CheckBox input) updating;
begin

multimedia.autoSize := checkbox.value;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 212

EncycloWin - 2020.0.02

The autoSize property settings for Label controls are listed in the following table.

Value Description

true Automatically resizes the control to fit its contents.

false Keeps the size of the control constant (the default). Contents are clipped when they exceed the area
of the control.

When the autoSize property for a Label control is set to true, the setting of the wordWrap property also affects the
meaning.

The following table lists the results on the Label class autoSize property of setting the wordWrap property.

Value Result

false Text is placed in a single line.

true Current width of the control is used to size the text using word wrap. This adjusts the height of the
control to fit the text. If a single word cannot fit within the width, the label is widened to accommodate
that word. If there is no text, the autoSize property is ignored.

For Button controls, this property determines whether the picture of the button is resized to fit the button. The
autoSize property settings for Button controls are listed in the following table.

Button Class Constant Value Description

AutoSize_None 0 No resize of the button picture (the default).

AutoSize_Button 1 Button picture is proportionally resized to fit the button.

AutoSize_Picture 2 Button is resized to fit the picture.

When the value of the autoSize property for a Button control is set to AutoSize_None (0) or AutoSize_Button (1),
the image is displayed to the left of the caption in the space remaining. (The caption takes precedence). The size
of the icon selected from the assigned icon image is now based on the client height of the button.

When the value is AutoSize_None (0), the image is not scaled and is clipped to the area remaining after the
caption is inserted. When the value is AutoSize_Button (1), the image is resized proportionally in the area
remaining after the caption is inserted.

When the value of the autoSize property for a Button control is set to AutoSize_Picture (2), the non-border area
of the button is set to the size of the picture set in the picture property. Only the picture is displayed; the caption of
the button is not displayed.

If the picture property is not set, this option is ignored. This option is ideal for creating toolbar buttons that display
only an image. If the picture image includes a border, turn off the borderStyle property of the button, to avoid
duplicate border images.

The autoSize property settings for Ocx controls are listed in the following table.

Ocx Class Constant Value Description

AutoSize_Control 0 Resizes the ActiveX control to the size defined by Painter or
your logic (the default)

AutoSize_Object 1 Resizes the ActiveX control to the size of the OLE object

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 213

EncycloWin - 2020.0.02

The autoSize property settings for CheckBox and OptionButton controls are listed in the following table.

Value Description

true The control is resized to fit the content (the default); that is, the width is the size of the icon displayed
plus the width of the text, and the height is the minimum required to show the content.

false The control height and width are set in the JADE Painter or by logic, except if the height is less than
size required to fit the content, in which case the height becomes the minimum required to show the
content vertically. If the height is larger than required, the content is centered vertically.

The autoSize property settings for StatusLine controls are listed in the following table.

Value Description

true The height of the status line is adjusted according to the height of any controls placed inside the
status line and the font size of the caption property for the status line.

false The height of the status line is set by you (the default).

If the value is false, the status line control can be resized vertically; if true, the control cannot be manually resized.
When a child control is resized, the status line control is also resized.

When the value of the StatusLine control autoSize property is true:

If a child control left property value position is less than zero, the control is moved to be zero (0) when the
parentAspect, relativeLeft, and relativeWidth property values of the child do not affect the horizontal
position (not stretch horizontal, anchor right, and centered horizontal, and the relativeLeft and relativeWidth
property values are false).

If a child control is not fully visible horizontally, the child is right-aligned in the status line control if it can be
fully displayed or positioned at zero (0) if it cannot when the parentAspect, relativeLeft, and relativeWidth
property values of the child do not affect the horizontal position (not stretch horizontal, anchor right, and
centered horizontal, and the relativeLeft and relativeWidth property values are false).

If a child control top position is less than zero (0), the control is moved to be zero when the parentAspect
property value of the child does not affect the vertical position (not stretch vertical, anchor bottom, or centered
vertical).

If a child control is not fully visible vertically, the child is bottom-aligned in the StatusLine control when the
parentAspect property value of the child does not affect the vertical position (not stretch vertical, anchor
bottom and centered vertically).

The values of the relativeTop and relativeHeight properties of child controls are always set to false, as their
functionality is not compatible with auto-sizing the height of the StatusLine control (as has always been the
case).

All parentAspect flag values and relativeLeft and relativeWidth values are applied.

The height of the StatusLine control is then determined by analyzing the child control as follows, to determine the
maximum height required. For a child control that does not have a fixed height and has the parentAspect
property with the:

ParentAspect_StretchBottom flag set, the height required is the top position, height, and
parentBottomOffset property values of the child.

ParentAspect_AnchorBottom flag set, the height required is the height and parentBottomOffset property
values of the child; otherwise, the height of the child control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 214

EncycloWin - 2020.0.02

The autoSize property determines whether the MultiMedia control is automatically sized according to the size of
the displayed image.

The autoSize property settings for MultiMedia controls are listed in the following table.

Value Description

true The device or file being played does not have a playback image, the values of the showPlayBar,
showName, showMode, and showPosition properties are false, and the control has no size and is
not visible.

The size of the control is set to the size of the displayed image (multiplied by the value of the zoom
property divided by 100) plus the size of any playbar and caption. If the device or file being played
does not involve a playback image, the control is not visible. If the value of the zoom property is zero
(0), 100 is used.

false When the value of the zoom property is zero (0), the displayed image is stretched to fit the client
area of the control. When the value of the zoom property is not zero, the control size is not affected
by the size of the displayed image. Only as much of the displayed image that fits in the client area of
the control is displayed.

The autoSize property settings for Table controls are listed in the following table.

Table Class Constant Value Description

AutoSize_None 0 No automatic sizing

AutoSize_Row 1 Row resized to fit the table

AutoSize_Column 2 Column resized to fit the table

AutoSize_Both 3 Row and column resized to fit the table (the default)

AutoSize_ColumnMinimum 4 Column resized to the minimum

AutoSize_BothColumnMinimum 5 Both row and column resized to the column minimum

The code fragment in the following example shows the use of the autoSize property for the Table class.

table1.autoSize := comboAutoSize.listIndex - 1;

When the autoSize property for the Table control is set to:

AutoSize_None (0), each column is set to 50 pixels wide and the height of rows is set to the size of a single
line of text using the default font for that table.

AutoSize_Row (1), the height of rows is set so that all cells in the row can be fully displayed vertically, with
the text determined by the font and picture.

Row automatic sizing has little effect on tables unless you include unstretched pictures in cells, as row
heights are set automatically within the table according to the text size and font (which may require word
wrap).

Note Text in table cells wraps only when the value of the autoSize property is set to AutoSize_Row (1).

AutoSize_Column (2), the width of columns is set so that all cells in the column can be fully displayed
horizontally without word wrapping. The text is determined by the font and picture. The width of the columns
is padded, as described following this list.

AutoSize_Both (3), the width of columns is established, followed by the height of the row.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 215

EncycloWin - 2020.0.02

The width of the columns is padded, as described following this list.

AutoSize_ColumnMinimum (4), the column is resized to the minimum size (that is, the size of the cell).

AutoSize_BothColumnMinimum (5), both the width of the column and then the height of the row are resized
to the minimum size.

When using the AutoSize_Both and AutoSize_Column values, if all columns fit within the client width of the table
control, the width of each column is incremented so that the columns are stretched to exactly fit the table client
width. If not all columns fit within the table client width, the AutoSize_Row and AutoSize_Column values are
equivalent to the AutoSize_ColumnMinimum and AutoSize_BothColumnMinimum values.

Note Use the JadeTableColumn class maxColumnWidth property to specify a maximum width (in pixels) for a
column when determining the width during the column width auto-size processing.

If you require both column and row automatic sizing, the width of the column is established, followed by the height
of the row. When the autoSize property is set to AutoSize_None (0), cells have a minimum width of 50 pixels.

When the property is set to a Table class constant representing a non-zero value, cells have a minimum width of
20 pixels, even when they are empty. If a user resizes a row or a column or your JADE logic specifically sets the
row height or column width, the automatic sizing of the row or column no longer applies at any subsequent
change of cell contents.

The autoSize property of the JadeEditMask class determines whether a control is automatically resized to fit its
contents. If the value of autoSize is false (the default), the height of the child text box or text boxes is set to the
height of the edit mask control. If the last field is a text box child, it has its width expanded to the right edge of the
control. Any labels that are defined in the mask are centered vertically in the control. However, if the top position or
the height of a text box child is set by the mask property, the text box children are automatically sized except for
any specific width or height settings defined in the mask for a child. If there is insufficient room to show a full single
line of text in a child text box, the height of the control is expanded regardless of the setting of the autoSize
property.

If the value of autoSize is true, the size of the control is determined by the maximum size and height of the literal
and text data that can be entered into that field according to the value of the mask property (a single line of text).

The size is based on the largest character that can be entered into each character position, which generally
means that the control is larger than required. For example, a mask of three alphabetic characters WWW takes up
considerably more space than iii.

In addition, the size can be larger than required because the prompt character requires more space than the
character for which it is prompting. The fields of the control are always defined according to the maximum size of
the characters in that field, regardless of the value of the autoSize property.

autoSpacingX
Type: Integer

Availability: Read or write at any time

The autoSpacingX property of the JadeDockBar class determines the horizontal spacing in pixels between each
child in the JadeDockBar control.

Note This property applies only when the alignChildren property is set to AlignChildren_Auto (3).

Children on the left of the dock bar are positioned at half the value of the autoSpacingX property from the left.

Spacing of half the value of the autoSpacingX property is retained after the end of the last child to the right.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 216

EncycloWin - 2020.0.02

autoSpacingY
Type: Integer

Availability: Read or write at any time

The autoSpacingY property of the JadeDockBar class determines the vertical spacing in pixels between each
child in the JadeDockBar control.

Note This property applies only when the alignChildren property is set to AlignChildren_Auto (3).

Children at the top of the dock bar are positioned at half the value of the autoSpacingY property from the top.
Spacing of half the value of the autoSpacingY property is retained after the end of the last child.

autoTab
Type: Boolean

Availability: Read or write at any time

The autoTab property of the TextBox class automatically moves focus to the next control in the tab order of a form
when this property is set to true and the maxLength property is set to a non-zero value, so that the user does not
have to press the Tab key when the user enters the final character into a text box at the position specified by the
maxLength property.

When the autoTab property is set to the default value of false, focus is not automatically shifted when the text box
becomes full and the user must press the Tab key to cause the focus to move to the next control in the tab order of
the form.

Note When the autoTab property is set to true and the final character is entered in the text box, the focus is
shifted after completion of the keyUp event method. However, the autoTab property is ignored if your application
code has already moved focus to another control.

The autoTab property of the JadeEditMask class takes effect when the control has an edit mask and the last
character in that text box field (according to the value of the mask property) is entered.

When the value of the autoTab property is false (the default), no further action occurs and the user must press the
Tab key to skip to the next field. If the value of the autoTab property is true, focus is shifted to the start of the next
text box field of the control if there is one or to the next control in the order specified by the tabIndex property of the
form if focus is on the last text box field.

The Table class handles the autoTab property of a TextBox or JadeEditMask control used as a cell control.
When the user enters a character into a cell control that results in the autoTab process being invoked, the table
sets the current column to the next visible, enabled cell of the current row.

If there no such cell, the process moves to the next row and searches for the next visible, enabled cell in that row
and so on, until a visible, enabled cell is located. If the end of the table is reached and the tabOffEnds property of
the JadeTableSheet class is set to true, focus is shifted to the next control in the order specified by the tabIndex
property of the form.

This process takes effect if the user enters text that completes the text and the cell has:

An effective inputType of InputType_TextBox, InputType_SignedNumeric or InputType_SignedNumeric
and the maxLength for the cell is set and the default cell control object has autoTab set to true, as shown in
the code fragment in the following example.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 217

EncycloWin - 2020.0.02

table.inputType := Table.InputType_TextBox;
table.maxLength := 7;
table.cellControl.TextBox.autoTab := true;

A TextBox cell control with a maxLength > 0 and autoTab set to true.

A JadeEditMask control with autoTab set to true.

autoURLDetect
Type: Boolean

Availability: Read or write at any time

The autoURLDetect property of the JadeRichText control specifies whether the control automatically formats a
URL when it is typed into the control. (For an example of the use of this property, see "JadeRichText Control
Method Example", earlier in this document.)

As the default value for this property is false, a URL is not automatically detected.

backBrush
Type: Binary

Availability: Read or write at any time

The backBrush property of the Form class enables you to tile the background of the form with the bitmap when
the property is set to a bitmap. Tiling means that as many copies of the bitmap as are required cover the entire
visible form surface. (The process is the same as the Windows Desktop tiling process.) When the backBrush
property is set for a form, the backColor of the form is not used for coloring the background of the form. To clear
the backBrush property of a form, set the property to null.

Note The Window class backBrushStyle property controls the way in which the Control class and Form class
backBrush property images are displayed.

To define a binary that is used instead of the Window class backColor property, use the Control class backBrush
property. If you set the backBrush property to a valid image (only bitmap, PNG, GIF, TIFF, and JPEG files are
supported) and the control is not transparent, the control background is drawn repeatedly by using the specified
back-brush to cover the entire control. This picture could be a pattern, an actual picture image, a logo, and so on.

Although you can define a backBrush property value for all controls, the BrowseButtons, Button, Folder,
MultiMedia, Ocx, and ActiveXControl controls ignore it because the control is entirely covered by other drawing.

Use the transparent property to enhance the use of the backBrush property; for example, to paint only the text of
a label over the backBrush bitmap without erasing the background area of the label.

The backColor property is ignored when the backBrush property is set. The null default value indicates that the
backColor property is used to draw the background area of the control unless it is also transparent.

Note As both the Microsoft Edit control draws the text by using the value of the backColor property rather than
that of the backBrush property, the backBrush property is ignored for a TextBox control and the text box part of a
ComboBox control.

For details about displaying a background image on a Web form, see the webFileName property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 218

EncycloWin - 2020.0.02

backBrushStyle
Type: Integer

Default: 0

Availability: Read or write at any time

The backBrushStyle property of the Window class controls the way in which the Control class and Form class
backBrush property images are displayed, as shown in the Form class load method in the following example.

load() updating;
begin
 self.backBrushStyle := Form.BackBrushStyle_Center;
end;

If the value of the backBrush property is null (""), the backBrushStyle property is ignored.

If the value of the backBrush property has an assigned image, the backBrushStyle property determines the
display style, as indicated by the following Window class constant values.

Window Class Constant Integer Value The image is...

BackBrushStyle_Tile 0 Converted to a brush and the brush is tiled over the entire
client area of the window.

BackBrushStyle_Stretch 1 Stretched to cover the entire client area.

BackBrushStyle_Center 2 Displayed at actual size in the center of the client area.

BackBrushStyle_StretchProport 3 Drawn in isotropic proportions to its original size to fit the
client area of the window.

If the resized image is narrower than the client width, it is
centered horizontally. If the resized image is narrower than
the client height, it is centered vertically.

backColor
Type: Integer

Availability: Read or write at any time

The backColor property of the Window class contains the background color of a window. Changing this property
causes a repaint of the window object. (See the Window class getSystemColor method for a description and
example of returning a Windows system color. See also the backBrush property.)

For a Table control, the accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell
property determines whether the backColor property for the current sheet, cell, column, or row is being accessed.

For a control, setting the backColor property in the JADE Painter by selecting the Parent’s Colour item (or setting
the value of the backColor property to #80000000 at run time) instructs the window to use the backColor property
value of its parent.

For the JadeTextEdit control, the clearAllStyles method copies the value of this property to the default text style;
that is, STYLE_DEFAULT (32).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 219

EncycloWin - 2020.0.02

JADE uses the RGB scheme for colors. Each property can be set by using the appropriate RGB value. For most
controls in the JADE development environment, the default value for the backColor property is set to the Windows
Background color, which is usually white. For the form and the browse, frame, status line, and folder controls, the
default background color is the Windows 3D Face color, which is usually light gray.

The valid range for a normal RGB color is 0 through 16,777,215 (#FFFFFF). The high byte of an integer in this
range equals 0; the lower three bytes (from least to most significant byte) determine the amount of red, green, and
blue, respectively. The red, green, and blue components are each represented by a number in the range 0
through 255 (#FF). If the high byte is 128, JADE uses the system colors, as defined in the Control Panel of the
user. To determine Integer value of a color from the RGB values:

int:= RedValue + (GreenValue * 256) + (BlueValue * 256 * 256);

The backColor property is available on all Window objects, but on some controls it is not used when painting the
control image; for example, a scroll bar. Setting the backColor property of an object causes all graphics drawn on
the form or control to be erased. For an MDI frame form, the MDI client window is painted using the backColor
value of the form. Although you can define a backColor property value for all controls, the BrowseButtons,
Button, Folder, MultiMedia, Ocx, and ActiveXControl controls ignore it because the control is entirely covered by
other drawing.

The backColor property is ignored when the backBrush property is set. The null default value indicates that the
backColor property is used to draw the background area of the control unless it is also transparent.

For details about printing a background picture over which is drawn the report itself when the backColor property
is not set to white, see "Layering Print Output", under the Printer class "Defining Your JADE Report Layouts", in
Chapter 1.

The following examples show the use of the backColor property.

tranState_click(btn: Button input) updating;
begin

if process.isInTransactionState then
tranState.backColor := Green;
tranState.caption := 'Begin Transaction';
commitTransaction;

else
tranState.backColor := Red;
tranState.caption := 'End Transaction';
beginTransaction;

endif;

table1.accessedCell.backColor := Yellow;

dblClick(frame: Frame input) updating;
vars

colorDialog : CMDColor;
begin

create colorDialog;
colorDialog.color := frame.backColor; // set initial color displayed
if colorDialog.open = 0 then // not cancelled and no error

self.backColor := colorDialog.color; // use the returned value
endif;
delete colorDialog; // tidy up

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 220

EncycloWin - 2020.0.02

bevelColor
Type: Integer

Availability: Read or write at any time

The bevelColor property contains the color used to paint the bevel areas of a three-dimensional Frame or
StatusLine control.

For a raised bevel (a control where the bevelInner or bevelOuter property is set to Bevel_Raised (2)), the
bevelColor property applies to the bevel portion on the left and top sizes of the control.

For an inset bevel (the bevelInner or the bevelOuter property is set to Bevel_Inset (1)), the bevelColor property
applies to the bevel portion on the bottom and right sizes of the control.

JADE uses the RGB scheme for colors. Each property can be set by using the appropriate RGB value.

bevelInner
Type: Integer

Availability: Read or write at any time

The bevelInner property contains the style of the inner bevel of the Frame and StatusLine controls.

The following table lists the settings for the bevelInner property.

Constant Value Description

Bevel_None 0 No bevel is drawn.

Bevel_Inset 1 The bevel appears inset on the screen.

Bevel_Raised 2 The bevel appears raised on the screen.

Use the bevelInner property with the bevelInnerWidth property. If the bevelInner property is set to Bevel_None
(0), the bevelInnerWidth property has no effect.

bevelInnerWidth
Type: Integer

Availability: Read or write at any time

The bevelInnerWidth property contains the width of the bevel along the four sides of the Frame and StatusLine
controls to determine the height of the three-dimensional shadow effect. The bevelInnerWidth property is the size
for the inner bevel.

The setting for this property determines the number of pixels that are used to draw the bevel that surrounds the
control.

If the bevelInner property is set to Bevel_None (0), the bevelInnerWidth property has no effect.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 221

EncycloWin - 2020.0.02

bevelOuter
Type: Integer

Availability: Read or write at any time

The bevelOuter property contains the style of the outer bevel of the Frame and StatusLine controls.

The following table lists the settings for the bevelOuter property.

Constant Value Description

Bevel_None 0 No bevel is drawn.

Bevel_Inset 1 The bevel appears inset on the screen.

Bevel_Raised 2 The bevel appears raised off the screen.

Use the bevelOuter property with the bevelOuterWidth property. If the bevelOuter property is set to Bevel_None
(0), the bevelOuterWidth property has no effect.

bevelOuterWidth
Type: Integer

Availability: Read or write at any time

The bevelOuterWidth property contains the width of the bevel along the four sides of the Frame and StatusLine
controls to determine the height of the three-dimensional shadow effect. This property is the size for the outer
bevel.

The setting for this property determines the number of pixels that are used to draw the bevel that surrounds the
control.

If the bevelOuter property is set to Bevel_None (0), the bevelOuterWidth property has no effect.

bevelShadowColor
Type: Integer

Availability: Read or write at any time

The bevelShadowColor property contains the color used to paint the bevel areas of a three-dimensional Frame
or StatusLine control.

For a raised bevel (a control where the bevelInner or bevelOuter property is set to Bevel_Raised (2)), the
bevelShadowColor property applies to the bevel portion on the bottom and right sides of the control.

For an inset bevel (the bevelInner or the bevelOuter property is set to Bevel_Inset (1)), the bevelShadowColor
property applies to the bevel portion on the left side and the top of the control.

JADE uses the RGB scheme for colors. Each property can be set by using the appropriate RGB value.

borderColorSingle
Type: Integer

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 222

EncycloWin - 2020.0.02

Availability: Read or write at any time

The borderColorSingle property of the Control class contains the RGB scheme color of the control border when
the borderStyle property is set to BorderStyle_Single (1).

When the border style is single, you can use this property to set the border color to a specific color if you do not
want the default color of black used; for example, you could set the value to red (255) to indicate at run time that
information has not been provided in that control.

borderHeightBottom
Type: Integer

Availability: Read or write at any time

The borderHeightBottom property of the JadeDockBase class indicates how many extra pixels are drawn in the
border area at the bottom of the control. This property applies regardless of the setting of the Window class
borderStyle property.

The default value for the JadeDockBar and JadeDockContainer controls is 1 pixel.

No border area is drawn for the docking control when it is the child of a floating form.

borderHeightTop
Type: Integer

Availability: Read or write at any time

The borderHeightTop property of the JadeDockBase class indicates how many extra pixels are drawn in the
border area at the top of the control. This property applies regardless of the setting of the Window class
borderStyle property.

The default value for the JadeDockBar and JadeDockContainer controls is 1 pixel.

No border area is drawn for the docking control when it is the child of a floating form.

borderStyle
Type: Integer

Availability: Read or write at any time

The borderStyle property contains the border style for a window. The borderStyle property settings for a Form
subclass are listed in the following table.

Window Class Constant Value Description

BorderStyle_None 0 None. A form with no border has no Maximize or Minimize button,
Control-Menu icon, or caption display. If the form has a menu, the
setting is changed to fixed single.

BorderStyle_Single 1 Can include Control-Menu icon, title bar, Maximize button, and
Minimize button. Resizable only using Maximize and Minimize
buttons. For forms defined as Web pages, the border is single and
sizable.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 223

EncycloWin - 2020.0.02

Window Class Constant Value Description

BorderStyle_Sizable 2 For forms defined as Web pages, the border is double (the default).

BorderStyle_Double 3 Not resizable.

Although a form can have any border style, you must ensure that the user can unload the form from the logic
associated with a button or menu item if the form does not have a Control-Menu icon.

Caution Defining an MDI child form with the controlBox, maxButton, or minButton property set to false affects
the way that the form is displayed and behaves when it is maximized. For example, the form cannot be restored to
a non-maximized state without switching to another MDI child form, by using Ctrl+F6, and then using the Restore
Control-Menu command of that form.

If the form is skinned, the default form system menu reflects whether Java allows maximize and minimize
operations according to the value of the borderStyle property.

The borderStyle property settings listed in the following table apply to individual control classes. (The border style
that you define for a specific control does not affect any global settings in the application.)

Class Constant Class Value Description

BorderStyle_None Window 0 No border

BorderStyle_Single Window 1 Fixed-single-line border (the default)

BorderStyle_3DSunken Control 2 Sunken three-dimensional effect (two pixels)

BorderStyle_3DRaised Control 3 Raised three-dimensional effect (two pixels)

When the borderStyle property is set to BorderStyle_Single, you can set the border color to a specific color if you
do not want the default color of black used; for example, you could set the value of the borderColorSingle
property to red (255) to indicate at run time that information has not been provided in that control.

All controls can use the border styles listed in this table, with the following exceptions.

Folder control, as no border is ever drawn.

If the value of the borderStyle property for the active sheet of a Folder control is set to any value other than
BorderStyle_None, the folder does not display a border of its own for the sheet area.

Ocx, ActiveXControl, and MultiMedia classes permit the BorderStyle_None and BorderStyle_Single
styles only, because the border of these controls is not drawn by JADE.

GroupBox class, as the BorderStyle_3DSunken and BorderStyle_3DRaised styles produce the existing
three-dimensional effect.

The border of a GroupBox control is usually black. If the backColor property of a group box is set to gray, the
border is drawn with three-dimensional (3D) effects.

No border area is drawn for a docking control when it is the child of a floating form.

Windows will not create a form that has a caption line with a single border but instead creates a form with a fixed
double border. If the value of the borderStyle property is set to BorderStyle_Single (1) and the form has a caption
line, the value of the borderStyle property is modified to fixed BorderStyle_Double (3), to reflect the actual border
style in use.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 224

EncycloWin - 2020.0.02

Notes If the show3D property is set to Show3D_UseAppDefault (0) and the application default setting of the
show3D property for the control is true (that is, the control is selected in the 3D Controls list box on the Form
sheet of the Define Application dialog) or if the show3D property for the control is set to Show3D_Use3D (2), the
effective border is a sunken three-dimensional effect (that is, BorderStyle_3DSunken), regardless of the setting of
the borderStyle property.

If the borderStyle property is set to BorderStyle_3DSunken (2) or BorderStyle_3DRaised (3), the show3D
property is reset to Show3D_UseBorderStyle (3). If you set the show3D property to Show3D_UseBorderStyle
(3), only the borderStyle property is used to control the actual border style that is displayed.

If a control is painted using the 3D feature, the border of that control is painted in the 3D style rather than in black.

The code fragment in the following example shows the use of the borderStyle property.

lbl.borderStyle := BorderStyle_Single;

The following is an example of a check box control with a sunken border and a back-brush that has been set.

The following is an example of a status line that has a sunken three-dimensional border, a back-brush, and no
value set for the bevelInner, bevelOuter, or boundaryWidth property.

The first of the following examples shows a button that has a raised three-dimensional effect and the second
example is a button that has a sunken three-dimensional effect.

The following is an example of a sheet that has a sunken three-dimensional effect.

borderWidthLeft
Type: Integer

Availability: Read or write at any time

The borderWidthLeft property of the JadeDockBase class indicates how many extra pixels are drawn in the
border area at the left of the control. This property applies regardless of the setting of the Window class
borderStyle property.

No border area is drawn for the control when it is the child of a floating form.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 225

EncycloWin - 2020.0.02

The default value for the JadeDockBar and JadeDockContainer controls is 1 pixel.

borderWidthRight
Type: Integer

Availability: Read or write at any time

The borderWidthRight property of the JadeDockBase class indicates how many extra pixels are drawn in the
border area at the right of the control. This property applies regardless of the setting of the Window class
borderStyle property.

No border area is drawn for the control when it is the child of a floating form

The default value for the JadeDockBar and JadeDockContainer controls is 1 pixel.

boundaryBrush
Type: Integer

Availability: Read or write at any time

The boundary properties control the boundary section of a 3D bevel area of a Frame or StatusLine control. The
boundary area is that area between the inner bevel and the outer bevel of the control.

The boundaryBrush property determines whether the boundary area is of a plain color or is painted with a dotted
brush.

The settings of the boundaryBrush property are listed in the following table.

Constant Value Description

BoundaryBrush_Solid 0 Solid brush

BoundaryBrush_Dotted 1 Dotted brush

boundaryColor
Type: Integer

Availability: Read or write at any time

The boundary properties control the boundary section of a 3D bevel area of a Frame or StatusLine control. The
boundary area is that area between the inner bevel and the outer bevel of the control.

The boundaryColor property contains the color of the boundary area. The boundary area can be omitted by
setting the boundaryWidth property to zero (0).

boundaryWidth
Type: Integer

Availability: Read or write at any time

The boundary properties control the boundary section of a 3D bevel area of a Frame or StatusLine control. The
boundary area is that area between the inner bevel and the outer bevel of the control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 226

EncycloWin - 2020.0.02

The boundaryWidth property contains the width of the boundary area. If the width is set to zero (0), the
boundaryBrush and boundaryColor properties do not apply. The width is measured in pixels.

bubbleHelp
Type: String

Availability: Read or write at any time

The bubbleHelp property contains the text that can be displayed as bubble help. This property is defined in the
Window class, but it is implemented only by control subclasses.

Use the Application class showBubbleHelp property to control whether bubble help is displayed at run time.

Controls with bubble help text display that text in a bubble below or above the control after the mouse has been
positioned over the control for more than a half a second. The bubble help is removed when the mouse is moved
off the control, when a mouse button is pressed, or after five seconds.

If the window implements the mouseHover event, bubble help is displayed after the mouseHover event has
been executed. This allows the mouseHover event to set the bubbleHelp text that is appropriate for the mouse
position; for example, the list entry that the mouse is over.

Bubble help is:

Displayed only when the application of the control is active and that form has focus.

Not displayed for a control if the bubbleHelp text contains spaces only.

This property can be translated when the value of the Schema class formsManagement property is
FormsMngmt_Single_Multi (2).

See the ComboBox class or ListBox class for details about automatic bubble help that is displayed for combo
boxes and list boxes if the combo box or list box does not have bubble help text defined for it by using the
bubbleHelp property.

In a Folder control, bubble help defined for a sheet is displayed below or next to the tab of that sheet, depending
on the setting of the tabsPosition property, when the cursor is positioned over the tab. When the cursor is
positioned over the sheet itself, no bubble help is displayed. In addition, bubble help is disabled when dragging is
in progress. (For details, see the dragMode property.)

If bubble help is currently displayed and the next window to which the mouse is moved also has bubble help text,
there is no delay in the display of the bubble help for that next control. Bubble help can be of any length. If the
bubble help cannot fit in one line from where it is displayed, multiple lines with word wrap are displayed.

The code fragment in the following example shows the use of the bubbleHelp property.

if listbox.getListIndex(x, y) <> -1 and
listbox.getListIndex(x, y) <> lastIndex then
cust := listbox.itemObject [listbox.getListIndex(x, y)].Customer;
listbox.bubbleHelp := cust.name.toUpper & Cr

& "__"
& Cr & cust.address & Cr & cust.contact;

endif;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 227

EncycloWin - 2020.0.02

bulletIndent
Type: Integer

Availability: Read or write at any time

The bulletIndent property of the JadeRichText control contains the indentation (the minimum space in pixels
between the bullet or paragraph number and the paragraph text) that is used when the bulletStyle property has
an integer value other than zero (0).

The default value of zero (0) indicates that text in the paragraph is not indented.

bulletStyle
Type: Integer

Availability: Read or write at any time

The bulletStyle property of the JadeRichText control contains the bullet style of the current paragraph. The
bulletStyle property values are listed in the following table.

JadeRichText Class Constant Integer Value

BulletStyle_Dot 1

BulletStyle_Lowercase 3

BulletStyle_LowercaseRoman 5

BulletStyle_None (the default) 0

BulletStyle_Number 2

BulletStyle_Uppercase 4

BulletStyle_UppercaseRoman 6

ParagraphFormat_Undefined #80000000

You cannot assign the ParagraphFormat_Undefined value, but it is returned to indicate that the selected text
contains multiple paragraphs with different bulletStyle property values. Although you can define other values, if
you do so, the BulletStyle_Dot value is assigned to the paragraph.

For an example of the use of this property, see "JadeRichText Control Method Example", earlier in this document.

buttonPicture
Type: Integer

Availability: Read or write at any time

The buttonPicture property provides predefined bitmaps to be placed on a Button control. These pictures
override any picture property setting for the button.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 228

EncycloWin - 2020.0.02

The available pictures and their settings are listed in the following table.

Button Class Constant Value Picture Description

ButtonPicture_None 0 None No preset picture is displayed (the default)

ButtonPicture_Tick 1 Green check mark

ButtonPicture_Cross 2 Red cross

ButtonPicture_No 3 Red no-entry symbol

ButtonPicture_Door 8 Closing door

ButtonPicture_RecycleBin 9 Recycle bin

ButtonPicture_Bin 10 Trash can

The appearance of the standard buttons and their settings listed in the following table may differ, depending on
the operating system on which the JADE application is running.

Button Class Constant Value Picture Description

ButtonPicture_Stop 4 Stop sign

ButtonPicture_Question 5 Question mark

ButtonPicture_Exclamation 6 Exclamation mark

ButtonPicture_Asterisk 7 Asterisk

Pictures are painted to the left of the button caption.

If the button is assigned a pictureDisabled image and the button is then disabled, this image is displayed instead.

cachePictures
Type: Boolean

Availability: Read or write at run time only

The cachePictures property of the Picture class has meaning only when the application is running in JADE thin
client mode and when the picture object is attached to a physical window.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 229

EncycloWin - 2020.0.02

By default, setting the picture properties of a Picture or JadeMask control at run time causes those pictures to be
stored in the cache file of the application server and the cache file of the presentation client unless the
UseCacheFile parameter in the [JadeThinClient] section of the JADE initialization file is set to false.

However, you can set this property to false in situations where you do not require this caching because the picture
is only ever downloaded once and will therefore unnecessarily add entries to those cache files. Examples of
where you could set this property to false are:

Using the Window or Control class createPicture method to create a dynamic runtime image that is then
displayed

Displaying a customer invoice that was scanned in

Setting this property to false affects the:

Picture class picture, pictureDown, and pictureDisabled properties

Picture class setPicture method

JadeMask class pictureRollOver, pictureRollUnder, and pictureMask properties

cancel
Type: Boolean

Availability: Read or write at any time

The cancel property applies to Button and JadeMask controls. If the cancel property is set to true, that button or
mask control is marked as the Cancel button. Assign this status to a button marked Cancel. (Pressing Esc has the
same effect as pressing the Cancel button or mask control.)

Note If the form has a Button control with the cancel property set to true and an open combo box has focus, the
Esc key is processed by the combo box; not by the Cancel button. The Cancel button action occurs only if the
combo box list is not open.

When the user presses Esc, if there is an enabled visible button or mask control with the cancel property set to
true on the same form, the focus is transferred to that button or JADE mask control and a click event is caused on
the button or mask control, regardless of which control on the form had the focus. The default value is false.

It is your responsibility to ensure that only one button or JADE mask control on a form has the cancel property set
to true. If not, the first such enabled visible button or mask control that is encountered with that status receives the
event. You must write logic to respond to the event.

canHaveFocus
Type: Boolean

Availability: Read or write at any time (JadeMask) or at run time only (BaseControl)

The canHaveFocus property of the BaseControl class or JadeMask class specifies whether the base control or
JADE mask control can have focus.

If focus is denied, the control still responds to mouse clicks and mouse-over situations.

The default value of true indicates that the control can accept focus. If the control should not have focus, set the
property value to false (for example, you would usually do so in the windowCreated method of the BaseControl
subclass).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 230

EncycloWin - 2020.0.02

canPaste
Type: Boolean

Availability: Read-only at run time

The canPaste property of the JadeTextEdit control specifies whether the clipboard contains text that can be
pasted into the control and the value of the readOnly property is false.

canRedo
Type: Boolean

Availability: Read-only at run time

The canRedo property of the JadeTextEdit control specifies whether the undo and redo action list contains editor
actions that can be redone.

canUndo
Type: Boolean

Availability: Read-only at run time

The canUndo property of the JadeTextEdit control specifies whether the undo and redo action list contains editor
actions that can be undone.

caption
Type: String

Availability: Read or write at any time

For the Form class, the caption property contains the text displayed in the title bar of the form. When the form is
minimized, this text is displayed on the task bar.

When you create a new object, its default caption is the same as the default name for both forms and controls. This
default caption includes the object name and an integer; for example, text1 or Form1. For a more descriptive
label, set the caption property to the required value.

The code fragment in the following example shows the use of the caption property.

caption := caption & ' - ' & process.signOnUserCode;

In the Button, CheckBox, JadeDockBase, Form, Frame, GroupBox, JadeMask, Label, MenuItem,
OptionButton, Sheet, StatusLine classes, this property can be translated when the value of the Schema class
formsManagement property is FormsMngmt_Single_Multi (2).

You can use the caption property to assign an access key to a control or menu.

In the caption, include an ampersand character (&) immediately preceding the character you want for an
accelerator (shortcut) key. That character is then underlined.

Press Alt and the underlined character to move the focus to that control. To include an ampersand character in a
caption without creating an access key, enter two ampersand characters (&&). A single ampersand is displayed in
the caption and no characters are underlined.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 231

EncycloWin - 2020.0.02

Note The tabIndex property of a control affects its associated accelerator key. If you press the accelerator key
for a control that does not have the tab stop ability, the focus moves to the next enabled and visible control in the
tab order that can receive the focus.

The maximum length of a caption for a form is 255 characters. The maximum length for controls that have captions
is 32,767 characters. The maximum length of a caption for a menu is 100 characters.

If a form has a menu, a Control-Menu icon, or a Maximize or Minimize button, the caption area is always
displayed, regardless of whether the caption is empty or not. Alternatively, if the borderStyle property is set to
BorderStyle_None (no caption) or the caption is empty, the form does not display the caption area of the form.

When an MDI child form is maximized within an MDI form, the caption of the child form is included with the caption
of the parent form.

For a JadeMask control, caption alignment (that is, word wrapping) occurs within the rectangle defined by the
captionLeft, captionTop, captionHeight, and captionWidth properties. If the value of the captionWidth property is
zero (0), the width of the caption region is the value of the clientWidth property less the value of the captionLeft
property. If the value of the captionHeight property is zero (0), the height is the value of the clientHeight property
less the value of the captionTop property. The caption is never shown as disabled.

For a Label control, set the autoSize property to true, to automatically resize the control to fit its caption. For a
GroupBox control, the caption is displayed in the border that is offset from the top of the control. If there is no
caption, the border is drawn as an entire rectangle.

The caption property of the JadeDockBase class determines the caption of the floating form parent of the control.
The caption property is not used if the control is not floating.

The default value for the JadeDockBar and JadeDockContainer controls is a null string ("").

captionHeight
Type: Integer

Availability: Read or write at any time

The captionHeight property of the JadeMask class contains the height of the caption region of the control. The
default value is zero (0).

Caption alignment (word wrapping) occurs within the rectangle defined by the captionLeft, captionTop,
captionHeight, and captionWidth properties.

If the value of the captionHeight property is zero (0), the height is the value of the clientHeight property less the
value of the captionTop property.

captionLeft
Type: Integer

Availability: Read or write at any time

The captionLeft property of the JadeMask class contains the left position of the caption region of the control. The
default value is zero (0).

Caption alignment (word wrapping) occurs within the rectangle defined by the captionLeft, captionTop,
captionHeight, and captionWidth properties. If the value of the captionWidth property is zero (0), the width of the
caption region is the value of the clientWidth property less the value of the captionLeft property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 232

EncycloWin - 2020.0.02

captionTop
Type: Integer

Availability: Read or write at any time

The captionTop property of the JadeMask class contains the top position of the caption region of the control.

The default value is zero (0).

Caption alignment (word wrapping) occurs within the rectangle defined by the captionLeft, captionTop,
captionHeight, and captionWidth properties. If the value of the clientHeight property is zero (0), the height is the
value of the clientHeight property less the value of the captionTop property.

captionWidth
Type: Integer

Availability: Read or write at any time

The captionWidth property of the JadeMask class contains the width of the caption region of the control. The
default value is zero (0).

Caption alignment (word wrapping) occurs within the rectangle defined by the captionLeft, captionTop,
captionHeight, and captionWidth properties.

If the value of the captionWidth property is zero (0), the width of the caption region is the value of the clientWidth
property less the value of the captionLeft property.

case
Type: Integer

Availability: Read or write at any time

The case property determines the automatic case conversion of text entered into a TextBox control.

The settings of the case property are listed in the following table.

TextBox Class Constant Value Description

Case_None 0 None (the default). No conversion is performed.

Case_Lower 1 Convert to lowercase. All uppercase characters are converted to
lowercase as they are entered.

Case_Upper 2 Convert to uppercase. All lowercase characters are converted to
uppercase as they are entered.

Case_UpperFirst 3 Uppercase first character. The text box accepts only an alphabetic
character as the first character of the text box, and it is automatically
converted to uppercase.

Case_LowerFirst 4 Lowercase first character. The text box accepts only an alphabetic
character as the first character of the text box, and it is automatically
converted to lowercase.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 233

EncycloWin - 2020.0.02

If the case property is set to any value other than the default value of Case_None (0), the dataType property is set
to the default value of DataType_AlphaNumeric (0) and the decimals property is set to zero (0); that is, no
exception is raised.

cellControl
Type: Control

Availability: Read or write at run time only

The cellControl property of the Table control allows control over the input and display within the table by defining
a user-supplied control that is placed over the cell by default when that cell becomes current. This control can be
of any Control type. The control receives all of the events for that control and it can be manipulated by your JADE
logic, as required.

You can set this property for a sheet, row, column, or cell of the table.

Each control that is assigned by using this cellControl property is made a child of the table and is displayed or
hidden, as required, as the current cell is changed. Changing the parent of that control away from the table clears
all cellControl property values referring to that control.

The code fragment in the following example shows the use of the cellControl property.

table1.accessCell(table1.row, table1.column).cellControl := myTextBox;

When the table has focus and a cell with an effective cellControl value becomes the current cell or the cell
position or size changes, the following actions are performed:

1. The cellInputReady event method is called, allowing the control to initialize itself for that cell. This event
passes the position and size of the cell where the control will be placed when returning from the event call.
Your JADE logic can change these values, if required.

2. When returning from the cellInputReady event method, the cell is positioned and resized as indicated.

3. The control is then made visible.

4. The control receives focus if it is enabled and is allowed focus.

It is the responsibility of the control to update the contents of the cell with any change. Unpredictable results may
occur if the control is repositioned or resized outside the cellInputReady event method.

Use of this cellControl property is exclusive to the inputType property. If both properties have an effective value
for a cell, the cellControl property takes precedence. If the cellControl property is not set and the inputType
property is set to InputType_TextBox or InputType_ComboBox, JADE creates a control of the type specified in
the inputType property, which you can then access.

To implement the handling of a TextBox control to achieve the same functionality as the default Table class
InputType_TextBox value, only the following is required.

In the change event for the text box:

table1.text := textbox1.text

In the cellInputReady event for the table:

textbox1.text := table1.text

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 234

EncycloWin - 2020.0.02

To implement the handling of a ComboBox control to achieve the same functionality as the default Table class
InputType_ComboBox value, only the following is required when the combo box entries are already loaded.

In the click event for the combo box:

table1.text := combo1.text

In the cellInputReady event for the table:

combo1.text := table1.text

The only other actions that are performed by the Table class parent of a cellControl property are:

Handling the tabKey property.

Handling arrow keys in the TextBox control. If an arrow key would logically move off the displayed text, the
arrow key is processed as a table cell movement key (that is, left, up, right, or down).

Handling the Page Up and Page Down keys in the TextBox or JadeEditMask control.

The control is hidden if focus moves to another control.

Tabbing to the next control using the tab key while the cellControl has focus tabs away from the Table
control.

If the control has no specific font set, the font of the current cell is used.

For details about automatically controlling a ComboBox or TextBox control assigned to a Table control as a
cellControl property (for example, when performance is an issue when running in JADE thin client mode over a
slow link), see the Control class automaticCellControl property.

clientHeight
Type: Integer

Availability: Read or write at run time only

The clientHeight property of the Form class contains the height of the client area of a form in pixels. The client
area of a form is the area inside the borders, caption, menu bar, or scroll bars where controls can be placed. The
position of child controls is relative to the top left of this client area.

This property can also be used to set the height of the client area of a form in pixels, by changing the property.
Changing this property resizes the form so that the client area sizes match the specified value.

The clientHeight property can be useful when using graphical methods and changing the scaleMode property of
a form.

The value of the clientHeight property is the same as that of the scaleHeight property when the scaleMode
property value of a form is pixels.

The code fragment in the following example shows the use of the clientHeight property.

mktForm.height := self.clientHeight - self.frame1.height;

See also the clientHeight method for controls.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 235

EncycloWin - 2020.0.02

clientWidth
Type: Integer

Availability: Read or write at run time only

The clientWidth property of the Form class contains the width of the client area of a form in pixels. The client area
of a form is the area inside the borders, caption, menu bar, or scroll bars where controls can be placed.

The position of child controls is relative to the top left of this client area.

This property can also be used to set the width of the client area of a form in pixels, by changing the value of this
property. Changing this property resizes the form so that the client area sizes match the specified value. The
clientWidth property can be useful when using graphical methods and changing the scaleMode property of a
form.

The value of the clientWidth property is the same as that of the scaleWidth property when the scaleMode
property value of a form is pixels. See also the clientWidth method for controls.

clipControls
Type: Boolean

Availability: Read or write at any time

The clipControls property of the Form class specifies whether the Windows environment creates a clipping
region that excludes controls contained by the object.

Setting this property to true means:

Graphical methods for the form or control cannot draw over child controls.

When the form or control is repainted, the area occupied by the child controls is clipped out of the paint
process; that is, the child control is not affected by the parent paint and is painted only if it is actually required.

This can result in less repaint "flash", because controls are not erased and repainted as often as when the
clipControls property value is false.

This is a logical property for the Form class and BaseControl, GroupBox, Frame, Picture, and StatusLine
controls.

The clipControls property settings are listed in the following table.

Value A clipping region is…

true Created around child controls of the form or control before a paint event (the default).

false Not created around child controls before a paint event. Complex forms usually load and repaint
faster.

Clipping is the process of determining which parts of a form or container (for example, a Frame control) are
painted when the form is displayed. An outline of the form and controls is created in memory. The Windows
environment uses this outline to paint some parts, such as the background, without affecting other parts; for
example, the contents of a text box.

Tip As the clipping region is created in memory, setting the clipControls property to false can reduce the time
that is needed to paint or repaint a form.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 236

EncycloWin - 2020.0.02

code
Type: Binary

Availability: Run time only

The code property of the WebJavaApplet class contains the compiled Java applet that is to be inserted into the
generated HTML.

This code is relative to the base URL for the applet that is specified in the codebase property; it cannot be
absolute.

Some Web browsers display a message on the status line if the applet is not available.

codebase
Type: String[128]

Availability: Run time only

The codebase property of the WebJavaApplet class contains the base URL of the Java applet that is to be
inserted into the generated HTML. This base URL is the directory that contains the Java applet code.

If this property is set to null (""), the URL of the Web page is used.

column
Type: Integer

Availability: Read or write at run time only

The column property of the Table class contains the current column on the current sheet of a table control.

The column, row, and sheet properties define the current cell when accessing certain properties within the table
control; for example, the inputType, text, picture, and selected properties of a cell.

If the current cell is visible on the table and the table control has focus, the cell has a focus rectangle painted on it.
Column access is 1-relative.

Changing the value of the column property does not cause the table to be repainted.

The following examples show the use of the column property.

while counter >= 1 do
table1.column := counter;
table1.selected := true;
counter := counter - 1;

endwhile;

cdtable_keyDown(table: Table input;
keyCode: Integer io;
shift: Integer) updating;

vars
cd : CD;
count : Integer;

begin
if keyCode = J_key_Stop and table.row > 1 and table.column = 2

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 237

EncycloWin - 2020.0.02

and table.itemObject <> null then
cd := table.itemObject.CD;
count := app.msgBox("Delete cd " & cd.title & "?", "Confirm Delete",

MsgBox_Yes_No);
if count = MsgBox_Return_Yes then

beginTransaction;
app.myCDList.remove(cd);
cd.trackList.purge;
delete cd;

commitTransaction;
table.deleteRow(table.row);

endif;
endif;

end;

columns
Type: Integer

Availability: Read or write at run time only

The columns property contains the number of columns on the current sheet of a Table control.

Increasing columns adds empty columns to that existing sheet. Decreasing columns deletes excess columns,
discarding any existing data in those columns.

Changing the columns property value to zero (0) empties the sheet of any data.

Note Changing the value of the columns property can affect the current values of the column, row, topRow,
and leftColumn properties.

To delete a column, use the deleteColumn method.

You can assign a maximum of 16,000 columns to a Table control. However, depending on the number of rows
that are also assigned to the table, the amount of memory required to handle a large number of columns limits the
number of columns that can be handled, in practice.

The following examples show the use of the columns property.

load() updating;
begin

table1.sheetCaption := "FirstTable";
table1.columns := 5; // sets number of table columns
table1.rows := 20;
table1.text := 'A' & Tab & 'B' & Tab & 'C' & Tab & 'D' & Tab

& 'E' & Tab;
end;

selectDay(date: Date) updating;
vars

r, c : Integer;
begin

accessMode := 1;
r := 2;
while r <= rows do

row := r;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 238

EncycloWin - 2020.0.02

c := 1;
while c <= columns do

column := c;
if text = date.day.String then

foreColor := calendar.backColor;
backColor := calendar.foreColor;

else
foreColor := calendar.foreColor;
backColor := calendar.getSystemColor(Color_BtnFace);

endif;
c := c + 1;

endwhile;
r := r + 1;

endwhile;
row := 1;
column := 1;

end;

columnVisible
Type: Boolean array

Availability: Read or write at run time only

The columnVisible property enables a column of a Table control to be displayed or hidden, or the visibility status
to be obtained. Setting the visible status of a column causes a repaint.

The following example shows the use of the columnVisible property.

tableGroup_dragDrop(groupbox: GroupBox input; win: Window input; x: Real;
y: Real) updating;

// If a table column is dropped onto the tableGroup, make it invisible
// and toggle the corresponding menuItem entry
vars

ix : Integer;
mi : MenuItem;

begin
if win.name = 'theTable' then

theTable.columnVisible[theTable.column] := false;
ix := 0;
while ix < theTable.columns do

mi := mTableColumns.getMenuItem(ix);
if mi.caption = theTable.text then

mi.checked := false;
return;

endif;
ix := ix + 1;

endwhile;
win.dragMode := 0;

endif;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 239

EncycloWin - 2020.0.02

columnWidth
Type: Integer array

Availability: Read or write at run time only

The columnWidth property enables the size of a column of a Table control to be accessed. The width of the
column cannot exceed the maximum width of the table. The default value is 50 pixels.

The user can also change the columnWidth property by dragging a fixed-column boundary with the mouse.

The columnWidth property contains an array of integer values with the same number of items as the columns
property.

Setting the columnWidth value of a column causes a repaint. Setting the columnWidth property of a column to
zero (0) causes it to use the default column width; that is, 50 pixels.

Use the columnVisible property to hide a column rather than change its width.

The code fragment in the following example shows the use of the columnWidth property.

count := tbl.columns - 1;
while count > 0 do

tbl.columnWidth[count] := (tbl.width / tbl.columns).rounded;
count := count - 1;

endwhile;
tbl.columnWidth[tbl.columns] := tbl.width.Integer - (tbl.columns - 1)

* (tbl.width / tbl.columns).rounded;

comboIndex
Type: Integer

Availability: Read or write at run time only (for a cell with inputType set to 3 only)

The comboIndex property of the Table class contains the index of a combo box in a cell of a Table control.

This property applies only to a cell that has the inputType property set to InputType_ComboBox (3). The current
sheet, row, and column properties determine the cell to which the reference applies.

When such a cell is selected, a combo box filled with list entries replaces the displayed text. Using the comboList
property sets this list. The combo box entry that is selected is determined by the setting of comboIndex property
(1-relative).

When the user selects a combo box entry, the value of the comboIndex property is set to the index of the selected
entry. The value of the text for the cell is set to the text of the selected list entry. A change event is then caused. If
logic sets the text of the cell, the text must match an entry in the combo box list.

The default value is -1 (that is, no entry is selected).

This property is not affected by the accessMode, accessedSheet, accessedRow, accessedColumn, or
accessedCell property, as the property always applies to the current cell.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 240

EncycloWin - 2020.0.02

comboList
Type: String

Availability: Read or write at run time only (for a cell with inputType set only to 3, for a combo box)

The comboList property contains the list entries displayed in a combo box in the sheet, column, row, or cell of a
Table control. This property applies only to a cell that has an effective inputType property set to InputType_
ComboBox (3).

The current sheet, row, and column properties determine the cell to which the reference applies. This property is
affected by the rules that apply to the accessMode, accessedSheet, accessedRow, accessedColumn, or
accessedCell property. When such a cell is selected, a combo box filled with list entries replaces the displayed
text. The combo box entry that is selected is determined by the setting of the comboIndex property (1-relative).

The value of the comboList property is set by using a single string, with list entries separated by a tab character;
for example:

table1.comboList := "one" & Tab & "two" & Tab & "three";

When the user selects a combo box entry, the value of the comboIndex property is set to the index of the selected
entry. The value of the text for the cell is set to the text of the selected list entry. A change event is then caused.

If logic sets the text of the cell, the text must match an entry in the combo box list.

The default value is an empty string (null).

contextMenuOptions
Type: Integer

Availability: Read or write at any time

The contextMenuOptions property of the JadeRichText control contains the menu options that are visible when
the inbuilt popup menu of the control is displayed. The context (or popup) menu enables users to perform basic
edit operations and it supports basic paragraph formatting such as setting bulleting, fonts, and indents.

The contextMenuOptions property can contain one or more of the values listed in the following table.

Constant Value Comment

MenuOption_All #7FFFFFFF The default value, which displays all context menu items

MenuOption_Bullet #00008000

MenuOption_Copy #00000008

MenuOption_Custom #80000000 Customized context menu is displayed when a
right-click action generates the contextMenu event

MenuOption_Cut #00000004

MenuOption_Find #00000020

MenuOption_Font #00000080

MenuOption_InsertObject #00010000

MenuOption_InsertTable #00020000

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 241

EncycloWin - 2020.0.02

Constant Value Comment

MenuOption_None 0 No context menu is displayed

MenuOption_Object #00800000

MenuOption_ObjectProperties #00040000

MenuOption_PageSetup #00000200

MenuOption_Paragraph #00000100

MenuOption_Paste #00000010

MenuOption_Print #00000400

MenuOption_Redo #00000001

MenuOption_Replace #00000040

MenuOption_SepCutCopyPaste #02000000 Separator that is displayed after the Cut, Copy, and
Paste context menu items

MenuOption_SepFindReplace #04000000 Separator that is displayed after the Find and Replace
context menu items

MenuOption_SepFontParaBullet #08000000 Separator that is displayed after the Font, Paragraph,
and Bullet Style context menu items

MenuOption_SepInsert #10000000 Separator that is displayed after the Insert Object and
Insert Table context menu items

MenuOption_SepPrint #20000000 Separator that is displayed after the Page Setup and
Print context menu items

MenuOption_SepRedoUndo #01000000 Separator that is displayed after the Redo and Undo
context menu items

MenuOption_Undo #00000002

You can specify one or more values, by separating each value with a plus symbol (+) or a minus symbol (-).

The first of the following examples displays only the Cut, Copy, and Paste menu items on the context menu. The
second example displays all menu items except for the Insert Object and Insert Table menu items.

rtfRichText.contextMenuOptions := JadeRichText.MenuOption_Cut +
MenuOption_Copy + MenuOption_Paste;

rtfRichText.contextMenuOptions := JadeRichText.MenuOption_All -
MenuOption_InsertObject - MenuOption_InsertTable;

controlBox
Type: Boolean

Availability: Read or write at any time

The controlBox property of the Form class specifies whether a Control-Menu icon is displayed on a form at run
time. (The Control-Menu icon at the top left of a form takes the icon image of the form. For example, the
Control-Menu icon for JADE development environment forms is the JADE logo and in Microsoft Word it is
displayed as the Word icon image.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 242

EncycloWin - 2020.0.02

The controlBox property settings are listed in the following table.

Value Description

true Displays the Control-Menu icon (the default).

false Removes the Control-Menu icon.

Setting the controlBox property to true causes a form with the borderStyle property set to BorderStyle_None (0)
to change to a borderStyle value of BorderStyle_Single (1). Additionally, setting the controlBox property to true
causes the form to be displayed with a caption box if it did not have one. The setting of this property after the
window has been created is ignored when an MDI child form is maximized.

Both modal and non-modal windows can include a Control-Menu icon.

The commands available at run time depend on the settings for related properties. For example, setting the
maxButton and minButton properties to false disables the Maximize and Minimize commands on the
Control-Menu but the Move and Close commands remain available.

Note Without a Control-Menu icon on a form or an MDI menu displayed by right-clicking in the caption of an MDI
child form, the user has no way of closing a form. The form can be closed only when the unloadForm method is
called from logic.

controlChildren
Type: ControlArray

Availability: Read at run time only

The controlChildren property of the Window class contains a reference to an array of all of the immediate children
of the window (form or control); that is, the window is a direct parent of each control in the array. The collection is
in no particular order.

The array is changed if the z-order of a control is changed by logic or if the parent of a control is changed.

Applies to Version: 2016.0.01 and higher

createRegionFromMask
Type: Boolean

Availability: Read or write at any time

The createRegionFromMask property of the JadeMask class specifies whether a region is created around the
mask picture on the control.

This property enables you to display an irregular shaped control on a form by hiding the display of the area within
the rectangle that does not contain the mask picture. By default, a region is not created from the mask; that is, this
property is set to false by default.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 243

EncycloWin - 2020.0.02

The first example in the following image shows a JADE mask control on a form with no region created and the
second example shows a region created from the mask picture on the same control (that is, the property is set to
true).

currentColumn
Type: Integer

Availability: Read-only at run time

The currentColumn property of the JadeTextEdit control contains the column within the current line at which the
caret is located. The first column is 1.

currentLine
Type: Integer

Availability: Read or write at run time only

The currentLine property of the JadeTextEdit control contains the number of the current line containing the caret.
The first line is 1.

When you set this property, the caret moves to the first character of the specified line and it scrolls into view. A
value less than 1 means the first line of text. A value greater than or equal to the value returned by the lineCount
method means the last line of text.

currentPosition
Type: Integer

Availability: Read or write at run time only

The currentPosition property of the JadeTextEdit control contains the current caret position in the editor as a
zero-based offset from the start of the text.

When you set this property, the caret moves to the specified character and scrolls into view. A value less than zero
(0) means the first character of text. A value greater than the result of the getTextLength method means the
position following the last character of text. The selection is cleared.

dataType
Type: Integer

Availability: Read or write at any time

The dataType property of a TextBox control contains the type of data that can be entered in the text box by the
user.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 244

EncycloWin - 2020.0.02

The settings for the dataType property are listed in the following table.

TextBox Class Constant Value Description

DataType_AlphaNumeric 0 Any character that can be entered (the default).

DataType_Numeric 1 Combined with the decimals property, this property ensures that the
user can enter a valid decimal value only.

DataType_SignedNumeric 2 Same as DataType_Numeric (1), except that a leading negative sign
is also permitted.

DataType_Currency 3 The currency text is in the form defined by the currency format of the
locale.

By default, the decimals property is set to -1, indicating that the
number of decimal places for currency defined by the current locale is
used. To manually control how many decimal places are allowed, set
the decimals property to a value other than -1. The text can include
the currency symbol, negative sign, thousands separators, and
decimal places; for example, $123,456.34.

DataType_ShortDate 4 The date text is in the form defined by the short date format of the
locale. For example, under English (New Zealand), the default format
is d/MM/yyyy (for example, 7/08/2010).

Note that when altering the text, deleting characters that would make
the date invalid is not permitted; for example, deleting the day 7 or a /
character. To make such changes, select the character to be replaced
and then enter the new value, or delete the date from the right up to
the required position. Incomplete dates are allowed, where the date
text entered so far is valid.

DataType_LongDate 5 The date text is in the form defined for the locale’s long date format.
For example, under English (New Zealand), the default format is
dddd, d MMMM yyyy (for example, Sunday, 7 March 2010).

Note that when altering the text, deleting characters that would make
the date invalid is not permitted; for example, deleting the day 7 or a /
character. To make such changes, select the character to be replaced
and then enter the new value, or delete the date from the right up to
the required position. Incomplete dates are allowed, where the date
text entered so far is valid.

In addition, when the day name is displayed, that day must match the
day for the date. To alter the date, it will most likely require the day
name to be removed before the date can be achieved. Note that the
month names can be entered in the full or short format.

DataType_Time 6 The time text is in the form defined for the locale’s long time format.
For example, under English (New Zealand), the default format is
h:mm:ss tt (for example, 5:29:02 p.m.).

Note that when altering the text, deleting characters that would make
the date invalid is not permitted; for example, deleting the hour 7 or a :
character. To make such changes, select the character to be replaced
and then enter the new value, or delete the date from the right up to
the required position. Incomplete times are allowed, where the time
text entered so far is valid.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 245

EncycloWin - 2020.0.02

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is not defined or it is set to false, no local client overrides are used.

The numeric text is validated as each character is entered. If the result of the assignment would result in an invalid
numeric as defined by the dataType and decimals properties, the entered character is rejected.

Setting the dataType property for a text box control to a numeric type is rejected if the current text in the text box
does not conform to the rules defined by the current dataType, decimals, and maxLength properties.

If the case property is set to any value other than the default value of Case_None (0), the dataType property is set
to the default value of DataType_AlphaNumeric (0) and the decimals property is set to zero (0); that is, no
exception is raised.

decimals
Type: Integer

Availability: Read or write at any time

The decimals property is used in conjunction with the dataType property to indicate whether the text in a TextBox
control is a Decimal primitive type numeric.

If the dataType property is set to DataType_Currency (3), setting the decimals property to -1 indicates that the
number of decimal places for currency defined by the current locale is used. To manually control how many
decimal places are allowed, set the decimals property to a value other than -1.

If the dataType property is set to DataType_Numeric (1) or DataType_SignedNumeric (2), the decimals
property indicates the maximum number of decimal places that the numeric value can have. The numeric text is
validated as each character is entered. If the result of the assignment results in an invalid numeric as defined by
the dataType property, the character that is entered is rejected.

If the case property is set to any value other than the default value of Case_None (0), the dataType property is set
to the default value of DataType_AlphaNumeric (0) and the decimals property is set to zero (0); that is, no
exception is raised.

Use the decimals property for the Table class to specify that a cell controlled by the accessMode,
accessedSheet, accessedRow, accessedColumn, or accessedCell property can accept decimal input when
the value of the inputType property is set to InputType_TextNumeric (4) or InputType_SignedNumeric (6).

Specify a value greater than zero (0) but less than the value of the maxLength property to specify the number of
decimal places that numeric text in a table cell can have. Setting the decimals property to -1 indicates that
decimals are allowed but no limit is imposed on the number of decimal places.

The value of the decimals property (if non-zero) cannot equal or exceed the value of the maxLength property if
that is non-zero.

Note Setting the value of the decimals property is rejected if the current text in the text box does not conform to
the rules defined by the current value of the dataType (for text box controls), inputType (for Table controls),
decimals, and maxLength properties.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 246

EncycloWin - 2020.0.02

default
Type: Boolean

Availability: Read or write at any time

The default property applies to Button and JadeMask controls. If the default property is set to true, that button or
mask control is marked as the default. If this button or mask control has focus or if a control that is not a button or
mask control has focus, a black border is drawn around the button or mask control to indicate that it is the default
button or mask control.

When the user presses the Enter key, if the focus is not on a button or mask control and there is an enabled visible
button or mask control on the same form with the default property set, the focus is transferred to that button or
mask control and a click event is caused on that Button or JadeMask control, regardless of the control that had
the focus on the form.

If another button or mask control has the focus, it processes the Enter key and generates a click event. The default
value for any button or mask control is false.

It is your responsibility to ensure that only one button or mask control has the default property set to true. If not, the
first such enabled visible button or mask control found with that status receives the event. You must write logic to
respond to the event.

defaultLineHeight
Type: Integer

Availability: Read or write at any time

The defaultLineHeight property of the ComboBox class and the ListBox class specifies the default height of lines
in a combo box or list box, independent of the font. This property represents pixels and defaults to zero (0),
indicating that the height of the line is determined by the font selected for the combo box or list box.

If the value of the property is greater than the height of the font in the combo box or list box, the value of the
defaultLineHeight property is used to determine the line height of the list. If the value is less than the height of the
font, the list line height is determined from the combo box or list box font.

This property for a combo box control, implemented from version 2020.0.01, has no impact on the size of the
combo box itself; only the height of the list items when the list is displayed. To assist touchscreen users, it enables
you to specify the default line height of a list in a combo box (for example, cbt.defaultLineHeight := 25;).

The code fragment in the following example sets the height of the lines in a list box to two pixels higher than the
font size.

if listbox1.defaultLineHeight = 0 then
listbox1.defaultLineHeight := listbox1.getLineHeight() + 2;

endif;

If the value of the defaultLineHeight property is greater than zero (0), the ListBox class getLineHeight method
returns that value. See also the Table class defaultRowHeight property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 247

EncycloWin - 2020.0.02

defaultRowHeight
Type: Integer

Availability: Read or write at any time

The defaultRowHeight property of the Table class specifies the default height of rows in a table, independent of
the font. This property represents pixels and defaults to zero (0), indicating that the height of the row is determined
by the font selected for the table.

If the value of this property is non-zero, the value is used to determine the height of all rows in the table that are
not specifically set.

If the height of a row is set by logic, the specified value is used. If the height of a table row is not set by logic, if the
value of the defaultRowHeight property is:

Greater than the calculated required row height, the value of the defaultRowHeight property is used as the
row height

Less than the calculated required row height, the calculated row height value is used

Note This default height is also used as the height of any cell that has a value set for the Table class inputType
property.

The code fragment in the following example shows the use of the defaultRowHeight property.

if table1.defaultRowHeight = 0 then
table1.defaultRowHeight := table1.rowHeight[1] + 2;

endif;

See also the ListBox class defaultLineHeight property.

description
Type: String

Availability: Read or write at any time

The description property of the Window class contains a textual description of the object of the window. The
description can be in the range 0 through 32,767 characters. This description is for documentation only and is not
automatically displayed.

Any change to the value at run time is not retained after the form on which the control (or the form itself) is
unloaded.

The description property for the Form or Control class defined for a Web page displays bubble help if the value
of the bubbleHelp property is null ("") and the control has a picture (for example, a Button control).

disabledForeColor
Type: Integer

Availability: Read or write at any time

The pictureMask property of the JadeMask class determines the color of disabled displayed text in a JadeMask
control unless the value of this property is zero (0). By default, the foreground color is black.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 248

EncycloWin - 2020.0.02

If the value of this property is zero (0), the value the foreColor property is used to display disabled text if the
control has a current picture displayed. If the control has no pictures, it behaves like a button and a
disabledForeColor property value of zero (0) means disabled text is disabled as it is for a button.

disableEvents
Type: Boolean

Availability: Read or write at any time

The disableEvents property of the Window class specifies whether all events associated with a form or control are
currently disabled (ignored).

User logic associated with an event is not executed when the events are disabled.

The settings of the disableEvents property are listed in the following table.

Value Description

false All events are enabled (the default)

true Disables (ignores) the events

Setting the disableEvents property to true for a form disables all events for the form and any of its controls. If a
form has the disableEvents property set to true, requests to unload the form using a click on the close menu, a
button, or the Alt+F4 keystrokes will be rejected.

In addition, if the form is an MDI child, the user request of the unloading of the MDI frame using these same
mechanisms will also be rejected. If the value of the disableEvents property remains true and the unloadForm
method of the Form class is called, the queryUnload and unload events are not called. (This handling of the
disableEvents property is intentional.)

Use this property when events are to be ignored during some operation; for example, when performing a process
that takes some time and where the user may get impatient and attempt to click the Go button again. Its advantage
over using the enabled property is that it does not change the appearance of the form or the controls.

disableReason
Type: String

Availability: Read or write at any time

The disableReason property of the Window class contains the help text that is displayed providing a reason why
a control or menu is disabled.

JADE does not use this property. It is your responsibility to display the text, as appropriate.

displayAsIcon
Type: Boolean

Default Value: False

The displayAsIcon property of the OleControl class specifies whether only the icon of the OLE application is
displayed.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 249

EncycloWin - 2020.0.02

displayHotKey
Type: Boolean

Availability: Read or write at run time only

The display of text in each cell of a table control displays ampersand (&) characters by default.

Set the displayHotKey property of the Table class to true so that ampersand (&) characters are displayed as
though the text represents a hot key description and the character following an ampersand (&) character is
underlined.

The default value is false.

Tip This property is used by the JADE Menu Design facility, which displays a simulated menu.

dragCursor
Type: Binary

Availability: Read or write at any time

The dragCursor property of the Window class contains a specific cursor image for display during the drag
process, instead of the standard drag mouse cursor that is displayed by default when a window is dragged.

The assigned image must be either a Windows cursor or icon.

This image is displayed only when the form or control to which it is assigned has the dragMode property set to
DragMode_Drag (1).

When the window dragging process is terminated, the mouse cursor is reset to an arrow.

dragMode
Type: Integer

Availability: Read or write at any time

The dragMode property of the Window class contains the drag mode for a form or control. Any form or control can
be dragged and dropped on any other form or control belonging to the application.

This process is initiated by setting the dragMode property of a form or control to DragMode_Drag (1). A default or
user-assigned drag cursor is displayed while the drag process is in progress. This process is usually initiated by
logic when the user presses the left mouse button over the form or control that is to be dragged. Any form or
control of the application over which the mouse cursor moves receives a dragOver event.

The settings for the dragMode property are listed in the following table.

Window Class Constant Value Description

DragMode_None 0 Drag mode not in effect

DragMode_Drag 1 Drag mode

DragMode_Drop 2 Causes the drag process to terminate and generates a dragDrop event

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 250

EncycloWin - 2020.0.02

The form or control of the application over which the drag process is terminated receives a dragDrop event. The
dragging process is terminated when a left mouseUp or mouseLeave event is received or by logic setting the
value of the dragMode property of the dragged form or control to DragMode_Drop (2).

Setting the value of the dragMode property to DragMode_None (0) also aborts the drag process and does not
issue a dragDrop event. While dragging is in progress, no normal mouse events are available for logic
processing.

Note The Application class showBubbleHelp property is ignored when dragging is in progress.

The following example shows the use of the dragMode property.

table1_mouseDown(table: Table input; button: Integer;
shift: Integer; x: Real; y: Real) updating;

begin
if button = 1 then

dragMode := DragMode_Drag;
endif;
if button = 2 then

popupMenu(menuItemAction, x.Integer, y.Integer);
endif;
selectedColumn := table.column;

end;

For the ListBox control, the dragListIndex method can also be interrogated during the dragOver and dragDrop
events to determine which entry of the list box was involved.

For the Table control, the dragSheet, dragColumn, and dragRow methods can also be interrogated during the
dragOver and dragDrop events to determine which sheet and cell of the table was involved.

drawGrip
Type: Integer

Availability: Read or write at any time

The drawGrip property of the JadeDockBase class indicates whether a grip bar is drawn in the border area of the
control. This bar is intended as a place on the control in which the user can click the mouse for dragging
purposes.

The drawGrip property settings are listed in the following table.

JadeDockBase Class Constant Integer Value Description

DrawGripBar_Double 2 A double grip bar is drawn

DrawGripBar_None 0 No grip is drawn

DrawGripBar_Single 1 A single grip bar is drawn

The grip bar adds additional spacing within the border area of the control, and it is centered in the area defined by
the size of the grip bar and the extra border space defined by the borderWidthLeft or borderHeightTop property,
depending on how the control is aligned.

If the control is aligned left or right, the grip bar is drawn at the top of the control. If the control has no alignment but
its parent is aligned left or right, the grip bar is also drawn at the top of the control. If neither of these is the case,
the grip bar is drawn at the left of the control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 251

EncycloWin - 2020.0.02

No border area (including the grip bar) is drawn for the control when it is the child of a floating form.

The default value for the JadeDockBar control is DrawGripBar_Double (2) and the default value for the
JadeDockContainer control is DrawGripBar_None (0).

dropDown
Type: Integer

Setting the dropDown property indicates that a table need occupy only the space required for one row and yet still
provide all the features of an expanded display.

If this property value is non-zero for a Table control, the table alters its size so that only the current row is
displayed when it loses the focus. The current left, top, and width values are retained.

The settings of the dropDown property are listed in the following table.

Table Class Constant Value Description

DropDown_None 0 No close up occurs

DropDown_Click 1 Close up on lost focus, open up only when clicked

DropDown_Auto 2 Close up on lost focus, open up when focus is received

edgeColor
Type: Integer[4]

Availability: Read or write at any time

The edgeColor property of the JadeTextEdit control contains the color of the indicator line or background,
depending on the value of the edgeMode property, that is used to show that a line has exceeded the length
specified by the value of the edgeColumn property.

The default value is zero (0); that is, black.

edgeColumn
Type: Integer[4]

Availability: Read or write at any time

The edgeColumn property of the JadeTextEdit control contains the number of the column at which the long
linemark indicator is displayed. The default value is zero (0).

The valid range is zero (0) through 200.

edgeMode
Type: Integer

Availability: Read or write at any time

The edgeMode property of the JadeTextEdit control contains the mode that is used to display long lines in the text
editor.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 252

EncycloWin - 2020.0.02

The JadeTextEdit class constants that specify the edge mode are listed in the following table.

Class Constant Value Description

SC_EDGE_BACKGROUND 2 The background color of characters after the column limit is
changed to the value of the edgeColor property.

SC_EDGE_LINE 1 A vertical line is drawn at the column number specified in the
edgeColumn property. The line is drawn at a position based on the
width of a space character in the default style. This edge mode may
not work very well if your styles use proportional fonts, if your styles
have varied font sizes, or you use a mixture of bold, italic, and
normal text font attributes.

SC_EDGE_NONE 0 Long lines are not marked (the default value).

editMask
Type: String

Availability: Read or write at any time

The editMask property of the Table class sets the mask (using the accessMode property) used for input for a
table cell, row, column, or sheet when the value of the Table class inputType property is set to InputType_
EditMask (7).

When a table cell, row, column, or sheet is defined as a JadeEditMask control by setting the input type to
InputType_EditMask (7), the input control acts like a text box for input by default.

Notes Using an edit mask control causes the column width for the effective cell to be enlarged to fit the
JadeEditMask control that is to be displayed unless the value of the columnWidth property has been set by logic.

Format the text of a cell that has an inputType property value of InputType_EditMask so that it obeys the rules
implied by the edit mask. The text of the edit mask control for a cell is set and updated by using the JadeEditMask
class text property.

The Control class automaticCellControl property has meaning for the edit mask input type.

If the text of a cell does not match the rules implied by the edit mask, an exception is raised when the cell is
activated for user input.

enabled
Type: Boolean

Availability: Read or write at any time

The enabled property of the Window class specifies whether the form, control, or menu can respond to user-
generated events. It can also result in the physical appearance of a control being changed; for example, grayed
(disabled). The enabled property settings are listed in the following table.

Value Description

true Enables the object to respond to events (the default).

false Prevents the object from responding to events. For controls on Web pages, the object is not
displayed.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 253

EncycloWin - 2020.0.02

This property allows forms and controls to be enabled or disabled at run time.

If a disabled cell, row, or column has a specified value of the foreColor property, the text in a disabled cell is
displayed using that color. The text in a disabled cell is displayed using the Windows disabled text color if the
foreColor property of the cell is not specifically set using the foreColor property values of the cell, row, or column.

Unlike the disableEvents property, disabling a control can result in the appearance of the control changing. For
example, the text of a Button control is dimmed when the button is disabled. If the control with the focus (or its
parent control) is disabled, the focus is moved to the next visible and enabled control in the tab order.

The code fragment in the following example shows the use of the enabled property.

if listFaults.itemText[listFaults.listIndex] <> "" then
bCloseFault.enabled := true;

endif;

endOfLineMode
Type: Integer[4]

Availability: Read or write at any time

The endOfLineMode property of the JadeTextEdit control defines the character sequence used to indicate the
end of a line in the text editor. This property controls what is inserted into the text buffer when a new line is
required, including a new line keystroke (for example, when Enter is pressed), new lines inserted from the
clipboard, and new lines loaded from a file.

Text copied to the clipboard or to a file has end-of-line characters converted to the platform-native equivalent.

The value can be one of the JadeTextEdit class constants listed in the following table.

Class Constant Integer Value Description

SC_EOL_CR 1 Carriage return character

SC_EOL_CRLF 0 Carriage return / line feed character (the default value)

SC_EOL_LF 2 Line feed character

expandedHeight
Type: Integer

The expandedHeight property of the Table class contains the height in pixels of the table when it is expanded.
The expanded height defaults to the height of the table when it was last expanded.

You can set this property only when the table is closed up.

For more details, see the dropDown property.

firstLineIndent
Type: Integer

Availability: Read or write at any time

The firstLineIndent property of the JadeRichText control contains the distance (in pixels) between the left edge of
the first line of text in the selected paragraph and the left edge of subsequent lines in the same paragraph.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 254

EncycloWin - 2020.0.02

For an example of the use of this property, see "JadeRichText Control Method Example", earlier in this document.

This value can be negative. If multiple paragraphs are selected and each line has a different value, the property
contains ParagraphFormat_Undefined (#80000000).

The default value of zero (0) indicates that the first line of text is not indented.

firstVisibleLine
Type: Integer[4]

Availability: Read or write at any time

The firstVisibleLine property of the JadeTextEdit control contains the number of the first line that is visible in the
client area of the text editor, in the range 1 through the value of the lineCount property.

Setting the value outside of the range 1 through the value of the lineCount property results in the value of the
firstVisibleLine property being capped to that range.

fixed3D
Type: Boolean

Availability: Read or write at any time

The fixed3D property of the Table class specifies whether a three-dimensional (3D) button image is painted on
the cells in the fixed area of a table. This 3D effect assumes a gray value for the backColor property for the cell.

The Table control has two types of rows and columns: fixed and non-fixed. Fixed rows and columns are most often
used for column and row headings. Non-fixed rows and columns are most often used for data display.

A fixed row and column is always displayed on the sheet, while non-fixed rows and columns can be scrolled out of
view. Clicking on a cell in a fixed column selects all non-fixed cells in the column. Clicking on a cell in a fixed row
selects all non-fixed cells in the row. Clicking on a non-fixed cell selects only that cell.

Positioning the mouse over a boundary between columns and rows in the fixed area enables the boundary line to
be dragged by clicking and dragging. This changes the height and width of a column. (See also the allowResize
property.)

The default value of the backColor property of a fixed cell is gray.

fixedColumns
Type: Integer

Availability: Read or write at any time

The fixedColumns property of the Table class contains the number of fixed columns in a table.

The default value for the fixedColumns property is 1.

The Table control has two types of columns: fixed and non-fixed. Fixed columns are most often used for row
headings. Non-fixed columns are most often used for data display. A fixed column is always displayed on the
sheet, while non-fixed columns can be scrolled out of view.

Clicking a cell in a fixed column selects all non-fixed cells in the row. Clicking on a cell selects only that cell.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 255

EncycloWin - 2020.0.02

Positioning the mouse over a boundary between columns in the fixed area enables the boundary line to be
dragged by clicking and dragging. This changes the height and width of a column. (See also the allowResize
property.)

The default value of the backColor property of a fixed cell is gray.

Setting the fixedColumns property to a value greater than the defined number of columns causes the number of
columns to be increased to the new number of fixed columns.

fixedRows
Type: Integer

Availability: Read or write at any time

The fixedRows property of the Table class contains the number of fixed rows in a table. The default value for the
fixedRows property is 1. The Table control has two types of rows: fixed and non-fixed.

Fixed rows are most often used for column headings. Non-fixed rows are most often used for data display. A fixed
row is always displayed on the sheet, while non-fixed rows can be scrolled out of view.

Clicking a cell in a fixed row selects all non-fixed cells in the column. Clicking on a cell selects only that cell.

Positioning the mouse over a boundary between rows in the fixed area enables the boundary line to be dragged
by clicking and dragging. This changes the height and width of a row. (See also the allowResize property.)

The default value of the backColor property of a fixed cell is gray.

Setting the fixedRows property to a value greater than the defined number of rows causes the number of rows to
be set to the new number of fixed rows.

floatingStyle
Type: Integer

Availability: Read or write at any time

The floatingStyle property of the JadeDockBase class indicates whether the control can be floated or dragged.
The floatingStyle property settings are listed in the following table.

JadeDockBase Class Constant Integer Value Comment

FloatingStyle_Close 1

FloatingStyle_NoClose 2 Default value for the JadeDockBar control

FloatingStyle_None 0 Default value for the JadeDockContainer control

Use the FloatingStyle_None (0) value to indicate that the control is just a container that can be neither floated nor
dragged.

Use the FloatingStyle_Close (1) value if the control can be floated and dragged. When a control that has this style
is floated, the floating form is displayed with a Close button that allows the user to close the form.

If the user closes the floating form, the docking control is transferred back to being an invisible child of the original
JADE form and requires JADE logic action to make the control visible to the user again.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 256

EncycloWin - 2020.0.02

The dock control that is being hidden receives a JadeDockBar or JadeDockContainer class docked event
method. You can determine this situation by checking the value of the visible property of the control.

Use the FloatingStyle_NoClose (2) value when the control can be floated and dragged. When a control that has
this style is floated, the floating form is displayed without a Close button and the user cannot close the form. The
form is destroyed only when the control is docked back into the original form or when the original form is closed.

focusBackColor
Type: Integer

Availability: Read or write at any time

The focusBackColor property of the Control class contains the background color of a control when the control
has focus or a child of the control has focus. You can use the focusBackColor and focusForeColor properties to
give the user a better visual prompt as to which control has focus.

The default value of zero (Black) indicates that the property is always ignored when drawing the control.

JADE uses the RGB scheme for colors. The valid range for a normal RGB color is zero (0) through 16,777,215
(#FFFFFF). The high byte of a number in this range equals 0; the lower three bytes (from least to most significant
byte) determine the amount of red, green, and blue, respectively. The red, green, and blue components are each
represented by a number in the range 0 through 255 (#FF). If the high byte is 128, JADE uses the system colors,
as defined in the Control Panel of the user. To determine the Integer value of a color from the RGB values:

int:= RedValue + (GreenValue * 256) + (BlueValue * 256 * 256);

When the value of the focusBackColor property is not Black, that property value is used instead of the value of
the backColor property to erase the control area when the control has focus or a child of the control has focus.

Note If the control is transparent, the value of the focusBackColor property is not used. (The control area is not
erased as part of the painting of the control.)

Although this property is defined in the Control class, it is not relevant to all controls. The controls that make use of
this property must be capable of gaining the focus, they can be control parents, and they cannot be external
controls such as .NET controls.

The controls that use the focusBackColor property and support definition in the JADE Painter are:

BaseControl

Button

CheckBox

ComboBox

Folder

Frame

GroupBox

Sheet

ListBox

OptionButton

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 257

EncycloWin - 2020.0.02

Picture

StatusLine

Table

TextBox

JadeMask

JadeDockBar

JadeDockContainer

JadeEditMask

JadeRichText.

In addition, the focusBackColor property is defined in the JadeSkinControl class so that you can specify it as
part of a control skin on the Jade Skin Maintenance dialog. When a skin is assigned to a control that uses this
property, the value is used when the control has focus or a child of the control has focus if all of the following are
true.

The value is not Black (0)

The value of the equivalent focusBackColor property of the control is Black (0)

The equivalent backColor value of the control is the default for the control

Note If the control or the skin of the control has a brush defined to erase the background area of the control, the
effective value of the focusBackColor property is used instead.

Applies to Version: 2016.0.01 and higher

focusForeColor
Type: Integer

Availability: Read or write at any time

The focusForeColor property of the Control class contains the foreground color used to display text associated
with a control when the control has focus or a child of the control has focus. You can use the focusForeColor and
focusBackColor properties to give the user a better visual prompt as to which control has focus.

The default value of zero (Black) indicates that the property is always ignored when drawing the control.

JADE uses the RGB scheme for colors. The valid range for a normal RGB color is zero (0) through 16,777,215
(#FFFFFF). The high byte of a number in this range equals 0; the lower three bytes (from least to most significant
byte) determine the amount of red, green, and blue, respectively. The red, green, and blue components are each
represented by a number in the range 0 through 255 (#FF). If the high byte is 128, JADE uses the system colors,
as defined in the Control Panel of the user. To determine the Integer value of a color from the RGB values:

int:= RedValue + (GreenValue * 256) + (BlueValue * 256 * 256);

When the value of the focusForeColor property is not Black, that property value is used instead of the value of
the foreColor property to draw the text associated with the control when the control has focus or a child of the
control has focus.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 258

EncycloWin - 2020.0.02

Although this property is defined in the Control class, it is not relevant to all controls. The controls that make use of
this property must be capable of gaining the focus, they can be control parents, and they cannot be external
controls such as .NET controls.

The controls that use the focusForeColor property and support definition in the JADE Painter are:

BaseControl

Button

CheckBox

ComboBox

Folder

Frame

GroupBox

Sheet

ListBox

OptionButton

Picture

StatusLine

Table

TextBox

JadeMask

JadeDockBar

JadeDockContainer

JadeEditMask

JadeRichText.

In addition, the focusForeColor property is defined in the JadeSkinControl class so that you can specify it as part
of a control skin on the Jade Skin Maintenance dialog. When a skin is assigned to a control that uses this property,
the value is used when the control has focus or a child of the control has focus if all of the following are true.

The value is not Black (0)

The value of the equivalent focusForeColor property of the control is Black (0)

The equivalent foreColor value of the control is the default for the control

Applies to Version: 2016.0.01 and higher

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 259

EncycloWin - 2020.0.02

foldFlags
Type: Integer[4]

Availability: Read or write at any time

The foldFlags property of the JadeTextEdit control contains the flags that are used to control how folded section
lines are marked when the folding property is set to true. The fold point highlight is a line is drawn edge-to-edge
in the text area. The fold flag has no effect on what is drawn in the fold margin.

The default value of this property for the JadeTextEdit class is zero (0) and for the JadeEditor class it is 16.

The fold flag can be one of the values listed in the following table.

Value Description

0 No line is drawn around fold point lines

2 Draw line above, if expanded

4 Draw line above, if contracted

8 Draw line below, if expanded

16 Draw line below, if contracted (this value looks like an underline)

foldSymbols
Type: Integer[4]

Availability: Read or write at any time

The foldSymbols property of the JadeTextEdit control defines the set of fold point symbols used to mark fold point
lines, when the value of the folding property is set to true.

The default value for the JadeTextEdit class is SC_FOLDSYM_ARROWS (0) and for the JadeEditor class it is
SC_FOLDSYM_TREESQUARE (3).

The foldSymbols property value can be one of the JadeTextEdit class constants listed in the following table.

Class Constant Integer Value

SC_FOLDSYM_ARROWS 0

SC_FOLDSYM_PLUSMINUS 1

SC_FOLDSYM_TREEROUND 2

SC_FOLDSYM_TREESQUARE 3

Alternatively, you can construct your own fold point symbol set by using the setLinemarkAttributes method to
define the attributes of linemarks in the range 25 through 31. (For details, see the Scintilla SCI_MARKERDEFINE
command.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 260

EncycloWin - 2020.0.02

folding
Type: Boolean

Availability: Read or write at any time

The folding property of the JadeTextEdit control specifies whether text editor lines can be folded to make them
hidden. By default, the value of this property is false; that is, folding is not enabled.

When the value of the folding property is set to true, the fold margin (margin 2) is displayed and lines are marked
as fold points (fold marks), based on the hierarchical structure of the editor text and the current language. Fold
mark symbols indicate which text lines are fold points and their current stat (that is, contracted or expanded).

As fold point lines are chosen by the lexical analyzer of the current language, they are language-sensitive.

For the JADE language with normal folding, the start of a fold block is tied to the word at the end of the block
instruction header (for example, then or do) and the end of a fold block is bound to the line preceding the block
instruction trailer (end, endif, endwhile, and so on). With compact folding, the start of the fold block is tied to the
first word of the block instruction and the end of the fold block is tied to the line including the instruction trailer.

The character sequences //{ and //} are also recognized as fold block start and end, respectively.

When fold marks are displayed in the margin, clicking the mouse expands a contracted fold mark or contracts an
expanded fold block. In addition to showing markers in the fold margin, you can use the foldFlags property to
cause the editor to draw a line around a fold point lines using the foreground color of the default text style.

You can use the foldSymbols property to define which symbol set is displayed in the fold margin.

The mouse actions that you can perform within the fold margin of the JadeTextEdit control are listed in the
following table.

Mouse Action Result

Ctrl+Shift+left-click Toggles (expands or contracts) all outer (parent) fold points

Shift+left-click Toggles (expands or contracts) the nearest fold point and all lower-level (child) fold
points to match

Left-click Toggles (expands or contracts) the nearest fold point

fontBold
Type: Boolean

Availability: Read or write at any time

The fontBold property of the Control class specifies whether the font style is bold. This property is defined for all
controls, but it has no meaning in some cases. For example, a scroll bar control has no text, and therefore the font
is not relevant.

The settings for the fontBold property are listed in the following table.

Value Description

true Turns on the bold formatting

false Turns off the bold formatting (the default)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 261

EncycloWin - 2020.0.02

For the Table control, the accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell
property determines whether the font property for the current sheet, cell, column, or row is being accessed.
Changing the sheet font causes the default table row height to be changed.

Changing the font for a cell or row causes the current height of the row to change, unless the rowHeight property
has been set for the row. Changing the font for a column causes all rows that do not have the rowHeight property
set to have at least the font height size.

Use the fontBold property to format text, either in the JADE development environment or at run time by using
logic.

For the JadeTextEdit control, the clearAllStyles method copies the value of this property to the default text style;
that is, STYLE_DEFAULT (32).

Note The font uses the application font if the fontName property for the control is set to Default during painting
or to an empty string at run time. The fonts that are available in JADE vary, according to your system configuration,
display devices, and printing devices.

Use the Control class setFontProperties method to change the fontBold, fontName, and fontSize properties at
the same time.

fontItalic
Type: Boolean

Availability: Read or write at any time

The fontItalic property of the Control class specifies whether the font style is italic. Although this property is
defined for all controls, it has no meaning in some cases. For example, a ScrollBar control has no text, and
therefore the font is not relevant.

The settings for the fontItalic property are listed in the following table.

Value Description

true Turns on the italic formatting

false Turns off the italic formatting (the default)

For the Table control, the accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell
property determines whether the font property for the current sheet, cell, column, or row is being accessed.

Changing the sheet font causes the default table row height to be changed. Changing the font for a cell or row
causes the current height of the row to change, unless the rowHeight property has been set for the row. Changing
the font for a column causes all rows that do not have the rowHeight property set to have at least the font height
size.

Use the fontItalic property to format text, either in the JADE development environment or at run time by using
logic.

For the JadeTextEdit control, the clearAllStyles method copies the value of this property to the default text style;
that is, STYLE_DEFAULT (32).

Note The font defaults to the application font if the fontName property for the control is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 262

EncycloWin - 2020.0.02

fontName
Type: String[31]

Availability: Read or write at any time

The fontName property of the Control class contains the font used to display text in a control.

The fontName property is defined for all controls, but it does not have any meaning in some cases. For example,
a ScrollBar control has no text, and therefore the font is not relevant.

Note The font of a control defaults to the application font if the fontName property of the control is set to Default
when printing the form. At run time, the fontName property returns an empty string if the control is using the default
application font. Use app.fontName to obtain the actual font name.

For the Table class, the accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell
property determines whether the fontName property for the current sheet, cell, column, or row is being accessed.
Changing the sheet font causes the default table row height to be changed. Changing the font for a cell or row
causes the current row height to change, unless the rowHeight property has been set for the row. Changing the
font for a column causes all rows not having the rowHeight property set to have at least the font height size.

For the JadeTextEdit control, the clearAllStyles method copies the value of this property to the default text style;
that is, STYLE_DEFAULT (32).

The default value for the fontName property is determined by the system. Fonts that are available with JADE vary,
according to your system configuration, display devices, and printing devices.

Notes Changing the fontName property to an empty string causes the control to use the default font. The
fontBold and fontSize properties revert to the font of the application.

If a control is using the default font for the application (that is, this property contains the "" null value), changing
any font property of the control causes the control to use a local font constructed by using the application font
values with the changed font attribute.

Use the Control class setFontProperties method to change the fontName, fontBold, and fontSize properties at
the same time.

fontSize
Type: Real

Availability: Read or write at any time

The fontSize property contains the size of the font to be used for text displayed in a control.

The fontSize property of the Control class is defined for all controls, but it has no meaning in some cases. For
example, a ScrollBar control has no text, and therefore font is not relevant.

Use the fontSize property to format text in the required font size. The default value is determined by the system. To
change the default, specify the size of the font in points.

For the Table class, the accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell
property determines whether the fontSize property for the current sheet, cell, column, or row is being accessed.

For the JadeTextEdit control, the clearAllStyles method copies the value of this property to the default text style;
that is, STYLE_DEFAULT (32).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 263

EncycloWin - 2020.0.02

Changing the sheet font causes the default table row height to be changed. Changing the font for a cell or row
causes the current row height to change, unless the rowHeight property has been set for the row. Changing the
font for a column causes all rows not having the rowHeight property set to have at least the font height size.

Note The font defaults to the application font if the fontName property for the control is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

Use the Control class setFontProperties method to change the fontSize, fontBold, and fontName properties at
the same time.

fontStrikethru
Type: Boolean

Availability: Read or write at any time

The fontStrikethru property of the Control class specifies whether the font style is strikethrough. This property is
defined for all controls, but it has no meaning in some cases. For example, a ScrollBar control has no text, and
therefore the font is not relevant.

The settings for the fontStrikethru property are listed in the following table.

Value Description

true Turns on the strikethrough formatting

false Turns off the strikethrough formatting (the default)

For the Table class, the accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell
property determines whether the font property for the current sheet, cell, column, or row is being accessed.

Changing the sheet font causes the default table row height to be changed. Changing the font for a cell or row
causes the current height of the row to change, unless the rowHeight property has been set for the row. Changing
the font for a column causes all rows that do not have the rowHeight property set to have at least the font height
size.

Use the fontStrikethru property to format text, either in the JADE development environment or at run time by using
logic.

Note The font defaults to the application font if the fontName property for the control is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

fontUnderline
Type: Boolean

Availability: Read or write at any time

The fontUnderline property of the Control class specifies whether the font style is underlined. This property is
defined for all controls, but it has no meaning in some cases. For example, a ScrollBar control has no text, and
therefore the font is not relevant.

Use the fontUnderline property to format text, either in the JADE development environment or at run time by using
logic.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 264

EncycloWin - 2020.0.02

The settings for the fontUnderline property are listed in the following table.

Value Description

true Turns on the underline formatting

false Turns off the underline formatting (the default)

For the Table control, the accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell
property determines whether the font property for the current sheet, cell, column, or row is being accessed.

Changing the sheet font causes the default table row height to be changed. Changing the font for a cell or row
causes the current height of the row to change, unless the rowHeight property has been set for the row. Changing
the font for a column causes all rows that do not have the rowHeight property set to have at least the font height
size.

For the JadeTextEdit control, the clearAllStyles method copies the value of this property to the default text style;
that is, STYLE_DEFAULT (32).

Note The font defaults to the application font if the fontName property for the control is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

foreColor
Type: Integer

Availability: Read or write at any time

The foreColor property of the Control class contains the foreground color used to display text in a window.
Changing the foreColor property causes a repaint of the window object. JADE uses the RGB scheme for colors.

Using the appropriate RGB value can set each property. The default setting of this property for most controls is the
WINDOW_TEXT system default color. (See the Window class getSystemColor method for a description and
example of returning a Windows system color.)

If a disabled cell, row, or column has a specified value of the foreColor property, the text in a disabled cell is
displayed using that color. The text in a disabled cell is displayed using the Windows disabled text color if the
foreColor property of the cell is not specifically set using the foreColor property values of the cell, row, or column.

The valid range for a normal RGB color is zero (0) through 16,777,215 (#FFFFFF). The high byte of a number in
this range equals 0; the lower three bytes (from least to most significant byte) determine the amount of red, green,
and blue, respectively. The red, green, and blue components are each represented by a number in the range 0
through 255 (#FF). If the high byte is 128, JADE uses the system colors, as defined in the Control Panel of the
user. To determine the Integer value of a color from the RGB values:

int:= RedValue + (GreenValue * 256) + (BlueValue * 256 * 256);

For the JadeTextEdit control, the clearAllStyles method copies the value of this property to the default text style;
that is, STYLE_DEFAULT (32).

For the Table class, the accessMode property determines whether the foreColor property for the current sheet,
cell, column, or row is being accessed. The foreColor property is available on all control objects, but it is not
relevant to some controls when painting the control image; for example, a ScrollBar control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 265

EncycloWin - 2020.0.02

For a control, setting the foreColor property in the JADE Painter by selecting the Parent’s Colour item (or setting
the value of the foreColor property to #80000000 at run time) instructs the window to use the foreColor property
value of its parent.

The code fragment in the following example shows the use of the foreColor property.

table1.accessedCell.foreColor:=Blue;

form
Type: Form

Availability: Read-only at run time

The form property of the Control class and MenuItem class contains a reference to a form of a control or menu
from the object.

Use this property when the control or menu object is passed as a parameter to a generalized method, so that the
logic can still access the form of the control or menu.

The code fragment in the following example shows the use of the form property.

if lbl = null then
create lbl transient;
lbl.parent := self;
form.addControl(lbl);
if isInPainter then

lbl.actualEnabled := false;
endif;
lbl.borderStyle := BorderStyle_Single;
lbl.alignment := Alignment_Center_Middle;
if lbl = monthLabel then

lbl.caption := today.monthName;
else

lbl.caption := today.year.String;
endif;

endif;

formatOut
Type: String[100]

Availability: Read or write at any time

The formatOut property of the TextBox class or Label class contains the system-defined formats of data in text
boxes or labels that you specify during printing.

The system-defined data formats are listed in the following table.

Option Action

=date Prints the current date as specified in Control Panel.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 266

EncycloWin - 2020.0.02

Option Action

=direct Sends the text of the control formatted in the font of the control directly to the printer. This
provides you with the ability to send commands to the print driver; for example, the facsimile
(fax) number when printing to a fax device. (See the JadePrintDirect class for details about
the transient class that holds direct printing output directives.)

=formatdate Prints the date in the format supplied in the formatOut text box of the Properties dialog
Specific sheet in JADE Painter, as shown in the following example.

=formatdate dd/MM/yyy

=longdate Prints the current date in the long date format.

=page Prints the current page number.

=pagenofm Prints the current page number of the total number of pages in the document (for example, 2
of 8).

=shortdate Prints the current date in the short date format.

=time Prints the current time (in hh:mm:ss am / pm format).

=totalpages Prints the total number of pages in the document (for example, 8).

When the =pagenofm and =totalpages option are included in labels or text boxes on report frames, they are
drawn to the size of the resulting text regardless of the original size of the label or text box. No clipping occurs if
the text is larger than the width of the control. The alignment properties of the label or text box will still be used. To
achieve this, the printed output is first written to a temporary file and the count of the total number of pages is
inserted into the print output at the specified positions.

Print output is then processed as follows if a report uses the total page count feature.

1. The output is written to a temporary file.

2. For reports output directly to a printer (that is, the formatOut property is set to =direct), printing cannot
commence until the entire report is completed.

3. For reports being stored in the database (that is, reports that use the Printer class setReport method), output
is retrieved from the temporary file and stored in the database only after the printer is closed.

This is most evident when running in JADE thin client mode, as the printed output must be retrieved from the
presentation client and passed to the application server at the end of the report rather than page by page, as
the report is produced.

The code fragment in the following example shows the use of the formatOut property.

printForm.label7.formatOut := '=formatDate ' & dateFormats[formatIndex];
formatIndex.bump;
printForm.label8.caption := app.printer.String;
result := app.printer.print(printForm.detail);

See also the example of the formatOut property under "JadePrintDirect Class", in Chapter 1.

fullName
Type: String

Availability: Read or write at run time only

The fullName property contains the full name of the OLE object in an OleControl.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 267

EncycloWin - 2020.0.02

This name defaults to the OLE class or file name used to create the object.

The fullName property allows the object to have an identifying description assigned to the control and OLE object.

gridColor
Type: Integer

Availability: Read or write at any time

The gridColor property contains the color of grid lines in a Table control.

The default value is light gray.

gridLines
Type: Boolean

Availability: Read or write at any time

The gridLines property specifies whether lines are drawn between the rows and columns of the current sheet of
the Table control.

The default value is true.

hasPictures
Type: Boolean

Availability: Read or write at any time

The hasPictures property controls the type of display for the ListBox control or the ComboBox control, by
specifying whether the picture images are displayed. The default value is false.

Each list entry in the control can be made up of the following parts.

TreeLines

Plus/Minus

Pictures

Item picture

Text

TreeLines are lines drawn between items in the hierarchy, to display the parents of an item and its siblings.

Plus/Minus is a bitmap or icon that is displayed when the entry has subitems. The image represents the expanded
or collapsed state of that part of the hierarchy. A suitable bitmap or icon can be assigned to each of the
picturePlus and pictureMinus properties for this part of the display. The default value is a plus (+) and minus (-)
sign.

Pictures is an icon or bitmap that represents whether the list entry is a leaf (that is, it has no subentries) or is an
expanded or collapsed entry. A suitable bitmap or icon can be assigned to the pictureClosed, pictureOpen, and
pictureLeaf properties for this part of the display. The default value is a closed folder, open folder, and a
document.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 268

EncycloWin - 2020.0.02

The parts of the display are optional. The hasPlusMinus, hasTreeLines, and hasPictures properties control
these parts of the list. If the pictures are larger than the list line size, they are scaled to fit.

Clicking the treeline, plus/minus, or picture area of the display generates a pictureClick event. Logic must then
expand or collapse the item, as required. As this process is not automatic, the expand or collapse process can be
controlled by the user. For example, the subentries may not be loaded into the list box until an entry is expanded.

By default, the appropriate picture icon is displayed. Setting the itemPictureType property can also manually
control the type of picture. When the itemPictureType property is set for an item, no further automatic picture
assignment is performed based on expand, collapse, or subitems.

The type of image displayed for the plus/minus display is always automatic. If you want to use these images with
user control, set the picture properties to these icons.

To cause the pictureDblClick event, double-click any portion of an entry to the left of the text.

Setting the sorted property for a list box control sets the hasPictures, hasPlusMinus, and hasTreeLines
properties to false.

To select the list entry (to set the listIndex property), the text portion of the entry must be clicked or the arrow keys
used.

hasPlusMinus
Type: Boolean

Availability: Read or write at any time

The hasPlusMinus property controls the type of display for the ListBox control or the ComboBox control, by
specifying whether the plus/minus images are displayed. The default value is false.

Each list entry in the control can be made up of the following parts.

TreeLines

Plus/Minus

Pictures

Item picture

Text

TreeLines are lines drawn between items in the hierarchy, to display the parents of an item and its siblings.

Plus/Minus is a bitmap or icon that is displayed when the entry has subitems. The image represents the expanded
or collapsed state of that part of the hierarchy. A suitable bitmap or icon can be assigned to each of the
picturePlus and pictureMinus properties for this part of the display. The default value is a plus (+) and minus (-)
sign.

Pictures is an icon or bitmap that represents whether the list entry is a leaf (that is, it has no subentries) or is an
expanded or collapsed entry. A suitable bitmap or icon can be assigned to the pictureClosed, pictureOpen, and
pictureLeaf properties for this part of the display. The default value is a closed folder, open folder, and a
document.

The parts of the display are optional. The hasPlusMinus, hasTreeLines, and hasPictures properties control
these parts of the list. If the pictures are larger than the list line size, they are scaled to fit.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 269

EncycloWin - 2020.0.02

Clicking the treeline, plus/minus, or picture area of the display generates a pictureClick event. Logic must then
expand or collapse the item, as required. As this process is not automatic, the expand or collapse process can be
controlled by the user. For example, the subentries may not be loaded into the list box until an entry is expanded.

By default, the appropriate picture icon is displayed. Setting the itemPictureType property can also manually
control the type of picture. When the itemPictureType property is set for an item, no further automatic picture
assignment is performed based on expand, collapse, or subitems.

The type of image displayed for the plus/minus display is always automatic. If you want to use these images with
user control, set the picture properties to these icons.

To cause the pictureDblClick event, double-click any portion of an entry to the left of the text.

Setting the sorted property for a list box control sets the hasPictures, hasPlusMinus, and hasTreeLines
properties to false.

To select the list entry (to set the listIndex property), the text portion of the entry must be clicked or the arrow keys
used.

hasTreeLines
Type: Boolean

Availability: Read or write at any time

The hasTreeLines property controls the type of display for the ListBox control or the ComboBox control, by
specifying whether the tree lines are drawn. The default value is false.

Each list entry in the control can be made up of the following parts.

TreeLines

Plus/Minus

Pictures

Item picture

Text

TreeLines are lines drawn between items in the hierarchy, to display the parents of an item and its siblings.

Plus/Minus is a bitmap or icon that is displayed when the entry has subitems. The image represents the expanded
or collapsed state of that part of the hierarchy. A suitable bitmap or icon can be assigned to each of the
picturePlus and pictureMinus properties for this part of the display. The default value is a plus (+) and minus (-)
sign.

Pictures is an icon or bitmap that represents whether the list entry is a leaf (that is, it has no subentries) or is an
expanded or collapsed entry. A suitable bitmap or icon can be assigned to the pictureClosed, pictureOpen, and
pictureLeaf properties for this part of the display. The default value is a closed folder, open folder, and a
document.

The parts of the display are optional. The hasPlusMinus, hasTreeLines, and hasPictures properties control
these parts of the list.

Clicking the treeline, plus/minus, or picture area of the display generates a pictureClick event. Logic must then
expand or collapse the item, as required. As this process is not automatic, the expand or collapse process can be
controlled by the user. For example, the subentries may not be loaded into the list box until an entry is expanded.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 270

EncycloWin - 2020.0.02

By default, the appropriate picture icon is displayed. Setting the itemPictureType property can also manually
control the type of picture. When the itemPictureType property is set for an item, no further automatic picture
assignment is performed based on expand, collapse, or subitems.

The type of image displayed for the plus/minus display is always automatic. If you want to use these images with
user control, set the picture properties to these icons.

To cause the pictureDblClick event, double-click any portion of an entry to the left of the text.

Setting the sorted property for a list box control sets the hasPictures, hasPlusMinus, and hasTreeLines
properties to false.

To select the list entry (to set the listIndex property), the text portion of the entry must be clicked or the arrow keys
used.

height
Type: Real

Availability: Read or write at any time

The height property of the Window class contains the dimensions of an object. Measurements are calculated
using the following.

For controls, the external height of the control

For forms, the external height of the form, including the borders and title bar

For a form, the height property is always in pixels. For a control, the scaleMode property units of the parent control
determine the height. The scaleMode property defaults to pixels. For a form or control, the value for the height
property changes as the object is sized by the user or by logic. The maximum limit for all objects is system-
dependent. (See also the parentAspect property.)

Note You cannot change this property for CheckBox, OptionButton, and ComboBox controls whose style
property is not Style_Simple (1).

If the value of the height property plus the value of the top property is greater than 32,767 pixels, the resulting
window extents may be unpredictable.

Windows limits forms and controls to a maximum height of 32,767 pixels. Setting a value larger than the maximum
height results in a value of 32,767 pixels being used.

The code fragments in the following examples show the use of the height property.

table1.height := table1.rowHeight[1] * table1.rows;

startName.top := theTable.top + theTable.height + 10;

pictureEnlarged.height := (pictureNormal.height/(x - xStart)) * 100;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 271

EncycloWin - 2020.0.02

helpContextId
Type: Integer

Availability: Read or write at any time

The helpContextId property of the Window class contains an associated context number for an object. This
property is used to provide context-sensitive help for your application.

If the helpKeyword property is also set, the keyword is used in preference to the context number. For context-
sensitive help on an object in your application, you must assign the same context number to both the object and to
the associated help topic when you compile your help file.

If you have created a Windows environment help file for your application (that is, a .hlp or .chm file, or Hypertext
Markup Language (.htm or .html) files), when a user presses the F1 function key, JADE automatically calls help
and requests the topic identified by the current context number (or the helpKeyword property).

The current context number is the value of the helpContextId property for the object that has the focus. For a
control, if the helpContextId property is set to zero (0) and the helpKeyword property value is null, JADE
examines the corresponding properties on the window that is the parent window of the control, which is either the
form or another control. If the helpContextId property is set to zero (0) and the helpKeyword property value is null
for the parent window, the grandparent window is examined and so on, until the form is reached.

If a non-zero current context number cannot be found, the Contents section of the help file is requested. If the
helpFile property of the Application class is not set, no help file is opened.

Notes Building a help file requires the Microsoft Windows Help Compiler or the Adobe Acrobat application.

As PDF files require string values as help destinations, see the PdfHelpIdPrefix parameter under "JADE Help
Section [JadeHelp]", in the JADE Initialization File Reference for details about formatting a helpContextId property
into a string value.

helpKeyword
Type: String

Availability: Read or write at any time

The helpKeyword property of the Window class contains the text used to access the help file. If a help keyword is
provided for a form, control, or menu, this text is used to access the help file when the user presses the F1 function
key for help while the focus is on that object.

The current keyword is the value of the helpKeyword property for the object that has the focus.

In the Window and MenuItem classes, this property can be translated when the value of the Schema class
formsManagement property is FormsMngmt_Single_Multi (2).

For a control, if the helpKeyword property is empty and its helpContextId property is set to zero (0), JADE
examines the corresponding properties on the window that is the parent window of the control, which is either the
form or another control. If the helpKeyword property is empty and its helpContextId property is set to zero (0) for
the parent window, the grandparent window is examined and so on, until the form is reached.

If no help keyword or context number can be found, the Contents section of the help file is requested. If the
helpFile property of the Application class is not set, no help file is opened. If the helpContextId property is also
set, the helpKeyword value is used in preference to the context number.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 272

EncycloWin - 2020.0.02

Note Building a help file requires the appropriate third-party tool (that is, the Adobe Acrobat application,
Microsoft Windows Help Compiler, or any other Windows help compiler).

When help is requested, if the help file specifies a:

Web HTML help, detected by the value of the helpFile property starting with a recognized URL scheme (that
is, http:// or https://), JADE attempts to construct a URL to pass to the default Web browser.

If the value of the helpKeyword property starts with a recognized URL scheme, the helpKeyword URL is
used; otherwise the value of the helpKeyword property is appended to the value of the helpFile property to
become the URL to use, as shown in the following code fragment example.

mybtn.helpKeyword := "Form1/button1.html";
mybtn.showHelp;

When help is invoked directly via the Window class showHelp method or via the user pressing the help key
(F1), a URL is created and the default browser is invoked to display the URL.

Portable Document Format (PDF) file (detected by the .pdf file suffix), JADE attempts to execute Adobe
Acrobat to handle the file. JADE checks the Windows registry for the Acrobat Reader (AcroRd32) or for the
acrobat executable program. If Acrobat Reader is not found, the help request is ignored and entries
explaining the cause of the failure are output to the jommsg.log file. If Acrobat is located, it is initiated for the
PDF help file defined in JADE.

For a helpKeyword help request, the helpKeyword property is passed to Acrobat as a named destination,
which Acrobat uses to position the help file display. As there are no equivalent concepts in a PDF file of any
other type of help request (for example, helpContextId, index request, and so on), only the first page of the
PDF file is displayed for a help request other than using the helpKeyword property.

Windows help file (detected by the .hlp file suffix), JADE automatically calls help and requests the topic
identified by the current helpKeyword property or the helpContextId property.

Compiled help file (detected by the .chm file suffix), JADE calls the HtmlHelp entry point of the htmlhelp.dll
file and requests the topic identified by the current helpKeyword property or the helpContextId property. You
can use the compiled help file (.chm) format files when producing online help for HTML thin client
applications, for example.

The helpKeyword property can contain a help file name before the keyword, separated by a semicolon. This
help file (which can be a .pdf, .hlp, or .chm file) is specific to this helpKeyword property, and overrides the
default value; for example:

btnHelp_click(btn: Button input) updating;
vars
begin

if fldFolder.topSheet = shtSelect then
btn.helpKeyword := "DevRef.pdf;selectinglibraryacxautomationdrg10";

elseif fldFolder.topSheet = shtLibrary then
btn.helpKeyword := "DevRef.pdf;namelibrary_activex";

elseif fldFolder.topSheet = shtObjects then
btn.helpKeyword := "DevRef.pdf;namingobjectclassesacxautomationdrg10";

elseif fldFolder.topSheet = shtInterfaces then
btn.helpKeyword := "DevRef.pdf;naminginterfacesacxautomationdrg10";

elseif fldFolder.topSheet = shtConstants then
btn.helpKeyword := "DevRef.pdf;namingconstantsacxautomationdrg10";

endif;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 273

EncycloWin - 2020.0.02

btn.showHelp;
end;

Tip Although it is more efficient to use a single help file, specified in the Help File text box on the
Application sheet of the Define Application dialog, this feature is intended for situations in which multiple
help files are required for a single application.

When handling automatic Help menu items, if a helpContextId or helpKeyword property is specified on the
Help menu Index automatic menu item, the destination of the help is based on the value of the
helpContextId or helpKeyword property. In addition, the click event method is not executed.

hintBackColor
Type: Integer

Availability: Read or write at any time

The backColor property of the TextBox class contains the color with which text box background is displayed
when hint text is displayed. (JADE uses the RGB scheme for colors.)

Hint text displayed in the text box is drawn using the value of the hintBackColor property except when it is
#80000000 (the default), in which case the TextBox control backColor property value is used.

If the text box text is not empty or no value has been set for the hintText property, this property is ignored.

Applies to Version: 2016.0.01 and higher

hintForeColor
Type: Integer

Availability: Read or write at any time

The hintForeColor property of the TextBox class contains the color with which text is displayed when hint text is
displayed. (JADE uses the RGB scheme for colors.)

Hint text displayed in the text box is drawn using the value of the hintForeColor property except when it is
#80000000 (the default), in which case the TextBox control foreColor property value is used.

If the text box text is not empty or no value has been set for the hintText property, this property is ignored.

Applies to Version: 2016.0.01 and higher

hintText
Type: String

Availability: Read or write at any time

The hintText property of the TextBox class contains the text displayed in an empty text box as a hint. If the text
box is not empty or hint text is not defined, this property is ignored.

When hint text is displayed, the text foreground and background colors are colored using the values of the
hintBackColor and hintForeColor colors, if they are set.

Hint text cannot be selected or deleted, and the cursor is always positioned at the beginning of the text.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 274

EncycloWin - 2020.0.02

As soon as text is entered or pasted into the text box, the hint text is removed and replaced with the specified or
pasted text. If the entire text is removed, the hint text is displayed again.

When hint text is displayed, the:

Back ground of the text box is drawn using the value of the hintBackColor property except when it is
#80000000, in which case the TextBox control backColor property value is used.

Text of the text box is drawn using the value of the hintForeColor property except when it is #80000000, in
which case the TextBox control foreColor property value is used.

The values of the dataType, case, and selectionStyle properties are ignored when the hint text is displayed; for
example, hint text can be displayed for a numeric field. The hint text, which is always displayed in the case of its
defined string, can never be selected. In addition, for a password text box, the hint text is displayed as clear text
(that is, it is not displayed using asterisk (*) characters).

If the values of the hintBackColor and hintForeColor properties are both zero (0), the default values of
#80000000 (that is, the TextBox control backColor and foreColor properties, respectively) are used instead.

Applies to Version: 2016.0.01 and higher

horizontalSpace
Type: Integer

The horizontalSpace property of the WebJavaApplet class contains the number of pixels on each side of the
applet on your Web page.

hyperlink
Type: String

The hyperlink property of the Label class and Picture class contains a hyperlink string that is programmatically
attached to the label or picture control and that displays HyperText links to static text.

The maximum length of a hyperlink string is 64,000 characters.

If the value of this property is null for a Web label, a logic-type link is assumed and the associated click event for
the label is executed, if one exists.

The formats of Web label hyperlinks are:

welcome.html

welcome.html#page1

http://domain-name/virtual-directory/welcome.html

http://domain-name/virtual-directory/welcome.html#page1

For a WebJavaApplet control, if your Java applet is contained in an archive file, set the hyperlink attribute to the
name of the .jar file.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 275

EncycloWin - 2020.0.02

hyperlinkColumn
Type: Integer array

The hyperlinkColumn property of the Table class contains an array of integers that represent a column in each
row of a table that has an associated HyperText link. If the value of an array element is zero (0), the row does not
have an associated HyperText link.

Note The hyperlinkColumn property is ignored for JADE applications that are not Web-enabled; that is,
applications running in standard JADE clients and thin clients. For these applications, you should use the
setHyperlinkCell method of the Table class or the hyperLink property of the JadeTableCell class.

Clicking a column that has a HyperText link causes a rowColumnChg event for the table. If no rowColumnChg
event exists for the table, the HyperText link does nothing.

Note The hyperlinkColumn property is not changed when the table is sorted, which can result in the wrong
cells being rendered as hyperlinks.

icon
Type: Binary

Availability: Read or write at any time

The icon property of the Form class or Sheet class contains the icon displayed for a minimized form or on the tab
of a sheet in a folder. (The Application class icon property acts as the default for any form or sheet that does not
have a defined icon.) Use this property to specify a custom icon for any form that the user can minimize at run time;
for example, you can assign a unique icon to a form to indicate the function of the form.

Specify the icon by loading it using the Properties window in Painter in the JADE development environment, or
load it at run time by assigning it from another icon or by using the loadPicture method of the Application class
(app.loadPicture).

If the icon is loaded from a file, it must have an icon format (that is, a .ico file). If you do not specify a custom icon,
the application icon is used. If no application icon was specified, the JADE default icon is used. JADE creates a
large and a small icon for use with a form if they are present in the icon file when the app.icon and form.icon
properties are set.

Note To see the icon of a form, the form must be minimized. The borderStyle property must be set to
BorderStyle_Single (1) or BorderStyle_Sizable (2). The minButton property must be set to true.

At run time, you can assign the icon property of an object to the icon property of another object or use the
loadPicture method of the Application class to load an icon from a file.

If you set the icon property of a Sheet control to an icon image (the only image type that is accepted), that icon is
displayed in the folder tab for the sheet. The icon is scaled to fit the tab height. Use the tabsHeight property to
control the height, and therefore the size, of the displayed sheet icon. Use the tabsAlignment property to control
the placement of the sheet icon on the tab.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 276

EncycloWin - 2020.0.02

ignoreHeight
Type: Boolean

Availability: Read or write at any time

Set the ignoreHeight property of the WebHTML class to true to specify that text defined in the JADE development
environment is resized to fit the height of the HTML on a Web page accessed using Internet Explorer 4.0 (or
higher).

The default value of false specifies that text retains the height defined in the JADE development environment
when displayed on a Web page.

ignoreSkin
Type: Boolean

Availability: Read or write at any time

Set the ignoreSkin property of the Window class to true to specify that the window is drawn without a skin. By
default, this property is set to false and the window (form or control) uses any appropriate skin.

For details about using skins to enhance your runtime applications, see Chapter 2 of your JADE Runtime
Application Guide.

See also the Application::setApplicationSkin method, "JadeSkinApplication Class", and "JadeSkinControl and
Subclasses", in Chapter 1. See also the Form class setApplicationSkin method, later in this document.

ignoreWidth
Type: Boolean

Availability: Read or write at any time

Set the ignoreWidth property of the WebHTML class to true to specify that text defined in the JADE development
environment is resized to fit the width of the HTML on a Web page accessed using Internet Explorer 4.0 (or
higher).

The default value of false specifies that text retains the width defined in the JADE development environment when
displayed on a Web page.

indentGuides
Type: Boolean

Availability: Read or write at any time

The indentGuides property of the JadeTextEdit control specifies whether vertical indentation guidelines are
displayed in the client area. The default value is false (that is, guidelines are not displayed).

Specify the foreground and background colors of the indent mark by calling the setStyleAttributes method with
the styleNumber parameter set to STYLE_INDENTGUIDE (37).

Note It is recommended that the background color be left as the default background and that the foreground
should be light gray (for example, #C0C0C0).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 277

EncycloWin - 2020.0.02

indentWidth
Type: Integer[4]

Availability: Read or write at any time

The indentWidth property of the JadeTextEdit control contains the width in characters of the text editor
indentation if you do want to override the value of the tabWidth property.

The indent width can be a value in the range zero (0) through 100. By default, the indentWidth property is set to
zero (0), indicating that the tabWidth value is used.

index
Type: Integer

Availability: Read-only at run time only

The index property for control and menu items is used only when controls are cloned by using the loadControl
method. The index property of controls created in the JADE development environment is set to zero (0).

The user passes the value of this property to the method and it is stored with the control properties. It can then be
used as an identifier to differentiate between the control copies that all have the same name.

Most commonly, you would assign the index values sequentially, using them like indexes.

initialContent
Type: String

Availability: Read or write only during development

The initialContent property of the JadeRichText control contains the initial content of the control. This property
would normally be set only from the JADE Painter Properties dialog.

When the control is created, it is initialized from this value. If the text starts with a valid RTF header sequence (for
example, "{\rtf"), the text is loaded by the RTF reader.

inputType
Type: Integer

Availability: Read or write at run time only

The inputType property contains the type of input (if any) that is accepted by a cell of a table. You can assign the
inputType property to each cell, row, and column of a Table control. The types of input that can be accepted are
listed in the following table.

Constant Value Description

InputType_None 0 Cell does not allow user input (the default).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 278

EncycloWin - 2020.0.02

Constant Value Description

InputType_CheckBox 1 The cell displays a check box bitmap, which can be toggled by
using the mouse, space bar, or Enter key. The text of the cell is set
to 0 or 1, according to the state. The initial value is set to 0 if there
is no text or the first character of any text is 0; if not, it is set to 1.
User changes to the state of the check box control generate a
change event.

Note A disabled cell with InputType_CheckBox draws the
check box as disabled.

InputType_TextBox 2 When the cell is current, the cell allows text input. As the text
changes, the change event is called. The maxLength property can
be set for the cell to control the amount of text that can be entered.
The default value is 0 (that is, there is no limit).

InputType_ComboBox 3 ComboBox (non-sorted drop-down list only). Users can select an
entry from the list by using the mouse or an arrow or RETURN key.
The comboList property sets the list entries, and the comboIndex
property sets the current selected entry. When the user selects a
list entry or when logic sets a comboIndex property value, the
value of the text property for the cell is set to the list entry. When
the user selects a new entry, a change event is generated. If logic
sets the text property of a cell, that text must correspond exactly to
one of the list entries.

InputType_TextNumeric 4 When the cell is current, the cell allows only numeric text input. As
the text changes, the change event is called. The maxLength
property can be set for the cell, to control the amount of text that
can be entered. The default value is 0 (that is, there is no limit).
Use the decimals property if you want to enter decimal places into
cells that accept numeric text input.

InputType_Default 5 Returns the cell, column, row, or sheet to its default inputType
property setting. This constant is useful, for example, if you set a
column to InputType_None so that it is temporarily disabled, and
you later want to enable its input using the default input type.

InputType_SignedNumeric 6 Handles the entry of a signed numeric value in a table input field.
Use the decimals property if you want to enter decimal places into
cells that accept signed numeric input.

InputType_EditMask 7 The input control acts like an edit mask text box for input by default.
For details about setting the mask used for input for a cell, row,
column, or sheet, see the JadeEditMask class or the Table class
editMask property.

When using a numeric text box (the inputType property is set to InputType_TextNumeric), the following events
are still fired when the entered key is invalid.

Form::keyDown

TextBox::keyDown

Form::keyPress

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 279

EncycloWin - 2020.0.02

This enables the form to process keys such as the Enter key in the Form::keyDown or keyPress events and the
control to process these keys in its keyDown event, therefore allowing application users to use the numeric
keypad when a form requires a large amount of numeric data entry.

The inputType property applies to the current sheet, row, and column for the table.

Notes The accessMode property determines whether the inputType property is for the current sheet, cell,
column, or row is being accessed.

For a TextBox control, pressing the left arrow key when the vertical bar symbol (|) is in the left position moves the
focus one cell left. Similarly, pressing the right arrow key advances the focus to the next cell on the right when the
vertical bar symbol is at the end of the text.

When focused on a text or combo entry cell, the normal table cell movement functions controlled by arrow keys,
Home, End, Page Up, Page Down, and Enter keys may have specific meaning to the text or combo box. Use the Alt key
in combination with the navigation key to override the text box or combo box actions.

Any picture assigned to a cell with the inputType property set to a non-zero value is displayed only when that cell
does not have focus. Similarly, the cell alignment property is affected only when the cell does not have focus.

The check box type is always displayed with centered alignment.

The size of a row is automatically enlarged to fit the minimum size text or combo box.

When the inputType property value is set to InputType_ComboBox or InputType_TextBox, you can assign a
control object to the cell, to enable your logic to affect input from these controls.

The object is associated with the cell, row, or column by referencing the cellControl property when the input type
is set to text box or combo box.

Note If the cell, row, or column already contains an effective cellControl property value, the existing object is
returned.

When an object is associated with the default input associated with table cells of the required type, the control
object can then be manipulated from the logic of that control. This control receives neither focus nor
cellInputReady events.

When a cell is initialized to receive input from a default inputType property, the input control is set up as follows,
and any attempt to modify these properties results in undefined results.

The control position and size are set to cover the cell.

By default, the backColor, foreColor, and the font properties use the values associated with the current cell.

The alignment of the text box is set to the alignment of the cell.

The text in the text box text is set to the value of the text in the cell.

The maxLength property of the text box is set corresponding to the value of the inputType and decimals
properties of the cell.

The combo box is cleared.

The combo box is filled with the entries from the comboList property of the cell.

The listIndex property of the combo box is set corresponding to the text of the cell.

The focus is moved to the text box or the combo box.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 280

EncycloWin - 2020.0.02

The following examples show the use of the inputType property.

buttonAddColumn_click(btn : Button input) updating;
begin

if selectedColumn <> null then
table1.inputType := Table.InputType_TextBox;
table1.insertColumn(selectedColumn);
table1.clearAllSelected;
selectedColumn := null;
comboBoxColMoveTo.addItem("Move to Column " &

(comboBoxColMoveTo.listCount + 1).String);
comboBoxColumns.addItem((comboBoxColumns.listCount + 1).String);
refresh;

else
app.msgBox("You must select a column", "No column selected",

MsgBox_OK_Only);
return;

endif;
end;

foreach count in 1 to 10 do // allows decimal input of column 9 for 10 rows
table1.row := count;
table1.accessCell(count, 9);
table1.accessedCell.inputType := Table.InputType_SignedNumeric;
table1.accessedCell.decimals := 2;

endforeach;

insertMode
Type: Boolean

Availability: Read or write at any time

The insertMode property of the JadeEditMask class specifies whether the initial setting of the control is in Insert
or Overwrite mode. The default value of true indicates that characters are inserted into the text box as they are
entered (as they are for a standard TextBox control). If the value is false, the character at the caret position is
replaced (that is, Overwrite mode applies).

There is no visual indication of the mode that the user is in. If the user presses the Insert key and the control has
focus, the current insertMode is toggled and the change is reflected in the value of this property.

Notes Changing the value of the insertMode property in your logic or by the user does not affect any other
control.

This property has no effect when the character at the caret position is a prompt character (which is always
overwritten) or a literal character. If the same literal character is entered, the caret skips to the next character
position that can be entered and any other character is ignored.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 281

EncycloWin - 2020.0.02

integralHeight
Type: Boolean

Availability: Read or write at any time

When the integralHeight property of TextBox controls and ListBox controls is set to true, the control height is
determined by multiples of text height (that is, a multiple of the character size of the text displayed in that control).
When this property is set to false, the control height is not determined by the text height.

By default, the integral height of both single line and multiple line text box controls is set to false and the integral
height of list box controls is set to true.

Notes As the text box does not show partial text lines when the integralHeight property is set to false, the
control offsets the text area from the top (that is, any extra space appears at the top of the text box).

The integralHeight property is ignored if the parent of TextBox and ListBox controls has the alignChildren
property set.

itemBackColor
Type: Integer array

Availability: Read or write at run time only

The itemBackColor property contains a reference to the background color of each item in a ListBox control or
ComboBox control. This property contains an array of color values (integers) with the same number of items as
that returned by the listCount method in a list box control or combo box control.

Each entry in a list automatically assumes the background color assigned to the list box or combo box control by
using the backColor property. However, you can individually assign each entry its own value.

The following example shows the use of the itemBackColor property.

loadListBox() updating;
vars

obj : Object;
begin

app.mousePointer := self.MousePointer_HourGlass;
if currentDict <> null then

foreach obj in currentDict do
listInstances.addItem(obj.display);
listInstances.itemObject [listInstances.newIndex] := obj;
if listInstances.newIndex.isEven then

listInstances.itemBackColor[listInstances.newIndex] :=
LightYellow;

endif;
endforeach;

endif;
app.mousePointer := self.MousePointer_Arrow;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 282

EncycloWin - 2020.0.02

itemData
Type: Integer array

Availability: Read or write at run time only

The itemData property contains a reference to an array of integer values with the same number of items as that
returned by the listCount method. Each inserted entry in a ComboBox or ListBox control has an itemData
property value associated with it.

Use the itemData property to associate a specific number with each item in a combo box or list box. You can then
use these numbers in logic to identify the items. For example, you can use the identification number of an
employee to identify each employee name in a list box.

When you fill the list box, also fill the corresponding elements in the itemData property array with the employee
numbers.

Use the itemData property for an index into an array of data structures associated with items in a list box,
particularly when the list box is sorted. After the item is added to the control, use the return value of the addItem
property or the newIndex method to obtain the index at which the entry was added. (See also the itemObject
property.)

Note When you insert an item into a list by using the addItem or addItemAt method, an entry is also physically
inserted in the itemData property array and is initialized to zero (0).

The following example shows the use of the itemData property.

getProdNumber(): Integer;
vars

ref : Integer;
begin

ref := listProds.itemData[listProds.listIndex];
return ref;

end;

itemEnabled
Type: Boolean array

Availability: Read or write at run time only

The itemEnabled property allows individual items in a ListBox or ComboBox control to be disabled or enabled.

The itemEnabled property contains a reference to an array of Boolean values with the same number of items as
returned by the listCount method.

By default, each entry in a list is enabled. The entries must be specifically disabled from logic. An item that is
disabled has no impact on the logic that can be performed against it, only on the user actions for that entry in a list
box or combo box.

A disabled entry does not respond to mouse or keyboard actions, and its text appears grayed. No events are sent
when a disabled item is clicked. Using the arrow keys to move between entries in the list skips over disabled
items.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 283

EncycloWin - 2020.0.02

The code fragment in the following example shows the use of the itemEnabled property.

while count <= listbox.listCount do
listbox.itemEnabled[count] := true;
count := count + 1;

endwhile;

itemExpanded
Type: Boolean array

Availability: Read or write at run time only

The itemExpanded property enables the expansion (or collapse) status of each item in a ListBox control or a
ComboBox control to be obtained or set.

The itemExpanded property contains a reference to an array of Boolean values with the same number of items as
returned by the listCount method.

Expanding an item that is not visible automatically expands all of the parents of the entry so that it becomes
visible.

The itemExpanded property of an entry without subitems is always set to false. Setting the itemExpanded
property for such an entry has no effect. If the specified item has subitems, the itemExpanded property returns
whether the item has been expanded or is currently collapsed.

Setting this property to true results in the expansion of the subitems (if they are not already expanded). Setting this
property to false results in the hiding of all subitems (if they are not already collapsed).

The code fragments in the following examples show the use of the itemExpanded property.

while count < listOrg.listCount do
listOrg.itemExpanded [count] := true;
count := count + 1;

endwhile;

if listbox.itemExpanded[picIndex] then
// Remove all of the Retail Sale Items for this Category.
childIndex := listbox.findStringExact(picIndex, $ItemsForSale);
if listbox.itemExpanded[childIndex] then

zRemoveItemsFromList(childIndex);
endif;
// Remove all of the Tender Sale Items for this Category.
childIndex := listbox.findStringExact(picIndex, $ItemsForTender);
if listbox.itemExpanded[childIndex] then

zRemoveItemsFromList(childIndex);
endif;

endif;

Entries are not automatically expanded or collapsed. You have control over this process. In most cases, you need
to add the following logic to the pictureClick method.

list1.itemExpanded[picIndex] := not list1.itemExpanded[picIndex];

In this example, the picIndex value is the parameter that is passed to this method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 284

EncycloWin - 2020.0.02

itemForeColor
Type: Integer array

Availability: Read or write run time only

The itemForeColor property allows the text color of each item in a ListBox or ComboBox control to be assigned.
The itemForeColor property contains a reference to an array of integer color values (integer, 1-relative) with the
same number of items as that returned by the listCount method.

Each entry in the list automatically assumes the text color assigned to the control assigned by the foreColor
property. However, you can individually assign each item its own text value.

The following example shows the use of the itemForeColor property.

setColor(prod: Product) updating;
begin

if prod.inStock then
listProducts.itemForeColor[listProducts.newIndex] := Red;

else
listProducts.itemForeColor[listProducts.newIndex] := Gray;

endif;
if listProducts.newIndex.isEven then

listProducts.itemBackColor[listProducts.newIndex] := LightYellow;
endif;

end;

itemLevel
Type: Integer array

Availability: Read or write at run time only

The itemLevel property enables the hierarchical level of each item in a ListBox control or a ComboBox control to
be obtained or set.

The itemLevel property contains a reference to an array of integer values with the same number of items as
returned by the listCount method. The level of an item must be in the range 1 through 63. Setting this property is
ignored if the list box value of the sorted property is set to true.

The level to which an item is set is rejected if it creates an invalid hierarchy. The rules are:

The first entry in the list must have a level of 1.

The level that is set cannot be greater than the level of the prior entry + 1. If this were allowed, the set item
would have no immediate parent.

The level of the next entry cannot be greater than the set level + 1. If this were allowed, it would leave the
next entry without an immediate parent.

The expanded state of the changed entry is set to false. All the subitems that it inherits are collapsed and made
not visible. The changed item adopts a visibility that is implied by the expansion status of its parent.

Subitems that the entry lost because of the change of level adopt the visibility and expansion status derived from
their new parents.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 285

EncycloWin - 2020.0.02

The following example shows the use of the itemLevel property.

displayEmployees(emp: Employee;
level: Integer) updating;

vars
e : Employee;

begin
listOrg.addItem(emp.name);
listOrg.itemLevel[listOrg.newIndex] := level;
foreach e in emp.myEmployees do

displayEmployees(e, level + 1);
endforeach;

end;

itemObject
Type: Object array

Availability: Read or write at run time only, read-only when a collection is attached to a combo box or list box

The itemObject property enables you to store an object with each entry in a ListBox or ComboBox control, and
with each cell of a Table control. This then allows logic to retrieve that object when the user clicks on the entry. For
example, for each customer shown in a list, a reference to the Customer object can be stored with the list entry.

Each inserted entry in a ComboBox and ListBox control has an itemObject property value associated with it. The
itemObject property contains a reference to an array of object values with the same number of items as the
listCount method of a control.

Each cell of a table control has an itemObject property value associated with it.

For ComboBox and ListBox controls, use the itemObject property array indexed by the required entry. For Table
controls, the itemObject property refers to the currently selected cell defined by the sheet, row, and column
properties.

Notes When you insert an item into a list by using the addItem or addItemAt method, a null object entry is also
inserted in the itemObject property array.

As the object reference that is stored is of the Object class, it may then need to be cast to the required class so that
it can be used.

An itemObject reference is not a true collection but a wrapper that allows you to use the [] syntax when
referencing the window definition of a control (for example, table.itemObject[indx]) and in an iterator (for
example, foreach obj in listBox.itemObject). The Collection classes they point to are internal pseudo arrays (that
is, arrays of GUI-related information only in the JADE run time module), in which the only methods that are
implemented are the Collection class size and size64 methods, and the Array class at, atPut, and createIterator
methods. No other collection methods are implemented. (For details, see the ListBox, ComboBox, and Table
classes.)

To search row, column, or cell objects, use the findObject method.

The following example shows the use of the itemObject property.

bDelete_click(btn: Button input) updating;
vars

prod : Product;
company : Company;

begin

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 286

EncycloWin - 2020.0.02

if listProducts.listIndex = -1 then
app.msgBox("You must make a selection", "Error", 0);
return;

endif;
beginTransaction;

prod := listProducts.itemObject [listProducts.listIndex].Product;
delete prod;

commitTransaction;
end;

When the items in a combo box or list box are determined by using the listCollection method or displayRow
event method, the value of the itemObject property is automatically assigned to the collection entry associated
with the list entry. This value cannot be changed.

itemPicture
Type: Picture array

Availability: Read or write at run time only

The itemPicture property allows individual items in a ListBox control or ComboBox control to be assigned a
picture that is displayed just before the text and after any images drawn by using the hasPictures, hasTreeLines,
and hasPlusMinus properties.

Setting the value of this property to null clears the picture.

Note If you click on the itemPicture property, the list item receives the pictureDblClick or pictureClick event,
and the list item is not selected. Only when the list item text is clicked is the item selected.

itemPictureType
Type: Integer array

The itemPictureType property enables the type of picture of each item in a ListBox control or a ComboBox
control to be obtained or set. This property contains a reference to an array of integer values with the same
number of items as returned by the listCount method.

By default, the picture type of each entry in a list box is set automatically, according to whether it has subitems and
is expanded or not.

The settings of the itemPictureType property are listed in the following table.

ComboBox or ListBox Class Constant Value Description

ItemPictureType_Closed 0 Entry with subitems closed

ItemPictureType_Open 1 Entry with subitems open

ItemPictureType_Leaf 2 Entry with no subitems

The automatic value can also be determined by using the itemHasSubItems or itemExpanded method.

If the user wants to manually control which picture is displayed, the picture type of an entry can be set. However,
no automatic assignment of the picture is made for that entry from then on. This process could be used in
situations where the subitems are not loaded until the entry is expanded.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 287

EncycloWin - 2020.0.02

The following examples show the use of the itemPictureType property.

// Change picture to the open book
foreach count in 1 to listBoxCustomer.listCount do

listBoxCustomer.itemPictureType[count] := ListBox.ItemPictureType_Open;
endforeach;

loadListBox updating;
vars

prod : Product;
count : Integer;

begin
if app.myCompany.allProducts <> null then

foreach prod in app.myCompany.allProducts do
listInstances.addItem(prod.display);
count := 1;
if prod.logo <> null then

listInstances.itemPictureType[count] :=
ListBox.ItemPictureType_Leaf;

endif;
count := count + 1;

endforeach;
endif;

end;

itemSelected
Type: Boolean array

Availability: Read or write at run time only

The itemSelected property enables the selection status of each item in a ListBox control to be obtained or set.
The itemSelected property contains a reference to an array of Boolean values with the same number of items as
returned by the listCount method. Use this property when users can make multiple selections in a list box, to
quickly check which items in a list are selected. You can also use this property from logic to select or deselect
items in a list.

For details about making multiple selections in list boxes, see the multiSelect property.

If only one item is selected, you can use the listIndex property to get the index of the selected item. However, in a
multiple selection, the listIndex property returns the index of the item contained within the focus rectangle,
whether or not the item is actually selected.

When multiple items are currently selected, the value of the listIndex property is the last of the items selected. One
or more items can be selected, with the value of the listIndex property being none of those items (for example,
when you select an item, press the Shift key and select another item, then press the Ctrl key and remove the
selection of one of the previously selected items).

itemText
Type: String array

Availability: Read or write at run time only

The itemText property enables you to access the text of an item in a ListBox or ComboBox control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 288

EncycloWin - 2020.0.02

The item of the list box or the combo box control must have been added by using the addItem or addItemAt
method, or by associating a collection with a list box or a combo box. The index of the first item is 1 and the index
of the last item is listCount method.

Initially, list boxes and combo boxes contain an empty list. Changing the text of an item in a sorted list box or
combo box causes the item to be sorted into its correct sorted position. Its new (or unchanged) position can be
obtained by using the newIndex method.

Note The text property returns the same as the itemText property for the currently selected item.

The code fragment in the following example shows the use of the itemText property.

if listFaults.itemText[listFaults.listIndex] <> "" then
bCloseFault.enabled := true;

endif;

language
Type: Integer[4]

Availability: Read or write at run time only

The language property of the JadeTextEdit control contains the programming language used in the text editor
and selects the lexical analyzer that is used to calculate text styling and fold points.

The lexical analyzers for all currently Scintilla-supported languages are built into the JadeTextEdit control.
However, only a small number of the most-common languages have the necessary text styles and keywords
included in the global settings table.

The fully supported languages are represented by the JadeTextEdit class constants listed in the following table.

Constant Value Constant Value

SCLEX_BASH 62 SCLEX_BATCH 12

SCLEX_CONF 17 SCLEX_CPP 3

SCLEX_CSS 38 SCLEX_DIFF 16

SCLEX_HTML 4 SCLEX_JADE 65

SCLEX_JAVA 65539 SCLEX_JAVASCRIPT 131075

SCLEX_MAKEFILE 11 SCLEX_PERL 6

SCLEX_PROPERTIES 9 SCLEX_PS 42

SCLEX_PYTHON 2 SCLEX_TEXT 1 (the default)

SCLEX_VB 8 SCLEX_VBSCRIPT 28

SCLEX_XML 5

For more details, see "Supported Languages" under "Using the JadeTextEdit Control", earlier in this document.

For details about the full set of languages that are understood by the Scintilla-based SciTE text editor application,
see http://scintilla.sourceforge.net/SciTEDoc.html.

http://scintilla.sourceforge.net/SciTEDoc.html

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 289

EncycloWin - 2020.0.02

languageId
Type: Integer

Availability: Read-only at any time

The languageId property of the JadeEditMask control contains the locale associated with the language identifier
to be used by the control.

The default value of zero (0) indicates that the control uses the current locale of the user.

Set this property to a specific language identifier if you want to force the data entry to always use the locale
associated with that language.

largeChange
Type: Integer

Availability: Read or write at any time

The largeChange property contains the amount of change (in pixels) to the value property in a ScrollBar control
when the user clicks the area between the scroll box and scroll arrow.

You can specify any valid integer greater than the value of the min property and less than the value of the max
property. By default, the largeChange property value is 100.

The Windows environment automatically sets proportional scrolling increments for scroll bars on form windows,
combo boxes, and list boxes, based on the amount of data in the control. For a scroll bar control, however, you
must specify these increments.

Use the largeChange property to set scrolling increments appropriate to how the scroll bar is being used.

As scroll bars use the Windows scroll bar API calls that set the thumb size to a size that reflects the size of the
scroll bar range and the value of the largeChange property, the larger the value of the largeChange property, the
larger the thumb size.

The following example shows the use of the largeChange property.

buttonFillRight_click(btn: Button input) updating;
vars

count : Integer;
start : Time;
iter : Iterator;
theArray : ObjectArray;

begin
app.mousePointer := self.MousePointer_HourGlass;
start := app.clock.Time;
listBoxRight.clear;
textBoxStart.text := null;
iter := app.myCompany.allProducts.createIterator;
foreach count in 1 to listBoxRight.lines do

iter.next(myProduct);
listBoxRight.addItem(myProduct.name);

endforeach;
if theArray = null then

create theArray transient;
else

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 290

EncycloWin - 2020.0.02

theArray.clear;
endif;
app.myCompany.allProducts.copy(theArray);
listBoxScrollBar.min := 1;
listBoxScrollBar.value := 1;
listBoxScrollBar.max := theArray.size - listBoxRight.lines - 1;
listBoxScrollBar.largeChange := (theArray.size/20).Integer;

epilog
labelRight.caption := "Time Taken := " & ((app.clock.Time -

start).Integer/1000).String & " Seconds";
app.mousePointer:= self.MousePointer_Arrow;

end;

Typically, you set the largeChange property in the JADE development environment Painter. You can also reset it
in logic at run time when the scrolling increment must change dynamically.

Use the max and min properties to set the maximum and minimum ranges of a scroll bar control.

left
Type: Real

Availability: Read or write at any time

The left property of the Window class contains the distance between the internal left edge of an object and the left
edge of the client area of the container (the non-border area).

When the parent is a Form class or a BaseControl or Picture control, the left position is also offset by the amount
that the parent is scrolled. The left property for a form is always expressed in pixels.

Note If the value of the left property plus the value of the width property is greater than 32,767 pixels, the
resulting window extents may be unpredictable.

For controls, the left property is expressed in units controlled by the scaleMode property of the parent of the
control. The default value of the scaleMode property is pixels. (See also the parentAspect property.)

The value for the left property changes as the object is moved by the user or by logic. Changing the left or top
dimension of a form does not cause a form move event.

The following examples show the use of the left property.

pictureEnlarged_mouseMove(pict: Picture input;
button: Integer;
shift: Integer;
x, y: Real) updating;

begin
if movePic = true then

pictureEnlarged.move(pictureEnlarged.left + (x - moveX),
pictureEnlarged.top + (y - moveY),
pictureEnlarged.width, pictureEnlarged.height);

pictureEnlarged.refreshNow;
endif;

end;

setTableAndScroll();
begin

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 291

EncycloWin - 2020.0.02

if rowsVisible - 1 < theCollectionSize then
theTableScroll.height := theTable.height;
theTableScroll.max := theCollectionSize;
theTableScroll.largeChange := rowsVisible - 1;
if theTableScroll.visible then

theTableScroll.left := theTable.left + theTable.width - 2;
else

theTableScroll.left := theTable.left + theTable.width - 2;
theTableScroll.value := 1;

endif;
elseif theTableScroll.visible then

theTable.width := theTable.width + theTableScroll.width;
theTableScroll.visible := false;

endif;
end;

When multiple monitors are running on a workstation and a form is saved in the JADE Painter, the values of the
left and top properties are converted to be relative to the top and left of the primary monitor.

leftColumn
Type: Integer

Availability: Read or write at run time

The leftColumn property contains the column that is displayed at the left edge of the non-fixed area of the current
sheet of a Table control. This value may be decreased automatically by the control if lower values can still display
the remainder of the columns.

The leftColumn property has no meaning if the display does not require a scroll bar.

Changing the row or column property does not change the rows or columns that are displayed, as these are
changed only by the leftColumn and topRow properties.

The following example shows the use of the leftColumn property.

convertPositionToColumn(xPos: Real): Integer updating;
// Return the table column whose left and width positions cover the
// x coordinate passed
vars

originalColumn : Integer;
ix : Integer;

begin
originalColumn := theTable.column;
ix := theTable.leftColumn;
while ix <= theTable.columns do

theTable.column := ix;
if theTable.positionLeft <= xPos then

if xPos <= (theTable.positionLeft +
theTable.columnWidth[ix]) then

theTable.column := originalColumn;
return(ix);

endif;
endif;
ix := ix + 1;

endwhile;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 292

EncycloWin - 2020.0.02

theTable.column := originalColumn;
return(0);

end;

leftIndent
Type: Integer

Availability: Read or write at any time

The leftIndent property of the JadeRichText control contains the distance (in pixels) between the left edge of the
control and the left edge of the current selection or text added after the insertion point. If multiple paragraphs are
selected and each has a different value, the property contains ParagraphFormat_Undefined (#80000000).

The default value of zero (0) indicates that the control is not indented.

lineWidth
Type: Integer

Availability: Read or write at any time

The lineWidth property of the JadeRichText control contains the maximum width (in pixels) of a line of text.

When this property is set to the default value of zero (0), the width of the line is the same as the width of the control
width.

If the line width is greater than the width of the control, horizontal scrolling is enabled.

listIndex
Type: Integer

Availability: Not available at design time, read or write at run time

The listIndex property contains the index of the currently selected item in the ComboBox or ListBox control. The
settings of the listIndex property are listed in the following table.

Value Description

ItemNotFound (-1) Indicates no item is currently selected (the default). For a combo box control, it also
indicates the user has entered new text into the text box portion of the combo box.

n A number indicating the index of the currently selected item.

The text property and itemText property [list1.listIndex] return the string for the currently selected item.

The first item in the list is listIndex 1, and the last entry is the same number of items as that returned by the
listCount method.

Changing the listIndex property from logic does not generate a click event.

Setting the listIndex property from logic changes the portion of the list box that is displayed. (You can also use the
topIndex property to control the entries that are shown to the user.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 293

EncycloWin - 2020.0.02

When multiple items are currently selected, the value of the listIndex property is the last of the items selected. One
or more items can be selected, with the value of the listIndex property being none of those items (for example,
when you select an item, press the Shift key and select another item, then press the Ctrl key and remove the
selection of one of the previously selected items).

For details about automatically controlling a ComboBox control assigned to a Table control as a cellControl
property (for example, when performance is an issue when running in JADE thin client mode over a slow link), see
the Control class automaticCellControl property.

The following example shows the use of the listIndex property.

listProducts_dblClick(listBox: ListBox);
vars

pd : ProductDisplay;
begin

if listProducts.itemText[listProducts.listIndex] <> "" then
create pd;
pd.fault := app.myCompany.allProducts.getAtKey(getProdNumber);
pd.centreWindow;
pd.showModal;

endif;
end;

listObject
Type: Object

Availability: Not available at design time, read or write at run time

The listObject property contains a reference to the associated object of the currently selected item in the
ComboBox or ListBox control.

Setting the listObject property selects the entry associated with the requested object. This property would
normally be used only when a collection is associated with the combo box or list box.

The listObject property returns the itemObject property value of the currently selected list entry. The value that is
returned is equivalent to:

obj := list1.itemObject[list1.listIndex];

If the value of the listIndex property is -1, a null object is returned.

Setting the listObject property value selects the first list entry where the itemObject property value equals the
listObject property object. If there is no such list entry, an exception is raised. The value of the listIndex property is
set to the selected list entry. When multiple items are currently selected, the value of the listIndex property is the
last of the items selected. One or more items can be selected, with the value of the listIndex property being none
of those items (for example, when you select an item, press the Shift key and select another item, then press the
Ctrl key and remove the selection of one of the previously selected items).

Setting the listObject property is equivalent to:

foreach indx in 1 to list1.listCount do
if obj = list1.itemObject[indx] then

list1.listIndex := indx;
return;

endif;
endforeach;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 294

EncycloWin - 2020.0.02

Changing the listObject property (and therefore the listIndex property) from logic does not generate a click event.
Setting the listObject property from logic does not change the portion of the list box that is displayed. Use the
topIndex property to control the entries that are shown to the user.

The following examples show the use of the listObject property.

buttonFillLeft_click(btn: Button input) updating;
vars

start : Time;
count : Integer;

begin
app.mousePointer := self.MousePointer_HourGlass;
start := app.clock.Time;
count := app.myCompany.allProducts.size;
listBoxLeft.listCollection(app.myCompany.allProducts, true, 0);
listBoxLeft.listObject := listBoxLeft.itemObject [count];
labelLeft.caption := "Time Taken := " & ((app.clock.Time -

start).Integer/1000).String & " Seconds";
app.mousePointer := self.MousePointer_Arrow;

end;

groupBoxWeb.visible := false;
website := listBox1.listObject.Customer.customerWebSite;
if website <> null and currentSession <> null then

groupBoxWeb.caption := "Click to access Web Site";
labelWebSite.caption := "http://" & website;
labelWebSite.hyperlink := "http://" & website;

else
groupBoxWeb.caption := "No Web Site registered";
labelWebSite.caption := null;
labelWebSite.hyperlink := null;

endif;
...

listWidth
Type: Integer

Availability: Read or write at any time

The listWidth property contains the width (in pixels) of the drop-down list box portion of the ComboBox control. By
default, the list is the same width as the combo box (that is, listWidth = 0).

Setting this property to a value greater than zero (0) sets the width of the drop-down list to that number of pixels.
For example, if a combo box contains the following list, the combo box only needs to be wide enough to show the
code value.

N – None
S – Single
M - Married

You can use the listWidth property to set the width of the drop-down list so that it displays the full text of each item
in the list.

Note The listWidth property does not apply to a simple (Style_Simple) or to a spin (Style_SpinBox) style
combo box. The property value is reset to zero (0) for combo boxes of these styles.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 295

EncycloWin - 2020.0.02

markerMargin
Type: Boolean

Availability: Read or write at any time

The markerMargin property of the JadeTextEdit control specifies whether the marker margin containing
linemarks is displayed in the text editor.

The default value is false. When you set the value of this property to true, the default line margin width is 20
pixels. Use the marker.margin.width named attribute to examine and change the margin width. Clicking in this
margin performs line selection

mask
Type: Integer

Availability: Read-only at any time

The mask property of the JadeEditMask control contains a concatenated series of symbols that define the
characteristics of the editing requirement and the actions to be taken. The mask property enables you to define
the edit mask:

In the JADE Painter at application development time, by using the Properties dialog to define a mask of the
JadeEditMask control selected on the Painter form, specifying the edit mask that you require for the control
in the mask property on the Specific sheet of the dialog

Dynamically at run time, by constructing it in your JADE application logic

Note A string of concatenated symbols cannot contain spaces between the symbols.

This property can be translated when the value of the Schema class formsManagement property is
FormsMngmt_Single_Multi (2).

The valid edit mask symbols are listed in the following table. (Note that the MMM month abbreviation for dates in
the Symbol column indicates the three-character month abbreviation. Although a locale may have more than
three characters for the full abbreviation, JADE uses only the first three.)

Symbol Description Comments

A Alpha (entry required). a through z or A through Z.

a Alpha character (entry optional). a through z or A through Z.

9 Numeric (entry required). 0 through 9.

Numeric (entry optional). 0 through 9.

C Character (entry required). Any character.

c Character (entry optional). Any character.

ddMMyy Date with 2-digit year and numeric
month.

Example: 230901. The date is expected in
current locale order.

ddMMMyy Date with 2-digit year and
three-character alpha month
abbreviation.

Example: 23Sep01. The date is expected in
current locale order and month name format.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 296

EncycloWin - 2020.0.02

Symbol Description Comments

ddMMyyyy Date with 4-digit year and numeric
month.

Example: 23092001. The date is expected in
current locale order.

ddMMMyyyy Date with 4-digit year and
three-character alpha month
abbreviation.

Example: 23Sep2001. The date is expected in
current locale order and month name format.

dd<d>MM<d>yy Date with 2-digit year and numeric
month. Fields separated by the same
delimiter (any character).

Example: 23/09/01. The date is expected in
the current locale order.

dd<d>MMM<d>yy Date with 2-digit year and
three-character alpha month
abbreviation. Fields separated by the
same delimiter (any character).

Example: 23/Sep/01. The date is expected in
current locale order and month name format.

dd<d>MM<d>yyyy Date with 4-digit year and numeric
month. Fields separated by the same
delimiter (any character).

Example: 23/09/2001. The date is expected in
current locale order.

dd<d>MMM<d>yyyy Date with 4-digit year and
three-character alpha month
abbreviation. Fields separated by the
same delimiter (any character).

Example: 23/Mar/2001. The date is expected
in current locale order and month name
format.

dd Day of the month. Separate day number field.

MM Month number. Separate month number field.

MMM Three-character alphanumeric
abbreviation of the month.

Separate month name field in current locale
format.

yy 2-digit year. Separate 2-digit year field.

yyyy 4-digit year. Separate 4-digit year field.

hh Hour. Hour number in the range 0 through 23.

mm Minutes. Minute number in the range 0 through 59.

ss Seconds. Second number in the range 0 through 59.

> Uppercase next character. Takes effect only if the next mask character is
A, a, C, or c.

>> Uppercase all characters following in
this text box

Applies only to mask characters A, a, C, or c.
field.

< Lowercase next character. Takes effect only if the next mask character is
A, a, C, or c.

<< Lowercase all characters following in
this text box field.

Applies only to mask characters A, a, C, or c.

\ Treat the next character as a literal. To insert a \ character into the mask, use \\.
Similarly, to enter a specific locale-dependent
character (for example, use \: for :).

" Start of a text string terminated by the
next double quote " symbol.

Example: ">". To insert a quote character, use
\". This symbol is the double quote character
only.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 297

EncycloWin - 2020.0.02

Symbol Description Comments

H<numeric> Height of this control (label or text
box) field.

Numeric can be any length. Field terminated
by the next non-numeric value.

L<numeric> Left position of this control (label or
text box) field.

Numeric can be any length. Field terminated
by the next non-numeric value.

T<numeric> Top position of this control (label or
text box) field.

Numeric can be any length. Field terminated
by the next non-numeric value.

W<numeric> Width of a segment (label or text box)
of the mask, except for the last
segment, which always extends to the
right-hand edge of the control.

Numeric can be any length. Field terminated
by the next non-numeric value; for example,
W30"Date"@dd/MMM/yyyy, where the label
is created with a width of 30.

R Field is right-aligned. Default value is left-aligned.

. Decimal point. Actual character expected is locale-
dependent.

- Negative sign. Actual character expected is locale-
dependent.

, Numeric separator. Separator is automatically inserted into the
numeric as the number is entered. The actual
character is locale-dependent.

/ Date separator. Actual character is locale-dependent.

: Time separator. Actual character is locale-dependent.

$ Currency symbol. Actual character is locale-dependent.

| List of valid characters that can be
entered for the character position.

For example: 'A|abc|' means only a, b, or c
can be entered into the alpha field. Can only
follow edit mask types A, a, C, or c.

[Start of numeric range for previous #
or 9 numeric field. Must be an integer
type field.

For example: '##9[0-255]' means the 3-digit
numeric field must be in the range 0 through
255.

] End of numeric range field else a
literal if there was no corresponding [
symbol.

See above (that is, the comments for the [
symbol).

@ End of current label or text box. A new
field is begun. Previous field is a label
if it consists only of literals.

For example, '999@-@999' to define two
numeric fields split by a dash character label.

Any other symbol Treated as a literal. For details, see the first item in the following
list.

When using the JadeEditMask class mask property, note the following points.

The Windows Control Panel setting is used to convert a two-digit year into a four-digit year for a two-digit edit
mask year of 'yy' when the value of the EnhancedLocaleSupport parameter in the [JadeEnvironment]
section of the JADE initialization file is set to true. By default, years:

00 through 29 become 2000 through 2029

30 through 99 become 1930 through 1999

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 298

EncycloWin - 2020.0.02

If the value of the EnhancedLocaleSupport parameter is false (the default), the year is calculated using the
current century.

As JADE reserves the right to implement additional features in the future that will give special meaning to
other symbols, it is better to enclose any text box literal that is not in the previous table in double quote
symbols (that is, "") or place the \ backslash symbol in front of the literal, to avoid future conflict.

Having a mask does not guarantee that the data is valid, as a user might enter only part of the data for a field
and never complete the rest. For more details, see the isValid and isEmpty methods and the validate event
method.

The user cannot create a date with an invalid day number and month combination. For example, if a user
enters 31 and then attempts to enter a month of 4 or Jun, the entry is rejected.

For a date that has an abbreviated month, the entered characters must appear somewhere in a month name
for the month to be valid for a locale-dependent month.

An invalid day number cannot be entered for a month that has been entered, with the exception of 29th
February in leap years. The validity of the leap year cannot be known until entry of the year is completed. For
example, entering 29/02/201 is not rejected because the completion of the year is still uncertain (that is, the
final year value has yet to be entered).

Two-digit year fields must have both digits entered before they are considered complete. Similarly, four-digit
year fields must have all four digits entered before they are considered complete.

For dates with alphanumeric month abbreviations, the first character of the month is always converted to
uppercase (for example, aug is converted to Aug).

If the mask has a label field in the control, by default the text of that label is sized to fit.

The next field is displayed directly after the label text, which is drawn transparently on the JadeEditMask
control at paint time, by using the font of the control.

Areas of the JadeEditMask control that are not text boxes are drawn using the background color of the
parent.

Automatically sized text box fields are created with a size that can accommodate the largest possible text
entry in the field. This is necessary because a text field with an edit mask of 'aaa', for example, with text of
WWW takes up considerably more space than a field with iii text. In addition, because the prompt character
requires more space than the character for which it is prompting, the size can be larger than required.

Tabbing or setting the focus to a JadeEditMask control gives the focus to the first defined text box that can
have data entered. For a control with multiple text boxes, the Tab key operates as though those text boxes
were inserted between the JadeEditMask control and the next control in the tab order of the form (in order of
their definition).

Creating a text box containing all literal values is valid and is treated effectively as read-only. These text
boxes, which cannot have values entered, are ignored when focus is assigned and when tabbing between
text boxes, unless the control does not contain any text box field that can have data entered.

For numeric fields, the end of the field is defined as the first non-numeric edit character, an optional numeric
value following a mandatory numeric value, or an optional numeric value following a mandatory decimal
place. For example, '#99#9' defines the ##9 and #9 numeric fields while '#99.9#9' defines the #99.9 and #9
numeric fields.

Do not use right-aligned text box fields for anything other than fields that accept only numeric data, as the
caret remains at the same position. If your field has embedded literal characters, the arrow key would need to
be used to position the caret at the next entry segment.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 299

EncycloWin - 2020.0.02

If no mask is defined, the control acts as a normal TextBox control.

max
Type: Integer

Availability: Read or write at any time

The max property of the ScrollBar control contains a scroll bar position maximum value property setting when the
scroll box is in its lowest position (the vertical scroll bar control) or farthest right position (horizontal scroll bar
control). You can specify any valid integer. The default setting is 32,767.

The Windows environment automatically sets ranges for scroll bars proportional to the contents of forms, combo
boxes, and list boxes. For a horizontal scroll bar control, however, you must specify these ranges.

Use the max property to set a range appropriate to how the scroll bar control is used; for example, as an input
device or as an indicator of speed or quantity. Typically, you set the max property in the JADE development
environment. You can also set it in logic at run time, if the scrolling range must change dynamically.

The code fragment in the following example shows the use of the max property.

app.myCompany.allProducts.copy(theArray);
listBoxScrollBar.min := 1;
listBoxScrollBar.value := 1;
listBoxScrollBar.max := theArray.size - listBoxRight.lines - 1;
listBoxScrollBar.largeChange := (theArray.size/20).Integer;

Use the largeChange property to set the maximum scrolling increments for a scroll bar control.

If the max property is set to a value less than the value of the min property, the value of the max property is then
set at the farthest left or highest position of a horizontal or vertical scroll bar, respectively.

maxButton
Type: Boolean

Availability: Read or write at any time

The maxButton property specifies whether a form has a Maximize button.

The settings of the Form class maxButton property are listed in the following table.

Value Description

true The form has a Maximize button (the default).

false The form does not have a Maximize button.

A Maximize button enables users to enlarge a form window to full-screen size.

Setting the value of the maxButton property to true causes a form with the borderStyle property set to
BorderStyle_None (0) to adopt a borderStyle value of BorderStyle_Single (1).

The form also displays a caption area, regardless of whether the form caption is empty. This property should not
be changed when an MDI child form is maximized.

A Maximize button automatically becomes a Restore button when a window is maximized. Minimizing or
restoring a window automatically changes the Restore button back to a Maximize button.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 300

EncycloWin - 2020.0.02

Maximizing a form at run time generates a resize event. The windowState property reflects the current state of the
window. If you set the windowState property to WindowState_Maximized (2), the form is maximized
independently of whatever settings are in effect for the maxButton and borderStyle properties.

maximumHeight
Type: Integer

Availability: Read or write at any time

The maximumHeight property of the JadeDockBase class contains the maximum height (in pixels) of the control.
Use this property if you want to prevent users from resizing the control over the specified height. (For details about
setting a maximum width, see the maximumWidth property.)

The default value of this property is zero (0), with values in the range zero (0) through 32767 pixels permitted. If
the property value is zero (0), the property is ignored and has no effect.

The maximumHeight property applies only to dock controls that are aligned horizontally (that is, when the
alignContainer property value is set to AlignContainer_AllHorizontal, AlignContainer_Bottom, or
AlignContainer_Top); otherwise the property value is ignored.

The maximumHeight property controls the maximum height of the control when:

The user drags the horizontal resize bar below the control

Assigning a height to the control from logic

Assigning a height to the control when affected by a parent height resize

Assigning a height to the control when affected by a height change of another control that is aligned
horizontally

The value of the maximumHeight property cannot be less than the value of the minimumHeight property unless
the maximumHeight property is set to the default value of zero (0). If the values of the maximumHeight and
minimumHeight properties are the same, no resize bar is displayed below the control, even if the value of the
showResizeBar property is true.

The value of the maximumHeight property has no impact on the allowed sizes of the parent form on which it
appears.

Applies to Version: 2016.0.01 and higher

maximumWidth
Type: Integer

Availability: Read or write at any time

The maximumWidth property of the JadeDockBase class contains the maximum width (in pixels) of the control.
Use this property if you want to prevent users from resizing the control over the specified width. (For details about
setting a maximum height, see the maximumHeight property.)

The default value of this property is zero (0), with values in the range zero (0) through 32767 pixels permitted. If
the property value is zero (0), the property is ignored and has no effect.

The maximumWidth property applies only to dock controls that are aligned vertically (that is, when the
alignContainer property value is set to AlignContainer_AllVertical, AlignContainer_Left, or AlignContainer_
Right); otherwise the property value is ignored.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 301

EncycloWin - 2020.0.02

The maximumWidth property controls the maximum width of the control when:

The user drags the vertical resize bar at the right of the control

Assigning a width to the control from logic

Assigning a width to the control when affected by a parent width resize

Assigning a width to the control when affected by a width change of another control that is aligned vertically

The value of the maximumWidth property cannot be less than the value of the minimumWidth property unless
the maximumWidth property is set to the default value of zero (0). If the values of the maximumWidth and
minimumWidth properties are the same, no resize bar is displayed on the right of the control, even if the value of
the showResizeBar property is true.

The value of the maximumWidth property has no impact on the allowed sizes of the parent form on which it
appears.

Applies to Version: 2016.0.01 and higher

maxLength
Type: Integer

Availability: Read or write at any time

The maxLength property contains the maximum length of text that can be entered into a TextBox control or the
text box portion of a ComboBox control, to limit the text entry. (For details about automatically moving focus to the
next control in the tab order of a form when a user enters the final character into a text box at the maximum text
position, see the TextBox class autoTab property.)

For a Table control, the maxLength property contains the amount of text that can be entered into a cell that has
the inputType property set to InputType_TextBox (2), InputType_TextNumeric (4), or InputType_
SignedNumeric (6).

The Table control accessMode, accessedSheet, accessedRow, accessedColumn, or accessedCell property
determines whether the maxLength property for the current sheet, cell, column, or row is being accessed.

The settings of the maxLength property are listed in the following table.

Value Description

0 No limit on how much text can be entered except for the limit imposed by Windows

n Maximum number of characters that can be entered in the text box

Setting the value of the maxLength property for a text box control is rejected when the dataType property of a text
box control is set to a numeric type when the current text in the text box does not conform to the rules defined by
the current dataType, decimals, and maxLength properties.

The limit is not imposed on changes to the text made by logic.

Note Extra room should be assigned for a text box when the dataType property allows decimals (for the '.'
character) and a signed numeric (for the '-' sign).

An Enter key press counts as two characters.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 302

EncycloWin - 2020.0.02

The maxLength property of the JadeRichText control contains the maximum number of characters, including
spaces, that can be entered or pasted into the control. The default value of zero (0) indicates a pre-imposed limit
of 65,534 for the maximum number of characters that can be entered or pasted. (Note that an embedded object
counts as one character long.)

Note JadeRichText controls can contain formatted data and embedded content making it expensive to check
whether the amount of data exceeds the value of the maxLength property for large amounts of text.

A value of the maxLength property less than or equal to 256 limits is an absolute limit.

A value of the maxLength property greater than 256 is only an approximate limit. To avoid making an assignment
to a fixed-length String attribute that raises a 1035 "String too long" exception, first determine the length of the
string, as shown in the following code fragment.

num := jadeRichText.text.length;

mdiChild
Type: Integer

Availability: Read or write at development time, read-only at run time

The mdiChild property of the Form class specifies whether a form is displayed as an MDI child form inside an MDI
frame form. Use this property when creating a Multiple Document Interface (MDI) application.

At run time, forms with this property set to MdiChild_IsMdi (2) are displayed inside an MDI form. An MDI child form
can be maximized, minimized, and moved inside the parent MDI form (if the minButton and maxButton property
values are true).

The settings of the mdiChild property are listed in the following table.

Form Class Constant Value Description

MdiChild_UseAppDefault 0 Use the value of the defaultMdi property for the application to decide
whether a form create results in an MDI form or a standalone form
(the default)

MdiChild_NotMdi 1 Form create results in a non-MDI form

MdiChild_IsMdi 2 Form create results in an MDI form

The mdiChild property can then be used to provide the user with the choice of running the application as MDI
forms when forms that do not specifically have to be MDI forms are assigned the default mdiChild property value.

Setting the application preference at startup time then runs those forms as MDI or standalone forms.

Set this property to a non-default value in the JADE development environment only if it is specifically required to
run MDI or standalone forms. For example, forms shown modally must have a resulting mdiChild property value of
MdiChild_NotMdi (1), otherwise the form could be created as MDI and then the modal status is ignored, as it
cannot be converted after creation.

When working with MDI child forms, keep the following in mind.

At run time, when an MDI child form is given the focus, its caption is combined with that of the parent frame.
Its menu also replaces the MDI form menu of the parent.

In the JADE development environment, an MDI child form is displayed like any other form, as the form is
displayed inside the parent form only at run time.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 303

EncycloWin - 2020.0.02

MDI child forms cannot be modal. The showModal method on a form declared as an MDI child form raises an
exception. For more details, see "Windows Events and JADE Events", later in this document.

The Windows environment controls the placement of MDI child forms unless you specifically set the
placement in the load event of the form.

The MDI frame form is automatically loaded for the first MDI child. If the MDI frame form is the default
(supplied by jade.exe), it is unloaded when its last MDI child is unloaded.

mdiClientScrollHorzPos
Type: Integer

Availability: Read or write at run time only

The mdiClientScrollHorzPos property of the Form class contains the horizontal scroll positions of the MDI client
windows of a form. When a form is built as an MDI frame, it also automatically creates a child client window that
covers the non-border area of the frame. Child MDI forms are placed inside this client window. (An MDI frame is a
special type of form that can contain one or more MDI child forms.)

If an MDI child form does not fit within the bounds of this client window, scroll bars are automatically added to the
MDI client window.

The scroll positions are in pixels and are always relative to zero (0). The scroll range is set automatically by
Windows, so that all parts of all child forms scroll into view.

Notes The zero left position is changed by Windows when the MDI client window is scrolled if there is unused
space to the left of the forms displayed. The scroll bars are removed if the displayed forms fit within the visible MDI
client window.

Windows may adjust any value that is set (rounded to internal increments).

This property can be accessed from both the MDI Frame and any MDI child forms.

Setting a scroll position to a value less than zero (0) results in 0. Setting a value greater than the maximum scroll
range value results in the maximum position being selected.

mdiClientScrollVertPos
Type: Integer

Availability: Read or write at run time only

The mdiClientScrollVertPos property of the Form class contains the vertical scroll positions of the MDI client
windows of a form. When a form is built as an MDI frame, it also automatically creates a child client window that
covers the non-border area of the frame. Child MDI forms are placed inside this client window. (An MDI frame is a
special type of form that can contain one or more MDI child forms.)

If an MDI child form does not fit within the bounds of this client window, scroll bars are automatically added to the
MDI client window.

The scroll positions are in pixels and are always relative to zero. The scroll range is set automatically by Windows,
so that all parts of all child forms scroll into view.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 304

EncycloWin - 2020.0.02

Notes The zero (0) top position is changed by Windows when the MDI client window is scrolled if there is
unused space above the forms displayed. The scroll bars are removed if the displayed forms fit within the visible
MDI client window.

Windows may adjust any value that is set (rounded to internal increments).

This property can be accessed from both the MDI Frame and any MDI child forms.

Setting a scroll position to a value less than zero (0) results in 0. Setting a value greater than the maximum scroll
range value results in the maximum position being selected.

mdiFrame
Type: Boolean

Availability: Read or write at any time, but changing the value after the form has been built has no impact

The mdiFrame property of the Form class causes the form to always be built as an MDI frame form when the
value is set to true, regardless of the setting of the mdiFrame property of the Application class. An MDI frame is a
special type of form that can contain one or more MDI child forms.

By default, MDI child forms are placed in a default MDI frame supplied automatically by JADE.

The mdiFrame property of the Application class can be used to control which form is the next MDI frame. Any MDI
child forms built after this point are placed in that MDI frame. If the MDI frame form is not already active as an MDI
frame, it is automatically created and displayed when the MDI child form is created and displayed. The application
can have any number of currently active MDI frames.

Notes An MDI frame automatically creates a child client window that covers the non-border area of the frame
when the first MDI child form is created. The child MDI forms are placed inside this client window. If the MDI frame
is defined with controls, the child client window is automatically placed into an empty area of the form.

An MDI frame form has sizable borders, regardless of the borderStyle property value for the form in Painter.

The moveMdiClient method for forms enables client windows to be positioned as required; for example, below
toolbars and above status lines. Call the moveMdiClient method from the resize method of the form.

mdiPinned
Type: Boolean

Availability: Read and write at run time

The mdiPinned property of the Form class specifies whether the MDI child form is pinned. The default value is
false.

Applies to Version: 2020.0.01 and higher

mediaData
Type: Binary

Availability: Read or write at any time

The mediaData property contains the data associated with the current medium of the MultiMedia class. The
default value is null.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 305

EncycloWin - 2020.0.02

If the mediaName property is set at development time and represents a file, the mediaData binary property holds
the contents of that file, and the mediaName property is no longer relevant, as the contents of the file have all
been copied to the mediaData property.

Setting the value of the mediaData property to a binary value is equivalent to setting the mediaName property to
a file containing that binary data. Any existing mediaData or mediaName property value is discarded. Each
available device driver examines the data in turn, until it is recognized as being of a format handled by that driver.
It is then loaded ready for playing.

If the data is not recognized or accepted by any device driver, an exception is raised.

If the value of the mediaName property represents a device type (for example, cdaudio) and not a file, this
property returns null.

If the value of the mediaName property represents a file, the complete file is read and loaded into the mediaData
binary property and then returned to the JADE logic. You should therefore avoid accessing the mediaData
property unless necessary, particularly for large files. (For example, if you have a 600M byte audio file, you should
use the mediaName property so that the complete file does not have to be loaded into the JADE database but can
be accessed from the device.)

Caution JADE handles only binary data that has a length less than the maximum database cache size, so an
attempt to store large files in the database may fail. To cover situations where the data is copied by logic, ensure
that only files of a size less than half the cache size are stored.

mediaName
Type: String

Availability: Read or write at any time

The mediaName property contains the name of the medium currently installed in the MultiMedia class. The
medium name can be the name of a data file or the name of a device, as shown in the code fragments in the
following examples.

mm.mediaName := "c:\media\avi\intro.avi";

mm.mediaName := "cdaudio";

The default value is null (""). See also the openDialog method.

The device types that can be accessed are listed in the following table.

Device Type Description

animation Animation device

cdaudio Audio CD player

dat Digital audio tape player

digitalvideo Digital video in a window

overlay Overlay device (analog video in a window)

scanner Image scanner

sequencer MIDI sequencer

vcr Videotape recorder or player

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 306

EncycloWin - 2020.0.02

Device Type Description

videodisc Videodisc player

waveaudio Audio device that plays digitized waveform files

The file types that can be handled depend on the software that is installed on the workstation, including the types
listed in the following table.

File Type Description

wav Sound files

mid MIDI sequence

avi Video with or without sound

mp3 MPEG-1 Audio Layer-3

mp4 MPEG Layer-4 Audio

mpg MPEG video or audio

If the useDotNetVersion property is set to true from version 2018.0.01 and higher, the value of the mediaName
property can be a URL; for example, http://hostName/images/introduction.mp4. For details about using the MP4
version of a control, see the useDotNetVersion property.

For some types, specific software (device drivers) is required.

Setting the mediaName property causes the current medium that is being played in the control to be discarded.
The appropriate device driver is selected, and the medium is readied for playing. If the mediaName property was
set at development time and represents a file, the contents of the file are copied to the mediaData property, and
the mediaName property is no longer relevant.

If the mediaName property is set at run time and represents a file, the file is accessed directly by the device driver.
The mediaData property is not set to the contents of that file unless it is accessed by logic. You should therefore
avoid accessing the mediaData property unless it is necessary, particularly for large files.

Caution JADE handles only binary data that has a length less than the maximum database cache size, so an
attempt to store large files in the database may fail. To cover situations where the data is copied by logic, ensure
that only files of a size less than half the cache size are stored.

min
Type: Integer

Availability: Read or write at any time

The min property of the ScrollBar class contains a scroll bar position minimum value property setting when the
scroll box is in its highest position (the vertical scroll bar control) or farthest left position (horizontal scroll bar
control).

Specify any valid integer. The default setting is zero (0).

The Windows environment automatically sets ranges for scroll bars proportional to the contents of forms, combo
boxes, and list boxes. For a horizontal scroll bar control, however, you must specify these ranges. Use the min
property to set a range appropriate to how the scroll bar control is used; for example, as an input device or as an
indicator of speed or quantity.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 307

EncycloWin - 2020.0.02

Typically, you set the min property in the JADE development environment. You can also set it in logic at run time, if
the scrolling range must change dynamically.

Use the smallChange property to set the minimum scrolling increments for a scroll bar control.

If the max property is set to a value less than the value of the min property, the value of the max property is then
set at the farthest left or highest position of a horizontal or vertical scroll bar, respectively.

minButton
Type: Boolean

Availability: Read or write at any time

The minButton property of the Form class specifies whether a form has a Minimize button. The settings of the
minButton property are listed in the following table.

Value Description

true The form has a Minimize button (the default).

false The form does not have a Minimize button.

A Minimize button enables users to shrink a form window to an icon.

Setting the value of the minButton property to true causes a form with the borderStyle property set to
BorderStyle_None (0) to adopt a borderStyle value of BorderStyle_Single (1). The form also displays a caption
area, regardless of whether the form caption is empty.

This property should not be changed when an MDI child form is maximized.

Notes Shrinking a form to an icon at run time generates a resize event. The windowState property reflects the
current state of the window.

If you set the windowState property to WindowState_Maximized (2), the form is maximized independently of the
settings that are in effect for the maxButton and borderStyle properties.

minimumHeight
Type: Integer

Availability: Read or write at any time

The minimumHeight property of the Form class contains the minimum height (in pixels) of the form. Use this
property if you want to prevent users from resizing the form below the specified height. (For details about setting a
minimum width, see the minimumWidth property.)

Notes The minimum height is retained even if logic attempts to set the height of the form below the equivalent
minimum height.

Windows imposes a minimum height and width so that the form caption buttons are always visible. The effective
minimum sizes are therefore the maximum of the size imposed by Windows and the minimumHeight and
minimumWidth values.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 308

EncycloWin - 2020.0.02

The minimumHeight property of the JadeDockBase class (from version 2016.0.01) contains the minimum height
(in pixels) of the control. Use this property if you want to prevent users from resizing the control below the specified
height. (For details about setting a minimum width, see the minimumWidth property.)

The default value of this property is zero (0), with values in the range zero (0) through 32767 pixels permitted. If
the property value is zero (0), the property is ignored and has no effect.

The minimumHeight property applies only to dock controls that are aligned horizontally (that is, when the
alignContainer property value is set to AlignContainer_AllHorizontal, AlignContainer_Bottom, or
AlignContainer_Top); otherwise the property value is ignored.

The minimumHeight property controls the minimum height of the control when:

The user drags the horizontal resize bar below the control

Assigning a height to the control from logic

Assigning a height to the control when affected by a parent height resize

Assigning a height to the control when affected by a height change of another control that is aligned
horizontally

The value of the minimumHeight property cannot be greater than the value of the maximumHeight property
unless the maximumHeight property is set to the default value of zero (0). If the values of the minimumHeight
and maximumHeight properties are the same, no resize bar is displayed below the control, even if the value of
the showResizeBar property is true.

The value of the minimumHeight property of the JadeDockBase class has no impact on the allowed sizes of the
parent form on which it appears.

minimumWidth
Type: Integer

Availability: Read or write at any time

The minimumWidth property of the Form class contains the minimum width (in pixels) of the form. Use this
property if you want to prevent users from resizing the form below the specified width. (For details about setting a
minimum height, see the minimumHeight property.)

Notes The minimum width is retained even if logic attempts to set the width of the form below the equivalent
minimum width.

Windows imposes a minimum height and width so that the form caption buttons are always visible. The effective
minimum sizes are therefore the maximum of the size imposed by Windows and the minimumHeight and
minimumWidth values.

The minimumWidth property of the JadeDockBase class (from version 2016.0.01) contains the minimum width
(in pixels) of the control. Use this property if you want to prevent users from resizing the control below the specified
width. (For details about setting a minimum height, see the minimumHeight property.)

The default value of this property is zero (0), with values in the range zero (0) through 32767 pixels permitted. If
the property value is zero (0), the property is ignored and has no effect.

The minimumWidth property applies only to dock controls that are aligned vertically (that is, when the
alignContainer property value is set to AlignContainer_AllVertical, AlignContainer_Left, or AlignContainer_
Right); otherwise the property value is ignored.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 309

EncycloWin - 2020.0.02

The minimumWidth property controls the minimum width of the control when:

The user drags the vertical resize bar at the right of the control

Assigning a width to the control from logic

Assigning a width to the control when affected by a parent width resize

Assigning a width to the control when affected by a width change of another control that is aligned vertically

The value of the minimumWidth property cannot be greater than the value of the maximumWidth property unless
the maximumWidth property is set to the default value of zero (0). If the values of the minimumWidth and
maximumWidth properties are the same, no resize bar is displayed on the right of the control, even if the value of
the showResizeBar property is true.

The value of the minimumWidth property of the JadeDockBase class has no impact on the allowed sizes of the
parent form on which it appears.

modalResult
Type: Integer

Availability: Read or write at run time

The modalResult property of the Form class contains the returned value for the showModal method call in
runtime forms that are initiated as modal. You can write logic to return a value that informs the calling method of
the result of the modal process. This property is set to zero (0) for any form when it is created.

The setting of this property has meaning only for a form initiated as modal. The final value of the property when the
modal form is unloaded is returned by the showModal method call. No value is assigned automatically after
creation or (for example), after pressing the Cancel button.

modified
Type: Boolean

Availability: Read or write at run time only

The modified property of the JadeTextEdit control specifies whether the text in the control has been modified. The
value of this property is set to false when the text is unchanged. When the value is set to false, the undo history is
not discarded and the next editor change causes the firstChange event.

To override the editor state, set this property to true. All subsequent reads of the modified property then return
true until the value of the property is set to false, the text property is set, or the emptyUndoBuffer method is
called.

mouseCursor
Type: Binary (picture)

Availability: Read or write at any time, but the setting is ignored at development time

The mouseCursor property of the Window class contains a cursor that is not provided by the system to display
when the mouse is over a form or control. This process is achieved by assigning a cursor (by using the
Application class loadPicture method (app.loadPicture) to load the mouseCursor property and then setting the
mousePointer property to MousePointer_Cursor).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 310

EncycloWin - 2020.0.02

The definition of a mouse cursor includes the position of the hotspot. The tool that you use to create a cursor
should include the ability to define the hotspot. Icons used as cursors default to the top left position because an
icon has no hotspot.

mousePointer
Type: Integer

Availability: Read or write at any time, but the setting is ignored at development time

The mousePointer property of the Window class contains the type of mouse pointer that is displayed when the
mouse is over a specific part of a form or control at run time. The mousePointer property controls the shape of the
mouse pointer.

Use this property when you want to indicate changes in functionality as the mouse pointer passes over controls on
a form or control. Use the MousePointer_HourGlass (11) value to indicate that the user should wait for a process
or operation to finish. To restore the previous behavior of the mouse pointer, set the mousePointer property value
to MousePointer_Default (0).

If the mousePointer property of the Application class is set to a non-zero value, the mousePointer property value
of the form or control is ignored. The application mousePointer property enables the mouse pointer to be set
globally for the whole application; for example, as an hourglass.

The settings of the mousePointer property are listed in the following table.

Window Class Constant Value Description

MousePointer_Default 0 Default value determined by the current window (for example, an
arrow or hourglass).

MousePointer_Arrow 1 Arrow ().

MousePointer_Cross 2 Cross (cross-hair pointer).

MousePointer_IBeam 3 I-Beam ().

MousePointer_Cursor 4 User-defined cursor not provided by the system. (See the Window
class mouseCursor property.)

MousePointer_Size 5 Size (four-pointed arrow pointing north, south, east, west).

MousePointer_NESW 6 Size NE SW (double arrow pointing north east and south west).

MousePointer_NS 7 Size N S (double arrow pointing north and south).

MousePointer_NWSE 8 Size NW SE (double arrow pointing north west and south east).

MousePointer_WE 9 Size W E (double arrow pointing west and east).

MousePointer_UpArrow 10 Up arrow ().

MousePointer_HourGlass 11 Hourglass (wait) .

MousePointer_NoDrop 12 No drop ().

MousePointer_Drag 13 Standard JADE drag cursor ().

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 311

EncycloWin - 2020.0.02

Window Class Constant Value Description

MousePointer_HorizontalLine 14 Cursor used to drag a horizontal line ().

MousePointer_VerticalLine 15 Cursor used to drag a vertical line ().

MousePointer_HandPointing 16 Cursor used for hyperlinks ().

The following example shows the use of the mousePointer property.

bCancel_dragDrop(btn: Button input;
win: Window input;
x, y: Real) updating;

begin
mousePointer := MousePointer_NoDrop;
bCancel.bubbleHelp := "Cannot Drop Here";
doWindowEvents(2000);
mousePointer := MousePointer_Arrow;
bCancel.bubbleHelp := null;

end;

multiSelect
Type: Integer

Availability: Read or write at any time

The multiSelect property determines whether a user can make multiple selections in a ListBox control and the
way in which multiple selections can be made.

The settings of the multiSelect property are listed in the following table.

ListBox Class Constant Value Description

MultiSelect_None 0 Multiple selection is not allowed (the default).

MultiSelect_Simple 1 Simple multiple selection. A click or the space bar selects or deselects
an item in the list. (Arrow keys move the preselect focus.)

MultiSelect_Extended 2 Extended multiple selection. Shift+click or Shift+arrow key extends
the selection from the previously selected item to the current item.

Ctrl+click selects or deselects an item in the list. Ctrl+up arrow, down
arrow, Home, End, Page Up, or Page Down key changes the current list
entry but does not alter the selected status of any entry. Ctrl+space bar
selects or deselects an item in the list.

When multiple items are currently selected, the value of the listIndex property is the last of the items selected. One
or more items can be selected, with the value of the listIndex property being none of those items (for example,
when you select an item, press the Shift key and select another item, then press the Ctrl key and remove the
selection of one of the previously selected items).

Note You must use the Ctrl key or Shift key to select multiple items in a list box on a Web form, as HTML does not
support the MultiSelect_Simple functionality. Multiple selections are therefore regarded as extended multiple
selections (that is, MultiSelect_Extended).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 312

EncycloWin - 2020.0.02

name
Type: String[100]

Availability: Read or write at design time, read-only at run time

The name property of the Window class contains the name used in logic to identify an application, form, control, or
menu item object.

The default name for new objects is the kind of object plus a unique integer. For example, the first new form is
Form1, and the third text box you create on a form is textBox3. For a form defined as a Web page, the name
property contains the name of the Web page.

Applications and forms are defined in the JADE database as classes, and the first letter is converted to an
uppercase character.

Controls and menu items are defined in the JADE database as properties, and the first character of the name is
converted to a lowercase character.

A name property of an object must start with a letter, with a maximum length of 100 characters for a form and 86
characters for a control. This property can include numbers and underscore characters, but it cannot include
punctuation symbols or spaces. Forms cannot have the same name as another form or global object, such as the
application name or predefined JADE classes; for example, Image.

Subclassed forms cannot have controls or menus with the same name as a control on a superclass of the form.

Note Although JADE uses the name property as the default value for the caption and text properties, changing
one property does not affect the others.

nameSeparator
Type: String[1]

Availability: Read or write at any time

The nameSeparator property contains the item delimiter string used when accessing the ListBox control
itemFullName method. The default value is the backslash character (\). A null value is treated as the default
backslash character (\).

Accessing the itemFullName method of an entry in the ListBox control returns a string consisting of the text of all
parents of the entry concatenated with its own text entry. These level names are separated by the value of the
nameSeparator property.

noPrefix
Type: Boolean

Availability: Read or write at any time

The noPrefix property of the Label class enables you to control whether the character following a single
ampersand (&) is underlined.

The default value of false indicates that the first character of a label that is proceeded by a single & character is
underlined. If you set the property value to true, the label displays the & character but with no underline attribute
applied to the following character.

Applies to Version: 2016.0.01 and higher

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 313

EncycloWin - 2020.0.02

oleObject
Type: OleObject

Availability: Read or write at any time

The oleObject property of the OleControl class contains a reference to an OLE object.

Use the copy method of the OleObject class to copy another object into or out of the control to or from the
database. Use the loadFromDB method to access the contents of the OLE object.

The code fragment in the following example shows the use of the oleObject property.

foreach ole in ReviewOLEObj.instances do
count := 1 + count;
if count = 1 then

oleReview1.oleObject.copy(ole);
oleReview1.loadFromDB;

elseif count = 2 then
oleReview2.oleObject.copy(ole);
oleReview2.loadFromDB;

elseif count = 3 then
oleReview3.oleObject.copy(ole);
oleReview3.loadFromDB;

endif;
endforeach;

See also the OleObject class getData and setData methods.

parameters
Type: String

The parameters property of the WebJavaApplet class contains parameters for the applet.

Use this property to specify one or more parameters for the compiled Java applet (specified in the appletName
property) that are to be inserted into the generated HTML for a Web-enabled session at run time. Separate each
parameter key and value with a tab; for example:

"param1" & Tab & "25,50,fixed,enable" & Tab & "param2" & Tab &
"c:\pics\JadeIcon.png"

parent
Type: Window

Availability: Assigned by Painter at development time, read or write at run time

The parent property of the Control class contains a reference to the direct parent of the control. This direct parent
is either the form or another control. This property returns the object of the parent form or control. Using this object
can then access the properties of a window. If the parent of the control is the form, the parent is the same object as
that returned by the form property of the control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 314

EncycloWin - 2020.0.02

At run time, if the control has an associated window (the normal runtime control situation), the parent can be
changed only to another form or control with an associated window. Changing the parent at run time by using this
property is not recommended. The following example finds all direct children of Frame1 and makes them
invisible.

vars
ctl : Control;
indx : Integer;

begin
foreach indx in 1 to controlCount do

ctl := controls(indx);
if ctl.parent = frame1 then

ctl.visible := false;
endif;

endforeach;
end;

parentAspect
Type: Integer

Availability: Read or write at any time

The parentAspect property of the Control class contains the aspect of the control to its parent. The default value
for this property is ParentAspect_None (0). For details about obtaining the bottom and right offsets of the control
from its parent, see the Control class parentBottomOffset and parentRightOffset properties.

The parentAspect property provides the following features for any control other than a Sheet, StatusLine,
JadeDockBar, or JadeDockContainer control, to enable you to define resize and reposition actions that take
effect without having to write any logic.

Determines whether the control stretches horizontally, vertically, or both horizontally and vertically with the
parent as the parent size changes.

For horizontal stretching, the left position remains fixed and the control width is changed so that the distance
from the right edge of the control to the right of the client area of the parent remains constant. For vertical
stretching, the top position remains fixed and the control height is changed so that the distance from the
bottom edge of the control to the bottom of the client area of the parent remains constant.

Determines whether the control is anchored to the right, bottom, or both to the right and bottom of the parent
as the size of the parent changes.

For horizontal anchoring, the left position of the control is changed so that the distance from the right edge of
the control to the right of the client area of the parent remains constant. For vertical anchoring, the top
position of the control is changed so that the distance from the bottom edge of the control to the bottom of the
client area of the parent remains constant.

Determines whether the control is centered horizontally, vertically, or both horizontally and vertically within
the client area of the parent as the size of the parent changes.

When the value of the StatusLine control autoSize property is true:

If a child control left property value position is less than zero, the control is moved to be zero (0) when the
parentAspect, relativeLeft, and relativeWidth property values of the child do not affect the horizontal
position (not stretch horizontal, anchor right, and centered horizontal, and the relativeLeft and relativeWidth
property values are false).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 315

EncycloWin - 2020.0.02

If a child control is not fully visible horizontally, the child is right-aligned in the status line control if it can be
fully displayed or positioned at zero (0) if it cannot when the parentAspect, relativeLeft, and relativeWidth
property values of the child do not affect the horizontal position (not stretch horizontal, anchor right, and
centered horizontal, and the relativeLeft and relativeWidth property values are false).

If a child control top position is less than zero (0), the control is moved to be zero when the parentAspect
property value of the child does not affect the vertical position (not stretch vertical, anchor bottom, or centered
vertical).

If a child control is not fully visible vertically, the child is bottom-aligned in the StatusLine control when the
parentAspect property value of the child does not affect the vertical position (not stretch vertical, anchor
bottom and centered vertically).

The values of the relativeTop and relativeHeight properties of child controls are always set to false, as their
functionality is not compatible with auto-sizing the height of the StatusLine control (as has always been the
case).

All parentAspect flag values and relativeLeft and relativeWidth values are applied.

The height of the StatusLine control is then determined by analyzing the child control as follows, to determine the
maximum height required. For a child control that does not have a fixed height and has the parentAspect
property with the:

ParentAspect_StretchBottom flag set, the height required is the top position, height, and
parentBottomOffset property values of the child.

ParentAspect_AnchorBottom flag set, the height required is the height and parentBottomOffset property
values of the child; otherwise, the height of the child control.

The Control class constants are listed in the following table.

Constant Integer Value

ParentAspect_None 0

ParentAspect_StretchRight #1

ParentAspect_StretchBottom #2

ParentAspect_StretchBoth #3

ParentAspect_AnchorRight #4

ParentAspect_AnchorBottom #8

ParentAspect_AnchorBoth #c

ParentAspect_CenterHorz #10

ParentAspect_CenterVert #20

ParentAspect_CenterBoth #30

The property values are a bit mask of valid combinations. For example, you can anchor a control to the bottom of
its parent and also have it stretch horizontally as the parent width varies, by setting the property value to
ParentAspect_StretchRight + ParentAspect_AnchorBottom.

Similarly, you can center a control vertically and have it stretch horizontally as the parent width varies, by setting
the property value to ParentAspect_CenterVert + ParentAspect_StretchRight. However, not all combinations
are compatible, and an invalid combination results in an exception being raised at run time.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 316

EncycloWin - 2020.0.02

The following values for parentAspect are mutually incompatible and you can include only one.

ParentAspect_StretchRight

ParentAspect_AnchorRight

ParentAspect_CenterHorz

The following values for parentAspect are mutually incompatible and you can include only one.

ParentAspect_StretchBottom

ParentAspect_AnchorBottom

ParentAspect_CenterVert

When using the parentAspect property, note the following points.

The property is ignored:

If the alignment of the control is already specified by using the alignContainer or alignChildren property
of a Frame, JadeDockBar, or JadeDockContainer control; for example, a frame that has the
alignContainer property set to AlignContainer_Width (3).

For direct children of a JadeDockContainer control, which always automatically positions its children.
Children that have no specific alignment are positioned in rows or columns so that they do not overlap.

The JadeDockContainer also adjusts the position of the children to minimize the height or width of the
container, when appropriate.

For a JadeDockBar control except when the container has the alignChildren property set to
AlignChildren_None (0). This setting means that it is your responsibility to position the children.

All other settings cause the children to be automatically positioned.

Some controls have fixed heights and widths. Any stretching is ignored for those cases, as follows.

Height

A Button control that is automatically sized to its picture property

Any fixed height CheckBox control

Any fixed height ComboBox control

A Label control that is automatically sized

Any fixed height OptionButton control

A Picture control that automatically sizes to its picture property; that is, Stretch_ControlTo (2)
and Stretch_Proportional (3)

An automatically positioned Sheet or StatusLine control

Width

A Button control that is automatically sized to its picture property

A Label control that is automatically sized

A Picture control that automatically sizes to its picture property; that is, Stretch_ControlTo (2)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 317

EncycloWin - 2020.0.02

and Stretch_Proportional (3)

An automatically positioned Sheet or StatusLine control

The parentAspect property values can conflict with the relative property requirements. Where they do, the
relative property setting is ignored, as follows.

If ParentAspect_StretchRight applies, the relativeLeft and relativeWidth properties are ignored

If ParentAspect_StretchBottom applies, the relativeTop and relativeHeight properties are ignored

If ParentAspect_AnchorRight applies, the relativeLeft property is ignored

If ParentAspect_AnchorBottom applies, the relativeTop property is ignored

For a ListBox or TextBox control with the integralHeight property set to true, the actual distance between
the bottom edge of the control and the bottom of the client edge of the parent varies, as the height of the
control is rounded to the nearest integral line height.

If logic changes the position or size of the control, the distances to the edges of the parent of the control are
re-evaluated and used from then on.

Note You can also use the Form class minimumHeight and minimumWidth properties to prevent the user
resizing the form and causing controls to overlap or the form to have no effective height or width.

parentBottomOffset
Type: Integer

Availability: Read or write at any time

The parentBottomOffset property of the Control class contains the pixel offset of the bottom edge of a control
from the bottom of the client area of its parent. By default, the value of this property is automatically calculated.

This value is used primarily when the parentAspect property requires the bottom offset. The value is stored
persistently at design time so that the correct bottom position of the parentAspect property can be restored when
the form is loaded and is therefore unaffected by whether skins are now in use, the application three-dimensional
border default values have been changed, subclassed forms of different sizes in cases where the control's parent
is also affected by the resize, and so on.

You can set the parentBottomOffset property value for any control and it is effectively the same as setting the top
position of a control to the pixel position (that is, the value of the parent’s clientHeight property less the value of
the parentBottomOffset property and the control height in pixels).

Changing the top position of the control updates the value of the parentBottomOffset property and setting the
value of the parentBottomOffset property updates the top position value.

Notes When a control is added by using the addControl method of the Form class, the values of the
parentBottomOffset and parentRightOffset property values are calculated initially from the resulting size and
position of the control within its parent. Setting these values before calling the addControl method has no effect.

The parentBottomOffset and parentRightOffset property values only take effect when a control is created if the
control was saved using the painter or if the loadControl method of the Form class is used (or if dynamically
changed via logic).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 318

EncycloWin - 2020.0.02

parentRightOffset
Type: Integer

Availability: Read or write at any time

The parentRightOffset property of the Control class contains the pixel offset of the right edge of a control from the
right side the client area of its parent. By default, the value of this property is automatically calculated.

This value is used primarily when the parentAspect property requires the right offset. The value is stored
persistently at design time so that the correct right position of the parentAspect property can be restored when the
form is loaded and is therefore unaffected by whether skins are now in use, the application three-dimensional
border default values have been changed, subclassed forms of different sizes in cases where the parent of the
control is also affected by the resize, and so on.

You can set the parentRightOffset property value for any control and it is effectively the same as setting the left
position of a control to the pixel position (that is, the value of the parent’s clientHeight property less the value of
the parentRightOffset property and the control height in pixels).

Changing the left position of the control updates the value of the parentRightOffset property and setting the value
of the parentRightOffset property updates the left position value.

Notes When a control is added by using the addControl method of the Form class, the values of the
parentBottomOffset and parentRightOffset property values are calculated initially from the resulting size and
position of the control within its parent. Setting these values before calling the addControl method has no effect.

The parentBottomOffset and parentRightOffset property values only take effect when a control is created if the
control was saved using the painter or if the loadControl method of the Form class is used (or if dynamically
changed via logic).

partialTextIndication
Type: Boolean

Availability: Read or write at run time only

The partialTextIndication property of the Table class specifies whether an indication is displayed when there is
insufficient room to show all text of the cell indicated by the accessMode, accessedSheet, accessedRow,
accessedColumn, or accessedCell property. The default value for any new Table control that is added is true.

If this property is set to true, the end of the visible text is replaced by the points of ellipsis symbol (…), to indicate to
the user that not all of the text can be made visible. The number of periods (or dots) that is displayed depends on
the number of characters that can be displayed within the cell, with at least the first character of the original text
being displayed. For example, The text is too long to fit in the cell text may be displayed as follows.

The text is too l...

If this property is set to false, the text in a cell is truncated if it does not fit within the cell area.

For details about word wrapping when displaying text in a table cell, see the wordWrap property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 319

EncycloWin - 2020.0.02

partsDone
Type: Integer

The partsDone property of the ProgressBar control contains information for the ProgressBar control about the
percentage of the task that is completed.

When you set the partsDone property, the partsDone mapping method colors the progress bar with the parts that
are done when a change in parameter value affects the appearance of the progress bar. For example, if you set
the partsDone property to 25 when the partsInJob property is set to 100, the progress bar is a quarter colored,
with 75 percent of the job remaining to be done.

When the application is running in thin client mode, use the thinClientUpdateInterval property to control how
often the progress var will be redrawn as the percentage changes.

The following example shows the use of the partsDone property.

showProgress(runningTotal: Integer;
totalNumber: Integer;
message: String) updating;

begin
progressBar.partsInJob := totalNumber;
progressBar.partsDone := runningTotal;

end;

partsInJob
Type: Integer

The partsInJob method of the ProgressBar control contains information for the ProgressBar control about the
number of parts in the job.

When you set the partsInJob property followed by the partsDone property, the partsDone mapping method
colors the progress bar with the parts that are done and displays the remainder that is to be done. For example, if
you set the partsDone property to 25 when the partsInJob property is set to 100, the progress bar is a quarter
colored, with 75 percent of the job remaining to be done.

When the application is running in thin client mode, use the thinClientUpdateInterval property to control how
often the progress var will be redrawn as the percentage changes.

The following example shows the use of the partsInJob property.

showProgress(runningTotal: Integer;
totalNumber: Integer;
message: String) updating;

begin
progressBar.partsInJob := totalNumber;
progressBar.partsDone := runningTotal;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 320

EncycloWin - 2020.0.02

passwordField
Type: Boolean

Availability: Read or write at any time

The passwordField property specifies whether the characters typed by a user or placeholder characters are
displayed in a TextBox control.

If the value of this property is true, the specified text is displayed as asterisk (*) characters. Use this property to
create a single-line password text box. The passwordField property does not affect the entered text, but only the
display of that text.

You can paste into a text box when the value of the passwordField property is set to true but you cannot copy
(using the Ctrl+C shortcut keys) or cut (using the Ctrl+X shortcut keys) the password text to the clipboard; such an
attempt is rejected with a message beep.

Setting the passwordField property value to true causes the text box to become a single-line entry text box and
disables the alignment, scrollBars, and scrollVertical properties.

picture
Type: Binary

Availability: Read or write at any time, but read or write at run time only for tables

The picture property contains a graphic to be displayed in a control or a menu.

The settings of the picture property are listed in the following table.

Value Description

(none) No picture (the default).

(Bitmap, icon, cursor, JPEG,
PNG, GIF, TIFF CCITT, or
metafile)

Specifies a graphic. You can load the graphic from the Properties window in
the JADE development environment. At run time, you can set this property, by
using the loadPicture method on a bitmap, icon, metafile, GIF, JPEG, or PNG.

For a Button control defined for a Web page, the picture property is displayed as an image that can be clicked.
For button controls, the picture is placed on the button to the left of the button caption. However, this property is
ignored if the buttonPicture property of a button is set to a non-zero value.

When an icon image is assigned to button and the Button class autoSize property is not AutoSize_Picture, the
size of the icon selected from the assigned icon image is now based on the client height of the button.

If the autoSize property is set, the picture is scaled to fit the button. The button picture painting colors the
background of the picture to the background color of the button by using the drawFloodFill method.

When the button is disabled and an image is defined by the pictureDisabled property, this image is displayed
instead.

For a Picture control on a Web page, the binary value is automatically converted to the Graphics Interchange
Format (GIF), Joint Photographic Experts Group (JPEG), or Portable Network Graphics (PNG) image format,
depending on the value specified in the ImageType parameter in the [WebOptions] section of the JADE
initialization file. (The default value is jpg.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 321

EncycloWin - 2020.0.02

When setting the picture property from the JADE Painter in the JADE development environment, the graphic is
saved and loaded with the form. When you load a graphic at run time, the graphic is not saved with the
application.

The graphic can be set by setting the picture property of the control to the picture property of another control or by
using the loadPicture method of the Application class. For menus, the picture can be a bitmap, icon, cursor,
portable network graphics image, or metafile. The picture is drawn at actual size, except for a metafile or on the
menu bar of the form, when it is scaled to fit the menu line size.

Menus are drawn in four columns, as follows.

checkMark : picture : text : accelerator text

The width of each column is defined to be the maximum of all the displayed items in that popup menu.

The following examples show the use of the picture property.

buttonSelect_click(btn: Button input) updating;
vars

file : CMDFileOpen;
begin

pictureEnlarged.picture := null;
create file;
file.filter := "Pictures(*.bmp;*.ico)|*.bmp;*.ico";
if file.open = 0 then

pictureNormal.picture := app.loadPicture(file.fileName);
endif;

end;

if logo.picture.length <> 0 then
if product.logo = null then

create l;
else

l := product.logo;
endif;
l.loadSelf(logo.picture);

endif;

For the Picture control, the picture can be displayed as defined, it can be stretched to fit the control, or the control
can be stretched to fit the picture size, according to the value of the stretch property.

For the Table control:

The current sheet, row, and column properties define the picture access.

If the cell is too small to fit both the text and the picture, the text takes precedence over the picture unless the
stretch property is set to Stretch_None_Picture_First (2) or Stretch_Cell_Picture_First (3), where the
picture takes precedence.

The size of the text is determined by taking the cell size and calculating the required text size using the word
wrap option. The space that is left over is used to scale the image proportionally, so that the whole image is
displayed.

If the stretch property for the table control is set to Stretch_None (0), the picture is drawn to actual size. If it
does not fit the available space, it is truncated on the right and bottom.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 322

EncycloWin - 2020.0.02

For GIF picture types:

Only the first image in the file is displayed, by default.

Only .gif files containing images are handled. (Text records within a .gif file are ignored.)

The FreeImage library used by JADE does not support the ability to convert images to .gif files.

Animated GIF handling is supported if the picture property of a Picture or JadeMask control is set to a GIF
binary that contains more than one image. That control then runs the animation on a separate thread in a
similar way to the Picture control setPicture method list and play mechanism.

Use of an animated GIF file is mutually exclusive with the use of the Picture control pictureCount and
setPicture methods. Setting the picture property to an animated GIF removes any pictures created by using
the setPicture method.

Similarly, changing the value of the pictureCount property or using the setPicture method closes any
animated GIF operation (but leaves the value of the picture property unchanged).

An animated GIF file commences animation when the control first paints.

The animation loops indefinitely.

Although GIF files have the ability to require user input before continuing from an animation point, this
requirement for user input is ignored by JADE.

Text display records within a GIF file are ignored.

When using an animated GIF picture, note the following.

Animated .gif files are not drawn stretched. The stretch property is used to resize the control to the GIF
image if required, but the animation is always drawn at its normal size.

You can use the play and stop methods with an animated .gif file. The .gif file then starts playing
automatically when the control is first painted, unless the stop method has been called.

After calling the stop method for an animated .gif file, you must then call the play method to start or continue
the animation.

pictureClosed
Type: Binary

Availability: Read or write at any time

The pictureClosed property contains the qualifying picture image displayed for an entry in a ListBox control or a
ComboBox control. The picture can be set only to a bitmap or an icon image. It cannot be cleared.

Use the hasPictures property to control whether the image is displayed. If the picture is larger than the list line
size, it is scaled to fit.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 323

EncycloWin - 2020.0.02

pictureCount
Type: Integer

Availability: Run time only

The pictureCount property of the Picture class contains the maximum index of the picture array associated with a
picture control. This array can be used to hold an array of pictures that are selected for display based on JADE
logic. Use the setPicture method to load pictures into the array.

Setting the pictureCount property to the maximum index value before loading a picture is more efficient, as the
required array can be preallocated. If the setPicture method is called with an index greater than the current value
of the pictureCount property, the pictureCount property is enlarged accordingly.

Use the pictureIndex property to control the picture that is currently displayed.

Changing the value of the pictureCount property closes any animated GIF operation of a Picture or JadeMask
control (but leaves the value of the picture property unchanged).

pictureDisabled
Type: Binary

Availability: Read or write at any time

The picture property of the Picture control defines the picture that is normally displayed. However, you can give
the picture box the appearance of being a button, by assigning pictures to the pictureDisabled and pictureDown
properties.

For Picture controls, the pictureDisabled property defines the picture displayed when the picture box is disabled.
It defaults to the picture property. Picture control pictures are scaled according to the stretch property of the
picture box.

For a Button control, the buttonPicture or picture property defines the picture that is normally displayed on the
button, if any. For button controls, the pictureDisabled property defines the picture that is displayed if the button is
disabled, regardless of which of the buttonPicture or picture properties is set.

When an icon image is assigned to button and the Button class autoSize property is not AutoSize_Picture, the
size of the icon selected from the assigned icon image is now based on the client height of the button.

By default, for Button controls, a disabled button grays the text and displays the picture defined by the
buttonPicture or picture property.

pictureDown
Type: Binary

Availability: Read or write at any time

The picture property of the Picture control contains the picture that is normally displayed. However, you can give
the picture box the appearance of being a button, by assigning pictures to the pictureDisabled and pictureDown
properties.

For Picture controls, the pictureDown property defines the picture displayed when the mouse is pressed on the
control. This property defaults to the picture property. Picture control pictures are scaled according to the stretch
property of the picture box.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 324

EncycloWin - 2020.0.02

For a Button control, the buttonPicture or picture property defines the picture that is normally displayed on the
button, if any. The pictureDown property defines the picture that is displayed when the mouse is pressed on the
button, regardless of which of the buttonPicture or picture properties is set.

When an icon image is assigned to button and the Button class autoSize property is not AutoSize_Picture, the
size of the icon selected from the assigned icon image is now based on the client height of the button.

By default, for Button controls, a disabled button grays the text and displays the picture defined by the
buttonPicture or picture property.

pictureFocus
Type: Binary

Availability: Read or write at any time

The pictureFocus property of the JadeMask class contains the picture that defines the mask for the control when
the control has focus and it is in the up position. If the pictureFocusDown property is not set, the JADE mask
defaults to the value of the pictureFocus property if that is set.

The picture is displayed when the control has focus, it is not disabled, not currently clicked (that is, the left mouse
is not down), and the mouse is not over the control.

If these pictures are not defined, the pictureRollOver state is displayed when the control has focus or the normal
control picture state if that picture is not provided.

pictureFocusDown
Type: Binary

Availability: Read or write at any time

The pictureFocusDown property of the JadeMask class contains the picture that defines the mask for the control
and specifies the logical area of the control. If this property is not set, the JADE mask defaults to the value of the
pictureFocus property if that is set.

The picture is displayed when the control has focus, it is not disabled, not currently clicked (that is, the left mouse
is not down), and the mouse is not over the control.

If these pictures are not defined, the pictureRollOver state is displayed when the control has focus or the normal
control picture state if that picture is not provided.

pictureIndex
Type: Integer

Availability: Run time only

The pictureIndex property of the Picture class contains the picture that is displayed in a picture box. By default,
this value is zero (0); that is, the value of the picture property is displayed. If the value of the pictureIndex property
is greater than zero (0), the picture that is added to the picture array by the setPicture method is displayed.

The value of the pictureIndex property must be zero (0) or correspond to a valid array entry.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 325

EncycloWin - 2020.0.02

Note If the left mouse button is down over the picture box and the pictureDown property is set, that picture is
displayed regardless of the setting of the pictureIndex property.

Similarly, if the picture box is disabled and the pictureDisabled property is set, this picture is used regardless of
the value of the pictureIndex or pictureDown property.

pictureLeaf
Type: Binary

Availability: Read or write at any time

The pictureLeaf property contains the qualifying picture image displayed for an entry in a ListBox control or a
ComboBox control. The picture can be set only to a bitmap or an icon image. It cannot be cleared.

Use the hasPictures property to control whether the image is displayed. If the picture is larger than the list line
size, it is scaled to fit.

pictureMask
Type: Binary

Availability: Read or write at any time

The pictureMask property of the JadeMask class contains the picture that defines the mask for the control and
specifies the logical area of the control.

Any pixel with the color of the activeColor property in the mask picture defines a pixel within the logical control. A
pixel of any other color in the mask is considered not to be on the control and the control will not respond while the
mouse is over that pixel.

The picture for the mask can be a bitmap, PNG, GIF, JPEG, or TIFF image only.

Note The masking ability is disabled if the value of the rotation property is non-zero or the value of the style
property is Style_Mask_Color (3).

The mask picture is never shown. (See also the JadeMask class createRegionFromMask property.)

If the value of the pictureMask property is null (""), the roll over and roll under effects (controlled by the
pictureRollOver and pictureRollUnder properties) occur when the mouse is over any part of the control.

pictureMinus
Type: Binary

Availability: Read or write at any time

The pictureMinus property contains the qualifying picture image displayed for an entry in a ListBox control or a
ComboBox control. The picture can be set only to a bitmap or an icon image. It cannot be cleared.

Use the hasPictures property to control whether the image is displayed. If the picture is larger than the list line
size, it is scaled to fit.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 326

EncycloWin - 2020.0.02

pictureOpen
Type: Binary

Availability: Read or write at any time

The pictureOpen property contains the qualifying picture image displayed for an entry in a ListBox control or a
ComboBox control. The picture can be set only to a bitmap or an icon image. It cannot be cleared.

Use the hasPictures property to control whether the image is displayed.

If the picture is larger than the list line size, it is scaled to fit.

picturePlus
Type: Binary

Availability: Read or write at any time

The picturePlus property contains the qualifying picture image displayed for an entry in a ListBox control or a
ComboBox control. The picture can be set only to a bitmap or an icon image. It cannot be cleared.

Use the hasPictures property to control whether the image is displayed. If the picture is larger than the list line
size, it is scaled to fit.

pictureRollOver
Type: Binary

Availability: Read or write at any time

The pictureRollOver property of the JadeMask class contains the picture that is displayed when the mouse is
over the control or the control has focus and the button is in the up position (that is, value = false). See also the
picture, pictureDown, pictureDisabled, pictureRollUnder, and pictureMask properties.

Note If the value of the pictureIndex property is not zero (0), the pictureIndex picture is always displayed
unless the control is disabled or the mouse is currently pressed on the control (the picture determined by the value
of the pictureDown property is displayed).

If the value of the pictureRollOver property is null, the picture determined by the picture property is displayed
when the value property is false and the mouse moves over the control or the control has focus.

pictureRollUnder
Type: Binary

Availability: Read or write at any time

The pictureRollUnder property of the JadeMask class contains the picture that is displayed when the mouse is
over the control or the control has focus and the button is in the down position (that is, value = true).

See also the picture, pictureDown, pictureDisabled, pictureRollOver, and pictureMask properties.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 327

EncycloWin - 2020.0.02

Note If the value of the pictureIndex property is not zero (0), the picture determined by the pictureIndex
property is always displayed unless the control is disabled or the mouse is currently pressed on the control (the
picture determined by the value of the pictureDown property is displayed).

If the value of the pictureRollUnder property is null, the pictureDown property picture is displayed when the value
property is true and the mouse moves over the control or the control has focus.

position
Type: Integer

Availability: Read or write at any time

The position property of the MultiMedia class contains the current position of the medium with the content of the
device.

The units for the position value depend on the time format of the device. For details, see the timeFormat property.

The default value is the current value of the content, which is initially zero (0).

The following example shows the use of the position property.

backtrack_click(btn: Button input) updating;
vars

track : Integer;
begin

track := currentTrack;
if track > 1 then

track := track - 1;
cd.position := trackPosition(track);

endif;
end;

promptCharacter
Type: Character

Availability: Read or write at any time

The promptCharacter property of the JadeEditMask class contains the character that is used to fill the character
positions of the text in text box fields of the control that can have data entered.

The default value is the _underscore character. The prompt offers the user a visual indication of positions at which
text can be entered. When a character is typed in that character position, the prompt character is replaced,
regardless of the setting of the insertMode property.

Note The control can handle entry of the underscore character that is used as the prompt character and it can
distinguish between the two situations when the text is retrieved.

Setting the promptCharacter property to null causes a blank prompt character to be used, which is necessary for
handling any literal in the mask sequence.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 328

EncycloWin - 2020.0.02

readOnly
Type: Boolean

Availability: Read or write at any time

The readOnly property specifies whether a control is read-only for user input.

For a CheckBox control, if the value of the readOnly property is true, the control does not respond to mouse or
keyboard actions. Its state can be changed only from logic.

For a TextBox and JadeEditMask controls, the control can be tabbed to, responds to user mouse actions, and
text can be selected, but keyboard input is ignored. For a text box or edit mask control on a Web page, the control
is converted to static text if the value of this property is true.

For a Table control, if the value of the readOnly property is true:

No key events are processed

The user can still change cells that have the inputType property set

No select or select clear occurs when a mouse is clicked in a cell

No focus rectangle is displayed

Clicking a cell still causes a rowColumnChg event

Tip Set the userInputEnabled property to false if you want the value of the inputType or the cellControl
property ignored for all cells.

The settings of the readOnly property are listed in the following table.

Value Description

false Control responds to mouse and keyboard actions (the default)

true Control does not respond to mouse and keyboard actions

Setting the readOnly property to true enables a check box to be used to indicate the state of an option without the
user being able to directly change that option.

The readOnly property of the JadeRichText control specifies whether the contents of the control can be updated
(that is, whether user input is accepted). A double-click action is ignored in a read-only JadeRichText control only
if an object is selected. Double-clicking a hyperlink in a read-only JadeRichText control processes the URL
request (that is, the control can be tabbed to, respond to user mouse actions, and text can be selected, but
keyboard input is ignored). The default value of false indicates that the control responds to both mouse and
keyboard actions.

The readOnly property of the JadeTextEdit control specifies whether the text editor is read-only for user input.
The EVENTTYPE_ALTERREADONLY notification occurs on each attempt by the user or the application to
change the text editor contents.

Assigning to the JadeTextEdit class text property is permitted when the value of the readOnly property is true but
all other user and programmatic changes are ignored.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 329

EncycloWin - 2020.0.02

relativeHeight
Type: Boolean

Availability: Read or write at any time

The relativeHeight property of the Control class specifies whether the height of a control is relative to the height
of its parent. If this property is set to true, the control height is adjusted proportionally when the parent is resized.
For example, this means that list boxes can be sized according to the form height.

The settings of the relativeHeight property are listed in the following table.

Value Description

false If the parent is resized, no action occurs (the default)

true Resize the control height in proportion to the size change undergone by the parent

Setting the relativeHeight property to true causes the adjustment of the height for the control when the parent size
changes. For example, if all of the relative properties are set to true, two adjacent list boxes resize, move, and are
still adjacent after the resize of a form. Similarly, if you set the relativeTop and relativeLeft properties to true, a
button remains the same size but it is positioned proportionally to the form size.

Note Some controls automatically resize themselves, and setting this property may have no effect. In addition,
the relativeHeight property is ignored when a control is aligned. (See also the parentAspect property.)

The size ratios between the control and its parent are calculated when:

A form is loaded, if any of the property values are set to true.

The ratios are calculated using the development property values of left, top, height, and width of the control
and its parent established by the Painter in the JADE development environment.

The form is running:

If any of the relativeLeft, relativeTop, relativeHeight, or relativeWidth properties of the control are
changed to true.

If any of the left, top, height, or width properties of the control are set and any of the relative properties
are set to true.

If the move method of the Window class is called for the control and any of the relative properties are
set to true.

In these situations, the current size of the control and parent recalculate the size ratios.

If logic changes the position or size of the control, the distances to the edges of the parent of the control are re-
evaluated and used from then on (that is, the relative ratios are re-evaluated).

When using the relativeHeight property, some controls have fixed heights. Any stretching is ignored for those
cases, as follows.

A Button control that is automatically sized to its picture property

Any fixed height CheckBox control

Any fixed height ComboBox control

A Label control that is automatically sized

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 330

EncycloWin - 2020.0.02

Any fixed height OptionButton control

A Picture control that automatically sizes to its picture property; that is, Stretch_ControlTo (2) and Stretch_
Proportional (3)

An automatically positioned Sheet control

The following example shows the use of the relativeHeight property.

setFormProperties(pScaleForm, pRelativeSize: Boolean) updating;
vars

count : Integer;
begin

// Set the form's scale property.
self.scaleForm := pScaleForm;
// Now set the relative size and position properties of the
// form's controls.
foreach count in 1 to self.controlCount do

self.controls(count).relativeHeight := pRelativeSize;
self.controls(count).relativeLeft := pRelativeSize;
self.controls(count).relativeTop := pRelativeSize;
self.controls(count).relativeWidth := pRelativeSize;

endforeach;
end;

relativeLeft
Type: Boolean

Availability: Read or write at any time

The relativeLeft property of the Control class specifies whether the left position of a control is relative to the width
of its parent.

If this property is set to true, the control position is adjusted proportionally when the parent is resized. For
example, the left position of a list box can be set relative to the width of its form parent.

The settings of the relativeLeft property are listed in the following table.

Value Description

false If the parent is resized, no action occurs (the default)

true Reposition the control left in proportion to the size change undergone by the parent

Setting the relativeLeft property to true causes the adjustment of the left position for the control when the parent
size changes. For example, if all of the relative properties are set to true, two adjacent list boxes resize, move, and
are still adjacent after the resize of a form. Similarly, if you set the relativeTop and relativeLeft properties to true,
a button remains the same size but it is positioned proportionally to the form size.

Notes Some controls automatically resize themselves, and setting this property may have no effect. In addition,
the relativeLeft property is ignored when a control is aligned. (See also the parentAspect property.)

If logic changes the position or size of the control, the distances to the edges of the parent of the control are re-
evaluated and used from then on (that is, the relative ratios are re-evaluated).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 331

EncycloWin - 2020.0.02

The size ratios between the control and its parent are calculated when:

A form is loaded, if any of the property values are set to true. The ratios are calculated using the
development property values of left, top, height, and width of the control and its parent established by the
Painter.

The form is running if:

Any of the relativeLeft, relativeTop, relativeHeight, or relativeWidth properties of the control are
changed to true.

Any of the left, top, height, or width properties of the control are set and any of the relative properties
are set to true.

The move method of the Window class is called for the control and any of the relative properties are set
to true.

In these situations, the current size of the control and parent are used to recalculate the size ratios.

relativeTop
Type: Boolean

Availability: Read or write at any time

The relativeTop property of the Control class specifies whether the top position of a control is relative to the size
of its parent. If this property is set to true, the control position is adjusted proportionally when the parent is resized.

The settings of the relativeTop property are listed in the following table.

Value Description

false If the parent is resized, no action occurs (the default)

true Reposition the control in proportion to the size change undergone by the parent

Setting the relativeTop property to true causes the adjustment of the top position when the parent size changes.
For example, if all of the relative properties are set to true, two adjacent list boxes resize, move, and are still
adjacent after the resize of a form.

Similarly, if you set the relativeTop and relativeLeft properties to true, a button remains the same size but it is
positioned proportionally to the form size.

Notes Some controls automatically resize themselves, and setting this property may have no effect. In addition,
the relativeTop property is ignored when a control is aligned. (See also the parentAspect property.)

If logic changes the position or size of the control, the distances to the edges of the parent of the control are re-
evaluated and used from then on (that is, the relative ratios are re-evaluated).

The size ratios between the control and its parent are calculated when:

A form is loaded, if any of the property values are set to true. The ratios are calculated using the
development property values of left, top, height, and width of the control and its parent established by the
Painter.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 332

EncycloWin - 2020.0.02

The form is running if:

Any of the relativeLeft, relativeTop, relativeHeight, or relativeWidth properties of the control are
changed to true.

Any of the left, top, height, or width properties of the control are set and any of the relative properties
are set to true.

The move method of the Window class is called for the control and any of the relative properties are set
to true.

In these situations, the current size of the control and parent are used to recalculate the size ratios.

relativeWidth
Type: Boolean

Availability: Read or write at any time

The relativeWidth property of the Control class specifies whether the width of a control is relative to the size of its
parent. If this property is set to true, the control width is adjusted proportionally when the parent is resized.

The settings of the relativeWidth property are listed in the following table.

Value Description

false If the parent is resized, no action occurs (the default)

true Resize the control height in proportion to the size change undergone by the parent

Setting the relativeWidth property to true causes the adjustment of the width for the control when the parent size
changes. For example, if all of the relative properties are set to true, two adjacent list boxes resize, move, and are
still adjacent after the resize of a form. Similarly, if you set the relativeTop and relativeLeft properties to true, a
button remains the same size but it is positioned proportionally to the form size.

Note Some controls automatically resize themselves, and setting this property may have no effect. In addition,
the relativeWidth property is ignored when a control is aligned.

The size ratios between the control and its parent are calculated when:

A form is loaded, if any of the property values are set to true. The ratios are calculated using the
development property values of left, top, height, and width of the control and its parent established by the
Painter.

The form is running if:

Any of the relativeLeft, relativeTop, relativeHeight, or relativeWidth properties of the control are
changed to true.

Any of the left, top, height, or width properties of the control are set and any of the relative properties
are set to true.

The move method of the Window class is called for the control and any of the relative properties are set
to true.

In these situations, the current size of the control and parent are used to recalculate the size ratios.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 333

EncycloWin - 2020.0.02

If logic changes the position or size of the control, the distances to the edges of the parent of the control are re-
evaluated and used from then on (that is, the relative ratios are re-evaluated).

When using the relativeWidth property, some controls have fixed widths. Any stretching is ignored for those
cases, as follows.

A Button control that is automatically sized to its picture property

A Label control that is automatically sized

A Picture control that automatically sizes to its picture property; that is, Stretch_ControlTo (2) and Stretch_
Proportional (3)

An automatically positioned Sheet control

repeat
Type: Boolean

Availability: Read or write at any time

The repeat property of the MultiMedia class specifies whether continuous playback mode is set. When this
property is set, playing the device by using the play method results in a continuous playback loop. Only the
digitalvideo device supports continuous playback.

rightIndent
Type: Integer

Availability: Read or write at any time

The rightIndent property of the JadeRichText control contains the distance (in pixels) between the right edge of
the control and the right edge of the current selection or text added at the current insertion point.

If multiple paragraphs are selected and each has a different value, the property contains ParagraphFormat_
Undefined (#80000000). The default value of zero (0) indicates that the control is not indented.

rotation
Type: Real

Availability: Read or write at any time

The rotation property of the Picture control contains the number of radians by which the current picture is rotated
about the center point of the control. The default value is zero (0).

The picture is:

Sized according to the size of the picture and the value of the stretch property setting (ignoring the value of
the rotation property).

Then drawn to that size and rotated about the central point of the control. Any parts of the picture outside the
control are clipped.

As a result, the best way to handle the rotation property is to:

1. Construct the picture in another Picture control to the required size without rotation, with the appropriate
stretch property value and control size.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 334

EncycloWin - 2020.0.02

2. Use the Window class createPictureAsType method to obtain the binary picture value from the Picture
control that you created in the previous step of this instruction.

If you call the createPictureAsType method with a bit value less than the bit value of the original image,
color distortion can occur.

3. Resize the destination Picture control so that it fits the rotated picture. (Set the destination stretch property
value to Stretch_None and the picture property to the binary value returned from createPictureAsType
method.)

In addition, creating a picture with the pictureType method set to PictureType_Jpeg results in picture image
quality reduction, because the JPEG format is lossy; that is, picture quality is reduced to lessen the size of the
resulting image. To retain existing quality and produce a smaller binary image, use a picture type such as
PictureType_Png, which has a lossless compression of images for greater clarity.

Note Any stretching of an image can cause image distortion.

row
Type: Integer

Availability: Read or write at run time only

The row property contains the current row on the current sheet of a Table control.

The column, row, and sheet properties define the current cell when accessing certain properties within the table
control; for example, the text, picture, and selected properties of a cell.

If the current cell is visible on the table and the Table control has focus, the cell has focus rectangle painted on it.

Row access is 1-relative. Changing the value of the row property does not cause the table to be repainted.

The following examples show the use of the row property.

// If new instance, then add new row to database
if isNewInstance and

instancesTable.row > instancesTable.fixedRows then
saveOnDatabase(currentRow);
instancesTable.setFocus;

return;
endif;

dragDrop(table: Table input; win: Window input; x: Real; y: Real) updating;
begin

inheritMethod(table, win, x, y);
if dragRow > 1 and dragColumn > 0 then

row := dragRow;
column := dragColumn;
if text <> "" then

calendar.changeType := calendar.ChangeType_Day;
calendar.date.setDate(text.Integer, calendar.date.month,

calendar.date.year);
endif;

endif;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 335

EncycloWin - 2020.0.02

rowHeight
Type: Integer array

Availability: Read or write at run time only

The rowHeight property enables the size of a row of a Table control to be accessed.

The font selected for the table determines the default value of the rowHeight property. The user can also change
the rowHeight property by dragging a fixed row boundary with the mouse.

The rowHeight property contains a reference to an array of integer values with the same number of items as the
rows property.

Setting the height of a row causes a repaint. Setting the rowHeight property of a row to zero (0) causes it to use
the default row height.

The code fragment in the following example shows the use of the rowHeight property.

while count > 0 do
tbl.rowHeight[count] := (tbl.height / tbl.rows).rounded;
count := count - 1;

endwhile;

Use the rowVisible property to hide a row rather than change its height.

rows
Type: Integer

Availability: Read or write at run time only

The rows property contains the number of rows on the current sheet of a Table control.

Increasing the number of rows adds empty rows to that existing sheet. Decreasing rows deletes excess rows,
discarding any existing data in those rows. Changing the rows property value to zero (0) empties the sheet of any
data.

Note Changing the value of the rows property can affect the current values of the column, row, topRow, and
leftColumn properties.

Rows can also be added by using the addItem or addItemAt methods. A specific row can also be deleted by
using the removeItem method.

You can assign a maximum of 32,000 rows to a Table control. However, depending on the number of columns
that are also assigned to the table, the amount of memory required to handle a large number of rows limits the
number of rows that can be handled in practice.

The code fragments in the following examples show the use of the rows property.

foreach count in 1 to tblPortfolio.rows do
tblPortfolio.row := count;
if tblPortfolio.itemObject.Portfolio = saveObject then

tblPortfolio.selected := true;
break;

endif;
endforeach;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 336

EncycloWin - 2020.0.02

// Remove empty rows so that the sort columns method will work
tbl.column := 1;
row := 1;
while row <= tbl.rows do

tbl.row := row;
if tbl.text = "" then

tbl.deleteRow(row);
// Move back one row otherwise you are working on the next row!
row := row - 1;

endif;
row := row + 1;

endwhile;

rowVisible
Type: Boolean array

Availability: Read or write at run time only

The rowVisible property enables a row of a Table control to be displayed or hidden.

Setting the visible status of a row causes a repaint.

scaleForm
Type: Boolean

Availability: Development only

The scaleForm property of the Form class specifies whether the form and all of its contents are scaled to match
the current font-scaling attribute of the workstation environment (set from the Control Panel Display option font
size). The default value is true.

When this property is set to the default value of true, the font-scaling attribute of the workstation is saved with the
form. When the form is next loaded, the scaling of the workstation that is running the form is compared. If the font
scaling is different, the form and all of its controls are scaled according to the different font scaling environment,
thus preserving the layout of the form.

Note Changing this property has no effect after the affected form has been built.

scaleHeight
Type: Real

Availability: Read or write at run time only

The scaleHeight property of the Window class contains the number of units for the internal vertical measurement
of an object when using graphics methods or when positioning child controls. It also determines the units returned
during the mouseDown, mouseHover, mouseLeave, mouseMove, and mouseUp events for a form or control.

Use this property with the scaleWidth property to create a custom coordinate scale for drawing or positioning
controls. For example, scaleHeight := 100 defines the internal height of a form or control as 100 units, or one
vertical unit as 1/100 of the height.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 337

EncycloWin - 2020.0.02

Use the scaleMode property to define a scale based on a standard unit of measurement; for example, twips,
points, or pixels.

Setting the scaleHeight property interacts with the scaleMode property in the following ways.

Setting any other scale property to any value automatically sets the scaleMode to ScaleMode_User (1).

Setting the scaleMode property to a number other than ScaleMode_User (1) changes the scaleHeight and
scaleWidth properties to the new unit of measurement and sets the scaleLeft and scaleTop properties to 0.

Note The scaleHeight property is not the same as the height property.

scaleLeft
Type: Real

Availability: Read or write at run time only

The scaleLeft property of the Window class contains the horizontal coordinates for the left edge of an object when
using graphics methods or when positioning child controls. It also determines the units returned during the
mouseDown, mouseHover, mouseLeave, mouseUp, and mouseMove events for the form or control.

Use this property with the scaleTop property to create a custom coordinate scale for drawing or positioning
controls.

Use the scaleMode property to define a scale based on a standard unit of measurement; for example, twips,
points, or pixels.

Setting the scaleLeft property interacts with the scaleMode property in the following ways.

Setting any other scale property to any value automatically sets the scaleMode property to ScaleMode_User
(1).

Setting the scaleMode property to a number other than ScaleMode_User (1) changes the scaleHeight and
scaleWidth properties to the new unit of measurement and sets the scaleLeft and scaleTop properties to 0.

Note The scaleLeft property is not the same as the left property.

scaleMode
Type: Integer

Availability: Read or write at run time only

The scaleMode property of the Window class contains the unit of measurement for coordinates of an object when
using graphics methods or when positioning child controls.

It also determines the units returned during the mouseDown, mouseHover, mouseLeave, mouseMove, and
mouseUp events for the form or control.

The settings of the scaleMode property are listed in the following table.

Window Class Constant Value Description

ScaleMode_Pixels 0 Pixel (smallest unit of monitor or printer resolution). This is the
default value.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 338

EncycloWin - 2020.0.02

Window Class Constant Value Description

ScaleMode_User 1 Indicates that one or more of the scaleHeight, scaleWidth,
scaleLeft, or scaleTop properties are set to custom values.

ScaleMode_Twip 2 Twip (1440 twips per logical inch; 567 twips per logical centimeter).

ScaleMode_Point 3 Point (72 points per logical inch).

Using the related scaleHeight, scaleWidth, scaleLeft, and scaleTop properties, you can create a custom
coordinate system with both positive and negative coordinates. These four scale properties interact with the
scaleMode property in the following ways.

Setting the value of any other scale property to any value automatically sets the scaleMode property to
ScaleMode_User (1).

Setting the scaleMode property to a number other than ScaleMode_User (1) changes the scaleHeight and
scaleWidth property values to the new unit of measurement and sets the scaleLeft and scaleTop properties
to 0.

Note If the scaleMode property is set to a non-zero value, setting control positions and sizes is expressed in
scale mode units. These units are converted (and rounded) internally to pixels, to physically place the control on
the screen. When the position or size is accessed, the pixel position or size is converted back to scale mode units,
and a slightly different value may result due to the rounding that occurred.

Negative scaleHeight and scaleWidth property values do not apply to window positions and sizes. A window is
always drawn across and down from its left and top positions, regardless of the sign of these scale properties.

scaleTop
Type: Real

Availability: Read or write at run time only

The scaleTop property of the Window class contains the vertical coordinates for the top edges of an object when
using graphics methods or when positioning child controls. It also determines the units returned during the
mouseDown, mouseHover, mouseLeave, mouseUp, and mouseMove events for the form or control. Use this
property with the scaleLeft property to create a custom coordinate scale for drawing or positioning controls.

Use the scaleMode property to define a scale based on a standard unit of measurement; for example, twips,
points, or pixels. Setting the scaleTop property interacts with the scaleMode property in the following ways.

Setting any other scale property to any value automatically sets the scaleMode property to ScaleMode_User
(1).

Setting the scaleMode property to a number other than ScaleMode_User (1) changes the scaleHeight and
scaleWidth properties to the new unit of measurement and sets the scaleLeft and scaleTop properties to 0.

Note The scaleTop property is not the same as the top property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 339

EncycloWin - 2020.0.02

scaleWidth
Type: Real

Availability: Read or write at run time only

The scaleWidth property of the Window class contains the number of units for the internal horizontal
measurement of an object when using graphics methods or when positioning child controls. It also determines the
units returned during the mouseDown, mouseHover, mouseLeave, mouseMove, and mouseUp events for a
form or control.

Use this property with the scaleHeight property to create a custom coordinate scale for drawing or positioning
controls. For example, scaleHeight := 100 defines the internal height of a form or control as 100 units, or one
vertical unit as 1/100 of the height.

Use the scaleMode property to define a scale based on a standard unit of measurement; for example, twips,
points, or pixels. Setting the scaleWidth property interacts with the scaleMode property in the following ways.

Setting any other scale property to any value automatically sets the scaleMode to ScaleMode_User (1).

Setting the scaleMode property to a number other than ScaleMode_User (1) changes the scaleHeight and
scaleWidth properties to the new unit of measurement and sets the scaleLeft and scaleTop properties to 0.

Note The scaleWidth property is not the same as the width property.

scrollBars
Type: Integer

Availability: Read or write at any time

The scrollBars property of the Form class determines whether an object has horizontal or vertical scroll bars.

The scrollBars property of the JadeRichText control determines whether an object has horizontal or vertical
scroll bars.

The settings of the scrollBars property are listed in the following table.

Window Class Constant Value Description

ScrollBars_None 0 None (the default)

ScrollBars_Horizontal 1 Horizontal

ScrollBars_Vertical 2 Vertical

ScrollBars_Both 3 Both

Scroll bars are displayed on an object (except for picture boxes, text boxes, and non-MDI forms that are always
present) only if the contents of the object extend beyond the borders of the object. For example, in an MDI form, if
part of a child form is hidden behind the border of the parent MDI form, a horizontal scroll bar is displayed.

Similarly, a vertical scroll bar is displayed on a Table when it cannot display all of its rows. If the scrollBars
property is set to ScrollBars_None (0), the object does not have scroll bars, regardless of its contents.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 340

EncycloWin - 2020.0.02

For the ListBox and Table control classes only, the Window class provides the constants listed in the following
table.

Windows Class Constant Integer Description

ScrollBars_PermanentHorizontal 4 Horizontal scroll bar is always shown

ScrollBars_PermanentVertical 5 Vertical scroll bar is always shown

ScrollBars_PermanentBoth 6 Both horizontal and vertical scroll bars are always shown

ScrollBars_HorzPermanentVert 7 Horizontal scroll bar is shown only if required and the
vertical scroll bar is always shown

ScrollBars_VertPermanentHorz 8 Vertical scroll bar is shown only if required and the
horizontal scroll bar is always shown

These constants enable you to define scroll bars for list boxes and tables that are permanently shown, regardless
of whether they are needed or not. If a scroll bar on a list box or table control does not have a scroll range
because there are insufficient entries, the scroll bar will be shown as disabled.

Any control that is aligned to its parent by using the alignContainer or alignChildren property will not scroll and
that control will remain in place in its parent when the scroll bar of the parent is shifted. Dock control and status
lines, for example, therefore remain visible and unchanged when the scroll bar of the parent is adjusted.

This property has no effect on scroll bars on MDI client windows. Scroll bars are drawn on an MDI client window if
it is positioned within the MDI frame so that scroll bars are required, and these cannot be hidden. Scroll bars can
be displayed or hidden only on the MDI frame form and the MDI child windows that the MDI client contains.

For a TextBox control, if a horizontal scroll bar is set, the scrollHorizontal property is automatically set to true.
Similarly, a vertical scroll bar causes the scrollVertical property to be set to true.

For JadeRichText controls, scroll bars are not visible unless text extends beyond the control client window co-
ordinates.

scrollHorizontal
Type: Boolean (TextBox class), Integer (ListBox class)

Availability: Read or write at any time

The scrollHorizontal property of a text box specifies whether the text scrolls horizontally. For a list box, it controls
whether a list box control has a horizontal scroll bar added when a list box line item does not horizontally fit in the
list box.

The settings for the scrollHorizontal property for TextBox controls are listed in the following table.

Value Description

false None (the default)

true Text scrolls when the size of the text box is exceeded by the entered text

By default, the text in a text box does not scroll horizontally when the text is about to exceed the horizontal size of
the control. If the height of the text box allows for more than one line of text, the text word-wraps onto the next line,
until all visible lines are full.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 341

EncycloWin - 2020.0.02

Setting the scrollHorizontal property to true means that the text scrolls to the right as text is entered and the width
of the text exceeds the width of the text area of the text box. If the value of the scrollHorizontal property is true, no
word wrapping occurs, and the Enter key must be pressed to terminate the current line and to start a new line.

Note If the value of the alignment property of a text box is Alignment_Right or Alignment_Center, setting the
value of the scrollHorizontal property to true has no effect.

Setting the scrollBars property so that a horizontal or vertical bar is displayed causes the scrollHorizontal
property to be set to true. Setting the scrollHorizontal property to true does not cause scroll bars to be displayed,
as this is achieved by setting the scrollBars property.

The settings for the scrollHorizontal property for ListBox controls are listed in the following table.

ListBox Class Constant Value Description

ScrollHorizontal_None 0 No horizontal scroll bar is displayed (the default)

ScrollHorizontal_Auto 1 A horizontal scroll bar is added automatically when a list line
item cannot be fully displayed horizontally in the list box

scrollHorzPos
Type: Integer

Availability: Read or write at run time only

The scrollHorzPos property contains the position of the horizontal scroll bar. The units are pixels, except for a text
box control where the horizontal positions are characters.

The scrollHorzPos property applies to Form, Picture, TextBox, ListBox, and JadeRichText controls. (Use the
topRow and leftColumn properties to set the scroll positions for Table controls.)

If the scroll bar is not defined for the form or control, a value of zero (0) is returned, and setting the scrollHorzPos
property has no effect.

Setting the value of the scrollHorzPos property when the horizontal scroll bar is defined scrolls the window to that
horizontal position relative to the minimum scroll range value. Setting this property to a value outside the scroll
range results in an exception being raised.

For the JadeRichText control, the scrollHorzPos property contains the horizontal position in the virtual text space
corresponding to the point displayed on the left hand side of the control. The units are characters. If the scroll bar
is not defined for the control, the value of this property defaults to zero (0) and setting the scrollHorzPos property
has no effect.

The scrolled event is not generated as a result of setting a new scroll position.

This property can also be used to convert physical window positions into logical positions; as shown in the
following example.

list1_mouseDown(listbox: ListBox input; button: Integer; shift: Integer;
x: Real; y: Real) updating;

begin
xpos := x + list1.scrollHorzPos; // logical pos for mouse down

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 342

EncycloWin - 2020.0.02

scrollVertical
Type: Boolean

Availability: Read or write at any time

The scrollVertical property of TextBox controls specifies whether the text in a text box control scrolls vertically.

The settings for the scrollVertical property are listed in the following table.

Value Description

false None (the default)

true Text scrolls when the size of the text box is exceeded by the entered text

By default, the text in a text box does not scroll vertically when the text is about to exceed the vertical size of the
control. If the height of the text box allows for more than one line of text, the text word-wraps onto the next line, until
all visible lines are full.

Setting the scrollBars property so that a vertical scroll bar is displayed causes the scrollVertical property to be
set to true.

Setting the scrollVertical property to true does not cause scroll bars to be displayed, as this is achieved by setting
the scrollBars property.

scrollVertPos
Type: Integer

Availability: Read or write at run time only

The scrollVertPos property contains the position of the vertical scroll bar.

The units are pixels, except for a text box control where the vertical positions are text lines.

The scrollVertPos property applies to Form, Picture, TextBox, and JadeRichText controls. (Use the topIndex
property to set vertical scroll positions for ListBox controls and the topRow and leftColumn properties to set the
scroll positions for Table controls.)

If the scroll bar is not defined for the form or control, a value of zero (0) is returned, and setting the scrollVertPos
property has no effect. Setting the value of the scrollVertPos property when the vertical scroll bar is defined
scrolls the window to that vertical position relative to the minimum scroll range value. Setting this property to a
value outside the scroll range results in an exception being raised.

The scrolled event is not generated as a result of setting a new scroll position.

For the JadeRichText control, the scrollVertPos property contains the vertical position in the virtual text space
corresponding to the point displayed at the top of the control. The units are characters.

If the scroll bar is not defined for the control, the value of this property defaults to zero (0) and setting the
scrollVertPos property has no effect.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 343

EncycloWin - 2020.0.02

secureForm
Type: Boolean

Availability: Read or write at any time

The secureForm property of the Form class specifies whether Web forms are secure; that is, Uniform Resource
Locators (URLs) and page submits use the https protocol.

By default, forms are not secure. (The http protocol is used.)

securityLevelEnabled
Type: Integer

Availability: Read or write at any time

The securityLevelEnabled property of the Window class determines whether the form or control is automatically
disabled when its form is created and loaded or when this property is changed.

If the value of the securityLevelEnabled property of the form or control is greater than the value of the
userSecurityLevel property of the Application class (app.userSecurityLevel), it is disabled regardless of the
value of its enabled property when it is created.

You can use the enabled property in logic to override this setting.

securityLevelVisible
Type: Integer

Availability: Read or write at any time

The securityLevelVisible property of the Window class determines whether the form or control is automatically
made invisible when its form is created and loaded or when this property is changed.

If the value of the securityLevelVisible property of the form or control is greater than the value of the
userSecurityLevel property of the Application class (app.userSecurityLevel), it is made invisible regardless of
the value of its visible property when it is created.

You can use the visible property in logic to override this setting.

selected
Type: Boolean

Availability: Read or write at run time

The selected property specifies whether the current cell on the current sheet of a Table control is selected. The
sheet, row, and column properties define the current cell. Accessing cells for this status in the fixed column and
row area has special meaning if:

The current row and column are both in the fixed area, no action is taken and the selected property returns
false.

The current row but not the column is in the fixed area, setting the selected property sets all non-fixed cells in
that column to the selected status. Getting the status in that situation returns true if all non-fixed cells in that
column are selected. If they are not all selected, it returns false.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 344

EncycloWin - 2020.0.02

The current column but not the row is in the fixed area, setting the selected property sets all non-fixed cells in
that row to the selected status. Getting the status in that situation returns true if all non-fixed cells in that row
are selected. If they are not all selected, it returns false.

When the user clicks a non-fixed cell, all other selected cells are set to false, and the value of the selected
property for the cell that is clicked is set to true. When the user clicks a non-fixed cell with the Shift key held down,
the selected status of that cell is toggled. (The same effect can be achieved by using the arrow keys.)

When the user clicks a fixed column cell, all other selected cells are set to false, and the value of the selected
property for all non-fixed cells in the clicked column is set to true. When the user clicks a fixed row cell, all other
selected cells are set to false, and the value of the selected property of all non-fixed cells in the clicked row is set
to true.

Both the Shift and the Ctrl keys can be used when a cell is selected in a table. Clicking a cell with the Ctrl key down
toggles the selection of the clicked cell. Clicking a cell with the Shift key down causes the selection of all cells from
the currently selected cell up to the cell that is being clicked when they are in the same row or column. (If they are
not in the same row or column, only the cell that is clicked is selected.)

The value of the selectMode property also restricts the use of the Shift and Ctrl keys when selecting cells in tables.
Use Ctrl+space bar to toggle the selected property status of the current cell, unless the style defined in the current
selectMode property overrides that.

The code fragments in the following examples show the use of the selected property.

obj := tblPortfolio.itemObject;
if obj = null or not tblPortfolio.selected then

app.msgBox("You should select a share to sell", "Warning",
MsgBox_Exclamation_Mark_Icon + MsgBox_OK_Only);

return;
endif;

if tblPortfolio.selected then
if tblPortfolio.itemObject <> null then

saveObject := tblPortfolio.itemObject;
endif;

endif;

selectionStyle
Type: Integer

Availability: Read or write at any time

The selectionStyle property determines whether selected text in a TextBox or JadeRichText control remains
highlighted when a control loses and gains the focus.

For the JadeEditMask control, this property determines whether a text box portion of the edit mask control that
receives focus is selected.

The settings of the selectionStyle property for the TextBox and JadeRichText classes are listed in the following
table.

TextBox Class Constant Value Description

SelectionStyle_Retain 0 Selected text appears selected when the control loses the
focus (the default).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 345

EncycloWin - 2020.0.02

TextBox Class Constant Value Description

SelectionStyle_Hide 1 Selected text does not appear selected when the control loses
the focus. If the text box gains focus by means other than a
mouse click, the selected text display is restored.

SelectionStyle_SelectAll 2 All text in the control is automatically selected when the control
gains the focus by means other than a mouse click. The data
entry position (the | vertical bar) is located after the last
character of the text. When focus is lost, the selection display is
removed.

SelectionStyle_SelectAllAlways 3 For the TextBox control only, the entire text is selected,
regardless of how the focus was achieved when the text box
gains focus (by logic, the mouse, or keyboard). The data entry
position (the | vertical bar) is located after the last character of
the text. When focus is lost, the selection display is removed.

Use the selectionStyle property to indicate which text is selected while another form or control has the focus or
when the text box gains the focus by means other than a mouse click. Changing this value at run time causes the
text box to be recreated in the new style. The text is retained, but other runtime attributes (for example, the selText
property) are reset.

The settings of the selectionStyle property for the JadeEditMask class are listed in the following table.

Constant Value Description

SelectionStyle_None 0 Text box portion of the edit mask is not selected (default
value).

SelectionStyle_Select 1 Text box portion of the edit mask control that receives focus is
selected, except when using the mouse to gain focus.

SelectionStyle_Select_Always 2 Entire text box portion of the edit mask control that receives
focus is selected, regardless of how the focus was achieved
when the text box gains focus (by logic, the mouse, or
keyboard). The data entry position (the | vertical bar) is located
after the last character of the text. When focus is lost, the
selection display is removed

selectMode
Type: Integer

Availability: Read or write at any time

The selectMode property of the Table class enables you to control the selections that are made automatically
when the user clicks a cell of the table using the mouse or the keyboard.

Your logic can set the selected property value of any cell, regardless of the value contained in the selectMode
property.

When you set the selected property of a fixed cell from JADE logic, the values of all non-fixed cells in that row or
column are also set to that value.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 346

EncycloWin - 2020.0.02

The settings of the selectMode property, listed in the following table, have meaning when a cell is clicked with the
mouse or keyboard (if the Shift or Ctrl key is not also pressed). The selection status of all cells is first cleared.

Table Class Constant Value Description

SelectMode_Default 0 The default value, which specifies that the cell selection is turned
on for a non-fixed cell and for a fixed row, all non-fixed cells in the
whole row are selected. For a cell in a fixed column, all non-fixed
cells in that column are selected.

SelectMode_FixedRow 1 Same as SelectMode_Default except that selecting a cell in a fixed
row has no effect.

SelectMode_FixedColumn 2 Same as SelectMode_Default except that selecting a cell in a fixed
column has no effect.

SelectMode_Multiple 3 Multiple cells can be selected in any row or column. Clicking on a
fixed cell has no impact on selection.

SelectMode_Row 4 Multiple cells can be selected only in the same row. Clicking on a
fixed cell has no impact on selection.

SelectMode_Column 5 Multiple cells can be selected only in the same column. Clicking on
a fixed cell has no impact on selection.

SelectMode_Single 6 Only one cell can be selected at a time. Clicking on a fixed cell has
no impact on selection.

SelectMode_None 7 Clicking anywhere on the table has no impact on selection.

SelectMode_CurrentRow 8 When the selectMode property is set to SelectMode_CurrentRow,
the current row of the sheet of the table is always considered to be
selected. This results in all the cells of the row being shown as
selected.

The selected status of any cell not in the current row is always false
and the selected status of any cell in the current row is always true.
A user cannot affect this status by logic or by a mouse or keyboard
action. The only change occurs when a new row is selected by
logic or by a user action, where the selection rules then apply to the
new current row.

Note that any logic attempting to change the selection status of any
cell, row, column, or sheet is ignored.

SelectMode_WholeRows 9 When the selectMode property is set to SelectMode_WholeRows,
the selected status of all cells in a row is affected when the user
clicks on any cell in the row, the selected property of any cell is
changed, or the user uses a keyboard arrow key to change rows.

This selection style allows multiple rows to be selected at once, by
using the keyboard, the mouse (using the Shift or Ctrl key), or logic.

SelectMode_CurrentColumn 10 When the selectMode property is set to SelectMode_
CurrentColumn, the current column of the sheet of the table is
always considered to be selected. This results in all the cells of the
column being shown as selected.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 347

EncycloWin - 2020.0.02

Table Class Constant Value Description

The selected status of any cell not in the current column is always
false and the selected status of any cell in the current column is
always true. A user cannot affect this status by logic or by a mouse
or keyboard action. The only change occurs when a new column is
selected by logic or by a user action, where the selection rules then
apply to the new current column. Note that any logic attempting to
change the selection status of any cell, row, column, or sheet is
ignored.

SelectMode_WholeColumns 11 When the selectMode property is set to SelectMode_
WholeColumns, the selected status of all cells in a column is
affected when the user clicks on any cell in the column, the
selected property of any cell is changed, or the user uses a
keyboard arrow key to change columns. This selection style allows
multiple columns to be selected at once, by using the keyboard, the
mouse (using the Shift or Ctrl key), or logic.

Clicking a cell with the Ctrl key down toggles the selection of that cell. (See also the selected property.)

Clicking a cell with the Shift key down causes the selection of all cells from the currently selected cell up to the cell
that is being clicked when they are in the same row or column. (If they are not in the same row or column, only the
cell that is clicked is selected.)

The code fragment in the following example shows the use of the selectMode property.

table1.selectMode := comboSelectMode.listIndex - 1;

selBackColor
Type: Integer

Availability: Read or write at any time (JadeTextEdit); read or write at run time only (JadeRichText)

The selBackColor property of the JadeRichText and JadeTextEdit controls specifies the background color of
text selected in the text editor. The selBackColor property is not available at design time for JadeRichText
controls.

The default background color is the Window class system highlight color represented by the Window class Color_
Highlight constant.

The default value of the JadeTextEdit class is represented by the ATTRIB_DEFAULT (-1) JadeTextEdit class
constant.

The value of the property in a JadeRichText control can be an RGB value in the range 0 through 0xFFFFFF or it
can be one of the JadeRichText class constants listed in the following table.

JadeRichText Class Constant Value Comment

CharacterFormat_AutoColor -1 Text is drawn using the text color of the system (the
default), with the background of the text drawn with the
defined value of the backColor property

CharacterFormat_Undefined #80000000 Selected text contains a mixture of colors (this value cannot
be set)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 348

EncycloWin - 2020.0.02

The following code fragments are examples of the JadeRichText class selBackColor property.

rtfControl.selStart := 10;
rtfControl.selLength := 6;
rtfControl.selBackColor := Red;
// sets the background color of the characters 10 through 15 in the control to Red

rtfControl.selBackColor := Green;
rtfControl.load("Monday ", JadeRichText.Load_Append);
// sets the background color of the appended text 'Monday' to Green

selFontBold
Type: Integer

Availability: Not available at design time, read or write at run time

The selFontBold property of the JadeRichText control specifies whether the font style of the selected text is bold.
The settings of the selFontBold property are listed in the following table.

JadeRichText Class Constant Value Comment

CharacterFormat_NotSet 0 The default value

CharacterFormat_Set 1

CharacterFormat_Undefined #80000000 The selected text contains both bold and non-bold
characters

selFontItalic
Type: Integer

Availability: Not available at design time, read or write at run time

The selFontItalic property of the JadeRichText control specifies whether the font style of the selected text is
italics. The settings of the selFontItalic property are listed in the following table.

JadeRichText Class Constant Value Comment

CharacterFormat_NotSet 0 The default value

CharacterFormat_Set 1

CharacterFormat_Undefined #80000000 The selected text contains both italic and non-italic
characters

selFontName
Type: String

Availability: Not available at design time, read or write at run time

The selFontName property of the JadeRichText control specifies the name of the font used for the selected text.

The default value is determined by the system. Fonts that are available with JADE vary, according to your system
configuration, display devices, and printing devices.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 349

EncycloWin - 2020.0.02

Although you cannot set this property to null, a null value ("") indicates that the selected text contains multiple
characters with different font names.

selFontSize
Type: Real

Availability: Not available at design time, read or write at run time

The selFontSize property of the JadeRichText class contains the size of the font used for the selected text. The
default value is determined by the system. Fonts that are available with JADE vary, according to your system
configuration, display devices, and printing devices.

Although you cannot set this property to CharacterFormat_Undefined (#80000000), this value indicates that the
selected text contains multiple characters with different font sizes.

selFontStrikethru
Type: Integer

Availability: Not available at design time, read or write at run time

The selFontStrikethru property of the JadeRichText control specifies whether the strikethrough font attribute is
applied to the selected text.

The settings of the selFontStrikethru property are listed in the following table.

JadeRichText Class Constant Value Comment

CharacterFormat_NotSet 0 The default value

CharacterFormat_Set 1

CharacterFormat_Undefined #80000000 Selected text contains both strikethrough and
non-strikethrough characters (this value cannot
be set)

selFontUnderline
Type: Integer

Availability: Not available at design time, read or write at run time

The selFontUnderline property of the JadeRichText control specifies whether the underline font attribute is
applied to the selected text.

The settings of the selFontUnderline property are listed in the following table.

JadeRichText Class Constant Value Comment

CharacterFormat_NotSet 0 The default value

CharacterFormat_Set 1

CharacterFormat_Undefined #80000000 Selected text contains both underlined and
non-underlined characters (this value cannot
be set)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 350

EncycloWin - 2020.0.02

selFontUnderlineType
Type: Byte

Availability: Not available at design time, read or write at run time

The selFontUnderlineType property of the JadeRichText control specifies whether the underline font attribute is
applied to the selected text and the form in which the underline is drawn. The use of this property is the same as
selFontUnderline, except that it also controls the style in which the underline is drawn.

Note Only use one of the selFontUnderline and selFontUnderlineType properties when defining the underline
settings.

The setting of the selFontUnderlineType property can be one of the JadeRichText class constants listed in the
following table.

JadeRichText Class Constant Value Comment

Underline_Type_None 0.Byte No underline is drawn (equivalent to selFontUnderline :=
false)

Underline_Type_Underline 1.Byte Standard underline (equivalent to selFontUnderline := true)

Underline_Type_Dotted 4.Byte Underline is dotted

Underline_Type_Dash 5.Byte Underline is dashed

Underline_Type_DashDot 6.Byte Underline is dash, dot repeated

Underline_Type_DashDotDot 7.Byte Underline is dash, dot, dot repeated

Underline_Type_Wave 8.Byte Underline is a wavy line

Underline_Type_Thick 9.Byte Underline is thick (doubled)

Underline_Type_Invert 254.Byte Underline is an inverted color line

If the selected text contains more than one underline type, the selFontUnderlineType property is set to an
undefined value. Other values are undefined but will mostly be drawn as a standard underline.

The following code fragments are examples of the selFontUnderlineType property.

rtfControl.selStart := 10;
rtfControl.selLength := 6;
rtfControl.selFontUnderlineType := JadeRichText.Underline_Type_Wave;
// underlines the characters 10 through 15 in the control with a wavy line

rtfControl.selFontUnderlineType := JadeRichText.Underline_Type_Dotted;
rtfControl.load("Monday ", JadeRichText.Load_Append);
// underlines the appended text 'Monday' with a dotted line.

selForeColor
Type: Integer[4]

Availability: Read or write at run time only

The selForeColor property of the JadeTextEdit control specifies the color of text selected in the text editor. The
default value is -1, meaning transparent (that is, the syntax coloring is used).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 351

EncycloWin - 2020.0.02

If you set the value of this property, any selected text is displayed in this color, regardless of the syntax coloring
that applies.

selLength
Type: Integer

Availability: Not available at design time, read or write at run time

The selLength property contains the number of characters selected in a ComboBox, TextBox, JadeRichText, or
JadeTextEdit control. Use the selLength property for tasks such as setting the insertion point, establishing an
insertion range, selecting substrings in a control, or clearing text.

The valid range of settings is zero (0) through text length (the total number of characters in the edit area of the
control). The result of setting the value of the selLength property to a value less than zero (0) is undefined.

Changing the value of the selStart property changes the selection to an insertion point and sets the value of the
selLength property to zero (0). Setting the selText property to a new value sets the selLength property to zero (0)
and replaces the selected text with the new string.

If the value of the selStart property is zero (0) and the value of the selLength property is -1, all text in the control is
selected. If the value of the selStart property is -1, any current selection is deselected.

For the JadeTextEdit class, the EVENTTYPE_SELECTIONSTATE notification occurs when the selection changes
from empty or to empty.

selLink
Type: Boolean

Availability: Not available at design time, read or write at run time

The selLink property of the JadeRichText control specifies whether the selected text is all marked as a URL link.
You can use this property to define user-friendly name links. If the property is set to true, when the user clicks on
the text, the linkClicked event method is called for the control and the event receives the text of the link. See also
the autoURLDetect property, which when true, causes this process to occur automatically for text that can be
recognized as a URL.

Set the selLink property to:

true, to have the selected text drawn as a blue underlined URL. The text color and underlining cannot be
controlled.

false, to have the selected text drawn normally.

If the selected text is a mixture of a link and a non-link, this property returns false.

The following code fragments are examples of the selLink property.

rtfControl.selStart := 10;
rtfControl.selLength := 6;
rtfControl.selLink := true;
// causes the characters 10 through 15 to be drawn as a URL

rtfControl.selLink := true;
rtfControl.load("Monday ", JadeRichText.Load_Append);
// causes the appended text 'Monday' to be drawn as an underlined blue URL

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 352

EncycloWin - 2020.0.02

selStart
Type: Integer

Availability: Not available at design time, read or write at run time

The selStart property of the ComboBox, TextBox, or JadeRichText class contains the starting point of selected
text and indicates the position of the insertion point if no text is selected.

For the JadeTextEdit class, this property contains the zero-based character offset of the first character in the text
selected in the control and indicates the position of the insertion point if no text is selected. A value of -1 sets the
property to the currentPosition property. If the value is past the end of the control, the value is set to the position of
the last character of text.

Use this property for tasks such as setting the insertion point, establishing an insertion range, selecting substrings
in a control, or clearing text.

The valid range of settings is zero (0) through text length (the total number of characters in the edit area of a
control). If the value of the selStart property is zero (0) and the value of the selLength property is -1, all text in the
control is selected. If the value of the selStart property is -1, any current selection is deselected. Setting the
selStart property to a value greater than the text length sets the property to the existing text length.

Changing the value of the selStart property changes the selection to an insertion point, causes the text at the
selStart position to be visible if the user has entered text beyond the length of the text box, and sets the value of
the selLength property to zero (0).

selText
Type: String

Availability: Not available at design time, read or write at run time

The selText property contains the string of the currently selected text, consisting of an empty string ("") if no
characters are selected in a ComboBox, TextBox, JadeRichText, or JadeTextEdit control. Use this property for
tasks such as setting the insertion point, establishing an insertion range, selecting substrings in a control, or
clearing text.

Setting the selText property to a new value sets the selLength property to zero (0) and replaces the selected text
with the new string. If there is no text selected in the control, the text is inserted at the current caret position.

For the JadeRichText control, the selText property contains the string of the currently selected text as plain text
format, consisting of an empty string ("") if no characters are selected. For the JadeTextEdit control, no end-of-
line conversion is performed when the selText property is set or retrieved.

selTextColor
Type: Integer

Availability: Not available at design time, read or write at run time

The selTextColor property of the JadeRichText control contains the color of the currently selected text. (For an
example of the use of this property, see "JadeRichText Control Method Example", earlier in this document.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 353

EncycloWin - 2020.0.02

The selTextColor property can be an RGB value (in the range 0 through 0xFFFFFF) or it can be one of the values
listed in the following table.

JadeRichText Class Constant Value Comment

CharacterFormat_AutoColor -1 Text is drawn using the text color of the system
(the default), with the background of the text
drawn with the defined value of the backColor
property

CharacterFormat_Undefined #80000000 Selected text contains a mixture of colors (this
value cannot be set)

selTextRTF
Type: String

Availability: Not available at design time, read or write at run time

The selTextRTF property of the JadeRichText control contains the selected text in rich text format, consisting of
an empty string ("") if no characters are selected.

Use this property for tasks such as setting the insertion point, establishing an insertion range, selecting substrings
in a control, or clearing text.

Setting the selTextRTF property to a new value sets the selLength property to zero (0) and replaces the selected
text with the new string.

sheet
Type: Integer

Availability: Read or write at run time for tables

The sheet property contains the index of the current sheet for the Table control. This sheet value is used in the
access of the table control properties. Changing the sheet property does not affect the sheet that is displayed.
Using the topSheet property can change the sheet that is displayed. Sheet access is 1-relative.

The following example shows the use of the sheet property in a method that updates a table.

vars
count, entry, row, sheet : Integer;
companiesPerSheet : Integer;
company : Company;

begin
// work out number of rows per sheet
count := app.myMarket.allCompanies.size div 3;
if (count * 3) < app.myMarket.allCompanies.size then

companiesPerSheet := count + 1;
else

companiesPerSheet := count;
endif;
entry := 1;
count := 0;
tblPrices.sheet := 1;
if reason = Price_Change and changedCompany <> null then

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 354

EncycloWin - 2020.0.02

findCompanyInTable(changedCompany, companiesPerSheet, sheet, row);
return;

endif;
foreach company in app.myMarket.allCompanies do

sharedLock(company);
tblPrices.row := tblPrices.row + 1;
tblPrices.column := 1;
tblPrices.text := company.shortName;
// set column on item Object to company
tblPrices.itemObject := company;
tblPrices.column := 2;
tblPrices.text := company.name;
tblPrices.column := 3;
tblPrices.accessMode := Table.AccessMode_Column;
tblPrices.alignment := Table.Alignment_Right;
tblPrices.text := company.currentPrice.currencyFormat;
tblPrices.column := 4;
tblPrices.accessMode := Table.AccessMode_Column;
tblPrices.alignment := Table.Alignment_Right;
tblPrices.text := company.availableShares.String;
entry := entry + 1;
if count = 0 then

tblPrices.sheetCaption := company.shortName;
endif;
count := count + 1;
if count >= companiesPerSheet then

count := 0;
tblPrices.rows := tblPrices.row;
tblPrices.sheetCaption := tblPrices.sheetCaption &

" - " & company.shortName;
if tblPrices.sheet < 3 then

tblPrices.sheet := tblPrices.sheet + 1;
endif;

endif;
unlock(company);

endforeach;
if count <> 0 then

tblPrices.rows := tblPrices.row;
endif;

end;

sheetCaption
Type: String

Availability: Read or write at run time only for tables

The sheetCaption property contains the caption for the current sheet of a Table control.

This caption is displayed in the tabs area of the table. It is contained in the portion of the table on which the user
clicks to make a specific sheet visible.

The code fragment in the following example shows the use of the sheetCaption property.

tblPrices.sheetCaption := company.shortName;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 355

EncycloWin - 2020.0.02

sheets
Type: Integer

Availability: Read or write at any time

The sheets property contains the number of sheets for a Table control. Changing the value of this property adds
additional sheets to the table or deletes excess sheets, discarding their contents.

The value of the sheets property cannot be set to zero (0). New sheets added to the table adopt the property
defaults value for the current sheet.

The following example shows the use of the sheets property.

vars
count : Integer;

begin
count := 1;
while count <= tblPrices.sheets do

tblPrices.sheet := count;
tblPrices.columns := 3;
tblPrices.rows := totalRows;
tblPrices.row := 1;
tblPrices.column := 1;
tblPrices.text := "Product";
tblPrices.column := 2;
tblPrices.text := "Price";
tblPrices.column := 3;
tblPrices.text := "Available";
tblPrices.columnWidth[1] := tblPrices.width.Integer div 6;
tblPrices.columnWidth[2] := tblPrices.width.Integer div 3;
tblPrices.columnWidth[3] := tblPrices.width.Integer div 6;
count := count + 1;

endwhile;
// allow space for the vertical scroll bar
tblPrices.width := tblPrices.width + 18;

end;

See also the sheets method of the Folder control.

sheetVisible
Type: Boolean array

Availability: Read or write at run time only

The sheetVisible property enables the visibility of a sheet of a Table control to be accessed.

Hiding a sheet forces a repositioning of the tabs area of the table. If one sheet only is visible, no tabs are
displayed.

Deleting the only visible sheet automatically causes the first sheet in the table to be made visible.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 356

EncycloWin - 2020.0.02

shortName
Type: String [100]

Availability: Read or write at run time only

The shortName property contains the short name of the OLE object in an OleControl class. The short name
defaults to the OLE class or short file name used to create the object.

The shortName property allows the object to have an identifying short description assigned to the control and
OLE object.

show3D
Type: Integer

Availability: Read or write at any time

The show3D property of the Control class is used to control whether automatic three-dimensional (3D) effects are
added to the appearance of a control. The show3D property is independent of controls that have inbuilt 3D effects;
for example, Frame or Button controls.

The Form sheet of the Define Application dialog in the JADE development environment enables you to specify the
default value of the show3D property for new controls. For details about drawing borders on individual controls,
see the borderStyle property.

The show3D property is ignored for ActiveXControl and Ocx controls so that they do not have two borders: one
drawn by JADE and another drawn by the ActiveXControl or Ocx control itself.

The show3D property is set automatically to Show3D_UseBorderStyle (3) for the ActiveXControl,
BrowseButtons, Button, CheckBox, Folder, Frame, JadeDockBar, JadeDockContainer, JadeMask,
MultiMedia, Ocx, OptionButton, HScroll and VScroll, Sheet, and StatusLine controls, which ignore the show3D
property.

The show3D property is available only in the JADE development environment for the ComboBox, GroupBox,
Label, ListBox, Picture, Table, and TextBox controls. You can use the Control class is3D method to return
whether the control was drawn three-dimensionally.

Note For performance reasons, the application default three-dimensional options are not dynamic at run time.
The three-dimensional default value for each control class is obtained the first time each class is referenced.
Changes to the three-dimensional default values of the application do not take effect until the application is next
initiated.

The settings of this property are listed in the following table.

Control Class Constant Value Description

Show3D_UseAppDefault 0 Use application-defined default value for each control class

Show3D_Not3D 1 The control is not displayed as 3D, regardless of the default value

Show3D_Use3D 2 The control is displayed with 3D, regardless of the default value

Show3D_UseBorderStyle 3 Use only the borderStyle property to determine the border

The 3D effects can be thought of as a border that is two pixels wide.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 357

EncycloWin - 2020.0.02

Note If the show3D property is set to Show3D_UseAppDefault (0) and the application default setting of the
show3D property for the control is true (that is, the control is selected in the 3D Controls list box on the Form
sheet of the Define Application dialog) or if the show3D property for the control is set to Show3D_Use3D, the
effective border is a sunken three-dimensional effect regardless of the setting of the borderStyle property. If the
borderStyle property is set to BorderStyle_3DSunken (2) or BorderStyle_3DRaised (3), the show3D property is
reset to Show3D_UseBorderStyle (3).

The Window class borderStyle property is ignored when the show3D property is set to Show3D_Use3D (2) or
Show3D_UseAppDefault (0) and the application default is 3D. When painting the control, you should make
allowance for the increased border size.

The following example shows the use of the show3D property in the constructor for a customized control.

create() updating;
begin

isBuilt := false;
changeType := ChangeType_None;
borderStyle := BorderStyle_Single; // Ignored, because of setting

// of the show3D property
show3D := Show3D_Use3D;
transparent := true;

end;

showFocus
Type: Boolean

Availability: Read or write at run time only

The showFocus property of the Table class specifies whether the focus rectangle is shown on the current cell of a
table when it has focus. The default value is true.

Set the showFocus property to false if you want the table painted without a focus rectangle displayed.

Notes A table that has the readOnly property set to true will not display the focus rectangle, regardless of the
value of the showFocus property.

The focus rectangle is not shown if the current cell is within the fixed rows or columns of the table.

showMdiCloseAllButPinnedMenu
Type: Boolean

Availability: Read or write at any time

The showMdiCloseAllButPinnedMenu property of the Form class specifies whether the Close All But Pinned
command is displayed in the popup (context) menu when a user right-clicks on the caption of an MDI child form or
the tab associated with the form if the value of the Application class mdiStyle property is MdiStyle_Mdi_With_
Tabs (1) or MdiStyle_Tabs_Only (2).

The showMdiCloseAllButPinnedMenu property (and the corresponding Close All But Pinnedcommand) is
disabled if the value of the Application class mdiStyle property has the default value of MdiStyle_Mdi (0).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 358

EncycloWin - 2020.0.02

The default value is false, which means that the popup menu is not displayed by right-clicking the MDI child
caption. When this property is set to true, selecting the Close All But Pinned command closes all MDI child forms
in the current MDI frame that are not pinned and that have the allowClose property set to true.

Notes The showMdiCloseAllButPinnedMenu property is ignored if the form is not an MDI child form or the
allowClose property is set to false.

Right-clicking the MDI child form caption does not display a menu if all of the showMdiCloseAllButPinnedMenu,
showMdiCloseAllButThisMenu, showMdiCloseMenu, showMdiDockMenu, showMdiFloatMenu, and
showMdiPinMenu properties are set to false.

Applies to Version: 2020.0.01 and higher

showMdiCloseAllButThisMenu
Type: Boolean

Availability: Read or write at any time

The showMdiCloseAllButThisMenu property of the Form class specifies whether the Close All But This
command is displayed in the popup (context) menu when a user right-clicks on the caption of an MDI child form or
the tab associated with the form if the value of the Application class mdiStyle property is MdiStyle_Mdi_With_
Tabs (1) or MdiStyle_Tabs_Only (2).

The default value is false, which means that the popup menu is not displayed by right-clicking the MDI child
caption. When this property is set to true, selecting the Close All But This command closes all other MDI children
in the current MDI frame that have the allowClose property set to true, except for the current form.

Notes The showMdiCloseAllButThisMenu property is ignored if the form is not an MDI child form or the
allowClose property is set to false.

Right-clicking the MDI child form caption does not display a menu if all of the showMdiCloseAllButPinnedMenu,
showMdiCloseAllButThisMenu, showMdiCloseMenu, showMdiDockMenu, showMdiFloatMenu, and
showMdiPinMenu properties are set to false.

Applies to Version: 2020.0.01 and higher

showMdiCloseMenu
Type: Boolean

Availability: Read or write at any time

The showMdiCloseMenu property of the Form class specifies whether the Close command is displayed in the
popup (context) menu when a user right-clicks on the caption of an MDI child form or the tab associated with the
form if the value of the Application class mdiStyle property is MdiStyle_Mdi_With_Tabs (1) or MdiStyle_Tabs_
Only (2).

The default value is false, which means that the popup menu is not displayed by right-clicking the MDI child
caption. When this property is set to true, selecting the Close command closes the MDI child form that has the
allowClose property set to true in the current MDI frame.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 359

EncycloWin - 2020.0.02

Notes The showMdiCloseMenu property is ignored if the form is not an MDI child form or the allowClose
property is set to false.

Right-clicking the MDI child form caption does not display a menu if all of the showMdiCloseMenu,
showMdiCloseAllButThisMenu, showMdiCloseAllButPinnedMenu, showMdiDockMenu, showMdiFloatMenu,
and showMdiPinMenu properties are set to false.

Applies to Version: 2020.0.01 and higher

showMdiDockMenu
Type: Boolean

Availability: Read or write at any time

The showMdiDockMenu property of the Form class specifies whether the Dock command is displayed in the
popup (context) menu when a user right-clicks on the caption of an MDI child form or the tab associated with the
form if the value of the Application class mdiStyle property is MdiStyle_Mdi_With_Tabs (1) or MdiStyle_Tabs_
Only (2). The default value of this property is false.

The Dock command is disabled if the MDI child form is already docked in the MDI frame.

Notes The showMdiDockMenu property is ignored if the form is not an MDI child form or the allowClose
property is set to false.

Right-clicking the MDI child form caption does not display a menu if all of the showMdiDockMenu,
showMdiCloseAllButPinnedMenu, showMdiCloseAllButThisMenu, showMdiCloseMenu, showMdiFloatMenu,
and showMdiPinMenu properties are set to false.

Applies to Version: 2020.0.01 and higher

showMdiFloatMenu
Type: Boolean

Availability: Read or write at any time

The showMdiFloatMenu property of the Form class specifies whether the Float command is displayed in the
popup (context) menu when a user right-clicks on the caption of an MDI child form or the tab associated with the
form if the value of the Application class mdiStyle property is MdiStyle_Mdi_With_Tabs (1) or MdiStyle_Tabs_
Only (2).

The default value is false, which means that the popup menu is not displayed by right-clicking the MDI child
caption. When this property is set to true, selecting the Float command floats the current MDI child form that has
the allowClose property set to true; that is, it takes the MDI child form out of the MDI frame and allows it to be
moved independently from the MDI frame (for example, on to another monitor on the PC). The floated MDI child
form is made a window’s child of the frame and will then always be above the MDI frame in z-order.

The Float command is disabled if the MDI child form is currently floating.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 360

EncycloWin - 2020.0.02

Notes The showMdiFloatMenu property is ignored if the form is not an MDI child form or the allowClose
property is set to false.

Right-clicking the MDI child form caption does not display a menu if all of the showMdiFloatMenu,
showMdiCloseAllButPinnedMenu, showMdiCloseAllButThisMenu, showMdiCloseMenu, showMdiDockMenu,
and showMdiPinMenu properties are set to false (the default).

Applies to Version: 2020.0.01 and higher

showMdiPinMenu
Type: Boolean

Availability: Read or write at any time

The showMdiPinMenu property of the Form class toggles status of the Pin command displayed in the popup
(context) menu when a user right-clicks on the caption of an MDI child form or the tab associated with the form if
the value of the Application class mdiStyle property is MdiStyle_Mdi_With_Tabs (1) or MdiStyle_Tabs_Only (2).

The default value is false, which means that the popup menu is not displayed by right-clicking the MDI child
caption. When this property is set to true, selecting the Pin command toggles the pinned status of a MDI child
form. All pinned MDI child form tabs are displayed to the left of all non-pinned form tabs. Pinned tabs have a pin
icon displayed. A check mark is displayed at the left of the Pin command if the tab is pinned. Clicking on the
pinned icon in the tab also unpins the tab.

The showMdiPinMenu property (and the corresponding Pincommand) is disabled if the value of the Application
class mdiStyle property has the default value of MdiStyle_Mdi (0).

Notes The showMdiCloseAllButThisMenu property is ignored if the form is not an MDI child form or the
allowClose property is set to false.

Right-clicking the MDI child form caption does not display a menu if all of the showMdiCloseAllButPinnedMenu,
showMdiCloseAllButThisMenu, showMdiCloseMenu, showMdiDockMenu, showMdiFloatMenu, and
showMdiPinMenu properties are set to false.

Applies to Version: 2020.0.01 and higher

showMenu
Type: Boolean

Availability: Read or write at any time

The showMenu property of the OleControl class specifies whether the control displays a popup menu when the
right mouse button is clicked over the inactive control of the verbs supported by the application that can be
selected (usually edit, play, or open). The default value is true.

For the MultiMedia class, the showMenu property specifies whether a menu bar is displayed on the playbar of the
control. This menu contains items that allow the volume, size, speed, and configuration to be altered for an MP3
file type. If the showMenu property and the useDotNetVersion property are set to true, the menu displayed when
the menu button is clicked shows the view, volume and speed menu items but not the copy, and configure menu
items, as well as a Close menu item that closes the medium being shown. If the value of the showPlayBar
property is false, this property is ignored.

The default value is falseSee also the contextMenu event method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 361

EncycloWin - 2020.0.02

showMode
Type: Boolean

Availability: Read or write at any time

The showMode property of the MultiMedia class specifies whether the control includes a caption, whose display
includes the current status of the device. The default value is false.

See also the showName and showPosition properties.

showName
Type: Boolean

Availability: Read or write at any time

The showName property of the MultiMedia class specifies whether the control includes a caption, whose display
includes the current name of the medium in the device.

The default value is false.

See also the showMode and showPosition properties.

showOpenMenu
Type: Boolean

Availability: Read or write at any time

The showOpenMenu property of the MultiMedia class specifies whether a menu item allowing the user to open
another file in the control is displayed on the menu button menu of the playbar of the control.

If the value of the showPlayBar or showMenu property is false, this property is ignored.

The default value is false.

showPlayBar
Type: Boolean

Availability: Read or write at any time

The showPlayBar property of the MultiMedia class specifies whether a playbar is included in the control. This
playbar enables the user to manually start and stop the playing of the medium in the control.

Note If the playbar is visible and the useDotNetVersion property is set to true, it is drawn using WPF entities
and it has a different appearance from the playbar drawn using an MP3 file type.

The default value is false.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 362

EncycloWin - 2020.0.02

showPosition
Type: Boolean

Availability: Read or write at any time

The showPosition property of the MultiMedia class specifies whether the control includes a caption whose
display includes the current position of the medium in the device.

The default value is false.

See also the showMode and showName properties.

showRecord
Type: Boolean

Availability: Read or write at any time

The showRecord property of the MultiMedia class specifies whether a record button is displayed on the playbar
of the control.

If the useDotNetVersion property is set to true, the showRecord property is not available and it generates
exception 1068 (Feature not available in this release).

The display of a record button is ignored if the device does not support recording or if the value of the
showPlayBar property is false.

The default value is false.

showResizeBar
Type: Boolean

Availability: Read or write at any time

The showResizeBar property of the JadeDockBase class specifies whether resize bars can be added to the
JadeDockBar or JadeDockContainer subclass control. The default value is true.

Resize bars allow the user to drag that bar to increase or decrease the size of the control. When the user drags
the bar to a new position or resizes a floating JadeDockBar or JadeDockContainer control, the userResize
event is called. For details about the rules for displaying a resize bar to the right or on the bottom of JadeDockBar
and JadeDockContainer controls when the value of the showResizeBar property is true, see "Docking a
Control" under "JadeDockBase Class", earlier in this document.

showTaskBarProgress
Type: Boolean

The showTaskBarProgress property of the ProgressBar control specifies whether the progress bar state is
shown on the taskbar icon of the application as well as in the progress bar.

Note This functionality is available only if the application displays an icon on the Windows task bar. It does not
apply to icons in the system tray.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 363

EncycloWin - 2020.0.02

The default value of false indicates that no progress is displayed on the taskbar icon. Setting the property value to
true displays progress on the taskbar icon. The Form class setTaskBarProgress method is automatically called
when the value of the partsDone property is updated.

When the progress bar value reaches 100 percent, the Form class setTaskBarState method with a parameter
value of TaskBar_State_NoProgress is automatically called to hide the taskbar state display.

If the value of the property never reaches 100 percent, it is your responsibility to ensure that the taskbar progress
state is hidden, if required.

The taskbar state is hidden when the form is unloaded.

sizeMode
Type: Integer

The sizeMode property of the OleControl class controls the automatic sizing of the control or image. The sizing
values are listed in the following table.

OleControl Class Constant Value Description

SizeMode_ClipToControl 0 Show as much of the image as fits in the control (the default).

SizeMode_StretchToControl 1 Stretch the image to the size of the control.

SizeMode_AutoSizeControl 2 Stretch the control to the size of the image (occurs only when not
active).

SizeMode_Proportional 3 Stretch the image to the size of the control that has been resized
proportional to the dimensions of the object (the control never gets
larger).

skinCategoryName
Type: String

Availability: Read or write at any time

The skinCategoryName property of the Window class contains the string name of the skin category. By default,
the value of this property is null (""). Use this property to define each form and control with a skin category.

When you click on the skinCategoryName property on Common page of the Properties dialog in the JADE
Painter, a combo box with a list of skin category names is displayed. The list box contains only those category
names that are assigned to a skin of the same type or superclass type as the window currently selected in the
Painter. The list box also contains a blank entry, to enable you to clear the current skin category name. When the
required skin has not been loaded into the current development environment, you can also specify a skin category
name that is not displayed in the list.

When an application skin is set, the window uses only a skin that matches the defined category. (For details about
using skins to enhance your runtime applications, see Chapter 2 of the JADE Runtime Application Guide.)

As the linkage between the window and the skin category is deliberately flexible, you can replace or ignore skins
(by calling the Window class ignoreSkin property) to meet your requirements.

See also JadeSkinControl::applyCondition, the JadeSkinWindow class mySkinCategory property, and the
JadeSkinApplication class myFormSkins and myControlSkins properties, in Chapter 1.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 364

EncycloWin - 2020.0.02

smallChange
Type: Integer

Availability: Read or write at any time

The smallChange property contains the amount of change (in pixels) to the value property in a ScrollBar control
when the user clicks a scroll arrow. You can specify any valid integer. By default, the smallChange property value
is 1.

The Windows environment automatically sets proportional scrolling increments for scroll bars on form windows,
combo boxes, and list boxes, based on the amount of data in the control. For a scroll bar control, however, you
must specify these increments.

Use the smallChange property to set scrolling increments appropriate to how the scroll bar is being used.
Typically, you set the smallChange property in Painter in the JADE development environment. You can also reset
it in logic at run time when the scrolling increment must change dynamically.

Use the max and min properties to set the maximum and minimum ranges of a scroll bar control.

sortAsc
Type: Boolean (list box), Boolean array (table)

Availability: Read or write at run time only

The sortAsc property controls whether the sorting of a ListBox or Table control is ascending or descending. The
sortAsc property defaults to true. If the sorted property of the list box is not set, the sortAsc property has no
meaning.

Each sheet of a table control can have in the range zero through six sorted columns. The sorting sets these
properties for the sheet, as required. Each sheet of a Table control has an array of six items (the entries are
1-relative).

The column numbers can be established at any time, and are not validated when set. If the column is invalid, it is
ignored when sorted. If a sort column is zero (0), the remaining sort column values are ignored. If no sort column is
set, no sorting is performed.

Note When the text of a sorted column changes, the automatic sorting of rows occurs only when the Table class
addItem method adds a new row or the Table class resort method is used.

As the number of rows can initially be set, the table control keeps a record of the highest row that has had text set.
The sort involves only the rows up to and including that row.

Fixed rows of a Table control are not sorted.

The following examples show the use of the sortAsc property.

// toggle sort on columns ...
instancesTable.sortColumn[1] := table.column;
instancesTable.sortAsc[1] := not instancesTable.sortAsc[1];
instancesTable.resort;

table1_dblClick(table: Table input) updating;
begin

if table.row = 1 then
table1.sortColumn[1] := table.column;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 365

EncycloWin - 2020.0.02

table1.sortAsc[1] := true;
table.resort;

endif;
end;

The code fragment in the following example sorts the table based on three columns: 4, 1, and 7. Column 4 is
sorted in ascending order, column 1 in descending order, column 7 in ascending order, and no columns are
sorted by case; that is, they are case-insensitive.

table1.sortColumn[1] := 4; // first sort column is 4
table1.sortAsc[1] := true;
table1.sortCased[1] := false;
table1.sortColumn[2] := 1; // second sort column is 1
table1.sortAsc[2] := false;
table1.sortCased[2] := false;
table1.sortColumn[3] := 7; // third sort column is 7
table1.sortAsc[3] := true;
table1.sortCased[3] := false;

sortCased
Type: Boolean (list box), Boolean array (table)

Availability: Read or write at run time only

The sortCased property controls whether the sorting of a ComboBox, ListBox, or Table control is case-sensitive.
The sortCased property defaults to false.

If the sorted property of the list box is not set, the sortCased property has no meaning.

Each sheet of a Table control can have in the range zero through six sorted columns. The sorting sets these
properties for the sheet, as required. Each sheet has an array of six items (the entries are 1-relative).

The column numbers can be established at any time and are not validated when set. If the column is invalid, it is
ignored when sorted.

If a sort column is zero (0), the remaining sort column values are ignored. If no sort column is set, no sorting is
performed. Fixed rows of a table control are not sorted.

Notes When the text of a sorted column changes, the automatic sorting of rows occurs only when the Table
class addItem method adds a new row or the Table class resort method is used.

Windows sorts text in tables and list boxes by using the collating sequence of the locale that is in use. Uppercase
and lowercase are sorted together into alphabetical order (for example, A b B c C d D).

As the number of rows can initially be set, the Table control keeps a record of the highest row that has had text set.
The sort involves only the rows up to and including that row.

The code fragment in the following example shows the use of the sortCased property.

col := table2.accessColumn(7);
table2.sortColumn[1] := 7;
col.sortAsc := true;
col.sortCased := true;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 366

EncycloWin - 2020.0.02

The following table lists a column of characters and the results of the sortCased method.

Column to Sort Sorted Column

B a

e A

d b

b B

C c

a C

D d

c D

A e

sortColumn
Type: Integer array

Availability: Read or write at run time only

The sortColumn property of the Table control sets the column number for which the text is to be sorted. Each
sheet of a table control can have in the range zero through six sorted columns. The sorting sets these properties
for the sheet, as required. Each sheet has an array of six items (the entries are 1-relative).

The column numbers can be established at any time and are not validated when set. If the column is invalid, it is
ignored when sorted.

If a sort column is zero (0), the remaining sort column values are ignored. If no sort column is set, no sorting is
performed.

Note When the text of a sorted column changes, the automatic sorting of rows occurs only when the Table class
addItem method adds a new row or the Table class resort method is used. (The resort method is ignored if no
columns are set; that is, when the sortColumn property is set to zero.)

As the number of rows can initially be set, the table control keeps a record of the highest row that has had text set.
The sort involves only the rows up to and including that row. Fixed rows are not sorted.

The code fragment in the following example sorts the table based on three columns: 4, 1, and 7. Column 4 is
sorted in ascending order, column 1 in descending order, column 7 in ascending order, and no columns are
sorted by case; that is, they are case-insensitive.

table1.sortColumn[1] := 4; // first sort column is 4
table1.sortAsc[1] := true;
table1.sortCased[1] := false;
table1.sortColumn[2] := 1; // second sort column is 1
table1.sortAsc[2] := false;
table1.sortCased[2] := false;
table1.sortColumn[3] := 7; // third sort column is 7
table1.sortAsc[3] := true;
table1.sortCased[3] := false;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 367

EncycloWin - 2020.0.02

sorted
Type: Boolean

Availability: Read or write at any time

The sorted property specifies whether the elements of a ComboBox or ListBox control are automatically sorted
alphabetically.

The settings of the sorted property are listed in the following table.

Value List items are …

true Sorted alphabetically (case-insensitive). This is the default value for a ComboBox control.

false Not sorted alphabetically. This is the default value for a ListBox control.

When the sorted property is set to true, the control manages the entries and the sorting process. The sortAsc
property controls whether the entries are sorted in ascending or descending order, and the sortCased property
controls whether the sorting is case-sensitive.

Note Using the addItem method to add an element to a specific location in the list may violate the sort order,
and subsequent additions may not be correctly sorted.

Setting the sorted property for a list box control sets the hasPictures, hasPlusMinus, and hasTreeLines
properties to false.

sortType
Type: InternalPseudoArrayInteger

Availability: Read or write at run time only

The sortType property of the Table control specifies the type of data that the cell text represents. Use this property
to control how to interpret the cell text when a table is sorted.

Each sheet of a Table control can have in the range zero through six sorted columns, and each of these columns
has a corresponding sortType entry that defaults to normal alphanumeric sorting.

The values for the sortType property, represented by Table class constants, are listed in the following table.

Table Class Constant Cell Data Type Integer Value

SortType_Alpha Default alphanumeric sorting 0

SortType_Numeric Numeric sorting (including decimals and negative signs) 1

SortType_Date Date 2

SortType_Time Time 3

SortType_TimeStamp Timestamp 4

The numeric evaluation uses the locale of the user for the separator, decimal place, and negative sign character
handling. In addition:

A leading - character is always treated as a negative sign, regardless of the locale definition and placement
of the negative sign.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 368

EncycloWin - 2020.0.02

A numeric value enclosed in parentheses (for example, (123.45)) is treated as negative (that is, -123.45 for
the preceding example).

A numeric value is constructed from the cell text up to the first invalid character or the end of the string. For
example, '1,234.45invalid' treats the numeric value as '1,234.45'. If there is no valid leading numeric portion,
the sort uses zero (0) for the numeric value of the cell.

Notes When the sortType property has a value of SortType_Time or SortType_TimeStamp, text in the cells is
typecast as a String. Time values must be in 24-hour format, or in 12-hour format with an AM or PM suffix.
Timestamp entries must be in a format that produces a correct typecast; for example, dd/MM/yyyy, hh:mm, where
the time part can be in 24-hour format, or in 12-hour format with an AM or PM suffix.

The conversion from the string to the sort type for sorting Date and TimeStamp primitive type-based columns is
based on the current locale used by the application. (For details about using the current locale of the application
for date and time formatting, see the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the
JADE initialization file.) If the conversion of the date part fails based on the locale format, JADE attempts to
determine the format (d/M/y, M/d/y, or y/M/d) based on the type of data (that is, year length = 4 and whether the
month is alpha).

If the text field of a cell is not a valid instance of the requested primitive type, the resulting sorting is undefined. The
code fragment in the following example shows the use of the sortType property.

if index = 7 then
table1.sortColumn[1] := 2;
table1.sortType[1] := table1.SortType_Numeric;
table1.sortAsc[2] := true;
table1.sortCased[2] := true;

elseif index = 8 then

You can also set the sort type by using the JadeTableColumn class sortType property.

speed
Type: Integer

Availability: Read or write at any time

The speed property of the MultiMedia class contains the playback speed of the device. As not all devices support
this facility, its use raises an exception when it is not supported.

The default value is 1000. A speed of 500 plays at half speed, a speed of 2000 at double speed, and so on.

stretch
Type: Integer

Availability: Read or write at any time for pictures, read or write at run time only for tables

The stretch property determines how a picture stretches to fit the size of a Picture control. The stretch property
settings for a Picture control are listed in the following table.

Picture Class Constant Value Description

Stretch_None 0 The picture box size does not change to fit the picture size. If the
picture is too large, the image is clipped.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 369

EncycloWin - 2020.0.02

Picture Class Constant Value Description

Stretch_ToControl 1 The picture is resized to fit the control size. This may cause distortion
of the image.

Stretch_ControlTo 2 The control stretches to fit the picture size. If the picture is large, the
control may be enlarged so that it overlaps other controls or no longer
fits on the form.

Stretch_Proportional 3 The control is sized proportionally to the picture. The picture is then
stretched to fit the control. This means that the picture is always drawn
in isotropic proportions to its original size. When the control size is
determined, the width or the height decreases (not increases) to keep
the same proportional view of the picture.

Stretch_Pic_Proportional 4 The picture is sized proportionally to fit the control. The picture is
centered horizontally or vertically if the resized picture does not fill the
control height or width.

Stretch_CenterPicture 5 The picture is centered on the control.

If the value of the stretch property for a Picture control is non-zero, resizing the control also resizes the picture it
contains. In addition, animated .gif picture files are not drawn stretched. The stretch property is used to resize the
control to the GIF image if required, but the animation is always drawn at its normal size.

For an image containing transparency to display correctly in a Picture control or a JadeMask control as part of a
Web-enabled application:

Set the stretch property of the control to Stretch_ToControl (1)

Do not use the drawing methods of the Window class (for example, the drawLine method) on the control

In the case of a JadeMask control, do not set the caption property

Note Images that are mostly white or black lose their clarity when displayed in a Picture control using the
stretch property and the picture control is smaller than the image. When an image is stretched, JADE sets the
Microsoft stretch mode to COLORONCOLOR, which means all pixels are treated equally, and Windows drops
pixels when the image is reduced in size. The exception is for a 1-bit image, where JADE calculates whether there
were more white or black pixels and then sets the Microsoft stretch mode to BLACKONWHITE (white pixels are
discarded instead of black pixels) or WHITEONBLACK (black pixels are discarded instead of white pixels).

From JADE 2018.0.02 and higher, JADE has been changed so that If the image consists of more than 50 percent
of white pixels, JADE sets the stretch mode to BLACKONWHITE. Similarly, if the image consists of more than 50
percent of black pixels, JADE sets the stretch mode to WHITEONBLACK. This change improves the display of
small images; for example, plan drawings.

For a Table control, the stretch property determines whether:

Pictures placed in the cells of the table are drawn to fit the cell (after the text is displayed).

Pictures are drawn to their actual size.

A picture or text in a cell gets preference when there is insufficient space to fully display both the picture and
the text.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 370

EncycloWin - 2020.0.02

The settings of the stretch property for a Table control are listed in the following table.

Table Class Control Value Description

Stretch_None 0 All pictures displayed in cells in the table are drawn at actual
size. If the picture is too large to fit the available space in the
cell, the picture is truncated on the right or the bottom. If there is
insufficient room for the picture and the text within a cell, the
picture is truncated.

Stretch_Cell (the default value) 1 All pictures are stretched proportional to the size of each cell
less the size of the text.

Stretch_None_Picture_First 2 No cell picture is stretched. If there is insufficient room for the
picture and the text within a cell, the text is truncated.

Stretch_Cell_Picture_First 3 All pictures are stretched proportional to the size of the cell but
no bigger than the actual picture image. The text is then
displayed in any remaining space in the cell and may be
truncated.

The stretch property of the Table control applies globally to all cells on all sheets of the table.

The code fragment in the following example shows the use of the stretch property.

table1.stretch := comboStretch.listIndex - 1;

style
Type: Integer

Availability: Read or write at any time

The style property determines the type of ComboBox control and the behavior of its list box portion. The settings
of the style property for ComboBox controls are listed in the following table.

ComboBox Class Constant Value Description

Style_DropDown 0 Includes a drop-down list and an edit area. The user can select
from the list or type in the edit area. Accessing the text property
returns the contents of the edit area, which does not have to match
an entry in the combo box list.

Style_Simple 1 Includes an edit area and a list that is always displayed. The user
can select a list entry or type in the edit area. The size of a simple
combo box includes both the edit and list portions. By default, a
simple combo box is sized so that none of the list is displayed.
Increase the height property to show more of the list.

Style_DropDownList 2 This style allows only selection from the drop-down list (the
default). Accessing the text property returns the text of the currently
selected entry (same as itemText[listIndex]).

Style_DropDownComboList 3 This function is the same as the combo box determined by the
Style_DropDown (0) constant, except that the entered text is used
only to select an entry. Accessing the text property returns the
currently selected list entry (same as itemText[listIndex]).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 371

EncycloWin - 2020.0.02

ComboBox Class Constant Value Description

Style_SpinBox 4 This is the same as the Style_DropDownList (2) constant, except
that the list box portion of the control is never displayed. Instead,
the control displays a vertical scroll bar, with which the user can
select the required entry.

If the style property is changed from or to Style_DropDown (1) at run time, the contents of the combo box are lost.
See "ComboBox Class Constants", for details about the style constants provided by the ComboBox control.

The following guidelines assist in deciding on the setting of the style property to use for ComboBox controls.

Use setting Style_DropDown (0) or setting Style_Simple (1) to give the user both a list of choices and the
ability to enter a choice in the edit area. Style_DropDown (0) saves space on the form, because the list
portion closes when the user makes a selection.

Use setting Style_DropDownList (2) to display a fixed list of choices from which the user can select one
entry.

The list portion closes when the user selects an item.

Use setting Style_DropDownComboList (3) instead of setting Style_DropDownList (2) if you also want to
provide the user with the ability to partially enter the required entry so that it is automatically located.

Use setting Style_SpinBox (4) if you do not want to have a drop-down list displayed and no text entered from
the keyboard.

For a Button control, the style property specifies the style of push button. The settings of the style property for
Button controls are listed in the following table.

Button Class Constant Value Description

Style_Normal 0 Click to press, and pops up when button released (the default). This
setting does not affect any other button.

Style_Auto2State 1 Pressing this button causes it to stay down. It also causes all other
auto two-state buttons with the same parent to come up. This acts
exactly the same as the OptionButton control but provides a button
appearance. If there is one auto two-state button only in the group, it
behaves as it does for the Style_2State (2) setting.

Style_2State 2 Pressing the button causes it to go down if it was up, or to come up if
it was down. It has no impact on any other button.

For a Button control whose style property is set to Style_Auto2State (1), setting the value property to true
causes other automatic two-state buttons with the same parent to come up.

Setting the value property to false has no impact on other buttons in the same group.

The settings of the style property for JadeMask controls are listed in the following table.

JadeMask Class Constant Value Description

Style_Normal 0 Click to press, and pops up when the mask control is released (the
default). This setting does not affect any other mask control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 372

EncycloWin - 2020.0.02

JadeMask Class Constant Value Description

Style_Auto2State 1 Pressing this mask control causes it to go down and stay down. It
also causes all other auto two-state mask controls with the same
parent to come up; that is, only one mask control of a group can be
down at any one time.

This acts the same as the OptionButton control but provides a
button appearance. If there is one auto two-state mask control only
in the group, it behaves as it does for the Style_2State (2) setting.

Style_2State 2 Pressing the mask control causes it to go down and stay down if it
was up, or to come up and stay up if it was down. It has no impact
on any other mask control.

Style_Mask_Color 3 The currentMaskColor method returns the color of the pixel in the
mask picture at the current mouse position. An example of the use
of this style is a control that displays a map of a road network. The
picture mask is built with the roads drawn in different colors and the
rest of the map being some other color (for example, white).

When the user moves the mouse over the control, the mouseMove
event calls the currentMaskColor method. If the returned value is
not white, the color is used to index the name of the road and this is
displayed to the user in bubble help. When using this style, the roll
over (pictureRollOver) and roll under (pictureRollUnder) features
do not apply.

For a JadeMask control whose style property is set to Style_Auto2State (1), setting the value property to true
causes other automatic two-state buttons with the same parent to come up. Setting the value property to false has
no impact on other buttons in the same group.

tabActiveColor
Type: Integer

Availability: Read or write at any time

The tabActiveColor property of the Folder and Table classes contains the color that is drawn for the background
area of the active tab of multiple sheet folders and tables. (For details about drawing the color of inactive tabs, see
the tabInactiveColor property.)

The default value of Color_3Dface (which is usually light gray) is a Windows-imposed color.

The captions of active and inactive tabs are drawn by using the same font.

Tip Consider using #e7e7e7 for the tabActiveColor property value, as this provides better resolution.

If you explicitly set the value of the tabActiveColor property of the active sheet of a folder (that is, you change it
from the default Windows.Color_3Dface value), that color is always used to display the tab, regardless of the
background color of the sheet.

If the value of the tabActiveColor property is set to the default Windows.Color_3DFace value, the tab is displayed
in the same color as the background color of the sheet.

The tabs of folders and tables display a roll-over effect.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 373

EncycloWin - 2020.0.02

Moving the mouse over an inactive sheet tab causes the tab to be drawn using the Windows Info background
color defined for the workstation.

If there are multiple tab rows on a Table control, the active tab is drawn three pixels higher, as shown in the
following example.

If there are multiple rows on a folder, the active tab is slightly enlarged left and right by three pixels (unless it is on
the edge of the table), to further highlight that it is the active tab.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 374

EncycloWin - 2020.0.02

The following is an example of a Folder control that has multiple tab rows.

If the value of the borderStyle property for the active sheet of a Folder control is set to any value other than
BorderStyle_None, the folder does not display a border of its own for the sheet area.

tabInactiveColor
Type: Integer

Availability: Read or write at any time

The tabInactiveColor property of the Folder and Table classes contains the color that is drawn for the background
area of inactive tabs of multiple sheet folders and tables. (For details about drawing the color of the active tab, see
the tabActiveColor property.) The default value of Color_3Dface (which is usually light gray) is a Windows-
imposed color. The captions of active and inactive tabs are drawn by using the same font.

If you explicitly set the value of the tabInactiveColor property of the inactive sheet of a folder (that is, you change it
from the default Windows.Color_3Dface value), that color is always used to display the tab, regardless of the
background color of the sheet.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 375

EncycloWin - 2020.0.02

If the value of the tabInactiveColor property is set to the default Windows.Color_3DFace value, the tab is
displayed in the same color as the background color of the sheet.

The tabs of folders and tables display a roll-over effect. Moving the mouse over an inactive sheet tab causes the
tab to be drawn using the Windows Info background color defined for the workstation.

tabIndex
Type: Integer

Availability: Read or write at any time

The tabIndex property of the Control class contains the tab order of a control within its parent form. It is also used
when processing an accelerator key.

If the accelerator is contained in the caption of a control that does not have the tabStop property set, the next focus
is shifted to the next enabled and visible control in the order of the tabIndex property that has the tabStop property
set.

Use the tabIndex property when assigning a visible accelerator (character underlined) in the caption of a label
next to a TextBox control. The valid range is any integer. If the tabIndex property already exists for an existing
control, the tab index of that control (and all other controls that are also affected) is increased by one.

By default, JADE assigns a tab order to controls as they are drawn on a form. Each new control is placed last in
the tab order. If you change the tabIndex property value of a control to adjust the default tab order, JADE
automatically renumbers the tabIndex property of other controls to reflect insertions and deletions. You can make
changes in the JADE development environment by using the Properties window of the JADE Painter, or at run
time in logic.

At run time, invisible or disabled controls and controls that cannot receive the focus (Frame and Label controls)
remain in the tab order but are skipped during tabbing. The tabIndex property is not affected by the zOrder
method.

Notes The tab order of a control affects its associated accelerator. If you press the accelerator key for a frame or
a label, the focus moves to the next enabled and visible control in the tab order that can receive the focus. An
accelerator is added to the caption of a control by placing an ampersand character (&) in front of the accelerator
character. To activate that accelerator, the user presses Alt and the specified character key.

Controls are pasted on the form in controlList order (that is, the order in which you add them to the form). The
order in this list can change during editing, because parent controls must always precede their children. Controls
are copied to the Painter clipboard in controlList order. When pasted, each control is added to the form and a
new tabIndex property is assigned. If the tab index of a control has not been used in the new form (the form on
which you paste the control), the pasted control retains its tab index value. A control pasted on to a form can
therefore have a tab index order that differs from the one that it had on the original form, although in most cases
the tab order corresponds to that of the original form (particularly when pasting controls on to new forms).

For details about the order of controls on touchscreens when accessibility is set, see "Control Order on
Touchscreens" under "Changing the Runtime Tab Sequence", in Chapter 5 of the JADE Development
Environment User's Guide.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 376

EncycloWin - 2020.0.02

tabKey
Type: Integer

Availability: Read or write at any time

The tabKey property of the Table class implements tabbing within a table and contains the key that is used to tab
within cells of a table. By default, the tabKey property is set to null (0), and movement within the table is controlled
only from the keyboard by using the arrow keys.

When you set the tabKey property to a key code (accessed from the keyCode parameter in the keyDown event
method), the next visible cell to the right of the current position in the table becomes the current cell when the
specified key is pressed. (The column property is updated and the rowColumnChg event method is called if the
queryRowColChg event method does not deny the change.)

If the current cell is the last visible cell in the row, pressing the specified tab key moves to the first visible non-fixed
cell in the next row unless the current row is the last visible row, in which case the first visible non-fixed row
becomes the current row.

If the Shift key is pressed with the key specified for the tabKey property, the previous visible cell in the current row
becomes the current cell until the first visible non-fixed column is reached. If the first visible non-fixed cell in a row
is already the current cell, pressing the Shift key and the key specified in the tabKey property moves to the last
visible column of the previous row unless the current row is the first visible non-fixed row, in which case the last
visible row becomes the current row. The key code can be any key, including the tab key specified by using the J_
key_Tab global constant in the KeyCharacterCodes category. The Table control class intercepts the use of this
key when the table or any of its children has focus. That key is then used only for tabbing within the table, and any
other previous meaning to the table or its children is ignored.

To tab to the next control in the tab sequence when the tabKey property is set to the tab key (that is, the J_key_
Tab global constant in the KeyCharacterCodes category, which has an integer value of 09), use the Ctrl+Tab key
combination. The Ctrl+Shift+Tab key combination tabs to the previous control in the tab sequence. This applies only
to forms that are not MDI forms.

The code fragment in the following example shows the use of the tabKey property.

table1.tabKey := J_key_Tab;

tabsAlignment
Type: Integer

Availability: Read or write at any time

The tabsAlignment property controls the placement of the icon and text in the tab of a Folder control. The
alignments are listed in the following table.

Folder Class Constant Value Description

TabsAlignment_Center 0 Icon is placed to the left of the text, and in the center of the tab area
(the default).

TabsAlignment_Left 1 Icon (if present) is placed on the left edge of the tab, followed by the
text of the tab.

TabsAlignment_IconLeft 2 Icon is placed at the left edge of the tab, and the text is centered. If
the sheet has no icon, the alignment is the same as centered.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 377

EncycloWin - 2020.0.02

tabsFixedWidth
Type: Boolean

Availability: Read or write at any time

The tabsFixedWidth property controls the width of tabs of a Folder control.

The default value for this property is false, indicating that the tabs are given a width so that the icon and the text fit
exactly. If the tabsRaggedRight property is set to true, that is the resulting displayed width. If the
tabsRaggedRight property is set to false, the width of each tab is increased equally in each line, so that the tabs
fill the entire available width.

If you set the tabsFixedWidth property to true, the tabs are all given the width needed to fit the largest icon and
text combination. If the tabsRaggedRight property is set to true, that is the final resulting width.

If the tabsRaggedRight property is set to false, the width of each tab is increased equally in each line so that the
tabs fill the entire available width. The tabs on each line have the same width, but if the tab lines have different
numbers of entries, the line with a smaller number of entries has larger resulting tab widths.

tabsHeight
Type: Integer

Availability: Read or write at any time

The tabsHeight property contains the height of each line of tabs of a Folder control.

Note This property always returns the effective tab height.

The default value for this property is zero (0), indicating that the height of the tab lines is set according to the
height of the text by using the font of the folder.

As the setting of this property to any positive value is interpreted as the number of pixels to use to display each tab
line, use this property to provide a larger tab height so that the tab icons are displayed as a larger size.

Setting this property to a negative value specifies that no tabs are displayed for the folder. The user does not have
any means of selecting which folder sheet to display, ensuring that the display of folder tabs is controlled totally by
logic.

tabsLines
Type: Integer

Availability: Read or write at any time

The tabsLines property controls whether the tabs of a Folder control are displayed in multiple or single lines and
whether simulated edges of the sheets are displayed.

The values for this property are listed in the following table.

Folder Class Control Value Description

TabsLines_MultiLineEdged 0 If required, each displaying a simulated stack of sheet edges (the
default). This setting ignores the value of the tabsRaggedRight
property, treating it as though it was set to false.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 378

EncycloWin - 2020.0.02

Folder Class Control Value Description

TabsLines_MultiLine 1 Multiple tab lines that do not display a simulated stack of sheet
edges.

TabsLines_SingleLine 2 If the tabs cannot be fitted into one line, scroll arrows are displayed
that can be clicked to scroll the appropriate tab entry into view.

If the tabsStyle property is set to TabsStyle_Buttons (1) or to TabsStyle_RightSloped (2), a tabsLines property
setting of TabsLines_MultiLineEdged (0) is treated as if it were set to TabsLines_MultiLine (1); that is, multiple
lines with no simulated sheet edges are displayed.

For the TabsStyle_RightSloped (2) setting, TabsLines_MultiLineEdged (0) draws the second rows increasingly
offset from the left and there is no multiple-edged drawing of the sheets themselves.

If the resulting tab area uses more than half of the area of the folder, the tabs are automatically drawn in the
TabsLines_SingleLine (2) mode.

tabsPosition
Type: Integer

Availability: Read or write at any time

The tabsPosition property determines where the folder tabs are positioned for a Folder control. By default, the
folder tabs are positioned at the top of the folder.

The constant integer values for tab positions are listed in the following table.

Folder Class Constant Value Position

TabsPosition_Top 0 Top of folder

TabsPosition_Left 1 Left of folder

TabsPosition_Right 2 Right of folder

TabsPosition_Bottom 3 Bottom of folder

tabsRaggedRight
Type: Boolean

Availability: Read or write at any time

The tabsRaggedRight property specifies whether the tabs in a line of a Folder control are stretched to fill the
available space for the tab line.

The default value for this property is false, indicating that the tabs are stretched to fill the available space in the tab
line.

If you set the tabsRaggedRight property to true, the tabs are sized only to fit the icon and text of the sheet. If you
set the tabsFixedWidth property to true, all tabs use the size of the largest required tab.

This property is ignored when the tabsLines property is set to TabsLines_MultiLineEdged (0).

Note When the lengths of the tab lines are different, setting this property to true can result in tabs that may
appear rather ugly when used with other property values.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 379

EncycloWin - 2020.0.02

tabsStyle
Type: Integer

Availability: Read or write at any time

The tabsStyle property controls whether a Folder control is displayed with sculptured tabs or push buttons.

The values for this property are listed in the following table.

Folder Class Constant Value Description

TabsStyle_Tabs 0 Tabs stay in place on each line, but the currently selected tab line
moves to the bottom of the line of tabs (the default). No highlight of an
extra pixel is drawn around the current sheet.

TabsStyle_Buttons 1 Buttons push down or come up in place. As the buttons are drawn by
using common facilities, they look like standard buttons.

When the tabsStyle property is set to TabsStyle_Buttons for a Folder
control, tabs are drawn using the Button control skin if the application
has defined a button skin.

TabsStyle_RightSloped 2 Draws tabs with a sloped right-hand border. Tabs drawn with this style
differ from the appearance of the TabsStyle_Tabs style in the
following ways.

The tabs remain in the same position, as they do with the
TabsStyle_Buttons style

The current tab is drawn by using the Color_3DHighlight color of
the Window class

Moving the mouse over the tab of a sheet that is not the current
sheet causes that tab to be drawn by using the Color_InfoBk
color (bubble help background)

The font of the current tab is not drawn bold

When the tabsLines property is set to TabsLines_
MultiLineEdged (0), the tab rows are offset from the left (as they
are for the TabsStyle_Tabs style) but there is no multiple-edged
drawing of the sheets themselves

Tab styles have different effects on the appearance of the folder control, as follows.

Tabs are drawn with slightly rounded corners and have a three-dimensional border around each tab.

Buttons are rectangular, drawn with three-dimensional effects, and there is no border drawn around the
folder.

The tabsLines property setting of TabsLines_MultiLineEdged (0) is therefore treated as multiple lines with
no simulated sheet edges.

Tabs are drawn using a rectangle with a sloped top-right border, shown in the following image.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 380

EncycloWin - 2020.0.02

The following example shows folder tabs with right-sloping borders.

tabStop
Type: Boolean

Availability: Read or write at any time

The tabStop property of the Control class specifies whether a user can use the Tab key to set the focus to a
control.

The settings of the tabStop property are listed in the following table.

Value Description

true Designates the control as a tab stop (the default)

false Bypasses the control when the user is tabbing, although the control still holds its place in the actual
tab order, as determined by the tabIndex property

Use the tabStop property to add or remove a control from the tab order on a form.

When a folder control gets the focus, the current tab has a focus rectangle drawn around it, and the arrow keys
can then be used to move between the sheets of the folder.

tabWidth
Type: Integer

Availability: Read or write at any time

The tabWidth property of the JadeTextEdit control contains the size of a tab in the text editor.

The tab size calculated as a multiple of the size of a space character in the default style (represented by the
STYLE_DEFAULT class constant) for the control.

The default tab width is eight (8) characters, and you can specify a value in the range zero (0) through 100.

tag
Type: String

Availability: Read or write at any time

The tag property of the Window class contains a data value to be stored with the form or control. Unlike other
properties, the value of the tag property is not used by JADE, but you can use this property to identify objects.

The length of the tag string can be in the range 0 through 32,767 bytes. By default, the tag property is set to an
empty string ("").

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 381

EncycloWin - 2020.0.02

Use this property to assign an identification string to an object without affecting any of its other property settings or
causing side effects.

Use the tag property when you need to check the identity of a control or MDI form that is passed as a variable to a
method.

targetDevice
Type: Integer

Availability: Read or write at any time

The targetDevice property of the JadeRichText control contains the device used for "what you see is what you
get" (WYSIWYG) printing. The values for this property are listed in the following table.

JadeRichText Class Constant Integer Value

TargetDevice_Printer 1

TargetDevice_Screen 0

When this property is set TargetDevice_Printer (1), the rich text format control layout changes to match how the
contents would look if they were printed on the current default printer. In this mode, the lineWidth property has no
meaning, as the horizontal width of the text is determined by the printer.

text
Type: String

Availability: Read or write at any time for text box, edit mask, and rich text controls, read or write at run time only
for tables, list boxes, and combo boxes with the style property set to 0 (dropdown) or 1 (simple), read or write at
run time only for text edit controls that have the readOnly property set to true, read-only at run time for all other
combo boxes, read or write at run time only for text editor controls

The text property contains the text in the edit area of ComboBox controls that have the style property set to
Style_DropDown (0) or to Style_Simple (1), and the TextBox control. For other styles of the ComboBox control,
this property returns the text of the selected item in the combo box list. The property is read-only in this context.

The text property of the JadeRichText control contains the text in the control in plain text format.

In the JadeEditMask and TextBox classes, this property can be translated when the value of the Schema class
formsManagement property is FormsMngmt_Single_Multi (2).

For a ListBox control, this property contains the text of the selected item in the list box. This property is equivalent
to accessing the itemText property with an index of listIndex. Changing the text of an item in the list box can
change its position because of sorting. When the text of an item is altered from the text property, the newIndex
method can be used to obtain its new index value.

For the Table control, the property accesses the current cell on the current sheet. The current cell is defined by the
row and column properties. The code fragment in the following example uses concatenation with the Tab
character to store text in cells to the right of the specified cell.

// Set up the column headings
table.row := 1;
table.column := 1;
table.text := "Name" & Tab & "Address" & Tab & "Phone";

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 382

EncycloWin - 2020.0.02

For a TextBox or a ComboBox control that has the style property set to Style_DropDown (0) or to Style_Simple
(1), this property returns the text contained in the edit area of the control.

A numeric text box expects the numeric string to be formatted according to the locale under which the user
application is running. Setting the TextBox control text property validates the numeric value on the basis of that
locale definition format. Retrieving the text returns the same string (that is, no locale conversion is performed).

Tip To automatically handle locale formatting in numeric text boxes, use the getTextAs… methods,
getTextAsCurrencyDecimal, getTextAsCurrencyReal, getTextAsDecimal, getTextAsInteger,
getTextAsInteger64, getTextAsLongDate, getTextAsReal, getTextAsShortDate, and getTextAsTime, and
their corresponding setTextFrom… methods.

For a ListBox control or a combo box control with other settings of the style property, you can use the text
property to obtain the text of the currently selected item. For a list box, if no entry is selected (listIndex = -1), a null
string ("") is returned.

Note For a text box control, if the dataType property is to be set to a numeric type, setting the text is rejected if
that text does not conform to the rules defined by the current dataType, decimals, and maxLength properties.

The text property of the JadeEditMask class contains the concatenated text of the text box fields of the control,
including any literal text. When setting the text value of the control, that text must be valid according to the mask
property rules. Any prompt characters contained in the text are not treated as prompt characters.

Note Any spaces in character positions other than edit mask types C, c, or literal positions are treated as prompt
characters. For example, ' 2/ 3/2001' for a mask of a dd/MM/yyy field is treated as _2/_3/2001.

Accessing the text property value returns a value consisting of the concatenated text of each of the text box fields,
with each prompt character replaced by a space. For example, the text 21/10/2001 returns '21/10/2001' and the
text 21/__/__ returns '21/ / '. Setting the text of the control to the returned value is always accepted. Setting the text
to null ("") clears all characters that can be entered, leaving only any literals in the text and the prompt characters.

As dates are in locale order and abbreviated months are in locale format, you must convert them by using locale-
aware routines. (For details, see "Date Type", in Chapter 1 of the JADE Encyclopaedia of Primitive Types, and
"Converting Primitive Types", in Chapter 1 of the JADE Developer’s Reference.) Similarly, locale-equivalent
characters are expected and returned for decimal places, thousand separators, negative signs, currency symbols,
date delimiters, and time delimiters. Conversion must therefore use locale-aware routines.

Setting the text value with text that has a length less than the expected field length pads that text with an empty
version of the expected text field. For example, setting a date field of dd/MM/yyyy to '21' results in the displayed
text field of 21/__/____.

The text property of the JadeTextEdit control can be set when the readOnly property of the JadeTextEdit control
is set to true. When the text property is set, the undo buffer is cleared and the modified property is set to false. No
end-of-line conversion is performed when the text is set or retrieved. You can call the convertEndOfLines method
to force all line endings to a required value.

The following example shows the use of the text property.

userNotify(eventType: Integer;
theObject: Object;
eventTag: Integer;
userInfo: Any) updating;

begin
// The userNotify method is executed when a notification that was
// registered for a user event is received. The notification is
// identified using the eventType parameter and an appropriate

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 383

EncycloWin - 2020.0.02

// message is displayed in a text box.
if eventType = 16 then

textBox2.text := "User Class Notification Received";
textBox7.text := userInfo.String;

elseif eventType = 17 then
textBox4.text := "User Notification Received";
textBox8.text := userInfo.String;

endif;
end;

textOffset
Type: Integer

Availability: Read or write at any time

The textOffset property of the Text Box class contains the pixel offset of the left and right margins for text
displayed in a text box, which can improve the appearance of the displayed text.

The default value is zero (0). An exception is raised if the value is set to a negative value.

When the value is greater than zero, the text in the text box is displayed the specified number of pixels from the left
and right of the text box client area, to create a left and right margin where text is not displayed.

Note The specified value is ignored if the effective text area is less than 5 pixels wide (that is, the text is too
small for the margin to be applied).

Applies to Version: 2016.0.01 and higher

textRTF
Type: String

Availability: Read or write at any time

The textRTF property of the JadeRichText control contains the text in the control in rich text format.

textUser
Type: String

Availability: Read or write at run time only

The textUser property of the JadeEditMask control contains the concatenated user text of the text box fields of
the control, excluding any literal text.

When setting the text value of the control, that text must be valid according to the mask property rules.

Accessing the textUser property value returns the concatenated text of each text box field with all literal
characters removed. This text is stripped back to the last non-prompt character, with each prior prompt character
replaced by a space. For example:

21/10/2001 returns '21102001'

21/__/__ returns '21'

21/__/3_ returns '21 3'

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 384

EncycloWin - 2020.0.02

For a right-aligned field, accessing the textUser property returns the text right-aligned with blanks on the front of
the string for any un-entered data. For example, the returned string for an edit mask of '#####9' with a value of __
___9 is ' 9'.

Tip To automatically handle locale formatting, use the getTextAs… methods getTextAsDate,
getTextAsDecimal, getTextAsInteger, getTextAsInteger64, getTextAsReal and getTextAsTime methods and
their corresponding setTextFrom… methods.

A JadeEditMask control expects the data string to be formatted according to the locale that the control is using (for
details, see the languageId property). Setting the text or textUser property validates the text on the basis of that
locale definition format for numbers, dates, times, and so on. Retrieving the text or textUser property strings
returns the same string (that is, no locale conversion is performed).

Notes Setting the textUser property of a control to the returned value must be valid according to the mask
property rules.

Any spaces in character positions other than edit types C, c, or literal positions are treated as prompt characters.
For example, 2 32001 in a dd/MM/yyy field is treated as '_2/_3/2001'.

As dates are in locale order and abbreviated months are in locale format, you must convert them by using locale-
aware routines. (For details, see "Date Type", in Chapter 1 of the JADE Encyclopaedia of Primitive Types, and
"Converting Primitive Types", in Chapter 1 of the JADE Developer’s Reference.) Similarly, locale-equivalent
characters are expected and returned for decimal places, thousand separators, negative signs, currency symbols,
date delimiters, and time delimiters. Conversion must therefore use locale-aware routines.

thinClientUpdateInterval
Type: Integer

The thinClientUpdateInterval property of the ProgressBar control specifies (in milliseconds) how often the
progress bar is redrawn when the percentage changes when running the application in thin client mode. The
default value of 1000 milliseconds (1 second) specifies that the control is updated only when the percentage
changes and at least one second has elapsed since it was last updated or the 100 percent mark has been
reached.

If you set the value of the thinClientUpdateInterval property to zero (0) when the application is running in thin
client mode, the progress bar is updated for every required percentage change specified by the partsDone
property.

Tip This automatic thin client optimization prevents an unnecessary number of messages being sent over the
TCP connection when the progress updates at a fast rate.

timeFormat
Type: String

Availability: Read or write at any time

The timeFormat property of the MultiMedia class contains the time format of the device. The time format defines
the units for obtaining and controlling the positioning of the media. This time format is then used by the position
property, the stepRelative and playFromTo methods, and applies to the position sent to the notifyPosition event.

If the useDotNetVersion property is set to true, the timeFormat property is not available and it has a fixed value
of null ("").

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 385

EncycloWin - 2020.0.02

The time formats that are available for each device and the default values differ. For example, the default value for
digitalvideo is frames, and for waveaudio it is milliseconds. For the list of valid formats for each device, see the
appropriate device documentation.

The following example shows the use of the timeFormat property.

optionMillisecond_change(optionbutton: OptionButton input) updating;
begin

if optionbutton.value then
multimedia.timeFormat := "milliseconds";

endif;
end;

timerPeriod
Type: Integer

Availability: Read or write at any time

The timerPeriod property of the MultiMedia class contains the timer period used for the notifyMode, notifyMedia,
and notifyPosition events.

The timer period, expressed in milliseconds, controls the time that elapses before the control is notified of a
change in operating mode, media, or position. The default value is 500. The minimum value is 30.

top
Type: Real

Availability: Read or write at any time

The top property of the Window class contains the distance between the internal top edge of an object and the top
edge of the client area of the container (the non-border area). When the parent is a Form class or a BaseControl
or Picture control, the top position is also offset by the amount that the parent is scrolled.

The top property for a form is always expressed in pixels.

Note If the value of the top property plus the value of the height property is greater than 32,767 pixels, the
resulting window extents may be unpredictable.

For controls, the top property is expressed in units controlled by the scaleMode property of the parent of the
control. The default value of the scaleMode property is pixels. (See also the parentAspect property.)

The value for the top property changes as the object is moved by the user or by logic.

The code fragments in the following examples show the use of the top property.

if scrollBar = ScrollBars_Vertical then
toolbar.top := scrollVertPos;

else
toolbar.left := scrollHorzPos;

endif;

startName.top := theTable.top + theTable.height + 10;

When multiple monitors are running on a workstation and a form is saved in the JADE Painter, the values of the
left and top properties are converted to be relative to the top and left of the primary monitor.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 386

EncycloWin - 2020.0.02

topIndex
Type: Integer

Availability: Not available at design time, read or write at run time only

The topIndex property contains the item in a ListBox control that is the first item displayed in the list. The default
value is 1, or the first item in the list.

Use this property to scroll through a list box without selecting an item. The item appears at the topmost position if
there are enough items below it to fill the visible portion of the list. The value of the topIndex property can be
modified to ensure that a full page of entries is displayed. If the setting would result in empty lines being displayed
at the end of the list and there are prior entries, the value of the topIndex property is decreased until a full set of
entries is visible.

Setting the topIndex property causes the list box to be filled with entries up to that point when using the
listCollection method and the topIndex property value is greater than the entries that are obtained so far.

The following example shows the use of the topIndex property.

textBoxLeftStart_change(textbox: TextBox input) updating;
vars

count : Integer;
begin

count := listBoxLeft.findString(1, textBoxLeftStart.text);
if count <> -1 then

listBoxLeft.topIndex := count;
endif;

end;

topLevelMenuItems
Type: MenuItemArray

Availability: Read at run time only

The topLevelMenuItems property of the Form class contains a reference to an array of all of the top-level menu
items on the form (that is, those that appear on the form menu bar). The collection is ordered according to the
defined menu item list.

Applies to Version: 2016.0.01 and higher

topRow
Type: Integer

Availability: Read or write at run time

The topRow property contains the row that is displayed at the top edge of the non-fixed area of the current sheet
of a Table control. This value may be decreased automatically by the control if lower values can still display the
remainder of the rows.

The topRow property is set to the first non-fixed row in the following situations.

If the display does not require a scroll bar

When using attached collections

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 387

EncycloWin - 2020.0.02

Changing the row or column property does not change the rows or columns that are displayed, as these are
changed only by the leftColumn and topRow properties.

The following example shows the use of the topRow property.

convertPositionToRow(yPos: Real): Integer updating;
// Returns the table row whose top and height positions cover the
// y coordinate that is passed
vars

iy : Integer;
totalHeight : Integer;

begin
iy := theTable.topRow;
totalHeight := theTable.rowHeight[1]; // the fixed row
while iy <= theTable.rows do

totalHeight := totalHeight + theTable.rowHeight[iy];
if yPos <= totalHeight.Real then

return(iy);
endif;
iy := iy + 1;

endwhile;
return(0);

end;

topSheet
Type: Integer (Table class), Sheet (Folder class)

Availability: Read or write at run time only

The topSheet property contains the sheet of a Folder control or Table control that is currently visible (the topmost).

For a Folder control:

The topSheet property returns the control object of the sheet that is currently on display.

Setting the topSheet property to a sheet of the folder causes that sheet to become the currently displayed
sheet. This sheet must be visible.

If the value of the topSheet property is changed, focus is moved to the folder only when the control with focus
is a child of the folder. If the control with focus is not a child of the folder, focus is not moved.

An alternative method is to use the showMySheet and isMySheetVisible methods.

Setting the focus to a control causes the sheet on which the control resides to be brought to the top.

For a Table control:

The topSheet property returns the index (1-relative) of the currently displayed sheet.

Setting the topSheet property to an integer index value causes the sheet with that index to become the
currently displayed sheet.

The following example shows the use of the topSheet property.

buttonOK_click(btn: Button input) updating;
begin

if folder1.topSheet.name = 'customerEdit' then

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 388

EncycloWin - 2020.0.02

beginTransaction;
myCustomer.update(textBoxName.text, textBoxAddress.text);
commitTransaction;

elseif folder1.topSheet.name = 'employeeEdit' then
beginTransaction;
myEmployee.update(textBoxName.text, textBoxTaxNumber.text);
commitTransaction;

endif;
end;

transparent
Type: Boolean

Availability: Read or write at any time

The transparent property applies to the CheckBox, Frame, GroupBox, Label, OptionButton, Picture, and
WebHTML controls.

Setting the transparent property to true causes the control to be placed above all other sibling controls and the
controls or form underneath to be visible. The background area of the control is not painted. The control still
responds to all mouse actions over the transparent areas.

The uses of this property are:

With the backBrush property of a form; for example, painting just the text of a label over the backBrush
bitmap without erasing the background area of the label.

Placing hotspots on a picture over certain positions that respond to mouse actions (including changing the
mouse cursor).

Placing a control over the top of all other controls for use with a painter-type environment. The transparent
control takes all the mouse and keyboard actions, while allowing the controls being manipulated to be visible
without them receiving the focus.

Notes This property requires more overhead, as the transparent area receives multiple paints, and changing
the transparent control requires additional access to determine which windows are affected.

When controls are removed from a transparent parent in the JADE Painter (either by being dragged off the parent
or deleted), the Painter must refresh the transparent control, as it is not refreshed by Windows.

The transparent property for a Web picture on a Label control is set to true when the hotspot is created.

This property applies only to HTML on Web pages accessed using Internet Explorer 4.0 (or higher).

transparentColor
Type: Integer (color)

Availability: Read or write at run time only (Picture) or in a subclass at design time (JadeMask)

The transparentColor property contains the color that is transparent for an image in a Picture control; that is, the
image is displayed so that the window image of the parent shows through the image anywhere that this color
appears in the image.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 389

EncycloWin - 2020.0.02

The transparentColor property takes effect only when the transparentColor property is not set to black (0) and
the rotation property is set to zero (0). The transparentColor property default value of black (0) indicates that this
property is ignored.

The code fragment in the following example shows the use of the transparentColor property.

transparentColor := 192 + 192*256 + 192*256*256;

useDotNetVersion
Type: Boolean

Availability: Read or write at any time

The useDotNetVersion property of the MultiMedia class specifies whether the control uses .NET, providing
access to new style media files such as an MPEG Layer-4 Audio (MP4) file. When the value of this property is:

false (the default value), the control operates the same as it did in earlier versions of JADE; that is, it uses the
older-style MCI control

true, the control creates a Microsoft WPF MediaElement control that is used to play the media files

When using the .NET control style (that is, this property is set to true), the JADE MultiMedia control mostly
operates in the same way as the older style, with the following exceptions.

If the play bar of the control is shown, it is drawn using WPF entities and it has a different appearance.

If the value of the showMenu property is true, the menu that is displayed when the menu button is clicked
shows the View, Volume, and Speed menu commands but not the Copy, Configure, and Command menu
items. In addition, the menu provides the Close command, which closes the medium that is being shown.

The mediaName property can be a URL (for example, http://hostName/images/introduction.mp4).

The .NET style may not handle older style media files.

The following MultiMedia class properties and methods are not available, and generate exception 1068
(Feature not available in this release).

eject

newFile

playFromTo

playReverse

record

save

sendString

showRecord

timeFormat

The methods and property listed in the following table return fixed values.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 390

EncycloWin - 2020.0.02

Method or Property Fixed Value

canEject false

canPlay true

canRecord false

canSave false

timeFormat null

usesFiles true

The openDialog method includes MP4-type files in the files that are displayed.

Media attribute values position (obtained by calling the getEndPositionor getStartPosition method) and
length (obtained by calling the getLength method) are not available until the medium has been opened and
the notifyMedia or notifyMode event has been received.

Applies to Version: 2016.0.01 and higher

usePresentationClient
Type: Boolean

Availability: Read or write at run time only

The usePresentationClient property of the ActiveXControl class, which is used in conjunction with the
makeAutomationObject method, specifies whether the ActiveX control is executed on the presentation client or
application server.

As this property is set to true by default, set it to false if you want your ActiveX control to run on the application
server when an automation object is created by using the makeAutomationObject method.

userInputEnabled
Type: Boolean

Availability: Read or write at run time only

The userInputEnabled property of the Table class provides you with the ability to enable or disable all inputType
and cellControl property actions that are currently set. The userInputEnabled property enables you to establish
the input facilities for the table and disable then until some other precondition on the form is completed.

By default, the userInputEnabled parameter is set to true, and when the user moves to a cell that has an
inputType or cellControl property in effect, the appropriate control is positioned and then made available for user
interaction.

When the userInputEnabled property is set to false, the inputType or the cellControl property value is ignored for
all cells.

As the readOnly property allows inputType or cellControl property actions when the readOnly property is set to
false, it does not cover all required user situations that can be handled by this userInputEnabled property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 391

EncycloWin - 2020.0.02

userObject
Type: Object

Availability: Read or write at run time only

The userObject property contains a reference to an object that you can associate with any object of the Window
class (a form or control). This is a runtime-only property, which is not used by any JADE process. It is defined only
for your convenience.

The default value for the userObject property is null.

userScript
Type: String

Availability: Read or write at run time only

The userScript property of the Window class contains a string that is used to set up scripts to be included as part
of the HTML generation. Set this property dynamically at run time, by specifying the string in the code of your Web
application.

The script is included in the HTML generate exactly as it is, and no validation is performed. It is therefore your
responsibility to validate that the script will run on all Web browser platforms in which the application is expected
to be deployed.

Scripts added to the Form object in your JADE code are generated before the HTML <BODY> tag. Scripts added
to Control objects are generated before the control tag. See the Window class addWebEventMapping method for
details about writing a function and including it as part of your user script to be invoked when a specified event
occurs.

useTabs
Type: Boolean

Availability: Read or write at any time

The useTabs property of the JadeTextEdit control specifies whether tabs are used in the text editor to indent the
lines to the next indent position.

The default value is true; that is, indentation is created by inserting a tab character to the next indent position. Set
this property to false if you want indentation created by using space characters.

To replace all indentation in the text editor control with spaces only or with a combination of tabs and spaces, call
the convertIndentWhitespace method.

value
Type: Integer (scroll bars), Boolean (check box, button, JADE mask, and option button)

Availability: Read or write at any time

The value property determines the state of a CheckBox control as checked or unchecked. The default value is
zero (0), or false.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 392

EncycloWin - 2020.0.02

For Button and JadeMask controls, the value property specifies whether the state of the button or mask control is
up (false) or down (true). Setting the value property is ignored for a normal push button or mask control with a
style property of Style_Normal (0). For a two-state or an automatic two-state button or mask control, setting this
property pushes or raises the button or mask control. For an automatic two-state button or mask control, setting the
value property to true also causes other automatic two-state buttons or mask controls with the same parent to
come up. For automatic two-state buttons or mask controls, setting the value property to false has no impact on
other buttons or mask controls in the same group.

For OptionButton controls, setting the value property to true causes other option buttons in the same group to be
set to false. Setting the value property to false has no impact on other option buttons in the same group.

For horizontal and vertical ScrollBar controls, the value property determines the current position of the scroll bar.
The value that is returned is always between the values for the max and min properties.

The settings for the value property are listed in the following table.

Control Description

CheckBox false is unchecked (default), true is checked

Button and JadeMask false indicates the button is up, true indicates the button is down

ScrollBar Set values between the min and max properties, to position the scroll box

OptionButton true indicates the button is selected, false (the default) indicates the button is not
selected

The following example shows the use of the value property.

tranState_click(checkbox: CheckBox input) updating;
begin

if tranState.value then
if not process.isInTransactionState then

beginTransaction;
sl1.caption := $S_In_Transaction_State;

endif;
else

if process.isInTransactionState then
commitTransaction;
sl1.caption := $S_Not_In_Transaction_State;

endif;
endif;

end;

verticalSpace
Type: Integer

The verticalSpace property of the WebJavaApplet class contains the number of pixels above and below the
applet on your Web page.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 393

EncycloWin - 2020.0.02

viewEndOfLine
Type: Boolean

Availability: Read or write at any time

The viewEndOfLine property of the JadeTextEdit control specifies whether end-of-line characters are displayed
in the text editor.

This property is set to false by default; that is, end-of-line characters are not displayed.

viewLineNumbers
Type: Boolean

Availability: Read or write at any time

The viewLineNumbers property of the JadeTextEdit control specifies whether line numbers and the line number
margin (margin 0)are displayed.

This property is set to false by default; that is, line numbers are not displayed.

viewWhitespace
Type: Integer

Availability: Read or write at any time

The viewWhitespace property of the JadeTextEdit control specifies how space and tab characters are visibly
displayed in the text editor.

The viewWhitespace property can be set to one of the JadeTextEdit class constants listed in the following table.

Class Constant Value White space…

SCWS_INVISIBLE 0 Is displayed as an empty background color (the default
value)

SCWS_INVISIBLEAFTERINDENT 2 Used for indentation as an empty background color but after
the first visible character, it is shown as dots and arrows (for
spaces and tabs, respectively)

SCWS_VISIBLEALWAYS 1 Space and tab characters are always drawn as centered
dots and arrows, respectively

visible
Type: Boolean

Availability: Read or write at any time

The visible property of the Window class specifies whether an object is visible or hidden. When the visible
property is set to true (the default), the object is visible. Set this property to false to hide the object.

To hide a control at startup, set the visible property to false in the JADE development environment. Setting this
property in logic enables you to hide and later redisplay a control at run time in response to a specific event.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 394

EncycloWin - 2020.0.02

The visible property, when set in the JADE development environment, has no effect for a form. The show or
showModal method causes the form to become visible. Setting the visible property to true causes the load event
for the form to be executed if it has not already been executed.

As sibling controls that have the alignContainer property set do not occupy the same area on their parent, use the
visible property to control the window that is currently displayed in this situation.

When a window is invisible, it does not receive any mouse, keyboard, focus, activation, or drag and drop events.
The window still receives notification events and forms still receive load, queryUnload, and unload events.

When the visible property for a Button, CheckBox, OptionButton, Picture, Label, TextBox, Web label, or Web
picture control defined for a Web page is set to false, the input type for the control is hidden. For other controls that
are supported on Web pages, the control is not included in the HTML generation when this property is set to false.

The code fragment in the following example shows the use of the visible property.

// show hourglass etc when loading data (unless during initial form load)
if self.visible then // visible unless loading

app.mousePointer := MousePointer_HourGlass;
statusLine1.caption := 'Reading...';

endif;

Note The visible property cannot be changed for a form created with the createPrintForm method of the
GUIClass class.

volume
Type: Integer

Availability: Read or write at any time

The volume property of the MultiMedia class contains the playback volume of the device. As not all devices
support this facility, its use raises an exception when it is not supported.

The default value of volume is 1000.

A volume of 500 plays at half volume, a volume of 2000 plays at double volume, and so on.

wantReturn
Type: Boolean

Availability: Read or write at any time

The wantReturn property of the TextBox and JadeRichText class specifies whether carriage returns are passed
to the text box or rich text control.

When this property is set to the default value of false, entering a carriage return while the text box or rich text
control has focus and the form has a default button causes the default button to get focus and be clicked. If the
form does not have a default button, the carriage return is passed to the text box or rich text control.

When the wantReturn property is set to true and the text box or rich text control has focus, a carriage return is
always passed to the text box or rich text control and any default button is unaffected.

Note This property is ignored in web-enabled forms.

Applies to Version: 2016.0.01 and higher

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 395

EncycloWin - 2020.0.02

webBrowserAutoRefreshInterval
Type: Integer

The webBrowserAutoRefreshInterval property of the Form class specifies the number of seconds after which
the Web page is automatically refreshed. The default value of zero (0) indicates that the Web page does not
refresh automatically.

To generate the required <META> tag for the automatic refreshing of the Web page, set this property to the
appropriate non-zero value. For details about handling Web pages after the specified interval has been reached,
see the Form class webBrowserAutoRefreshURL property.

webBrowserAutoRefreshURL
Type: String

When the value of the webBrowserAutoRefreshInterval property of the Form class is not zero (0), use the Form
class webBrowserAutoRefreshURL property to specify the URL to invoke when the automatic refresh interval is
reached.

The default webBrowserAutoRefreshURL property value of null ("") indicates that the JADE application is
returned to when the specified number of seconds is reached. If this property contains a null value and a default
button has been set up for the Web page, the click method for this button is then called.

Note If there is no default button, the same page is displayed continuously unless your JADE code handles the
incoming request.

webBrowserDisableBackButton
Type: Boolean

The webBrowserDisableBackButton property of the Form class specifies whether the previous Web page is
displayed when the user clicks the Web browser Back button. By default, this property is set to false.

Set the webBrowserDisableBackButton property to true if you want the currently displayed Web page refreshed
instead of displaying the previous page when the user clicks the Web browser Back button.

Note As it is not possible to disable the Back button or the menu item from scripting, use this property if you
want to prevent the user from going to a previous Web page.

webEncodingType
Type: Character

The webEncodingType property of the Form class specifies the content type used to submit the Web form to the
JADE application.

You can set the content type to one of the values listed in the following table.

Character Value Description

None Application / x-www-form-urlencoded (the default value)

M Multipart / form-data (when the returned page includes submitted files)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 396

EncycloWin - 2020.0.02

Any value other than M (that is, multipart) is treated as the application type default. You can set the encoding type
only in your JADE code. This cannot be set by using the JADE Painter.

webFileName
Type: String

Availability: Read or write at any time

The webFileName property of the Picture class has two purposes. It enables you to specify a file name (for
example, "image.jpg" or "mypic.png") for:

An image that is created by the Web framework (rather than the automatically generated file name)

A file that already exists

Note A firewall would prevent an existing file from being used, so to use an existing file requires that the firewall
parameter in the [WebOptions] section of the JADE initialization file is set to false.

Using an existing file for static images can greatly improve performance.

For the Form class, this property contains the name of the background image that is to be displayed on the Web
page.

For the Button class, this property contains the name of the image that is to be displayed on a button on the Web
page.

webInputType
Type: Character

Availability: Read or write at any time

The webInputType property of a TextBox control contains the type of input that is accepted by a text box on a
Web page.

You can assign the webInputType property to each text box on a Web page.

The types of input that can be accepted are listed in the following table.

TextBox Class Constant Value Description

Web_InputType_File 'F' Uploading a file from a Web session

Web_InputType_Hidden 'H' Specifies whether the text box is displayed on a Web page
(see the enabled property)

Web_InputType_Password 'P' Specifies whether characters are displayed in a text box (see
the passwordField property)

Web_InputType_Text 'T' Single line text box (the default)

Web_InputType_TextArea 'A' Multiple line text box

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 397

EncycloWin - 2020.0.02

If your JADE application accepts file input in text boxes on a Web page (by using the webInputType property of a
TextBox control with the Web_InputType_File setting to upload a file from a Web session), you can use the
fileTransferDirectory parameter in the [Jadehttp Files] section of the jadehttp.ini file to specify the directory to
which the file is written. This parameter controls the directory in which any files transferred using the HTML
InputType=file option are placed. By default, any transferred files are placed in the same directory as the jadehttp
library.

The format of the text property value of the text box control is:

<source-file-name>;<destination-file-path><destination-file-name>

The source-file-name value is the name (excluding the path) of the originating file on the client workstation from
which the file was loaded (that is, the workstation that is running the Web browser).

A semicolon character (;) separates this and the destination-file-path and destination-file-name values, which are
the full path to which the file is written (uploaded) and the name of that file; for example:

UsefulStuff.doc;d:\jade\bin\txf188.tmp

In this example, accessing the txf188.tmp file in the specified directory opens a document file that contains the
information in the UsefulStuff.doc file uploaded via the Web browser.

To provide increased security for applications running in HTML thin client mode if you use the webInputType
property of a TextBox control with the Web_InputType_File setting to upload a file from a Web session, you must
process each text file that is transferred in the event that resulted in the file upload (for example, in the click
method of a Completed button).

Caution To prevent malicious use of files uploaded to Web-enabled applications, the files are removed as soon
as the event that resulted in their upload has completed. You should therefore process the file immediately or
move it into a directory that is not available from the Web if you require that file for future processing.

width
Type: Real

Availability: Read or write at any time

The width property of the Window class contains the dimensions of an object.

Width measurements are calculated by using the following.

For a Form, the external width of the form, including the borders and title bar

For a Control, the external width of the control

For a form, the width property is always in pixels.

Note If the value of the width property plus the value of the left property is greater than 32,767 pixels, the
resulting window extents may be unpredictable.

For a control, the scaleMode property units of the parent control determine the width. The scaleMode property
defaults to pixels. For a form or control, the value for the width property changes as the object is sized by the user
or by logic.

The maximum limit for all objects is system-dependent.

Windows limits forms and controls to a maximum width of 32,767 pixels. Setting a value larger than the maximum
results in a value of 32,767 pixels being used.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 398

EncycloWin - 2020.0.02

The code fragments in the following examples show the use of the width property.

tblPortfolio.columnWidth[1] := tblPortfolio.width.Integer div 3 - 12;

height := width / 1.5; // Make control a rectangle

btn.width := clientWidth / ButtonWidthRatio;

See also the parentAspect property.

windowState
Type: Integer

Availability: Read or write at any time

The windowState property of the Form class contains the visual state of a form window at run time.

The settings of the windowState property are listed in the following table.

Form Class Constant Value Description

WindowState_Normal 0 Normal (the default)

WindowState_Minimized 1 Shrunk to an icon

WindowState_Maximized 2 Enlarged to maximum size

Minimizing a form causes a resize event. The size of the form and its controls reflects the minimized state.

The following example shows the use of the windowState property.

resize() updating;
begin

if windowState <> WindowState_Minimized then // restore after minimize
caption := "CD Player";

endif;
end;

wordWrap
Type: Boolean

Availability: Read or write at any time (labels, frames, or status lines) or at run time only (tables)

The wordWrap property specifies whether text displayed in a caption for a Label, Frame, or StatusLine control
advances to the next line of the control when the current line is filled.

The wrapping is performed based on complete words.

The settings of the wordWrap property are listed in the following table.

Setting Description

true The text wraps when the text overflows a line. The horizontal size does not change.

false The text is output on a single line and may overflow the control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 399

EncycloWin - 2020.0.02

A Label control can be automatically sized to fit the text by setting the autoSize property to true. The setting of the
wordWrap property then determines whether the resize is performed horizontally or vertically.

For Table controls, the wordWrap property specifies whether the text of a cell is displayed using word wrap when
the width of the cell is less than the length of the text. Accessing this property on a table is affected by the current
value of the Table class accessMode property. The wordWrap property can also be accessed by the
accessSheet, accessRow, accessColumn, and accessCell methods.

The default value for any new Table control that is added is false. When the value of the wordWrap property is set
to false for a table, the text of a cell is displayed as a single line unless the text contains carriage return
characters, which start a new line. In addition, when the inputType property of a cell has a value of InputType_
TextBox, that text box is displayed in the cell at data entry time with the scrollHorizontal property set to true,
indicating that the text scrolls horizontally as required to access all of the text.

If the wordWrap property for a table is set to true, the text of a cell is displayed using word wrap so that if the text is
wider than the cell, a new line is started when the text exceeds the cell width, breaking on word boundaries.

In addition, when the inputType property of a cell is set to InputType_TextBox, that text box is displayed in the
cell at data entry time with the scrollHorizontal property set to false, indicating that the text also uses word wrap
during entry. If word wrapping occurs, the height of the cell may need adjusting to fully display the text.

When the Form class generateHTML method is called to generate an HTML string or HTML is automatically
generated for forms in a Web-enabled application, the HTML is generated without word wrapping when the
wordWrap property is set to false. Set this property to true if you want an HTML string in a table cell generated
with word wrapping.

When the wordWrap property for a Table is set to true, the effect of setting the autoSize property is as follows.

If the column width is not set by logic or by the user, the height of the cell is affected if the value of the
widthPercent property of the column is greater than zero (0) or the autoSize property is set to AutoSize_
Row (1) and the row height has not been specifically set (otherwise a non-word wrap display is assumed).

If the column width is set by logic or by the user, the height of the cell is affected if the autoSize property is set
to AutoSize_Row (1), AutoSize_Both (3), or AutoSize_BothColumnMinimum (4) and the row height has
not been specifically set.

For details about displaying an indication when there is insufficient room to show all text of a cell, see the Table
class partialTextIndication property.

wrapIndent
Type: Integer

Availability: Read or write at any time

The wrapIndent property of the JadeTextEdit control contains the number of spaces by which continuation lines
of wrapped lines are indented when the wrapMode property is set to SC_WRAP_WORD.

When continuation lines of wrapped lines are indented, the display of a visible edge marker on continuation lines
is offset the corresponding number of characters to the right.

By default, continuation lines of wrapped lines are not indented.

The valid range is zero (0) through 90.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 400

EncycloWin - 2020.0.02

wrapMode
Type: Integer

Availability: Read or write at any time

The wrapMode property of the JadeTextEdit control contains the way in which lines of text that exceed the text
editor line length are wrapped to fit within the client area.

The wrapMode property can be set to one of the JadeTextEdit class constants listed in the following table.

Class Constant Value Description

SC_WRAP_NONE 0 Disables line wrapping (the default value)

SC_WRAP_WORD 1 Enables line wrapping

When line wrapping is enabled, lines wider than the client window width continue on the following lines. Lines are
broken after space or tab characters or between characters of different text styles. However, if a word in one style
is wider than the window, the break occurs after the last character that completely fits on the line. When wrap
mode is enabled, the horizontal scroll bar is not displayed.

When wrapping is enabled, the Home and End keys move the caret to the start and end of a text line, respectively,
as opposed to a display line.

New line characters are not inserted in the text at the wrapping point. Wrapping brings into view the right-hand
side of long lines that are normally outside the display area.

Use the edgeMode property if you want an indication when a line reaches a specified length; for example, as a
format convention that limits lines to 80 characters.

wrapVisualFlags
Type: Integer

Availability: Read or write at any time

The wrapVisualFlags property of the JadeTextEdit control contains the way in which visual flags are displayed to
indicate that a line of text is wrapped when the wrapMode property is set to SC_WRAP_WORD.

When word wrapping is enabled, small arrows are used as visual flags at end of a continuation line of a wrapped
line or at the beginning of the next continuation line. When visual flags are displayed, the flag at the beginning of
the next continuation line is indented by one character.

The wrapVisualFlags property can be set to one of the JadeTextEdit class constants listed in the following table.

Class Constant Value Visual flags …

SC_WRAPVISUALFLAG_END 1 Are displayed at the end of a continuation line of a
wrapped line

SC_WRAPVISUALFLAG_END_BY_TXT 3 At the end of continuation lines are drawn near to
the text rather than near to the border of the text
editor

SC_WRAPVISUALFLAG_NONE 0 Are not displayed in wrapped lines (the default
value)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 401

EncycloWin - 2020.0.02

Class Constant Value Visual flags …

SC_WRAPVISUALFLAG_START 2 Are displayed at the start of a continuation line of a
wrapped line and the continuation line is indented
by one character to accommodate the visual flag

SC_WRAPVISUALFLAG_START_BY_TXT 4 At the start of continuation lines, are drawn near to
the text rather than near to the border of the text
editor

xaml
Type: String

Availability: Read or write at any time

The xaml property of the JadeXamlControl class contains the Windows Presentation Foundation (WPF) definition
of the content of the control. The definition is written in the Extensible Application Markup Language (XAML).

The content is compiled and added as a child of the WPF DockPanel parent of the control. The content can be a
single or composite WPF entity. If the control has an existing definition, setting the xaml property discards the
existing definition and replaces it with the new definition.

The value of the xaml property must include an XML Name Space (XMLNS) definition that defines the name
space necessary for the definition to be successfully compiled according to the WPF installation of the user.

Note Currently Windows does not support XAML that includes event definitions.

The following example shows how the xaml property is set at runtime.

xamlControl.xaml :=
'<Canvas Name="SimpleExample"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
<Button Canvas.Top="20" Canvas.Left="50" Content="Hello World" />

</Canvas>';

zoom
Type: Integer

Availability: Read or write at any time

The zoom property of the MultiMedia class contains the zoom factor of the video image. As not all devices support
this facility, its use raises an exception when it is not supported. The zoom default value is 100 percent.

A zoom factor of 50 percent halves the size of the control and a factor of 200 percent doubles the control size, and
so on. Setting the zoom property to zero (0) when the value of the autoSize property is false stretches the media
image to the current size of the client area of the control.

MultiMedia controls are sized as follows.

When the value of the autoSize property is true, the size of the control is set to the size of the displayed
image (multiplied by the value of the zoom property divided by 100) plus the size of any playbar and caption.
If the device or file being played does not involve a playback image, the control is not visible. If the value of
the zoom property is zero (0), 100 is used.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Properties Chapter 2 402

EncycloWin - 2020.0.02

When the value of the autoSize property is false and the value of the zoom property is not zero, the control
size is not affected by the size of the displayed image. Only as much of the displayed image that fits in the
client area of the control is displayed.

When the value of the autoSize property is false and the value of the zoom property is zero (0), the
displayed image is stretched to fit the client area of the control.

For the JadeRichText class, the zoom property contains the factor by which the contents of the control are
zoomed. This is a scale factor in the range 2 percent through 6,400 percent. A value of zero (0) indicates no
zooming. The zoom default value is 100 percent; that is, this property is set to zero (0). A zoom factor of 50 percent
halves the size of the control and a factor of 200 percent doubles the control size, and so on. For a rich text control,
the zoom property requires a scalable font; for example, the Microsoft Sans Serif font is not a True Type font and
therefore it cannot be scaled.

The zoom property of the JadeTextEdit control, which is read and write at run time only, contains the current
zoom factor.

The zoom factor, which defaults to zero (0), enables you to increase or decrease the font size of text in the text
editor in steps of one point. The point size is added to or removed from the font size. Although you can specify a
value in the range -10 points through 150 points, the displayed point size never decreases below two points.

The numeric keypad plus (+), minus (-), and divide (/) character keys in conjunction with the Ctrl key set the zoom
value up by one, down by one, and to zero (0), respectively.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 403

EncycloWin - 2020.0.02

Window, Form, and Control Methods
This section describes the methods defined in the following classes.

Window

Form

Control class and subclasses

You can access all GUI properties and methods (which are marked as clientExecution methods) from a server
method except for anything that brings up a modal-type dialog (that is, the common dialog class methods, the
app.msgBox, and the showModal and popupMenu methods in the Form class). The other exceptions to this are
the app.doWindowEvents, app.checkPictureFile, and app.loadPicture methods, which are executed relative to
the server.

Caution Use of GUI methods and properties is very expensive in a server method. A clientExecution method
requires that all transient objects passed to the server are passed back with the client execution (and passed back
to the server after the client execution is complete).

Accessing GUI properties and methods within a server execution therefore should be done only in exceptional
circumstances.

aboutBox
Signature aboutBox();

The aboutBox method of the Window class and Control class initiates the About box of the application by default.
However, you can reimplement this method for subclass controls to allow a specific About box to be displayed,
depending on the window or control that is involved.

An exception is raised if this method is invoked from a server method.

The aboutBox method is called when a user clicks on the About Box button in the Properties form of the JADE
Painter.

Although the aboutBox method is primarily for ActiveX control implementations, it can be used for local control
subclasses.

accessCell
Signature accessCell(row: Integer;

column: Integer): JadeTableCell;

The accessCell method of the Table class returns a reference to the JadeTableCell object for the requested row
and column (specified in the row and column parameters) for the current topSheet of the table.

Accessing a cell using this method or the JadeTableSheet class accessCell method sets the corresponding
Table class accessedCell property to the returned cell so that it can be used for subsequent access.

The following code fragments show the use of the accessCell method.

table1.accessCell(2,3).inputType := Table.InputType_TextBox;
table1.accessedCell.foreColor := Red;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 404

EncycloWin - 2020.0.02

table1.accessSheet(2).accessCell(1,4).text := "Company";
table1.accessedCell.alignment := Table.Alignment_Right_Middle;

Storing a reference to a returned cell causes problems unless you take a copy of that cell, as shown in the
following example in which both cell1 and cell2 refer to the same object, which is referencing cell(3, 4).

cell1 := table1.accessCell(2, 3);
cell2 := table1.accessCell(3, 4);
cell1.text := "abc";

In the following example, cell1 has been cloned and still refers to cell(2, 3).

cell1 := table1.accessCell(2, 3).cloneSelf(true);
// the cloned cell must be deleted by your logic
cell2 := table1.accessCell(3, 4);
cell1.text := "abc";

Note Your logic must delete cloned cells.

See also the Table class accessColumn, accessRow, and accessSheet methods.

accessColumn
Signature accessColumn(column: Integer): JadeTableColumn;

The accessColumn method of the Table class returns a reference to the JadeTableColumn object for the
requested column specified in the column parameter for the current topSheet of the table.

Accessing a column using this method or the JadeTableSheet class accessColumn method sets the
corresponding Table class accessedColumn property to the returned column so that it can be used for
subsequent access.

The code fragment in the following example shows the use of the accessColumn method.

table1.accessColumn(2).alignment := 2;
table1.accessedColumn.backColor := Blue;

Storing a reference to a returned column causes problems unless you take a copy of that column.

Note Your logic must delete cloned columns.

See also the Table class accessCell, accessRow, and accessSheet methods.

accessRow
Signature accessRow(row: Integer): JadeTableRow;

The accessRow method of the Table class returns a reference to the JadeTableRow object for the requested row
(specified in the row parameter) for the current topSheet of the table. Accessing a row using this method or the
JadeTableSheet class accessRow method sets the corresponding Table class accessedRow property to the
returned row so that it can be used for subsequent access.

Storing a reference to a returned row causes problems unless you take a copy of that row.

Note Your logic must delete cloned rows.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 405

EncycloWin - 2020.0.02

The code fragment in the following example shows the use of the accessRow method.

table1.accessRow(3).visible := true;
table1.accessedRow.backColor := Blue;

See also the Table class accessCell, accessColumn, and accessSheet methods.

accessSheet
Signature accessSheet(sheet: Integer): JadeTableSheet;

The accessSheet method of the Table class returns a reference to the JadeTableSheet object for the requested
sheet (specified in the sheet parameter) of the table. Accessing a sheet using this method accessCell sets the
corresponding Table class accessedSheet property to the returned sheet so that it can be used for subsequent
access.

Storing a reference to a returned sheet causes problems unless you take a copy of that sheet.

Note Your logic must delete cloned sheets.

The code fragment in the following example shows the use of the accessSheet method.

table1.accessSheet(1).visible := false;
table1.accessSheet(2).visible := true;
table1.accessSheet(2).accessCell(1,4).text := "Company";
table1.accessedCell.alignment := Table.Alignment_Right_Middle;

See also the Table class accessCell, accessColumn, and accessRow methods.

activeChild
Signature activeChild(): Form;

The activeChild method of the Form class returns a reference to the current active MDI child for an MDI frame
form. If there is no active child or the calling form is not an MDI frame, the activeChild method returns null. One
child form only can be active at any time for an MDI frame.

The code fragment in the following example shows the use of the activeChild method.

statusLine.caption := activeChild.name;

addControl
Signature addControl(c: Control);

The addControl method of the Form class dynamically adds the control referenced in the c parameter to a form at
run time.

If the c parameter references a persistent object, the call is rejected.

Note If you use this method to add a control to a form in the JADE Painter, see also the flagControlForSave
method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 406

EncycloWin - 2020.0.02

The following example shows the use of the addControl method.

vars
btn : Button;

begin
create btn transient; // create the control
btn.name := "testButton"; // set the name
btn.parent := testFrame; // parent of button is a frame called

// test frame
btn.caption := "Test Button"; // set the caption
self.addControl(btn); // add the button to the form

end;

When you create the control, the constructor for the control class sets properties for the control to their default
values. In particular:

The tabIndex property is set to zero (0).

The control name is set to the control class name; for example, button.

The control text or caption property is set to the control name; for example, button.

The top and left properties are always set to zero (0), but default values are assigned to width and height.

The parent defaults to the form at run time.

In JADE Painter at design time, if you make the parent of the control the form, the control appears not to have
been drawn. The Painter overlays a frame on the form, which is the parent object for any controls that are
painted directly onto the form. The constructor of the control should therefore set its parent to a specific object
other than the form. (This applies only to transient controls that are created from within another custom
control.)

If you do not set the parent of the control in the JADE Painter, the control is added to the Painter form rather
than to the form that you are editing.

If you want to set the parent property to a control rather than the form, do this before calling the addControl
method. This value defaults to the form (during processing of the addControl method).

The font of the control is not set. The default application font (see the Application class fontName property) is
used when the addControl method is called. Any properties of the control that can be set in Painter can be set
before calling the addControl method.

When a form is created with scaleForm set to true, dynamically added controls are also scaled when the current
dpi is different from the dpi used to paint the form. Your logic should create the controls in the size relative to the
dpi setting under which the form was created.

Properties that can be set only at run time (for example, the listIndex property of the ListBox control class) cannot
be set before the addControl method is called. Methods for the control cannot be invoked until after the
addControl method.

The added control generates event method calls using the name of the control; for example, name_click. Any
required methods must be predefined in the form where the control is added (for details, see the
setEventMapping method).

Use the delete instruction to remove a control from a form and destroy it. If delete is not called, the control is
destroyed when the form is unloaded.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 407

EncycloWin - 2020.0.02

Note The addControl method differs from the loadControl method, in that the loadControl method creates a
copy of an existing control and adds it to a form at run time.

addItem
Signature addItem(str: String): Integer;

The addItem method adds a new item to a ComboBox or ListBox control or adds a new row to a Table control at
run time. Use the str parameter to specify the string expression to add to the control. For table controls only, use
the tab character (character code 09) to separate multiple strings that you want inserted into each column of a
newly added row.

The addItem method places the item in the list box, combo box, or table specified by the control. The item is
added at the correct sorted position (if the sorted property value is set to true) or to the end of the list (if the sorted
property value is false).

The position at which the item was added is returned. This value is the same as that contained in the newIndex
method.

Note Adding an entry can result in the value of the topIndex and listIndex properties for a list box being
changed because of the addition.

For the ListBox class, which uses a hierarchy, entries added to the end of the list of entries have an itemLevel
property value of 1 and are automatically visible within the hierarchy.

For the Table control, the following applies.

A new row is added to the table.

The first cell in the row is filled with the text that is passed.

If the text contains tab characters, each tab character is assumed to be the end of the text for a cell, and the
next cell is then filled with the remainder of the text, and so on. If all cells are filled and there is more text, that
text is discarded.

If the sheet of the table is sorted, the location of the added row depends on the sorted position of that text. The
addItem method returns the row position. This situation could result in the values of the row, column, leftColumn,
and topRow properties changing.

When the text of a sorted column changes, the automatic sorting of rows occurs only when the Table class
addItem method adds a new row or the Table class resort method is used.

The following example shows the use of the addItem method.

loadListBox() updating;
vars

prod : Product;
begin

foreach prod in app.myCompany.allProducts do
listInstances.addItem(prod.display);

endforeach;
end;

The code fragments in the following examples show the use of the addItem method for a table.

while count < 1 do
app.printer.print(printTest.frame1);

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 408

EncycloWin - 2020.0.02

printTest.table1.addItem("a" & Tab & "b");
count := count + 1;

endwhile;

tblPortfolio.row := tblPortfolio.addItem(portfolio.myCompany.name);

// add a new row that has two columns for company name and address line 1
table1.accessSheet(2).addItem(coy.name & Tab & coy.address1);

addItemAt
Signature addItemAt(str: String;

index: Integer);

The addItemAt method adds a specified item index to a ComboBox or ListBox control or adds a new row to a
Table control at run time.

The parameters of the addItemAt method are listed in the following table.

Parameter Description

str The string expression to add to the control. For Table controls only, use the tab character
(character code 09) to separate multiple strings that you want inserted into each column of a
newly added row.

index An integer representing the position within the control where the new item or row is placed. For
the first item in a list box or combo box, or for the first row in a table control, the index is 1.

The addItemAt method places the item at that specified position within the control. If the sorted property value is
set to true, this may upset the sorting process.

Note Adding an entry can result in the value of the topIndex and listIndex properties for a list box being
changed because of the addition. For a Table control, the row, column, leftColumn, and topRow properties can
change as a result of the addition.

For the ListBox class, which uses a hierarchy, the following applies.

Entries added to the end of the list of entries have an itemLevel property value of 1 and are automatically
visible within the hierarchy.

Entries inserted within the list adopt the level of the entry at which the insertion occurs. This means that they
become leaves, having no subitems. They adopt the same visibility as the entry at which the insertion occurs.

For the Table class, the following applies.

A new row is added to the table.

The first cell in the row is filled with the text that is passed. If the text contains tab characters, each tab
character is assumed to be the end of the text for a cell, and the next cell is then filled with the remainder of
the text, and so on. If all cells are filled and there is more text, that text is discarded.

No sorting is performed, but the insertion of a row may still affect other property values.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 409

EncycloWin - 2020.0.02

addText
Signature addText(options: Integer;

text: String);

The addText method of the JadeTextEdit class adds the string specified in the text parameter to the control
content by using the options specified in the options parameter. End-of-line conversion is not performed.

The addition is a single undo action.

The options parameter can be one of the JadeTextEdit class constants listed in the following table.

Class Constant Value Description

ADDTXT_ADD 2 Inserts the text after the current position, which remains
unchanged

ADDTXT_APPEND 3 Adds the text to the end of the existing text and moves the
caret to the end of the new text and into view

ADDTXT_INSERT 1 Inserts the text before the current position and moves the
caret to the end of the added text but does not force it into
view

ADDTXT_INSERTREPLACESEL 4 Clears the current selection (if any) and then inserts the text
specified in the text parameter before the current caret
position, moving the caret to the end of the new text

addWebEventMapping
Signature addWebEventMapping(eventName: String;

scriptFunction: String): Boolean;

The addWebEventMapping method of the Window class adds a function to be invoked when the event specified
in the eventName parameter occurs.

Use the scriptFunction parameter to specify the function that is to be invoked. For example, the following code
fragment processes a lostFocus event on a TextBox control on the client Web browser.

textbox.addWebEventMapping("onLostFocus", "processLostFocus(this, 'lostFocus')");

The code fragment in the above example generates the following HTML fragment, which has been simplified for
clarity.

<input type=text name=textbox onLostFocus="processLostFocus(this, 'lostFocus');">

In the HTML fragment shown in the above example, the processLostFocus script function is called when the text
box loses focus. It is your responsibility to write this function and include this as part of the userScript property
when you dynamically specify it in your code. As your function is not validated, it is your responsibility to ensure
that it works as intended.

This method returns false if the function name is the same as the name that JADE generates automatically, and
the mapping is not added to the control.

Tip In general, do not use functions that begin with _ jade.

The code fragment in the following example displays an alert message box but does not submit the form.

btnOK.addWebEventMapping("onClick", "alert('enter value'); return false;");

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 410

EncycloWin - 2020.0.02

allowWebPrinting
Signature allowWebPrinting(allow: Boolean);

The allowWebPrinting method of the Form class enables you to set the allow parameter to true so that Microsoft
Internet Explorer 4 and higher Web browsers generate slightly different code. (This parameter is set to false, by
default.)

Setting the allow parameter to true for these Web browsers enables the correct printing of the contents of the Web
page when the Print command is selected in the Web browser File menu. The requirement of this setting is
content-dependent (for example, sometimes Internet Explorer 5.5 or higher may not print segments or pages of
the displayed Web page because of the way that Internet Explorer handles the style sheet settings).

alwaysOnTop
Signature alwaysOnTop(onTop: Boolean);

The alwaysOnTop method of the Form class enables you to place a visible form above all other forms on the
desktop when called with the onTop parameter set to true.

The form remains on top even after another form is activated. To restore the normal behavior, call the
alwaysOnTop method with the onTop parameter set to false. (This parameter is set to false, by default.)

Note Calling the alwaysOnTop method for an MDI child form has no effect.

animateWindow
Signature animateWindow(millisecs: Integer

animateType: Integer) clientExecution;

The animateWindow method of the Window class enables you to specify special animation effects (roll, slide,
collapse, or expand) when showing or hiding a form or . This allows for the display of an animated informational
popup window without having to write a significant amount of logic, for example.

Calling the method is equivalent to toggling the visible property of a window where the resulting show or hide of
the window or is animated. When the window or is not visible, calling the animateWindow method makes it
visible. If the window or is visible, calling the animateWindow method makes it invisible.

The animateWindow method call on a window does not result in any animation being shown if the form is
maximized, modal, or an MDI child.

The Window class implementation shows the border and caption of a form, and animates the contents inside it.
This does not always produce the best appearance, and Windows does not always draw the animation correctly. If
the form:

Has no border and caption, the animation should work correctly and be more appealing.

Is skinned, the effects apply to the whole form, including the border area, and the animation is drawn
correctly.

If the form has not been shown, calling the animateWindow method causes the load method to be executed.

Use the millisecs parameter to specify the duration of the animation, in milliseconds. Typically, an animation
takes 200 milliseconds to play.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 411

EncycloWin - 2020.0.02

The animateType parameter can be one of the Window or class constants listed in the following table.

Class Constant Value Description

AnimateWindow_Flags_Activate #20000 Causes the form to be activated when it is shown. If it
is not set, the form is shown without it gaining focus. In
addition, when not set, the form retains its current
zOrder position if it is redisplayed using the
animateWindow method.

AnimateWindow_Flags_Blend #80000 Causes the form to fade in or out. (This setting cannot
be used with other animation effect options.)

AnimateWindow_Flags_BottomToTop #8 Animates the window from bottom to top. This flag can
be used with roll or slide animation. It is ignored when
used with AnimateWindow_Flags_Center.

AnimateWindow_Flags_Center #10 Makes the window appear to collapse inward when
the window is hidden or expand outward when the
window is shown.

AnimateWindow_Flags_LeftToRight #1 Animates the window from left to right. This flag can be
used with roll or slide animation. It is ignored when
used with AnimateWindow_Center.

AnimateWindow_Flags_RightToLeft #2 Animates the window from right to left. This flag can be
used with roll or slide animation. It is ignored when
used with AnimateWindow_Flags_Center.

AnimateWindow_Flags_Slide #40000 Uses slide animation. By default, roll animation is
used. This flag is ignored when used with
AnimateWindow_Center.

AnimateWindow_Flags_TopToBottom #4 Animates the window from top to bottom. This flag can
be used with roll or slide animation. It is ignored when
used with AnimateWindow_Flags_Center.

The following code fragment examples demonstrate the use of the animateWindow method. In the following
example, the method specifies that the control will slide the control into view from right to left when made visible
and slide the form out of view right to left when made invisible.

frame1.animateWindow(200, Window.AnimateWindow_Flag_Slide +
Window.AnimateWindow_Flag_RightToLeft);

In the following example, the method specifies that the form will roll into view from the top left corner when made
visible and roll the form out of view towards the top left corner when made invisible.

frame1.animateWindow(200, Window.AnimateWindow_Flag_RightToLeft +
Window.AnimateWindow_Flag_TopToBottom);

To animate the show of a form or , position the form or with its final position and size while invisible, and then call
the animateWindow method to animate the window into that final position and size.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 412

EncycloWin - 2020.0.02

Notes If the animateType parameter is not valid, the form or is made visible or invisible without any animation.

The animateWindow method is available only in GUI applications and for JADE forms (that is, it is not available for
Web forms).

An invalid parameter exception is generated if the value of the millisecs parameter is less than zero (0) or greater
than 60,000.

The animation may not work effectively if other windows are moved at the same time. This applies to forms or that
are docked or aligned to their parents.

Applies to Version: 2016.0.01

append
Signature append(text: String);

The append method of the JadeRichText class loads the text specified in the text parameter into the control of the
receiver, appending it to the end of the current contents. For an example of the use of this method, see
"JadeRichText Control Method Example", earlier in this document.

applySettings
Signature applySettings(): Integer;

The applySettings method of the JadeTextEdit class searches the application and global settings tables and
applies entries that are associated with the current language.

This method returns zero (0) if the settings were successfully applied or it returns a JADE error code if the action
was unsuccessful. (For details about the causes and actions of JADE error codes, see the appropriate error code
in the JADEMsgs.pdf file.)

The code fragment in the following example shows the use of the applySettings method.

jte.language := JadeTextEdit.SCLEX_CPP;
jte.applySettings();
jte.restyleText();

This example changes the current language to the C/C++ family, applies the appropriate settings (for example,
text style and keyword lists), and forces the current text to be restyled for the settings.

See also the Application class getJadeTextEditGlobalSettings, getJadeTextEditOneSetting, and
updateJadeTextEditAppSettings methods and the JadeTextEdit class updateAppSettings method.

applyVerb
Signature applyVerb(verb: String);

The applyVerb method of the OleControl class calls the application with the specified verb. The standard verbs
are listed in the following table. (The OLE server that is being used determines the list of available verbs.)

Verb Action

primary Executes the primary verb, in conjunction with the Ctrl key, defined by the application. (Usually
edit or play.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 413

EncycloWin - 2020.0.02

Verb Action

show Displays the object.

open Runs the application in normal mode (not in-place).

hide Hides the object.

beginNotfiyAutomationEvent
Signature beginNotifyAutomationEvent(receiver: Object;

eventClassRefName: String);

The beginNotifyAutomationEvent method of the ActiveXControl class registers the receiver to be notified when
a specified event occurs on an ActiveX control object when it has been created as an automation object. (For
details, see the makeAutomationObject method.)

The control object that invokes the beginNotifyAutomationEvent is referred to as the subscriber.

An object that subscribes to an automation notification is notified when the nominated event occurs for that object.

The parameters for this method are listed in the following table.

Parameter Description

receiver The object that is to receive the event notification

eventClassRefName The name of the reference (an instance of the IDispatch subclass) that implements
the notification events

A method implemented by the eventClassRefName parameter is executed each time its corresponding
automation event occurs.

This event notification continues until the ActiveXControl object is deleted or until the
endNotifyAutomationEvent method is called. The endNotifyAutomationEvent method has the same signature
as the beginNotifyAutomationEvent method.

Caution There may be an impact on performance, particularly in JADE thin client mode or on a slow
communications link, if you register for large numbers of automation events or events that are triggered often.

bindKeyToCommand
Signature bindKeyToCommand(keycode: Integer;

command: Integer);

The bindKeyToCommand method of the JadeTextEdit class enables you to associate the key combination
specified in the keycode parameter to the action specified in the command parameter, which can include one of
the JadeTextEdit class constants listed in the following table.

SCI_BACKTAB SCI_FINDAGAIN

SCI_FINDNEXT SCI_FINDPREV

SCI_GONEXT_JADE_BRKPNT SCI_GONEXT_JADE_LINEMARK

SCI_GOPRIOR_JADE_BRKPNT SCI_GOPRIOR_JADE_LINEMARK

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 414

EncycloWin - 2020.0.02

SCI_TOGGLEFOLDERHERE SCI_TOGGLE_JADE_BREAKPOINT

SCI_TAB SCI_TOGGLE_JADE_DEBUG

SCI_TOGGLE_JADE_LINEMARK SCI_ZOOMIN

SCI_ZOOMOUT

See http://scintilla.sourceforge.net/ScintillaDoc.html, for details about additional commands that are available in
Scintilla.

Note The bound key action has the highest priority when the JadeTextEdit control has focus. Bound key actions
override menu accelerator and menu shortcut event methods.

Although you can use the keycode parameter to specify any key combination, you can also use the JADE global
constants in the KeyCharacterCodes category; for example, J_key_F2 or J_key_F12.

In addition, you can use the JadeTextEdit class KEYMOD_ALT, KEYMOD_CTRL, and KEYMOD_SHIFT
constants. For example, J_key_F1 + KEYMOD_SHIFT + KEYMOD_CTRL indicates the Ctrl+Shift+F1 key
combination.

The code fragment in the following example shows the use of the bindKeyToCommand method.

// Toggle folding
jte.bindKeyToCommand('R'.Integer + JadeTextEdit.KEYMOD_CTRL,

JadeTextEdit.SCI_TOGGLEFOLDHERE);
// Find next/previous
jte.bindKeyToCommand(J_key_F4, SCI_FINDNEXT);
jte.bindKeyToCommand(J_key_F4 + JadeTextEdit.KEYMOD_SHIFT, SCI_FINDPREV);
// Toggle and go to linemark
jte.setLinemarkAttributes(JadeTextEdit.MARKER_JAD_LINEMARK, 0,

jteSource.rgb(255,180,180), jteSource.rgb(128,255,255));
jte.bindKeyToCommand(J_key_F2 + JadeTextEdit.KEYMOD_CTRL,

JadeTextEdit.SCI_TOGGLE_JADE_LINEMARK);
jte.bindKeyToCommand(J_key_F2, JadeTextEdit.SCI_GONEXT_JADE_LINEMARK);
jte.bindKeyToCommand(J_key_F2 + JadeTextEdit.KEYMOD_SHIFT,

JadeTextEdit.SCI_GOPRIOR_JADE_LINEMARK);

bindKeyToNotification
Signature bindKeyToNotification(keycode: Integer;

eventTag: Integer);

The bindKeyToNotification method of the JadeTextEdit class assigns the key combination specified in the
keycode parameter to the notification message specified in the eventTag parameter. When the key combination
is pressed, the notification is generated and a user notification occurs; that is, the userNotify event is called. (For
details about receiving notifications, see "Receiving User Notifications", in Chapter 2 of the JADE Developer's
Reference.)

Note The bound key action has the highest priority when the JadeTextEdit control has focus. Bound key actions
override menu accelerator and menu shortcut event methods.

Although you can use the keycode parameter to specify any key combination, you can also use the JADE global
constants in the KeyCharacterCodes category; for example, J_key_F2 or J_key_F12.

http://scintilla.sourceforge.net/ScintillaDoc.html

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 415

EncycloWin - 2020.0.02

In addition, you can use the JadeTextEdit class KEYMOD_ALT, KEYMOD_CTRL, and KEYMOD_SHIFT
constants. For example, J_key_F3 + KEYMOD_SHIFT + KEYMOD_CTRL indicates the Ctrl+Shift+F3 key
combination.

The eventTag parameter is a user-defined integer value (for example, an index into an array) that identifies a
notification subscription that is passed to the notification callback method. The notification is the JadeTextEdit
class EVENTTYPE_BOUNDKEY constant.

The code fragment in the following example shows the use of the bindKeyToNotification method.

// Breakpoint linemark
jteSource.bindKeyToNotification(J_key_1 + JadeTextEdit.KEYMOD_CTRL, 1001);

The method in the following example shows a userNotify event for a bound key notification.

handleUserNotify(textedit: JadeTextEdit input;
eventType: Integer;
theObject: Object;
eventTag: Integer;
userInfo: Any);

vars
begin

if eventType = JadeTextEdit.EVENTTYPE_BOUNDKEY then
if eventTag = 1001 then // Ctrl+1

self.doCtrl_1();
endif;

endif;
end;

bindKeyToText
Signature bindKeyToText(keycode: Integer;

text: String);

The bindKeyToText method of the JadeTextEdit class assigns the key combination specified in the keycode
parameter to the string specified in the text parameter; for example, JADE accelerator keys.

Note The bound key action has the highest priority when the JadeTextEdit control has focus. Bound key actions
override menu accelerator and menu shortcut event methods.

Although you can use the keycode parameter to specify any key combination, you can also use the JADE global
constants in the KeyCharacterCodes category; for example, J_key_A.

In addition, you can use the JadeTextEdit class KEYMOD_ALT, KEYMOD_CTRL, and KEYMOD_SHIFT
constants. For example, J_key_A + KEYMOD_SHIFT + KEYMOD_CTRL indicates the Ctrl+Shift+A key
combination.

The code fragment in the following example shows the use of the bindKeyToText method.

// Bind the accelerator keys
jte.bindKeyToText('A'.Integer + JadeTextEdit.KEYMOD_SHIFT +

JadeTextEdit.KEYMOD_CTRL, "abortTransaction;");
jte.bindKeyToText('B'.Integer + JadeTextEdit.KEYMOD_SHIFT +

JadeTextEdit.KEYMOD_CTRL, "beginTransaction;");
jte.bindKeyToText('C'.Integer + JadeTextEdit.KEYMOD_SHIFT +

JadeTextEdit.KEYMOD_CTRL, "commitTransaction;");

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 416

EncycloWin - 2020.0.02

jte.bindKeyToText('E'.Integer + JadeTextEdit.KEYMOD_SHIFT +
JadeTextEdit.KEYMOD_CTRL, "endforeach;");

callMethod
Signature callMethod(controlName: String;

memberName: String;
paramList: ParamListType);

The callMethod method of the JadeXamlControl class enables you to execute a Windows Presentation
Foundation (WPF) method on an entity of the XAML control.

The parameters are combined to form a sequence of accesses to the WPF entities involved. The JADE method
parameters are a mixture of property names, method names, and WPF method parameters, as described in the
following table.

Parameter Description

controlName Name of the WPF FrameworkElement involved. If the name is null or equal to the control
name, the search for the memberName starts with the parent control; otherwise the search
starts with the first child element with the specified name. The search succeeds when the
entity or one of its children is found to have the specified memberName value. An
exception is raised if the controlName or memberName is not found.

memberName Name of the first method or property being accessed.

paramList Remaining property, methods, and parameters being used in sequence.

The code fragments in the following examples show the use of these parameters.

jadeXamlCtl.callMethod(null, "BringIntoView");
// brings the base XAML control into view

jadeXamlCtl.callMethod("list", "BringIntoView");
// brings the child control named "list" into view

jadeXamlCtl.callMethod("list", "SelectedItem", "BringIntoView");
// brings the currently selected item of a list box into view by
// executing the WPF sequence: list.SelectedItem.BringIntoView

JadeXamlCtl.callMethod("list", "Items", "GetItemAt", 2, "BringIntoView")
// brings the second item of the Items 'collection' property of the
// "list" ListBox item to be brought into view by executing the
// WPF sequence: list.Items.GetItemAt(2).BringIntoView.

Note the following restrictions.

Only JADE primitives types are supported as parameters to WPF method calls.

Access to static WPF properties and methods is not supported.

Any return object from the final method is ignored.

Parameter types must match the same basic type; that is, an Integer parameter must be passed as an
Integer, a floating point or real number as a Real, a byte as a Byte, and so on.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 417

EncycloWin - 2020.0.02

For a presentation client, calls to this method are buffered (the application server does not wait for a reply). If
a call fails, an exception is raised. However, the current line of logic listed as causing the exception does not
indicate where the method was called.

canBeChildOf
Signature canBeChildOf(proposedParent: Window;

rejectionReason: String output): Boolean;

The canBeChildOf method of the Control class is used by the Painter to determine whether the control can be
placed on the form or control specified in the proposedParent parameter.

If a value of false is returned, a message can be returned in the rejectionReason parameter. This message is
displayed on the status line of the JADE Painter when dragging an existing control or trying to create a new
control on top of a control that does not support this dragged or new control; for example, it controls the fact that a
Sheet control can be placed only on a Folder control.

At the Control class level, this method always returns the same as the canControlHaveChildren method on the
parent. It is reimplemented in the Sheet and WebHotSpot classes to ensure that sheets are placed only on folders
and that Web hotspots are placed only on Picture controls.

canControlHaveChildren
Signature canControlHaveChildren(): Boolean;

The canControlHaveChildren method of the Control class returns whether a control is permitted to be the parent
of other controls.

The canControlHaveChildren method is defined for the following reasons.

The Painter needs to determine the controls that can be parents.

For subclasses of the BaseControl class, it can be overridden to determine the behavior of the developer-
defined subclassed control in regards to being a parent.

The default value returned by the method is determined by the control. The BaseControl, Frame, GroupBox,
JadeDockBar, JadeDockContainer, JadeMask, Picture, Sheet, and StatusLine controls return true; all other
controls return false.

canEject
Signature canEject(): Boolean;

The canEject method of the MultiMedia class returns whether the device can eject its media.

If the useDotNetVersion property is set to true, the canEject method returns a fixed value of false.

The method in the following example shows the use of the canEject method.

eject_click(btn: Button input) updating;
begin

if cd.canEject then
cd.stop;
cd.eject;

endif;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 418

EncycloWin - 2020.0.02

canHaveAsChild
Signature canHaveAsChild(proposedChild: Control;

rejectionReason: String output): Boolean;

The canHaveAsChild method of the Control class is used by the Painter to determine whether the control
specified in the proposedChild parameter can be placed on the control. If this method returns false, a message
can be returned in the rejectionReason parameter.

This message is displayed on the status line of the JADE Painter when dragging an existing control or trying to
create a new control on top of a control that does not support this dragged or new control; for example, it controls
the fact that a Folder control can have only Sheet controls as children.

At the Control class level, this method always returns the same as the canControlHaveChildren method. It is
reimplemented in the Folder class to ensure that only sheets are placed only on folders.

canPaste_
Signature canPaste_(): Boolean;

The canPaste_ method of the JadeRichText class programmatically returns whether there is content such as text
or an image in the Windows clipboard that can be pasted into the JadeRichText control. (You can also obtain this
status by calling the JadeRichText class getRedoAndUndoState method.)

Applies to Version: 2020.0.01 and higher

canPlay
Signature canPlay(): Boolean;

The canPlay method of the MultiMedia class returns whether the device can play its media.

If the useDotNetVersion property is set to true, the canPlay method returns a fixed value of true.

See also the play and playFromTo methods.

canRecord
Signature canRecord(): Boolean;

The canRecord method of the MultiMedia class returns whether the device supports recording.

If the useDotNetVersion property is set to true, the canRecord method returns a fixed value of false.

See also the record, newFile, and save methods.

canSave
Signature canSave(): Boolean;

The canSave method of the MultiMedia class returns whether the device supports the saving of data.

If the useDotNetVersion property is set to true, the canSave method returns a fixed value of false.

See also the save method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 419

EncycloWin - 2020.0.02

captureMouse
Signature captureMouse();

The captureMouse method of the Window class sets the mouse capture to the specified window for the
application. When a window has captured the mouse, all mouse input is directed to that window, regardless of
whether the cursor is positioned within the borders of that window. The mouse can be captured by only one
window at a time by each application.

Use the releaseMouse method to release the mouse when the window no longer requires all mouse input.

centreWindow
Signature centreWindow();

The centreWindow method of the Window, Form, and JadeDockBase classes centers an MDI child form that is
being opened, and positions it in the middle of the client area of its parent MDI frame. A non-MDI form is centered
within the monitor on which the form resides. The centreWindow of the Control class centers the control in the
middle of its parent. The method in the following example shows the use of the centreWindow method.

load() updating;
begin

centreWindow;
caption := process.signOnUserCode;
connectionName.text := app.computerName;
sendIt.value := true;
create tcp;

end;

changeKeywords
Signature changeKeywords(action: Integer;

keywordList: Integer;
keywords: String);

The changeKeywords method of the JadeTextEdit class modifies one or more of the current keyword lists. The
keyword lists are used by the current language lexical analyzer to classify the tokens found in the text. For the
JADE language, this includes keywords, class names, constant names, and so on.

The value of the action parameter can be one of the JadeTextEdit class constants listed in the following table.

Class Constant Value Description

KEYWORDS_ADD 2 Adds the keywords specified in the keywords parameter to the
list specified in the keywordList parameter.

KEYWORDS_DELETE 3 Deletes the words specified in the keywords parameter from the
list specified in the keywordList parameter.

KEYWORDS_SET 1 Clears the list specified in the keywordList parameter then sets
it to the words specified in the keywords parameter.

KEYWORDS_TOLANGDEF 4 Sets each keyword list to the default set of words for the current
programming language. The value of the keywordList
parameter must be zero (0).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 420

EncycloWin - 2020.0.02

Keyword list numbers are language-specific. JADE language keyword list numbers are the JadeTextEdit class
constants listed in the following table.

Constant Value Constant Value

KWL_JADE_GLOBALCONSTANTS 5 KWL_JADE_IMPORTEDCLASSES 8

KWL_JADE_INTERFACES 9 KWL_JADE_KEYWORDS 1

KWL_JADE_METHODWORDS 2 KWL_JADE_PACKAGES 7

KWL_JADE_SYSTEMCLASSES 4 KWL_JADE_SYSTEMVARS 3

KWL_JADE_USERCLASSES 6

Use the keywords parameter to specify keywords separated by spaces, tabs, Cr, Lf, or any combination of these
separators.

The code fragments in the following examples show the use of the changeKeywords method.

jteSource.changeKeywords(JadeTextEdit.KEYWORDS_SET, 5, "");

jteSource.changeKeywords(JadeTextEdit.KEYWORDS_ADD, 8, "nine");

jteSource.changeKeywords(JadeTextEdit.KEYWORDS_DELETE, 8, "one");

jteSource.changeKeywords(JadeTextEdit.KEYWORDS_ADD, 8,
"five six seven two");

jteSource.changeKeywords(JadeTextEdit.KEYWORDS_DELETE, 8, "two seven nine");

clear
Signature clear();

The clear method clears the contents of a ListBox or ComboBox control or the contents of the current sheet of a
Table control.

The listCount method of a list box or combo box control then returns 0, following the clear method instruction.

For a table control, the clear method removes the contents of each cell of the current sheet of the table, including
all cell properties (itemBackColor, itemForeColor, itemText, and so on). The number of rows and columns is
retained, together with any row or column property values, which are reset to 1.

Notes To clear the contents of an entire sheet, delete the sheet and then add it again (when the table has more
than one sheet) or set the number of rows and columns to zero (0). The clear method detaches a collection from a
control by clearing the displayCollection and the contents of the control.

The displayCollection method is not available in tables on forms in Web-enabled applications, as the HTML
framework cannot predict the final size of your table and adjust the HTML page accordingly.

If you want to ensure that all possible entries in the table are displayed on a Web page, use some other "virtual
window" for the Web generation or populate the table with all entries from the underlying collection if you know the
number of rows will not cause excessive page size.

The methods in the following examples show the use of the clear method.

btnProcessLocks_click(btn: Button input) updating;
vars

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 421

EncycloWin - 2020.0.02

procs : ProcessDict;
proc : Process;

begin
create procs transient;
system.getObjectLockProcesses(obj, procs, 100);
listBoxProcesses.clear;
foreach proc in procs do

listBoxProcesses.addItem(proc.userCode);
endforeach;

end;

btnEdit_click(button: Button) updating;
begin

if form.myCustomer <> null then
listBoxCust.clear;
loadListBox;
btnEdit.enabled := false;
btnDelete.enabled := false;

endif;
end;

clearAllSelected
Signature clearAllSelected();

The clearAllSelected method of the Table class clears all the selected properties of all cells for the current sheet
of the table.

The clearAllSelected method of the ListBox class clears all selected items in the list box. This method has no
effect if the multiSelect property is set to MultiSelect_None, as the listIndex item is always selected.

The method in the following example shows the use of the clearAllSelected method.

cdtable_rowColumnChg(table: Table input) updating;
vars

indx : Integer;
count : Integer;

begin
if table.row = 1 and table.column > 1 then

table.sortColumn[1] := table.column;
table.resort;
count := table.rows - 1;
indx := 1;
while indx <= count do

table.setCellText(indx + 1, 1, indx.String);
indx := indx + 1;

endwhile;
table.row := 1;
table.column := 1;
table.clearAllSelected;

endif;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 422

EncycloWin - 2020.0.02

clearAllStyles
Signature clearAllStyles();

The clearAllStyles method of the JadeTextEdit class clears all text style information (for example, font, color, and
so on) previously defined for the text editor (for example, when changing the programming language from text to
JADE) and resets the text style values to the default values defined by the control properties.

The following actions are performed.

1. Initializes the default text style (STYLE_DEFAULT).

2. Sets the default text style attributes to the values of the fontName, fontSize, fontItalic, fontBold,
fontUnderline, foreColor, and backColor properties for the control.

3. Copies the default style to all other styles.

4. Sets the line number margin style (STYLE_LINENUMBER) foreground color to the light gray RGB value (that
is, to #C0C0C0).

5. Sets brace highlighting style (STYLE_BRACELIGHT) foreground color to the bright blue RGB value (that is,
to #0000FF).

6. Sets the unmatched braces style (STYLE_BRACEBAD) foreground color to the red RGB value (that is, to
#FF0000).

7. Sets the indent guides style(STYLE_INDENTGUIDE) foreground color to the light gray RGB value (that is, to
#C0C0C0) and background color to the white RGB value (that is, to #FFFFFF).

For details about setting the individual attributes of a text style, see the setStyleAttributes method.

clearHTML
Signature clearHTML();

The clearHTML method of the Frame class clears all previously generated HTML code from the frame.

clearUndoBuffer
Signature clearUndoBuffer();

The clearUndoBuffer method of the JadeRichText class clears information from the undo buffer.

clearWebEventMappings
Signature clearWebEventMappings();

The clearWebEventMappings method of the Window class removes all Web event mappings for the receiver. For
example, the following code fragment removes all of the event mappings for the textBox1 control.

textBox1.clearWebEventMappings;

clientHeight
Signature clientHeight(): Integer;

The clientHeight method of the Control class returns the height of the client area of a control in pixels.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 423

EncycloWin - 2020.0.02

The client area of a control is the area inside the border area or scroll bars where controls can be placed. The
position of child controls is relative to the top left of this client area.

The code fragment in the following example shows the use of the clientHeight method.

btn.height := clientHeight / (numOfRows + 1);

See also the clientHeight property of the Form class.

clientWidth
Signature clientWidth(): Integer;

The clientWidth method of the Control class returns the width of the client area of a control in pixels.

The client area of a control is the area inside the border area or scroll bars where controls can be placed. The
position of child controls is relative to the top left of this client area.

The code fragment in the following example shows the use of the clientWidth method.

btn.width := clientWidth / ButtonWidthRatio;

See also the clientWidth property of the Form class.

cloneSelf
Signature cloneSelf(transient: Boolean): SelfType;

The cloneSelf method of the OleControl class creates a new instance of the same type as the receiver and copies
the attributes of the receiver (including the contents of primitive arrays).

close
Signature close();

The close method of the OleControl class closes the presentation of the object. The control retains the saved
image, but the control appears to be empty.

The close method of the MultiMedia class closes the associated device or a file associated with the control. The
mediaName property will be empty, and any video image will be cleared.

You can then associate another file or device with the control by setting a new value for the mediaName property.

closeDropDown
Signature closeDropDown();

The closeDropDown method of the ComboBox class closes (hides) the presentation of the drop-down list of the
combo box control. (Use the isDroppedDown method to determine if the drop-down list is currently open.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 424

EncycloWin - 2020.0.02

colorAs6Hex
Signature colorAs6Hex(col: Integer): String;

The colorAs6Hex method of the JadeTextEdit class returns a six-character hexadecimal string in the RGB format
(padded with leading zeros) of the color specified in the col parameter. The returned string is in the RGB format or
it is "000000" (black) if the specified color is less than zero (0) or greater than #FFFFFF (white).

JADE uses the RGB scheme for colors. Using the appropriate RGB value can set each property. The valid range
for a normal RGB color is zero (0) through 16,777,215 (#FFFFFF). The high byte of a number in this range equals
0; the lower three bytes (from least- to most-significant byte) determine the amount of red, green, and blue,
respectively.

The red, green, and blue components are each represented by a number in the range 0 through 255 (#FF). If the
high byte is 128, JADE uses the system colors, as defined in the Control Panel of the user.

To determine the Integer value of a color from the RGB values:

int:= RedValue + (GreenValue * 256) + (BlueValue * 256 * 256);

You can use this method when creating text to be passed to the updateAppSettings method.

configureFor_Jade
Signature configureFor_Jade();

The configureFor_Jade method of the JadeTextEdit class is an example method that performs basic
configuration when preparing the JadeTextEdit control to display JADE method text. This method sets the
language to JADE, clears the text styles, sets the default style and copies it to all styles, and then sets up the
JADE-specific text style attributes (primarily the foreColor property value). It sets the keyword lists to the built-in
JADE words and then calls the restyleText method so that the current text (if any) is displayed using the new
configuration.

The following is an example of the configureFor_Jade method that you can call from your applications.

configureFor_Jade() updating, clientExecution;
vars
begin

self.language := SCLEX_JADE;
self.clearAllStyles();
self.setStyleAttributes(STYLE_DEFAULT, self.fontName,

self.fontSize.Integer, rgb(0,0,0), rgb(255,255,232),
self.fontBold.Integer, self.fontItalic.Integer,
self.fontUnderline.Integer, ATTRIB_FALSE);

self.copyDefaultToAllStyles();
self.setStyleAttributes(SCE_JAD_SINGLECOLOR, "", ATTRIB_NOCHANGE,

rgb(000,000,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_DEFAULT, "", ATTRIB_NOCHANGE,
rgb(000,000,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_PUNCTUATION, "", ATTRIB_NOCHANGE,
rgb(000,000,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_COMMENT, "", ATTRIB_NOCHANGE,
rgb(128,128,128), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 425

EncycloWin - 2020.0.02

ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);
self.setStyleAttributes(SCE_JAD_COMMENTLINE, "", ATTRIB_NOCHANGE,

rgb(128,128,128), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_STRING1, "", ATTRIB_NOCHANGE,
rgb(255,000,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_STRING2, "", ATTRIB_NOCHANGE,
rgb(255,000,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_NUMBER, "", ATTRIB_NOCHANGE,
rgb(255,000,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_IDENTIFIER, "", ATTRIB_NOCHANGE,
rgb(000,000,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_KEYWORD, "", ATTRIB_NOCHANGE,
rgb(000,000,255), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_METHODWORD, "", ATTRIB_NOCHANGE,
rgb(000,000,255), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_SYSTEMVAR, "", ATTRIB_NOCHANGE,
rgb(128,000,128), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_SYSTEMCLASS, "", ATTRIB_NOCHANGE,
rgb(000,128,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_USERCLASS, "", ATTRIB_NOCHANGE,
rgb(000,128,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_GLOBALCONST, "", ATTRIB_NOCHANGE,
rgb(128,000,128), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_PACKAGE, "", ATTRIB_NOCHANGE,
rgb(000,128,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_PACKAGECLASS, "", ATTRIB_NOCHANGE,
rgb(000,128,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.setStyleAttributes(SCE_JAD_INTERFACE, "", ATTRIB_NOCHANGE,
rgb(000,128,000), ATTRIB_NOCHANGE, ATTRIB_NOCHANGE,
ATTRIB_NOCHANGE, ATTRIB_NOCHANGE, ATTRIB_NOCHANGE);

self.changeKeywords(KEYWORDS_TOLANGDEF, 0, "");
self.restyleText();

end;

configureFor_Text
Signature configureFor_Text();

The configureFor_Text method of the JadeTextEdit class is an example method that performs basic
configuration when preparing the text editor to display plain text. This method clears the text styles and then sets
up the text style attributes and keywords for plain text.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 426

EncycloWin - 2020.0.02

The following is an example of the configureFor_Text method that you can call from your applications.

configureFor_Text() updating, clientExecution;
vars

ii : Integer;
begin

self.language := SCLEX_TEXT;
self.clearAllStyles();
self.setStyleAttributes(STYLE_DEFAULT, self.fontName,

self.fontSize.Integer, self.foreColor, self.backColor,
self.fontBold.Integer, self.fontItalic.Integer,
self.fontUnderline.Integer, ATTRIB_FALSE);

self.copyDefaultToAllStyles();
self.changeKeywords(KEYWORDS_TOLANGDEF, 0, "");
self.restyleText();

end;

controlCount
Signature controlCount(): Integer;

The controlCount method of the Form class returns the number of controls on the form.

The following example examines all controls on a form.

vars
cntrl : Control;
indx : Integer;

begin
foreach indx in 1 to controlCount do

cntrl := controls(indx);
if cntrl.name = "Text1" then

...
endif;

endforeach;
end;

controlNamePrefix
Signature controlNamePrefix(): String;

The controlNamePrefix method of the Window class is a prototype method that you can reimplement in your own
schemas if you want to prefix your own control names. You can define a prefix for any Control subclass (for
example, a prefix of lbx_ for a ListBox control) so that when you add a control to a form in Painter, JADE inserts
the appropriate prefix when prompting you for the name of the control.

To prefix a control, you must first define (reimplement) a controlNamePrefix method for the appropriate control
subclass.

The following example shows the reimplementation of this method defined for the Button class in a user-defined
schema.

controlNamePrefix(): String;
vars
begin

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 427

EncycloWin - 2020.0.02

return "btn_";
end;

The controlNamePrefix method is used only by the JADE Painter. No check for a control name prefix is made
when you use the Class Browser or logic to add controls.

If you do not define a valid controlNamePrefix method for a control class, the JADE Painter uses the default
control naming rules, which may be overridden.

If the control class has a caption property, the initial value for the caption is the control name (with a capitalized
first letter and without the control name prefix applied) if you accept the default name when prompted to do so, or
the actual text (with a capitalized first letter) that you specified as part of the name. For example, if the Painter
detects you have changed the control name (for example, from btn_Button1 to btn_OK), the caption property is
made equal to the name with the prefix removed so that the caption displays only the value that you specified (in
this example, OK).

The name property for the control displays the full name (btn_OK in this example) in the Properties dialog.

Notes The controlNamePrefix method can be defined once only for any class in a schema branch. You
therefore cannot override a prefix if the control is in a superschema and it has already implemented the
controlNamePrefix method. In this case, set the superschema to the current schema and then change the
method.

Control prefixes are not applied when you create a form using the Form Wizard, which prefixes all controls with
ctl_. (The type of control is not known until the form is built after you have specified the name of the control.)

controls
Signature controls(controlNumber: Integer): Control;

The controls method of the Form class enables logic to access the controls on an active form at run time. This
method returns a reference to the active control object specified in the controlNumber parameter or null if there is
no specified control.

The method returns an object of type Control, which enables the properties of a control to be accessed.

To access a property specific to a type of control, the object must be converted to a control of the appropriate type,
as shown in the following example that examines all controls on a form.

vars
cntrl : Control;
indx : Integer;
textBox1 : TextBox;

begin
foreach indx in 1 to controlCount do

cntrl := controls(indx);
if cntrl.isKindOf(TextBox) then

textBox1 := cntrl.TextBox;
if textBox1.maxLength > 60 then

...
endif;

endif;
endforeach;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 428

EncycloWin - 2020.0.02

convertEndOfLines
Signature convertEndOfLines(eolType: Integer);

The convertEndOfLines method of the JadeTextEdit class changes the line endings in the text to the value
requested by the eolType parameter.

The value of the eolType parameter can be one of the JadeTextEdit class constants listed in the following table.

Class Constant Integer Value Description

SC_EOL_CR 1 Carriage return character

SC_EOL_CRLF 0 Carriage return and line feed characters

SC_EOL_LF 2 Line feed character

convertFormPosition
Signature convertFormPosition(x: Real io;

y: Real io);

The convertFormPosition method of the Control class converts the horizontal and vertical positions specified in
the x and y parameters, respectively, into coordinates relative to the control.

The horizontal and vertical positions are relative to the form of the control (in pixels).

convertIndentWhitespace
Signature convertIndentWhitespace(toTabs: Boolean): Integer;

The convertIndentWhitespace method of the JadeTextEdit class changes all of the indentation whitespace to
the style requested by the toTabs parameter. The indentation whitespace is the tab and space characters that
precede the first visible character in each line.

The existing indent whitespace length for each line is calculated. Each tab character is counted using the current
tab width. A new sequence of indent whitespace is created that has the same effective length as the original.

If the value of the toTabs parameter is true, the new indent white space is converted to a series of tab characters
followed by any additional space characters to make up the required indentation length.

If the value of the toTabs parameter is false, the new indent whitespace is built using space characters only.

If the existing indent whitespace does not match the new whitespace, the change is applied.

This method returns the number of lines that are changed.

If any changes occur, the conversion is performed as a single undo action.

copyDefaultToAllStyles
Signature copyDefaultToAllStyles();

The copyDefaultToAllStyles method of the JadeTextEdit class copies the default text style and all of its attributes
to all other text styles in the text editor.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 429

EncycloWin - 2020.0.02

Use this method to construct a consistent set of text styles before customizing individual styles to match language
requirements by calling the setStyleAttributes method.

copyToClipboard
Signature copyToClipboard(): Integer;

The copyToClipboard method of the JadeTextEdit class copies the text selected in the text editor to the system
clipboard and returns 1.

Any end-of-line sequences in the selection are converted to the platform-native sequence in the text copied to the
clipboard.

cutToClipboard
Signature cutToClipboard(): Integer;

The cutToClipboard method of the JadeTextEdit class cuts the selected text from the text editor and moves it to
the system clipboard. This method returns 1. The selection is cleared.

Any end-of-line sequences in the selection are converted to the platform-native sequence in the text copied to the
clipboard.

create
Signature create();

The create method of the Form class calls a constructor that builds a description of the form as transient JADE
objects using the JADE development definition of the form and then builds the physical windows involved. This
form description includes all of the controls and menus.

The create method for a form is the same as for any JADE class instance. The form is not displayed until a show
method or a showModal statement is executed or the visible property of the form is set to true.

The create method for a control creates a control object but no associated windows object until the addControl
method is called.

The following example of the create method for an ActiveXControl assumes that you have imported the Microsoft
SysInfo control (that is, sysInfo.ocx) as an ActiveX control. This example creates a JADE control instance and
calls the makeAutomationObject method instead of adding the control to a form.

createSysInfoAsAutoObject();
vars

actX : SysInfo;
begin

create actX transient;
actX.makeAutomationObject;
write actX.oSVersion;
write actX.oSBuild;

epilog
delete actX;

end;

The create method of the ProgressBar subclass of the Label control class creates a progress bar, hides the
caption property, and sets the borderStyle property to 1 (fixed single).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 430

EncycloWin - 2020.0.02

The create method for a Label class Web picture sets the transparent property to true and the caption property
to null ("") when the hotspot is created.

createEventNameMap
Signature createEventNameMap();

The createEventNameMap method of the JadeDotNetVisualComponent class is a method that is
reimplemented in subclasses of JadeDotNetVisualComponent by the .NET Import wizard to establish a mapping
between the names of .NET events and the names of the JADE methods to be invoked.

You would not normally need to change the code generated for this method.

createPicture
Signature createPicture(entireWindow: Boolean;

includeChildren: Boolean;
numberOfColorBits: Integer): Binary;

The createPicture method of the Window and Control class creates a bitmap for the receiver form or control,
respectively.

Use the entireWindow parameter to specify that the created picture includes the non-client area of the form or
control, the includeChildren parameter to specify that the created picture includes child controls (that is, controls
that are placed on the form or control are included in the picture), and the numberOfColorBits parameter to
specify the number of color bits for the picture. (The valid numbers of color bits that you can specify are 1, 4, 8, or
24.)

The createPicture method creates an image by drawing the window (and its children, if required) and replaying
any drawing commands saved while the autoRedraw property is set to true. The process does not scrape the
image off the screen.

The code fragments in the following examples show the use of the createPicture method.

setBackDrop(logo.createPicture(false, true, 24), 1, -1);

// create a picture and display the common File Save dialog to list all
// available Jpeg files for picture conversion
createPicture(true, true, 24).convertToFile("", Window.PictureType_Jpeg);

When you call this method for the Window class on an MDI frame that has MDI children, the frame and all of its
children are included in the image. In addition, you can use this method to capture the entire image of a Form and
its controls.

The created image is a reflection of how the window, which can include child windows, would be displayed. To
recreate an image of a different size, set the image into a picture control with the stretch property set to Stretch_
ToControl (1) and call createPicture(false, false, 24).

The createPicture method for Picture and JadeMask Web images attempts to preserve any image transparency
where possible. This applies only if all of the following are true.

The value of the entireWindow parameter of the createPicture method is false.

The value of the includeChildren parameter of the createPicture method is false.

This image type is BMP, PNG, JPEG, TIFF, or GIF.

The control does not implement a paint event.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 431

EncycloWin - 2020.0.02

For a JadeMask control, the value of the text property is null.

Either the image size is the same size as the client areas of the control or the image is stretched to fit the
control.

If the image is stretched, the value of the transparentColor property of the control must be set to the default
Black color (transparentColor is ignored if the image is the correct size and all of the above are true).

If all of the above are true and the image size is:

The same size as the client area of the control, a copy of the original image is returned by the createPicture
method.

Stretched, the image is scaled to fit the control and it is returned as a PNG image, thus preserving any
transparency effects.

If any of the above is false, the createPicture method constructs the required image by drawing all of the control
components into a new image. This results in any transparency effects being lost.

Note If you rely on the value of the Picture class transparentColor property for the images, images may have a
black background.

See also the Control class createPictureIndirect method, which improves JADE thin client mode performance as
it does not have to pass large binary large objects (blobs) back and forth between the presentation client and the
application server.

createPictureAsType
Signature createPictureAsType(entireWindow: Boolean;

includeChildren: Boolean;
numberOfColorBits: Integer;
imageType: Integer): Binary;

The createPictureAsType method of the Window class creates an image of the specified image type for the
presentation client receiver form or control, respectively.

This method effectively combines the following instructions into a single instruction and therefore requires only
one message to be sent from the application server to the presentation client instead of two, thus reducing the
network traffic for a presentation client. You can also reduce the size of the returned image significantly if you
specify the imageType parameter as PictureType_Png instead of PictureType_Bitmap.

bin := window.createPicture(false, true, 24);

bin := bin.convertPicture(PictureType_Png);

Use the entireWindow parameter to specify that the created picture includes the non-client area of the form or
control, the includeChildren parameter to specify that the created picture includes child controls (that is, controls
that are placed on the form or control are included in the picture), and the numberOfColorBits parameter to
specify the number of color bits for the picture. (The valid numbers of color bits that you can specify are 1, 4, 8, or
24.)

The createPictureAsType method creates an image by drawing the window (and its children, if required) and
replaying any drawing commands saved while the autoRedraw property is set to true. The process does not
scrape the image off the screen.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 432

EncycloWin - 2020.0.02

When you call this method for the Window class on an MDI frame that has MDI children, the frame and all of its
children are included in the image. In addition, you can use this method to capture the entire image of a Form and
its controls.

The created image is a reflection of how the window, which can include child windows, would be displayed. To
recreate an image of a different size, set the image into a picture control with the stretch property set to Stretch_
ToControl (1) and call createPictureAsType(false, false, 24, PictureType_Png).

For Picture and JadeMask Web images, the createPictureAsType method attempts to preserve any image
transparency, where possible. This applies only if all of the following are true.

The value of the entireWindow parameter of the createPictureAsType method is false.

The value of the includeChildren parameter of the createPictureAsType method is false.

This image type is BMP, PNG, JPEG, TIFF, or GIF.

The control does not implement a paint event.

For a JadeMask control, the value of the text property is null.

Either the image size is the same size as the client areas of the control or the image is stretched to fit the
control.

If the image is stretched, the value of the transparentColor property of the control must be set to the default
Black color (transparentColor is ignored if the image is the correct size and all of the above are true).

If all of the above are true and the image size is:

The same size as the client area of the control, a copy of the original image is returned by the
createPictureAsType method.

Stretched, the image is scaled to fit the control and it is returned as a PNG image, thus preserving any
transparency effects.

If any of the above is false, the createPictureAsType method constructs the required image by drawing all of the
control components into a new image. This results in any transparency effects being lost.

Note If you rely on the value of the Picture class transparentColor property for the images, images may have a
black background.

Use the imageType parameter to specify the type of image to be generated. For a presentation client, the image
type can be one of PictureType_Bitmap, PictureType_Png, PictureType_Jpeg, PictureType_Jpeg2000, or
PictureType_Tiff.

See also the Control class createPictureIndirect method, which improves JADE thin client mode performance as
it does not have to pass large binary large objects (blobs) back and forth between the presentation client and the
application server.

createPictureIndirect
Signature createPictureIndirect(entireWindow: Boolean;

includeChildren: Boolean): Binary;

The createPictureIndirect method of the Control class creates a short binary that contains an instruction
concerning the window to be copied. When the binary is assigned to a Picture control property, the picture is
created using the current image of the requested window.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 433

EncycloWin - 2020.0.02

Note This method, which achieves the same as the Control class createPicture method (that is, it creates a
bitmap for the receiver control), improves JADE thin client mode performance as it does not have to pass large
binary large objects (blobs) back and forth between the presentation client and the application server.

The parameters for this method are listed in the following table.

Parameter Description

entireWindow If true, copies the entire window. If false, copies only the client area of the control.

includeChildren If true, includes any children in the created image. If false, no children are included in the
created image.

The createPictureIndirect method creates an image by drawing the control (and its children, if required) and
replaying any drawing commands saved while the autoRedraw property is set to true. The process does not
scrape the image off the screen.

The code fragment in the following example dynamically creates a color image to be placed in a list box.

picture1.backColor := Red;
picture1.borderStyle := 1;
listBox1.itemPicture[indx] := picture1.createPictureIndirect(true, false);

If you use the createPicture method in JADE thin client mode, the picture image would be created on the
presentation client and brought back to the application server. Assigning the picture then causes the image to be
sent back to the presentation client and to be cached, which could involve significant delays and overheads for a
reasonable-size image.

Using the createPictureIndirect method, a small binary is sent instead and the image data itself is not transported
between the presentation client and the application server.

Note Use of the createPictureIndirect method also means that actual image data cannot be accessed by using
the picture property.

currentMaskColor
Signature currentMaskColor(): Integer;

The currentMaskColor method of the JadeMask class returns the color of the pixel in the mask picture
corresponding to the last position of the mouse when it was over the control. This method would normally be
called only during one of the mouse events for the mask control.

This method is relevant only when the style property of the JadeMask control is set to Style_Mask_Color (3). If
the style is not Style_Mask_Color, the returned value is undefined.

An example of the use of this is a control that displays a map of a road network. The picture mask is built with the
roads drawn in different colors and the rest of the map drawn as some other color (for example, white).

When the user moves the mouse over the control, the mouseMove event calls the currentMaskColor method. If
the returned value is not white, the color is used to index the name of the road and this is displayed to the user in
bubble help.

When using this style, the roll over (pictureRollOver) and roll under (pictureRollUnder) features do not apply.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 434

EncycloWin - 2020.0.02

delete
Signature delete();

The delete method of the Form class or Control class has additional meaning when the object has an associated
Windows form or control. Deleting such an object causes the object of the window to be destroyed as well.

The delete method, which is the destructor method for the Form or Control class and its subclasses, is
automatically invoked when an instance of the Form or Control class or subclass is deleted. You cannot call this
method directly.

Deleting a running form causes the form to be unloaded and destroyed, and the transient form and control objects
to be deleted. Deleting a control causes that control to be removed from its owner form. No further events are
issued for the window that is being deleted, as the object is not available to receive these events.

Deleting a form queues the window for deletion, but if another window is deleted before the next idle point,
previously queued deleted windows are re-evaluated for deletion. If the queued window or its children have no
outstanding Windows message, there are no incomplete event methods for that window or its children, and the
method that created the window has exited or the window was deleted, the physical window is deleted.

Notes If you want the queryUnload and unload events to occur when your form is deleted, use the unloadForm
method instead of the delete method.

To ensure that a form has no orphaned children when deleting a window, the lowest child in the hierarchy is
deleted first, followed by the next lowest child, and so forth up the hierarchy until the parent is deleted. You
therefore do not need to handle the deletion the children of a form in your code, as the child or children no longer
exist when the parent is deleted.

Avoid referring to user-defined properties or methods on the Application or Global classes in the delete method.
When the form is displayed in the JADE Painter, the application used is not the user application, so these
properties or methods are not available at run time. If the property or method must be referenced, the method must
perform a runtime check to ensure that the application is the expected one; otherwise, an exception will be raised.

deleteColumn
Signature deleteColumn(col: Integer);

The deleteColumn method deletes the column specified in the col parameter from the current sheet of a Table
control.

This deletion may affect other Table control properties; for example, the column or leftColumn property.

The method in the following example shows the use of the deleteColumn method.

buttonDelColumn_click(btn: Button input);
begin

if selectedColumn <> null then
table1.deleteColumn(selectedColumn);
table1.clearAllSelected;
selectedColumn := null;

else
app.msgBox("You must select a column", "No column selected",

MsgBox_OK_Only);
return;

endif;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 435

EncycloWin - 2020.0.02

deleteRow
Signature deleteRow(row: Integer);

The deleteRow method deletes the row specified in the row parameter from the current sheet of a Table control.

This deletion may affect other table control properties; for example, the row property.

The code fragment in the following example shows the use of the deleteRow property.

tbl.column := 1;
row := 1;
while row <= tbl.rows do

tbl.row := row;
if tbl.text = "" then

tbl.deleteRow(row); // Remove empty rows.
row := row - 1; // Move back one row so we don't work

endif; // on the next row.
row := row + 1;

endwhile;

deleteSheet
Signature deleteSheet(sheet: Integer);

The deleteSheet method deletes the sheet specified in the sheet parameter from the Table control. This deletion
may affect the topSheet property.

Note You cannot delete the last sheet of a table control.

discard
Signature discard();

The discard method of the OleControl class closes the OLE object presentation and deletes any stored data.

displayCollection
Signature displayCollection(c: Collection; (Table)

update: Boolean;
showHow: Integer;
startObj: Object);

displayCollection(c: Collection; (ComboBox, ListBox)
update: Boolean;
showHow: Integer;
startObj: Object;
extraEntry: String);

The displayCollection method enables a collection to be attached to the current sheet of a Table control, to the list
portion of a ComboBox control, or to a ListBox control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 436

EncycloWin - 2020.0.02

The displayCollection method parameters are listed in the following table.

Parameter Description

c Specifies the attached collection and can be any type of object collection. The scrolling and
positioning of non-object collections cannot be handled, and calling displayCollection with
such collections is rejected. (The topRow property is set to the first non-fixed row when using
attached collections.)

update If true, changes to the collection are reflected in the control. (This parameter does not apply to
transient objects.)

showHow Specifies an effective bit mask, which defines whether the collection is accessed forward or
reversed or whether the user can scroll prior to the start object. (If the start object is null, this
option has no effect.)

startObj Specifies the object in the collection from which to start. If this parameter is not specified (that
is, it is null), it starts at the beginning (or end) of the collection.

extraEntry For ComboBox and ListBox controls only, determines whether the displayed list includes an
extra entry.

When the displayCollection method is called, the number of rows in that sheet or list is set to the number of fixed
rows defined for that sheet or list. Each collection entry adds a non-fixed row to the sheet or list, unless the
displayRow event method indicates that an entry is to be ignored. The definition of the fixed rows of the sheet or
list remains untouched.

When this method is called, the sheet or list contains the number of rows required to fully fill the visible portion of
the table or list. (The actual number could be slightly more, to cater for the scroll bar being present.) As the entries
are scrolled, the entries no longer visible are removed from the table or list and additional entries are obtained
from the collection, as required. The initial entries in the table or list are displayed automatically when the
displayCollection method is called, causing the table or list to access any collection entries required to fill the
display size.

Note When the selected item is scrolled out of view, it is deselected. This deselection behavior can be avoided
for list boxes and combo boxes by using the listCollection method instead of displayCollection.

You can drag the scroll bar thumb of ListBox and Table controls when a collection is attached to the list or table
using the displayCollection method and the collection is an Array, Dictionary, or Set. The Collection class
indexNear method determines the approximate position of a displayed object and the Iterator class
startNearIndex method positions the displayed entries.

Implementing this feature has the following side effects.

If the bcontinue parameter returns false, the list size is adjusted and remembered. However, users can drag
the list past that entry without the displayRow event being called for that entry, and as a result, JADE is
unaware that the display size was to be limited. The bcontinue parameter therefore cannot be relied on to
limit the display up to the required point.

The thumb track reflects the relative position in the collection from the start point (forwards or backwards, as
required), regardless of whether entries have been left out of the display.

The use of the startNearIndex method is a shortcut method of approximating the required position through
the collection based on the estimated size of segments of the collections (for example, Btree segments).
However, if the collection population is distorted, the estimation may result in strange behavior, where
dragging the thumb could result in the same position being shown or even going the wrong way through the
collection.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 437

EncycloWin - 2020.0.02

Note For both ListBox and Table controls, Ctrl+Home positions the display to the first entry in the collection list
and Ctrl+End displays the last entry in the collection list.

Use the getCollection method to return the collection attached to the control or the clear method to detach a
collection from a control and clear the contents of the control.

The entries in the table or list can be accessed from logic, but the content of a table or list is treated as though it is
the complete set of data. Access to rows that are not displayed is therefore not available. Attempting to call the
displayCollection method in a ListBox or Table control with a virtual collection (for example,
myClass.instances) is rejected and an exception is raised. Virtual collections do not implement the methods
required by the displayCollection method. The ListBox class listCollection method handles a virtual collection,
but only in the forward direction.

Notes As the table holds only the displayed entries, no sorting can be performed. Any defined sort columns are
ignored.

The displayCollection method and the related displayRow method should not be used in a Web-enabled JADE
forms application because they provide a small virtual window over the underlying collection of potentially
thousands of objects. The HTML generated contains only the entries required to fill the virtual window and (unlike
a GUI application) does not provide a scroll bar to access additional entries.

For a Web-enabled JADE forms application, use the addItem method to populate the ComboBox, ListBox, or
Table control with collection entries to be displayed.

When the table is at the bottom of the collection and there are no more rows to display, pressing the Page Down key
selects the last row in the table. Similarly, the Page Up key selects the first row in the table when at the top of the
collection. When paging down, the last entry is displayed on the next page only if the row is not fully displayed in
the table.

Use the ComboBox, ListBox, or Table class constants listed in the following table in the showHow parameter to
control access to a table or list collection.

Class Constant Integer Value Description

DisplayCollection_Forward 0 Display the collection forwards

DisplayCollection_Reversed 1 Display the collection reversed

DisplayCollection_NoPrior 0 No access to collection entries prior to start object

DisplayCollection_Prior 2 Allow access to entries prior to start object

To specify multiple collection access options, combine the options by adding them, as shown in the following code
fragment.

table1.displayCollection(myColl, true, DisplayCollection_Forward +
DisplayCollection_Prior, startObj);

As a combo box is scrolled, entries that are not visible are removed from the list. If the currently selected item is
removed, the listIndex property is set to -1 and the combo box text is cleared. The findObject method searches
only the entries that are currently loaded when the displayCollection method is called.

If the value of the extraEntry parameter for a ComboBox or ListBox control is null (""), the parameter is ignored
and the displayed list consists only of collection entries. If the extraEntry parameter contains a non-null string, the
displayed list includes an extra entry, using the specified string.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 438

EncycloWin - 2020.0.02

The entry is treated as though it is the first entry in the collection (or the last entry, when the collection is displayed
in reverse order). The exception to this is when a start object (specified in the startObj parameter) is requested
and the showHow parameter value does not include DisplayCollection_Prior. In this case, the extra entry is
treated as though it is the starting object, followed by the real starting object in the list. The extra object has a null
row object associated with it in the list box and can be recognized by using that null row object (for example, if
list.itemObject[list.listIndex] = null then ...).

The code fragment in the following example shows the use of the extraEntry parameter.

listbox1.displayCollection(custlist, true, 0, null, "<Default>");

If the object is already displayed in a ComboBox or ListBox list, the listIndex property value is set to the existing
list entry. If the object is not in the displayed list, the current list is discarded. The iterator position within the
collection is then adjusted so that the rebuilt display list includes the requested object. The listIndex property is
then set to the list entry of the requested object. If the object cannot be found within the collection, an exception is
raised.

Note If a collection is attached to a combo box or list box by using the listCollection method and the object is
not in the displayed list, additional entries from the collection are added until that entry is included.

In addition, when the displayCollection method of the ComboBox or ListBox class is called with the extraEntry
parameter set to a string value and the listObject property is set to null, the value of the listIndex property is set to
the extraEntry list entry value (which is always 1). If that entry is not in the list that is currently displayed, the
current list is discarded, restarted from the beginning of the collection entries, and includes the extra entry.

Note Setting the listIndex property to -1 remains unchanged; that is, no entry is selected.

When a collection is associated with a sheet of a control, the following restrictions apply.

The addItem, addItemAt, removeItem, Table::resort, Table::moveRow, and Table::deleteRow methods are
not available.

As the scrolling of the control relies on the object associated with each row, the scrolling principle would
break down with the use of these methods. In addition, the number of rows cannot be changed (although the
number of fixed rows can be).

The clear, displayCollection, and Table::deleteSheet methods cannot be called for a sheet or list from the
displayRow event method for that sheet or list.

The itemObject property for a row is set to the collection object for that row. This value cannot be changed.

Note If prior access to the start object is allowed and there are insufficient entries in the collection after the start
object to fill the control, prior entries are inserted at the top of the control (that is, the requested start object may not
be the first entry in the control).

The processing of the displayCollection method functions as follows.

1. Logic attaches the collection to the control by using the displayCollection method, as shown in the method
in the following example that associates a collection with a table called ListProducts.

load() updating;
vars

company : Company;
begin

company := Company.firstInstance;
tableProducts.displayCollection(company.allProducts, true, 0, null);

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 439

EncycloWin - 2020.0.02

2. Any existing displayCollection for that control is discarded.

3. The number of rows for that control is set to the number of fixed rows for a Table control or to zero (0) for a
ComboBox or ListBox control.

4. If a starting object is specified in the startObj parameter, the collection entries are extracted, starting with the
specified entry.

5. The displayRow event method is called for each entry in the collection, as required, and only the number of
entries that are need to fill the table or list are accessed.

6. When the control is scrolled, non-visible entries are discarded and additional entries are obtained by using
the displayRow event method.

7. This process continued until the end of the collection is reached or the displayRow event method indicates
that the entries in the collection beyond this point are to be ignored.

dockMdi
Signature dockMdi();

The dockMdi method of the Form class docks a floating MDI child form back into its MDI frame. This method does
nothing if the form is not floating or if the form is not an MDI child.

When the MDI child form is docked, the position and size of the form is restored to its values when it was floated if
the current top-most MDI child form in the MDI frame is not maximized. If the current top-most MDI child form in the
MDI frame is maximized, the docked form is also maximized.

Applies to Version: 2020.0.01 and higher

doLinemarker
Signature doLinemarker(action: Integer;

param1: Integer;
param2: Integer): Integer;

The doLinemarker method of the JadeTextEdit class performs linemark-related actions.

The values of the action, param1, and param2 parameters and the return values are listed in the following table.
(The action parameter values are represented by JadeTextEdit class constants.)

action param1 param2 Returns… Description

LMACT_ADD (1) Line # Marker # Handle # Adds the linemark
number specified in
param2 to the line
specified in param1. If
param1 is zero (0), the
currentLine property
value is used. It returns
the handle of the new
linemark if successful,
else -1 if the add action
failed.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 440

EncycloWin - 2020.0.02

action param1 param2 Returns… Description

LMACT_DELETE (2) Line # Marker # N/A Removes the linemark
number specified in
param2 from the line
specified in param1 (if
present). If param1 is
zero (0), the currentLine
property value is used.
Removes all markers on
the specified line
deleted if -1 specified in
param2.

LMACT_DELETEALL (3) Line # N/A N/A Removes the linemark
number specified in
param1 (if present) from
all lines. If param1 is -1,
all linemarks are deleted
from all lines.

LMACT_DELETEBYHANDLE (4) Handle # N/A N/A Removes the linemark
associated with the
specified linemark
handle, if it exists.

LMACT_GETBITMASK (5) Line # N/A Bit mask Returns a bit mask that
represents the linemarks
currently set on the line
specified in param1.

LMACT_GETLINEFROMHANDLE (6) Handle # N/A Line # Returns the line number
of the line that has the
linemark associated with
the linemark handle
specified in param1.
Returns zero (0) if
handle is not found.

LMACT_GONEXTBYNUMBER (7) Line # Marker # New line # Moves the caret to the
start of the next line
following the one
specified in param1 that
has a linemark with the
number specified in
param2. If param1 is
zero (0), the search
starts after the value of
the currentLine
property. It returns the
new line number if
found, else zero (0).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 441

EncycloWin - 2020.0.02

action param1 param2 Returns… Description

LMACT_GOPRIORBYNUMBER (8) Line # Marker # New line # Moves the caret to the
start of the first line
preceding the one
specified in param1 that
has a linemark with the
number specified in
param2. If param1 is
zero (0), then the search
starts before the value of
the currentLine
property. If param1 is
greater than the value of
the lineCount property,
the search starts from
the last line. It returns the
new line number if
found, else zero (0).

LMACT_GONEXTINBITMASK (9) Line # Bit mask New line # Moves the caret to the
start of the next line
following the one
specified in param1 that
has a linemark with its
number matching any bit
in the bit mask specified
in param2. If param1 is
zero (0), the search
starts after the value of
the currentLine
property. It returns the
new line number if
found, else zero (0).

LMACT_GOPRIORINBITMASK (10) Line # Bit mask New line # Moves the caret to the
start of the first line
preceding the one
specified in param1 that
has a linemark with its
number matching any bit
in the bit mask specified
in param2. If param1 is
zero (0), the search
starts before the value of
the currentLine
property. If param1 is
greater than the value of
the lineCount property,
the search starts from
the last line. It returns the
new line number if
found, else zero (0).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 442

EncycloWin - 2020.0.02

action param1 param2 Returns… Description

LMACT_GOHANDLE (11) Handle # N/A New line # Moves the caret to the
start of the line that has
the linemark associated
with the handle specified
in param1. It returns the
new line number if
found, else zero (0).

LMACT_MOVESINGLETOLINE (12) Line # Marker # Handle # Deletes all occurrences
of the linemark number
specified in param2
then adds a linemark
with the number
specified in param2 to
the line specified in
param1, making the line
visible. It returns the
handle of the new
linemark if successful,
else -1.

LMACT_MOVESINGLETOPOSITION
(13)

Offset # Marker # Handle # Deletes all occurrences
of the linemark number
specified in param2
then adds a linemark
with the number
specified in param2 to
the line that contains the
character at the offset
specified in param1,
making that line visible.
It returns the handle of
the new linemark if
successful, else -1.

LMACT_ADDATPOSITION (14) Offset # Marker # Handle # Adds linemark number
specified in param2 to
the line that contains the
character at offset
specified in param1. It
returns the handle of the
new linemark if
successful, else -1.

In this table, the first three columns represent the method parameters (that is, action, param1, and param2,
respectively). The add, delete, and get actions do not move the caret position.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 443

EncycloWin - 2020.0.02

The values in the second, third, and fourth columns of the preceding table (that is, values in the middle three
columns) are described in the following table.

Value Description

Line # Line number in the range 1 through the number of the last line in the text editor. A line
number value of zero (0) indicates the current line.

Marker # Marker number in the range zero (0) through 31. However, as folding uses marker numbers
in the range 25 through 31, you should not use these values.

Bit mask Integer representing marker numbers.

Handle # Unique integer value assigned when each marker is added.

New line # Line number to which the caret is moved, and zero (0) if there is no match.

The code fragment in the following example shows the use of the doLinemarker method. It deletes all linemarks
with number 1, adds a linemark number 1 to the current line, and saves its handle. It adds a linemark number 2 to
every line that contains the text "theWord", moving the caret (and view) to the first linemark number 2 following the
current line. It moves the caret (and view) back to the starting line.

handl:=jteSource.doLinemarker(JadeTextEdit.LMACT_MOVESINGLETOPOSITION,0,1);
jteSource.findMarkAll("theWord", 0, 1, false, false, 0, 2, true);
jteSource.doLinemarker(JadeTextEdit.LMACT_GONEXTBYNUMBER, 0, 2);
jteSource.doLinemarker(JadeTextEdit.LMACT_GOHANDLE, handle, 0);

doWindowEvents
Signature doWindowEvents(waitTime: Integer);

The doWindowEvents method of the Window class processes all pending Windows events for this window and all
of its children.

The doWindowEvents method for a control processes events generated by the control and its children. In
addition, it processes copies of the gotFocus, lostFocus, keyDown, keyUp, and keyPress events on the control,
which are also sent to the form.

When the doWindowEvents method has processed all pending Windows events it then waits, and processes any
further Windows events that arrive for this window until the specified time from when the method was initiated has
expired.

Use the waitTime parameter to specify in milliseconds the required interval this method is to wait.

Note If a parent of the window requires repainting, the doWindowEvents method will not cause the window to
be repainted.

The most common use of this method is to enable a Cancel button to be monitored during lengthy processing.
(See also the Application class doWindowEvents method.)

The methods in the following examples show the use of the doWindowEvents method.

btnCancel_click(btn: Button);
begin

cancelWasClicked := true;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 444

EncycloWin - 2020.0.02

longProcess() updating;
begin

cancelWasClicked := false;
while true do

... // some kind of processing
btnCancel.doWindowEvents(0); // allow button press
if cancelWasClicked then

... // cancel processing
break;

endif;
endwhile;

end;

Do not use the doWindowEvents method in the following situations.

When causing a repaint of a window. Use the refreshNow method to repaint a window.

When involved in the processing of ActiveX controls and OLE objects. As the OLE control processes
requests synchronously using Window events, the Window class doWindowEvents method can cause
asynchronous processing to be attempted, with resulting failure.

Call the Application class doWindowEvents method from a server method to process server notifications and
timers.

Caution Indiscriminate use of this method can cause unwanted side effects. For example, it can change the
order of Windows event processing and can allow users to click on other controls, menus, or forms that could have
an impact on the current process.

It can also cause recursive loops. For example, if a keyDown event calls a doWindowEvents method and the user
is holding down the key, that method will invoke another keyDown event, and so on. JADE handles this situation,
by discarding messages for a specific window if there are already five such messages in the call stack.

dragColumn
Signature dragColumn(): Integer;

The dragColumn method of the Table class provides table-specific location information of the drag and drop
processes that correspond to the x (horizontal) and y (vertical) positions received from dragOver events during a
drag operation. Similarly, when the dragged window is dropped, the window that it is dropped onto receives a
dragDrop event.

The dragOver and dragDrop events specify the x and y location of the drag operation.

Note If the drag and drop process occurs over an empty part of the table, one of the row or column property
values may still be a non-zero value, indicating that it is in a specific row or column.

The method in the following example shows the use of the dragColumn method.

table1_dragDrop(table: Table input;
win: Window input;
x, y: Real) updating;

begin
if selectedColumn <> null then

table.moveColumn(selectedColumn, table1.dragColumn);
endif;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 445

EncycloWin - 2020.0.02

dragListIndex
Signature dragListIndex(): Integer;

The dragListIndex method of the ListBox class provides the listIndex property of a list box entry that corresponds
to the x (horizontal) and y (vertical) positions received from dragOver events during the drag operation. Similarly,
when the dragged window is dropped, the window that it is dropped onto receives a dragDrop event.

The dragOver and dragDrop events specify the x and y location of the drag operation.

The dragListIndex method value is -1 if there is no list box entry at that position.

The code fragment in the following example shows the use of the dragListIndex method.

targetIndex.caption := listBox1.dragListIndex.String;

dragRow
Signature dragRow(): Integer;

The dragRow method of the Table class provides table-specific location information of the drag and drop
processes that corresponds to that x (horizontal) and y (vertical) positions received from dragOver events during a
drag operation. Similarly, when the dragged window is dropped, the window that it is dropped onto receives a
dragDrop event.

The dragOver and dragDrop events specify the x and y location of the drag operation.

Note If the drag and drop process occurs over an empty part of the table, one of the row or column property
values may still be a non-zero value, indicating that it is in a specific row or column.

The method in the following example shows the use of the dragRow method.

dragDrop(table: Table input; win: Window input; x: Real; y: Real) updating;
begin

inheritMethod(table, win, x, y);
if dragRow > 1 and dragColumn > 0 then

row := dragRow;
column := dragColumn;
if text <> "" then

calendar.changeType := calendar.ChangeType_Day;
calendar.date.setDate(text.Integer, calendar.date.month,

calendar.date.year);
endif;

endif;
end;

dragSheet
Signature dragSheet(): Integer; (Table)

dragSheet(): Sheet; (Folder)

The dragSheet method of the Table class or Folder class provides respective table-specific or sheet-specific
location information of the drag and drop processes that corresponds to the x (horizontal) and y (vertical) positions
received from dragOver events during a drag operation.

Similarly, when the dragged window is dropped, the window that it is dropped onto receives a dragDrop event.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 446

EncycloWin - 2020.0.02

The dragOver and dragDrop events specify the x and y location of the drag operation.

Use the dragSheet method in situations where the drag and drop process occurs over the tab area of a multiple
sheet table or folder. In this situation for a table, the dragColumn and dragRow method values are set to zero (0).

Note It is possible for the returned value of the sheet for the Folder class tab to be null, which means that the
dragOver or dragDrop event is over the folder but the position is not over a tab.

The value returned by the dragSheet method has meaning only when called from within the dragOver or
dragDrop event of a folder. Calling the method under any other circumstance returns the value that was last set
during a prior drag operation or it returns null if it has never been set.

eject
Signature eject();

The eject method of the MultiMedia class causes the device to eject its medium.

The code fragment in the following example shows the use of the eject method.

if cd.canEject then
cd.stop;
cd.eject;

endif

If the useDotNetVersion property is set to true, the eject method is not available and it generates exception 1068
(Feature not available in this release).

See also the canEject method.

embedFromClass
Signature embedFromClass(class: String);

The embedFromClass method of the OleControl class initiates the specified server application to create or attach
a new OLE object.

The class names are listed in the registry of your operating system, and are displayed in the second column of the
Embed from New list of the Insert dialog. For more details, see the showInsertForm method.

embedFromFile
Signature embedFromFile(filename: String);

The embedFromFile method of the OleControl class embeds an OLE object from the specified file into a control.
The file specified in the filename parameter must be registered as belonging to a registered OLE server."

emptyUndoBuffer
Signature emptyUndoBuffer(): Integer;

The emptyUndoBuffer method of the JadeTextEdit class clears the editor and discards any undo or redo history.
This method returns zero (0).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 447

EncycloWin - 2020.0.02

The value of the modified property is also set to false. The next text editor action causes the firstChange event
method.

enableEvent
Signature enableEvent(name: String;

enable: Boolean): Boolean;

The enableEvent method of the Window class enables you to control at run time whether JADE logic associated
with an event for a specific form or control is executed. You could use this method in thin client mode, for example,
to speed up the data entry process for a TextBox control by disabling the keyDown event. The enableEvent
method returns the previous state of the event (that is, it returns true if the event was enabled or false if it was
disabled).

Use the name parameter to specify the name of the event that is to be disabled. Set the enable parameter to false
if you want to disable the event specified in the name parameter. All events are enabled by default; that is, the
enable parameter is set to true.

An exception is raised if the event name specified in the name parameter is not valid. Although a check of the
event name is performed, no check is made to ensure that the event belongs to the window of the receiver.

Notes Enabling or disabling an event has no impact if there is no logic associated with that event.

Event methods can be enabled or disabled in both standard (fat) client mode and in thin client mode.

For a Control class, calling an event method results in a call on that method of the control (for example, the
keyDown method of the TextBox class) and then a call on the specific instance of the form of that control method
(for example, textbox1_KeyDown).

Disabling an event method results in neither method being called.

The method in the following example shows the use of the enableEvent method.

load();
begin

tbDesc.enableEvent("keyDown", false);
self.enableEvent("mouseMove", false);

end;

The Window class isEventEnabled method returns whether a specified event is currently enabled.

endNotifyAutomationEvent
Signature endNotifyAutomationEvent(receiver: Object;

eventClassRefName: String);

The endNotifyAutomationEvent method of the ActiveXControl class terminates a previous
beginNotifyAutomationEvent method.

The parameters for this method, listed in the following table, must be the same as the parameters specified in the
beginNotifyAutomationEvent method.

Parameter Description

receiver The object that is to receive the event notification

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 448

EncycloWin - 2020.0.02

Parameter Description

eventClassRefName The name of the reference (an instance of the IDispatch subclass) that implements
the notification events

ensureCaptionIsVisible
Signature ensureCaptionIsVisible(): Boolean;

The ensureCaptionIsVisible method of the Form class returns true if it is necessary to move the form so that the
caption (or the top portion of a form with no caption) is visible on at least one monitor. If you have multiple monitors
in various configurations, saved or predetermined positions can leave a form inaccessible.

The ensureCaptionIsVisible method does nothing if the isCaptionVisible method would return true. The
ensureCaptionIsVisible method is not affected by the visibility of the form or the zOrder method. It does not make
the form visible, but repositions it if required.

For a non-MDI form, the form is repositioned at the top left of the work area of the monitor displaying the form, or
the primary monitor if the form is not over any monitor. For an MDI form, the form is repositioned at the top left of
the client area of the MDI frame.

eventItemName
Signature eventItemName(): String;

The eventItemName method of the JadeXamlControl class returns the name of the element of the XAML control
for which a standard JADE event has occurred. This method can be used in logic to determine the element of the
XAML content that issued the event.

In thin client mode, it does not cause a message to be sent to the presentation client.

In the following example, the XAML content for a control defines two buttons.

jadeXamlCtl.xaml :=
'<Canvas Name="SimpleExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
<Button Canvas.Top="20" Canvas.Left="50" Content="Hello World" />
<Button Name="Hi" Canvas.Top="20" Canvas.Left="50" Content="Hello" />
<Button Name="Bye" Canvas.Top="60" Canvas.Left="50" Content="Bye" />

</Canvas>';

The eventItemName method returns the name of the button that was clicked, as shown in the following example.

jadeXamlCtl_click(jadeXamlControl: JadeXamlControl input) updating;
begin
write jadeXamlCtl.eventItemName; // Outputs "Hi", "Bye", or "jadeXamlCtl"

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 449

EncycloWin - 2020.0.02

find
Signature find(text: String; (JadeRichText)

start: Integer;
finish: Integer;
options: Integer): Integer;

find(match: String; (JadeTextEdit)
range: Integer;
direction: Integer;
caseSensitive: Boolean;
wholeWord: Boolean;
wordStart: Boolean;
interpretation: Integer): Integer;

The find method returns the character position at which the text was found. If no match was found, this method
returns -1.

The find method of the JadeRichText class searches for text within the contents of the control. The find method
parameters for rich text controls are listed in the following table.

Parameter Description

text Text to be located.

start Start of the search range, as a character index into the text or specified as Find_
BeginningOfText.

finish End of the search range, as a character index into the text or specified as Find_EndOfText.

options One or more of the following values, separated by the plus symbol (+).

Find_MatchCase, which finds only text with the matching case; otherwise search is
case-insensitive.

Find_WholeWord, which finds only whole words; otherwise parts of words satisfy the
search.

Find_SearchBack, which searches backwards through the text; otherwise the search
direction is forward to the end of the text.

Find_Default, when no other option is specified. You cannot use this value in any
combination with any other option value.

The find method of the JadeTextEdit class searches for text within the contents of the text editor. The find method
parameters for text edit controls are listed in the following table.

Parameter Description

match Mandatory value, which specifies the text to be located.

range Range of search. One of FIND_RANGE_ALL (0), FIND_RANGE_CARET (1), or FIND_
RANGE_SELECTION (2).

direction Direction in which to search. Specify -1 to search backwards towards the top of the text, zero
(0) or +1 to search forwards towards the bottom of the text.

caseSensitive If true, finds only text with the matching case. If false, the search is case-insensitive.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 450

EncycloWin - 2020.0.02

Parameter Description

wholeWord If true, finds only whole words. If false, finds parts of words that satisfy the search.

wordStart If true, the match must occur at the start of a word (that is, the matched text must be
preceded by a non-word character).

interpretation One of the following values, represented by JadeTextEdit class constants.

FIND_INTERP_NONE (0), to search for text as is (the default value)

FIND_INTERP_POSIXREGEXPR (3), to search for a POSIX regular expression

Same as FIND_INTERP_REGEXPR except that the \ and \ sequences become more
POSIX-compatible unslashed (and) sequences.

FIND_INTERP_REGEXPR (2), to search for a regular expression

The search is performed using the match text a "regular expression". For a list of
characters that have special meaning within a regular expression, see the following
table.

FIND_INTERP_UNSLASH (1), to search for backslash control characters

Before the search begins, the match text has the following backslash escape
sequences replaced by the appropriate single character: \a (bell), \b (backspace), \f
(form feed), \n (line feed), \r (carriage return), \t (tab), \v (vertical feed), \\ (backslash),
\OOO (OOO is three octal digits), \xHH (HH is two hexadecimal digits). A backslash
preceding an unrecognized escape character is discarded.

For JadeTextEdit controls, the matching text is selected in the text editor and the caret is positioned at the end of
the matched text (that is, the selection).

Characters that have special meaning within a regular expression for interpretation represented by the
JadeTextEdit class FIND_INTERP_REGEXPR constant are listed in the following table.

Character Description

. Matches any character.

\(Marks the start of a region for tagging a match.

\) Marks the end of a tagged region.

\n The n value in the range 1 through 9 refers to the first through ninth tagged region when
replacing. For example, if the search string is Fred\([1-9]\)XXX and the replace string is
Sam\1YYY, when applied to Fred2XXX, this generates Sam2YYY.

\< Matches the start of a word using Scintilla's definitions of words.

\> Matches the end of a word using Scintilla's definition of words.

\x Enables you to use a character x that would otherwise have a special meaning. For example, \[
is interpreted as [and not as the start of a character set, and \\ means a single backslash
character.

[...] Indicates a set of characters; for example, [abc] means any of the characters a, b, or c. You can
also use ranges; for example, [a-z] for any lowercase character.

[^...] Complement of the characters in the set. For example, [^A-Za-z] means any character except
an alpha character.

^ Matches the start of a line (unless used inside a set, as stated for [^...] in the previous row).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 451

EncycloWin - 2020.0.02

Character Description

$ Matches the end of a line.

* Matches zero or more times. For example, Sa*m matches Sm, Sam, Saam, Saaam, and so on.

+ Matches one or more times. For example, Sa+m matches Sam, Saam, Saaam, and so on.

A regular expression can also contain the escape sequences listed for FIND_INTERP_UNSLASH, except for
\xHH. The find method returns -1 if the match text is an invalid regular expression (for example, an unbalanced [).

findAgain
Signature findAgain(direction: Integer): Integer;

The findAgain method of the JadeTextEdit class searches for the match text and parameter values reused from
the most recent find, findMarkAll, or replaceAll method.

The findAgain method continues searching in the specified direction, skipping the selected text. In the direction
parameter, specify -1 to search backwards towards the top of the text editor or specify zero (0) or +1 to search
forwards towards the bottom of the text editor.

The matching text is selected in the text editor, the caret is positioned at the end of the matched text (that is, the
selection), and the character position at which the text was found is returned. If no match was found, this method
returns -1.

The method in the following example shows the use of the findAgain method.

mnuEditFindNext_click(menuItem: MenuItem input) updating;
vars

findpos : Integer;
begin

findpos := jteSource.findAgain(0);
if findpos < 0 then

app.msgBox(" No matching text", "Find Next",0);
endif;

end;

findMarkAll
Signature findMarkAll(match: String;

range: Integer;
direction: Integer;
caseSensitive: Boolean;
wholeWord: Boolean;
wordStart: Boolean;
interpretation: Integer;
markNumber: Integer;
clearMarks: Boolean): Integer;

The findMarkAll method of the JadeTextEdit class searches for the match text within the text editor, using the
parameters specified in the following table.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 452

EncycloWin - 2020.0.02

The specified linemark is set on each line where the match text is found.

Parameter Description

match Mandatory value, which specifies the text to be located.

range Range of search. One of FIND_RANGE_ALL (0), FIND_RANGE_CARET (1), or
FIND_RANGE_SELECTION (2).

direction Direction in which to search. Specify -1 to search backwards towards the top of the
text editor, zero (0) or +1 to search forwards towards the bottom of the text editor.

caseSensitive If true, finds only text with the matching case. If false (the default), the search is case-
insensitive.

wholeWord If true, finds only whole words. If false (the default), finds parts of words that satisfy
the search.

wordStart If true, the match must occur at the start of a word (that is, the matched text must be
preceded by a non-word character).

interpretation One of the following values, represented by JadeTextEdit class constants.

FIND_INTERP_NONE (0), to search for match text as is

FIND_INTERP_POSIXREGEXPR (3), to search with match as a POSIX regular
expression

FIND_INTERP_REGEXPR (2), to search with match as a regular expression

FIND_INTERP_UNSLASH (1), to search with match containing backslash
control characters

For more details about interpretation, see the find method.

markNumber Mark number set on each line in which the match text is found.

clearMarks If true, all instances of the linemark markNumber parameter value are removed from
the text editor before the find action is performed. If false, linemarks are not cleared.

You can use the doLinemarker method to navigate between linemarks.

The findMarkAll method returns the number of matches. If no match was found, this method returns zero (0).

The code fragment in the following example shows the use of the findMarkAll method to place linemark 1 on all
lines that contain the characters "fred".

count := self.theJadeTextEdit.findMarkAll("fred", 0 /*range*/,
1 /*direction*/,
false /*case-insensitive*/,
false /*wholeWord*/,
false /*wordStart*/,
0 /*interpretation*/, 1, true);

findObject
Signature findObject(object: Object): Integer;

The findObject method of the ListBox and ComboBox classes searches the itemObject property values of the
list entries of a list box or combo box control for the object specified in the object parameter.

If the specified object is found, its listIndex value is returned. If the specified object is not found, -1 is returned.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 453

EncycloWin - 2020.0.02

Note The findObject method searches only the entries that are currently loaded (which are the visible entries
only) when the displayCollection method is used to populate the control.

The code fragment in the following example shows the use of the findObject method.

cmb_Category.listIndex := cmb_Category.findObject(myCustomer.myCategory);

The findObject method does the same as the logic in the following code fragment.

foreach indx in 1 to list1.listCount do
if list1.itemObject[indx] = obj then

return indx;
endif;

endforeach;
return -1;

findReplaceDialog
Signature findReplaceDialog(findOnly: Boolean;

left: Real;,
top: Real):Form;

The findReplaceDialog method of the JadeRichText control class opens a dialog so that a search can be carried
out over the text in the control.

If the value specified in the findOnly parameter is false, the dialog also displays a text box enabling replacement
text to be entered. The values specified for the left and top parameters determine the position of the dialog.

Note If the control already has a Find and Replace dialog associated with it, the dialog is shown at the current
position.

findString
Signature findString(startIndx: Integer;

str: String): Integer;

The findString method of the ListBox class or ComboBox class searches the entries in a list box or combo box
control for an entry with the string specified in the str parameter.

The search is not case-dependent. The findString method matches any entry with the specified string prefix.

The search starts with the value specified in the startIndx parameter and returns the next found entry in the list. If
no matching entry is located, it returns -1.

The method in the following example shows the use of the findString method.

textBoxLeftStart_change(textbox: TextBox input) updating;
vars

count : Integer;
begin

count := listBoxLeft.findString(1, textBoxLeftStart.text);
if count <> -1 then

listBoxLeft.topIndex := count;
endif;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 454

EncycloWin - 2020.0.02

findStringCaseSensitive
Signature findStringCaseSensitive(startIndx: Integer;

str: String): Integer;

The findStringCaseSensitive method of the ListBox class or ComboBox class searches the entries in a list box
or combo box control for an entry with the case-sensitive string specified in the str parameter.

The findStringCaseSensitive method matches any entry with the specified case-sensitive string prefix.

The search starts with the value specified in the startIndx parameter and returns the next found case-sensitive
entry in the list. If no matching entry is located, it returns -1.

The method in the following example shows the use of the findStringCaseSensitive method.

textBoxLeftStart_change(textbox: TextBox input) updating;
vars

count : Integer;
begin

count := listBoxLeft.findStringCaseSensitive(1, textBoxLeftStart.Text);
if count <> -1 then

listBoxLeft.topIndex := count;
endif;

end;

Applies to Version: 2016.0.02 (Service Pack 1) and higher

findStringExact
Signature findStringExact(startIndx: Integer;

str: String): Integer;

The findStringExact method of the ListBox class or ComboBox class searches the entries in a list box or combo
box control for an entry with the string specified in the str parameter.

The search is not case-dependent. The findStringExact method matches only entries where the strings are an
exact match.

The search starts with the value specified in the startIndx parameter and returns the next found entry in the list. If
no matching entry is located, it returns -1.

The method in the following example shows the use of the findStringExact method.

vars
custs : CustomersByContactNameDict;
cust : Customers;

begin
app.mousePointer := MousePointer_HourGlass;
comboBoxCity.addItem("[All Cities]");
create custs;
foreach cust in custs do

listBoxCustomers.addItem (cust.contactName & ", " & cust.address);
if comboBoxCity.findStringExact (1, cust.city) = -1 then

comboBoxCity.addItem (cust.city);
endif;

endforeach;
epilog

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 455

EncycloWin - 2020.0.02

app.mousePointer := MousePointer_Default;
end;

findStringExactCaseSensitive
Signature findStringExactCaseSensitive(startIndx: Integer;

str: String): Integer;

The findStringExactCaseSensitive method of the ListBox class or ComboBox class searches the entries in a list
box or combo box control for an entry with the case-sensitive string specified in the str parameter.

The findStringExactCaseSensitive method matches only entries where the strings are an exact case-sensitive
match.

The search starts with the value specified in the startIndx parameter and returns the next found entry in the list. If
no matching entry is located, it returns -1.

The method in the following example shows the use of the findStringExactCaseSensitive method.

vars
custs : CustomersByContactNameDict;
cust : Customers;

begin
app.mousePointer := MousePointer_HourGlass;
comboBoxCity.addItem("[All Cities]");
create custs;
foreach cust in custs do

listBoxCustomers.addItem (cust.contactName & ", " & cust.address);
if comboBoxCity.findStringExactCaseSensitive (1, cust.City) = -1 then

comboBoxCity.addItem (cust.City);
endif;

endforeach;
epilog

app.mousePointer := MousePointer_Default;
end;

Applies to Version: 2016.0.02 (Service Pack 1) and higher

firstVisibleLine
Signature firstVisibleLine(): Integer;

The firstVisibleLine method of the JadeRichText and TextBox control classes returns the first visible line in the
rich text control or the text box.

For a JadeRichText or TextBox control that scrolls vertically, this method returns the line number of the first
visible text line displayed in the control (1-relative). If the control does not scroll vertically, the return value is
always 1.

flagControlForSave
Signature flagControlForSave(ctl: Control);

When the flagControlForSave method of the Form class is invoked and passed a control that was not painted on
the form using Painter functionality, it flags the control specified in the ctl parameter as one that is saved by
Painter when the form is saved.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 456

EncycloWin - 2020.0.02

Any controls that were not painted on the form by using Painter and are not flagged for saving by specifying them
in the ctl parameter of this method are not saved when the form is saved.

Notes This method is valid only in Painter. If this method is invoked when the form is not open in Painter, an
exception is raised. To check that the form is open, use the isInPainter method of the Control class, which returns
true if the control is open in Painter.

If the length of the name of the control is greater than 16 characters, an exception 1035 (String too long) is raised.

This process becomes necessary, for example, when a user-defined control adds additional controls to a form
using the addControl method of the Form class as part of its creation process.

If the flagControlForSave method is not invoked for these additional controls when a form on which the user-
defined control has been painted is saved, only the user-defined control is saved with the form, and not the
additional controls.

float
Signature float(lft: Integer;

tp: Integer;
wth: Integer;
hgt: Integer);

The float method of the JadeDockBase class causes the JadeDockBar or JadeDockContainer docking control
to be floated by creating a floating form at the left, top, width, and height screen positions specified in the lft, tp,
wth, and hgt parameters, respectively.

If the control is already floating, this method repositions and resizes the floating form. The resulting size of the
floating form may vary if the automatic sizing of the dock control or controls requires a different size to the specified
width and height. The control is still floated even if the value of the floatingStyle property is set to FloatingStyle_
None (0).

Note The control remains logically attached to the original form and all events generated for the control while it
is floating are still passed to the original form. The Control class form property for the floated control remains set
to the original form and the Control class parent property of the control is set to a null value, as the floating form
does not have a JADE object associated with it.

Calling the float method does not generate a JadeDockBar or JadeDockContainer class floated event. (For
details about floating and docking container controls, see "Floating a Docking Control" and "Docking a Control",
under the "JadeDockBase Class", earlier in this document. See also the docking examples under the
JadeDockContainer class allowDocking property, earlier in this document.)

floatMdi
Signature floatMdi();

The floatMdi method of the Form class floats an MDI child form; that is, it takes an MDI child form out of the MDI
frame and allows it to be moved independently from the MDI frame (for example, on to another monitor on the PC).
This method does nothing if the form is not docked or if the form is not an MDI child.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 457

EncycloWin - 2020.0.02

Note When floated, an MDI child form is positioned on the screen in the same position, except it is not a child
restricted to the MDI frame.

The MDI child form is always on top of the MDI frame. To reposition the form programmatically, set the left and top
properties, or use the Window class move method.

Applies to Version: 2020.0.01 and higher

generateHTML
Signature generateHTML(includeDefaultSessionInfo: Boolean;

useControlNames: Boolean;
generateFormDataOnly: Boolean;
internetExplorerOnly: Boolean): String;

When the generateHTML method of the Form class is called on a form object, it generates the HTML string for
that form from the string returned from the receiver. You can then perform one of the following actions.

Manipulate this string before sending it back to the Web browser.

Save the string as a file, which enables you to obtain a snapshot of the file and then periodically update it, if
required (by using notifications, for example).

Tips Use this method to reduce generation and Windows resource overhead in situations where the data
seldom changes or it is not necessary to have the most current data available.

When the generateHTML method is called to generate an HTML string, the HTML is generated without word
wrapping when the wordWrap property is set to false. Set this property to true if you want an HTML string in a
table cell generated with word wrapping.

The parameters for the generateHTML method are listed in the following table.

Parameter Set this parameter to true if you want …

includeDefaultSessionInfo JADE to automatically generate the hidden fields that are sent with the form for
session control.

useControlNames JADE to use control names instead of oids in the HTML generation. Note that
control names may be duplicated when there are cloned controls that have not
been given another name. If the control was an input field (for example, a text
box), the Web browser will return multiple name-value pairs with the same
names. It is your responsibility to handle this situation.

generateFormDataOnly JADE to generate only the HTML between the <FORM> and </FORM> tags,
inclusive. You can then insert this string in a user template that sets up the
header and footer parts of the Web page, for example.

internetExplorerOnly To generate Internet Explorer 4.0 (and above) specific code.

See also the Form class generateHTMLStatic method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 458

EncycloWin - 2020.0.02

generateHTMLStatic
Signature generateHTMLStatic(includeDefaultSessionInfo: Boolean;

useControlNames: Boolean;
generateFormDataOnly: Boolean;
internetExplorerOnly: Boolean;
machineName: String;
virtualDirectory: String;
protocol: String): String;

When the generateHTMLStatic method of the Form class is called on a form object and values are specified in
the machineName, virtualDirectory, and protocol parameters, JADE generates the static HTML string for that
form from the string returned from the receiver and builds the full Uniform Resource Locator (URL) action line.

You can then perform one of the following actions.

Manipulate this static string before sending it back to the Web browser.

Save the string as a file, which enables you to obtain a snapshot of the file and then periodically update it, if
required (by using notifications, for example).

Tip Use this method to reduce generation and Windows resource overhead in situations where the data seldom
changes or it is not necessary to have the most current data available.

The parameters for the generateHTMLStatic method are listed in the following table.

Parameter Set this parameter to true if you want …

includeDefaultSessionInfo JADE to automatically generate the hidden fields that are sent with the form for
session control.

useControlNames JADE to use control names instead of oids in the HTML generation.

Note that control names may be duplicated when there are cloned controls that
have not been given another name. If the control was an input field (for
example, a text box), the Web browser will return multiple name-value pairs
with the same names. It is your responsibility to handle this situation.

generateFormDataOnly JADE to generate only the HTML between the <FORM> and </FORM> tags,
inclusive. You can then insert this string in a user template that sets up the
header and footer parts of the Web page, for example.

internetExplorerOnly To generate Internet Explorer 4.0 (and above) specific code.

machineName To specify the name of the Web server machine.

virtualDirectory To specify the name of the virtual directory for HTML-enabled applications on
the Web server (or IIS).

protocol To specify the protocol for transmitting data; for example, Hypertext Transfer
Protocol (HTTP) or HyperText Transfer Protocol Secure (HTTPS).

If you do not specify all three machineName, virtualDirectory, and protocol parameters, the application code
must provide this information.

See also the Form class generateHTML method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 459

EncycloWin - 2020.0.02

getCellFromPosition
Signature getCellFromPosition(x: Real;

y: Real;
row: Integer output;
column: Integer output): Boolean;

The getCellFromPosition method of the Table class assigns to the row and column parameter values the
position of the cell of the current sheet of a table corresponding to the horizontal and vertical x and y parameters
(for example, the coordinates of the Table class mouseDown event), in units specified by the value of the
scaleMode property.

This method returns true if the row and column parameter values of the cell have also been returned, or it returns
false if the x and y parameters do not correspond to a cell position.

getCellSelected
Signature getCellSelected(r: Integer;

c: Integer): Boolean;

The getCellSelected method of the Table class returns the selected status of the cell specified in the r and c
parameters (row and column) of the current sheet of a table.

This method achieves the same as the selected property, except that the row and column properties do not need
to be set. The getCellSelected method has no impact on the values of the current row and column properties.
See also the setCellSelected, selectedCount, and selectedNext methods.

getCellText
Signature getCellText(r: Integer;

c: Integer): String;

The getCellText method of the Table class returns the text of the cell specified in the r and c parameters (row and
column) of the current sheet of a table.

This method achieves the same as accessing the text property, except that the row and column properties do not
need to be set. The getCellText method has no impact on the current values of the row and column properties.
(See also the setCellText method.)

getCharacterFormat
Signature getCharacterFormat(selection: Boolean;

faceName: String output;
size: Real output;
color: Integer output;
bold: Integer output;
italic: Integer output;
strikethru: Integer output;
underline: Integer output);

The getCharacterFormat method of the JadeRichText class retrieves common character formatting attributes of
the receiver.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 460

EncycloWin - 2020.0.02

The method parameters are listed in the following table.

Parameter Description

selection Specify true to get the character format of any selected text, or if no text is selected, of the
insertion point and specify false to get the default character format of the control

faceName Obtains the value of the selFontName property

size Obtains the value of the selFontSize property

color Obtains the value of the selTextColor property

bold Obtains the value of the selFontBold property

italic Obtains the value of the selFontItalic property

strikethru Obtains the value of the selFontStrikethru property

underline Obtains the value of the selFontUnderline property

If no text is selected, this method applies to the insertion point. The character formatting of the insertion point is
applied to newly inserted text if the current selection is empty.

When the selection changes, the default formatting changes to match the first character in the new selection.

Although individual properties enable you to get character formatting attributes, you should consider the number
of requests made to the control, particularly when running the JADE application in thin client mode. For example,
calling the getCharacterFormat method involves one request from the application server but making individual
calls from the application server to the presentation client for specific formatting information within the control
requires seven requests.

getClipBuffer
Signature getClipBuffer(buffnum: Integer): String;

The getClipBuffer method of the JadeTextEdit class returns the contents of the editor text (clip) buffer specified in
the buffnum parameter. The value of the buffnum parameter can be in the range zero (0) through
JadeTextEdit.CLIPBUFFER_MAX.

For details about setting the editor text buffer, see the setClipBuffer method.

getCollection
Signature getCollection(): Collection;

The getCollection method returns the collection attached to the current sheet of a Table control, to the list portion
of a ComboBox control, or to a ListBox control by using the listCollection or displayCollection method.

If no collection is attached to the control, null is returned. For a table control, the collection attached to the current
sheet is returned.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 461

EncycloWin - 2020.0.02

getControl
Signature getControl(id: Integer): SelfType;

The getControl method of the Control class accesses references to dynamically created controls of the same type
as the calling control for the method. (The controlCount or controls method of the Form class can also be used to
get a form control.)

If no control copy matching the unique identifier specified in the id parameter exists, null is returned.

The code fragment in the following example shows the use of the getControl method.

// A transaction has been created, resulting in a notification being sent.
// The notification is registered in the addTickerTape method of MarketForm
ttFrame := sourceLabel.getControl(nextLabel).TTLabel;
while tt <> null and tt.caption <> null do

count := count + 1;
tt := ttF.sourceLabel.getControl(ttFrame.nextLabel + count).TTLabel;

endwhile;

getControlByName
Signature getControlByName(controlName: String): Control;

The getControlByName method of the Form class returns the control on the form with the name specified by the
value of the controlName parameter. If the control is not on the form, a null value is returned.

The following example shows the use of the getControlByName method.

vars
frm: BingSearch;
control: Control;

begin
create frm;
control := frm.getControlByName("btnSearch");
write control;

epilog
delete frm;

end;

getControlWindowId
Signature getControlWindowId(): Integer;

The getControlWindowId method of the Control class returns the Windows identifier that JADE creates and
assigns to each control window.

This Windows identifier of the control is used by some testing tools to locate the control elements involved in the
script processing via a Windows API call and it can be accessed from your JADE code.

For details about the control identification number that is passed to Windows, see "Testing Tools and Control
Identification".

Applies to Version: 2016.0.01 and higher

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 462

EncycloWin - 2020.0.02

getCoordinates
Signature getCoordinates(which: Integer;

xx: Integer output;
yy: Integer output): Boolean;

The getCoordinates method of the JadeTextEdit class returns the coordinates of the requested location (in
pixels) relative to the client area of the text editor. The location can be outside the client area.

Use the which parameter to specify LOCAT_MOUSEPOINTER (0) for the cursor position or LOCAT_CARET (1)
for the current caret position. If the coordinates are inside the client area, this method returns true.

The code fragment in the following example shows the use of the getCoordinates method.

vis := jteSource.getCoordinates(JadeTextEdit.LOCAT_MOUSEPOINTER, xx, yy);

getDeskTopWorkArea
Signature getDeskTopWorkArea(lft: Integer output;

tp: Integer output;
wdth: Integer output;
hgt: Integer output);

The getDeskTopWorkArea method of the Window class retrieves the size of the desktop work area (that is, the
area outside the system taskbar and application desktop toolbars), based on the values specified in the
parameters listed in the following table.

Parameter Obtains the…

lft Left point of the desktop work area

tp Top point of the desktop work area

wdth Width of the desktop work area

hgt Height of the desktop work area

When the workstation is running multiple desktops, the getDeskTopWorkArea method returns the available
desktop area of the primary monitor. See also the Window class getMonitorArea and getMonitorWorkArea
methods.

getEndPosition
Signature getEndPosition(): Integer;

The getEndPosition method of the MultiMedia class returns the end position of the content of the medium in the
current device.

The end position is expressed in units of the timeFormat property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 463

EncycloWin - 2020.0.02

getFloatingPosition
Signature getFloatingPosition(lft: Integer output;

tp: Integer output;
wth: Integer output;
hgt: Integer output);

The getFloatingPosition method of the JadeDockBase class returns the most-recent left, top, width, and height
screen positions and size of the floating form on which the control resides or last resided in the lft, tp, wth, and hgt
parameters, respectively. The control does not have to be the first child of the floating form.

For details about floating and docking container controls, see "Floating a Docking Control" and "Docking a
Control", under the "JadeDockBase Class", earlier in this document. See also the docking examples under the
JadeDockContainer class allowDocking property, earlier in this document.

getFormLeft
Signature getFormLeft(): Real;

The getFormLeft method of the Control class returns the absolute left position of the control on the form in pixels.

If the parent of the control is the form, the getFormLeft method returns the same value as the Window class left
property (unless the value of the Window class scaleMode property is not in pixels, in which case it uses the unit
of measurement defined by the scale mode; for example, twips or points).

getFormTop
Signature getFormTop(): Real;

The getFormTop method of the Control class returns the absolute top position of the control on the form in pixels.

If the parent of the control is the form, the getFormLeft method returns the same value as the Window class top
property (unless the value of the Window class scaleMode property is not in pixels, in which case it uses the unit
of measurement defined by the scale mode; for example, twips or points).

getControlByName
Signature getControlByName(controlName: String): Control;

The getControlByName method of the Form class returns the control on the form with the name specified by the
value of the controlName parameter. If the control is not on the form, a null value is returned.

The following example shows the use of the getControlByName method.

vars
frm: BingSearch;
control: Control;

begin
create frm;
control := frm.getControlByName("btnSearch");
write control;

epilog
delete frm;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 464

EncycloWin - 2020.0.02

getFormParent
Signature getFormParent(): Form;

The getFormParent method of the Form class returns the parent of the form that was set by using the
setFormParent method or if the parent form was set directly by using a Windows API call.

Note As the getFormParent method does not return the MDI frame for an MDI child, use the getMdiFrame
method if you want to return the MDI frame for an MDI child.

getGlobalSettings
Signature getGlobalSettings(): String;

The getGlobalSettings method of the JadeTextEdit class returns a copy of the global settings table.

getHwnd
Signature getHwnd(): Integer64;

The getHwnd method of the Window class returns the Microsoft Windows handle for a form or control.

Use this method instead of the Window class hwnd method. Although these methods return the same value if the
value is a 32-bit integer, if you call the hwnd method and the Window handle is larger than a 32-bit integer,
exception 1406 (Result of expression overflows Integer precision) is raised.

If a node can execute as a 32-bit or a 64-bit node, you should use the getWindowHandle method, which returns a
MemoryAddress to ensure that the correct Windows handle is used.

getInterface
Signature getInterface(interface: Class): IDispatch;

The getInterface method of the ActiveXControl class returns the ActiveX interface specified in the interface
parameter, if it exists. (As ActiveX interfaces are created as subclasses of the IDispatch class when an ActiveX
type library is imported, use the Class List of the Class Browser to obtain the names of ActiveX interfaces, if
required.)

If the specified interface does not exist, a null value is returned.

getLanguageName
Signature getLanguageName(langnum: Integer;): String;

The getLanguageName method of the JadeTextEdit class returns the name of the programming language
associated with the number specified in the langnum parameter. For details about the languages that are
understood by Scintilla, see http://scintilla.sourceforge.net/ScintillaDoc.html.

http://scintilla.sourceforge.net/ScintillaDoc.html

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 465

EncycloWin - 2020.0.02

Some of the possible values for the langnum parameter are the JadeTextEdit class constants listed in the
following table.

Class Constant Value Class Constant Value

SCLEX_BASH 62 SCLEX_BATCH 12

SCLEX_CONF 17 SCLEX_CPP 3

SCLEX_CSS 38 SCLEX_DIFF 16

SCLEX_HTML 4 SCLEX_JADE 65

SCLEX_JAVA 65539 SCLEX_JAVASCRIPT 131075

SCLEX_MAKEFILE 11 SCLEX_PERL 6

SCLEX_PROPERTIES 9 SCLEX_PS 42

SCLEX_PYTHON 2 SCLEX_TEXT 1

SCLEX_VB 8 SCLEX_VBSCRIPT 28

SCLEX_XML 5

See also the JadeTextEdit class language property.

The code fragment in the following example shows the use of the getLanguageName method.

languageList := "";
foreach int in 1 to 80 do

langName := jteRead.getLanguageName(int);
if langName <> "" then

languageList := languageList & int.String & "=" & langName & Tab;
endif;

endforeach;

getLength
Signature getLength(): Integer;

The getLength method of the MultiMedia class returns the length of the content of the medium in the current
device. The length is expressed in units of the timeFormat property.

The code fragment in the following example shows the use of the getLength method.

if mode = MultiMedia.Mode_Stopped and pos >= cd.getLength then
cd_notifyMode(cntrl, MultiMedia.Mode_Stopped);

endif;

getLine
Signature getLine(lineNumber: Integer;

format: Integer;
firstCharIndex: Integer output;
lineLength: Integer output;
lineHeight: Integer output): String;

The getLine method of the JadeRichText class returns a string containing the line specified in the lineNumber
parameter in the format specified in the format parameter.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 466

EncycloWin - 2020.0.02

The getLine method parameters are listed in the following table.

Parameter Description

lineNumber The line being requested, where the first line of the control is line 1.

format Format in which the requested line is returned (JadeRichText.GetLine_PlainText to return
plain text or JadeRichText.GetLine_RTF to return text including RTF codes).

firstCharIndex An output value specifying the index of the first character in the line.

lineLength An output value specifying the number of characters in the line. (Each embedded object
counts as one character).

lineHeight An output value specifying the height (in pixels) of the line.

If the lineNumber parameter is less than 1 or greater than the number of lines in the control, an exception is
raised.

getLineFromCharacterIndex
Signature getLineFromCharacterIndex(index: Integer): Integer;

The getLineFromCharacterIndex method of the JadeRichText class returns the number of the line that contains
the character at the position specified in the index parameter.

getLineHeight
Signature getLineHeight(): Integer; (ListBox)

getLineHeight(line: Integer): Integer; (JadeTextEdit)

The getLineHeight method of the ListBox class returns the height in pixels of each list box entry.

If the value of the ListBox class defaultLineHeight property is greater than zero (0), the getLineHeight method
returns that value.

The getLineHeight method of the JadeTextEdit class returns the height in pixels of the text editor line specified in
the line parameter, which is 1-relative and must therefore be greater than zero (0).

getLineStartPosition
Signature getLineStartPosition(line: Integer): Integer;

The getLineStartPosition method of the JadeTextEdit class returns the zero-based character offset of the first
character in the line specified in the line parameter.

If the specified line number is less than 1, this method returns the character offset of the start of the line that
contains the start of the current selection. If the specified line number is greater than the number of lines in the text
editor, it returns -1.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 467

EncycloWin - 2020.0.02

getLineText
Signature getLineText(linenum: Integer): String;

The getLineText method of the JadeTextEdit class returns a string containing the text in line specified in the
linenum parameter, which is 1-relative and must therefore be greater than zero (0).

No end-of-line sequence conversion is performed.

getLinemarkLines
Signature getLinemarkLines(markNumber: Integer;

lineList: Boolean;
list: IntegerArray input);

The getLinemarkLines method of the JadeTextEdit class populates the array specified in the list parameter with
each occurrence (line or position) of the linemark specified in the markNumber parameter.

Note The list is limited by the DskParam size to 128 entries.

Set the lineList parameter to true if you want the list array to contain line numbers (1-relative) or to false if you
want it to contain character offsets to the start of each marked line.

getListIndex
Signature getListIndex(x: Real;

y: Real): Integer;

The getListIndex method of the ListBox class returns the index of the displayed list entry in the list box
corresponding to the position specified by the x and y parameters (in units specified by the value of the
scaleMode property), provided that the specified position corresponds to any point on the associated entry line of
the item within the list box.

If the position specified by the horizontal and vertical x and y parameters does not correspond to a displayed list
entry, a value of -1 is returned. For example, you can use this method during the mouseMove method to
determine the entry that the mouse is passing over.

The method in the following example shows the use of the getListIndex method.

listInstances_mouseMove(listbox: ListBox input;
button: Integer;
shift: Integer;
x, y: Real) updating;

vars
cust : Customer;

begin
if listbox.getListIndex(x, y) <> -1 and

listbox.getListIndex (x, y) <> lastIndex then
cust := listbox.itemObject[listbox.getListIndex(x, y)].Customer;
listbox.bubbleHelp := cust.name.toUpper & Cr

& "__" & Cr
& cust.address & Cr & cust.contact;

lastIndex := listbox.getListIndex(x, y);
endif;
if listbox.getListIndex (x, y) = -1 then

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 468

EncycloWin - 2020.0.02

listbox.bubbleHelp := null;
endif;

end;

getListIndexText
Signature getListIndexText(x: Real;

y: Real): Integer;

The getListIndexText method of the ListBox class returns the index of the displayed list entry in the list box
corresponding to the position specified by the x and y parameters (in units specified by the value of the
scaleMode property), provided that the specified position is within the itemText text portion of the list entry.

If the position specified by the horizontal and vertical x and y parameters does not correspond to a displayed list
entry, a value of -1 is returned.

The method in the following example shows the use of the getListIndexText method.

vars
indx : Integer;

begin
indx := listbox.getListIndexText(x, y);
if indx > 0 and indx <> lastListIndex2 then

lastListIndex2 := indx;
listbox.bubbleHelp := "Entry # " & indx.String;

endif;
end;

getMdiFrame
Signature getMdiFrame(): Form;

The getMdiFrame method of the Form class accesses a reference to the current MDI frame for a form. (The
mdiFrame property of the Application class contains a reference to the class of the next MDI frame, which may
not necessarily be the current MDI frame for a form.)

This method returns a null value if the form is not an MDI form or the MDI frame is the supplied default (that has no
JADE object).

Use the getFormParent method to return the parent of the form specified by using the setFormParent method or
if the parent form was set directly by using a Windows API call.

getMode
Signature getMode(): Integer;

The getMode method of the MultiMedia class returns the current operating mode of the current device.

The mode that is returned can be one of the values listed in the following table.

MultiMedia Class Constant Returned Mode Description

Mode_Not_Ready 1 Not ready

Mode_Open 7 Door open

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 469

EncycloWin - 2020.0.02

MultiMedia Class Constant Returned Mode Description

Mode_Paused 6 Paused

Mode_Playing 3 Playing

Mode_Recording 4 Recording

Mode_Seeking 5 Seeking

Mode_Stopped 2 Stopped

The method in the following example shows the use of the getMode method.

stop_click(btn: Button input) updating;
begin

if cd.getMode = MultiMedia.Mode_Playing then
cd.stop;
cd.position := cd.getStartPosition;

endif;
end;

getMonitorArea
Signature getMonitorArea(left: Integer output;

top: Integer output;
width: Integer output;
height: Integer output);

The getMonitorArea method of the Window class retrieves the full area of the current monitor on which the
window resides.

The getMonitorArea method parameters are listed in the following table.

Parameter Description

left Obtains the left point of the monitor area

top Obtains the top point of the monitor area

width Obtains the width of the monitor area

height Obtains the height of the monitor area

Use the Window class getDeskTopWorkArea method to retrieve the available desktop area of the primary
monitor. (For details about running an application on a workstation with multiple monitors, see "Window Class",
earlier in this document.)

getMonitorWorkArea
Signature getMonitorWorkArea(left: Integer output;

top: Integer output;
width: Integer output;
height: Integer output);

The getMonitorWorkArea method of the Window class retrieves the full area of the position of the available
desktop area of the monitor on which the window resides.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 470

EncycloWin - 2020.0.02

The getMonitorArea method parameters are listed in the following table.

Parameter Description

left Obtains the left point of the monitor area

top Obtains the top point of the monitor area

width Obtains the width of the monitor area

height Obtains the height of the monitor area

If the window spans multiple monitors, the monitor containing the greater area of the control that has focus is used.

Use the Window class getDeskTopWorkArea method to retrieve the available desktop area of the primary
monitor. (For details about running an application on a workstation with multiple monitors, see "Window Class",
earlier in this document.)

getNamedAttribute
Signature getNamedAttribute(attName: String): Any;

The getNamedAttribute method of the JadeTextEdit class returns the value of the named attribute specified in
the attName parameter. (For details about setting named attributes and those implemented by the JadeTextEdit
control, see the setNamedAttribute method.)

The method in the following example shows the use of the getNamedAttribute method.

mnuEditSetIndentwrds_click(menuItem: MenuItem input) updating;
vars

val : String;
begin

val := jteSource.getNamedAttribute("smart.indent.words").String;
if self.askForStringSetting(self.caption, "Smart Indent Words", val) then

jteSource.setNamedAttribute("smart.indent.words", val);
endif;

end;

getParagraphFormat
Signature getParagraphFormat(leftIndent: Integer output;

rightIndent: Integer output;
firstLineIndent: Integer output;
alignment: Integer output);

The getParagraphFormat method of the JadeRichText class retrieves common paragraph formatting attributes of
the receiver (that is, the paragraph that contains the insertion point).

The getParagraphFormat method parameters are listed in the following table.

Parameter Description

leftIndent Obtains the value of the leftIndent property

rightIndent Obtains the value of the rightIndent property

firstLineIndent Obtains the value of the firstLineIndent property

alignment Obtains the value of the alignment property

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 471

EncycloWin - 2020.0.02

Although individual properties enable you to get paragraph formatting attributes, you should consider the number
of requests made to the control, particularly when running the JADE application in thin client mode. For example,
calling the getParagraphFormat method involves one request from the application server but making individual
calls from the application server to the presentation client for specific formatting information within the paragraph
requires four requests.

getPersistentObject
Signature getPersistentObject(): Window;

The getPersistentObject method of the Window class returns a reference to the persistent object of the receiver.

getPropertyDisplay
Signature getPropertyDisplay(property: String;

str: String io): Boolean;

The getPropertyDisplay method of the Window class is primarily for use with ActiveX controls and user-defined
controls, where the ActiveX or user-defined control is requested to return its textual representation of a property
value.

The parameters of the getPropertyDisplay method are listed in the following table.

Parameter Description

property Name of the property being requested

str Returned string representation

The return values of the getPropertyDisplay method are listed in the following table.

Value Description

true The str parameter contains the property string text

false Not implemented for this property

The getPropertyDisplay method is called by the Painter for a property to give it the opportunity of formatting the
property value for display. If a string is returned, the Painter uses it. If a string is not returned, the Painter default
formatting is used.

Note If you want your subclassed controls to return their textual representation of a property value, you must
reimplement this method so that it can be called by Painter.

The method in the following example shows the use of the getPropertyDisplay method.

getPropertyDisplay(property: String; str: String io): Boolean;
begin

inheritMethod(property, str);
if property = "clockType" then

str := "clockType";
return true;

endif;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 472

EncycloWin - 2020.0.02

getRedoAndUndoState
Signature getRedoAndUndoState(canRedo: Boolean output;

canUndo: Boolean output;
canPaste: Boolean output;
redoAction: Integer output;
undoAction: Integer output);

The getRedoAndUndoState method of the JadeRichText class obtains the redo, undo, and paste operations that
can be performed and the type of redo and undo actions that can be performed.

The canRedo, canUndo, and canPaste parameters retrieve true if a redo, undo, and paste operation,
respectively, can be performed in the receiver or false if they cannot.

Note You can undo or redo up to 100 edit actions.

The values that can be retrieved in the redoAction parameter are the following JadeRichText class constants.

Redo_Cut

Redo_Delete

Redo_DragDrop

Redo_Paste

Redo_Typing

Redo_Unknown

The values that can be retrieved in the undoAction parameter are the following JadeRichText class constants.

Undo_Cut

Undo_Delete

Undo_DragDrop

Undo_Paste

Undo_Typing

Undo_Unknown

getRegisteredFormKeys
Signature getRegisteredFormKeys(array: IntegerArray);

The getRegisteredFormKeys method of the Form class populates an array of the form keys that are in effect for
the form of the receiver. This array contains entries only if the registerFormKeys method of the Form class has
been called.

The method in the following example returns whether the Tab key is registered for any control on the form.

isTabRegistered():Boolean
vars

aray : IntegerArray;
ky : Integer;

begin

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 473

EncycloWin - 2020.0.02

create aray transient;
getRegisteredFormKeys(aray);
foreach ky in aray do

if ky = 9 then
return true;

endif;
endforeach;
return false;

epilog
delete aray;

end;

getRegisteredKeys
Signature getRegisteredKeys(array: IntegerArray);

The getRegisteredKeys method of the Control class populates an array of the keys that are in effect for the
control of the receiver (that is, the keys that will generate keyUp, keyDown, and keyPress events when they are
pressed).

This method applies only to controls that can get the focus and therefore receive key events.

This array contains entries only if the registerKeys method of the Control class or TextBox control class has
been called.

getScrollRange
Signature getScrollRange(scrollBar: Integer;

min: Integer output;
max: Integer output;
smallChg: Integer output;
largeChg: Integer output);

The getScrollRange method determines the scroll range information for the window. The getScrollRange method
gets the scroll ranges for Form, ListBox, TextBox, BaseControl, Picture, and JadeRichText controls.

Scroll range data has no impact unless the window also has a corresponding scroll bar.

TextBox controls can obtain the current scroll range but cannot set the current scroll range. This range is
determined automatically by the amount of text data in the control.

ListBox controls also only offer the getScrollRange method, as the ranges are set automatically by the control.

The scroll data that is available using the method parameters is listed in the following table.

Parameter Description

scrollBar 1 for horizontal, 2 for vertical

min Minimum of scroll range

max Maximum scroll range

smallChg Size of scroll change when user clicks a scroll arrow

largeChg Size of scroll change when user clicks elevator or uses Page keys

All data units are in pixels.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 474

EncycloWin - 2020.0.02

For Form and Picture controls, the default scroll range data is listed in the following table.

Value Default

min 0

max 1000

smallChg 20

largeChg 100

For a TextBox control, the default scroll range data is determined by the amount of text in the control and cannot
be set. For text controls, smallChg and largeChg data returned for the getScrollRange method is zero (0), as
these are controlled by Windows and are unobtainable.

Control of the scroll bar position can be obtained by using the scrollHorzPos and scrollVertPos properties.

For the JadeRichText control, scroll range data has no impact unless the control also has a corresponding scroll
bar. The scroll data that is available using the method parameters is listed in the following table.

Parameter Description

scrollBar ScrollBars_Horizontal or ScrollBars_Vertical

min Minimum of scroll range

max Maximum scroll range

smallChg Always retrieves zero (0) as it does not apply to the JadeRichText control

largeChg Size of scroll change when user clicks elevator or uses Page keys

All data units are in pixels.

getStartPosition
Signature getStartPosition(): Integer;

The getStartPosition method of the MultiMedia class returns the start position of the content of the medium in the
current device.

The start position is expressed in units of the timeFormat property.

The method in the following example shows the use of the getStartPosition method.

stop_click(btn: Button input) updating;
begin

if cd.getMode = MultiMedia.Mode_Playing then
cd.stop;
cd.position := cd.getStartPosition;

endif;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 475

EncycloWin - 2020.0.02

getSystemColor
Signature getSystemColor(displayElement: Integer): Integer;

The getSystemColor method of the Window class returns the system color specified in the displayElement
parameter for the window.

In JADE thin client mode, this method always returns the colors defined for the presentation client.

The method in the following example shows the use of the getSystemColor method.

create() updating;
begin

borderStyle := BorderStyle_None;
width := 30;
height := 30;
backColor := getSystemColor(Color_3DFace);
transparent := true;
transparentColor := 192 + 192*256 + 192*256*256;

end;

For a list of the system color constants, see "Window Class Constants".

getSystemMetrics
Signature getSystemMetrics(index: Integer): Integer;

The getSystemMetrics method of the Window class returns the system metric value (width and height) specified
in the index parameter for the window.

The system metric values are the sizes of the standard window objects. In JADE thin client mode, this method
always returns information as defined for the presentation client.

For a list of the system metrics constants, see "Window Class Constants".

getTabStops
Signature getTabStops(): IntegerArray;

The getTabStops method of the JadeRichText class returns an array containing the positions of the tab stops in
the receiver control.

getTextAsDate
Signature getTextAsDate(): Date;

The getTextAsDate method returns the text from the textUser property of a JadeEditMask control converted to a
Date value.

If the mask property does not specify that the data is a full date field (for example, ddMMMyyyy or dd/MM/yyyy) or
if the date data is incomplete but not empty, an exception is raised.

Use the isEmpty and isValid methods to prevent incomplete date data from generating an exception.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 476

EncycloWin - 2020.0.02

Notes By default, a JadeEditMask control expects dates to be formatted according to the locale that the control
is using (for details, see the languageId property). This applies when accessing the text or textUser property and
when the user enters data.

By default, formatting of locale data is done on the application server, based on the locale of the corresponding
presentation client. For example, if the locale of your application server is set to English (United Kingdom), which
has a default short date format of dd/MM/yyyy, and it has been overridden with a short date format of yyyy-MM-
dd, this is returned in the default dd/MM/yyyy format.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server. When the parameter is not defined or it is set to false, inconsistent results could be returned to
the application server when running in JADE thin client mode and there are regional overrides, as all overrides on
the application server are suppressed.

Setting date text by using the setTextFromDate method converts the date into the appropriate string for that
locale. Retrieving the Date value by using the getTextAsDate method does the reverse. You can therefore use
the getTextAsDate and setTextFromDate methods to access date text so that JADE handles the locale format for
you.

getTextAsCurrencyDecimal
Signature getTextAsCurrencyDecimal(): Decimal;

The getTextAsCurrencyDecimal method returns the text from the text property of a TextBox control in currency
format converted to a Decimal value.

If the text box is empty, zero (0) is returned. If the text of a TextBox control is not a valid numeric string in the locale
of the user application, an exception is raised. You should therefore use this method only for a numeric text box
(that is, the dataType property value of DataType_Numeric (1), DataType_SignedNumeric (2), or DataType_
Currency (3)) that guarantees the text is a valid numeric. The text can be valid but incomplete (for details, see the
isValid method).

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed
if enhanced locale support is not enabled. By default, formatting of locale data is done on the application server,
based on the locale of the corresponding presentation client.

The value of decimals property of the text box determines the number of decimal places in the returned decimal.

Notes A numeric TextBox control expects the negative sign and decimal place characters to be in the form
defined for the locale under which the user is running. This applies when accessing the text property and when
the user enters data.

Setting decimal text by using the setTextFromCurrencyDecimal method converts the numeric into the
appropriate string for that locale. Retrieving the Decimal value by using the getTextAsCurrencyDecimal does
the reverse. You can therefore use the getTextAsCurrencyDecimal and setTextFromCurrencyDecimal
methods to access decimal text so that JADE handles the locale format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the TextBox
control. However, locales that specify a negative value expressed by parentheses (for example, (123)) are treated
as a leading dash symbol (-). In addition, locales that have a leading or trailing space associated with a negative
sign are treated as the equivalent format without the space (for example, - 123 will be -123 and 123 - will be 123-).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 477

EncycloWin - 2020.0.02

getTextAsCurrencyReal
Signature getTextAsCurrencyReal(): Real;

The getTextAsCurrencyReal method returns the text from the text property of a TextBox control in currency
format converted to a Real value.

If the text box is empty, zero (0) is returned. If the text of a TextBox control is not a valid numeric string in the locale
of the user application, an exception is raised. You should therefore use this method only for a numeric text box
(that is, the dataType property value of DataType_Numeric (1), DataType_SignedNumeric (2), or DataType_
Currency (3)) that guarantees that the text is a valid numeric. The text can be valid but incomplete (for details, see
the isValid method).

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed
if enhanced locale support is not enabled. By default, formatting of locale data is done on the application server,
based on the locale of the corresponding presentation client.

A numeric TextBox control expects the negative sign and decimal place characters to be in the form defined for
the locale under which the user is running. This applies when accessing the text property and when the user
enters data.

Setting text by using the setTextFromCurrencyReal method converts the numeric into the appropriate string for
that locale. Retrieving the currency Real value by using the getTextAsCurrencyReal does the reverse. You can
therefore use the getTextAsCurrencyReal and setTextFromCurrencyReal methods to access numeric text so
that JADE handles the locale format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the TextBox
control. However, locales that specify a negative value expressed by parentheses (for example, (123)) are treated
as a leading dash symbol (-). In addition, locales that have a leading or trailing space associated with a negative
sign are treated as the equivalent format without the space; for example, (- 123 will be -123 and 123 - will be
123-).

getTextAsDecimal
Signature getTextAsDecimal(): Decimal;

The getTextAsDecimal method returns the text from the textUser property of a JadeEditMask control or the text
property of a TextBox control converted to a Decimal value.

If the text of a JadeEditMask control is not a valid numeric string in the locale of the control (for details, see the
languageId property), an exception is raised. You should therefore use this method only when the mask property
of the control indicates a numeric field (for example, ###,##9.#) that guarantees that the text is a valid numeric.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

The text can be valid but incomplete, according to the mask (for details, see the isEmpty and isValid methods).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 478

EncycloWin - 2020.0.02

If the text of a TextBox control is not a valid numeric string in the locale of the user application, an exception is
raised. You should therefore use this method only for a numeric text box (that is, the dataType property value of
DataType_Numeric (1), DataType_SignedNumeric (2), or DataType_Currency (3)) that guarantees the text is a
valid numeric.

The value of decimals property of the text box determines the number of decimal places in the returned decimal.

Notes For the JadeEditMask control, the number of decimal places included in the edit mask determines the
number of decimal places in the returned decimal. A numeric JadeEditMask control expects the negative sign,
decimal place, and separator characters to be in the form defined for the locale that the control is using.

A numeric TextBox control expects the negative sign and decimal place characters to be in the form defined for
the locale under which the user is running. This applies when accessing the text or textUser properties and
when the user enters data. Setting decimal text by using the setTextFromDecimal method converts the numeric
into the appropriate string for that locale. Retrieving the decimal value using the getTextAsDecimal does the
reverse. You can therefore use the getTextAsDecimal and setTextFromDecimal methods to access decimal text
so that JADE handles the locale format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the
JadeEditMask or TextBox control. However, locales that specify a negative value expressed by parentheses (for
example, (123)) are treated as a leading dash symbol (-). In addition, locales that have a leading or trailing space
associated with a negative sign are treated as the equivalent format without the space (for example, - 123 will be -
123 and 123 - will be 123-).

getTextAsInteger
Signature getTextAsInteger(): Integer;

The getTextAsInteger method returns the text from the textUser property of a JadeEditMask control or the text
property of a TextBox control converted to an Integer value.

If the text of a JadeEditMask control is a decimal, the values are rounded to the nearest integer.

If the text is not a valid numeric string in the locale of the control (for details, see the languageId property), an
exception is raised. You should therefore use this method only when the mask property of the control indicates a
numeric field (for example, ###,##9.#) that guarantees that the text is a valid numeric.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

The text can be valid but incomplete, according to the mask (for details, see the isEmpty and isValid methods).

If the text of a TextBox control is a decimal, the values are rounded to the nearest integer. If the text is not a valid
numeric string in the locale of the user application, an exception is raised. You should therefore use this method
only for a numeric text box (that is, the dataType property value of DataType_Numeric (1), DataType_
SignedNumeric (2), or DataType_Currency (3)) that guarantees that the text is a valid numeric.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 479

EncycloWin - 2020.0.02

A numeric JadeEditMask control expects the negative sign, decimal place, and separator characters to be in the
form defined for the locale that the control is using. A numeric TextBox control expects the negative sign and
decimal place characters to be in the form defined for the locale under which the user is running. This applies
when accessing the text or textUser properties and when the user enters data.

Setting text by using the setTextFromInteger method converts the integer into the appropriate string for that
locale. Retrieving the Integer value using the getTextAsInteger does the reverse. You can therefore use the
getTextAsInteger and setTextFromInteger methods to access numeric text so that JADE handles the locale
format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the
JadeEditMask or TextBox control. However, locales that specify a negative value expressed by parentheses (for
example, (123)) are treated as a leading dash symbol (-). In addition, locales that have a leading or trailing space
associated with a negative sign are treated as the equivalent format without the space (for example, - 123 will be -
123 and 123 - will be 123-).

getTextAsInteger64
Signature getTextAsInteger64(): Integer64;

The getTextAsInteger64 method returns the text from the textUser property of a JadeEditMask control or the
text property of a TextBox control converted to an Integer64 value.

If the text of a JadeEditMask control is a Decimal, the values are rounded to the nearest Integer64 value.

If the text is not a valid numeric string in the locale of the control (for details, see the languageId property), an
exception is raised. You should therefore use this method only when the mask property of the control indicates a
numeric field (for example, ###,##9.#) that guarantees that the text is a valid numeric.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

The text can be valid but incomplete, according to the mask (for details, see the isEmpty and isValid methods).

If the text of a TextBox control is a Decimal, the values are rounded to the nearest Integer64 value. If the text is
not a valid numeric string in the locale of the user application, an exception is raised. You should therefore use
this method only for a numeric text box (that is, the dataType property value of DataType_Numeric (1),
DataType_SignedNumeric (2), or DataType_Currency (3)) that guarantees that the text is a valid numeric.

A numeric JadeEditMask control expects the negative sign, decimal place, and separator characters to be in the
form defined for the locale that the control is using. A numeric TextBox control expects the negative sign and
decimal place characters to be in the form defined for the locale under which the user is running. This applies
when accessing the text or textUser properties and when the user enters data.

Setting text by using the setTextFromInteger64 method converts the Integer64 into the appropriate string for that
locale. Retrieving the Integer64 value using the getTextAsInteger64 does the reverse. You can therefore use the
getTextAsInteger64 and setTextFromInteger64 methods to access numeric text so that JADE handles the locale
format for you.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 480

EncycloWin - 2020.0.02

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the
JadeEditMask or TextBox control. However, locales that specify a negative value expressed by parentheses (for
example, (123)) are treated as a leading dash symbol (-). In addition, locales that have a leading or trailing space
associated with a negative sign are treated as the equivalent format without the space (for example, - 123 will be -
123 and 123 - will be 123-).

getTextAsLongDate
Signature getTextAsLongDate(): Date;

The getTextAsLongDate method returns the text in long date format from the text property of a TextBox control
converted to a Date value.

If the text box is empty, null is returned. If the text is not a valid long date, an exception is raised. Use the isValid
method to prevent incomplete long date data from generating an exception.

Notes By default, a TextBox control expects dates to be formatted according to the current locale. This applies
when accessing the text property and when the user enters data.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed
if enhanced locale support is not enabled. By default, formatting of locale data is done on the application server,
based on the locale of the corresponding presentation client. For example, if the locale of your application server
is set to English (United Kingdom), which has a default long date format of dddd/MMMM/yyyy, and it has been
overridden with a long date format of yyyy-MMMM-dddd, this is returned in the default dddd/MMMM/yyyy format.

Setting date text by using the setTextFromLongDate method converts the long date into the appropriate string for
that locale. Retrieving the long date value by using the getTextAsLongDate method does the reverse. You can
therefore use the getTextAsLongDate and setTextFromLongDate methods to access long date text so that
JADE handles the locale format for you.

getTextAsReal
Signature getTextAsReal(): Real;

The getTextAsReal method returns the text from the textUser property of a JadeEditMask control or the text
property of a TextBox control converted to a Real value.

If the text of a JadeEditMask control is not a valid numeric string in the locale of the control (for details, see the
languageId property), an exception is raised. You should therefore use this method only when the mask property
of the control indicates a numeric field (for example, ###,##9.#) that guarantees that the text is a valid numeric.
The text can be valid but incomplete, according to the mask (for details, see the isEmpty and isValid methods).

If the text of a TextBox control is not a valid numeric string in the locale of the user application or it is empty, an
exception is raised. You should therefore use this method only for a numeric text box (that is, the dataType
property value of DataType_Numeric (1), DataType_SignedNumeric (2), or DataType_Currency (3)) that
guarantees that the text is a valid numeric.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 481

EncycloWin - 2020.0.02

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

A numeric JadeEditMask control expects the negative sign, decimal place, and separator characters to be in the
form defined for the locale that the control is using. A numeric TextBox control expects the negative sign and
decimal place characters to be in the form defined for the locale under which the user is running. This applies
when accessing the text or textUser properties and when the user enters data.

Setting text by using the setTextFromReal method converts the integer into the appropriate string for that locale.
Retrieving the Real value using the getTextAsReal does the reverse. You can therefore use the getTextAsReal
and setTextFromReal methods to access numeric text so that JADE handles the locale format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the
JadeEditMask or TextBox control. However, locales that specify a negative value expressed by parentheses (for
example, (123)) are treated as a leading dash symbol (-). In addition, locales that have a leading or trailing space
associated with a negative sign are treated as the equivalent format without the space (for example, - 123 will be
-123 and 123 - will be 123-).

getTextAsShortDate
Signature getTextAsShortDate(): Date;

The getTextAsShortDate method returns the text in short date format from the text property of a TextBox control
converted to a Date value.

If the text box is empty, null is returned. If the text is not a valid short date, an exception is raised. Use the isValid
method to prevent incomplete date data from generating an exception.

Notes By default, a TextBox control expects dates to be formatted according to the locale that the control is
using. This applies when accessing the text property and when the user enters data.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed
if enhanced locale support is not enabled. By default, formatting of locale data is done on the application server,
based on the locale of the corresponding presentation client. For example, if the locale of your application server
is set to English (United Kingdom), which has a default short date format of dd/MM/yyyy, and it has been
overridden with a short date format of yyyy-MM-dd, this is returned in the default dd/MM/yyyy format.

Setting date text by using the setTextFromShortDate method converts the short date into the appropriate string
for that locale. Retrieving the short date value by using the getTextAsShortDate method does the reverse. You
can therefore use the getTextAsShortDate and setTextFromShortDate methods to access short date text so that
JADE handles the locale format for you.

getTextAsTime
Signature getTextAsTime(): Time;

The getTextAsTime method returns the text from the textUser property of a JadeEditMask control or the text
property of a TextBox control converted to a Time value.

If the mask property does not specify that the data is a time field with at least an hour and minutes mask, (for
example, hh:mm) or if the time data is incomplete but not empty, an exception is raised. If the mask does not have
a seconds part, the seconds part of the time is set to zero (0).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 482

EncycloWin - 2020.0.02

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client. For example, if the locale of your application
server is set to English (United Kingdom), which has a default short time format of HH:mm:ss (24-hour clock), and
it has been overridden with a short time format of hh:mm:ss (12-hour clock), this is returned in the default
HH:mm:ss format.

Use the isEmpty and isValid methods to prevent incomplete time data from generating an exception.

If the text box is empty, a zero (0) time is returned. If the text is not a valid time, an exception is raised.

Note A JadeEditMask control or TextBox control expects times to be formatted according to the locale that the
control is using (for details, see the languageId property). This applies when accessing the text or textUser
property and when the user enters data.

Setting time text by using the setTextFromTime method converts the time into the appropriate string for that
locale. Retrieving the Time value by using the getTextAsTime method does the reverse. You can therefore use
the getTextAsTime and setTextFromTime methods to access time text so that JADE handles the locale format
for you.

getTextExtent
Signature getTextExtent(str: String): Integer;

The getTextExtent method of the Window class returns the width in pixels required to display the string specified
in the str parameter in this window using its current font.

The string is treated as a single line, unless it contains carriage return characters, in which case this method
returns the width of the longest line of the string.

Note The appearance of text in a table cell when setting the text width to the result of the getTextExtent method
may not produce the result that you require, as pixels are required for grid lines and spacing.

The method in the following example shows the use of the getTextExtent method.

listBoxSource_mouseDown(listbox: ListBox input;
button, shift: Integer;
x, y: Real) updating;

vars
count : Integer;

begin
wantToCopy := false;
if listBoxSource.listCount >= 1 then

listBoxSource.itemSelected[listBoxSource.listIndex] := true;
mousedown := true;
foreach count in 1 to listbox.listCount do

if listbox.itemSelected[count] <> true then
listbox.itemEnabled[count] := false;

endif;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 483

EncycloWin - 2020.0.02

endforeach;
frameDisplay.width := listBoxSource.text.length *

getTextExtent("*");
drawInfo(x, y, listBoxSource.text);
frameDisplay.visible := true;
transfer := listBoxSource.itemObject[listBoxSource.listIndex].Fault;
if shift.bitAnd(2) = 2 then

wantToCopy := true;
endif;

endif;
end;

getTextHeight
Signature getTextHeight(str: String): Integer;

The getTextHeight method of the Window class returns the height in pixels required to display the string specified
in the str parameter in this window using its current font.

The string is treated as a single line, unless it contains carriage return characters, in which case this method
returns the total height of all the lines.

See also the getTextHeightForWidth method.

getTextHeightForWidth
Signature getTextHeightForWidth(str: String;

width: Integer): Integer;

The getTextHeightForWidth method of the Window class returns the height in pixels required to display the string
specified in the str parameter as it would be displayed when word wrapped within a rectangle of the width
specified in the width parameter using the font of the window. The string is treated as a single line, unless it
contains carriage return characters, in which case this method returns the total height of all of the lines.

This method is similar to the Window class getTextHeight method except that the getTextHeight method returns
the height without word wrap (a single line unless the text contains carriage return characters).

The code fragment in the following example returns the height of the textBox1 text using word wrapping for a
width of 80 using the font of the label1 control.

hgt := label1.getTextHeightForWidth(textBox1.text, 80);

getTextLength
Signature getTextLength(): Integer;

The getTextLength method of the JadeTextEdit class returns the number of character of text in the text editor
control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 484

EncycloWin - 2020.0.02

getTextProtection
Signature getTextProtection(start: Integer;

length: Integer): Integer;

The getTextProtection method of the JadeRichText class returns the protection state of text from the position
specified in the start parameter through to the length specified in the length parameter. The method returns an
Integer value indicating whether the text is protected, unprotected, or contains a mixture of protected and
unprotected text.

The return values correspond to the JadeRichText class constants listed in the following table.

Constant Integer Value Description

TextProtection_Set 1 All text in the specified range is protected

TextProtection_NotSet 0 No text in the specified range is protected

TextProtection_Mixed #80000000 Mixture of protected and unprotected text

getTextRange
Signature getTextRange(startPos: Integer;

stopPos: Integer): String;

The getTextRange method of the JadeTextEdit class returns a string containing the text from the text editor in the
range specified by the startPos and stopPos parameter values. The startPos and stopPos parameters are the
zero-based offsets of the first and last characters to return, respectively. A stopPos parameter value of -1 specifies
the last character in the text editor.

No end-of-line sequence conversion is performed.

The value of the startPos parameter must be less than that of the stopPos parameter and less than the length of
the text.

getToggleKeyStates
Signature getToggleKeyStates(insert: Integer io;

capLocks: Integer io;
numLock: Integer io;
scrollLock: Integer io);

The getToggleKeyStates method of the JadeTextEdit class returns the on (1) or off (0) state of the Insert, CAPS
LOCK, NUM LOCK, and SCROLL LOCK keys.

getUserName
Signature getUserName(type: Integer): String;

The getUserName method of the OleControl class returns the OLE description of the OLE objects in an OLE
control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 485

EncycloWin - 2020.0.02

The values that can be specified for the type parameter are listed in the following table.

OleControl Class Constant Value Description

GetUsername_Full 1 Full OLE object name

GetUsername_Short 2 Short OLE object name

GetUsername_App 3 Application name

getValue
Signature getValue(controlName: String;

memberName: String;
paramList: ParamListType): Any;

The getValue method of the JadeXamlControl class returns the value of a Windows Presentation Foundation
(WPF) method or property for an entity in the XAML control.

The parameters are combined to form a sequence of accesses to the WPF entities involved. The JADE method
parameters are a mixture of property names, method names, and WPF method parameters, as described in the
following table.

Parameter Description

controlName Name of the WPF FrameworkElement involved. If the name is null or equal to the control
name, the search for the memberName starts with the parent control; otherwise the search
starts with the first child element with the specified name. The search succeeds when the
entity or one of its children is found to have the specified memberName value. An
exception is raised if the controlName or memberName is not found.

memberName Name of the first method or property being accessed.

paramList Remaining property, methods, and parameters being used in sequence.

The code fragments in the following examples show how these parameters are used.

jadeXamlCtl.getValue("list", "SelectedIndex"); /* returns the integer value of the
currently selected item of the list box entity named "list" */

jadeXamlCtl.getValue ("list", "SelectedItem", "Content"); /* returns the text of
the currently selected item of the list box (assuming the content is a string) by
executing the WPF sequence list.SelectedItem.Content. */

JadeXamlCtl.getValue ("list", "Items", "GetItemAt", 3, "Content") /* returns the
text of the list box entry with an index of 3, (assuming the content is a string)by
executing the WPF sequence list.Items.GetItemAt(3).Content. */

Note the following restrictions.

Only JADE primitives types are supported as parameters to WPF method calls.

All names are case-sensitive.

Access to static WPF properties and methods is not supported.

The final property or method accessed in the sequence must return a JADE primitive type value.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 486

EncycloWin - 2020.0.02

Parameter types must match the same basic type; that is, an Integer parameter must be passed as an
Integer, a floating point or real number as a Real, a byte as a Byte, and so on.

For a presentation client, calls to this method are not buffered, causing the application server to send a
message to the presentation client and wait for the reply.

getWebEventMappings
Signature getWebEventMappings(): HugeStringArray;

The getWebEventMappings method of the Window class returns all Web event mappings for the receiver.

The method in the following example returns a list of all Web event mappings for the textBox1 control.

vars
strArray : HugeStringArray;

begin
strArray := textBox1.getWebEventMappings;
... // do some processing here

epilog
delete strArray;

end;

Each entry in the returned array has the following format.

<event-name>=<function-name>

The following is an example of an entry in a returned array of Web event mappings.

lostFocus=processLostFocus(this, 'lostFocus')

getWindowHandle
Signature getWindowHandle(): MemoryAddress;

The getWindowHandle method of the Window class returns the Microsoft Windows handle as a MemoryAddress
for a form or control.

If a node can execute as a 32- or 64-bit node, you should use this method to ensure that the correct Windows
handle is used, rather than the Window class hwnd and getHwnd methods, which return an integer value.

Applies to Version: 7.1.07 (Service Pack 6) and higher

getWordAt
Signature getWordAt(action: Integer): String;

The getWordAt method of the JadeTextEdit class returns the word at the specified location in the text editor.

In the action parameter, use the JadeTextEdit class constant of LOCAT_MOUSEPOINTER (0) if you want to
return the word at the current mouse position or LOCAT_CARET (1) if you want to return the word at the current
caret position.

The word consists of all the characters that precede and follow the specified location that are currently defined as
word characters. See the setWordCharactersets method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 487

EncycloWin - 2020.0.02

hasAudio
Signature hasAudio(): Boolean;

The hasAudio method of the MultiMedia class returns true if the current device type that is loaded in the control
supports audio. (See also the hasVideo property.)

hasPicture
Signature hasPicture(): Boolean;

The hasPicture method of the Table class returns true if the current cell indicated by the sheet, column, and row
properties has a picture displayed.

hasPropertyPage
Signature hasPropertyPage(nam: String): Boolean;

The hasPropertyPage method of the Window class returns whether the window has its own Properties dialog for
the property specified in the nam parameter. If the nam parameter contains an empty string, the method returns
whether there is a global Property page for the whole window. Although this method is primarily for ActiveX
controls, you can also use it for subclassed controls.

By default, the hasPropertyPage method returns false. For ActiveX controls, the ActiveX is asked if such a
property exists. The Painter asks the window if it has a custom-built dialog (property page) for editing the current
property selected in the Properties form.

If such a dialog exists, it is used instead of the standard Painter editing. This dialog is initiated by using the
showPropertyPage method for the window.

Using the Control class saveProperties method saves properties edited during this process.

The method in the following example shows the use of the hasPropertyPage method.

hasPropertyPage(nam : String): Boolean updating;
begin

if nam = 'layout' then
return true;

endif;
return inheritMethod(nam);

end;

Notes Reimplement this method in user-defined subclassed controls in your application to return false if you
want to stop the JADE Painter from using its own Properties dialog for the specified property.

Any Properties dialog is run under the JADE application when used by the Painter.

hasSystemTrayEntry
Signature hasSystemTrayEntry(): Boolean;

The hasSystemTrayEntry method of the Form class returns true if the form currently has a system tray icon entry,
or it returns false if no entry is currently defined for the form (by using the Form class setSystemTrayEntry
method). See also the removeSystemTrayEntry method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 488

EncycloWin - 2020.0.02

hasVideo
Signature hasVideo(): Boolean;

The hasVideo method of the MultiMedia class returns true if the current device type that is loaded in the control
supports video. (See also the hasAudio property.)

hwnd
Signature hwnd(): Integer;

The hwnd method of the Window class returns the Windows handle to a form or control.

The Windows environment identifies each form and control in an application by assigning it a handle (or hwnd).
The Windows handle is useful with many Windows API calls that require hwnd as a parameter.

If a node can execute as a 32-bit or a 64-bit node, you should use the getWindowHandle method, which returns a
MemoryAddress to ensure that the correct Windows handle is used.

Notes The value of hwnd can change while a program is running, if property values that determine the style of a
control are altered. For example, changing the scrollHorizontal property of a TextBox control requires that the
text box be recreated in the new style, resulting in a new Windows handle being assigned.

To reduce the amount of memory being used by Web sessions, JADE creates a physical window only for Ocx,
OleControl, ActiveXControl, and MultiMedia controls and a form only if an Ocx, OleControl, ActiveXControl, or
MultiMedia control is created. In most cases when running an HTML thin client, the hwnd method returns a null
value unless a physical window or a form is created for an Ocx, OleControl, ActiveXControl, or MultiMedia
control.

initializeAppSettings
Signature initializeAppSettings();

The initializeAppSettings method of the JadeTextEdit class removes all entries from the application settings
table.

The code fragment in the following example shows the use of the initializeAppSettings method.

jteSource.initializeAppSettings();
jteSource.language := JadeTextEdit.SCLEX_CPP;
jteSource.updateAppSettings("font.base=font:Verdanna,size:101" & CrLf

& "font.comment=size:9,italic" & CrLf);
jteSource.applySettings();

initializeJadeEditor
Signature initializeJadeEditor(useProfile: Boolean);

The initializeJadeEditor method of the JadeEditor class initializes the control for editing JADE method text.

If the value of the useProfile parameter is true, the editor options for the current user are used if the control is run
in the development system; otherwise, the default editor options are used. If the value of the useProfile parameter
is false, the values used are those set on the control at the time this method is called.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 489

EncycloWin - 2020.0.02

Note Call the initializeJadeEditor method before you call the setCurrentSchema method, to ensure that the
form displays entities in the correct color.

insertColumn
Signature insertColumn(at: Integer);

The insertColumn method enables a single column to be inserted into the current sheet of a Table control. The
column is empty and assumes the default column width. The existing columns are shifted to the right of the column
specified in the at parameter and remain untouched.

The method in the following example shows the use of the insertColumn method.

buttonAddColumn_click(btn: Button input) updating;
begin

if selectedColumn <> null then
table1.inputType := InputType_TextBox;
table1.insertColumn(selectedColumn);
table1.clearAllSelected;
selectedColumn := null;
comboBoxColMoveTo.addItem("Move to Column " &

(comboBoxColMoveTo.listCount + 1).String);
comboBoxColumns.addItem((comboBoxColumns.listCount + 1).String);
refresh;

else
app.msgBox("You must select a column", "No column selected",

MsgBox_OK_Only);
return;

endif;
end;

insertObject
Signature insertObject(fileName: String;

link: Boolean;
icon: Boolean);

The insertObject method of the JadeRichText class inserts a COM object (for example, an Excel chart, bitmap, or
Word document) at the current position of the receiver (that is, at the insertion point in the control). The
insertObject method parameters are listed in the following table.

Parameter Description

fileName Existing file containing the object to be inserted. If you do not specify a path, JADE looks in the
current directory and raises an exception if the specified file is not in the directory or if it does
not exist.

link Specify true if the object should be linked or false if it should be embedded.

icon Specify true if the object should be displayed as an icon or false if the object contents should
be displayed.

For an example of the use of this method, see "JadeRichText Control Method Example", earlier in this document.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 490

EncycloWin - 2020.0.02

insertObjectDialog
Signature insertObjectDialog();

The insertObjectDialog method of the JadeRichText class invokes the OLE Insert Object dialog that enables the
user to insert a COM object at the current position of the receiver (that is, at the insertion point in the control).

insertTable
Signature insertTable(rows: Integer;

cols: Integer;
left: Integer;
colWidths: IntegerArray);

The insertTable method of the JadeRichText class inserts a table at the current position of the receiver (that is, at
the insertion point in the control).

The insertTable method parameters are listed in the following table.

Parameter Description

rows Specifies the number of rows in the table

cols Specifies the number of columns in the table

left Specifies the leftIndent value in the table (in pixels)

colWidths Specifies the width of table columns (in pixels)

is3D
Signature is3D(): Boolean;

The is3D method of the Control class returns whether the control was drawn three-dimensionally (that is, it returns
true if the show3D property was set to Show3D_Use3D or to Show3D_UseAppDefault and that control was
selected in the 3D Controls list box of the Form sheet of the Define Application dialog).

This method returns false if the show3D property was set to Show3D_Not3D or the control was not selected with
the three-dimensional default value for the application.

You can call this method only on a control that has an associated window.

isCaptionVisible
Signature isCaptionVisible(): Boolean;

The isCaptionVisible method of the Form class returns true if the caption of a form (or the top portion of a form
with no caption) is visible on at least one monitor.

If you have multiple monitors in various configurations, saved or predetermined positions can leave a form
inaccessible.

For a non-MDI form, this method returns true if a significant part of the caption is visible in the work area of at least
one monitor. For an MDI form, this method returns true if a significant part of the caption is visible within the client
area of the MDI frame.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 491

EncycloWin - 2020.0.02

isDroppedDown
Signature isDroppedDown(): Boolean;

The isDroppedDown method of the ComboBox class returns true if the drop-down list of the combo box control is
open.

Use the closeDropDown or showDropDown methods to show or hide the drop-down list, respectively.

isEmpty
Signature isEmpty(): Boolean;

The isEmpty method of the JadeEditMask class returns true if there is any text in character positions in which text
can be entered or it returns false if there is no text in those positions. For example, the isEmpty method returns:

False, if 21/__/____

True, if __/__/____

isEventEnabled
Signature isEventEnabled(name: String): Boolean;

The isEventEnabled method of the Window class returns true if the event specified in the name parameter is
currently enabled for the window of the receiver. By default, events are enabled.

To disable an event, use the Window class enableEvent method.

isFloating
Signature isFloating(): Boolean;

The isFloating method of the JadeDockBase class returns whether the JadeDockBar or JadeDockContainer
dock control is the first child of a floating form. For more details, see the float method.

A floating dock container returns true and any child dock controls return false.

For details about floating and docking container controls, see "Floating a Docking Control" and "Docking a
Control", under the "JadeDockBase Class", earlier in this document. See also the docking examples under the
JadeDockContainer class allowDocking property, earlier in this document.

isHyperlinkSet
Signature isHyperlinkSet(hyperlinkRow: Integer;

hyperlinkColumn: Integer): Boolean;

The isHyperlinkSet method of the Table class returns true if there is an associated HyperText link for the row
specified in the hyperlinkRow parameter and the column specified in the hyperlinkColumn parameter.

If there is no HyperText link in the specified row and column, this method returns false.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 492

EncycloWin - 2020.0.02

isInPainter
Signature isInPainter(): Boolean;

The isInPainter method of the Control class returns true when the control is in the JADE Painter process (that is,
the Process class type property has a value of 4) or false if the control is on a runtime form.

The method in the following example shows the use of the isInPainter method.

paint(cntrl: Calendar input) updating;
vars

today : Date;
begin

inheritMethod(cntrl);
if isInPainter then

buildSelf;
elseif not isBuilt then

buildSelf;
isBuilt := true;
date := today;

endif;
end;

isMdiFloating
Signature isMdiFloating(): Boolean;

The isMdiFloating method of the Form class returns true if the MDI child form is floating; otherwise it returns false
if the form is docked or it is not an MDI child form.

Applies to Version: 2020.0.01 and higher

isModal
Signature isModal(): Boolean;

The isModal method of the Form class returns true if the form was displayed using the Form class showModal
method, or it returns false if the form has not been displayed or it was displayed using the Form class show
method.

Applies to Version: 2016.0.01 and higher

isMoveable
Signature isMoveable(): Boolean;

The isMoveable method of the Control class returns true if the control can be dragged to move it around the form
in the JADE Painter. By default, controls can be moved on a form in Painter.

isMySheetVisible
Signature isMySheetVisible(): Boolean;

The isMySheetVisible method of the Control class provides a control with the ability to determine if the sheet of a
Folder control on which it is placed is the current visible sheet.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 493

EncycloWin - 2020.0.02

The control does not need to be a direct child of the folder.

Folders provide the ability to share the same screen space for a number of control images. The sheets of the
folders are special group boxes on which controls are placed. The caption of each sheet is displayed in tabs that
can be selected above the images. One sheet only is displayed at any time. If the control is not on a sheet, the
isMySheetVisible method returns true.

Note Setting the focus to a control on a sheet that is not the current topSheet causes that sheet to become the
top sheet.

isObjectOpen
Signature isObjectOpen(): Boolean;

The isObjectOpen method of the OleControl class specifies whether the OLE server for an OLE object in an OLE
control has the object open for editing.

As this method does not apply to an object that is activated in-place and therefore has no window separate from
that of its container, it returns true if the allowInPlace property is set to false.

isPrinterForm
Signature isPrinterForm(): Boolean;

The isPrinterForm method of the Form class returns whether the form was declared as a printer form on the New
Form dialog in the JADE Painter; that is, the Printer option button was selected in the Form Style group box.

This method then allows the setDefaultPainterControlProperties method re-implementation to set properties
only on a printer-style form, for example.

The following is an example of the isPrinterForm method.

setDefaultPainterControlProperties();
begin

if self.form.isPrinterForm() then
self.fontName := "Arial";

endif;
end;

Applies to Version: 2018.0.02 (Service Pack 1) and higher

isSelectable
Signature isSelectable(): Boolean;

The isSelectable method of the Control class returns true if instances of the control can be selected in the JADE
Painter. By default, controls can be selected in the Painter. Reimplement this method in your application to return
false if you want to stop the JADE Painter from selecting controls of a specific type.

When this method returns false, the Properties dialog and the Find Control dialog exclude that control in their
control list boxes.

Tip This is useful if you have created a custom (user-defined) control that has other controls embedded in it. In
most cases, you would not want the embedded controls to be selected during painting.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 494

EncycloWin - 2020.0.02

isSizeable
Signature isSizeable(): Boolean;

The isSizeable method of the Control class returns true if the control can be resized in the JADE Painter.
Reimplement this method in user-defined controls of your application to return false if you want to stop the JADE
Painter from resizing your subclassed controls.

By default, controls can be resized in Painter.

isValid
Signature isValid(): Boolean;

The isValid method of the JadeEditMask class or TextBox class returns true if the text is valid and complete; that
is, all required fields of the text have characters in them, as defined by the JadeEditMask class mask property or
the TextBox class dataType property (for example, 10/12/2010 versus 10/12).

This method returns false if it is not or if the control is empty.

The following are examples of the isValid method return value.

False, if 21/__/____

False, if __/__/____

True, if 2_/1_/2001 (2 is a valid day and 1 is a valid month)

False, if 0_/10/2001 (0 is not a valid day)

False, if 12/0_/2001 (0 is not a valid month)

True, if 12/10/2001

itemFullName
Signature itemFullName(index: Integer): String;

The itemFullName method of the ListBox class returns the fully qualified name of an item from a list box control.
The fully qualified name is the concatenation of the item with its parent item, the parent item of the parent item, and
so on, until the parent item at indentation level 1 is reached.

Each entry is separated from the next by the nameSeparator property character.

The value of the nameSeparator property is used to delimit the level names. The default value is "\". For
example, itemFullName(3) would return the string "one\two\three" for the following hierarchy.

one
two

three

itemHasSubItems
Signature itemHasSubItems(index: Integer): Boolean;

The itemHasSubItems method of the ListBox class or the ComboBox class returns a value that indicates
whether an item has subitems.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 495

EncycloWin - 2020.0.02

The itemHasSubItems method is an array of Boolean values with the same number of items as that returned by
the listCount method.

itemVisible
Signature itemVisible(index: Integer): Boolean;

The itemVisible method of the ListBox class or the ComboBox class returns a value that indicates whether an
item in a list box control is visible; that is, part of the expanded tree.

The itemVisible method is an array of Boolean values with the same number of items as returned by the listCount
method.

lineCount
Signature lineCount(): Integer;

The lineCount method of the JadeRichText, JadeTextEdit, and TextBox control classes returns the number of
lines of text in a rich text control, text editor, or text box, respectively.

Note The number of lines may be greater than the number of lines that are displayed. (See also the lines
method.)

This method returns the actual number of lines of text. If there is no text, the number of lines that are returned is still
1.

lines
Signature lines(): Integer;

The lines method of the JadeTextEdit, ListBox, and TextBox control classes returns the number of lines
available for display in the control. Effectively, this method returns the client height (clientHeight property value)
divided by the height of each line.

If the integralHeight property is set to false, the last line may be a partial line, which is included in the count.

The code fragment in the following example shows the use of the lines method.

foreach count in 1 to listBoxRight.lines do
iter.next(myProduct);
listBoxRight.addItem(myProduct.name);

endforeach;

linkFromFile
Signature linkFromFile(filename: String);

The linkFromFile method of the OleControl class creates an OLE object, linking to the file specified in the
filename parameter.

The file is not copied into the JADE database; only a link to that file is retained.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 496

EncycloWin - 2020.0.02

listCollection
Signature listCollection(c: Collection;

update: Boolean;
showHow: Integer);

The listCollection method of the ListBox and ComboBox class enables list box or combo box controls to have a
collection attached to them. If you use this method to attach a collection to a ListBox or ComboBox control, little is
required to load the entries into the list. Use the displayCollection method to automatically attach only as many
entries as required to fill the list of the control. The differences between the listCollection method and the
displayCollection method are as follows.

The listCollection method retains all entries added to the list or combo box when the user scrolls the view.

For the listCollection method, the number of entries in the list (returned by listCount) is logically the size of
the attached collection minus discarded entries. For the displayCollection method, the listCount method
returns only the number of entries that are displayed.

The displayCollection method enables you to specify a starting object.

Entries in the collection are retrieved only when the entry is to be displayed or it is accessed by logic; for example,
only 15 entries from the collection may initially be accessed instead of the entire contents of the collection (which
may be hundreds, or even thousands). You must therefore ensure that this collection remains valid for the lifetime
of the control for which you called the listCollection method.

The ListBox class listCollection method handles a virtual collection, but only in the forward direction. (Attempting
to call the displayCollection method in a ListBox or Table control with a virtual collection is rejected and an
exception is raised.)

The listCollection method is not available in tables on forms in Web-enabled applications, as the HTML
framework cannot predict the final size of the table and adjust the HTML page accordingly. If you want to ensure
that all possible entries in the table are displayed on a Web page, use some other "virtual window" for the Web
generation, or populate the table with all entries from the underlying collection if you know the number of rows will
not cause excessive page size.

The parameters passed in the listCollection method are listed in the following table.

Parameter Description

c Specifies the attached collection and can be any type of collection

update If true, changes to the collection are to be reflected in the list box (not available for transient
objects)

showHow If 0, displays the collection in collection order, and if 1, displays the collection in reverse
collection order

The ListBox class listCollection method handles a virtual collection, but only in the forward direction. (Attempting
to call the displayCollection method in a ListBox or Table control with a virtual collection (for example,
myClass.instances) is rejected and an exception is raised. Virtual collections do not implement the methods
required by the displayCollection method).

The attachment of a collection to a list box or combo box functions as follows.

1. Logic attaches the collection to the list box or combo box, by using the listCollection method, as shown in
the following example that associates a collection with a list box called listProducts.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 497

EncycloWin - 2020.0.02

load() updating;
vars

company : Company;
begin

company := Company.firstInstance;
listProducts.listCollection(company.allProducts, true, 0);

end;

2. The collection is displayed in order (or reverse order) of the entries in the collection, unless the value of the
sorted property for the list box is set to true.

3. To specify the text to be displayed for each entry in the collection, the displayEntry event for the list box or
combo box is called, as shown in the method in the following example.

listProducts_displayEntry(listbox: ListBox input; obj: Any;
lstIndex: Integer): String updating;

vars
prod : Product;

begin
prod := obj.Product;
return " " & prod.code & " " & prod.name & " ";

end;

The displayEntry event uses the parameters listed in the following table.

Parameter Description

control-type Passes the type of control; that is, ListBox or ComboBox.

obj Passes the object to be displayed (it must be cast to the required type for actual
access).

lstIndex Passes the position at which the entry is placed in the list box or combo box, so that
colors, levels, and so on can also be set. The text to be displayed is returned as a
string. (It is the responsibility of the JADE developer to pass the text back.)

If the displayEntry event returns an empty string, that entry is ignored and is not included in the list box and
no further items in the collection are displayed. When the listCollection method is used to associate a
collection with a list box or combo box, the itemObject property contains a reference to the object displayed
in each entry of the list box or combo box.

Note When an exception is raised by the displayEntry or displayRow event method, the size of the
collection is treated as being one less than the number of entries already processed.

No further attempts are made to access the additional entries from the collection until a new
displayCollection or listCollection method is executed against the control.

4. If the value of the sorted property is true, the entire contents of the collection are accessed during the
listCollection method call, with calls to the displayEntry event for each collection object.

5. If the update parameter is set to true:

Deleting the collection results in the list box or combo box being cleared, and the collection is no longer
associated with the list box or combo box.

Any changes to the collection cause the contents of the list box or combo box to be discarded, and the
collection is rebuilt to the current display point (the current entry is reselected if it still exists).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 498

EncycloWin - 2020.0.02

If the update parameter is set to false, the list box or combo box is not updated and may contain out-dated
information.

Note The value of the update parameter must be false for transient collections, as JADE does not issue
system notifications for the addition, change, or deletion of a transient collection.

The following conditions apply to a list box or combo box with an attached collection.

The addItem and removeItem methods are not available.

The itemObject property returns the collection member for each entry. In this case, the itemObject property
is read-only.

The getCollection method returns the collection attached to the combo box, list box, or current sheet of the
table.

The clear method clears the list box or combo box and detaches the collection from the list box or combo
box.

The list box or combo box has a beginNotification condition established (all events). These events are also
passed to the sysNotify event of the list box or combo box.

When the listCollection method is used with the listCount method, the value returned by the listCount
method is the logical number of entries in the list box or combo box (that is, it returns a total of the number of
entries for which the displayEntry event method has already returned a string and the number of entries in
the collection that are yet to be accessed).

Setting the topIndex property causes the list box to be filled with entries up to that point when using the
listCollection method and the topIndex property value is greater than the entries that are obtained so far.

listCount
Signature listCount(): Integer;

The listCount method of the ComboBox or ListBox class returns the current number of actual entries and entries
that are yet to be read in the list portion of a list box or combo box control.

Use the listCount method to iterate through the entries in the list box or combo box, or to test whether there are
any entries in the list box or combo box.

The code fragments in the following examples show the use of the listCount method.

app.msgBox("Done " & fromList.listCount.String, "" ,0);
if listBox1.listCount > 20 then

listBox1.listObject := listBox1.itemObject[19];
else

listBox1.listObject := null;
endif;

The return value is adjusted when the displayEntry event method returns a null string (""), indicating that the
entry does not appear in the list.

Tip It is much more efficient to copy a GUI value into a local variable for reuse rather than request the value
again. For example, listBox.listCount requires the calling of a list box method to retrieve the value. Storing the
value in a local property for reuse avoids a significant overhead for the second and subsequent requests for that
value when it will not change.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 499

EncycloWin - 2020.0.02

The first of the following examples is much more expensive than the second of these examples.

while count <= listBox.listCount do // inefficient use of the method

vars
listCount : Integer;

begin
listCount := listBox.listCount; // recommended use of the method
while count <= listCount do

...
endwhile;

end;

When the listCount method is used with the listCollection method, the value returned by the listCount method is
the logical number of entries in the list box or combo box (that is, it returns a total of the number of entries for which
the displayEntry event method has already returned a string and the number of entries in the collection that are
yet to be accessed).

When the listCount method is used with the displayEntry event method, the returned value is only the number of
entries loaded in the list box or the list portion of the combo box. It has no relationship to the size of the attached
collection.

load
Signature load(text: String;

replace: Integer);

The load method of the JadeRichText class loads text starting at the current position of the receiver (that is, at the
insertion point in the control). For an example of the use of this method, see "JadeRichText Control Method
Example", earlier in this document.

The load method parameters are listed in the following table.

Parameter Description

text Text to be loaded. If the text starts with a valid RTF sequence (for example, "{\rtf "), the text is
loaded in rich text format.

replace A JadeRichText class constant value that indicates where the text is loaded, as follows.

Load_ReplaceAll, which replaces the current contents of the receiver.

Load_ReplaceSelection, which replaces the selected text of the receiver.

Load_Append, which appends the text to the end of the current contents of the receiver.

loadCollectionEntries
Signature loadCollectionEntries();

The loadCollectionEntries method of the Table class causes the table to access any collection entries required to
fill the display size. (As the displayCollection method does this automatically, this method is now redundant.)

The displayRow event method is called for each entry in the collection, as required. Only the number of entries
that are needed to fill the table are accessed. The entries in the table can be accessed from logic as normal, but
the content of the table is treated as though it is the complete set of data.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 500

EncycloWin - 2020.0.02

Access to rows that are not displayed is not available. See also the Table class displayCollection method and the
displayRow event method.

loadControl
Signature loadControl(index: Integer): Control;

The loadControl method of the Control class enables an existing control (with an attached window) defined in the
JADE development environment to be "cloned" at run time; that is, one or more copies of that control can be
created at run time on that form. Using the development copy of the control creates these new controls.

Each control calls the same methods defined for the original control, passing its own control object as the first
parameter. (Note, however, that control event methods are not called if you change the name of a control.)

In addition, you must assign a unique identifier to each control, to be passed to the loadControl method. You can
use the index parameter to access this unique identifier through the control.

Note Although all primitive properties values are copied, the loadControl method clones only the persistent
instance of the control; not the transient runtime instance.

Controls created in Painter in the JADE development environment or by using the addControl method have an
index parameter value of zero (0). Most commonly, the value of the index parameter would be just that: an index.
The values do not need to be sequential, but they cannot be duplicated.

The code fragment in the following example shows the creation of a new control.

cntrl := c.loadControl(id);

In the above example, the c value is the control that is being cloned, the cntrl value is the new copy of the created
control, and the id value is the unique copy index supplied by the caller.

Any control that is added is automatically deleted when the form is destroyed. These controls can also be deleted
dynamically, by using the delete instruction.

Access to these cloned controls can be achieved by using the controls method or by using the getControl
method.

loadFile
Signature loadFile(fileName: String);

The loadFile method of the WebInsert class dynamically loads the specified file as part of the HTML generate
process.

Use the fileName parameter to specify the fully qualified name of the text file that you want inserted into the Web
page during the HTML generate. This file name includes the full path of the JADE application if the file is not
located in the default directory.

If the file cannot be located or it cannot be read, an error is displayed in an exception dialog.

loadFromDB
Signature loadFromDB(): Integer;

The loadFromDB method of the OleControl class loads the control from its oleObject property. (This is done by
default when the form is created.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 501

EncycloWin - 2020.0.02

The method in the following example shows the use of the loadFromDB method.

load() updating;
vars

bin : Binary;
obj : Object;
count : Integer;

begin
foreach obj in ReviewOLEObj.instances do

count := 1 + count;
if count = 1 then

oleReview1.oleObject.copy(obj.ReviewOLEObj);
oleReview1.loadFromDB;

elseif count = 2 then
oleReview2.oleObject.copy(obj.ReviewOLEObj);
oleReview2.loadFromDB;

elseif count = 3 then
oleReview3.oleObject.copy(obj.ReviewOLEObj);
oleReview3.loadFromDB;

endif;
endforeach;

end;

loadFromFile
Signature loadFromFile(fileName: String;

replace: Integer;
format: Integer): Integer;

The loadFromFile method of the JadeRichText class loads the contents of a file at the current position of the
receiver (that is, at the insertion point in the control).

The loadFromFile method parameters are listed in the following table.

Parameter Description

fileName Existing file containing the file whose contents are to be read. If you do not specify a path,
JADE looks in the current directory and raises an exception if the specified file is not in the
directory or if it does not exist.

replace A JadeRichText class constant value that indicates where the text is loaded, as follows.

LoadFromFile_ReplaceAll, which replaces the entire contents of the receiver.

LoadFromFile_ReplaceSelection, which replaces only the selected text of the receiver.

format A JadeRichText class constant value that indicates the format of the loaded text, as follows.

LoadFromFile_PlainText, which is read as plain text.

LoadFromFile_UnicodeText, which is read as plain Unicode text.

LoadFromFile_RTF, which is read as rich text format text if the text starts with a valid RTF
sequence (for example, "{\rtf ").

If the read operation of the file raised an exception, the loadFromFile method returns the appropriate JADE file
handling error number (for example, 5030 - File is in use by another process). If the file read operation was
successful, this method returns zero (0).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 502

EncycloWin - 2020.0.02

loadPicture
Signature loadPicture(fileName: String): IJadeAutoPicture;

The loadPicture method of the ActiveXControl class creates a picture object from the external file specified in the
fileName parameter, which can be a valid file name or it can be the fully qualified path and name of a valid picture
file. If the specified file does not exist, a null value is returned.

loadTextFromFile
Signature loadTextFromFile(fileName: String): Integer;

The loadTextFromFile method of the JadeTextEdit class dynamically loads the specified file into the text editor
(for example, into a JADE workspace).

Use the fileName parameter to specify the fully qualified name of the text file that you want loaded into the text
editor. This file name includes the full path of the JADE application if the file is not located in the default directory.

If the file cannot be located or it cannot be read, the loadTextFromFile method returns the appropriate exception
code rather than raising exceptions to report errors (for example, 5003 - Requested file not found). If the file read
operation was successful, this method returns zero (0).

The maximum size of a file that you can load into the control by using this method is the smaller of 50M bytes or a
tenth of the physical memory.

An ANSI JADE system is limited to loading a File object of kind type Kind_ANSI.

A Unicode JADE system loads most kinds of text files. Non-ANSI files are filtered during UTF8 conversion and if
an invalid Unicode sequence is detected, the load returns error 15645.

End-of-line conversion is performed, to force all end-of-line sequences to match the current value of the
endOfLineMode property.

If the text files contains null characters, only the text preceding the first null character are loaded.

The code fragment in the following example shows the use of the loadTextFromFile method.

str := "c:\Temp\utf8.txt";
int := jteSource.loadTextFromFile(str);
if int > 0 then

app.msgBox("Load failed", "Load Editor text", 0);
endif;

makeAutomationObject
Signature makeAutomationObject();

The makeAutomationObject method of the ActiveXControl class creates an ActiveXAutomation object instead
of a control, so that an ActiveX control can be treated as a standard automation object when you define a control
that does not require a form in which to reside. (An ActiveX control is a standard automation object with interfaces
to handle GUI requirements.)

Although the ActiveX object was imported as a control, it can be used as an automation object on the application
server when you set the usePresentationClient property to false.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 503

EncycloWin - 2020.0.02

The following example assumes that you have imported the Microsoft SysInfo control type library (that is,
sysInfo.ocx) into JADE as an ActiveX control. This example creates a JADE control instance and calls the
makeAutomationObject method instead of adding the control to a form.

createSysInfoAsAutoObject();
vars

actx : SysInfo;
begin

create actx transient;
actx.makeAutomationObject;
write actx.oSVersion;
write actx.oSBuild;
delete actx;

end;

makePicture
Signature makePicture(binary: Binary): IJadeAutoPicture;

The makePicture method of the ActiveXControl class creates a picture object from the JADE binary specified in
the binary parameter. A null value is returned if an invalid binary is specified.

menuItemCount
Signature menuItemCount(): Integer;

The menuItemCount method of the Form class returns the number of menu items on the form.

menuItems
Signature menuItems(menuNumber: Integer): MenuItem;

The menuItems method of the Form class enables logic to access a reference to the menu items on an active
form at run time.

This method returns the active menu item object specified in the menuNumber parameter or null if there is no
specified menu item. The method returns an object of type MenuItem, which enables the properties of a menu
item to be accessed.

The method in the following example examines all menu items on a form.

vars
mnu : MenuItem;
indx : Integer;

begin
foreach indx in 1 to menuItemCount do

mnu := menuItems(indx);
if mnu.name = "Item1" then

... // do some processing here
endif;

endforeach;
end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 504

EncycloWin - 2020.0.02

move
Signature move(x: Real;

y: Real;
width: Real;
height: Real);

The move method of the Window class enables logic to move and size a form or control from a single method call.

The position values for a control are in units, determined by the scaleMode property of the parent control. Form
units are in pixels. The resize or formMove event for a form is not generated when the move method is called.

It is far more efficient to call the move method than to set more than one of the left, top, width, height, clientWidth,
or clientHeight properties, as each change to these properties results in a call to the move method, changing only
a specific property.

Each call potentially results in a move and resize taking place. If the window being affected has other controls
aligned to it, these are also resized or moved each time.

The following examples show the use of the move method.

if global.appCount = 1 then
self.move(0, 0, self.width, self.height);
label3.backColor := Yellow;
bOpen.value := true;

else
self.move(400, 0, self.width, self.height);
label3.backColor := Red;
bListen.value := true;

endif;

pictureEnlarged_mouseMove(pict: Picture input; button: Integer;
shift: Integer; x: Real; y: Real) updating;

begin
if movePic = true then

pictureEnlarged.move(pictureEnlarged.left + (x - moveX),
pictureEnlarged.top + (y - moveY),
pictureEnlarged.width,
pictureEnlarged.height);

pictureEnlarged.refreshNow;
endif;

end;

moveCaret
Signature moveCaret(action: Integer;

param1: Integer;
param2: Integer): Integer;

The moveCaret method of the JadeTextEdit class moves the caret or visible text in the text editor. In the action
parameter, use the JadeTextEdit class constants:

MVCRT_VIEWCARET (1) to force the caret into view and return zero (0). The values of theparam1 and
param2 parameters must be zero (0)

MVCRT_VIEWSELECTION (2) to force the start of the selection into view and return zero (0)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 505

EncycloWin - 2020.0.02

MVCRT_WORDEND (3) to force the caret to the end of the current word and return the new caret position

MVCRT_WORDSTART (4) to force the caret to the start of the current word and return the new caret position

The param1 and param2 parameters are reserved for future use and should be set to zero (0).

The code fragment in the following example shows the use of the moveCaret method.

jteSource.selStart := 5600;
jteSource.selLength := 100;
jteSource.moveCaret(JadeTextEdit.MVCRT_VIEWSELECTION, 0, 0);
jteSource.setFocus();
return;

moveColumn
Signature moveColumn(src: Integer;

dst: Integer);

The moveColumn method of the Table class can be used to move a column of the current sheet of a table. The
following example of the moveColumn method moves column 4 to column 2. Column 2 becomes column 3, and
column 3 becomes column 4.

table1.moveColumn(4, 2);

The following example of the moveColumn method moves column 2 to column 4. Column 3 becomes column 2,
and column 4 becomes column 3.

table1.moveColumn(2, 4);

The current column is adjusted if that column is affected.

The methods in the following examples show the use of the moveColumn method.

comboBoxColMoveTo_click(combobox: ComboBox input) updating;

theTable_dragDrop(table: Table input;
win: Window input;
x, y: Real) updating;

// Dropping a column on the table causes the dragged column to be moved
// before or after the column it is dropped on, based on the move direction
vars

count : Integer;
begin

if win = table then
count := convertPositionToColumn(x);
if count <> 0 then

win.Table.moveColumn(win.Table.column, count);
endif;
win.dragMode := DragMode_None;

endif;
end;

begin
if selectedColumn <> null then

table1.moveColumn(selectedColumn, comboBoxColMoveTo.listIndex);
selectedColumn := null;
table1.clearAllSelected;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 506

EncycloWin - 2020.0.02

buttonSort.setFocus;
else

app.msgBox("You must select a column", "No column selected!",
MsgBox_OK_Only);

return;
endif;

end;

moveMdiClient
Signature moveMdiClient(left: Real;

top: Real;
width: Real;
height: Real);

The moveMdiClient method of the Form class can be used to position the client window, as required.

When a form is built as an MDI frame, it also automatically creates a child client window that covers the non-
border area of the frame. Child MDI forms are placed inside this client window.

If the MDI frame is defined with controls, this client window may hide these controls. By default, an attempt is made
to position the client window into the largest rectangular area that does not overlap any of the controls. This
process works for most situations when the controls are positioned at the edges of the form client area; for
example, a status line or toolbar control.

Use the moveMdiClient method if this positioning is not satisfactory. This method would normally be called from
the resize event of the form. When this method has been called for an MDI frame, no automatic positioning of the
client is attempted again, as this remains your responsibility.

The default positioning is performed only during the resize event of the MDI frame. Changing the visibility or
position of a control belonging to the MDI frame has no impact on the position of the MDI client window.

The method in the following example positions the MDI client window below a toolbar control positioned at the top
of the client area.

form_resize();
begin

toolBar.width := clientWidth;
toolBar.bevelOuterWidth := 1;
toolBar.bevelInnerWidth := 1;
// Set size of the mdi client window
moveMdiClient(0, toolBar.height, clientWidth, clientHeight

- toolBar.height);
end;

moveRow
Signature moveRow(src: Integer;

dst: Integer);

The moveRow method of the Table class can be used to move a row of the current sheet of a table. The current
row is adjusted if that row is affected. The src parameter specifies the source row (that is, the row to be moved)
and the dst parameter specifies the destination of the moved row. The code fragment in the following example of
the moveRow method moves row 4 to row 2. Row 2 becomes row 3, and row 3 becomes row 4.

table1.moveRow(4, 2);

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 507

EncycloWin - 2020.0.02

The code fragment in the following example of the moveRow method moves row 2 to row 4. Row 3 becomes row
2, and row 4 becomes row 3.

table1.moveRow(2, 4);

The method in the following example shows the use of the moveRow method.

buttonFind_click(btn: Button input) updating;
vars

row : Integer;
begin

table1.clearAllSelected;
if textBoxFind.text <> null then

table1.column := comboBoxColumns.listIndex;
foreach row in 1 to table1.rows do

table1.row := row;
if table1.text = textBoxFind.text then

table1.moveRow (row, 2);
table1.selected := true;
return;

endif;
endforeach;
app.msgBox("No match found", " ", MsgBox_OK_Only);
return;

else
app.msgBox("You must enter something to search for", "No search

name entered", MsgBox_OK_Only);
return;

endif;
end;

newFile
Signature newFile(str: String);

The newFile method of the MultiMedia class creates a new file for the device specified in the str parameter.

If the useDotNetVersion property is set to true, the newFile method is not available and it generates exception
1068 (Feature not available in this release).

This method is normally used only before commencing a recording process. See also the record and save
methods.

newIndex
Signature newIndex(): Integer;

The newIndex method of the ComboBox or ListBox class returns the index of the item most recently added to a
combo box or list box control, or the index of the item that most recently had its text changed by using either the
itemText or text property if the value of the sorted property is true. Use the newIndex method with sorted lists
when you need a list of values that correspond to each item in the itemObject or itemData property array. As you
add an item in a sorted list, that item is inserted alphabetically in the list.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 508

EncycloWin - 2020.0.02

The newIndex method tells you where the item was inserted, so that you can set a corresponding value in the
itemData or itemObject property array for the item at the same index. This value is also returned by the addItem
method. The newIndex method returns -1 if there are no items in the list or if an item has been deleted since the
last item was added.

When the text of an item is altered, the item may be repositioned in the list because of the sorted property. The
new position of the item can be obtained by using the newIndex method, regardless of whether or not the entry
shifted position.

The method in the following example shows the use of the newIndex method.

loadListBox() updating;
vars

obj : Object;
begin

app.mousePointer := self.MousePointer_HourGlass;
if currentDict <> null then

foreach obj in currentDict do
listInstances.addItem(obj.display);
listInstances.itemObject[listInstances.newIndex] := obj;
if listInstances.newIndex.isEven then

listInstances.itemBackColor[listInstances.newIndex] :=
LightYellow;

endif;
endforeach;

endif;
app.mousePointer := self.MousePointer_Arrow;

end;

objectPropertiesDialog
Signature objectPropertiesDialog();

The objectPropertiesDialog method of the JadeRichText class invokes the OLE <COM-object-name> Properties
dialog that displays the properties of the object of the receiver. This dialog enables users to change the view of the
object (that is, as an icon view or the full contents view).

objectType
Signature objectType(): Integer;

The objectType method of the OleControl class returns the loaded object type.

The returned object type values are listed in the following table.

OleControl Class Constant Value Description

ObjectType_Embedded 1 Embedded object is present

ObjectType_Linked 2 Linked object present

ObjectType_None 0 No object is present

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 509

EncycloWin - 2020.0.02

ocxClassName
Signature ocxClassName(): String;

The ocxClassName method of the Ocx control class returns the Windows Registry name of the ActiveX control.

openDialog
Signature openDialog();

The openDialog method of the MultiMedia class displays a modified version of the common File Open dialog that
allows a user to select the file to be loaded into the control.

The dialog automatically lists the types of files that are supported by the devices installed on that workstation. It
can also sample play the selected file.

If the useDotNetVersion property is set to true, MP4 file types are included in the list.

Before the dialog is called, any existing device or file associated with the control is closed. On return from the
method call, the mediaName property contains the name of the selected file or an empty string if the dialog was
cancelled.

pageMargins
Signature pageMargins(lft: Integer;

rght: Integer;
tp: Integer;
btm: Integer);

The pageMargins method of the JadeRichText class specifies the left, right, top, and bottom margins,
respectively, around a rich text control on a printed page. Specify the parameter values as twentieths of a point
(twip), which is 1/1440th of an inch (that is, there are 1440 twips in an inch).

All margins are half an inch (720 twips) by default. Although you can set a margin as small as zero (0) twips, the
actual margin can be no smaller than that used by the printer to which the control is output.

paintIfRequired
Signature paintIfRequired() clientExecution;

The paintIfRequired method of the Form class causes the form to be repainted if a repaint is required; for
example, while performing a long processing loop, to ensure that the user presentation is updated after the user
brings another application to the front and then returns to JADE.

The JADE executable calls the DisableProcessWindowsGhosting() Microsoft API on initiation, which disables
Windows’ ghosting so that a non-responsive form does not show Not Responding, nor does it have the ghosting
effect applied by Windows. However, the form will still not automatically paint itself when the presentation thread is
busy processing JADE logic. Windows automatically redraws that part of the form or forms that need refreshing
from a saved copy of the previously painted image or images.

A refreshNow event is performed on that part of the form that needed refreshing. If paint events are not required,
no action is performed.

The paintIfRequired method performs any repainting required without having to perform an
app.doWindowEvents method call, and therefore does not allow the user interface to be active.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 510

EncycloWin - 2020.0.02

Other than any paint events, no other events, notifications, or timer events will be processed as a result of this
paintIfRequired method call.

Note After a repaint, any clicked button that initiated the processing loop will be drawn in the up position, so it
will be important that the user is given a visual indication that the processing is still progressing by some other
means; for example, by using the app.mousePointer := 11 (busy) property value.

You will need to add a call to your logic loop that is regularly performed; for example, call it when the Cancel
button is checked for a click event, when a progress bar update ticks over a percentage, or at a specified number
of seconds, as shown in the following code fragment.

cancelled := false;
while not cancelled do

// ... logic
// the click event sets the cancelled property
btnCancel.doWindowEvents(0);
form1.paintIfRequired();

endwhile;

pasteFromClipboard
Signature pasteFromClipboard(): Integer;

The pasteFromClipboard method of the JadeTextEdit class pastes the contents of the clipboard into the control
at the current caret position and returns 1.

The value of the endOfLineMode property controls the end-of-line conversion that is performed on the inserted
text.

The caret is positioned at the end of the inserted text.

paste_
Signature paste_();

The paste_ method of the JadeRichText class programmatically pastes content (for example, text or an image)
from the Windows clipboard into the JadeRichText control at the current cursor position.

Before you call the paste_ method, call the canPaste_ method to confirm there is suitable content available.

If the clipboard does not contain suitable content, the method does not result in any change. (This method is
equivalent to selecting the Paste command in the context menu of the JadeRichText control at run time.)

Applies to Version: 2020.0.01 and higher

pause
Signature pause();

The pause method of the MultiMedia class pauses the playing or recording of the device or file associated with
the control.

The method in the following example shows the use of the pause method.

pause_click(btn: Button input) updating;
begin

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 511

EncycloWin - 2020.0.02

cd.pause;
end;

To restart the playing or recording, use the play, playFromTo, or resume method.

pictureHeight
Signature pictureHeight(): Integer;

The pictureHeight method of the Picture class returns the height (in pixels) of the current image in the control.
The height that is returned is the height of the unstretched image.

pictureType
Signature pictureType(): Integer;

The pictureType method of the Picture class returns the type of picture loaded into a picture control. This method
functions on both a runtime picture control and on a static (database) definition of a picture in a picture control.
(The pictureType method of the Binary primitive type also performs the same function, allowing an existing binary
object to be examined for picture suitability.)

The values returned by the pictureType method are listed in the following table.

Window Class Constant Value Description

PictureType_None 0 Not a valid picture

PictureType_Bitmap 1 Bitmap

2 Not used

PictureType_Icon 3 Icon

PictureType_MetaFile 4 Metafile

PictureType_Cursor 5 Cursor

PictureType_Tiff 6 Tag Image File Format (Tiff)

PictureType_Jpeg 7 Joint Photographic Experts Group (JPEG)

PictureType_Jpeg2000 7 Joint Photographic Experts Group (JPEG)

PictureType_Png 8 Portable Network Graphics (png)

PictureType_Gif 9 Graphics Interchange Format (GIF)

For more details about picture types, see "Supported Picture Image Formats", in the following subsection.

Supported Picture Image Formats
The picture image formats that are handled by JADE using the pictureType method of the Picture class are listed
in the following table.

Picture Format File Type Description

Windows bitmap .bmp Standard Microsoft bitmap image.

Windows compressed bitmap .rle Both RLE4 and RLE8.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 512

EncycloWin - 2020.0.02

Picture Format File Type Description

Windows icons .ico File can contain single or multiple icons. If multiple icons,
JADE selects the icon with the closest color characteristics to
the video display of the user.

Note that icons can be used as cursors, except that there is
no hot spot.

Windows metafile .wmf Standard Microsoft Windows metafile.

Windows enhanced metafile .emf Standard Microsoft enhanced metafile.

Windows cursor .cur Standard Microsoft cursor. (Note that cursors are converted
to an icon when used as a picture rather than a cursor.)

Tag Image File Format .tif TIFF files (both the Intel and Motorola versions). JADE
supports the following TIFF compression styles (CCITT is the
International Telegraph and Telephone Consultative
Committee).

Uncompressed

CCITT Group 3 1D

CCITT Group 3 2D

CCITT Group 4

PackBits

Modified Huffman encoding

Graphics Interchange Format .gif Only .gif files containing images are handled. Text records
within a .gif file are ignored. JADE does not support the
ability to convert images to .gif files.

Animated GIF handling is supported only if the picture
property of a Picture or JadeMask control is set to a GIF
binary that contains more than one image.

Joint Photographic Experts Group .jpg All JPEG files in compliance with the JFIF standard are
supported, including compressed JPEG images. Also the
JPEG 2000 style images.

Portable Network Graphics .png Lossless compression images for greater clarity of graphics.

pictureWidth
Signature pictureWidth(): Integer;

The pictureWidth method of the Picture class returns the width (in pixels) of the current image in the control.

The width that is returned is the width of the unstretched image.

play
Signature play(); (MultiMedia)

play(delay: Integer); (Picture)

The play method of the MultiMedia class starts the device playing from the current position in the content.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 513

EncycloWin - 2020.0.02

The following examples show the use of the MultiMedia class play method to play a video file.

mmcontrol.mediaName := "c:\image.avi";
mmcontrol.play;

play_click(btn: Button input) updating;
begin

cd.play;
stop.setFocus;

end;

See also the MultiMedia class playFromTo and playReverse methods.

The play method of the Picture class causes a separate thread to be initiated, which cycles through the pictures in
an array defined by the setPicture method with a pause between the display of each picture in the array. Use the
delay parameter to specify in milliseconds the length of the pause between each picture that is displayed. (See
also the stop method.)

When using the play method to display pictures:

If the value of the pictureCount property of the Picture control is zero (0), this method does nothing.

If the value of the pictureCount property of the Picture control is 1, this method displays the only picture in
the picture array.

If the value of the pictureCount property or the pictureIndex property of the Picture control is changed, the
animation stops.

The picture is not resized for each picture. The current size of the picture is retained.

The value of the pictureIndex property of the Picture control accessed by logic does not reflect the index in
use by this animation.

If the value of the pictureIndex property of the Picture control is zero (0), the animation starts with the first
picture in the array. If the value of the pictureIndex property is non-zero, the animation starts with the next
picture in that array.

The paint event is not invoked during the animation process.

When running the JADE application in thin client mode, this method executes on the presentation client by default.

playFromTo
Signature playFromTo(src: Integer;

dst: Integer);

The playFromTo method of the MultiMedia class plays the content of the current device or file, starting at the
position specified in the src parameter and stopping when the position specified in the dst parameter is reached.
Specify the src and dst parameter positions in units of the timeFormat property.

If the useDotNetVersion property is set to true, the playFromTo method is not available and it generates
exception 1068 (Feature not available in this release).

The playFromTo method does not invoke continuous loop play when the value of the repeat property is set to
true.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 514

EncycloWin - 2020.0.02

The method in the following example shows the use of the playFromTo method.

buttonPlay_click(btn: Button input) updating;
vars

from, two : Integer;
begin

from := textBoxFrom.text.Integer;
two := textBoxTo.text.Integer;
if from <> null and two <> null then // "to" is a JADE reserved word

multimedia.playFromTo(from, two);
else

multimedia.play;
endif;

end;

See also the play method.

playReverse
Signature playReverse();

The playReverse method of the MultiMedia class starts the device playing from the current position in the content
in the reverse direction.

If the useDotNetVersion property is set to true, the playReverse method is not available and it generates
exception 1068 (Feature not available in this release).

The playReverse method does not invoke continuous loop play when the value of the repeat property is set to
true.

Note Not all devices have the ability to play in reverse.

The method in the following example shows the use of the playReverse method.

buttonPlayReverse_click(btn: Button input) updating;
vars

from, two : Integer;
begin

from := textBoxFrom.text.Integer;
two := textBoxTo.text.Integer;
if from <> null and two <> null then // "to" is a JADE reserved word

multimedia.playFromTo(two, from);
else

multimedia.playReverse;
endif;

end;

See also the play and playFromTo methods.

popupMenu
Signature popupMenu(menu: MenuItem;

x: Integer;
y: Integer);

The popupMenu method of the Form class invokes a popup menu for the form.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 515

EncycloWin - 2020.0.02

The parameters of the popupMenu method are listed in the following table.

Parameter Description

menu An existing popup menu item of the menu of the form

x The left position to display the popup menu

y The top position to display the popup menu

The menu item must be part of the menu of the form and must have subitems. The submenu does not need to be
visible in the current form menu. The menu click message is not received until the current window activity is
finished (that is, until after the calling methods have exited).

A MenuItem::select event that has the closed parameter set to false is called for the menu referenced by the
popupMenu method before the menu is displayed. A select event that has the closed parameter set to true (that
is, deselected) for the popup menu is called only when the menu is closed.

Note The popupMenu method cannot be invoked from a server method.

The popupMenu method can be invoked when the user clicks the right mouse button, as shown in the methods in
the following examples.

theTable_mouseDown(table: Table input;
button: Integer;
shift: Integer;
x, y: Real) updating;

// left button - go into drag mode
// right button - popup menu of table columns
begin

xColSave := convertPositionToColumn(x);
yRowSave := convertPositionToRow(y);
if xColSave <> 0 and yRowSave <> 0 then

if theTable.row = 1 then
if button = Window.MouseButton_Left then

table.dragMode := DragMode_Drag;
else

popupMenu(mPopupColumnList, (x + tableGroup.left +
table.left).Integer, (y + tableGroup.top +
table.top).Integer);

endif;
endif;

endif;
end;

table1_mouseDown(table: Table input;
button, shift: Integer;
x, y: Real) updating;

begin
if button = Window.MouseButton_Left then

dragMode := DragMode_Drag;
else

popupMenu(menuItemAction, x.Integer, y.Integer);
endif;
selectedColumn := table.column;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 516

EncycloWin - 2020.0.02

For more details, see "Windows Events and JADE Events", later in this document.

positionCollection
Signature positionCollection(obj: Object;

row: Integer);

The positionCollection method of the ListBox class positions the collection attached to the list box control to an
object in that collection and to a position within the list box.

Use the obj parameter to specify the object to be positioned and the row parameter to specify the visible row in
which to position that object.

You can use this method to scroll through an existing collection display by specifying the new position of an object
within the current display. For example, the following code fragment scrolls the collection view so that the second
item is positioned in the top row.

listBox1.positionCollection(listBox1.itemObject[2], 1);

When using the positionCollection method:

The specified row may not be the resulting displayed row if the required control cannot display sufficient
entries to fill the list box.

The listIndex property is set to the row of the object.

If the specified object is not a visible member of the collection in the list box, the display starts from the first
visible collection entry.

If the specified row is:

Less than 1, 1 is assumed.

Greater than the number of rows in the list box, the number of visible rows is assumed.

positionLeft
Signature positionLeft(): Integer; (Table)

positionLeft(index: Integer): Integer; (ListBox)

The positionLeft method of the Table control returns the displayed left position of the current cell in pixels, relative
to the left of the client area of the table (the area inside borders).

The sheet, column, and row properties define the current cell. If the current cell is not visible, one or both of the
positionLeft or positionTop methods returns -1. The positionLeft method of the ListBox control returns the
displayed left position in pixels of the start of the text in the list box entry specified in the index parameter, relative
to the client area of the ListBox control (that is, the area inside borders).

If the requested list entry is not valid, the positionLeft method returns -1.

Note The indicated position is for the text of the list entry and not for any pictures displayed before the text. (Use
the getListIndex method to return the index of the displayed list entry corresponding to the specified x and y
positions.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 517

EncycloWin - 2020.0.02

The method in the following example shows the use of the positionLeft method to return the table column whose
left and width position covers the x coordinate that is passed.

convertPositionToColumn(xPos: Real): Integer updating;
vars

originalColumn : Integer;
ix : Integer;

begin
originalColumn := theTable.column;
ix := theTable.leftColumn;
while ix <= theTable.columns do

theTable.column := ix;
if theTable.positionLeft <= xPos then

if xPos <= (theTable.positionLeft + theTable.columnWidth[ix])
then

theTable.column := originalColumn;
return ix;

endif;
endif;
ix := ix + 1;

endwhile;
theTable.column := originalColumn;
return 0;

end;

positionTop
Signature positionTop(): Integer; (Table)

positionTop(index: Integer): Integer; (ListBox)

The positionTop method of the Table control returns the displayed top position of the current cell in pixels, relative
to the top of the client area of the table (the area inside borders). The sheet, column, and row properties define
the current cell.

If the current cell is not visible, one or both of the positionLeft or positionTop methods returns -1.

The positionTop method of the ListBox control returns the displayed top position in pixels of the list box entry
specified in the index parameter, relative to the client area of the ListBox control (that is, the area inside borders).
If the requested list entry is not visible or the specified index is not valid, the positionTop method returns -1. (Use
the getListIndex method to return the index of the displayed list entry corresponding to the specified x and y
positions.)

print
Signature print(docName: String;

selection: Boolean);

The print method of the JadeRichText class outputs the contents of the rich text control to the printer of the
application (that is, app.printer).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 518

EncycloWin - 2020.0.02

The print method parameters are listed in the following table.

Parameter Specifies …

docName The output name used in the print queue.

selection Whether the whole control or only the selected portion of the control is printed. As the whole
control is printed by default, set this parameter to true if you want to print the selected portion
only.

processInputFromWeb
Signature processInputFromWeb(reply: String);

The processInputFromWeb method of the Ocx control or the ActiveXControl class is the template method that
processes ActiveX controls used on Web pages.

The reply parameter may return a value from the submit operation.

If you want to process ActiveX controls used on Web pages, you must reimplement this method in your own
control class.

record
Signature record();

The record method of the MultiMedia class begins recording content at the current position of the content of the
device, and overwrites existing data for the duration of the recording. The function that the device performs during
recording depends on the characteristics of the device.

A device that uses files (for example, a waveform audio device) sends data to the file during recording. A device
that does not use files (for example, a video-cassette recorder) receives and externally records data on another
medium.

Notes Not all devices support recording.

If the useDotNetVersion property is set to true, the record method is not available and it generates exception
1068 (Feature not available in this release).

The mediaData property does not contain the recorded data.

See also the newFile, canRecord, and save methods.

recordReplay
Signature recordReplay(action : Integer;

options: Integer;
buffer : String io): Integer;

The recordReplay method of the JadeTextEdit class records or replays keystrokes.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 519

EncycloWin - 2020.0.02

The value of the action parameter must be one of the following new JadeTextEdit class Integer constants.

Class Constant Description

KMACRO_GETCOMMANDS Returns the list of available macro commands in the buffer.

KMACRO_GETTEMPORARY Returns the current temporary macro in the buffer.

KMACRO_PLAYTEMPORARY Plays the current temporary macro.

KMACRO_PLAYTEXT Plays the macro text in the buffer without overwriting the current temporary
macro.

KMACRO_RECORDSTART Clears the temporary macro and begins recording keystrokes for the current
temporary macro.

KMACRO_RECORDSTOP Stops recording keystrokes.

KMACRO_SETTEMPORARY Replaces the current temporary macro with the contents of the buffer. If the
value of the options parameter is 1, a syntax check only is done.

The recordReplay method returns zero (0) if no syntax or replay errors occurred; otherwise it returns the positive
character offset of the start of the macro line in error. It can also return a negative result value, indicating JADE
runtime errors; for example:

15650 Macro halted - caret moved outside document

15651 Macro halted - no match for find

Embedded macros are not allowed. You cannot record or play another macro when recording is in progress, nor
can you record or play another macro while a macro is playing.

Macro replay halts when the cursor is moved outside the document (method source editor pane) limits and when
a find command has no match.

Note Each JadeTextEdit control instance has its own private temporary macro.

redo
Signature redo(): Boolean; (JadeRichText)

redo(): Integer; (JadeTextEdit)

The redo method of the JadeRichText class reapplies the last operation that was undone in the receiver control
and returns true if the redo operation was successful or it returns false if the redo operation failed. You can redo
up to 100 edit or format actions in a rich text control.

The redo method of the JadeTextEdit class reapplies the last operation that was undone in the receiver control
and returns zero (0). There is no limit to the number of redo actions in a text edit control.

refresh
Signature refresh();

The refresh method of the Window class forces a repaint of a form or control. Windows issues this paint when
there are no other types of Windows messages waiting to be processed.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 520

EncycloWin - 2020.0.02

Use this method to force a complete repaint of a form or control when you want a form to display completely while
another form is loading, or when you want to update the contents of a control.

Generally, painting a form or control is handled automatically. The paint occurs at a point when other events have
completed. However, there may be situations where you want the form or control to be updated.

If the refresh method is called in the paint event of the window, it causes an exception to be raised, as this
method calls the paint event again, and so on.

The method in the following example shows the use of the refresh method.

listBoxScrollBar_scrolled(scroll: ScrollBar input;
scrollBar: Integer) updating;

vars
count : Integer;

begin
listBoxRight.clear;
textBoxRightStart.text := theArray[listBoxScrollBar.value].Product.name;
app.myCompany.allProducts.startKeyGeq(textBoxRightStart.text, iter);
while count < listBoxRight.lines and iter.next(myProduct) do

count := count + 1;
listBoxRight.addItem(myProduct.name);

endwhile;
epilog

textBoxRightStart.refresh;
end;

refreshEntries
Signature refreshEntries(obj: Object);

The refreshEntries method of the ComboBox, ListBox, and Table class refreshes the list of entries when a
collection is attached to the control. For the Table class, this method applies only to the current sheet of the table.

This method is equivalent to what happens when an update notification is processed. If the obj parameter has a
non-null value, the display is refreshed so that the requested object is included in the visible portion of the list box
or table.

For a combo box or list box, the listIndex property is set to the list entry for that object. For a table, the current row
of the sheet is set to the row for that entry.

Note Calling this method discards any outstanding automatic notifications that would repeat the refreshing
process. (It does not discard any future update notifications.)

You could use this method in the following situations.

When logic has just added a new entry to the collection that is required to be displayed. If the control
performs an automatic update on the display, the notification will not arrive until current event logic
completes or an app.doWindowEvents is performed, and it cannot be guaranteed that it will arrive
immediately if the server is very busy.

Calling the refreshEntries method updates the display and ensures that the new entry is included in the list.

To force a refresh of the entries displayed when data for an entry or entries has been changed so that it will
not result in a notification (the collection is unchanged).

Calling refreshEntries refreshes the displayed list using the updated objects.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 521

EncycloWin - 2020.0.02

refreshNow
Signature refreshNow();

The refreshNow method of the Window class forces an immediate repaint or update of a form or control. This
paint is completed on return from this method. This immediate repaint can cause problems in situations where the
parent of a control is awaiting an ordinary paint and the clipControls property is not set. The effects may be that
the non-client area (border) of the control is overwritten by the paint of the parent.

Use this method to force a complete repaint of a form or control when you want a form to display completely while
another form is loading, or when you want to update the contents of a control.

Generally, painting a form or control is handled automatically. The paint occurs at a point when other events have
completed. However, there may be situations where you want the form or control updated immediately.

Use the refreshNow method instead of the doWindowEvents method of the Window class when the object is to
update the image only; for example, when displaying a running status.

The doWindowEvents method lets in any waiting Windows message, which can result in some unwanted side
effects as the processing of the current message has not yet been completed.

Note If a parent of the window that is refreshed still has an outstanding paint event, the child window is also
painted again after the parent is painted.

The methods in the following examples show the use of the refreshNow method.

btnOK_click(btn: Button input) updating;
vars

obj : Object;
count : Integer;

begin
if class01.value then

if beginNote.value then
foreach obj in ClassNoteClass_01.instances do

classNoteClass_01 := obj.ClassNoteClass_01;
beginNotification(obj, Any_System_Event,

Response_Continuous, 11199);
count := count + 1;

endforeach;
staLine.caption := count.String & ' notifications set';

elseif endNote.value then
foreach obj in ClassNoteClass_01.instances do

classNoteClass_01 := obj.ClassNoteClass_01;
endNotification(obj, Any_System_Event);
count := count + 1;

endforeach;
staLine.caption := count.String & ' notifications ended';

endif;
endif;

end;

btnInitialize_click(btn: Button input) updating;
vars

num : Number;
count : Integer;

begin

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 522

EncycloWin - 2020.0.02

// Creates 5000 Number objects & enters them into the numbers collection
staLine.caption := "Initializing data...";
staLine.refreshNow;
beginTransaction;

foreach count in 1 to 5000 do
create num;
num.key := count;
numbers.add(num);

endforeach;
commitTransaction;
// Resets the status line and enables the two buttons.
// The initialize button is then disabled.
staLine.caption := "";
btnClientExec.enabled := true;
btnServExec.enabled := true;
btnInitialize.enabled := false;

end;

For more details, see "Windows Events and JADE Events", later in this document.

registerFormKeys
Signature registerFormKeys(array: IntegerArray);

The registerFormKeys method of the Form class enables you to establish the entire set of key codes in which
key events of the receiver form are interested. The array parameter is populated with all key codes.

The keyUp, keyPress, and keyDown events are available for forms and for some controls (for example, TextBox
and Table controls). By default, key events are received by the form and the control that has focus. The
registerFormKeys method applies only to key event methods implemented for the form. The registerKeys
method applies only to key event methods implemented for the control.

By default, if a form has key event methods defined, those key events are sent for any key event for any control on
that form. In most situations, the form key events are interested only in specific keys (for example, the Tab key,
arrow keys, and function keys).

After calling the registerFormKeys method with a key code list, the form key events are called on the form only if
the key that is pressed is in the supplied list. This results in not having to call the form key events for every key
action, which reduces the number of events that must be sent and processed.

Note You can use this process in both standard (fat) client and for thin client mode.

In the load method for a form shown in the following example, the Tab and the F2 function keys are registered as
the only keys for which the form key events are called.

load();
vars

aray : IntegerArray;
begin

create aray transient;
aray.add(9); // Tab key
aray.add(113); // F2 key
registerFormKeys(aray);
delete aray;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 523

EncycloWin - 2020.0.02

Calling the registerFormKeys method with a null value or with an empty key code list results in all keys that are
pressed being sent to the form key events again. Each call to the registerFormKeys method entirely replaces any
key code list that is currently in effect.

Note The key codes represent the actual physical keys. Registering the key code of 187 traps both the + and the
= characters because they are the same key.

The Window class provides the class constants listed in the following table, which you can add to key code array
parameter value to indicate that the key event should be sent only if the indicated special keys are also down
when a specified key is pressed.

Window Class Constant Integer Value

RegisterKeys_Alt (#80000000)

RegisterKeys_Ctrl (#40000000)

RegisterKeys_Shift (#20000000)

You can use these class constants with a zero (0) key code array value, to indicate that the events for any key
pressed are sent when that combination of special keys is also down (except for the special keys themselves).
The method in the following example shows the use of these class constants.

load();
vars

aray : IntegerArray;
begin

create aray transient;
aray.add(9);
// Tab key, regardless of whether the Alt, Ctrl, or Shift keys are down
aray.add(113 + RegisterKeys_Shift);
// F2 key, only when Shift is also down
aray.add(114 + RegisterKeys_Ctrl + RegisterKeys_Shift);
// F3 key, only when Ctrl and Shift keys are both also down
aray.add(RegisterKeys_Ctrl);
// Any key pressed while the Ctrl key is down
aray.add(RegisterKeys_Alt + RegisterKeys_Shift);
// Any key pressed while Alt and Shift keys are both down
registerFormKeys(aray);
delete aray;

end;

registerKeys
Signature registerKeys(array: IntegerArray);

The registerKeys method of the Control class enables you to establish the entire set of key codes in which key
events of the receiver control are interested. The array parameter is populated with all key codes. (For an
example of registering keys, see the Form class registerFormKeys method.) This method applies only to controls
that can get the focus and therefore receive key events.

By default, if a control has keyDown, keyPress, or keyUp event methods defined, those key events are sent for
any key event for that control. In most situations, the control key events are interested only in specific keys (for
example, the Tab key, arrow keys, and function keys).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 524

EncycloWin - 2020.0.02

The keyUp, keyPress, and keyDown events are available for forms and for some controls (for example, TextBox
and Table controls). By default, key events are received by the form and the control that has focus. The
registerFormKeys method applies only to key event methods implemented for the form. The registerKeys
method applies only to key event methods implemented for the control.

After calling the registerKeys method with a key code list, the control events are called on the control only if the
key that is pressed is in the supplied list. This results in not having to call the control key events for every key
action, which reduces the number of events that must be sent and processed.

Note You can use this process in both standard (fat) client and for thin client mode.

Calling the registerKeys method with a null value or with an empty key code list results in all keys that are
pressed being sent to the control key events again.

Each call to the registerKeys method entirely replaces any key code list that is currently in effect.

Note The key codes represent the actual physical keys. Registering the key code of 187 traps both the + and the
= characters because they are the same key.

The Window class provides the class constants listed in the following table, which you can add to key code array
parameter value to indicate that the key event should be sent only if the indicated special keys are also down
when a specified key is pressed.

Window Class Constant Integer Value

RegisterKeys_Alt (#80000000)

RegisterKeys_Ctrl (#40000000)

RegisterKeys_Shift (#20000000)

You can use these class constants with a zero (0) key code array value, to indicate that the events for any key
pressed are sent when that combination of special keys is also down (except for the special keys themselves). For
an example of the use of these class constants, see the Form class registerFormKeys method.

registerWindowMsg
Signature registerWindowMsg(msgName: String;

methodName: String): Integer;

The registerWindowMsg method of the Form class registers a Windows message with the JADE GUI
environment so that when the message specified in the msgName parameter is received by that form, the method
specified in the methodName parameter is called on the form object.

The parameters of the registerWindowMsg method are listed in the following table.

Parameter Description

msgName String used by the JADE GUI environment to call the RegisterWindowMessage Windows
Application Programming Interface (API). This function defines a new Windows message
number that is guaranteed to be unique for that workstation environment based on the
specified name. Each subsequent call to RegisterWindowMessage by any application on
that workstation returns the same message number.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 525

EncycloWin - 2020.0.02

Parameter Description

methodName The name of the method that is called when the JADE GUI environment receives a message
with the specified number from Windows for that form. The method must be defined and
expect a single Integer parameter. The wParam parameter of the received Windows
message is passed as the Integer parameter to the method. (For additional information
about PostMessage or SendMessage, refer to the Windows documentation.)

The registerWindowMsg method returns the message number (msgNum) generated by the msgName
parameter call on the RegisterWindowMessage API. For example, the following code fragment results in
form1.specialCallBack(val: Integer) being called when a Windows message of msgNum is received by form1
in the GUI environment, where val is the value passed in the wParam value of the Windows message.

msgNum := form1.registerWindowMsg("My Special Call Back", "specialCallBack");

The PostMessage or SendMessage Windows call to generate the message must use the hwnd parameter of the
form. Using an external method definition, for example, the message could be posted to JADE as follows.

call postMessage(form1.hwnd, msgNum, val, 0);

Note Multiple forms can register the same message name and each form can register multiple messages using
different names.

Calling the registerWindowMsg method with the same message name a second time replaces the previous
registration.

To remove the registered message, call the registerWindowMsg method with a null value ("") in the
methodName parameter.

releaseMouse
Signature releaseMouse();

The releaseMouse method of the Window class releases the mouse capture from a window and restores normal
mouse input processing.

A window that has captured the mouse receives all mouse input.

This method is called by an application after calling the captureMouse method.

removeItem
Signature removeItem(index: Integer);

The removeItem method of the ComboBox, ListBox, and Table classes removes an item from a combo box or
list box control or removes a row from a table control for the current sheet at run time. For a combo box or list box
control, if the item to be removed has subitems then these are removed as well.

The index parameter is an integer value that represents the position within the control of the item or row to be
removed. The value of the index is 1 for the first row in a table control and for the first item in a list box or combo
box control.

The following examples show the use of the removeItem method.

comboBoxColMoveTo.removeItem(comboBoxColMoveTo.listCount);

instancesTable.removeItem(row); // remove from display

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 526

EncycloWin - 2020.0.02

btnDelete_click(button: Button) updating;
vars

emp : Employee;
begin

emp := listBoxEmps.listObject.Employee;
if emp.allEmployees.size <> 0 then

app.msgBox("Employee has employees - cannot delete", "Error",
MsgBox_OK_Only);

return;
endif;
beginTransaction;
delete emp;
listBoxEmps.removeItem(listBoxEmps.listIndex);
commitTransaction;

end;

removeSystemTrayEntry
Signature removeSystemTrayEntry();

The removeSystemTrayEntry method of the Form class removes the system tray entry for the form. This method
does nothing if there is no system tray entry (defined by using the Form class setSystemTrayEntry method). See
also the hasSystemTrayEntry method.

removeWebEventMapping
Signature removeWebEventMapping(eventName: String): Boolean;

The removeWebEventMapping method of the Window class removes the Web event mapping specified in the
eventName parameter from the receiver. For example, the following code fragment removes the lostFocus event
from the textBox1 control.

textBox1.removeWebEventMapping("onLostFocus");

This method returns false if the specified event does not exist.

replace
Signature replace(find: String; (JadeRichText)

replace: String;
start: Integer;
finish: Integer;
options: Integer): Integer;

replace(replacement: String; (JadeTextEdit)
interpretation: Integer): Integer;

The replace method of the JadeRichText class replaces text in the receiver. (For an example of the use of this
method, see "JadeRichText Control Method Example", earlier in this document.)

The replace method returns the number of replacements that are made.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 527

EncycloWin - 2020.0.02

The JadeRichText class replace method parameters are listed in the following table.

Parameter Description

find Text to be located.

replace The text that replaces instances of text in the receiver matching that specified by the find
parameter.

start Start of the search range, as a character index into the text or specified as Find_
BeginningOfText.

finish End of the search range, as a character index into the text or specified as Find_EndOfText.

options One or more of the following values, separated by the plus symbol (+).

Find_MatchCase, which finds only text with the matching case; otherwise search is case-
insensitive.

Find_WholeWord, which finds only whole words; otherwise parts of words satisfy the
search.

Find_SearchBack, which searches backwards through the text; otherwise the search
direction is forward to the end of the text.

Replace_ReplaceAll, which replaces all occurrences of the located (found) text in the
receiver.

Instances of text in the receiver matching the text specified in the find parameter are replaced by text specified in
the replace parameter. The replace method of the JadeTextEdit class replaces the most recent find match in the
text editor with the replacement text specified in the replacement parameter.

Use the interpretation parameter to specify one of the following JadeTextEdit class constants.

FIND_INTERP_NONE (0), to replace text as is

FIND_INTERP_POSIXREGEXPR (3), to replace text after converting backslash control characters and
inserting tagged regions (\n, where the n value is in the range 1 through 9)

FIND_INTERP_REGEXPR (2), to replace text after converting backslash control characters and inserting
tagged regions

FIND_INTERP_UNSLASH (1), to replace text after converting backslash control characters

Each replace action in the text editor can be undone separately. A successful replace action automatically calls
the findAgain method and returns the result of that find. If no recent find action was performed, the replace action
is not performed.

For more details about interpretation, see the find method.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 528

EncycloWin - 2020.0.02

replaceAll
Signature replaceAll(match: String;

replacement: String;
range: Integer;
direction: Integer;
caseSensitive: Boolean;
wholeWord: Boolean;
wordStart: Boolean;
interpretation: Integer): Integer;

The replaceAll method of the JadeTextEdit class searches for specified text in the text editor and replaces it with
the specified replacement text.

This method performs a single undo action, which is a looped find method call followed by a replace method call
until the replace action returns a not found result.

The replaceAll method parameters are listed in the following table.

Parameter Description

match Mandatory value, which specifies the text to be located.

replacement The text that replaces instances of text in the receiver matching that specified by the match
parameter.

range Range of search. One of FIND_RANGE_ALL (0), FIND_RANGE_CARET (1), or FIND_
RANGE_SELECTION (2). The FIND_RANGE_SELECTION (2) can be a stream selection,
line selection, or rectangular selection.

direction Direction in which to search. Specify -1 to search backwards towards the top of the text
editor, zero (0) or +1 to search forwards towards the bottom of the text editor. The search is
always performed starting at the position closest to the top of the text.

caseSensitive If true, finds only text with the matching case. If false (the default), the search is case-
insensitive.

wholeWord If true, finds only whole words. If false (the default), finds parts of words that satisfy the
search.

wordStart If true, the match must occur at the start of a word (that is, the matched text must be
preceded by a non-word character).

interpretation One of the following values, represented by JadeTextEdit class constants.

FIND_INTERP_NONE (0), to search for text as is

FIND_INTERP_POSIXREGEXPR (3), to search for a POSIX regular expression

FIND_INTERP_REGEXPR (2), to search for a regular expression

FIND_INTERP_UNSLASH (1), to search for backslash control characters

For details about interpretation, see the find method.

The caret is positioned as close as possible to its apparent original location.

The replaceAll method returns the number of replacements that were made. If the selection is empty and FIND_
RANGE_SELECTION is specified, it returns -2.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 529

EncycloWin - 2020.0.02

The code fragment in the following example shows the use of the replaceAll method to replace all occurrences of
"fred" with "harry" between the caret and the end of the text.

count := self.theJadeTextEdit.replaceAll("fred", "harry",1 /*range*/,
0/*direction*/
false/*caseSensitive*/,
false/*wholeWord*/,
false/*wordStart*/,
0 /*interpretation*/);

if count < 1 then
app.msgBox("No matches","Replace text",0);

endif;

replyAsBinary
Signature replyAsBinary(header: String;

message: Binary): String;

The replyAsBinary method of the Form class returns the Binary message contained in the message parameter
to the Web browser without modification. Use this method to send a binary reply without UTF-8 encoding to a Web
message.

The message uses the String value in the header parameter as the HTTP headers. The headers are encoded
with UTF-8, as is expected for HTTP headers.

The code fragment in the following example shows the use of the replyAsBinary method in the MyWebForm
class.

message := f.readBinary(f.fileLength);
header := 'Content-Type: application/pdf' & CrLf &

'Content-Disposition: attachment;filename=' &
downloadFile.fileName.stripToFileName & CrLf &

'Content-Length: ' & message.length.String & CrLf & CrLf;
replyAsBinary(header, message);

resetAllHyperlinks
Signature resetAllHyperlinks();

The resetAllHyperlinks method of the Table class clears all HyperText links that were set using the
setHyperlinkCell method.

resetFirstChange
Signature resetFirstChange();

The resetFirstChange method of the Form class resets the first change status of the referenced form and all
TextBox, JadeRichText, and JadeEditMask controls on the form. After calling the resetFirstChange method, the
next change made to a control on the form listed in the following table again generates a firstChange event for
the form.

Control Class Change

TextBox Change to the value of the text property

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 530

EncycloWin - 2020.0.02

Control Class Change

JadeEditMask Change to the value of the text property

JadeRichText After a user change but before the change event (same rules as those that apply to the
JadeRichText class firstChange event)

CheckBox Change to the value of the value property

OptionButton Change to the value of the value property

ComboBox Different entry selected (this does not apply to the text box portion of the combo box unless
the text property change causes a different list entry to be selected)

ListBox Different list entry selected

Table Cell updated by the Control class automaticCellControl property, including default
inputType property entry of CheckBox, TextBox, JadeEditMask, and ComboBox controls
(but not when a different row or column is selected)

Similarly, the next change made on each TextBox, JadeRichText, and JadeEditMask control on the form again
generates a firstChange event on that control.

The resetFirstChange method of the Control class resets the first change status of the control and all children of
the control. As only the TextBox, JadeRichText, and JadeEditMask controls have a firstChange event, all other
controls ignore the method other than to call the method on any children. The code fragment in the following
example resets the firstChange event status on the text box.

textBox1.resetFirstChange();

The code fragment in the following example ignores the method for the group box, but resets the firstChange
event status for any child (or children of children) TextBox, JadeRichText, or JadeEditMask controls.

grpAddress.resetFirstChange();

You could use the resetFirstChange method, for example, so that when a user clicks an update button and the
logic associated with that button performs the required updating, the form remains active. Calling
resetFirstChange will reset the firstChange status of the form and its controls to the same state as when the form
was loaded. The next change made to a control on the form and to any TextBox, JadeRichText, and
JadeEditMask controls on that form again generates a firstChange event and therefore signals that a new
change has been made to the data. (To accomplish this for TextBox, JadeRichText, and JadeEditMask controls
without calling the resetFirstChange method, you must use logic to reset the text of all of those controls.)

Note The resetFirstChange method for the TextBox, JadeEditMask, JadeRichText, Control, and Form
classes is not available from a Web browser.

resetHyperlinkCell
Signature resetHyperlinkCell(hyperlinkRow: Integer;

hyperlinkColumn: Integer);

The resetHyperlinkCell method of the Table class clears the HyperText link that was previously set by the
setHyperlinkCell method for the row specified in the hyperlinkRow parameter and the column specified in the
hyperlinkColumn parameter.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 531

EncycloWin - 2020.0.02

resort
Signature resort();

The resort method of the Table class resorts the contents of the current sheet of a table control. This method uses
the sort parameters specified in the sortColumn, sortAsc, and sortCased properties.

Use this method, for example, to resort the table by a particular column when the user clicks on the fixed column
cell. The logic required to perform this action is shown in the code fragment in the following example.

if table1.row = 1 then
table1.sortColumn[1] := column;
table.resort;

endif;

The resorting of a table may cause rows of the table to be reordered. The current row of the table is adjusted if it is
affected.

Notes The resort method is ignored if no columns are set.

When the text of a sorted column changes, the automatic sorting of rows occurs only when the Table class
addItem method adds a new row or the Table class resort method is used.

The method in the following example shows the use of the resort method.

vars
indx : Integer;
count : Integer;

begin
if table.row = 1 and table.column > 1 then

table.sortColumn[1] := table.column;
table.resort;
count := table.rows - 1;
indx := 1;
while indx <= count do

table.setCellText(indx + 1, 1, indx.String);
indx := indx + 1;

endwhile;
table.row := 1;
table.column := 1;
table.clearAllSelected;

endif;
end;

restyleText
Signature restyleText(): Integer;

The restyleText method of the JadeTextEdit class clears all styling information from the text editor then
recalculates the styling of the text using the current language setting. Call this method to recalculate text styles
and fold points after changing the programming language. This method returns zero (0).

Calling this method without changing the current language has the useful side effect of expanding all collapsed
fold points.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 532

EncycloWin - 2020.0.02

The code fragment in the following example shows the use of the restyleText method to display the text with
highlighting defined by a newly selected language.

jteSource.language := JadeTextEdit.SCLEX_CPP;
jteSource.applySettings();
jteSource.restyleText();

resume
Signature resume();

The resume method of the MultiMedia class resumes playback or recording content from the paused mode.
When playing content, this method is usually equivalent to using the play method.

rgb
Signature rgb(red: Integer;

green: Integer;
blue: Integer): Integer;

The rgb method of the JadeTextEdit class returns an Integer value containing the encoded red, green, and blue
color values specified in the respective red, green, and blue parameters.

To determine Integer value of a color from the RGB values:

int:= RedValue + (GreenValue * 256) + (BlueValue * 256 * 256);

The valid range for a normal RGB color is 0 through 16,777,215 (#FFFFFF). The high byte of an integer in this
range equals 0; the lower three bytes (from least to most significant byte) determine the amount of red, green, and
blue, respectively. The red, green, and blue components are each represented by a number in the range 0
through 255 (#FF). If the high byte is 128, JADE uses the system colors, as defined in the Control Panel of the
user.

The code fragment in the following example shows the use of the rgb method.

jte.setLinemarkAttributes(JadeTextEdit.MARKER_JAD_LINEMARK, 0,
jte.rgb(255,180,180),
jte.rgb(128,255,255));

save
Signature save(filename: String);

The save method of the MultiMedia class saves the content currently used by a device into the file specified in the
filename parameter.

This method is mostly used after recording content, allowing the content to be saved into a file.

Notes Not all devices support the saving of multimedia content to a file.

If the useDotNetVersion property is set to true, the save method is not available and it generates exception 1068
(Feature not available in this release).

The mediaData property does not contain the recorded data.

See also the canRecord, canSave, newFile, and record methods.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 533

EncycloWin - 2020.0.02

saveInFile
Signature saveInFile(fileName: String;

selection: Integer;
options: Integer);

The saveInFile method of the JadeRichText class saves the contents of the receiver to a file.

The saveInFile method parameters are listed in the following table.

Parameter Description

fileName Existing file in which the contents of the control are to be saved. If you do not specify a path,
JADE looks in the current directory and raises an exception if the specified file is not in the
directory or if it does not exist.

selection A JadeRichText class constant value that indicates the contents saved to the file, as follows.

SaveInFile_All, which saves the entire contents of the control to the file.

SaveInFile_Selection, which saves only the selected text of the receiver to the file.

options A JadeRichText class constant value that indicates the format of the loaded text, as follows.

SaveInFile_PlainText, which is saved in plain text format.

SaveInFile_UnicodeText, which is saved as plain Unicode text.

SaveInFile_RTF, which is saved as rich text format text if the text starts with a valid RTF
header sequence (for example, "{\rtf ").

savePicture
Signature savePicture(fileName: String);

The savePicture method of the ActiveXControl class saves the image of a picture to the external file specified in
the fileName parameter, which can be a valid file name or it can be the fully qualified path and name of a valid
picture file. A null value is returned if a file name is not specified or it is invalid.

saveProperties
Signature saveProperties(persistCtl: Control input);

The saveProperties method of the Control class is called by the Painter to save the properties edited by the
property page dialogs of a control. (For more details, see the hasPropertyPage method.)

The saveProperties method is defined in ActiveX controls so that the ActiveX internal property setting can be
used by the JADE Painter. The Painter sends the saveProperties message to a transient object, passing a
persistent instance of the same class, which is used to store property values.

The application is in transaction state for the duration of the method.

Note If you want your subclassed controls to save their own internal property data, you must reimplement this
method so that it can be called by Painter. Your subclassed controls must also call inheritMethod, to ensure
superclasses save their data.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 534

EncycloWin - 2020.0.02

saveTextToFile
Signature saveTextToFile(fileName: String): Integer;

The saveTextToFile method of the JadeTextEdit class saves the text in the text editor to the fully qualified name
of the text file specified in the fileName parameter. This file name includes the full path of the JADE application if
the file is not located in the default directory. End-of-line sequences in the text buffer are converted to match the
platform.

If the file cannot be opened, the saveTextToFile method returns the appropriate exception code rather than
raising exceptions to report errors (for example, 5003 - Requested file not found).

If the file write operation was successful, this method returns zero (0). In a Unicode system, the file is written with
the kind property of the File object set to Kind_Unicode_UTF8, meaning wide characters (for example, UTF-16 in
a Windows environment); otherwise, it is written with the kind value of Kind_ANSI.

You can use this method to determine if the JadeTextEdit support library (that is, the jadedit DLL) is present, by
calling it with the fileName parameter set to null (""). If the library is present and it is usable, the saveTextToFile
method returns error JTE_FILENAME_EMPTY.

screenToWindow
Signature screenToWindow(x: Real io;

y: Real io);

The screenToWindow method of the Window class converts an absolute screen position into a position relative to
the top and left of the window. For example, this method can be used in conjunction with the windowToScreen
method to calculate a position of one window relative to another.

The method in the following example shows the use of the screenToWindow method.

vars
x, y : Real;

begin
cntrl.windowToScreen(x, y); // Convert 0, 0 to screen coordinates.
cntrl.form.screenToWindow(x, y); // x, y now positioned within the

// form of the control.
end;

selectedCount
Signature selectedCount(): Integer;

The selectedCount method of the Table class returns the number of selected cells in the current sheet of a table.

The value that is returned is equivalent to the code fragment in the following example.

foreach row in 1 to table1.rows do
foreach col in 1 to table1.cols do

if table1.getCellSelected(row, col) then
count := count + 1;

endif;
endforeach;

endforeach;
return count;

The selectedCount method of the ListBox class returns the number of entries selected in the list box.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 535

EncycloWin - 2020.0.02

selectedNext
Signature selectedNext(r: Integer io;

c: Integer io): Boolean;

The selectedNext method of the Table class returns the next selected cell following the row and column specified
in the r and c parameters, respectively, for the current sheet of a table.

The selectedNext method allows logic to step through the selected cells, and it returns true if another selected
cell is located or false if none is located.

The following example steps through all of the selected cells of the current sheet of a table.

vars
row : Integer;
col : Integer;

begin
while table1.selectedNext(row, col) do

... // do some processing here
endwhile;

end;

selectAll
Signature selectAll();

The selectAll method of the JadeTextEdit class selects all text in the text editor.

sendString
Signature sendString(str: String): String;

The sendString method of the MultiMedia class allows commands to be issued directly to the device driver
associated with the MultiMedia control. You could perform all of the interfaces to the MultiMedia control by using
the appropriate commands, if required. The commands are device-dependent, with each device having its own
command set. However, there are common commands that are available with any device.

The sendString command sends the command specified in the str parameter and may return a string containing
the reply. An exception is raised if the command is not recognized or is not relevant to the current device. For
examples of the commands that are available in a Windows GUI environment, see the "Multimedia Command
Strings" section under "Reference", in the Microsoft Developer Network product documentation.

If the useDotNetVersion property is set to true, the sendString method is not available and it generates exception
1068 (Feature not available in this release).

Some examples of commands that are available are listed in the following table.

Command Result

mm.sendString("capability device type") Returns the device type name

mm.sendString("capability has audio") Returns true or false

mm.sendString("delete from 23 to 46") Deletes file data from position 23 through 46

mm.sendString("set audio all off") Disables all audio output

mm.sendString("set file format mpeg") Sets the file format for save calls

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 536

EncycloWin - 2020.0.02

Command Result

mm.sendString("status media present") Returns true or false to indicate if media present

The method in the following example shows the use of the sendString method.

trackLength(track: Integer): Integer;
vars

str : String;
begin

str := cd.sendString("status length track " & track.String);
return str.Integer;

end;

setApplicationSkin
Signature setApplicationSkin(skinapp: JadeSkinApplication);

The setApplicationSkin method of the Form class sets the skin for a specific form and its controls.

When you call this method to set a skin for a form and all of its controls, the skins used to draw the form and its
controls are from the application skin specified in the skinapp parameter and any skin set by calling the
Application class setApplicationSkin is ignored for this form and its controls.

If the application skin of the form does not include an appropriate skin for a control type, that control is not drawn
with a skin.

Note Any control that has had a specific skin set by calling the Control class setSkin method continues to use
that specific skin. The form application skin is used only if setSkin(null) is subsequently called on that control.

When the setApplicationSkin method is first called, the collected skin data is stored as a blob on the
JadeSkinApplication instance. Subsequent calls use this stored information and do not need to retrieve the skin
information.

In addition, a presentation client caches the skin information. As a result, subsequent calls of the
setApplicationSkin method only need to request the creation of the skin from the presentation client cache file
without having to transmit the skin data.

When you change a skin definition using the JadeSkinMaintence form or by loading a form and data definition
(.ddb or .ddx) file, the timestamp of all JadeSkinApplication instances is updated, which requires a rebuild of the
skin information the first time each skin is set for an application or form. If you change JADE skin information by
any other means, you must call the updateSkinTimeStamp method on the JadeSkinApplication instance, to reset
the instance timestamp and cause the skin build data to be rebuilt.

setBackDrop
Signature setBackDrop(pic: Binary;

type: Integer;
transparentColour: Integer);

The setBackDrop method of the Form class sets the backdrop binary picture image for the form. Use the pic
parameter to specify the picture image for the form and the type parameter to specify zero (0) if the specified
picture is to be stretched to the entire size or 1 if the picture is to be centered in the middle of the MDI frame.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 537

EncycloWin - 2020.0.02

Use the transparentColour parameter to specify the transparent color (that is, the bitmap is displayed so that the
image of the parent shows through the bitmap anywhere that this color appears in the bitmap).

Note A transparentColour value of zero (0) sets the transparent color to black.

If you do not want a transparent color at all, set the value of transparentColour to -1.

The following example shows the use of the setBackDrop method. The first example uses class constants to
make the second and third parameters more meaningful.

self.setBackDrop(self.picBackDrop.picture, BackDrop_Centred,
Black_Transparent);

begin
logo.backColor := backColor;
picture1.borderStyle := Window.BorderStyle_None;
if not process.isUsingThinClient then

setBackDrop(logo.createPicture(false, true, 24), 1, -1);
endif;

end;

setCellSelected
Signature setCellSelected(r: Integer;

c: Integer;
val: Boolean);

The setCellSelected method of the Table class sets the selected status of the cell specified in the r and c
parameters of the current sheet of a table.

The setCellSelected method achieves the same as setting the selected property, except that the row and column
properties do not need to be set.

Use the val parameter to specify the selected status of the cell; that is, set this parameter to true to select the cell
or to false to deselect the cell.

This method has no impact on the current values of the row and column properties. See also the
getCellSelected, selectedCount, and selectedNext methods.

setCellText
Signature setCellText(r: Integer;

c: Integer;
str: String);

The setCellText method of the Table class sets the text of the cell specified in the r and c parameters of the
current sheet of a table.

This method does the same as the text property, except that you do not need to set the values of the row and
column properties, as this method has no impact on the values of those properties.

The method in the following example shows the use of the setCellText method.

cdtable_rowColumnChg(table: Table input) updating;
vars

indx, count : Integer;
begin

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 538

EncycloWin - 2020.0.02

if table.row = 1 and table.column > 1 then
table.sortColumn[1] := table.column;
table.resort;
count := table.rows - 1;
indx := 1;
while indx <= count do

table.setCellText(indx + 1, 1, indx.String);
indx := indx + 1;

endwhile;
table.row := 1;
table.column := 1;
table.clearAllSelected;

endif;
end;

The following code fragment shows the use of concatenation with the Tab character to store text in cells to the
right of the specified cell.

// Set up the column headings
table.setCellText(1, 1, "Name" & Tab & "Address" & Tab & "Phone");

See also the getCellText method.

setCharacterFormat
Signature setCharacterFormat(selection: Boolean;

faceName: String;
size: Real;
color: Integer;
bold: Integer;
italic: Integer;
strikethru: Integer;
underline: Integer);

The setCharacterFormat method of the JadeRichText class sets common character formatting attributes of the
receiver for the selected text or new text about to be typed. (For an example of the use of this method, see
"JadeRichText Control Method Example", earlier in this document.)

The setCharacterFormat method parameters are listed in the following table.

Parameter Description

selection Specify true to set the character formatting attributes of the selected text, or if no text is
selected, of the insertion point and specify false to set the default character format of the
control

faceName Sets the value of the selFontName property

size Sets the value of the selFontSize property

color Sets the value of the selTextColor property

bold Sets the value of the selFontBold property

italic Sets the value of the selFontItalic property

strikethru Sets the value of the selFontStrikethru property

underline Sets the value of the selFontUnderline property

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 539

EncycloWin - 2020.0.02

You can specify the CharacterFormat_Undefined value for a font parameter if you do not want to apply a new
value but retain the existing value of the attribute.

This method sets only the attributes of the currently selected text or the next inserted text at that point. It does not
become the default for subsequent inserted or appended text.

When the value of the selection parameter is:

True, the attributes of the text inserted at that point only (for example, an append) are inserted. When the
selection point is moved at the end of the insertion (an append, and so on), the attributes revert to the default
values for the control. If you therefore call the setCharacterFormat method followed by two calls to the
append method, only the first of those append actions with those attributes is formatted.

False, all text in the control with those attributes is formatted (that is, it sets only the characteristics of the text
next entered by the user).

Calling the load method with a replace parameter value of Load_ReplaceAll empties the control by clearing the
text contents of the control but leaving the setCharacterFormat method setting for the first character in place so
that it becomes the default for the control. To clear the entire contents of the control, set the text property to null
("").

Although individual properties enable you to set character formatting attributes, you should consider the number
of requests made to the control, particularly when running the JADE application in thin client mode. For example,
calling the setCharacterFomat method to set all character format values involves one request from the
application server to the presentation client but setting values individually requires seven calls to the presentation
client to set the same information.

setClipBuffer
Signature setClipBuffer(buffnum: Integer;

text: String);

The setClipBuffer method of the JadeTextEdit class sets the contents of the editor text (clip) buffer specified in
the buffnum parameter with the text specified in the text parameter.

The value of the buffnum parameter can be in the range zero (0) through JadeTextEdit.CLIPBUFFER_MAX.

For details about getting the contents of the buffer, see the getClipBuffer method.

setCollectionObject
Signature setCollectionObject(obj: Object);

The setCollectionObject method of the Table class sets the object in the collection attached to the table to the
value specified in the obj parameter.

This method ensures that the object referenced is in the displayed list of collection entries for a table sheet. This is
equivalent to setting listbox.listObject := object; when a collection is attached to a list box by using the
displayCollection method.

If the object is already one of the row entries in the displayed table (the matching row object), the
setCollectionObject method call just results in setting the row property of the sheet to that row.

If the object is not in the displayed table rows, the current table rows from the collection are discarded. The iterator
position within the collection is then adjusted so that the rebuilt display rows include the requested object. The
row property of the sheet is then set to the row of the requested object.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 540

EncycloWin - 2020.0.02

An exception is raised if a collection is not currently attached to the sheet that is being referenced or the object
cannot be found within the collection.

setCurrentSchema
Signature setCurrentSchema(schema: Schema);

The setCurrentSchema method of the JadeEditor class sets the text editor keyword lists for classes, system and
user-defined global constants, imported packages, and JADE interfaces for the schema specified in the schema
parameter so that recognized keywords in method source can be displayed in the appropriate color.

Note Call the initializeJadeEditor method before you call the setCurrentSchema method, to ensure that the
form displays entities in the correct color.

setDefaultPainterControlProperties
Signature setDefaultPainterControlProperties() userHook, updating;

The setDefaultPainterControlProperties method of the Window class is called by the JADE Painter whenever a
new control is created.

You can re-implement this method on the Control class or a Control subclass, to set any user default properties
you require.

The Form class isPrinterForm method returns whether the form was declared as a printer form on the New Form
dialog in the JADE Painter; that is, the Printer option button was selected in the Form Style group box. The
isPrinterForm method then allows the setDefaultPainterControlProperties method re-implementation to set
properties only on a printer-style form, for example.

The following is an example of the re-implementation of the setDefaultPainterControlProperties method.

setDefaultPainterControlProperties();
begin

if self.form.isPrinterForm() then
self.fontName := "Arial";

endif;
end;

Applies to Version: 2018.0.02 (Service Pack 1) and higher

setDragAndDropFiles
Signature setDragAndDropFiles(method: Method);

The setDragAndDropFiles method of the Window class enables files and folders to be dragged and dropped
onto a form or control, by establishing the window as an allowed drop target. When files and folders are dropped
onto that window or one of its children, JADE calls the method specified in the method parameter, passing the list
of files and directories dropped.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 541

EncycloWin - 2020.0.02

Notes It is up to the specified method to process the list of files or directories.

When the user drags the files or folders over the window, Microsoft changes the cursor to a plus (+) symbol in a
box, indicating that the window will accept dropped file and folders.

Windows does not allow you to drag and drop files or folders between processes with different levels of
administration rights, so this method will therefore not be invoked if it is attempted.

The method passed to the setDragAndDropFiles method must be a method defined on the current form or a
method defined on the class of the targeted control (or a superclass of the current form or targeted control).

If the method is defined on the form of the targeted window, the required signature is:

method-name(win: Window; aray: HugeStringArray);

The win parameter specifies the window on which the files were dropped and the aray parameter specifies an
array of file or directory names that were dropped.

If the method is defined on the class of the targeted control targeted, the required signature is:

method-name(aray: HugeStringArray);

The aray parameter specifies an array of file or directory names that were dropped (self is the control instance on
which the files were dropped).

Exception 1000 (Invalid parameter type) occurs if the method:

Is not on the current Form class or on the targeted Control class

Signature is not a format specified earlier in this topic

Has a return type defined

If the setDragAndDropFiles method is called with a null value in the method parameter, the ability of the window
to accept dropped files and directories is cancelled.

Note You cannot drag and drop files onto external .NET or ActiveX controls using this mechanism.

The following example shows the use of the setDragAndDropFiles method. (As the files are by definition of the
client machine, in thin client mode, the files and directories must be accessed using usePresentationClient :=
true.)

listWilbur1.setDragAndDropFiles(MyForm::acceptFiles);

acceptFiles(dropWindow: Window; nameList: HugeStringArray);
vars

file : File;
folder : FileFolder;
str : String;

begin
create file transient;
create folder transient;
foreach str in nameList do

file.fileName := str;
// file?

if file.isAvailable() then
processDroppedFile(file);

else

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 542

EncycloWin - 2020.0.02

folder.fileName := str;
if folder.isAvailable() then

processDroppedFolder(folder);
else

... invalid entry?
endif;

endif;
endforeach;

epilog
delete file;
delete folder;

end;

Applies to Version: 2016.0.01 and higher

setEventMapping
Signature setEventMapping(eventName: String;

mappedName: String);

The setEventMapping method of the Window class and ActiveXControl class enables the method that is
executed for an event in this window to be dynamically set at run time. This method enables a form to be
dynamically constructed and the event methods to be defined at run time.

Tip This method is equivalent to the setEventMappingEx method but it is less efficient, as it must find the
methods by name. You should therefore use the setEventMappingEx method to improve performance.

By default, the JADE development environment allows the definition of event methods for a form (event-name),
and for controls on the form (control-name_event-name). For example:

bInvestors_click(btn: Button input) updating;

The parameters of the setEventMapping method are listed in the following table.

Parameter Description

eventName Must be a defined event name for the form or control; for example, click.

mappedName The name of the method that is to be called. This method must exist on the form that is the
parent of the control for which you are calling the setEventMapping method or a method of
the form that is calling the setEventMapping method.

The method checks that:

The event method is valid for the window

The method to be called exists

The signature of the method matches the event method signature

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 543

EncycloWin - 2020.0.02

setEventMappingEx
Signature setEventMappingEx(eventMethod: Method;

mappedMethod: Method);

The setEventMappingEx method of the Window class enables the method that is executed for an event in this
window to be dynamically set at run time and the mapping cached on each JADE node. This method enables a
form to be dynamically constructed and the event methods to be defined at run time.

Repeat calls for a mapping that has been previously used is recognized and the signature check is not repeated
unless the timestamp of the mapped method has changed since the previous signature check. The cost of
reloading a form that assigns event mappings is therefore subsequently less expensive on that node. If an
application server is involved, only the first assignment by any user performs the signature check. Subsequent
repeat calls for any user on that application server avoid that overhead.

The event method being mapped and the mapped method are passed as parameters. The underlying logic,
therefore, does not have to find the methods by name, making the execution more efficient; for example:

btnAction.setEventMethodEx(Button: click, Dialog::myButtonClick);

Tip This method is equivalent to the setEventMapping method but as it is more efficient, you should use the
setEventMappingEx method to improve performance.

By default, the JADE development environment allows the definition of event methods for a form (event-name),
and for controls on the form (control-name_event-name). For example:

bInvestors_click(btn: Button input) updating;

The parameters of the setEventMappingEx method are listed in the following table.

Parameter Description

eventMethod Specifies the event method, which must belong to the class of the receiver of the
setEventMappingEx call, and must be a defined event name for the form or control; for
example, click.

mappedMethod The method that is to be called. This method must exist on the form that is the parent of the
menu or control for which you are calling the setEventMappingEx method.

The method checks that:

The event method is valid for the window

The method to be called exists

The signature of the method matches the event method signature

Applies to Version: 2016.0.02 (Service Pack 1) and higher

setFocus
Signature setFocus();

The setFocus method of the Window class and Control class sets the focus to a window or control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 544

EncycloWin - 2020.0.02

If the window is a form (that is, a form.setFocus method call), focus is restored to the last control that had the
focus on that form, unless the form has never been activated, in which case the focus is given to the first enabled
visible control in the tab order.

If the control cannot have the focus (for example, it is a Label, GroupBox, Frame, Picture, or Folder control) or if
the control is disabled or is not visible, the focus is set to the next enabled visible control in the tab order. After the
setFocus method is executed, any user input is directed to the control that gained the focus.

You can set focus to a visible form or control only. Setting the focus to a control on a sheet of a folder control that is
not the current top sheet causes that sheet to become the current top sheet (that is, visible).

The methods in the following examples show the use of the setFocus method.

mnuDataPeriod_click(menuItem: MenuItem input) updating;
vars

form : Form;
lpForm : ListPeriodsForm;

begin
form := app.getForm("ListPeriodsForm");
if form = null then

create lpForm transient;
lpForm.show;

else
lpForm := form.ListPeriodsForm;
lpForm.setFocus; // set focus to this form
lpForm.zOrder(1);
lpForm.windowState := WindowState_Normal;

endif;
end;

btnSearch_click(btn: Button input) updating;
begin

topObject := positionCollectionByKey(txtStartName.text,
theCollectionIterator);

refreshTable;
txtStartName.setFocus;

end;

setFontProperties
Signature setFontProperties(fontName: String;

fontSize: Real;
fontBold: Boolean);

The setFontProperties method of the Control class sets the values of the Control class fontName, fontSize, and
fontBold properties.

Use this method to set the value of the fontName, fontSize, and fontBold properties of the control in one action;
that is, instead of defining the example shown in the following code fragment.

listBox1.fontName := "Arial";
listBox1.fontSize := 9;
listBox1.fontBold := true;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 545

EncycloWin - 2020.0.02

Using the setFontProperties method can be more efficient than setting the properties individually, because the
three properties are all set in the same action. When each property is set individually in JADE logic, a new font is
created each time, and any impacts that the changed font has on the control size are applied; for example,
auto-sizing, parentAspect positioning, or aligning controls. The setFontProperties method sets all three
properties before applying any impacts.

For a Table control, the setFontProperties method uses the current setting of the accessMode property to
determine whether the method will set the font for the current sheet, row, column, or cell.

setFormSkin
Signature setFormSkin(skin: JadeSkinForm);

The setFormSkin method of the Form class sets the current skin for the form regardless of the setting of the
Window class skinCategoryName property. However, if the value of the Window class ignoreSkin property is set
to true, the skin is still ignored.

The skin has no impact on the controls of the form other than potentially the JadeSkinArea class backColor
property (for more information, see "JadeSkinForm Class" and "JadeSkinControl Class and Subclasses", in
Chapter 1).

The controls continue to use the any application-defined skins. Setting a specific skin for a form takes precedence
over any defined application skin for that form.

Note Changing a skin object after the setFormSkin method is called has no impact on the displayed skin. To
apply any skin changes dynamically, you must call the Form class setFormSkin method again.

To clear the form skin (cancel the skin display), call the setFormSkin method again with a null value, as follows.

Form.setFormSkin(null);

The form then reverts to the use of an appropriate form skin set by the application.

For details about using skins to enhance your runtime applications, see Chapter 2 of the JADE Runtime
Application Guide.

setFormParent
Signature setFormParent(form: Form);

The setFormParent method of the Form class sets the parent of a form to the form specified in the form
parameter. This causes the child form to always be placed above the parent form in the order specified by the
zOrder method.

Sibling controls that have the alignContainer property set do not occupy the same area on their parent. If so, use
the visible property to control the window that is currently displayed.

The child form does not sit inside the parent as it does for an MDI child. The child is also closed when the parent is
closed. As MDI forms cannot use this method, an exception is raised if you attempt to do so.

This method provides an alternative to running the form as a modal form (which causes all forms except the
current modal form to be disabled) while still providing a dependency on the parent form. Passing a null value as
the parent can clear the relationship.

The getFormParent method returns the parent of the form specified by using the setFormParent method or if the
parent form was set directly by using a Windows API call.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 546

EncycloWin - 2020.0.02

setHyperlinkCell
Signature setHyperlinkCell(hyperlinkRow: Integer;

hyperlinkColumn: Integer);

The setHyperlinkCell method of the Table class sets up a HyperText link for a cell in a table.

Note The setHyperlinkCell method is ignored for JADE applications that are Web-enabled. For these
applications, you should use the hyperlinkColumn array property of the Table class.

The hyperlinkRow and hyperlinkColumn parameters specify the cell in which the HyperText link is set. You can
set HyperText links in more than one cell for a row.

The code fragment in the following example shows the use of the setHyperlinkCell method.

elseif checkbox.value then
table1.setHyperlinkCell(table1.row, table1.column);

else
table1.resetHyperlinkCell(table1.row, table1.column);

endif;

In a standard GUI application, the behavior of a cell with a HyperText link is as follows.

The display changes only when the mouse moves over the cell; the cursor becomes a pointing hand and the
text is underlined. The color of the text is blue, unless the foreColor property has been set specifically for the
cell.

If you want an action to occur when the HyperText link is clicked, you must provide the appropriate JADE
logic for the click event for the table.

A rowColumnChg event is not required for this process to function.

In a JADE forms Web-enabled application, the HyperText link is displayed in the Web browser in a standard way.
There are two points to note:

If you set the inputType property for the cell to any value apart from the default value (InputType_None) the
hyperlink setting is ignored.

You must implement the rowColumnChg event for the table.

setIndicatorAttributes
Signature setIndicatorAttributes(indicatorNumber: Integer;

style: Integer;
foreColor: Integer);

The setIndicatorAttributes method of the JadeTextEdit class sets the text editor indicator attributes (for example,
marking text to indicate syntax errors).

Use the indicatorNumber parameter to specify the number of the indicator whose style and color you want to set,
in the range zero (0) through 7.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 547

EncycloWin - 2020.0.02

The text editor has three indicators: zero (0), 1, and 2, whose default indicator styles and colors are listed in the
following table.

Indicator Number Style Color RGB Value

0 SC_INDIC_SQUIGGLE Dark Green 0,127,0

1 SC_INDIC_TT Light Blue 0,0,255

2 SC_INDIC_PLAIN Light red 255,0,0

Use the JadeTextEdit class constants listed in the following table to specify the style of the indicator in the style
parameter.

Constant Value Constant Value

SC_INDIC_BOX 6 SC_INDIC_DIAGONAL 3

SC_INDIC_HIDDEN 5 SC_INDIC_PLAIN 0

SC_INDIC_SQUIGGLE 1 SC_INDIC_STRIKE 4

SC_INDIC_TT 2

In the foreColor parameter, specify the color of the indicator.

setLinemarkAttributes
Signature setLinemarkAttributes(markNumber: Integer;

style: Integer;
foreColor: Integer;
backColor: Integer);

The setLinemarkAttributes method of the JadeTextEdit class sets the text editor linemark.

Use the markNumber parameter to specify the linemark number whose style and colors you want to set. You can
assign style and color attributes to any of the 32 text editor linemarks, numbered zero (0) through 31. (Values in
the range 25 through 31 are used for folding.)

Use the JadeTextEdit class constants listed in the following table to specify the style of the indicator in the style
parameter.

Constant Value Constant Value

SC_MARK_ARROW 2 SC_MARK_ARROWDOWN 6

SC_MARK_ARROWS 24 SC_MARK_BACKGROUND 22

SC_MARK_BOXMINUS 14 SC_MARK_BOXMINUSCONNECTED 15

SC_MARK_BOXPLUS 12 SC_MARK_BOXPLUSCONNECTED 13

SC_MARK_CHARACTER 10000+character SC_MARK_CIRCLE 0

SC_MARK_CIRCLEMINUS 20 SC_MARK_CIRCLEMINUSCONNECTED 21

SC_MARK_CIRCLEPLUS 18 SC_MARK_CIRCLEPLUSCONNECTED 19

SC_MARK_DOTDOTDOT 23 SC_MARK_EMPTY 5

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 548

EncycloWin - 2020.0.02

Constant Value Constant Value

SC_MARK_LCORNER 10 SC_MARK_LCORNERCURVE 16

SC_MARK_MINUS 7 SC_MARK_PLUS 8

SC_MARK_ROUNDRECT 1 SC_MARK_SHORTARROW 4

SC_MARK_SMALLRECT 3 SC_MARK_TCORNER 11

SC_MARK_
TCORNERCURVE

17 SC_MARK_VLINE 9

In the foreColor and backColor parameters, specify the foreground and background colors of the indicator. For
details about the SCI_MARKERDEFINE and the associated SC_MARKNUM_* constants, see the Scintilla
documentation at http://scintilla.sourceforge.net/ScintillaDoc.html.

The code fragment in the following example shows the use of the setLinemarkAttributes method.

// Set up bookmark linemark and bind keys
jteSource.setLinemarkAttributes(JadeTextEdit.MARKER_JAD_LINEMARK,

SC_MARK_ROUNDRECT, jteSource.rgb(255,180,180),
jteSource.rgb(128,255,255));

setLinemarkLines
Signature setLinemarkLines(markNumber: Integer;

append: Boolean;
lineList: Boolean;
list: IntegerArray);

The setLinemarkLines method of the JadeTextEdit class adds the linemark specified in the markNumber
parameter to the lines (positions) specified in the list parameter.

If the value of the append property is false, all existing linemarks of the specified number are deleted before the
entries in the list are added.

If the value of the lineList parameter is true, the list contains line numbers. If the value of the lineList parameter is
set to false, the list contains character offsets that are limited to 128 entries. Values less than zero (0) or greater
than the end of text are ignored.

The code fragment in the following example shows the use of the setLinemarkLines method to set linemark 1 on
lines 1 and 25, and also remove the linemark from any other lines.

ia.add(1);
ia.add(25);
jteSource.setLinemarkLines(1, false, true, ia);

setNamedAttribute
Signature setNamedAttribute(attName: String;

value: Any);

The setNamedAttribute method of the JadeTextEdit class sets the named attribute specified in the attName
parameter to the value specified in the value parameter.

http://scintilla.sourceforge.net/ScintillaDoc.html

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 549

EncycloWin - 2020.0.02

The JADE text editor supports the following named attributes.

automatic.indenting

Boolean attribute that defaults to true, indicating that new lines are automatically indented to match the
preceding (non-blank) line. Indentation of pasted lines is not changed.

caret.finder

Boolean attribute that defaults to false. When set true, pressing then releasing the Ctrl key causes the caret
location to be highlighted.

caret.fore.color

Integer attribute that specifies the foreground color of the caret.

caret.line.back.color

Integer attribute that specifies the color that will override the background color of the line that currently
contains the caret. The default value is -1, which disables the background color override functionality; that is,
removes highlighting of the caret line. For example, the following code fragment sets the caret line
background color to light green.

jte.setNamedAttribute("caret.line.back.color", jte.rgb(200,255,200));

caret.width

Integer attribute that specifies the width of the caret in pixels, with the default value being 1.

fold.compact

Boolean attribute that specifies if folding is compact or normal (the default). For more details, see the folding
property.

fold.margin.color

Integer attribute that specifies the background color for the fold margin. It is an RGB value. The default value
(-1) specifies that a system value be used.

linenumber.margin.width

Integer attribute that specifies the minimum line number margin width in characters, with the default value
being 3 and the range 1 through 60. The margin automatically expands if the last line number requires more
space.

marker.margin.mask

Integer attribute that specifies a bit mask of the margin marker, with the default value being SC_MASK_
FOLDERS.

marker.margin.width

Integer attribute that specifies the width in pixels of the marker margin, with the default value being 20 pixels
and the range 4 through 600.

smart.indent.words

String attribute that defaults to null ("") and which is set to a list of words (for example, the if, while, and
foreach JADE instructions). These words usually indicate the start of an indented block.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 550

EncycloWin - 2020.0.02

When automatic.indenting is set to true (that is, the automatic.indenting named attribute is set) and the list
of smart words is not null, and a new line is inserted, and the previous non-blank line begins with one of the
words in the smart list, the caret is indented one additional position. The JADE smart words are constants,
vars, begin, epilog, if, elseif, foreach, and while.

The method in the following example shows the use of the setNamedAttribute method.

mnuEditSetAutoindent_click(menuItem: MenuItem input) updating;
begin

menuItem.checked := not menuItem.checked;
jteSource.setNamedAttribute("automatic.indenting", menuItem.checked);

end;

setOneColorText
Signature setOneColorText(value: Boolean);

The setOneColorText method of the JadeEditor class specifies whether text in the text editor is displayed as one
single color or in the various colors specified for keywords, class, and constant names.

setParagraphFormat
Signature setParagraphFormat(leftIndent: Integer;

rightIndent: Integer;
firstLineIndent: Integer;
alignment: Integer);

The setParagraphFormat method of the JadeRichText class sets common paragraph formatting attributes of the
receiver (that is, the paragraph that contains the insertion point). For an example of the use of this method, see
"JadeRichText Control Method Example", earlier in this document.

The setParagraphFormat method parameters are listed in the following table.

Parameter Description

leftIndent Sets the value of the leftIndent property

rightIndent Sets the value of the rightIndent property

firstLineIndent Sets the value of the firstLineIndent property

alignment Sets the value of the alignment property

You can specify the ParagraphFormat_Undefined value for a parameter if you do not want to apply a new value
but retain the existing value.

Although individual properties enable you to set paragraph formatting attributes, you should consider the number
of requests made to the control, particularly when running the JADE application in thin client mode. For example,
calling the setParagraphFormat method to set all paragraph format values involves one request from the
application server to the presentation client but setting values individually requires four calls to the presentation
client to set the same information.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 551

EncycloWin - 2020.0.02

setPicture
Signature setPicture(indx: Integer;

pict: Binary);

The setPicture method sets the specified index entry of an array of pictures associated with the Picture control at
run time.

The value specified in the indx parameter must be in the range 1 through 100. Use the pictureIndex property to
indicate the picture that is displayed. By default, the value of the picture property is used unless it is overridden by
the pictureDown or pictureDisabled properties. See also the pictureCount property.

Setting the picture property to an animated GIF removes any pictures created by using the setPicture method.
Similarly, changing the value of the pictureCount property or using the setPicture method closes any animated
GIF operation (but leaves the value of the picture property unchanged).

setScrollRange
Signature setScrollRange(scrollBar: Integer;

min: Integer;
max: Integer;
smallChg: Integer;
largeChg: Integer);

The setScrollRange method enables control of the scroll ranges for Form, BaseControl, and Picture controls.

The setScrollRange method changes the scroll range data. Scroll range data has no impact unless the window
also has a corresponding scroll bar.

TextBox controls can obtain the current scroll range but cannot set the current scroll range. This range is
determined automatically by the amount of text data in the control. ListBox and Table controls also offer the
getScrollRange method only, as the ranges are set automatically by the control.

The following table lists the scroll data that is available by using the setScrollRange method parameters.

Parameter Description

scrollBar 1 for horizontal, 2 for vertical

min Minimum scroll range

max Maximum scroll range

smallChg Size of scroll change when the user clicks a scroll arrow

largeChg Size of scroll change when the user clicks elevator or uses the Page keys

All data units are in pixels.

For form and picture controls, the default scroll range data is listed in the following table.

Value Default

min 0

max 1000

smallChg 20

largeChg 100

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 552

EncycloWin - 2020.0.02

Control of the scroll bar position can be obtained by using the scrollHorzPos and scrollVertPos properties.

The code fragment in the following example shows the use of the setScrollRange method.

setScrollRange(ScrollBar_Vertical, 0, biggestOffset -
(clientHeight/2).Integer, 20, 100);

setSkin
Signature setSkin(skin: JadeSkin); (Form)

setSkin(skin: JadeSkinControl); (Control)

The setSkin method of the Form class sets the skin for the form, overriding any skin set for the application for that
form.

Note Calling form.setSkin(null); causes that form to resume using the default skin of the application.

The setSkin method of the Control class sets the current skin for the control, regardless of the setting of the
Window class skinCategoryName property and the applyCondition criteria. However, if the value of the Window
class ignoreSkin property is set to true, the skin is still ignored. Setting a specific skin for a control takes
precedence over any defined application skin.

Note that the skin object passed during this method call must correspond to the control type. For example, it must
be of type JadeSkinFrame when the control is a Frame control class.

Note Changing a skin object after the setSkin method is called has no impact on the displayed skin. To apply
any skin changes dynamically, you must call the Control class setSkin method again.

To clear the control skin (cancel the skin display), call this method again with a null value, as follows.

Control.setSkin(null);

The control then reverts to the use of an appropriate control skin set for the application.

For details about the JadeSkinControl class and its subclasses or the JadeSkin class, see the appropriate
JadeSkinEntity subclass or "JadeSkin Class", in Chapter 1. For details about maintaining and using JADE skins,
see Chapter 2 of the JADE Runtime Application Guide. See also the Form class setApplicationSkin method,
earlier in this document.

setStyleAttributes
Signature setStyleAttributes(styleNumber: Integer;

fontName: String;
fontSize: Integer;
foreColor: Integer;
backColor: Integer;
fontBold: Integer;
fontItalic: Integer;
fontUnderline: Integer;
endOfLineFill: Integer);

The setStyleAttributes method of the JadeTextEdit class sets the attributes of a text editor style. Valid style
numbers are in the range 0 through 127. The actual style numbers that are used depends on the current
language:

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 553

EncycloWin - 2020.0.02

The style numbers that are common to all languages are the JadeTextEdit class constants listed in the following
table.

Class Constant Integer Value

STYLE_BRACEBAD 35

STYLE_BRACELIGHT 34

STYLE_CONTROLCHAR 36

STYLE_DEFAULT 32

STYLE_INDENTGUIDE 37

STYLE_LINENUMBER 33

STYLE_MAX 127

For the STYLE_LINENUMBER (33) style, the background color is the background color for the line number and
linemark margins. (Use the fold.margin.color named attribute to set the background for the fold margin.)

For the STYLE_INDENTGUIDE (37) style, the indent guide is a dotted line alternating between the foreground and
background colors of this style.

JADE language style numbers are the JadeTextEdit class constants listed in the following table.

Constant Value Constant Value

SCE_JAD_BINARYLITERAL 22 SCE_JAD_COMMENT 6

SCE_JAD_COMMENTLINE 7 SCE_JAD_DEFAULT 4

SCE_JAD_DOCTEXT 21 SCE_JAD_DOLLARIDENT 23

SCE_JAD_GLOBALCONST 17 SCE_JAD_IDENTIFIER 11

SCE_JAD_INTERFACE 20 SCE_JAD_KEYWORD 12

SCE_JAD_METHODWORD 13 SCE_JAD_NUMBER 10

SCE_JAD_PACKAGE 18 SCE_JAD_PACKAGECLASS 19

SCE_JAD_PUNCTUATION 5 SCE_JAD_SINGLECOLOR 0

SCE_JAD_STRING1 8 SCE_JAD_STRING2 9

SCE_JAD_SYSTEMCLASS 15 SCE_JAD_SYSTEMVAR 14

SCE_JAD_USERCLASS 16

To leave an attribute unchanged, specify null ("") in the fontName parameter and specify the ATTRIB_
NOCHANGE (-2) JadeTextEdit class constant for the other parameters. To set an attribute to the same value as
the attribute of the default style, specify "*" in the fontName parameter and specify the ATTRIB_DEFAULT (-1)
class constant for the other parameters.

Valid values for the fontSize parameter are point sizes in the range 0 through 72. The values in the range 990
through 1010 specify a size relative to the font size of the default style, in the range -10 through +10. A relative
size is converted to an absolute value by adding the font size to the default style font size. The font size is always
rounded up to a minimum of 2.

Set the foreColor and backColor parameters to an RGB color value, ATTRIB_NOCHANGE, or ATTRIB_
DEFAULT.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 554

EncycloWin - 2020.0.02

Use the JadeTextEdit class constants listed in the following table to specify the values of the fontBold, fontItalic,
fontUnderline, and endOfLineFill parameters, respectively.

Class Constant Integer Value Description

ATTRIB_DEFAULT -1 Use the default style value

ATTRIB_FALSE 0 False

ATTRIB_NOCHANGE -2 Do not change

ATTRIB_TRUE 1 True

The method in the following example shows the use of the setStyleAttributes method.

mnuEditSetMargcolor_click(menuItem: MenuItem input) updating;
vars

val : Integer;
begin

if self.askForColorSetting(self.caption, "Margin[0,1,2] Color", val)
then
jteSource.setStyleAttributes(JadeTextEdit.STYLE_LINENUMBER,"",

JadeTextEdit.ATTRIB_NOCHANGE, JadeTextEdit.ATTRIB_NOCHANGE,
val, JadeTextEdit.ATTRIB_NOCHANGE,
JadeTextEdit.ATTRIB_NOCHANGE,
JadeTextEdit.ATTRIB_NOCHANGE,
JadeTextEdit.ATTRIB_NOCHANGE);

jteSource.setNamedAttribute("fold.margin.color", val);
endif;

end;

setSystemTrayEntry
Signature setSystemTrayEntry(str: String;

icon: Binary);

The setSystemTrayEntry method of the Form class places an entry in the system tray of the Windows taskbar for
this form. If you call this method at run time and the value of the icon parameter is null, the icon of the form is used.

Use the str parameter to specify a text value of up to 63 characters that is displayed in bubble help when the
mouse is moved over the system tray. If you define a string longer than 63 characters, only the first 63 characters
are displayed in the bubble help.

Note If the form is made invisible, an entry in the system tray is considered as having a visible form so that if the
form is the only form in the application that is running, the no visible form warning message therefore does not
occur.

The system tray icon entry can be used to provide the user with a means of signaling the form by using the icon,
and it also provides the application with a way of signaling the user of an action (for example, that mail has
arrived). The icon remains visible regardless of the state of the form (for example, if it is visible or minimized).

Clicking the icon in the system tray generates the Form class trayIconClicked method. Closing the form
automatically removes the system tray entry.

A visible form still has an entry on the task bar if the form has a caption.

See also the hasSystemTrayEntry and removeSystemTrayEntry methods.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 555

EncycloWin - 2020.0.02

setTabStops
Signature setTabStops(stops: IntegerArray);

The setTabStops method of the JadeRichText class populates an array with the positions of the tab stops in the
receiver control.

setTaskBarProgress
Signature setTaskBarProgress(value: Integer;

maxVal: Integer);

The setTaskBarProgress method of the Form class sets the extent of the progress to be displayed on the
application icon in the taskbar.

If the method is called:

On an MDI child form, the value is applied to the MDI frame form, because the MDI child form does not have
an icon on the task bar.

Before the form is shown (for example, in the load method), the value is applied when the form is shown.
because there is no task bar icon before the form is made visible.

Notes This functionality is available only if the application displays an icon on the Windows taskbar. It does not
apply to icons in the system tray.

If two forms call the setTaskBarProgress method while the taskbar progress is displayed, the progress displays
the lowest value.

The method call can silently fail for some earlier versions of Windows (for example, Windows 8.0), even though
the Microsoft documentation states that the functionality is available from Windows 7 and later.

Calling this method causes the progress indicator to be displayed in its set state. If the current state was TaskBar_
State_NoProgress or TaskBar_State_Indeterminate, the state becomes TaskBar_State_Normal.

The setTaskBarProgress method value parameter specifies the current progress value and the maxVal
parameter specifies the maximum value that will be reached. Both values are relative to zero (0).

To hide the progress state when the action is completed, call the setTaskBarState method with the state
parameter set to TaskBar_State_NoProgress.

Applies to Version: 2018.0.01 and higher

setTaskBarState
Signature setTaskBarState(state: Integer);

The setTaskBarState method of the Form class sets the state of the taskbar icon for the application.

If the method is called:

On an MDI child form, the value is applied to the MDI frame form, because the MDI child form does not have
an icon on the task bar.

Before the form is shown (for example, in the load method), the value is applied when the form is shown.
because there is no task bar icon before the form is made visible.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 556

EncycloWin - 2020.0.02

Notes This functionality is available only if the application displays an icon on the Windows taskbar. It does not
apply to icons in the system tray.

The method call can silently fail for some earlier versions of Windows (for example, Windows 8.0), even though
the Microsoft documentation states that the functionality is available from Windows 7 and later.

The state parameter of this method can contain one of the Form class constants listed in the following table.

Form Class Constant Value Description

TaskBar_State_NoProgress 0 Hides the progress state on the icon

TaskBar_State_Indeterminate 1 Causes a continuous icon progress state, drawing the state in
green from 0 through 100 percent, repeated, indicating the action
is in progress but the progress completion time is unknown

TaskBar_State_Normal 2 Displays the current progress state in green

TaskBar_State_Error 4 Sets the progress state to be drawn in red to indicate an error
state

TaskBar_State_Paused 8 Displays the current progress state in yellow, to indicate that the
action has been paused

Any other value passed to the setTaskBarState method is treated as TaskBar_State_Normal (2).

Applies to Version: 2018.0.01 and higher

setTextFromCurrencyDecimal
Signature setTextFromCurrencyDecimal(dec: Decimal);

The setTextFromCurrencyDecimal method sets the text property value of a TextBox control to a Decimal value
converted to a string in the currency format of the locale under which the control is running.

When the dataType property of a text box is set to DataType_Currency, the decimals property is set to -1,
indicating that the number of decimal places for currency defined by the current locale is used.

To manually control how many decimal places are allowed, set the decimals property to a value other than -1.

The setTextFromCurrencyDecimal method of a TextBox control sets the text property to a Decimal value
converted to a string in the format of the locale of the user application. If the text box is numeric (that is, the
dataType property value of DataType_Numeric (1), DataType_SignedNumeric (2), or DataType_Currency (3))
and the value of decimals property is positive, the number of decimals places displayed is equal to the decimals
property value. If the text box is not numeric or the value of the decimals property is less than zero (0), the number
of decimal places specified in the dec parameter is retained. (Note that an exception is raised if the resulting string
exceeds the maxLength property value of the text box.)

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed
if enhanced locale support is not enabled. By default, formatting of locale data is done on the application server,
based on the locale of the corresponding presentation client.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 557

EncycloWin - 2020.0.02

Notes A numeric TextBox control expects the negative sign and decimal place characters to be in the form
defined for the locale under which the user is running. This applies when accessing the text or textUser
properties and when the user enters data. Setting decimal text by using the setTextFromDecimal method
converts the numeric into the appropriate string for that locale. Retrieving the Decimal value by using the
getTextAsCurrencyDecimal method does the reverse. You can therefore use the getTextAsCurrencyDecimal
and setTextFromCurrencyDecimal methods to access decimal text so that JADE handles the locale format for
you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the TextBox
control. However, locales that specify a negative value expressed by parentheses (for example, (123)) are treated
as a leading dash symbol (-). In addition, locales that have a leading or trailing space associated with a negative
sign are treated as the equivalent format without the space (for example, - 123 will be -123 and 123 - will be 123-).

setTextFromCurrencyReal
Signature setTextFromCurrencyReal(real: Real);

The setTextFromCurrencyReal method sets the text from the text property of a TextBox control to a Real value
converted to a string in the format of the locale under which the control is running (for details, see the languageId
property).

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed
if enhanced locale support is not enabled. By default, formatting of locale data is done on the application server,
based on the locale of the corresponding presentation client.

The setTextFromCurrencyReal method of a TextBox control sets the text property value to a Real value
converted to a string in the format of the locale of the user application. The number of decimal places displayed is
determined by the value of the decimals property and the Real number is rounded to that precision. (Note that an
exception is raised if the resulting string exceeds the maxLength property value of the text box.)

Notes A numeric TextBox control expects the negative sign and decimal place characters to be in the form
defined for the locale under which the user is running. This applies when accessing the text property and when
the user enters data. Setting the text by using the setTextFromCurrencyReal method converts the number into
the appropriate string for that locale. Retrieving the Decimal value by using the getTextAsCurrencyReal method
does the reverse. You can therefore use the getTextAsCurrencyReal and setTextFromCurrencyReal methods
to access numeric text so that JADE handles the locale format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the TextBox
control. However, locales that specify a negative value expressed by parentheses (for example, (123)) are treated
as a leading dash symbol (-). In addition, locales that have a leading or trailing space associated with a negative
sign are treated as the equivalent format without the space (for example, - 123 will be -123 and 123 - will be 123-).

setTextFromDate
Signature setTextFromDate(date: Date);

The setTextFromDate method of the JadeEditMask control class sets the text from the textUser property to a
Date value converted to a string in the format of the locale under which the control is running (for details, see the
languageId property). If the value of the mask property is null ("") or if it does not specify that the data is a full date
field (for example, ddMMMyyyy or dd/MM/yyyy), an exception is raised.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 558

EncycloWin - 2020.0.02

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client. For example, if the locale of your application
server is set to English (United Kingdom), which has a default short date format of dd/MM/yyyy, and it has been
overridden with a short date format of yyyy-MM-dd, this is returned in the default dd/MM/yyyy format.

A JadeEditMask control expects dates to be formatted according to the locale that the control is using. This
applies when accessing the text or textUser property and when the user enters data. Setting date text by using
the setTextFromDate method converts the date into the appropriate string for that locale.

Retrieving the Date value by using the getTextAsDate method does the reverse. You can therefore use the
getTextAsDate and setTextFromDate methods to access date text so that JADE handles the locale format for
you.

setTextFromDecimal
Signature setTextFromDecimal(dec: Decimal);

The setTextFromDecimal method sets the text from the textUser property of a JadeEditMask control to a
Decimal value converted to a string in the format of the locale under which the control is running (for details, see
the languageId property).

The string contains the number of decimal places specified by the mask property. If the mask property is null (""),
the number of decimal places specified in the dec parameter is retained. (Note that an exception is raised if the
resulting string does not conform to the data format specified by the mask property value.)

The setTextFromDecimal method of a TextBox control sets the text property to a Decimal value converted to a
string in the format of the locale of the user application.

If the text box is numeric (that is, the dataType property value of DataType_Numeric (1), DataType_
SignedNumeric (2), or DataType_Currency (3)) and the value of decimals property is positive, the number of
decimals places displayed is equal to the decimals property value.

If the text box is not numeric or the value of the decimals property is less than zero (0), the number of decimal
places specified in the dec parameter is retained. (Note that an exception is raised if the resulting string exceeds
the maxLength property value of the text box.)

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 559

EncycloWin - 2020.0.02

Notes A numeric JadeEditMask control expects the negative sign, decimal place, and separator characters to
be in the form defined for the locale under which the control is running. A numeric TextBox control expects the
negative sign and decimal place characters to be in the form defined for the locale under which the user is
running. This applies when accessing the text or textUser properties and when the user enters data. Setting
decimal text by using the setTextFromDecimal method converts the numeric into the appropriate string for that
locale. Retrieving the Decimal value by using the getTextAsDecimal method does the reverse. You can
therefore use the getTextAsDecimal and setTextFromDecimal methods to access decimal text so that JADE
handles the locale format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the
JadeEditMask or TextBox control. However, locales that specify a negative value expressed by parentheses (for
example, (123)) are treated as a leading dash symbol (-). In addition, locales that have a leading or trailing space
associated with a negative sign are treated as the equivalent format without the space (for example, - 123 will be
-123 and 123 - will be 123-).

setTextFromInteger
Signature setTextFromInteger(int: Integer);

The setTextFromInteger method sets the text from the textUser property of a JadeEditMask control to an Integer
value converted to a string in the format of the locale under which the control is running (for details, see the
languageId property). Note that an exception is raised if the resulting string does not conform to the data format
specified by the mask property value.

The setTextFromInteger method of a TextBox control sets the text property value to an Integer value converted
to a string in the format of the locale of the user application. Note that an exception is raised if the resulting string
exceeds the maxLength property value of the text box.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

Notes A numeric JadeEditMask control expects the negative sign, decimal place, and separator characters to
be in the form defined for the locale under which the control is running. A numeric TextBox control expects the
negative sign and decimal place characters to be in the form defined for the locale under which the user is
running. This applies when accessing the text or textUser properties and when the user enters data. Setting the
text by using the setTextFromInteger method converts the numeric into the appropriate string for that locale.
Retrieving the Integer value by using the getTextAsInteger method does the reverse. You can therefore use the
getTextAsInteger and setTextFromInteger methods to access numeric text so that JADE handles the locale
format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the
JadeEditMask or TextBox control. However, locales that specify a negative value expressed by parentheses (for
example, (123)) are treated as a leading dash symbol (-). In addition, locales that have a leading or trailing space
associated with a negative sign are treated as the equivalent format without the space (for example, - 123 will be
-123 and 123 - will be 123-).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 560

EncycloWin - 2020.0.02

setTextFromInteger64
Signature setTextFromInteger64(int64: Integer64);

The setTextFromInteger64 method sets the text from the textUser property of a JadeEditMask control to an
Integer64 value converted to a String in the format of the locale under which the control is running (for details, see
the languageId property). Note that an exception is raised if the resulting string does not conform to the data
format specified by the mask property value.

The setTextFromInteger64 method of a TextBox control sets the text property value to an Integer64 value
converted to a String in the format of the locale of the user application. Note that an exception is raised if the
resulting string exceeds the maxLength property value of the text box.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

Notes A numeric JadeEditMask control expects the negative sign, decimal place, and separator characters to
be in the form defined for the locale under which the control is running. A numeric TextBox control expects the
negative sign and decimal place characters to be in the form defined for the locale under which the user is
running. This applies when accessing the text or textUser properties and when the user enters data. Setting the
text by using the setTextFromInteger64 method converts the numeric into the appropriate String for that locale.
Retrieving the Integer64 value by using the getTextAsInteger64 method does the reverse. You can therefore use
the getTextAsInteger64 and setTextFromInteger64 methods to access numeric text so that JADE handles the
locale format for you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the
JadeEditMask or TextBox control. However, locales that specify a negative value expressed by parentheses (for
example, (123)) are treated as a leading dash symbol (-). In addition, locales that have a leading or trailing space
associated with a negative sign are treated as the equivalent format without the space (for example, - 123 will be
-123 and 123 - will be 123-).

setTextFromLongDate
Signature setTextFromLongDate(date: Date);

The setTextFromLongDate method of a TextBox control sets the text property value to a Date value converted
to a String in the format of the locale of the user application. Note that an exception is raised if the resulting string
exceeds the maxLength property value of the text box.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 561

EncycloWin - 2020.0.02

Note Retrieving the long date value by using the getTextAsLongDate method returns the text in long date
format for the current locale. Setting date text by using the setTextFromLongDate method does the reverse.

You can therefore use the getTextAsLongDate and setTextFromLongDate methods to access long date text so
that JADE handles the locale format for you.

setTextFromReal
Signature setTextFromReal(real: Real);

The setTextFromReal method sets the text from the textUser property of a JadeEditMask control to a Real value
converted to a string in the format of the locale under which the control is running (for details, see the languageId
property). The string contains the number of decimal places specified by the mask property. If the value of the
mask property is null (""), the number of decimal places depends on the value of the real parameter. (Note that
an exception is raised if the resulting string does not conform to the data format specified by the mask property
value.)

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

The setTextFromReal method of a TextBox control sets the text property value to a Real value converted to a
string in the format of the locale of the user application. The number of decimal places displayed is determined by
the value of the decimals property and the Real number is rounded to that precision. (Note that an exception is
raised if the resulting string exceeds the maxLength property value of the text box.)

Notes A numeric JadeEditMask control expects the negative sign, decimal place, and separator characters to
be in the form defined for the locale under which the control is running. A numeric TextBox control expects the
negative sign and decimal place characters to be in the form defined for the locale under which the user is
running. This applies when accessing the text or textUser properties and when the user enters data. Setting the
text by using the setTextFromReal method converts the numeric into the appropriate string for that locale.
Retrieving the Decimal value by using the getTextAsReal method does the reverse. You can therefore use the
getTextAsReal and setTextFromReal methods to access numeric text so that JADE handles the locale format for
you.

The position of a negative sign indicated by the locale is honored by a leading or trailing numeric in the
JadeEditMask or TextBox control. However, locales that specify a negative value expressed by parentheses (for
example, (123)) are treated as a leading dash symbol (-). In addition, locales that have a leading or trailing space
associated with a negative sign are treated as the equivalent format without the space (for example, - 123 will be
-123 and 123 - will be 123-).

setTextFromShortDate
Signature setTextFromShortDate(date: Date);

The setTextFromShortDate method of a TextBox control sets the text property value to a Date value converted
to a String in the short date format of the current locale. Note that an exception is raised if the resulting string
exceeds the maxLength property value of the text box.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 562

EncycloWin - 2020.0.02

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client.

Note Retrieving the long date value by using the getTextAsShortDate method returns the text in long date
format for the current locale. Setting date text by using the setTextFromShortDate method does the reverse.

You can therefore use the getTextAsShortDate and setTextFromShortDate methods to access long date text so
that JADE handles the locale format for you.

setTextFromTime
Signature setTextFromTime(time: Time);

The setTextFromTime method of the JadeEditMask control class sets the text from the textUser property to a
Time value converted to a string in the format of the locale under which the control is running (for details, see the
languageId property). If the value of the mask property is null ("") or if it does not specify that the data is a time
field with at least an hour and minutes mask (for example, hh:mm:ss), an exception is raised. If the mask does not
have a seconds mask, the seconds in the time are ignored.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeEditMask class validates the setting and entry of text based on the
mask property, using the current locale of the client with regional overrides on both the presentation client and the
application server.

The setTextFromTime method of the TextBox control class sets the text of the text box to the specified Time
value converted to a string in the format of the current locale.

When the EnhancedLocaleSupport parameter is not defined or it is set to false, inconsistent results could be
returned to the application server when running in JADE thin client mode and there are regional overrides, as all
overrides on the application server are suppressed. By default, formatting of locale data is done on the application
server, based on the locale of the corresponding presentation client. For example, if the locale of your application
server is set to English (United Kingdom), which has a default short time format of HH:mm:ss (24-hour clock), and
it has been overridden with a short time format of hh:mm:ss (12-hour clock), this is returned in the default
HH:mm:ss format.

A JadeEditMask control expects times to be formatted according to the locale that the control is using. This
applies when accessing the text or textUser property and when the user enters data. Setting time text by using
the setTextFromTime method converts the time into the appropriate string for that locale.

Retrieving the Time value by using the getTextAsTime method does the reverse. You can therefore use the
getTextAsTime and setTextFromTime methods to access time text so that JADE handles the locale format for
you.

setTextProtection
Signature setTextProtection(start: Integer;

length: Integer;
protected: Boolean);

The setTextProtection method of the JadeRichText class enables you to mark a range of the content of a
JadeRichText control from the position specified in the start parameter through to the length specified in the
length parameter as protected or unprotected, by setting the protected parameter to true or false, respectively.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 563

EncycloWin - 2020.0.02

The method in the following example shows the use of the setTextProtection method.

vars
start, length : Integer;

begin
start := jadeRichText.selStart;
length := jadeRichText.selLength;
jadeRichText.setTextProtection(start, length, true);

end;

setTextRangeToStyle
Signature setTextRangeToStyle(firstCharacter: Integer;

length: Integer;
styleMask: Integer;
styleValue: Integer);

The setTextRangeToStyle method of the JadeTextEdit class updates the current text style setting for each
character in the specified range with the values specified in the styleMask and styleValue parameters. You can
use this method, for example, to set the text range so that it is displayed marked with a specified indicator.

In the firstCharacter parameter, specify the zero-based character offset (that is, the first character of text in the
control is 0, the second is 1, and so on) of the first character whose text style you want to change.

In the length parameter, specify the number of characters whose text style you want to update.

In the styleMask parameter, you can specify one or a combination of the JadeTextEdit class constants listed in
the following table to define the text style indicator; that is, which of the eight style bits you want to change.

Constant Value Constant Value

SC_INDIC0_MASK #20 SC_INDIC1_MASK #40

SC_INDIC2_MASK #80 SC_INDICS_MASK #E0

SC_STYLES_MASK #1F

Note that indicator flags of each character are cleared when the text in a text editor control is restyled (for example,
by calling the restyleText method).

In the styleValue parameter, specify the text style that you require; that is, the new value for the style bits indicated
in the styleMask parameter.

As the text style is usually language-dependent, the style for the JADE language could be one of the
JadeTextEdit class constants listed in the following table or it could be an indicator flag.

Constant Value Constant Value

SCE_JAD_BINARYLITERAL 22 SCE_JAD_COMMENT 6

SCE_JAD_COMMENTLINE 7 SCE_JAD_DEFAULT 4

SCE_JAD_DOCTEXT 21 SCE_JAD_DOLLARIDENT 23

SCE_JAD_GLOBALCONST 17 SCE_JAD_IDENTIFIER 11

SCE_JAD_INTERFACE 20 SCE_JAD_KEYWORD 12

SCE_JAD_METHODWORD 13 SCE_JAD_NUMBER 10

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 564

EncycloWin - 2020.0.02

Constant Value Constant Value

SCE_JAD_PACKAGE 18 SCE_JAD_PACKAGECLASS 19

SCE_JAD_PUNCTUATION 5 SCE_JAD_SINGLECOLOR 0

SCE_JAD_STRING1 8 SCE_JAD_STRING2 9

SCE_JAD_SYSTEMCLASS 15 SCE_JAD_SYSTEMVAR 14

SCE_JAD_USERCLASS 16

The code fragment in the following example shows the use of the setTextRangeToStyle method.

//Define indicator zero to be a red wavy underline symbol
setIndicatorAttributes(0, SC_INDIC_SQUIGGLE, Red);
//Change styling for characters 50 through 54 to set indicator 0
//(and to clear 1 and 2)
setTextRangeToStyle(50, 5, SC_INDICS_MASK, SC_INDIC0_MASK);

setValue
Signature setValue(controlName: String;

memberName: String;
paramList: ParamListType);

The setValue method of the JadeXamlControl class sets the value of a WPF property for an entity of a XAML
control

The parameters are combined to form a sequence of accesses to the WPF entities involved. The JADE method
parameters are a mixture of property names, method names, and WPF method parameters, with the last
parameter containing the primitive value to be set. as described in the following table.

Parameter Description

controlName Name of the WPF FrameworkElement involved. If the name is null or equal to the control
name, the search for the memberName starts with the parent control; otherwise the search
starts with the first child element with the specified name. The search succeeds when the
entity or one of its children is found to have the specified memberName value. An
exception is raised if the controlName or memberName is not found.

memberName Name of the first method or property being accessed.

paramList Remaining property, methods, and parameters used in sequence. The final parameter is
the value being set.

The code fragments in the following examples show how these parameters are used.

jadeXamlCtl.setValue("list", "SelectedIndex", 3);
// sets the integer value of the currently selected item of the
// list box entity named "list" to 3 by executing the WPF sequence
// list.SelectedIndex = 3.

jadeXamlCtl.setValue("list", "SelectedItem", "Content", "new text");
// sets the content of the currently selected item of the list box
// to "new text" by executing the WPF sequence
// list.SelectedItem.Content = "new text"

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 565

EncycloWin - 2020.0.02

jadeXamlCtl.setValue("list", "Items", "GetItemAt", 3, "Content", "Customer")
// sets the content of the list box entry with an index of 3 to
// "Customer", by executing the WPF sequence
// list.Items.GetItemAt(3).Contents= "Customer"

Note the following restrictions.

Only JADE primitives types are supported as parameters to WPF method calls.

Access to static WPF properties and methods is not supported.

The last parameter is the value to be set.

The penultimate parameter is the name of a WPF property that can be set.

Parameter types must match the same basic type; that is, an Integer parameter must be passed as an
Integer, a floating point or real number as a Real, a byte as a Byte, and so on.

For a thin client, calls to this method are buffered (the application server does not wait for a reply). If a call
fails, an exception is raised. However the current line of logic listed as causing the exception does not
indicate where the method was called.

setWordCharactersets
Signature setWordCharactersets(wordChars: String;

punctuationChars: String;
whitespaceChars: String);

The setWordCharactersets method of the JadeTextEdit class sets the characters that are treated as part of a
word (specified in the wordChars parameter) and those that are treated as white space (specified in the
whitespaceChars parameter) and those that are treated as punctuation (specified in the punctuationChars
parameter) in the text editor.

The keyboard command for the next word (that is, Ctrl+right arrow) and for the previous word (that is, Ctrl+left
arrow) use these character sets. (See also the moveCaret method.)

As white space characters are skipped when positioning the caret before the previous or next word, you can use
the setWordCharactersets method to specify additional characters that are ignored when searching for the next
or previous word. Characters can be in the ranges a through z, A through Z, and 0 through 9, as well as the period
(.), comma (,), exclamation point (!), and question mark (?) symbols (for example, ".,!? ").

Each setWordCharactersets method call restores the character sets to the default values. The default character
sets are:

Word character set

Uppercase and lowercase letters, digits, underscore characters, and any character with a decimal value
greater than 127.

Whitespace

Space, tab, and all control characters (decimal value less than 32).

Punctuation

All other character sets.

Characters specified in each parameter are added to the appropriate character set. A specified character can be
in one character set only.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 566

EncycloWin - 2020.0.02

Limit the specified characters to the decimal equivalent range of zero (0) through 127. Extended and Unicode
characters default to the word character set.

setXamlEventMethod
Signature setXamlEventMethod(control: String;

xamlEvent: String;
jadeMethod: Method);

The setXamlEventMethod method of the JadeXamlControl class registers the control for other Window
Presentation Foundation (WPF) control events apart from the standard JADE events.

The parameters of the setXamlEventMethod are described in the following table.

Parameter Name of the …

control WPF FrameworkElement. If the name is null or the same as the name of the control, the event
is for the parent XAML element; otherwise the event is for the child element with the supplied
name.

xamlEvent WPF event to be registered.

jadeMethod JADE method on the form that is to be called when the event occurs. The method must have
the method-name(xamlControl: JadeXamlControl, itemName: String); signature, where the
xamlControl value is the control receiving the event and the itemName value is the WPF
element invoking the event. If this parameter is null, an existing event registered for the
controlName, xamlEvent combination is removed.

An exception is raised if is the xamlEvent parameter is not a defined WPF event for the control, or if the
jadeMethod parameter is not a defined method on the form or a superclass.

If the control is a subclass of JadeXamlControl and has a method with the same name as the jadeMethod
parameter, the event calls the subclass method rather than the form method.

The following code fragment shows the use of the setXamlEventMethod method to register the myTextChanged
method to receive the TextChanged event.

jadeXamlCtl.setXamlEventMethod("text1","TextChanged",MyForm::myTextChanged);

shareDocumentFrom
Signature shareDocumentFrom(original: JadeTextEdit);

The shareDocumentFrom method of the JadeTextEdit class specifies the JadeTextEdit object whose text buffer
is shared by this object.

Use the original parameter to specify the text editor that this object is to share at run time.

This method links the receiver control to the text edit control specified in the original parameter so that both
controls display the same text. Use this method to implement split windows, as shown in the following example.

mnuEditSplit_click(menuItem: MenuItem input) updating;
begin

menuItem.checked := not menuItem.checked;
if menuItem.checked then

jteSecond.shareDocumentFrom(jteSource);
jteSecond.visible := true;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 567

EncycloWin - 2020.0.02

else
jteSecond.shareDocumentFrom(null);
jteSecond.visible := false;

endif;
end;

sheets
Signature sheets(): Integer;

The sheets method returns the number of sheets for a Folder control. See also the sheets property of the Table
control.

show
Signature show();

The show method of the Form class makes the form visible in its current state; that is, minimized, maximized, or
normal.

The show method is invoked and starts execution before the load event method is invoked. Within the show
method, the presence of an inheritMethod call causes the load method to be invoked. Consequently, any user
logic positioned prior to the inheritMethod call is executed before the load event method executes.

Use the windowState property to control the state of the form. The first show statement for a created form executes
its load event if it has not already been executed. Setting the value of the visible property to false within the load
event is ignored when the show method is performed. The form must have been created before it can be shown.
The create method constructs the windows and menus for the forms and its controls, as defined in the JADE
development environment.

For a form defined as a Web page, the show method executes the load event, generates HTML, and returns this
HTML back to the Web server. Unlike the showModal method, the logic returns to the statement following the
show method after the form is made visible. Other forms can also receive user input (from the keyboard or mouse)
while that form is active.

The methods in the following examples show the use of the show method.

menuCustomerAdd_click(menuItem: MenuItem input) updating;
vars

form : CustomerDetailsForm;
begin

create form transient;
form.show;

end;

listBoxCustomers_dblClick(listbox: ListBox input) updating;
vars

cust : Customers;
custs : CustomersByContactNameDict;
form : CustMaintForExternalDB;

begin
create custs;
cust := custs.getAtKey

(listBoxCustomers.text[1:listBoxCustomers.text.pos(",", 1)-1]);
create form transient;
form.textBoxName.enabled := false;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 568

EncycloWin - 2020.0.02

form.myExtCustomers := cust;
form.textBoxName.text := cust.contactName;
form.textBoxCity.text := cust.city;
form.textBoxAddress.text := cust.address;
form.show;

end;

Note The show method cannot be used for a form created with the createPrintForm method of the GUIClass
class.

showDropDown
Signature showDropDown();

The showDropDown method of the ComboBox class opens (shows) the drop-down list of the combo box control.
(Use the isDroppedDown method to determine if the drop-down list is currently open.)

Note The showDropDown method is ignored if the combo box is not on the currently active form.

showHelp
Signature showHelp(): Boolean;

Call the showHelp method on a Window class object to invoke Windows help on that object if its helpKeyword or
helpContextId property is set.

The helpFile property of the application determines the help file that is used. This method returns true if Windows
help was initiated or false if it was not (that is, the Window class object had no help information).

When help is invoked directly via the Window class showHelp method or via the user pressing the help key (F1), a
URL is created and the default browser is invoked to display the URL if the helpFile property or the Window class
helpKeyword property is set to a base URL.

If the helpKeyword property was set, a partial key search is performed using that keyword. If the helpKeyword
property is not set but the helpContextId property is set, that context id is used to access the help file.

The method in the following example shows the use of the showHelp method.

buttonHelp_click(btn: Button input) updating;
begin

if listBoxMethods.text.pos ("::", 1) = null then
helpKeyword := listBoxMethods.text;

else
helpKeyword := listBoxMethods.text[(listBoxMethods.text.pos

("::",1)+ 2) : end];
endif;
showHelp;

end;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 569

EncycloWin - 2020.0.02

showInsertForm
Signature showInsertForm(allow: Integer,

initDir: String;
filter: String): Integer;

The showInsertForm method of the OleControl class initiates a modal dialog, enabling the user to select the OLE
object to be loaded into the control.

The code fragment in the following example shows the use of the showInsertForm method.

beginTransaction;
if oleReview1.showInsertForm(1, null, "All File |*.*|Notepad

(*.txt)|*.txt") <> -1 then
create obj;
obj.copy(oleReview1.oleObject);

endif;
if oleReview2.showInsertForm(1, null, "All File |*.*|Notepad

(*.txt)|*.txt") <> -1 then
create obj;
obj.copy(oleReview2.oleObject);

else
create obj;
obj.copy(oleReview3.oleObject);

endif;
commitTransaction;

The allow parameter values are listed in the following table.

Verb Description

0 embed & link option enabled (new)

1 embed option only allowed

2 Linked object only allowed

The initDir parameter specifies the initial directory for browse options. The initial directory defaults to the current
directory if an empty string is passed.

The filter parameter specifies the file type filter available during browse options. The filter defaults to all files if an
empty string is passed.

The showInsertForm method returns the values listed in the following table.

Value Description

-1 The user cancelled the dialog

1 An embedded object was selected

2 A link object was selected

If the user selected an OLE object, that OLE object is loaded into the oleObject property of the OleControl class.

Note When an OLE object is selected, the OLE server handling that object is initiated asynchronously. The
showInsertForm method completes before the OLE object is loaded into the control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 570

EncycloWin - 2020.0.02

showModal
Signature showModal(): Integer;

The showModal method of the Form class makes the form visible in its current state; that is, minimized,
maximized, or normal. (Use the windowState property to control the state of the form.) The first showModal
statement for a created form executes its load event if it has not already been executed.

Setting the visible property to false within the load event is ignored when the showModal method is performed.
When a modal form is displayed, no logic after the showModal method is executed until the form is unloaded or
made invisible. See also "Windows Events and JADE Events", later in this document.

The showModal method is not supported for a form defined as a Web page. If the showModal method is invoked
for a Web page form, an error is raised at run time or the behavior of the show method is adopted, depending on
the setting of the Treat showModal as show check box in the Web Options sheet of the Define Application dialog
of your JADE application. (For details about interfacing to the Internet, see "Implementing Web Applications", in
the JADE Web Application Guide.)

When displaying a modal form, no user input (from the keyboard or mouse) can occur in any other form until the
modal form is unloaded. The logic must unload a modal form (usually in response to some user action) before
further user input can occur. MDI forms cannot be shown modally. Although other forms in your application are
disabled when a modal form is displayed, other applications are not.

The modal form is not deleted until the method that creates it is terminated (even when an unload is performed).
User logic can therefore access any portion of the form and its controls, except that no events for that form occur.

The showModal method returns the value of the modalResult form variable, which can be set in the called modal
form to indicate an action to be taken upon return from the form. The form must have been created before it can be
shown. The create method constructs the windows and menus for the forms and its controls, as defined in the
JADE development environment.

Unlike the show method, the logic does not return to the statement following the showModal method until after the
form is unloaded or made invisible. Other forms cannot receive user input (from the keyboard or mouse) while that
form is active.

Note The showModal method cannot be invoked from a server method.

The methods in the following examples show the use of the showModal method.

listProducts_dblClick(listBox: ListBox);
vars

form : ProductDisplay;
begin

if listProducts.itemText[listProducts.listIndex] <> "" then
create form;
form.fault := app.myCompany.allProducts.getAtKey(getProductNumber);
form.centreWindow;
form.showModal;

endif;
end;

callCDEntry(doDisplay: Boolean) updating;
vars

cdentry : CDEntry;
str : String;

begin

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 571

EncycloWin - 2020.0.02

str := cd.sendString("info identity");
create cdentry;
cdentry.doDisplay := doDisplay; // display if present
cdentry.cdIdentity := str.Integer;
cdentry.numberTracks := numberOfTracks;
cdentry.showModal;
// update cdplayer data
userObject := cdentry.userObject;
displayCDInfo;

end;

showMySheet
Signature showMySheet();

The showMySheet method of the Control class provides a control with the ability to make the sheet on which it is
placed the top sheet of a Folder control. The control does not have to be a direct child of the folder.

Folders provide the ability to share the same screen space for a number of control images.

The sheets of the folders are special group boxes on which controls are placed. The caption of each sheet is
displayed in selectable tabs above the images. Only one sheet is displayed at any time.

If the control is not on a sheet, this method does nothing. If the sheet that contains this control is not visible, the
sheet is then made visible, as shown in the code fragment in the following example.

if not text1.isMySheetVisible then
text1.showMySheet;

endif;

showPropertyPage
Signature showPropertyPage(nam: String): Boolean;

The showPropertyPage method of the Window class is called by the Painter when the hasPropertyPage method
indicates that the window has its own property-editing dialog for editing the property specified in the nam
parameter. If the property name is an empty string, the global Properties dialog is requested. The
showPropertyPage method returns whether property changes were made by the user in the dialog, so that the
Painter knows whether to save the changed data.

The Painter calls the saveProperties method when the edited form is being saved, so that the window can save
data edited in the dialog.

The method in the following example shows the use of the showPropertyPage method.

showPropertyPage(nam: String): Boolean updating;
vars

form : MyTableForm;
result, maxIndex : Integer;
loopIndex : Integer;

begin
if nam = 'layout' then

sizeColumnArrays;
create form transient;
form.transientTable := self;
result := form.showModal;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 572

EncycloWin - 2020.0.02

if result = 0 then
if persistTable <> null then

beginTransaction;
persistTable.columnHeadingArray.clear;
persistTable.columnWidthArray.clear;
persistTable.columnVisibleArray.clear;
persistTable.columnPictureArray.clear;
persistTable.columnLengthArray.clear;
persistTable.columnAlignmentArray.clear;
persistTable.columnInputTypeArray.clear;
self.columnHeadingArray.copy(persistTable.columnHeadingArray);
self.columnWidthArray.copy(persistTable.columnWidthArray);
self.columnVisibleArray.copy(persistTable.columnVisibleArray);
self.columnPictureArray.copy(persistTable.columnPictureArray);
self.columnLengthArray.copy(persistTable.columnLengthArray);
self.columnAlignmentArray.copy(

persistTable.columnAlignmentArray);
self.columnInputTypeArray.copy(

persistTable.columnInputTypeArray);
persistTable.columnHeight := self.columnHeight;
myCollectionOid := null;
commitTransaction;

endif;
layout := 'Defined';
buildTableColumns;
return true;

else
return false;

endif;
else

return inheritMethod(nam);
endif;

end;

Notes Although this method is primarily used for ActiveX controls, you can also use it for subclassed (user-
defined) controls. If you want your subclassed controls to have their own property-editing dialog, you must
reimplement the showPropertyPage method so that it can be called by Painter.

The initiated dialog runs under the JADE application (app is the JADE application).

stepRelative
Signature stepRelative(increment: Integer);

The stepRelative method of the MultiMedia class moves the current position in the content forwards or backwards
by the amount specified in the increment parameter. Specify the increment in the units of the timeFormat
property.

See also the position property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 573

EncycloWin - 2020.0.02

startDrawingCapture
Signature startDrawingCapture();

The startDrawingCapture method of the Picture class causes the picture control to enter a special mode in which
each subsequent mouse down on the control draws a dot. While the mouse is down, each mouse move event
draws a line between the previous point and the current mouse position.

When the method is called, any previous drawing on the control is cleared and the value of the autoRedraw
property is set to true. All subsequent user drawing activity is captured and saved.

The points and lines are drawn using default values for the foreColor property (Black), the drawStyle property
(DrawStyle_Solid), and the drawWidth property (1) of the picture.

While the picture control is in this special mode, any defined mouseDown, mouseUp, click, and dblClick event
methods on the control are not called.

Call the stopDrawingCapture method to exit from the special drawing mode.

stop
Signature stop; (MultiMedia)

stop; (Picture)

The stop method of the MultiMedia class stops playing or recording of the medium associated with the control.
(See also the MultiMedia class pause method.)

The method in the following example shows the use of the stop method.

stop_click(btn: Button input) updating;
begin

if cd.getMode = MultiMedia.Mode_Playing then
cd.stop;
cd.position := cd.getStartPosition;

endif;
end;

The stop method of the Picture class causes the current animation process started by the Picture class play
method to be terminated. If the play method is not in effect, this method does nothing.

When running the JADE application in thin client mode, this method executes on the presentation client by default.

stopDrawingCapture
Signature stopDrawingCapture(): Binary;

The stopDrawingCapture method of the Picture class turns off a special drawing mode that was entered using
the startDrawingCapture and returns a binary image of the client area of the control.

A 1-bit monochrome png image is returned if the Picture control has no defined picture property, the effective
value of the backColor property is white, and the value of the foreColor property is black. If any of these
conditions is false, a 24-bit PNG image (.png) is returned.

The stopDrawingCapture method sets the value of the autoRedraw property to false and deletes the saved
drawing history. When the control is repainted after calling the stopDrawingCapture method, the drawn image is
not displayed.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 574

EncycloWin - 2020.0.02

If you want a different image style, use the following actions instead of calling the stopDrawingCapture method.

bin := picture1.createPictureAsType(....);
picture1.autoRedraw := false; // also turns off the special drawing mode

After the special drawing mode is turned off, any defined mouseDown, mouseUp, click, and dblClick event
methods for the picture are called if they occur. If the stopDrawingCapture method is called and the control is not
in the special drawing mode, an exception is not raised and the result is equivalent to calling the
createPictureAsType method.

tabNext
Signature tabNext();

From the control that has the focus, the tabNext method of the Form class tabs to the next control that is visible
and can receive the focus, in the tab order that is enabled. This method performs the same action as the Tab key.

tabPrior
Signature tabPrior();

From the control that has the focus, the tabPrior method of the Form class tabs to the prior control that is visible
and can receive the focus, in the tab order that is enabled. This method performs the same action as the Shift+Tab
key combinations.

undo
Signature undo(): Boolean; (JadeRichText)

undo(): Integer; (JadeTextEdit)

The undo method of the JadeRichText class undoes the last edit operation in the receiver control and returns
true if the operation was undone or it returns false if the undo operation failed. You can undo up to 100 edit or
format actions in a rich text control.

The undo method of the JadeTextEdit class undoes the last operation that was undone in the receiver control and
returns zero (0). There is no limit to the number of undo actions in a text edit control.

unloadForm
Signature unloadForm(): Boolean;

The unloadForm method of the Form class attempts to unload the form and returns whether the unload operation
was successful, as listed in the following table.

Return Value Description

true The form was unloaded

false The request is denied by the queryUnload event generated by this method call

The form must have been created before it can be unloaded.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 575

EncycloWin - 2020.0.02

Use this method to cause the queryUnload and unload events of the form to be executed, even if the unload is
performed in the load event of the form. The queryUnload method may reject the unload operation. If a form is
unloaded before it is displayed and the load event has not been executed, the queryUnload and unload events
are not executed.

If a queryUnload method is aborted, queryUnload is not called for any other forms affected by the unload and all
affected forms are unloaded without calling the unload method. If an unload method is aborted, all other affected
forms are unloaded without calling the unload method.

Unloading a form queues the window for deletion, but if another window is deleted before the next idle point,
previously queued deleted windows are re-evaluated for deletion. If the queued window or its children have no
outstanding Windows message, there are no incomplete event methods for that window or its children, and the
method that created the window has exited or the window was deleted, the physical window is deleted.

If the form is defined as a Web page, the form is removed from the list of open forms maintained by the
WebSession class. If the form is an MDI child and it is the last child of the default MDI frame form (supplied by
JADE in jade.exe), the frame is also unloaded. If the form is the last running form, the application is also
terminated.

The methods in the following examples show the use of the unloadForm method.

buttonUnload_click(btn: Button input) updating;
begin

// Deletes the data and unloads the form.
statusLine1.caption := "Deleting data...";
statusLine1.refreshNow;
beginTransaction;

if numbers <> null then
NumberDict.instances.purge;
Number.instances.purge;

endif;
commitTransaction;
unloadForm;

end;

cancelButton_click(btn: Button input) updating;
begin

if app.checkForTransients(self) then
app.msgBox("Transients remain", 'Warning', MsgBox_Information_Icon);

endif;
unloadForm;

end;

update
Signature update();

The update method of the OleControl class initiates the server application to ensure that the OLE object is up-to-
date. The image is refreshed and stored if it is not up-to-date.

updateAppSettings
Signature updateAppSettings(settings: String);

The updateAppSettings method of the JadeTextEdit class adds one or more entries specified in the settings
parameter to the application text editor settings table.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 576

EncycloWin - 2020.0.02

Use the application settings table to add to or override the default global settings.

Use the applySettings method to apply the combined application a global settings to the receiver control, as
shown in the example in the following code fragment.

jte.updateAppSettings("smart.indent.words.*.jade=if while foreach");
jteSource.applySettings();

See also the Application class getJadeTextEditGlobalSettings, getJadeTextEditOneSetting, and
updateJadeTextEditAppSettings methods and the JadeTextEdit class applySettings method.

useImage
Signature useImage(image: Binary);

The useImage method of the Picture class assigns an image to the picture of the picture control without creating a
transient copy of that image, therefore avoiding the possibility of filling transient cache with a copy of the image,
particularly for very large images. The result is the same as the picture1.picture := <binary> logic except that a
copy of the image is not created in transient cache.

Note Calling the useImage method or assigning to the picture property discards the previous image. Both
these logic statements update the same GUI object so that only the last set image is retained.

Calling the useImage method also causes the picture property to be set to null.

The following code fragment is an example of the use of this method.

vars
bin : Binary;

begin
bin := getImage; /* somehow retrieve the image; for example,

app.loadPicture */
picture1.useImage(bin);
/* Note that the following statement will then return 'null', even

though the image has been set above */
bin := picture1.picture;

usesFiles
Signature usesFiles(): Boolean;

The usesFiles method of the MultiMedia class returns true if the data storage used by the device is a file. If the
storage is not a file, this method returns false.

If the useDotNetVersion property is set to true, the usesFiles method returns a fixed value of true.

windowToScreen
Signature windowToScreen(x: Real io;

y: Real io);

The windowToScreen method of the Window class converts a position relative to the left and top of the window
into an absolute position on the screen. By using the screenToWindow method, this position can then be
converted into a position relative to another window.

See also the screenToWindow method for an example of the use of these methods.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 577

EncycloWin - 2020.0.02

writeHTML
Signature writeHTML();

For report-type Web pages, the writeHTML method of the Frame class generates HTML code when a Web
session is active.

If there is no active Web session, this method outputs the frame to the printer. For details, see the print method of
the Printer class.

zOrder
Signature zOrder(pos: Integer);

The zOrder method of the Window class places a specified form or control at the front or back of the z-order within
its graphical level. This affects only windows that are siblings. (Sibling controls that have the alignContainer
property do not occupy the same area on their parent. If so, use the visible property to control the window that is
currently displayed.)

For non-MDI forms, this method sends the form to either the front or the back of the screen, depending on the
value of the pos parameter. Consequently, forms can be displayed in front of or behind other running applications.
The pos parameter indicates the position of the control relative to other controls. If the position is 1, the control is
positioned at the front of the z-order. If the position is zero (0), the control appears at the back of the z-order.

Within MDI forms, the zOrder method sends MDI child forms to the front or the back of the MDI client area,
depending on the value of the pos parameter.

When bringing a control to the front, if the control is already above all other overlapping siblings, the request is
ignored. Conversely, when pushing a control to the back, if the control is already below all other overlapping
siblings, the request is ignored. (The zOrder method does not generate a paint event if the position is
unchanged.)

The methods in the following examples show the use of the zOrder method.

btnShowPicture_click(btn: Button input) updating;
begin

if picture1.visible = false then
picture1.visible := true;
picture1.zOrder(1);
buttonShowPicture.caption := "Hide Picture";

else
picture1.visible := false;
buttonShowPicture.caption := "Show Picture";

endif;
end;

btnInvestors_click(btn: Button input) updating;
vars

iqForm : InvestorInquiry;
form : Form;

begin
form := app.getForm("InvestorInquiry");
if form = null then

create iqForm;
iqForm.centreWindow;
iqForm.show;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Methods Chapter 2 578

EncycloWin - 2020.0.02

else
iqForm := form.InvestorInquiry;
iqForm.setFocus; // set focus to this form
iqForm.zOrder(1);

endif;
end;

Notes A child is always drawn on top of its parent.

For details about the order of controls on touchscreens when accessibility is set, see "Control Order on
Touchscreens" under "Changing the Runtime Tab Sequence", in Chapter 5 of the JADE Development
Environment User's Guide.

It is not possible to handle the painting of transparent controls in the correct zOrder when it involves a mixture of
controls that can be directly painted by JADE and those that can only be painted separately by Windows.

As a result, transparent sibling controls are always painted before any JadeRichText, MultiMedia,
JadeXamlControl, Ocx, OleControl, JadeDotNetVisualComponent, or ActiveXControl controls, regardless of
their zOrder settings.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 579

EncycloWin - 2020.0.02

Window, Form, and Control Events
This section describes the events generated by user interaction with the application in some way, usually by the
mouse or a keyboard action.

One action may generate multiple events for that process. For example, clicking a different form can cause the
following events.

deactivate on the form losing the focus

deactivate on the MDI frame form losing the focus

activate on the new MDI frame form

activate on the new form

mouseDown on the new form or control (depending where it is clicked)

lostFocus on the control that previously had the focus

gotFocus on the control receiving the focus

mouseUp

click

Other development platforms take the approach of causing some of these events when properties of the controls
or forms are altered; for example, causing the change event when text in a TextBox control changes. JADE does
not do this. Sometimes these pseudo-events are an advantage, but sometimes they cause difficulties, with extra
logic required to ignore the event, particularly when initializing the data in the control.

Tip Use the Window class enableEvent method to control at run time whether JADE logic associated with an
event for a specific form or control is executed. You could use this method in thin client mode, for example, to
speed up the data entry process for a TextBox control by disabling the keyDown event. (Event methods can be
enabled or disabled in standard client mode and in thin client mode.)

In general, any events generated as a result of logic are not sent. The exception to this rule is that the following
events are sent regardless of whether logic caused that event.

activate

deactivate

gotFocus

lostFocus

For details about the events that can be generated from JADE logic, see "Windows Events and JADE Events", in
the following subsection.

When an event method defined at the Control class is deleted, the user is warned of this. If the deletion is
confirmed, the event methods that correspond to this control event are also deleted.

Renaming a control event method automatically renames all event implementations.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 580

EncycloWin - 2020.0.02

Menu and control events have the menu or control causing the event passed as the first parameter. This need not
be used if the event logic is designed only for a particular control. In this case, the logic can refer to the specific
control. However, you should use the passed menu or control. By doing so, more than one control or menu can
use the same event logic, where appropriate. In this situation, the event for these controls would have been
mapped to the same method name.

Using the parameter is also of benefit when controls are cloned using the loadControl or addControl method. In
this case, there is more than one control with the same name and type. They each share the same event methods.
References to the control name directly from logic access only the original control created in the JADE
development environment.

You can access all GUI properties and methods (which are marked as clientExecution methods) from a server
method except for anything that brings up a modal-type dialog (that is, the common dialog class methods, the
app.msgBox, and the showModal and popupMenu methods in the Form class). The other exceptions to this are
the app.doWindowEvents, app.checkPictureFile, and app.loadPicture methods, which are executed relative to
the server.

Caution Use of GUI methods and properties is very expensive in a server method. A clientExecution method
requires that all transient objects passed to the server are passed back with the client execution (and passed back
to the server after the client execution is complete). Accessing GUI properties and methods within a server
execution should therefore be done only in exceptional circumstances.

Windows Events and JADE Events
Each application running in JADE is executed on its own thread and each thread effectively runs as a standalone
program. When an application is idle, it waits for the arrival of Windows messages generated as a result of some
user action; for example, the use of the keyboard or mouse, a timer expiry, or a message such as a JADE
notification posted to the application. Any window of the current application can generate messages that are to be
acted upon.

When a message is received, JADE internally performs the appropriate processing and generates the required
JADE event calls.

Many messages generate a sequence of actions that are executed as part of the original message; for example, a
mouseDown event on an inactive form may also generate an activate event on the new form, a deactivate event
and a mouseLeave event on the old form, a gotFocus event on the control gaining focus, and a lostFocus and a
mouseLeave event on the control losing focus.

When a message has begun to be processed, no further messages can be executed until logic again does a read
on the input message queue. (For the exceptions to this rule, see "Window, Form, and Control Events", earlier in
this document.) The actions that generate a read of this message queue are as follows.

Processing of the current message, and all its resulting actions have been completed.

When JADE logic executes a form.showModal and all of the logic associated with the loading and showing
of that modal form has been completed. At this point, JADE starts a new windows loop, waiting and
processing further window messages for the application until the form is unloaded.

The method that executed the showModal method is suspended until that point.

A message box is displayed. This is just another modal form, but one that does not have any JADE logic
associated with it.

JADE logic calls the Application class doWindowEvents method (app.doWindowEvents). This method
immediately processes all messages for the entire application for a specified time, suspending the existing

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 581

EncycloWin - 2020.0.02

method for that duration.

An exception dialog is displayed, which is just another modal form.

Timer and notification events are executed only when the application is waiting for input.

When the application is in one of the wait situations described in the previous list, any window can generate
events and any notifications and timers are processed, except that when an exception box is displayed, all timer
and notification events are delayed until the exception is aborted or canceled. Paint events are still executed,
otherwise the forms and controls would not be repainted.

Showing a form (including a message box) as modal has the following impact only.

All other forms of that application are disabled until the modal form is unloaded. Those disabled forms can
then generate timer, paint, and notification events only if specific logic makes changes to them; for example,
an instance of a form is unloaded.

The method issuing the showModal method call is suspended at that point, until the modal form is unloaded.

Some JADE events are generated immediately as a result of logic, as follows.

Any logic that causes another form to be activated (including methods such as show, showModal,
showHelp, msgBox, and aboutBox) generates activate and deactivate events.

Any logic (including setFocus, show, showModal methods, and so on) that causes the focus to shift
generates gotFocus and lostFocus events.

The refreshNow method causes an immediate paint and generates a paint event unless the autoRedraw
property is set. Any generated paint may also cause the displayEntry events associated with a list box
collection to be executed when there are insufficient entries in the list box. (The displayEntry event does not
re-evaluate existing entries in the list box.)

The show and showModal methods usually generate the load event, but some other event such as a
notification event can trigger the load event before the show or showModal method. (The load event is
always executed before any other form event.)

The unloadForm method generates a queryUnload event and an unload event, unless the queryUnload
event rejects the closure.

Unloading a form queues the window for deletion but if another window is deleted before the next idle point,
previously queued deleted windows are re-evaluated for deletion. If the queued window or its children has
no outstanding message, there are no incomplete event methods for that window or its children, and the
method that created the window has exited or the window was deleted, the physical window is deleted.

If a queryUnload method is aborted, queryUnload is not called for any other forms affected by the unload
and all affected forms are unloaded without calling the unload method. If an unload method is aborted, all
other affected forms are unloaded without calling the unload method.

The popupMenu method generates the select and click events for the menu that is being displayed.

The terminate instruction issues queryUnload and unload events to every form, unless a form rejects the
termination.

Changing properties of a MultiMedia control can cause notifyMedia, notifyMode, and notifyPosition events.

Ocx events can be generated as a result of logic, but this is dependent on the control.

User-generated events on subclassed controls can be generated by logic.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 582

EncycloWin - 2020.0.02

The JADE events that are generated immediately as a result of logic specifically do not include the following
situations.

Setting the listIndex property value of a ListBox or ComboBox control does not generate a click event.

Changing the current row or column of a Table control does not generate a rowColumnChg event.

Changing the value property of a CheckBox or OptionButton control does not generate a change or a click
event.

Changing the scroll position of a control does not generate a scrolled event.

Changing the size or position of a Form or Control does not generate any event.

Note To reduce the complexity that can arise from generating these events immediately, it is your responsibility
to handle these situations in your logic.

Call the Application class doWindowEvents method from a server method to process server notifications and
timers.

activate
Signature activate();

The activate event of the Form class occurs when a form becomes the active window.

When an MDI frame containing MDI child forms is made active, the MDI frame and the active child both receive
activate events (in that order).

When moving between child forms of an MDI frame, only the child forms receive an activate event. Similarly, if the
last active child is destroyed, the MDI frame does not receive another activate event, as it is already active.

A form can become active by a user action, such as clicking a form or control, or by using the show or setFocus
method in logic.

The activate event occurs only when a form is visible. For example, after a form loaded is created, it is not visible
unless you use the show method or set the visible property of the form to true. The activate event occurs when
moving the focus within an application (including MDI to non-MDI) and also to another application.

The method in the following example shows the use of the activate event.

activate() updating;
begin

lCount.caption := theCollectionSize.String;
self.resize;

end;

The handling of activate and deactivate events ensures that the following events occur once only.

deactivate of the prior active form.

deactivate of the MDI frame of the prior active form if it was an MDI child and the new form gaining focus is
not the MDI frame or a child of the MDI frame.

activate of the MDI frame if the form to be activated is an MDI child and the frame is not already active.

activate of the form to be activated.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 583

EncycloWin - 2020.0.02

If another Windows or JADE application is activated while a JADE application is active, only deactivate events
are generated for the deactivated JADE application.

If a JADE application is activated when another Windows or JADE application is active, only the activate events
are generated for the activated JADE application.

browse
Signature browse(browsebuttons: BrowseButtons input;

browseType: Integer);

The browse event occurs when the user presses the left mouse button over a browse button in a browse control.
See the BrowseButtons class for details of the constants provided by browse buttons.

The value of the argument button reflects which browse button was depressed, as shown in the following table.

BrowseButtons Class Constant Value Button Interpretation

Browse_First 1 Left First

Browse_Prior 2 Second left Prior

Browse_Next 3 Third left Next

Browse_Last 4 Right Last

cellInputReady
Signature cellInputReady(table: Table input;

inputControl: Control input;
cleft: Real io;
ctop: Real io;
cwidth: Real io;
cheight: Real io);

The cellInputReady event of the Table control occurs after a cell containing a control referenced by the
cellControl property becomes the current cell. The specified control is then resized to overlay the cell and is made
visible before returning from this event method to initialize the cellControl control contained in the inputControl
parameter for that cell.

Note If you create a table with a name 86 characters or longer and you then attempt to implement the
cellInputReady event, a message box advises you that the name is too long. If this occurs, reduce the length of
the Table control name before implementing the cellInputReady event.

The cellInputReady event method parameters are listed in the following table.

Parameter Description

table The Table control that has focus

inputControl The control referenced by the cellControl property

cleft The left position of the control

ctop The top position of the control

cwidth The width of the control

cheight The height of the control

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 584

EncycloWin - 2020.0.02

For details about automatically controlling a ComboBox or TextBox control assigned to a Table control as a
cellControl property (for example, when performance is an issue when running in JADE thin client mode over a
slow link), see the Control class automaticCellControl property.

change
Signature change(control: control-type input);

The change event indicates that the contents of a control have changed. The way in which the change event
occurs varies with the control, as shown in the following table.

Control Action

CheckBox The value property is changed using the mouse or a keyboard action.

ComboBox The text in the text box portion of the control has changed, only if the style
property is set to Style_DropDown (0), Style_Simple (1), or Style_
DropDownComboList (3) and the user changes the text portion of the
combo box by using a keystroke. It does not occur if you change the text
property from logic or by using arrow keys or the mouse.

Horizontal or vertical ScrollBar The scroll box portion of the scroll bar has finished moving. This occurs
when the user scrolls. It does not occur if you change the value property
from logic.

JadeEditMask The text contents of a text box have been changed by the user. It does not
occur when you change the text property from logic (that is, dynamically).

JadeTextEdit The text contents of the text editor have been changed by the user. It does
not occur when you change the text property from logic (that is,
dynamically).

OptionButton The value property is changed using the mouse or a keyboard action. Both
the option button that is turned on and the one that is turned off receive the
change event.

Table The current cell has an effective non-zero inputType property value and the
user has changed the contents of the cell; that is, the check box is toggled
by the mouse, space bar, or Enter key; the text box is changed by a key
press, or a combo box list entry is selected.

TextBox The text contents of the text box have changed. This occurs when the user
changes the text. It does not occur when you change the text property from
logic.

A change event can synchronize or coordinate the display of data between controls. For example, you can use
the change event for a scroll bar to display a color scale based on the value property of the scroll bar.

click
Signature click(); (Form)

click(control: control-type input); (Control)

click(menuItem: MenuItem input); (MenuItem)

The click event occurs when the user presses and then releases the left mouse button over an object.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 585

EncycloWin - 2020.0.02

For a menu item, this event occurs when the user clicks the menu item. If the menu item has a submenu, logic in
this event allows the contents of the submenu to be changed before it becomes visible.

For a form, this event occurs when the user clicks a blank area or a disabled control. (The click event is lost if a
form or another application is displayed between the mouseDown or keyDown event and the mouseUp or
keyUp event. This occurs most commonly if write instructions invoke the display window or if the display window
has bring to top enabled.)

For a control, this event occurs when the user:

Clicks a control with the left mouse button. (Both the click and the sheetChg events are generated when the
user clicks the tab of a sheet of a Folder or Table control that is not currently the top sheet.)

Selects an item in a ComboBox or ListBox control, by pressing the arrow keys, by clicking the left mouse
button, or by entering text into the edit area of a combo box that causes a list item to become selected.

Presses the spacebar when a Button, OptionButton, or CheckBox control has the focus.

Presses an access key combination for a control. For example, if the caption of a command button is &Go,
pressing Alt+G triggers the event.

Presses the Enter key and a button is defined as being the default.

Presses the Esc key and a button is defined as the Cancel button.

For the JadeTextEdit class, a single click event positions the caret (insertion point) in the text editor, a double-
click selects a word, a triple-click selects a line, and a single-click outside selected text cancels the selection.

For details about handling the click event method in check box, combo box, list box, and option button controls
and user-defined subclasses of only those controls on Web pages, see "Handling Events on Web Pages", in the
JADE Web Application Guide.

Typically, you attach a click event to a control or menu, to carry out commands and command-like actions, or to a
change in the control.

You can use the value property of a control to test for the state of the control from logic (except for a push button
control). When a click event is generated, JADE also calls the related events in the following order.

1. mouseDown

2. mouseUp

3. click

When you attach methods for these related events, ensure that their actions do not conflict.

Note To distinguish between the left, right, and middle mouse buttons, use the mouseDown and mouseUp
events.

The methods in the following examples show the use of the click event method.

btnCancel_click(btn: Button input) updating;
begin

unloadForm;
end;

theTable_dblClick(table: Table input) updating;
begin

if xColSave <> 0 and yRowSave <> 0 then

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 586

EncycloWin - 2020.0.02

if theTable.row > 1 then
btnChange.click(btnChange);

endif;
endif;

end;

closeup
Signature closeup(control: control-type input);

When the list portion of a ComboBox control closes up, the closeup event is generated for the combo box object.

For ComboBox controls, as this event is called only after the click event when using the mouse and after the
keyPress and keyUp events when the Enter key is pressed, users can modify the combo box entry selected
during the closeup event.

A Table control also has the ability to be folded up so that it has only the height required to display the current row
when it loses focus. The closeup event is generated when the table folds up.

This table control facility is controlled by the dropDown property. If the value of this property is DropDown_Auto
(2), the table opens up when the table receives the focus. If the value is DropDown_Click (1), the user must
specifically click the control to cause the event.

Use a closeup event to select the row (and columns) to be shown for the table in the folded up state.

contextMenu
Signature contextMenu(conwin: Window input; (Form)

mouse: Boolean;
x: Integer;
y: Integer): Boolean;

contextMenu(control: control-type input; (Control)
conwin: Window input;
mouse: Boolean;
x: Integer;
y: Integer): Boolean;

The contextMenu event occurs after the right mouseUp event and after the keyUp event.

If the control or form does not implement the event, the default processing continues.

This event returns true if processing is to continue or it returns false to terminate further processing.

For the JadeRichText control, the contextMenu event occurs after the right mouse click or a Shift+F10 key
combination if the contextMenuOptions property has a value of MenuOption_Custom. If the control does not
implement the event, no action is taken and the context menu is not displayed. This event returns true if the
JadeRichText control displays its built-in menu or it returns false if it displays the custom popup menu.

The contextMenu event parameters are listed in the following table.

Parameter Description

control Control for which the event is being called

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 587

EncycloWin - 2020.0.02

Parameter Description

conwin The window being right-clicked or the control with the focus when the keyboard generates the
event

mouse Contains true if the mouse generated the event or false if the keyboard generated it

x Client left position in pixels of the window specified by the conwin parameter for the mouse
click, or unused if mouse is false

y Client top position in pixels of the window specified by the conwin parameter for the mouse
click, or unused if mouse is false

The contextMenu event is called when the right mouse button is clicked over the window or when a control has
focus and the accelerator menu key or the Shift+F10 shortcut keys of the application are pressed. You would most
often implement this event to display a popup menu when the user performs that action, or you could implement it
to suppress an existing automatically displayed popup menu (for example, that which occurs for a text box
control).

For a JadeRichText or JadeTextEdit control, you would most often implement this event to display a popup menu
when the user performs that action, or you could implement it to suppress the automatic display of the built-in
context menu in a rich text control and display the custom menu instead.

The contextMenu event is also called for each parent of the window unless a previous child window in the parent-
child chain terminated that process by returning a value of false from the event method. The contextMenu event
has no impact on existing events and occurs in addition to the normal mouse and keyboard events.

Note Displaying a form, popup menu, or changing focus during mouse or keyboard events results in
contextMenu events not being sent.

If you want to suppress the default context menu, you must implement the contextMenu event for the text box, and
it should return false. This also means that the event is not called on any of its parents.

The method in the following example shows the use of the contextMenu event, positioning the popup menu on
the currently selected list entry when the keyboard is used.

listBox1_contextMenu(control: Control;
conwin: Window;
mouse: Boolean;
x, y: Integer): Boolean updating;

vars
x1 : Real;
y1 : Real;

begin
x1 := x;
y1 := y;
if not mouse then // if keyboard, use current listIndex value

x1 := 20;
if listBox1.listIndex < 0 then

y1 := 5;
else

y1 := listBox1.positionTop(listBox1.listIndex);
endif;

endif;
listBox1.windowToScreen(x1, y1);
self.screenToWindow(x1, y1); // convert x, y relative to form
self.popupMenu(menuOptions, x1.Integer, y1.Integer);

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 588

EncycloWin - 2020.0.02

return false; // cancel further processing
end;

dblClick
Signature dblClick(); (Form)

dblClick(control: control-type input); (Control)

The dblClick event occurs when the user presses and releases the left mouse button and then presses and
releases it again over an object.

For a Form, the dblClick event also occurs when the user double-clicks a disabled control or a blank area of a
form.

For a Control, this event occurs when the user double-clicks a control.

For a ListBox control, the event occurs when the user double-clicks the text of an item. When the user double-
clicks in a word in a JadeTextEdit control, that word is selected.

You can use a dblClick event for an implied action; for example, double-clicking an icon to open a window or
document. This type of event is also useful for carrying out multiple steps with a single action; for example, double-
clicking to select an item in a list box.

For those objects that receive mouse events, the events occur in the following order.

1. mouseDown

2. mouseUp

3. click

4. dblClick

5. mouseUp

If the dblClick event does not occur within the double-click time limit of the system, the object recognizes another
click event. The double-click time limit may vary, because the user can use the Windows Control Panel to set the
double-click speed. When you attach methods for these related events, ensure that their actions do not conflict.

Controls that do not receive dblClick events may receive two clicks instead of a dblClick event.

Note To distinguish between the left, right, and middle mouse buttons, use the mouseDown and mouseUp
events.

deactivate
Signature deactivate();

The deactivate event of the Form class occurs when a different form becomes the active window.

When a non-MDI form or another MDI frame is then made active, both the active child and the MDI frame receive
deactivate events (in that order). When moving between child forms of an MDI frame, only the child forms receive
a deactivate event.

The deactivate event occurs when moving the focus within an application (including MDI to non-MDI) and to
another application. The deactivate event does not occur when unloading a form.

The handling of activate and deactivate events ensures that the following events occur once only.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 589

EncycloWin - 2020.0.02

deactivate of the prior active form.

deactivate of the MDI frame of the prior active form if it was an MDI child and the new form gaining focus is
not the MDI frame or a child of the MDI frame.

activate of the MDI frame if the form to be activated is an MDI child and the frame is not already active.

activate of the form to be activated.

If another Windows or JADE application is activated while a JADE application is active, only deactivate events
are generated for the deactivated JADE application.

If a JADE application is activated when another Windows or JADE application is active, only the activate events
are generated for the activated JADE application.

displayEntry
Signature displayEntry(control: control-name input;

obj: Any;
lstIndex: Integer): String;

The displayEntry event occurs when a ComboBox or ListBox control is attached to a collection object and the
text to be displayed for an entry in the collection is required.

When a collection is attached to a combo box or list box control by the listCollection method, an entry in the
collection is accessed only when that entry is to be displayed in the list box for the control, or when logic accesses
the object from the control (for example, accessing the itemBackColor property of the control).

You therefore do not need to write logic to fill the control, and only that portion of the control viewed or referred to
needs to be accessed. For example, if the user views only the first 15 entries of the collection, the remaining
entries (which may be hundreds or even thousands) are never accessed and substantial overheads are
potentially saved. These processes can be done from standard logic, but where possible, this technique can save
both logic and processing overheads.

To get the text to be displayed in the list box for each entry, the displayEntry event is called, which must return a
string that is placed in the list box. If the displayEntry event is not implemented, a string informing the user that the
event was not handled is placed in the list box instead.

If the displayEntry event returns an empty string, that entry is ignored and is not included in the list box. (The
listCount method return value is adjusted when the displayEntry event method returns a null string.)

The object to be displayed is passed as a parameter (it must be cast to the required type for actual access). This
would normally be a member of the Object class. However, as it is possible to attach a collection of primitive types
to the list box, this object would then be of that primitive type (for example, an array of strings).

The text to be displayed is returned as a string. The position at which the entry is placed in the list box is also
passed so that colors, levels, and so on can also be set.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 590

EncycloWin - 2020.0.02

Notes If the sorted property of the combo box or list box is set to true, the entire contents of the collection is
accessed during the listCollection call, with calls to the displayEntry event for each object. The lstIndex
parameter is always valid and can be used to set properties of the item that is being added, even when the list is
sorted (for example, itemBackColor). For sorted lists, an empty entry is added, which is sorted into its correct
position after the displayEntry event returns.

When the listCollection method is used with the listCount method, the value returned by the listCount method is
the logical number of entries in the list box or combo box (that is, it returns a total of the number of entries for which
the displayEntry event has already returned a string and the number of entries in the collection that are yet to be
accessed).

When an exception is raised by the displayEntry or displayRow event method, the size of the collection is treated
as being one less than the number of entries already processed. No further attempts are made to access the
additional entries from the collection until a new displayCollection or listCollection method is executed against
the control. The method in the following example shows the use of the displayEntry event method.

list1_displayEntry(listbox: ListBox;
obj: Any;
lstIndex: Integer): String updating;

begin
return obj.Customer.surname & " " & obj.Customer.firstnames;

end;

displayRow
Signature displayRow(control: control-name input; (Table)

theSheet: Integer;
obj: Object;
theRow: Integer;
bcontinue: Boolean io): String;

displayRow(control: control-name input; (ComboBox or ListBox)
obj: Object;
theRow: Integer;
bcontinue: Boolean io): String;

The displayRow event method occurs for each entry in the collection attached to the current sheet or list of a
ComboBox, ListBox, or Table control by using the displayCollection method, to display the contents of the row.
The displayRow event method parameters are listed in the following table.

Parameter Description

control The combo box, list box, or table that is calling the event method.

theSheet The index of the sheet in the table.

obj The object to be displayed, which must be cast to the appropriate type for actual access.

theRow The row into which the entry is being placed (a blank row already exists).

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 591

EncycloWin - 2020.0.02

Parameter Description

bcontinue Returns false if all entries in the collection beyond this point are to be ignored or returns true if
processing is to continue. This io parameter is initialized to true. When a collection is attached
to ListBox and Table controls using the displayCollection method and the collection is an
Array, Dictionary, or Set and the bcontinue parameter returns false, the list size is adjusted
and remembered but users can drag the list past that entry without the displayRow event
being called for that entry, and JADE is therefore unaware that the display size was to be
limited. You therefore cannot rely on the bcontinue parameter to limit the display up to the
required point.

This event method returns a string that is used to set the contents of the row, starting with the first column
regardless of whether it is a fixed column of a Table control or not. Tab characters must be placed between the
text values of each cell in a table.

The value of the itemObject property for the row is set to the object value contained in the obj parameter.

If a null string ("") is returned, no row is added to the table or list.

The method in the following example shows the use of the displayRow event method.

tbProducts_displayRow(table: Table input;
theSheet: Integer;
obj: Object;
theRow: Integer;
bcontinue: Boolean io): String;

vars
prod : Product;

begin
prod := obj.Product;
if prod.superseded then

return null;
endif;
if prod.date < 010198.Date then

bcontinue := false; // have all the entries required
return null;

endif;
return prod.code.String & Tab & prod.name; // Return text for each cell

// separated by a tab
end;

As this event method can set the bcontinue parameter to false if processing of further collection entries is not
required and therefore provides the ability to terminate the load process, this event method enables you to
perform a load of all products whose names start with the letter s, for example.

Note The scroll bar may not necessarily show the correct extent of scrolling available, as the number of entries
to be displayed may not be known accurately.

If the update parameter of the displayCollection method is set to true:

Deleting the collection results in the non-fixed rows of the sheet or list being deleted, and the collection is no
longer associated with the sheet or list.

Any changes to the collection cause the contents of the non-fixed rows of a sheet or list to be refreshed. New
entries are inserted, deleted entries are removed, and the text of entries that are still valid is refreshed. Any
other properties that are set (for example, the status of the selected property) are retained.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 592

EncycloWin - 2020.0.02

If the update parameter is set to false, the table is not updated when the collection changes and may contain out-
dated information.

Note The value of the update parameter must be false for transient collections, as JADE does not issue system
notifications for the addition, change, or deletion of a transient collection.

When using the displayRow event method, you should also be aware of the following.

Changes to the non-fixed rows of the table made outside the displayRow event method are permitted but are
lost after scrolling.

The collection object is saved as a row object for a table. You can use the itemObject property to retrieve the
collection object, as shown in the method in the following example.

Table.accessRow(indx).itemObject;
vars

prod : Product;
company : Company;

begin
if listProducts.listIndex = -1 then

app.msgBox("You must make a selection", "Error", 0);
return;

endif;
beginTransaction;

prod := listProducts.itemObject[listProducts.listIndex].Product;
delete prod;
listProducts.clear;
company := Company.firstInstance;
listProducts.listCollection(company.allProducts, true, 0);

commitTransaction;
end;

The clear method clears the list or non-fixed rows of the sheet and detaches the collection. (This behavior
differs from that of tables that do not have an attached collection.)

When the update parameter of the displayCollection method is set to true, the sheet or list has a
beginNotification condition established (for all events). These events are also passed to the sysNotify event
of the table or list.

Each sheet of a table can have its own collection attached.

The topRow property of a table or the topIndex property of a list is always set to 1 and cannot be changed.

The Table class dropDown property is ignored.

When an exception is raised by the displayEntry or displayRow event method, the size of the collection is
treated as being one less than the number of entries already processed. No further attempts are made to
access the additional entries from the collection until a new displayCollection or listCollection method is
executed against the control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 593

EncycloWin - 2020.0.02

docked
Signature docked(dockbar: control-name input); (JadeDockBar)

docked(dockcont: control-name input); (JadeDockContainer)

The docked event method of the JadeDockBar or JadeDockContainer class is called when the user has caused
a control to be docked.

Use this event method to handle any implications that are not handled automatically. The parent and new
alignment of the docking control are already set when this event method is called.

Note This event method is called even if the user drags the control to a new position within its existing parent.
This event method is also called when a floating form is closed by its Close button after the parent of the control
has been set to the JADE form and the control has been made invisible.

For details about floating and docking container controls, see "Floating a Docking Control" and "Docking a
Control", under the "JadeDockBase Class", earlier in this document. See also the docking examples under the
JadeDockContainer class allowDocking property, earlier in this document.

dragDrop
Signature dragDrop(win: Window input; (Form)

x: Real;
y: Real);

dragDrop(control: control-name input; (Control)
win: Window input;
x: Real;
y: Real);

The dragDrop event occurs when a dragged window is dropped over a form or control belonging to the same
application. The drop part of the drag and drop process occurs when the user causes a mouseUp event (that is,
drag mode is terminated when the left, right, or middle mouse button is released) or when the logic sets the
dragMode property of the window that is being dragged to DragMode_Drop (2).

See also the dragListIndex, dragColumn, dragRow, and dragSheet properties.

No dragDrop event is issued if the drag process is terminated by setting the dragMode property to DragMode_
None (0).

The win parameter specifies the window that is being dragged.

The x and y parameters specify the physical horizontal and vertical positions where the window was dropped,
respectively. The positions are in the units of the scaleMode property of the form or control.

For details about converting to logical positions within the window that has been scrolled, see the scrollHorzPos
property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 594

EncycloWin - 2020.0.02

dragOver
Signature dragOver(win: Window input; (Form)

x: Real;
y: Real;
state: Integer);

dragOver(control: control-type input; (Control)
win: Window input;
x: Real;
y: Real;
state: Integer);

The dragOver event occurs for each form or control over which a window is dragged.

A window is placed into drag mode by setting its dragMode property to DragMode_Drag (1).

The dragged-over window receives an indication with each dragOver event as to whether the drag process is
entering, continuing, or leaving the window.

The win parameter specifies the window that is being dragged. The x and y parameters specify the physical
horizontal and vertical positions where the window was dragged, respectively.

The positions are in the units of the scaleMode property of the form or control. For details about converting to
logical positions within the window that has been scrolled, see the scrollHorzPos property.

The values of the state parameter are listed in the following table.

Window Class Constant Value Description

DragOver_Enter 0 If the drag process has just entered this window

DragOver_Continue 1 The second and subsequent calls over this window

DragOver_Leave 2 The drag process has just left this window

See also the dragListIndex, dragColumn, dragRow, and dragSheet properties.

For details about getting and setting the handling of the dragOver event to optimize performance on presentation
clients in JADE thin client mode, see the Application class getMouseMoveTime and setMouseMoveTime
methods.

dropDown
Signature dropDown(combobox: ComboBox input): Boolean;

The dropDown event occurs when the list portion of a ComboBox control is about to drop down. It does not occur
if the style property of a combo box is set to Style_Simple (1).

The dropDown event returns the values listed in the following table.

Return Value Action

True Opens a drop-down list

False Ignores the drop-down request

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 595

EncycloWin - 2020.0.02

Use a dropDown event to make final updates to a combo box list before the user makes a selection. This enables
you to add or remove items from the list, by using the addItem or removeItem methods. This flexibility is useful
when you want some interplay between controls; for example, if what you want to load into a combo box list
depends on what the user selects in an option button group. See also the closeDropDown, isDroppedDown, and
showDropDown methods.

firstChange
Signature firstChange(control: control-type input);

The firstChange event of the TextBox control is generated when the user performs keyboard or cut and paste
actions that result in any of the following conditions.

The text box goes from an empty to a non-empty state

The text box goes from a non-empty to an empty state

The first change made by the user after the text has been set by the form build process or by JADE logic

Use this event to move logic from other key events when that logic is relevant only to the first time the text
changes; for example, when the logic is recording that the text content has changed. As a result, removal of the
other key events reduces the number of events that must be sent and processed for each key that is pressed.

The firstChange event method of the JadeEditMask class occurs when the user makes the first change on the
displayed text or the isEmpty status of the control changes. It does not occur when you change the text property
from logic (that is, dynamically).

For the JadeRichText or JadeTextEdit control class, a firstChange event occurs after a user change but before
the change event, in the following cases.

The first time the contents change

The contents of the control are deleted

The contents of the control change from being empty to having some content

The text property or textRTF property changes the contents of the control (the textRTF property applies only
to rich text control)

After the value of the readOnly property changes from true to false

Note The firstChange event method for the TextBox, JadeEditMask, JadeRichText, JadeTextEdit, and Form
classes is not available from a Web browser.

The Form class firstChange event is generated when the first change to the values listed in the following table is
made by a user to a control on a form.

Control Class Change

TextBox Change to the value of the text property

JadeEditMask Change to the value of the text property

JadeRichText and JadeTextEdit After a user change but before the change event (same rules as those
that apply to the TextBox class firstChange event)

CheckBox Change to the value of the value property

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 596

EncycloWin - 2020.0.02

Control Class Change

OptionButton Change to the value of the value property

ComboBox Different entry selected (this does not apply to the text box portion of the
combo box unless the text property change causes a different list entry to
be selected)

ListBox Different list entry selected

Table Cell updated by the Control class automaticCellControl property,
including default inputType property entry of CheckBox, TextBox,
JadeEditMask, and ComboBox controls (but not when a different row or
column is selected)

The control that has been changed is passed as the parameter to the event. By default, the firstChange event is
generated once only, when the first of any of the changes listed in the above table has been made on a form. You
can then determine that a data change has been made to a form without having to monitor changes to every
control on that form.

The Form class resetFirstChange event enables you to reset all firstChange events on the form. In addition, you
could use the resetFirstChange method inside the Form class firstChange event when the first change has been
made to a control that is not to be counted as the first data change.

The Control class resetFirstChange event resets the firstChange event status of the control and all children of
the control. As only the TextBox, JadeRichText, and JadeEditMask controls have a firstChange event, all other
controls ignore the method other than to call the method on any children.

floated
Signature floated(dockbar: control-name input); (JadeDockBar)

floated(dockcont: control-name input); (JadeDockContainer)

The floated event of the JadeDockBar or JadeDockContainer class is called when the user has caused a
control to float.

Use the floated event method to handle any implications that are not handled automatically.

The parent of the docking control is set to null before the event is called.

For details about floating and docking container controls, see "Floating a Docking Control" and "Docking a
Control", under the "JadeDockBase Class", earlier in this document. See also the docking examples under the
JadeDockContainer class allowDocking property, earlier in this document.

formMove
Signature formMove();

The formMove event occurs when a Form is moved on the screen. This event is not called under the following
circumstances.

When logic changes the left or top property

When logic calls the move method

The movement of a form is not normally of concern to the application, unless the application is a screen painter of
some type.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 597

EncycloWin - 2020.0.02

As the left and top properties can be accessed directly, this event has no parameters.

gotFocus
Signature gotFocus(cntrl: Control input); (Form)

gotFocus(control: control-type input); (Control)

The gotFocus event occurs when a control receives the focus, either by a user action such as tabbing to or
clicking the object or by changing the focus in logic using the setFocus method. A copy of this event is first sent to
the form.

This event is not returned for a form, as a form does not have focus unless there are no input controls. Use the
activate event instead.

Typically, a gotFocus event method specifies the actions that occur when a control first receives the focus. For
example, by attaching a gotFocus method to each control on a form, you can guide the user by displaying brief
instructions or status bar messages.

You can also provide visual cues, by enabling, disabling, or showing other controls that depend on the control that
has the focus.

Note An object can receive the focus only if its enabled and visible properties are set to true.

When focus is gained by a control, a gotFocus event is also sent to the form, identifying the control that gained
focus. The form itself never gains the focus, but this event (in conjunction with the lostFocus event) provides a
centralized place where all focus change events can be monitored in a similar way to the keyDown, keyPress,
and keyUp events of the Form class.

keyDown
Signature keyDown(keyCode: Integer io; (Form)

shift: Integer);

keyDown(control: control-type input; (Control)
keyCode: Integer io;
shift: Integer);

The keyDown event occurs when the user presses a key while an object has focus. (To interpret ANSI characters,
use the keyPress event.) This event uses the parameters listed in the following table.

Parameter Description

keyCode A key code; for example, J_key_F1 (F1 key) or J_key_Home (Home key).

shift The state of the Shift, Ctrl, and ALT keys when the key was pressed. This integer is a
combination of values, as follows.

To test if the Shift value (1) is set, use if shift.bitAnd(1) <> 0 then

To test if the Ctrl value (2) is set, use if shift.bitAnd(2) <> 0 then

To test if the Alt value (4) is set, use if shift.bitAnd(4) <> 0 then

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 598

EncycloWin - 2020.0.02

You can use the Window class constants listed in the following table to test the state of the Alt, Ctrl, and Shift keys of
the shift parameter.

Window Class Constant Bit Value

KeyState_Alt #4

KeyState_Ctrl #2

KeyState_Shift #1

The keyDown event of the Form class first receives all keystrokes for all controls, followed by the object with the
focus. Although the keyDown event can apply to most keys, it is most often used for:

Extended character keys such as function keys

Navigation keys

Combinations of keys with standard keyboard modifiers

Distinguishing between the numeric keypad and regular number keys

Tip Use the Window class enableEvent method to control at run time whether JADE logic associated with an
event for a specific form or control is executed. You could use this method in thin client mode, for example, to
speed up the data entry process for a TextBox control by disabling the keyDown event. (Event methods can be
enabled or disabled in standard client mode and in thin client mode.)

Use the keyDown event for keyboard handlers if you need to respond to the pressing of a key.

When using a numeric text box (the inputType property is set to InputType_TextNumeric), the Form and
TextBox class keyDown events are still fired when the entered key is invalid. This enables the form to process
keys such as the Enter key in the Form::keyDown or keyPress events and the control to process these keys in its
keyDown event, therefore allowing application users to use the numeric keypad when a form requires a large
amount of numeric data entry.

Note Changing the keyCode parameter effects only the Form class. For control classes, Windows has already
predetermined the actions taken.

keyPress
Signature keyPress(keyCharCode: Integer io); (Form)

keyPress(control: control-type input; (Control)
keyCharCode: Integer io);

The keyPress event occurs when the user presses and releases an ANSI key.

The keyPress event uses the parameter listed in the following table.

Parameter Description

keyCharCode Returns a standard numeric ANSI key code. The keyCharCode parameter is passed by
reference; changing it sends a different character to the object. (See the global constants in
the KeyCharacterCodes category for a list of the global constants for printable key codes.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 599

EncycloWin - 2020.0.02

Changing the value of the keyCharCode parameter changes the character that is displayed. Changing the
keyCharCode parameter to zero (0) cancels the keystroke so that the object receives no character.

The form first receives the keyPress event and then the object with the focus. A keyPress event can involve any
printable keyboard character, the Ctrl key combined with a character from the standard alphabet or a special
character, and the Enter or Backspace key. Use a keyPress event for intercepting keystrokes entered in a text box
or combo box. It enables you to immediately test keystrokes for validity or to format characters as they are typed.

Use the keyDown and keyUp events to handle any keystroke not recognized by the keyPress event; for
example, function keys, editing keys, navigation keys, and any combinations of these with keyboard modifiers.
Unlike the keyDown and keyUp events, the keyPress event does not indicate the physical state of the keyboard
but passes a character.

Tip Use the Window class enableEvent method to control at run time whether JADE logic associated with an
event for a specific form or control is executed. You could use this method in thin client mode, for example, to
speed up the data entry process for a TextBox control by disabling the keyPress event. (Event methods can be
enabled or disabled in standard client mode and in thin client mode.)

When using a numeric text box (the inputType property is set to InputType_TextNumeric), the Form class
keyPress event is still fired when the entered key is invalid. This enables the form to process keys such as the
Enter key in the keyDown or keyPress events of the Form class and the control to process these keys in its
keyDown event, therefore allowing application users to use the numeric keypad when a form requires a large
amount of numeric data entry.

The keyPress event interprets the uppercase and lowercase of each character as separate key codes, and
therefore as two separate characters.

The keyDown and keyUp events interpret the uppercase and lowercase of each character by means of two
parameters: keyCode, which indicates the physical key (therefore returning "A" and "a" as the same key), and
shift, which indicates the state of Shift+ key and therefore returns "A" or "a".

keyUp
Signature keyUp(keyCode: Integer io; (Form)

shift: Integer);

keyUp(control: control-type input; (Control)
keyCode: Integer io;
shift: Integer);

The keyUp event occurs when the user releases a key while an object has the focus. (To interpret ANSI
characters, use the keyPress event.)

The keyUp event uses the parameters listed in the following table.

Argument Description

keyCode A key code; for example, J_key_F1 (F1 key) or J_key_Home (Home key).

shift The state of the Shift, Ctrl, and Alt keys when the key was pressed. This integer is a combination
of values, as follows.

To test if the Shift value (1) is set, use if shift.bitAnd(1) <> 0 then

To test if the Ctrl value (2) is set, use if shift.bitAnd(2) <> 0 then

To test if the Alt value (4) is set, use if shift.bitAnd(4) <> 0 then

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 600

EncycloWin - 2020.0.02

You can use the Window class constants listed in the following table to test the state of the Alt, Ctrl, and Shift keys of
the shift parameter.

Window Class Constant Bit Value

KeyState_Alt #4

KeyState_Ctrl #2

KeyState_Shift #1

The keyUp event of the Form class first receives all keystrokes for all controls, followed by the object with the
focus. Although the keyUp event can apply to most keys, it is most often used for:

Extended character keys such as function keys

Navigation keys

Combinations of keys with standard keyboard modifiers

Distinguishing between the numeric keypad and regular number keys

Tip Use the Window class enableEvent method to control at run time whether JADE logic associated with an
event for a specific form or control is executed.

You could use this method in thin client mode, for example, to speed up the data entry process for a TextBox
control by disabling the keyUp event. (Event methods can be enabled or disabled in standard client mode and in
thin client mode.)

Use the keyUp event for keyboard handlers if you need to respond to releasing a key.

Note Changing the keyCode parameter only effects the Form class. For control classes, Windows has already
predetermined the actions taken.

For details about the context menu event that occurs after the keyUp event, see the contextMenu event method. If
a called window does not implement the contextMenu event, the default processing continues.

linkClicked
Signature linkClicked(textbox: JadeRichText input;

link: String);

The linkClicked event of the JadeRichText class occurs when the user clicks on a URL within the text of the
control.

The link parameter contains the URL text.

The following example attempts to open the URL specified by the link parameter in the default browser.

jrtResults_linkClicked(textbox: JadeRichText input; link: String) updating;
vars

result : Integer;
begin

result := call josShellExecute(getWindowHandle(), 'open', link, null, null, 1);
if result <= 32 then

app.msgBox('You do not have a default browser or the URL '
& link & ' could not be found', 'Error',

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 601

EncycloWin - 2020.0.02

MsgBox_Exclamation_Mark_Icon);
return;

endif;
end;

load
Signature load();

The load event of the Form class is always the first event called for the form and its controls (except the
windowCreated event for the controls).

The load event is normally called when the form is displayed using the show or showModal method.

If the form or one of its controls receives an event before the form being displayed (for example, a sysNotify
event), the load event is called before processing that event.

For the startup form, a show method is issued automatically after the form is created.

Typically, use a load event to include initialization logic for a form; for example, specifying default settings for
controls, indicating contents to be loaded into combo boxes or list boxes, and initializing form-level variables.

Note When you create methods for related events such as activate, gotFocus, paint, and resize, ensure that
their actions do not conflict and that they do not cause recursive events.

If a JADE logic exception occurs during the load event and the user responds by selecting the Abort option, the
form is destroyed without any further events being issued.

lostFocus
Signature lostFocus(cntrl: Control input); (Form)

lostFocus(control: control-type input); (Control)

The lostFocus event occurs when a control loses the focus, either by a user action such as tabbing to or clicking
another object or by changing the focus in logic using the setFocus method.

A copy of this event is first sent to the form. As a form does not have focus unless there are no input controls and
this event is not returned for a form, use the deactivate event for a form.

Use the lostFocus event for verification and validation updates. Using the lostFocus event can cause validation
to take place as the user leaves the control.

You can also use the lostFocus event to enable, disable, hide, or display other objects, as in a gotFocus event.
You can also reverse or change conditions that you set up in the gotFocus event of an object.

When focus is lost by a control, a lostFocus event is also sent to the form, identifying the control that lost focus.
The form itself never has the focus, but this event (in conjunction with the gotFocus event) provides a centralized
place where all focus change events can be monitored in a similar way to the keyDown, keyPress, and keyUp
events of the Form class.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 602

EncycloWin - 2020.0.02

mdiDocked
Signature mdiDocked();

The mdiDocked event occurs after a user docks an MDI child Form back into its MDI frame.

This event is not called if the dockMdi method is called to do the docking.

Applies to Version: 2020.0.01 and higher

mdiFloated
Signature mdiFloated();

The mdiFloated event occurs when an MDI child Form is floated by the user.

This event is not called if the floatMdi method is called to do the docking.

Applies to Version: 2020.0.01 and higher

mouseDown
Signature mouseDown(button: Integer; (Form)

shift: Integer;
x: Real;
y: Real);

mouseDown(control: control-type input; (Control)
button: Integer;
shift: Integer;
x: Real;
y: Real);

The mouseDown event occurs when the user presses a mouse button. The mouseDown event uses the
parameters listed in the following table.

Parameter Description

button The button that was pressed to cause the event.

1 (left button)

2 (right button)

3 (middle button)

shift The state of the Shift, Ctrl, and Alt keys when the mouse button was pressed. This integer is a
combination of values:

To test if the Shift value (1) is set, use if shift.bitAnd(1) <> 0 then

To test if the Ctrl value (2) is set, use if shift.bitAnd(2) <> 0 then

To test if the Alt value (4) is set, use if shift.bitAnd(4) <> 0 then

x The current left physical position of the mouse pointer within the window. This is in the units of
the scaleMode property of the form or control.

y The current top physical position of the mouse pointer within the window. This is in the units of
the scaleMode property of the form or control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 603

EncycloWin - 2020.0.02

For details about converting the horizontal (x) and vertical (y) physical pixel positions to logical positions within
the window that has been scrolled, see the scrollHorzPos property.

Use a mouseDown event to specify actions to occur when a specified mouse button is pressed. Unlike the click
or dblClick event, the mouseDown event enables you to distinguish between the left, right, and middle mouse
buttons. If a new form is created or if focus is shifted before the mouseDown event is completed, focus is not set.
You can also write logic for mouse and keyboard combinations that use the Shift, Ctrl, and Alt keyboard modifiers.

See the Window class for details of the MouseButton_ constants provided for window classes.

The following applies to both click and dblClick events.

If a mouse button is pressed while the cursor is over a form or control, that object "captures" the mouse and
receives all mouse events up to and including the last mouseUp event.

This implies that the x and y mouse pointer coordinates specified by a mouse event may not always be in the
client area of the object that receives them.

If mouse buttons are pressed in succession, the object that captures the mouse after the first press receives
all mouse events until all buttons are released.

Notes You can use a mouseMove or mouseLeave event to respond to an event caused by moving the mouse.
The button parameter for the mouseDown event differs from the button parameter used for the mouseMove
event. For the mouseDown event, the button parameter indicates exactly one button for each event; for the
mouseMove event, it indicates the current state of all buttons.

Table control subclasses do not reference mousePointer in a mouseDown event to determine if the mouse is in
the resize position. Use the allowResize property to specify whether users can resize the rows and columns of a
table. (The resizeColumn and resizeRow event methods are called when a resize operation has been performed
using the mouse on a table column or row, respectively.)

mouseEnter
Signature mouseEnter(); (Form)

mouseEnter(control: control-type input); (Control)

The mouseEnter event occurs when the user moves the mouse onto a control or form.

Unlike the mouseMove event, which is generated continually as the mouse pointer moves across objects, the
mouseEnter event occurs once only; that is, when the mouse moves onto the object.

To cause an event when the user moves the mouse pointer onto a control and then the mouse remains static for
one second or longer (that is, the mouse pointer hovers over a control), use the mouseHover event.

Use this event method, for example, to draw the changed state of a button. (Use the mouseLeave event to restore
the state of the button.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 604

EncycloWin - 2020.0.02

mouseHover
Signature mouseHover(control: control-type input;

button: Integer;
shift: Integer;
x: Real;
y: Real);

The mouseHover event occurs when the user moves the mouse onto a control and then the mouse remains static
for one second or longer.

The parameters of the mouseHover event are listed in the following table.

Parameter Description

button The state of the mouse buttons as an integer, in which a bit is set if the button is down.

0 (no button down)

1 (left button)

2 (right button)

3 (middle button)

shift The state of the Shift, Ctrl, and Alt keys when the button specified in the button parameter was
pressed or released. A bit is set if the key is down. The shift parameter is a bit integer, with the
least-significant bits corresponding to the Shift key (bit 0), the Ctrl key (bit 1), and the Alt key (bit
2).

The shift parameter indicates the state of these keys. Some, all, or none of the bits can be set,
indicating which keys were pressed. For example, if both Ctrl and Alt were pressed, the value of
shift would be 6.

x The current left physical position of the mouse pointer in the window. This is in the units of the
scaleMode property of the form or control.

y The current top physical position of the mouse pointer in the window. This is in the units of the
scaleMode property of the form or control.

For details about converting the horizontal (x) and vertical (y) physical pixel positions to logical positions within
the window that has been scrolled, see the scrollHorzPos property.

Notes This event can occur over the non-client parts of the control. The x and y positions are relative to the
client area of the control and can be negative or greater than the client width and height. The event can also occur
if a mouse button is down and the Shift or Ctrl key is down.

After the mouseHover event is generated, another event is generated for the same control each time the mouse is
moved on the control and then becomes static again for one second or longer.

If the window implements the mouseHover event, bubble help is displayed after the mouseHover event has
been executed. This allows the mouseHover event to set the bubbleHelp property text value that is appropriate
for the mouse position; for example, a ListBox control the list entry that the mouse is over. The bubble help
display is cancelled if the user moves the mouse away from the list item over which the mouse pointer was
positioned.

Consider using the mouseHover event instead of the mouseMove event, as the mouseHover event can achieve
what is required with one event instead of several mouseMove events.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 605

EncycloWin - 2020.0.02

Use the mouseEnter event to respond when the user moves the mouse pointer onto a control but the mouse does
not then become static (that is, the mouse does not hover over the control).

Applies to Version: 2016.0.01 and higher

mouseLeave
Signature mouseLeave(); (Form)

mouseLeave(control: control-type input); (Control)

The mouseLeave event occurs when the user moves the mouse off a control or form. For example, you can use
this event method when you have defined your own toolbar buttons to turn off button highlighting that was caused
by the mouseMove event method.

mouseMove
Signature mouseMove(button: Integer; (Form)

shift: Integer;
x: Real;
y: Real);

mouseMove(control: control-type input; (Control)
button: Integer;
shift: Integer;
x: Real;
y: Real);

The mouseMove event occurs when the user moves the mouse.

The parameters of the mouseMove event are listed in the following table.

Parameter Description

button The state of the mouse buttons as an integer, in which a bit is set if the button is down.

0 (no button down)

1 (left button)

2 (right button)

3 (middle button)

shift The state of the Shift, Ctrl, and Alt keys when the button specified in the button parameter was
pressed or released. A bit is set if the key is down. The shift parameter is a bit integer, with the
least-significant bits corresponding to the Shift key (bit 0), the Ctrl key (bit 1), and the Alt key (bit
2).

The shift parameter indicates the state of these keys. Some, all, or none of the bits can be set,
indicating which keys were pressed. For example, if both Ctrl and Alt were pressed, the value of
shift would be 6.

x The current left physical position of the mouse pointer in the window. This is in the units of the
scaleMode property of the form or control.

y The current top physical position of the mouse pointer in the window. This is in the units of the
scaleMode property of the form or control.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 606

EncycloWin - 2020.0.02

For details about converting the horizontal (x) and vertical (y) physical pixel positions to logical positions within
the window that has been scrolled, see the scrollHorzPos property.

The mouseMove event is generated continually as the mouse pointer moves across objects. Unless another
object has captured the mouse, an object recognizes a mouseMove event whenever the mouse position is within
its borders.

Note You can use the mouseDown and mouseUp events to respond to events caused by pressing and
releasing mouse buttons, or the mouseLeave event to respond to the user moving the mouse off the control.

Any time you move a window inside a mouseMove event, it can cascade, as mouseMove events are generated
when the window moves underneath the cursor. A mouseMove event can be generated even if the mouse is
stationary.

The first mouseMove event received after left-clicking a control in thin client mode immediately generates a
mouseMove event call to the application server (when that control has logic defined for that event). The
mouseMove time processing then starts with the next mouseMove event that is received.

For details about getting and setting the handling of the mouseMove event to optimize performance on
presentation clients in JADE thin client mode, see the Application class getMouseMoveTime and
setMouseMoveTime methods.

Tip Consider using the mouseHover event to reduce the number of event calls to the application server.

mouseUp
Signature mouseUp(button: Integer; (Form)

shift: Integer;
x: Real;
y: Real);

mouseUp(control: control-type input; (Control)
button: Integer;
shift: Integer;
x: Real;
y: Real);

The mouseUp event occurs when the user releases a mouse button.

The mouseUp event uses the parameters listed in the following table.

Parameter Description

button The button that was released to cause the event.

1 (left button)

2 (right button)

3 (middle button)

shift The state of the Shift, Ctrl, and Alt keys when the mouse button was released. This integer is a
combination of values, as follows.

To test if the Shift value (1) is set, use if shift.bitAnd(1) <> 0 then

To test if the Ctrl value (2) is set, use if shift.bitAnd(2) <> 0 then

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 607

EncycloWin - 2020.0.02

Parameter Description

To test if the Alt value (4) is set, use if shift.bitAnd(4) <> 0 then

x The current left physical position of the mouse pointer in the window. This is in the units of the
scaleMode property of the form or control.

y The current top physical position of the mouse pointer in the window. This is in the units of the
scaleMode property of the form or control.

For details about converting the horizontal (x) and vertical (y) physical pixel positions to logical positions within
the window that has been scrolled, see the scrollHorzPos property.

Use a mouseUp event to specify actions to occur when a specified mouse button is released. Unlike the click or
dblClick event, the mouseUp event enables you to distinguish between the left, right, and middle mouse buttons.
(For details about the context menu event that occurs after the right mouseUp event, see the contextMenu event
method.)

If a called window does not implement the contextMenu event, the default processing continues. Drag mode is
terminated (that is, the dragDrop event is received) by any mouseUp event (that is, when the left, right, or middle
mouse button is released).

You can also write logic for mouse and keyboard combinations that use the Shift, Ctrl, and ALT keyboard modifiers.

See the Window class for details of the MouseButton_ constants provided for window classes.

The following applies to both click and dblClick events.

If a mouse button is pressed while the cursor is over a form or control, that object "captures" the mouse and
receives all mouse events up to and including the last mouseUp event. This implies that the x and y mouse-
pointer coordinates specified by a mouse event may not always be in the client area of the object that
receives them.

If mouse buttons are pressed in succession, the object that captures the mouse after the first press receives
all mouse events until all buttons are released.

Note You can use a mouseMove event to respond to an event caused by moving the mouse or the
mouseLeave event to respond to the user moving the mouse off the control. The button parameter for the
mouseUp event differs from the button parameter used for the mouseMove event.

For the mouseUp event, the button parameter indicates exactly one button for each event; for the mouseMove
event, it indicates the current state of all buttons.

notifyMedia
Signature notifyMedia(cntrl: MultiMedia input);

The notifyMedia event of the MultiMedia class is called whenever there is a change in the medium assigned to
the MultiMedia control.

The mediaName property contains the name of the new medium.

Use the sendString("capability device type") method call to obtain the device type name.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 608

EncycloWin - 2020.0.02

notifyMode
Signature notifyMode(cntrl: MultiMedia input;

nmode: Integer);

The notifyMode event of the MultiMedia class is called whenever there is a change in the status of the MultiMedia
control.

The value passed in the nmode parameter indicates the new status of the device, as shown in the following table.

MultiMedia Class Constant Mode Description

Mode_Not_Ready 1 Not ready

Mode_Open 7 Door open

Mode_Paused 6 Paused

Mode_Playing 3 Playing

Mode_Recording 4 Recording

Mode_Seeking 5 Seeking

Mode_Stopped 2 Stopped

notifyPosition
Signature notifyPosition(cntrl: MultiMedia input;

pos: Integer);

The notifyPosition event of the MultiMedia class is called whenever there is a change in the position of the
content of the MultiMedia control.

The value passed in the pos parameter indicates the position in the content of the device, in the units of the
timeFormat property. The time between the arrival of notifyPosition events is controlled by the timerPeriod
property.

The code fragment in the following example shows the use of the notifyPosition event method.

cd.notifyPosition(cd, cd.position);

openup
Signature openup(table: Table input);

A Table control can be folded up so that it has only the height needed to display the current row when it loses
focus. The openup event is generated when the table opens to its full size.

This facility is controlled by the dropDown property. If the value of this property is DropDown_Auto (2), the table
opens up when the table receives the focus. If the value of the property is DropDown_Click (1), the user must
specifically click the control to cause the event.

Use the openup event to make any necessary changes to the table and what is displayed in its full display state.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 609

EncycloWin - 2020.0.02

paint
Signature paint(); (Form)

paint(control: control-type input); (Control)

The paint event occurs when:

Part or all of a form or control is exposed after it has been moved or enlarged

A window that was covering the object has been moved

A visual aspect of the window has changed

Use a paint event if you need to coordinate the painting of a form or control with some external activity. The paint
event is also invoked when the refresh and refreshNow methods are used. Using a refresh method in a resize
event forces repainting of the entire object every time a user resizes the form.

Notes The paint event is not called if the form or control has the autoRedraw property set to true or when
running a Web-enabled JADE application, as no JADE forms are created and displayed.

Java generates a paint request for the smallest rectangle that encloses the required paint areas. GUI changes in a
paint event therefore cause continuous painting if the resulting paint rectangle includes the same window again.

Using a paint event for certain tasks can cause a cascading event. In general, avoid using a paint event for the
following.

Moving or sizing a form or control

Changing any variables that affect size or visual appearance, such as setting the backColor property for an
object

Invoking a refresh or refreshNow method

Invoking the clearGraphics method

A resize event may be more appropriate for some of these tasks.

The paint event is called after the normal painting of the form or control has completed, allowing this image to be
drawn on.

It is not possible to handle the painting of transparent controls in the correct zOrder when it involves a mixture of
controls that can be directly painted by JADE and those that can only be painted separately by Windows.

As a result, transparent sibling controls are always painted before any JadeRichText, MultiMedia,
JadeXamlControl, Ocx, OleControl, JadeDotNetVisualComponent, or ActiveXControl controls, regardless of
their zOrder settings.

pictureClick
Signature pictureClick([control: control-type input];

picIndex: Integer;
whatClicked: Integer);

The pictureClick event is generated in a ListBox control or a ComboBox control when the picture area before
the text of an item is clicked with the mouse. (See also the itemPicture, hasPictures, hasTreeLines, and
hasPlusMinus properties.)

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 610

EncycloWin - 2020.0.02

If the area clicked is before the pictures or the start of the treeline for the item, no events other than the
mouseDown and mouseUp events are generated.

This event is also generated by pressing the Enter key when an entry in the list is selected.

Clicking the picture area does not expand or collapse an item.

The pictureClick event passes the index of the item being clicked and the picture that was clicked, as listed in the
following table.

ComboBox or ListBox Class Constant Index Picture

PictureClick_PlusMinus 1 Plus or minus picture, controlled by the
hasPlusMinus property

PictureClick_TreeLine 2 Tree line of item, controlled by the hasTreeLines
property

PictureClick_Picture 3 Picture, controlled by the hasPictures property

PictureClick_ItemPicture 4 ItemPicture, set by the itemPicture property

PictureClick_KeyBoard 5 Keyboard action

Note If both the hasPlusMinus and hasTreeLines properties are set, a value of 1 is returned when the plus or
minus picture is clicked, as this overlays the treeline area.

The picture image that is displayed depends on whether the item has subitems and whether the item is expanded
or collapsed. See also the pictureClosed, pictureOpen, and pictureLeaf properties.

Clicking the picture does not select that entry.

pictureDblClick
Signature pictureDblClick([control: control-type input];

picIndex: Integer;
whatClicked: Integer);

The pictureDblClick event is generated in a ListBox control or a ComboBox control when the picture area before
the text of an item is double-clicked with the mouse. (See also the itemPicture, hasPictures, hasTreeLines, and
hasPlusMinus properties.)

If the area clicked is before the pictures or the start of the treeline for the item in a list box or a combo box, no
events other than the mouseDown and mouseUp events are generated. Clicking this area does not expand or
collapse an item.

The pictureDblClick event passes the index of the item being clicked and the picture that was double-clicked, as
listed in the following table.

ComboBox or ListBox Class Constant Index Picture

PictureClick_ItemPicture 4 ItemPicture, set by the itemPicture property

PictureClick_KeyBoard 5 Keyboard action

PictureClick_Picture 3 Picture, controlled by the hasPictures property

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 611

EncycloWin - 2020.0.02

ComboBox or ListBox Class Constant Index Picture

PictureClick_PlusMinus 1 Plus or minus picture, controlled by the
hasPlusMinus property

PictureClick_TreeLine 2 Tree line of item, controlled by the hasTreeLines
property

Note If both the hasPlusMinus and hasTreeLines properties are set, a value of 1 is returned when the plus or
minus picture is double-clicked, as this overlays the treeline area.

The picture images that are displayed depend on whether the item has subitems and whether the item is
expanded or collapsed. See also the pictureClosed, pictureOpen, and pictureLeaf properties. Clicking or
double-clicking the picture does not select that entry.

protected
Signature protected(textbox: JadeRichText;

start: Integer;
length: Integer;
allowChange: Boolean io);

The protected event is generated in a JadeRichText control when a user attempts to alter in any way (for
example, to insert, delete, or change the size of the font) text that is marked as protected.

Your logic can determine if changes to the rich text control should be allowed. Set the value of the allowChange
parameter to true to allow the changes or to false if changes cannot be made to text in the control. The values of
the start and length parameters indicate the block of text that the user is attempting to change.

If you do not implement this event on a specific control, any attempt to alter protected text is ignored.

In JADE, you can set or clear text protection only by calling the setTextProtection method. Protected text in rich
text format that was created externally and loaded into a JadeRichText control remains protected.

The protected event is not raised when you call the setTextProtection method. In addition, it is not raised when
you change unprotected text.

In the following example of the use of the protected event method, the user is restricted to changing a single
character of protected text at a time.

jadeRichText_protected(textbox: JadeRichText input; start: Integer;
length: Integer; allowChange: Boolean io) updating;

begin
allowChange := length < 2;

end;

queryColumnMove
Signature queryColumnMove(table: Table;

c: Integer;
cto: Integer): Boolean;

The queryColumnMove event of the Table control is called when the user releases the mouse after dragging a
fixed column to a new position when the allowDrag property is set to true.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 612

EncycloWin - 2020.0.02

The parameter values are listed in the following table.

Parameter Description

table The table in which the column is to be moved

c The column that is to be moved

cto The column before which the dragged column is inserted

The column is moved to the position to which it was dragged when this event method is not defined or if this event
method is defined and it returns a value of true.

The move of the column is aborted when this event method is defined and it returns false.

The method in the following example shows the use of the queryColumnMove event method.

queryColumnMove(table: Table; c: Integer; cto: Integer): Boolean;
begin

if c <= 2 or cto <= 2 then
return false; // don’t let them move the first two columns

endif;
return true;

end;

queryDock
Signature queryDock(dockbar: control-name input; (JadeDockBar)

newWin: Window;
dockpos: Integer): Boolean;

queryDock(dockcont: control-name input; (JadeDockContainer)
newWin: Window;
dockpos: Integer): Boolean;

The queryDock event of the JadeDockBar or JadeDockContainer class is called when the user drags a docking
control into a valid docking position that is accepted by the JadeDockContainer class allowDocking property of
the window.

If the docking is permitted, this queryDock event method must return true. If docking is not permitted, it must return
false.

Use this method to control the container into which the control can be docked and how it can be docked.

Note The method is called once only for each combination of the newWin and dockpos parameters for each
dragging episode.

For details about floating and docking container controls, see "Floating a Docking Control" and "Docking a
Control", under the "JadeDockBase Class", earlier in this document. See also the docking examples under the
JadeDockContainer class allowDocking property, earlier in this document.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 613

EncycloWin - 2020.0.02

queryRowColChg
Signature queryRowColChg(table: Table input;

newSheet: Integer;
newRow: Integer;
newCol: Integer): Boolean;

The queryRowColChg event occurs for the Table control when the user selects a cell that is not the current cell or
a new sheet of the displayed table by using the mouse or the keyboard. Use this event method to prevent the user
from moving the current cell until valid data has been entered.

If this event method is not implemented or it is implemented and returns true, the sheet, row, or column is changed
to the selected table element and the rowColumnChg or the sheetChg event is called.

If this event is implemented and it returns false, the requested user action is ignored; that is, the current sheet,
row, or column is not changed and the rowColumnChg or sheetChg event is not sent.

This event method is not called as a result of the table losing focus or when the sheet, row, or column is changed
by logic.

When a collection is attached to a table and the current row is scrolled so that it will be discarded (outside of the
displayed virtual window over the collection), the queryRowColChg and rowColumnChg event methods are
called. If the queryRowColChg event is rejected, the scroll action is discarded. (Note that the queryRowColChg
event passes the current row and column values as parameters, because the actual current row number remains
unchanged after scrolling.)

queryRowMove
Signature queryRowMove(table: Table;

r: Integer;
rto: Integer): Boolean;

The queryRowMove event of the Table control occurs when the user releases the mouse after dragging a fixed
row to a new position when the allowDrag property is set to true.

The parameter values are listed in the following table.

Parameter Description

table The table in which the row is to be moved

r The row that is to be moved

rto The row before which the dragged row is inserted

The row is moved to the position to which it was dragged when this event method is not defined or if this event
method is defined and it returns a value of true.

The move of the row is aborted when this event method is defined and it returns false.

The method in the following example shows the use of the queryRowMove event method.

queryRowMove(table: Table; r: Integer; rto: Integer): Boolean;
begin

if r <= 2 or rto <= 2 then
return false; // don’t let them move the first two rows

endif;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 614

EncycloWin - 2020.0.02

return true;
end;

querySheetChg
Signature querySheetChg(folder: Folder;

newSheet: Sheet): Boolean;

The querySheetChg event of the Folder class occurs before the user changes a sheet using the keyboard or the
mouse, to give the logic the opportunity to reject the change of sheet.

The actions determined by the return values for this event are listed in the following table.

Return Value Action

True The sheetChg event is called

False The sheet change request is ignored and the sheetChg event is not called

Use the querySheetChg event in wizards, to enable users to change sheets back again (for example, by using a
<Back button).

queryUnload
Signature queryUnload(cancel: Integer io;

reason: Integer);

The queryUnload event occurs before a form closes, to give the logic the opportunity to reject the closure. Logic
dealing with the closure should be placed in the unload event. When the MDI frame is closed, this event is sent to
all child forms as well as the MDI frame. This event is not called if a form is unloaded before it was displayed and
the load event has not been executed, or if the delete method was used to delete the running instance of the form.

When the JADE language terminate instruction is executed, all active forms have the queryUnload event sent to
them.

If a queryUnload method is aborted, queryUnload is not called for any other forms affected by the unload and all
affected forms are unloaded without calling the unload method. If an unload method is aborted, all other affected
forms are unloaded without calling the unload method.

If any form involved in the close process rejects the request to unload, no further queryUnload events are sent
and no form unloads are performed. When all forms involved in the closure agree to close (by the queryUnload
events), the unload event is then sent to those forms.

Note If the form to which the event is sent is the active form, a lostFocus event is caused on the active control
before the queryUnload event is sent. If the queryUnload event is rejected, focus is returned to that same control,
unless the focus has been moved elsewhere in the processing of that event.

When the last MDI child form in the default MDI frame closes (supplied by the jade.exe program), the default MDI
frame also closes. When the last form closes, the application closes.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 615

EncycloWin - 2020.0.02

The parameters of the queryUnload event are listed in the following table.

Parameter Description

cancel Setting this parameter to any value other than 0 (zero) stops the queryUnload event in all
loaded forms and stops the form and application from closing. This parameter is ignored if the
form database object was deleted.

reason Indicates the reason for the queryUnload event.

The reason parameter can have the values listed in the following table.

Form Class Constant Value Description

QueryUnload_MdiChild 4 An MDI child form is closing because the MDI form is closing.

QueryUnload_TaskManager 3 The Microsoft Windows Task Manager is closing the
application.

QueryUnload_UnloadMethod 1 The unload event has been invoked from logic.

QueryUnload_User 0 The user has selected the Close command from the
Control-Menu icon on the form.

QueryUnload_Windows 2 The current Windows-environment session is ending.

Use the queryUnload event to ensure that there are no unfinished tasks in each form before an application
closes. For example, if a user has not yet saved some new data in any form, your application can ask the user if
the data should be saved.

resize
Signature resize();

The resize event of the Form class occurs when the size of a form is changed. This event is called under the
following circumstances.

When a form is loaded and displayed and its size changes because of environmental differences

When a form is minimized, maximized, or restored by a user or through logic

When a top-level menu item is added or removed through logic, causing a menu line to be added or
removed (or changed from a single menu line to a double menu line)

When a skin is applied or removed

Note The resize event generated by logic changes is called after the current logic event is completed.

This event is not called if the form is resized by logic in one of the following ways.

Calling the move method

Changing the height, width, clientHeight, or clientWidth property of the form

Changing the borderStyle property of the form

Adding or removing a scroll bar to the form

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 616

EncycloWin - 2020.0.02

Use a resize event to move or resize controls when the parent form is resized or to recalculate variables or
properties that may depend on the size of the form.

resizeColumn
Signature resizeColumn(table: Table input;

column: Integer input;
previousWidth: Integer input);

The resizeColumn event of the Table class occurs after the user has resized a column on a Table control using
the mouse.

The parameters for the resizeColumn event method are listed in the following table.

Parameter Description

table Table control whose column was resized

column Index of the column that has been resized

previousWidth Width of the column before the resize operation took place

resizeRow
Signature resizeRow(table: Table input;

row: Integer input;
previousHeight: Integer input);

The resizeRow event method of the Table class occurs after the user has resized a row on a Table control using
the mouse.

The parameters for the resizeRow event method are listed in the following table.

Parameter Description

table Table control whose row was resized

row Index of the row that has been resized

previousHeight Width of the row before the resize operation took place

rowColumnChg
Signature rowColumnChg(table: Table input);

The rowColumnChg event occurs for the Table control when the user selects a different cell of the displayed table
by either clicking a cell or by using the arrow keys to select a new cell.

The selected cell is reflected in the row and column properties.

When a collection is attached to a table and the current row is scrolled so that it will be discarded (outside of the
displayed virtual window over the collection), the queryRowColChg and rowColumnChg event methods are
called. If the queryRowColChg event is rejected, the scroll action is discarded. (Note that the queryRowColChg
event passes the current row and column values as parameters, because the actual current row number remains
unchanged after scrolling.)

The sheet is contained in the topSheet property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 617

EncycloWin - 2020.0.02

scrolled
Signature scrolled([control: control-type input;]

scrollBar: Integer);

The scrolled event occurs when the user scrolls a Form or a BaseControl, ComboBox, ListBox, Picture, Table,
or TextBox control. For ScrollBar controls, this event occurs as the control is scrolled. When the user releases the
mouse button, a change event is sent.

The scrolled event passes the scroll bar that is being scrolled, as follows.

ScrollBar_Horizontal (1)

ScrollBar_Vertical (2)

See "Window Class Constants", for the ScrollBar_ constants that are provided.

The scrolled event gives logic the opportunity to coordinate other actions with the scrolling process. Use this
event to perform calculations or to manipulate controls that must be coordinated with ongoing changes in scroll
bars. Alternatively, use the change event when you want an update to occur only once, after a scroll bar position
change is complete.

Use the scrollHorzPos and scrollVertPos properties to determine the scroll position. Use the topIndex property
to control the scrolling position set for the list box control. Use of the scrollHorzPos and scrollVertPos methods
do not generate a scrolled event when a new scroll position is set.

For details about scrolling in the row of a Table control to which a collection is attached, see the
queryRowColChg and rowColumnChg event methods.

selChanged
Signature selChanged(textbox: JadeRichText input;

selStart: Integer;
selLength: Integer);

The selChanged event of the JadeRichText class occurs when the selection of text within the control has
changed, updating the selStart and selLength parameters with the starting position and the length (in characters)
of the selection. (See also the selStart and selLength properties.)

A selChanged event can synchronize or coordinate the display of data between controls.

sheetChg
Signature sheetChg(control: control-type input);

The sheetChg event occurs when the user clicks on the tab of a sheet that is not currently the top sheet of a
Folder or Table control, to enable that sheet to become visible. (The click, mouseLeave, and the sheetChg
events are generated when the user clicks the tab of a sheet that is not currently the top sheet or the Ctrl+Page Up
or Ctrl+Page Down shortcut keys are used to move the focus of a folder to the prior or next enabled visible sheet
when that folder or a child of the folder has focus.)

For a Folder control, see also the isMySheetVisible and showMySheet properties.

For a Table control, the sheet that is clicked is reflected in the topSheet property.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 618

EncycloWin - 2020.0.02

sysNotify
Signature sysNotify(eventType: Integer; (Form)

theObject: Object;
eventTag: Integer);

sysNotify(control: control-type input; (Control)
eventType: Integer;
theObject: Object;
eventTag: Integer);

A sysNotify event occurs when it is triggered when a specified event occurs on a JADE system object; for
example, a customer object is updated. If a form or control has an attached window, a requested user notification
is directed to the userNotify event and a requested system notification to the sysNotify event.

The sysNotify event of a window is invoked when a window notification is detected. Insert code into the
sysNotify event to respond to or deal with the notification, so that any required tasks are performed when the
event occurs.

The following examples show the use of the sysNotify event.

sysNotify(eventType: Integer; theObject: Object;
eventTag: Integer) updating;

// Update the instance collection as instances of Cat are
// created and deleted by other users.
if Cat.hasInstance(theObject) then

if eventType = Object_Create_Event then
// This may be a notification from one we have just added!
if not instanceCollection.includes(theObject) then

instanceCollection.add(theObject);
endif;

elseif eventType = Object_Delete_Event then
// This may be a notification from one we have just deleted!
if instanceCollection.includes(theObject) then

// If the instance on display is about to be deleted, tell
// the user what is about to happen. They cannot have
// changed it yet, as it would have been locked if they had)
if currentInstance = theObject then

app.msgBox('Another process has deleted the instance
displayed.' & CrLf & 'This instance will now
be removed.', self.name, MsgBox_OK_Only +
MsgBox_Information_Icon);

endif;
instanceCollection.remove(theObject);
clearFormFields;

endif;
endif;
showInstanceNumber;

endif;
end;

sysNotify(eventType: Integer; notifyObject: Object;
eventTag: Integer) updating;

begin
if eventType = Object_Create_Event then // new fault

createGraph;

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 619

EncycloWin - 2020.0.02

loadTable;
endif;

end;

The sysNotify event parameters, described in the following subsections, are listed in the following table.

Parameter Contains …

eventType The type of event received

theObject The object for which the notification is to be received

eventTag An integer value that is received for each notification

eventType
The eventType parameter of the sysNotify event contains the type of event received. The global constants for the
types of system event that can be received are listed in the following table.

Global Constant Value Object has been ...

Object_Create_Event 4 Created

Object_Delete_Event 6 Deleted

Object_Update_Event 3 Updated

theObject
The theObject parameter of the sysNotify event contains the object for which the notification is to be received.

Caution Attempts to access features (that is, methods and properties) for the object of a notification of a delete
event type (Object_Delete_Event) raise an exception.

eventTag
The eventTag parameter of the sysNotify event contains an integer value that is received with each notification.

trayIconClicked
Signature trayIconClicked(clickType: Integer) updating;

The trayIconClicked event of the Form class occurs when the user clicks a system tray entry created by the Form
class setSystemTrayEntry method.

The Form class provides the class constants listed in the following table to indicate the types of clicks that occur
on the system tray icon.

Form Class Constant Value Description

TrayIcon_LeftClick 1 Left mouse click

TrayIcon_RightClick 2 Right mouse click

TrayIcon_LeftDblClick 3 Left mouse double-click

TrayIcon_RightDblClick 4 Right mouse double-click

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 620

EncycloWin - 2020.0.02

unload
Signature unload();

The unload event of the Form class occurs when a form is about to be removed from the screen. This event is
triggered by a user action (closing the form using the Control-Menu icon) or by an unloadForm method.

The unload event and queryUnload events are not called if the form is unloaded before being displayed, the load
event was never called, or if the delete method was used to delete the running instance of the form.

The unload event is always preceded by the queryUnload event, giving the opportunity to reject the requested
closure. Use an unload event to specify actions to take place when the form is unloaded.

If a queryUnload method is aborted, queryUnload is not called for any other forms affected by the unload and all
affected forms are unloaded without calling the unload event method. If an unload method is aborted, all other
affected forms are unloaded without calling the unload method.

Unloading a form queues the window for deletion but if another window is deleted before the next idle point,
previously queued deleted windows are re-evaluated for deletion. If the queued window or its children have no
outstanding Windows message, there are no incomplete event methods for that window or its children, and the
method that created the window has exited or the window was deleted, the physical window is deleted.

The unload event can be caused by using the unloadForm method or by the user taking an action; for example,
selecting the Close command on the Control-Menu of a form, exiting from the application by using the End Task
button on the Windows Task Manager, closing the MDI frame form for which the current form is a child form, or
exiting the Windows environment while the application is running.

If the form is the last child of the default MDI frame (jade.exe-supplied), the MDI frame form is also closed. If the
form is the last form for the application, the application is closed.

updated
Signature updated(ole: OleControl input) updating;

The updated event of the OleControl class occurs when an OLE object is updated in the JADE environment.

userNotify
Signature userNotify(eventType: Integer; (Form)

eventType: Integer;
theObject: Object;
eventTag: Integer;
userInfo: Any);

userNotify(control: control-type input; (Control)
eventType: Integer;
theObject: Object;
eventTag: Integer;
userInfo: Any);

A userNotify event occurs when this event is triggered from the JADE Object Manager by a user call. If a form or
control has an attached window, a requested user notification is directed to the userNotify event and a requested
system notification to the sysNotify event.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 621

EncycloWin - 2020.0.02

The userNotify event of a window is invoked when a window notification is detected. Insert code into the
userNotify event to respond to or deal with the notification, so that any required tasks are performed when the
event occurs. (The Object class causeEvent, sdeCauseEvent, or sdsCauseEvent method informs the JADE
Object Manager when the event coded in your method occurs.)

The method in the following example shows the use of the userNotify event.

userNotify(eventType: Integer; theObject: Object; eventTag:
Integer; userInfo: Any) updating;

vars
begin

if eventType = 17 then
createGraph;
loadTable;

endif;
end;

The userNotify event parameters, described in the following subsections, are listed in the following table.

Parameter Contains …

eventType The type of event received

theObject The class for which the notification is to be invoked

eventTag An integer value that is required for each notification

userInfo A value of Any primitive type that is received when the event is notified

eventType
The eventType parameter of the userNotify event contains the type of event received. The global constants for
the types of user event that can be received are listed in the following table.

Global Constant Value

User_Base_Event 16

User_Max_Event Max_Integer (#7FFFFFFF, equates to 2147483647)

The JadeTextEdit class event type can be one of the JadeTextEdit class constant values listed in the following
table.

Constant Description Event Tag

EVENTTYPE_BOUNDKEY User pressed a key that was
bound to a notification.

Specified in the eventTag parameter
of the bindKeyToNotification
method

EVENTTYPE_ALTERREADONLY An attempt was made to alter the
document when readOnly is true

Zero (not applicable)

EVENTTYPE_CANCEL One of the following: Zero (not applicable)

Esc key was pressed

Control lost focus

Button pressed

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 622

EncycloWin - 2020.0.02

Constant Description Event Tag

Control deleted

EVENTTYPE_CLIPBUFFCHG The clip buffer has changed Buffer number (0 through 9)

EVENTTYPE_CLIPBUFFETC A clip buffer paste or copy
command was not followed by a
buffer number keystroke in the
range 0 through 9

Key code entered

EVENTTYPE_SELECTIONSTATE Selection has changed between
empty and not empty

Current state, with zero (0) being
empty

theObject
The theObject parameter of the userNotify event contains the object for which the notification is to be received.

The value of this parameter for pre-defined pseudo-notifications in the JadeTextEdit class is always null.

eventTag
The eventTag parameter of the userNotify event contains an integer value (for example, an index into an array)
that is received with each notification. This parameter corresponds to the eventTag parameter in the Object class
beginNotification method that subscribes to the user event.

userInfo
The userInfo parameter of the userNotify event is a value of Any primitive type (that is, a string, integer, or
character) that is received when the event is notified. This parameter corresponds to the userInfo parameter in the
Object class causeEvent, sdeCauseEvent, or sdsCauseEvent method that triggered the notification.

userResize
Signature userResize(control: control-type input);

The userResize event occurs when the user drags the resize bar of the JadeDockBar or JadeDockContainer
control to a new position or resizes a floating JadeDockBar or JadeDockContainer control.

If you want to differentiate between the userResize event being called when the user drags the controls resize bar
and when the user has resized the floating window, call the isFloating method.

For details about adding resize bars to docking controls that are all aligned horizontally or vertically, see the
showResizeBar property.

validate
Signature validate(editMask: JadeEditMask): Boolean;

The validate event method of the JadeEditMask class occurs when the user attempts to shift the focus to another
control or form within the same application by using the mouse or keyboard. Your logic can validate the text field
to determine what action to take when the data is incomplete.

This event is not called if the user switches to another displayed form of the application, to another application, or
closes the form. In addition, the event is not called if logic shifts the focus.

Encyclopaedia of Classes
(Volume 3)

Window, Form, and Control Events Chapter 2 623

EncycloWin - 2020.0.02

This event returns true to allow focus to be shifted or it returns false to force the focus to remain on the control. If
you do not implement this event, focus movement is permitted (that is, implement the validate event if you want
the focus to remain on the control).

windowCreated
Signature windowCreated(cntrl: Control input;

persistCntrl: Control);

A windowCreated event of the Control class is called for all controls when the window for the control is created.
This event is called before the load event for the Form class, so that you can initialize a control (for example,
creating a child window) when the window for that control is present.

The cntrl parameter passes the event the control itself, and the persistCntrl parameter passes the control object
from which the window was created (usually the persistent control object). This enables the event logic to clone
any reference information that is also required by the control. (The runtime control is created by a shallow clone,
and the primitive properties only are copied.)

Notes Properties retrieved from the control object specified in the persistCntrl parameter reflect the persistent,
not the transient, instance.

Avoid referring to user-defined properties or methods on the Application or Global classes in the windowCreated
method or any methods called by the windowCreated method. When the form is displayed in the JADE Painter,
the application used is not the user application, so these properties or methods are not available at run time. If the
property or method must be referenced, the method must perform a runtime check to ensure that the application is
the expected one; otherwise, an exception will be raised.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 624

EncycloWin - 2020.0.02

Graphics Properties and Methods
Graphical methods provide the ability to draw on forms and controls. The type of drawing includes points, lines,
arcs, chords, pies, ellipses (and circles), and rectangles. As graphical methods and properties are defined in the
Window class, they are available for any Form or Control class or subclass instance.

Note When drawing on a Form class or a BaseControl or Picture control, the drawing positions are relative to
the scrolled position. The position for drawing on TextBox, Table, and ListBox controls is not affected by
scrolling.

You can access all GUI properties and methods (which are marked as clientExecution methods) from a server
method except for anything that brings up a modal type dialog (that is, the common dialog class methods, the
app.msgBox, and the showModal and popupMenu methods in the Form class). The other exceptions to this are
the app.doWindowEvents, app.checkPictureFile, and app.loadPicture methods, which are executed relative to
the server.

Caution Use of GUI methods and properties is very expensive in a server method. A clientExecution method
requires that all transient objects passed to the server are passed back with the client execution (and passed back
to the server after the client execution is complete). Therefore accessing GUI properties and methods within a
server execution should be done only in exceptional circumstances.

When you use the drawFilledRectangle or drawSolidRectangle method to draw a solid rectangle, previous
figures that were drawn in the history but are covered and all property settings that have been made redundant
are removed. In addition, the drawLine method removes any previous lines with the same co-ordinates where the
same width and drawStyle property values apply.

The automatic process does not occur if you use flood-fill, after logic calls to the drawSize method, or if the value
of the drawMode property is not DrawMode_Copy (13).

For details about the graphics properties and methods, see "Graphics Properties" and "Graphics Methods", in the
following sections.

The form or control properties summarized in the following table also affect the graphical process.

Property Description

backColor Color property of a form or control causes the graphical image to be erased. If the
autoRedraw property is set to true, the image is repainted using the new value of the
backColor property.

clipControls If the clipControls property of the Form class is set to true, controls are excluded from the
painted area of the form or parent control, meaning that the graphics functions are not able to
draw over child controls.

scaleHeight Height of the drawing area expressed in the units of the scaleMode property.

scaleLeft Horizontal coordinate of the left edge of the drawing area expressed in the units of the
scaleMode property.

scaleTop Vertical coordinate of the top edge of the drawing area expressed in the units of the
scaleMode property.

scaleWidth Width of the drawing area expressed in the units of the scaleMode property.

scaleMode Units used to express the dimensions of the drawing area of the form or control (defaults to
pixels).

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 625

EncycloWin - 2020.0.02

Graphics Properties
The graphical properties defined in the Window class are summarized in the following table.

Property Description

autoRedraw Setting the autoRedraw property to true automatically redraws graphical output in
a form or picture box when the object is resized or redisplayed after being hidden
by another window, for example. Setting the value to false means that any
graphical output is lost. However, you can place logic in the paint event of the form
or control, which redraws the images.

drawFillColor Determines the color of the fill.

drawFillStyle Determines the style of the fill.

drawFontBold Used when constructing the font used for drawing text.

drawFontItalic Used when constructing the font used for drawing text.

drawFontName Used when constructing the font used for drawing text.

drawFontSize Used when constructing the font used for drawing text.

drawFontStrikethru Used when constructing the font used for drawing text.

drawFontUnderline Used when constructing the font used for drawing text.

drawMode Determines the appearance and interaction with the existing graphic image while
drawing.

drawStyle Determines the line style used for drawing.

drawTextAlign Determines the alignment of any text drawn.

drawTextCharRotation Specifies the angle in degrees between each character base line and the x axis of
the form or control

drawTextRotation Specifies the angle in degrees between the base line of the text output and the x
axis of the form or control.

drawWidth Determines the width of the lines drawn.

drawWindow Determines what part of the window is drawn on.

autoRedraw
Type: Boolean

Availability: Read or write at run time only

The autoRedraw property of the Window class applies to any form or control at run time only and specifies
whether the drawing methods save a history of graphics commands issued for that form or control. This history of
commands is replayed when the repainting of that window object is required, enabling the image to be
automatically rebuilt. The autoRedraw property can be used to overcome the problem when graphics output on
the object of a window is lost when that window is covered over and then uncovered.

To rebuild the image, you can:

Place all calls to graphics methods in the paint event for the window

Use the autoRedraw property

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 626

EncycloWin - 2020.0.02

Using the autoRedraw property has the following advantages over placing the calls to graphics methods in the
paint event.

Calls to graphics events need not be in the paint event for the object.

If the scaleMode property of the object is set to user scaling, resizing the form or control automatically
redraws the image scaled according to the new size.

Graphical methods function only after the control has been painted and is visible. Therefore, without the
autoRedraw property, drawing in the load event of the form does not produce an image.

Because a history is kept of the drawing and of any graphical attribute changes made while drawing, use of
the drawUndo method enables the image to be "rolled back" to a previous point.

If the drawn image is larger than the visible window, scrolling the window by using a scroll bar automatically
repaints the image, showing the area of the image that is scrolled into view.

Caution Because use of the autoRedraw property saves a history, there is a cost to its use. Take care to ensure
that the history is cleared at appropriate points, by using the clearGraphics method, otherwise the history list
consumes an increasing amount of memory, and the graphical presentation gets slower and slower as it has to
process an increasing amount of history when repainting.

When you use the drawFilledRectangle or drawSolidRectangle method to draw a solid rectangle, previous
figures that were drawn in the history but are covered and all property settings that have been made redundant
are removed. In addition, the drawLine method removes any previous lines with the same co-ordinates where the
same width and drawStyle property values apply. The automatic process does not occur if you use flood-fill, after
logic calls to the drawSize method, or if the value of the drawMode property is not DrawMode_Copy (13).

The settings of the autoRedraw property are listed in the following table.

Setting Description

true Enables automatic repainting of a form or control. Graphics are written to the screen, and the
commands used to create the image are saved in a history "file" in memory. The paint event of the
object is not called, and the object is repainted when necessary, by using the memory image.

false Disables automatic repainting of an object, and writes graphics or print output to the screen only.
The paint event of the object is invoked, allowing user logic to redraw the graphics (the default)

Changing the setting of the autoRedraw property from true to false automatically clears the graphics history but
does not affect the image that is currently displayed.

Drawing properties are saved in the history only when they are changed if a drawing method has been called
since the last call of the clearGraphics method. The history consists of:

The initial value of all drawing properties.

One entry for each drawing request and for each drawing property change.

If you set the backColor property, all graphics are erased. However, if the autoRedraw property is set, the image
is repainted using the new backColor.

In general, all graphics instructions should normally be in a paint event unless the autoRedraw property is set to
true.

See the startDrawingCapture and stopDrawingCapture methods, which cause the autoRedraw property to be
set to true and false, respectively.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 627

EncycloWin - 2020.0.02

drawFillColor
Type: Integer

Availability: Read or write at run time only

The drawFillColor property of the Window class contains the color used to fill in shapes drawn with the graphics
methods.

JADE uses the RGB scheme for colors. Each property can be set, by using the appropriate RGB value.

The valid range for a normal RGB color is 0 through 16,777,215 (#FFFFFF). The high byte of a number in this
range equals zero (0); the lower three bytes, from least to most significant byte, determine the amount of red,
green, and blue, respectively.

The red, green, and blue components are each represented by a number in the range 0 through 255 (#FF). If the
high byte is not zero (0), JADE uses the system colors, defined in the Control Panel of the user.

By default, the drawFillColor property is set to 0 (black).

When the drawFillStyle property is set to its default value of DrawFillStyle_Transparent (1), the setting of the
drawFillColor property is ignored.

The code fragment in the following example shows the use of the drawFillColor property.

table.drawFillColor := Green;

drawFillStyle
Type: Integer

Availability: Read or write at run time only

The drawFillStyle property of the Window class contains the pattern used to fill the shapes drawn with the
graphics methods.

When the drawFillStyle property is set to DrawFillStyle_Transparent (1), the drawFillColor property is ignored.

The drawFillStyle property values in the range 1 through 7 (the Microsoft standard fill styles) are drawn with a
transparent background and the JADE-defined fill styles in the range 8 through 55 are drawn with a white
background.

The settings of the drawFillStyle property are listed in the following table.

Window Class Constant Integer Value Image

DrawFillStyle_Solid (the default value) 0

DrawFillStyle_Transparent 1

DrawFillStyle_HorzLine 2

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 628

EncycloWin - 2020.0.02

Window Class Constant Integer Value Image

DrawFillStyle_VertLine 3

DrawFillStyle_UpDiagonal 4

DrawFillStyle_DownDiagonal 5

DrawFillStyle_Cross 6

DrawFillStyle_DiagonalCross 7

DrawFillStyle_4DotDiamond99 8

DrawFillStyle_EveryOther 9

DrawFillStyle_UpDiagonal4 10

DrawFillStyle_VertLine4 11

DrawFillStyle_HalfUpDiagonal 12

DrawFillStyle_HorzWaves4 13

DrawFillStyle_Triangles 14

DrawFillStyle_Cross55 15

DrawFillStyle_4DotDiamond95 16

DrawFillStyle_FilledDiamond 17

DrawFillStyle_DownDiagonal4 18

DrawFillStyle_HorzLine4 19

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 629

EncycloWin - 2020.0.02

Window Class Constant Integer Value Image

DrawFillStyle_HalfDownDiagonal 20

DrawFillStyle_HorzWaves3 21

DrawFillStyle_DottedCross 22

DrawFillStyle_Cross99 23

DrawFillStyle_4DotDiamond55 24

DrawFillStyle_Checkered 25

DrawFillStyle_DbleUpDiagonal 26

DrawFillStyle_VertLine2 27

DrawFillStyle_HorzDash 28

DrawFillStyle_DownRectangle 29

DrawFillStyle_8DotDiamond99 30

DrawFillStyle_AltSquares2 31

DrawFillStyle_4DotDiamond53 32

DrawFillStyle_Rev4DotDiamond55 33

DrawFillStyle_DbleDownDiag 34

DrawFillStyle_HorzLine2 35

DrawFillStyle_VertDash 36

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 630

EncycloWin - 2020.0.02

Window Class Constant Integer Value Image

DrawFillStyle_HorzRectangle 37

DrawFillStyle_UpKeyShape 38

DrawFillStyle_AltSquares4 39

DrawFillStyle_8DotDiamond55 40

DrawFillStyle_Rev4DotDiamond95 41

DrawFillStyle_TripleDownDiag 42

DrawFillStyle_DbleVertLine 43

DrawFillStyle_Speckled 44

DrawFillStyle_Interlocked 45

DrawFillStyle_ReverseHorzDash 46

DrawFillStyle_DiagonalHatch 47

DrawFillStyle_InvertedCross 48

DrawFillStyle_Rev4DotDiamond99 49

DrawFillStyle_TripleUpDiagonal 50

DrawFillStyle_DbleHorzLine 51

DrawFillStyle_PatchworkSquares 52

DrawFillStyle_Tartan 53

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 631

EncycloWin - 2020.0.02

Window Class Constant Integer Value Image

DrawFillStyle_ShinyBalls 54

DrawFillStyle_Balls 55

The code fragment in the following example shows the use of the drawFillStyle property.

table.drawFillStyle := DrawFillStyle_DiagonalCross;

Note Printing the draw fill styles in the range DrawFillStyle_4DotDiamond99 (8) through DrawFillStyle_Balls
(55) using the Windows Enhanced Meta Files (EMF) format produces a solid gray hue only, because of an EMF
problem that is outside JADE's control. To print these styles, you must use the Scalable Vector Graphics (SVG)
format.

drawFontBold
Type: Boolean

Availability: Read or write at run time only

The drawFontBold property of the Window class, together with the drawFontItalic, drawFontStrikethru,
drawFontUnderline, drawFontName, and drawFontSize properties, determines the font used for graphics text
drawing methods.

The font that is used defaults to the application font defined by the fontName property of the Application class.

Note The drawFonts available in JADE vary according to your system configuration, display devices, and
printing devices. Font-related properties can be set only to values for which actual drawFonts exist.

The font that is used is constructed only when a draw text method call is made, so the order of setting the property
values does not matter as it does for controls.

drawFontItalic
Type: Boolean

Availability: Read or write at run time only

The drawFontItalic property of the Window class, together with the drawFontBold, drawFontStrikethru,
drawFontUnderline, drawFontName, and drawFontSize properties, determines the font used for graphics text
drawing methods.

The font that is used defaults to the application font defined by the fontName property of the Application class.

Note The drawFonts available in JADE vary according to your system configuration, display devices, and
printing devices. Font-related properties can be set only to values for which actual drawFonts exist.

The font that is used is constructed only when a draw text method call is made, so the order of setting the property
values does not matter as it does for controls.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 632

EncycloWin - 2020.0.02

drawFontName
Type: String

Availability: Read or write at run time only

The drawFontName property of the Window class, together with the drawFontBold, drawFontItalic,
drawFontStrikethru, drawFontUnderline, and drawFontSize properties, determines the font used for graphics
text drawing methods.

The font that is used defaults to the application font defined by the fontName property of the Application class.

Note The drawFonts available in JADE vary according to your system configuration, display devices, and
printing devices. Font-related properties can be set only to values for which actual drawFonts exist.

The font that is used is constructed only when a draw text method call is made, so the order of setting the property
values does not matter as it does for controls.

drawFontSize
Type: Real

Availability: Read or write at run time only

The drawFontSize property of the Window class, together with the drawFontBold, drawFontItalic,
drawFontStrikethru, drawFontUnderline, and drawFontName properties, determines the font size used for
graphics text drawing methods.

The font that is used defaults to the application font defined by the fontName property of the Application class.

Note The drawFonts available in JADE vary according to your system configuration, display devices, and
printing devices. Font-related properties can be set only to values for which actual drawFonts exist.

The font that is used is constructed only when a draw text method call is made, so the order of setting the property
values does not matter as it does for controls.

drawFontStrikethru
Type: Boolean

Availability: Read or write at run time only

The drawFontStrikethru property of the Window class, together with the drawFontItalic, drawFontBold,
drawFontUnderline, drawFontName, and drawFontSize properties, determines the font used for graphics text
drawing methods. The font that is used defaults to the application font defined by the fontName property of the
Application class.

Note The drawFonts available in JADE vary according to your system configuration, display devices, and
printing devices. Font-related properties can be set only to values for which actual drawFonts exist.

The font that is used is constructed only when a draw text method call is made, so the order of setting the property
values does not matter as it does for controls.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 633

EncycloWin - 2020.0.02

drawFontUnderline
Type: Boolean

Availability: Read or write at run time only

The drawFontUnderline property of the Window class, together with the drawFontItalic, drawFontStrikethru,
drawFontBold, drawFontName, and drawFontSize properties, determines the font used for graphics text drawing
methods.

The font that is used defaults to the application font defined by the fontName property of the Application class.

Note The drawFonts available in JADE vary according to your system configuration, display devices, and
printing devices. Font-related properties can be set only to values for which actual drawFonts exist.

The font that is used is constructed only when a draw text method call is made, so the order of setting the property
values does not matter as it does for controls.

drawMode
Type: Integer

Availability: Read or write at run time only

The drawMode property of the Window class, together with the drawFontItalic, drawFontStrikethru,
drawFontBold, drawFontName, and drawFontSize, and drawFontUnderline properties, determines the
appearance of output from graphics methods on a form or control.

Use the drawMode property to produce visual effects when drawing with the graphics methods. Windows
compares each pixel in the draw pattern to the corresponding pixel in the existing background, and then it applies
bit-wise operations. For example, setting DrawMode_Xor (7) uses the Xor operator to combine a draw pattern
pixel with a background pixel.

The exact effect of the drawMode property setting depends on the way the color of a line drawn at run time
combines with colors already on the screen. Settings 1, 6, 7, 11, 13, and 16 yield perhaps the most-predictable
results.

Note If you draw an object twice when the value is set to DrawMode_Xor (7), an object that is drawn twice has
the original image restored. However, if the color black (0) is used for drawing, no image is drawn as the Xor
operation results in the same color.

The settings of the drawMode property are listed in the following table.

Window Class Constant Value Description

DrawMode_Black 1 Black Pen.

DrawMode_Copy 13 Color specified by the foreColor property Copy Pen (the
default value).

DrawMode_Invert 6 Inverse of the display color.

DrawMode_MaskPen 9 Combination of the colors common to both the pen and the
display.

DrawMode_MaskNotPen 3 Combination of the colors common to the background color
and the inverse of the pen.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 634

EncycloWin - 2020.0.02

Window Class Constant Value Description

DrawMode_MaskPenNot 5 Combination of the colors common to both the pen and the
inverse of the display.

DrawMode_MergeNotPen 12 Combination of the display color and the inverse of the pen
color.

DrawMode_MergePen 15 Combination of the pen color and the display color.

DrawMode_MergePenNot 14 Combination of the pen color and the inverse of the display
color.

DrawMode_Nop 11 No operation, output remains unchanged. In effect, this setting
turns drawing off.

DrawMode_NotCopyPen 4 Inverse of setting 13 (Copy Pen).

DrawMode_NotMaskPen 8 Inverse of setting 9 (Mask Pen).

DrawMode_NotMergePen 2 Inverse of setting 15 (Merge Pen).

DrawMode_NotXorPen 10 Inverse of setting 7 (Xor Pen).

DrawMode_White 16 White Pen.

DrawMode_Xor 7 Combination of the colors in the pen and in the display color,
but not in both.

drawStyle
Type: Integer

Availability: Read or write at run time only

The drawStyle property of the Window class contains the line style for output from graphics methods on a form or
control.

The settings of the drawStyle property are listed in the following table.

Window Class Constant Value Description

DrawStyle_Dash 1 Dash

DrawStyle_DashDot 3 Dash-dot

DrawStyle_DashDotDot 4 Dash-dot-dot

DrawStyle_Dot 2 Dot

DrawStyle_InsideSolid 6 Inside solid

DrawStyle_Solid 0 Solid (the default)

DrawStyle_Transparent 5 Transparent

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 635

EncycloWin - 2020.0.02

drawTextAlign
Type: Integer

Availability: Read or write at run time only

The drawTextAlign property of the Window class contains the alignment used when outputting text on a form or
control using the drawTextAt and drawTextIn graphics methods.

The settings of the drawTextAlign property are listed in the following table.

Window Class Constant Value Description

DrawTextAlign_Center 2 For the drawTextAt method, the text is positioned so that it is
centered horizontally over the specified position. For the drawTextIn
method, the text is centered within the specified rectangle.

DrawTextAlign_Left 0 Text is drawn starting at the specified positioned requested. This is
the default value.

DrawTextAlign_Right 1 For the drawTextAt method, the text is positioned so that it ends at
the specified position. For the drawTextIn method, the text is
positioned so that it ends at the right hand edge of the requested
rectangle.

drawTextCharRotation
Type: Integer

Availability: Read or write at run time only

The drawTextCharRotation property of the Window class specifies the angle, in degrees, between the base line
and the x-axis of the form or control of each character. For example, a value of 90 draws the characters so that
they are positioned on their side with their base parallel with the right hand edge of the form or control.

The default value is 0 degrees.

This property, in conjunction with the drawTextRotation property, allows the output of non-horizontal left to right
text.

Use this property only with the drawTextAt method, as the rotated text could be rotated outside the rectangle
defined by the drawTextIn method.

The drawTextCharRotation property, together with the drawFontBold, drawFontStrikethru, drawFontItalic,
drawFontName, drawFontSize, drawFontUnderline, and drawTextRotation properties, determines the font used
for graphics text drawing methods.

The font that is used defaults to the application font defined by the fontName property of the Application class.

drawTextRotation
Type: Integer

Availability: Read or write at run time only

The drawTextRotation property of the Window class specifies the angle, in degrees, between the base line of the
text output and the x-axis of the form or control. For example, a value of 270 draws text upright down the form or
control. The default value is 0 degrees.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 636

EncycloWin - 2020.0.02

This property, in conjunction with the drawTextCharRotation property, allows the output of non-horizontal left to
right text.

Use this property only with the drawTextAt method, as the rotated text could be rotated outside the rectangle
defined by the drawTextIn method.

The drawTextRotation property, together with the drawFontBold, drawFontStrikethru, drawFontItalic,
drawFontName, drawFontSize, drawFontUnderline, and drawTextCharRotation properties, determines the font
used for graphics text drawing methods.

The font that is used defaults to the application font defined by the fontName property of the Application class.

drawWidth
Type: Integer

Availability: Read or write at run time only

The drawWidth property of the Window class contains the line width for output from graphics methods on a form or
control.

Set the drawWidth property to a value in the range 1 through 32,767. This value represents the width of the line in
pixels. The default value is 1 pixel wide.

Increase the value of the drawWidth property to increase the width of the line.

drawWindow
Type: Integer

Availability: Read or write at run time only

By default, any drawing on a control or window is done within the client area of the form or control. The client area
is that part of the area inside the borders, scroll bars, and so on. The coordinates for the drawing are relative to the
left, top, width, and height of this client area.

Change the value of the drawWindow property of the Window class to 1, so that the entire surface of the form or
control can be drawn on. The coordinates for the drawing are then relative to the left, top, width, and height of the
entire window.

The default setting of zero (0) indicates a client area window.

A setting of 1 indicates that drawing is to cover the entire form or control window. Drawing on the entire surface,
however, has the following limitations.

The clipControls property has no effect on the drawing process. The drawing covers any other window at the
drawn positions.

The drawing coordinates are not affected by the scroll bar positions of the window.

Scrolling the window still scrolls any drawing present on that window, as the scrolling process causes only a
repaint of any uncovered area.

Non-client areas (for example, borders or scroll bars) are drawn by a separate window event, which is not
available to the JADE developer. Redrawing the non-client area is not necessarily accompanied by a normal
paint event.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 637

EncycloWin - 2020.0.02

Graphics Methods
The graphical methods defined in the Window class are summarized in the following table.

Method Description

beginBatchDrawing Starts a batch drawing operation

clearGraphics Causes a repaint of the form or control and its children, discarding any
graphical images previously drawn

drawArc Draws an arc

drawChord Draws a chord (an arc with the end points joined and the interior filled)

drawDeskTopRectangle Creates a transparent desktop window onto which the rectangle is drawn

drawDeskTopRectangleEx Creates a transparent desktop window onto which the rectangle is drawn,
using the inner border style and color

drawEllipse Draws a filled ellipse (a circle is a special ellipse)

drawFilledPolygon Draws a filled polygon and closes the figure by using the start and end Real
point values

drawFilledRectangle Draws a filled rectangle

drawFloodFill Fills an area on the object with a color

drawGrid Draws a grid on the window

drawLine Draws a line

drawPictureAt Draws a picture starting at a specified location using the drawing mode

drawPictureIn Draws a picture stretched or compressed to exactly fit the rectangle

drawPie Draws a pie (an arc with the end points drawn to the middle point of the
bounding rectangle and color-filled)

drawPoint Draws a single point

drawPolygon Draws the border of a polygon without automatically closing the figure

drawRectangle Draws the border of a rectangle

drawRoundRectangle Draws a rectangle with rounded corners

drawSize Returns the current number of entries in the drawing history

drawSolidRectangle Draws a rectangle filled with the same color as the border

drawTextAt Draws text at a position

drawTextHeight Returns the height that would be required to draw a text string

drawTextIn Draws text bounded by a rectangle

drawTextWidth Returns the width that would be required to draw a text string

drawUndo Undoes drawing actions back to a specified point

endBatchDrawing Ends a batch drawing operation

getPoint Gets the color of a point

Note An exception is raised if a Window, Form, or Control graphic method is invoked from a server method.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 638

EncycloWin - 2020.0.02

beginBatchDrawing
Signature beginBatchDrawing();

The beginBatchDrawing method of the Window class marks the start of a batch mode operation.

During batch mode, drawing requests are collected into a drawing script (as normally occurs when the
autoRedraw property is set to true), but are not drawn. No evaluation of whether previous script entries are
redundant is performed (for example, does a filled rectangle totally cover a previously drawn line?).

Use of batch drawing mode can reduce flicker associated with consecutive drawing operations and improve
performance by using the same window drawing environment for the entire script.

An exception is raised if the autoRedraw property for the window is not set to true when the beginBatchDrawing
method is called.

clearGraphics
Signature clearGraphics();

The clearGraphics method of the Window class causes the form or control to be redrawn and discards any
graphics drawn on the object. If the autoRedraw property is set to true, any history for that control or form is
discarded.

All drawing properties retain their current values after this call.

drawArc
Signature drawArc(x1: Real;

y1: Real;
x2: Real;
y2: Real;
startX: Real;
startY: Real;
endX: Real;
endY: Real;
color: Integer);

The drawArc method of the Window class draws an elliptical arc on a form or control using a pen the width of the
drawWidth property value, using the style of the drawStyle property and the mode of the drawMode property.

If this method is not called from a paint event, set the autoRedraw property to true.

The drawArc method parameters are listed in the following table.

Parameter Description

x1, y1, x2, y2 Rectangle bounding the ellipse of which the arc is a part

startX, startY Logical x and y (horizontal and vertical) coordinates of the point that defines the starting point
of the arc

endX, endY Logical x and y coordinates of the point that defines the end point of the arc

color Color of the pen used

The parameter position units are Real primitive type values, in the units of the scaleMode property of the form or
control.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 639

EncycloWin - 2020.0.02

The startX, startY, endX, and endY parameter points do not need to lie exactly on the arc.

The starting point of the arc is the point at which a ray drawn from the center of the bounding rectangle through the
specified starting point intersects the ellipse.

The end point of the arc is the point at which a ray drawn from the center of the bounding rectangle through the
specified end point intersects the ellipse.

The arc is drawn in a counterclockwise direction. As an arc is not a closed figure, it is not filled.

The width and height of a rectangle must each be in the range 2 units through 32,767 units.

drawChord
Signature drawChord(x1: Real;

y1: Real;
x2: Real;
y2: Real;
startX: Real;
startY: Real;
endX: Real;
endY: Real;
color: Integer);

The drawChord method of the Window class draws a segment of an ellipse arc on a form or control using a
colored pen the width of the drawWidth property, the style of the drawStyle property, and the mode of the
drawMode property.

If this method is not called from a paint event, set the autoRedraw property to true.

The segment of the ellipse is bounded by an elliptical arc and the straight line that joins the end points of the arc.
A line is drawn through the end points of the arc, and the figure is filled using the color and style of the
drawFillColor and drawFillStyle properties of the object.

The drawChord method parameters are listed in the following table.

Parameter Description

x1, y1, x2, y2 Rectangle bounding the ellipse of which the arc is a part

startX, startY Logical x and y (horizontal and vertical) coordinates of the point that defines the starting point
of the arc

endX, endY Logical x and y coordinates of the point that defines the end point of the arc

color Color of the pen used

The position units of the parameters are Real primitive type values in the units of the scaleMode property of the
form or control. The startX, startY, endX, and endY parameter points do not need to lie exactly on the arc.

The starting point of the arc is the point at which a ray drawn from the center of the bounding rectangle through the
specified starting point intersects the ellipse. The end point of the arc is the point at which a ray drawn from the
center of the bounding rectangle through the specified end point intersects the ellipse. The arc is drawn in a
counterclockwise direction.

The width and height of a rectangle must each be in the range 2 units through 32,767 units.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 640

EncycloWin - 2020.0.02

drawDeskTopRectangle
Signature drawDeskTopRectangle(borderStyle: Integer;

x1: Integer;
y1: Integer;
x2: Integer;
y2: Integer;
borderColor: Integer;
borderWidth: Integer);

The drawDeskTopRectangle method of the Window class creates a transparent desktop window onto which the
rectangle is drawn. Any white pixels are treated as being transparent.

This window is used for any subsequent calls to the drawDeskTopRectangle method made on the associated
window and is repositioned and resized each time.

Each call to the method erases any previous drawing and draws the new rectangle pattern.

Note The drawing does not use the Xor operator to combine a draw pattern pixel with a background pixel on the
desktop.

The window is destroyed if the effective rectangle passed in the call is the same as the previously drawn rectangle
or the window on which the call was made is destroyed. This means that existing logic that redraws the previous
rectangle drawn (double xor) will work correctly. However, the drawing will flash as the window is repeatedly
created and destroyed.

To improve the user experience, change the logic to remove the second draw call to erase the rectangle, and
redraw it only when the window is no longer required.

The window is also destroyed if a call is made with -1 as the first parameter (borderStyle).

Note Any window can have an associated drawing, thus allowing multiple rectangle patterns to be visible at
once. Each drawing is independent of the other.

Use the drawDeskTopRectangleEx method if you want additional functionality; that is, you want the:

Inner part of the rectangle drawn using the value of the innerStyle parameter and the color specified in the
innerColor parameter unless the value of the innerStyle parameter is -1.

Drawing window retained (that is, it is not destroyed) if the same rectangle is drawn a second time.

Drawing window destroyed only if both the borderStyle and innerStyle parameters have a value of -1 or the
associated window is destroyed.

The parameters for the drawDeskTopRectangle method are listed in the following table.

Parameter Description

borderStyle -1 (destroy the drawing window)

0 (hatch style 45 degrees left to right)

1 (cross-hatch)

2 (45 degree cross-hatch)

3 (hatch style 45 degrees right to left)

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 641

EncycloWin - 2020.0.02

Parameter Description

4 (horizontal)

5 (vertical)

6 (halftone)

7 (solid)

Any other value is treated as no drawing required (note that this method does not draw the
inside of the rectangle and the rectangle border is not drawn if the value of the borderWidth
parameter is less than or equal to zero)

x1, y1 Left and top corner positions of rectangle, respectively, in pixels relative to the client area of
the window

x2, y2 Right and bottom corner positions of rectangle, respectively, in pixels relative to the client
area of the window

borderColor Color with which to draw the rectangle

borderWidth Width of the inner area of the rectangle drawn with the pattern specified in the borderStyle
parameter

If the width of the border area is greater than or equal to the width or height of the rectangle being drawn, the
entire rectangle is filled with the specified pattern.

The methods in the following examples (in which inDragOver: Boolean, lastMouseX: Integer, and lastMouseY:
Integer are form properties) show the use of this method to draw a dragging rectangle when the user drags the
mouse over the ListBox control.

listBox1_dragOver(listBox: ListBox;
win: Window;
x, y: Real;
state: Integer) updating;

vars
w : Integer;
h : Integer;

begin
w := (listBox.clientWidth/2).Integer;
h := (listBox.clientHeight/2).Integer;
// draw in new position
inDragOver := true;
lastMouseX := x.Integer;
lastMouseY := y.Integer;
listBox.drawDeskTopRectangle(0, lastMouseX - w, lastMouseY - h,

lastMouseX + w, lastMouseY + h, Red, 4);
end;

listBox1_dragDrop(listBox: ListBox; win: Window; x, y: Real) updating;
begin

if inDragOver then
listBox1.drawDeskTopRectangle(-1, lastMouseX - w, lastMouseY - h,

lastMouseX + w, lastMouseY + h, Red, 4);
endif;

end;

Applies to Version: 2016.0.02 (Service Pack 1) and higher

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 642

EncycloWin - 2020.0.02

drawDeskTopRectangleEx
Signature drawDeskTopRectangleEx(borderStyle: Integer;

x1: Integer;
y1: Integer;
x2: Integer;
y2: Integer;
borderColor: Integer;
borderWidth: Integer;
innerStyle: Integer;
innerColor: Integer);

The drawDeskTopRectangleEx method of the Window class creates a transparent desktop window onto which
the rectangle is drawn. Any white pixels are treated as being transparent.

This window is used for any subsequent calls to the drawDeskTopRectangleEx method made on the associated
window and is repositioned and resized each time.

Each call to the method erases any previous drawing and draws the new rectangle pattern.

Notes The drawing does not use the Xor operator to combine a draw pattern pixel with a background pixel on
the desktop.

Any window can have an associated drawing, thus allowing multiple rectangle patterns to be visible at once. Each
drawing is independent of the other.

The inner part of the rectangle is drawn using the value of the innerStyle parameter and the color specified in the
innerColor parameter unless the value of the innerStyle parameter is -1.

The drawing window is not destroyed if the same rectangle is drawn a second time. The drawing window is
destroyed only if the value of both the borderStyle and innerStyle parameters is -1 or the associated window is
destroyed.

The parameters for the drawDeskTopRectangleEx method are listed in the following table.

Parameter Description

borderStyle -1 (destroy the drawing window)

0 (hatch style 45 degrees left to right)

1 (cross-hatch)

2 (45 degree cross-hatch)

3 (hatch style 45 degrees right to left)

4 (horizontal)

5 (vertical)

6 (halftone)

7 (solid)

Any other value is treated as no drawing required (note that this method does not draw the
inside of the rectangle and the rectangle border is not drawn if the value of the borderWidth
parameter is less than or equal to zero)

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 643

EncycloWin - 2020.0.02

Parameter Description

x1, y1 Left and top corner positions of rectangle, respectively, in pixels relative to the client area of
the window

x2, y2 Right and bottom corner positions of rectangle, respectively, in pixels relative to the client
area of the window

borderColor Color with which to draw the rectangle

borderWidth Width of the inner area of the rectangle drawn with the pattern specified in the borderStyle
parameter

innerStyle Style with which to draw the inner part of the rectangle (with the same pattern options as
those for the borderStyle parameter listed earlier in this table)

innerColor Color with to fill the inner part of the rectangle unless the value of the innerStyle parameter is
-1

If the width of the border area is greater than or equal to the width or height of the rectangle being drawn, the
entire rectangle is filled with the specified pattern.

The methods in the following examples (in which inDragOver: Boolean, lastMouseX: Integer, and lastMouseY:
Integer are form properties) show the use of this method to draw a dragging rectangle when the user drags the
mouse over the ListBox control.

listBox1_dragOver(listBox: ListBox;
win: Window;
x, y: Real;
state: Integer) updating;

vars
w : Integer;
h : Integer;

begin
w := (listBox.clientWidth/2).Integer;
h := (listBox.clientHeight/2).Integer;
// draw in new position
inDragOver := true;
lastMouseX := x.Integer;
lastMouseY := y.Integer;
listBox.drawDeskTopRectangleEx(0, lastMouseX - w, lastMouseY - h,

lastMouseX + w, lastMouseY + h, Red, 4, 0, Red);
end;

listBox1_dragDrop(listBox: ListBox; win: Window; x, y: Real) updating;
begin

if inDragOver then
listBox1.drawDeskTopRectangleEx(-1, lastMouseX - w, lastMouseY - h,

lastMouseX + w, lastMouseY + h, Red, 4,
-1, Red);

endif;
end;

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 644

EncycloWin - 2020.0.02

drawEllipse
Signature drawEllipse(x1: Real;

y1: Real;
x2: Real;
y2: Real;
color: Integer);

The drawEllipse method of the Window class draws an ellipse on a form or control using a colored pen the width
of the drawWidth property, the style of the drawStyle property, and the mode of the drawMode property. If this
method is not called from a paint event, set the autoRedraw property to true.

The figure is filled using the color and style of the drawFillColor and drawFillStyle properties of the object. The
drawEllipse method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top points of the rectangle bounding the ellipse

x2, y2 Right and bottom points of the rectangle bounding the ellipse

color Color of the pen used

The position units of the parameters are Real primitive type values in the units of the scaleMode property of the
form or control.

If the width or the height of the bounding rectangle is zero (0), the function does not draw the ellipse.

The figure drawn by this method extends up to but does not include the right and bottom coordinates. This means
that the height of the figure is y2 through y1, and the width is x2 through x1.

The width and the height of a rectangle must be in the range 2 units through 32,767 units. To draw an unfilled
ellipse, set the drawFillStyle property to DrawFillStyle_Transparent (1).

The code fragment in the following example shows the use of the drawEllipse method.

table.drawEllipse(20, 20, 50, 60, Red);

drawFilledPolygon
Signature drawFilledPolygon(points: RealArray;

color: Integer);

The drawFilledPolygon method of the Window class draws a polygon on a form or control using a colored pen the
width of the drawWidth property, the style of the drawStyle property, and the mode of the drawMode property, and
automatically links the start points (x1, y1) to the end points (xn, yn, where the n value represents a matching set of
left and right end points). If this method is not called from a paint event, set the autoRedraw property to true.

The figure is filled using the color and style of the drawFillColor and drawFillStyle properties of the object. The
drawFilledPolygon method parameters are listed in the following table.

Parameter Description

points Pairs of left and right (x, y) points, respectively, of the polygon

color Color of the pen used

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 645

EncycloWin - 2020.0.02

The position units of the points in the RealArray are values in the units of the scaleMode property of the form or
control.

Note that there must be an even number of entries (x, y points) in the array and there must be at least two sets of
points, as shown in the following example.

create realArray transient;
realArray.add(x1);
realArray.add(y1);
realArray.add(x2);
realArray.add(y2);
drawFilledPolygon(realArray, Black);
delete realArray;

To draw an unfilled polygon, use the drawPolygon method or set the drawFillStyle property to DrawFillStyle_
Transparent (1). Alternatively, you can use the drawPolygon method to draw a many-sided irregular shape (that
is, without automatically linking the start points (x1, y1) to the end points (xn, yn, where the n value represents a
matching set of left and right end points).

drawFilledRectangle
Signature drawFilledRectangle(x1: Real;

y1: Real;
x2: Real;
y2: Real;
color: Integer);

The drawFilledRectangle method of the Window class draws a rectangle on a form or control using a colored pen
the width of the drawWidth property, the style of the drawStyle property, and the mode of the drawMode property.
If this method is not called from a paint event, set the autoRedraw property to true.

The figure is filled using the color and style of the drawFillColor and drawFillStyle properties of the object.

The drawFilledRectangle method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top points of the rectangle

x2, y2 Right and bottom points of the rectangle

color Color of the pen used

The position units of the parameters are Real primitive type values in the units of the scaleMode property of the
form or control. If the width or the height of the rectangle is zero (0), the function does not draw the rectangle.

The figure drawn by this method extends up to but does not include the right and bottom coordinates. This means
that the height of the figure is y2 through y1, and the width is x2 through x1. The width and the height of a
rectangle must be in the range 2 units through 32,767 units.

When you use the drawFilledRectangle or drawSolidRectangle method to draw a solid rectangle, previous
figures that were drawn in the history but are covered and all property settings that have been made redundant
are removed. In addition, the drawLine method removes any previous lines with the same co-ordinates where the
same width and drawStyle property values apply. The automatic process does not occur if you use flood-fill or
after logic calls to the drawSize method.

To draw an unfilled rectangle, use the drawRectangle method or set the drawFillStyle property to DrawFillStyle_
Transparent (1).

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 646

EncycloWin - 2020.0.02

The code fragment in the following example shows the use of the drawFilledRectangle method.

frame.drawFilledRectangle(30,100,70,200, Red);

drawFloodFill
Signature drawFloodFill(x1: Real;

y1: Real;
type: Integer;
color: Integer);

The drawFloodFill method of the Window class fills an area of the screen surface by using the brush defined by
the drawFillStyle and drawFillColor properties of the object. If this method is not called from a paint event, set the
autoRedraw property to true.

The type of flood fill specified determines which part of the screen is filled.

Note Only devices (which does not include printers) that support raster-display operations support the flood-fill
operation. To print a shape that is flood-filled, use the Control class createPicture method to capture an image
and then print the bitmap that is created.

The drawFloodFill method parameters are listed in the following table.

Parameter Description

x1, y1 Starting points of the flood fill.

type Type of flood fill. A value of zero (0) specifies that flood fill occurs until a border of "color" is
reached. A value of 1 specifies that flood fill continues outward in all directions as long as the
"color" is encountered, which is useful for filling areas that have multicolored boundaries.

color Color of the pen used.

drawGrid
Signature drawGrid(style: Integer;

width: Real;
height: Real;
color: Integer);

The drawGrid method of the Window class draws a grid on the window, using the Window class constants listed
in the following table.

Window Class Constant Value Description

DrawGrid_Crosses 1 Small crosses drawn at the grid line intersection

DrawGrid_Dots 2 Dots drawn at the grid line intersections

DrawGrid_Lines 0 Horizontal and vertical grid lines

The drawGrid method parameters are listed in the following table.

Parameter Description

style DrawGrid_Lines (0), DrawGrid_Crosses (1), or DrawGrid_Dots (2)

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 647

EncycloWin - 2020.0.02

Parameter Description

width Increment in units specified by the scaleMode property between each vertical grid line

height Increment in units specified by the scaleMode property between each horizontal grid line

color Color of the pen used to draw the grid

Grid lines for the left and top edges of the window are not drawn. The grid lines are drawn by using the
Window::drawWidth, Window::drawStyle, and Window::drawMode properties. For the line style (that is,
DrawGrid_Lines) when drawWidth= 1, drawWindow= 0 (client area), and scaleMode = 0 (that is, ScaleMode_
Pixels), the result is the same as if you were to write the code in the following method.

vars
x : Integer;
y : Integer;

begin
foreach x in width to clientWidth - 1 step width do

window.drawLine(x, 0, x, clientHeight, color);
endforeach;
foreach y in height to clientHeight - 1 step height do

window.drawLine(0, y, clientWidth, y, color);
endforeach;

end;

drawLine
Signature drawLine(x1: Real;

y1: Real;
x2: Real;
y2: Real;
color: Integer);

The drawLine method of the Window class draws a line on a form or control using a colored pen the width of the
drawWidth property, the style of the drawStyle property, and the mode of the drawMode property.

The line drawn by this method extends up to but does not include the end point. If this method is not called from a
paint event, set the autoRedraw property to true, as shown in the method in the following example.

redrawGraph() updating;
vars

counter : Real;
s : String;

begin
self.width := self.parent.IGXFrame.clientWidth * 4;
self.height := self.parent.IGXFrame.clientHeight;
self.top := 0;
self.left := 0;
pixelInc := self.clientWidth div 4 div (self.increment + 1);
self.autoRedraw := true;
self.clearGraphics;
self.drawWidth := 3;
self.drawLine(0, 0, self.clientWidth, 0, 0);
counter := 1;
while counter <= increment * 4 do

self.drawLine(counter * pixelInc, 0, counter * pixelInc, 5, 0);

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 648

EncycloWin - 2020.0.02

counter := counter + 1;
endwhile;
counter := 1;
foreach s in labelArray do

if counter.Integer div 2 * 2 = counter.Integer then
drawFontSize := 7;
drawTextAt(s, (counter * pixelInc) - 14, 6, 0);

endif;
counter := counter + 1;

endforeach;
end;

The drawLine method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top start points of the line, respectively

x2, y2 Right and bottom end points of the line, respectively

color Color of the pen used

The position units of the parameters are Real primitive type values in the units of the scaleMode property of the
form or control.

drawPictureAt
Signature drawPictureAt(pict: Binary;

x: Real;
y: Real);

The drawPictureAt method of the Window class draws a picture on a form or control starting at a specific location,
using the drawing mode defined by the mode of the drawMode property.

If this method is not called from a paint event, set the autoRedraw property to true.

The picture is drawn actual size. If there is insufficient room to fit the entire picture, it is truncated.

When running applications in JADE thin client mode, the picture that is drawn is cached on the presentation client.

The drawPictureAt method parameters are listed in the following table.

Parameter Description

pict Picture file image

x Left starting position

y Top starting position

The following example shows the use of the drawPictureAt method.

form1.drawPictureAt(pic1.picture, 20, 30);

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 649

EncycloWin - 2020.0.02

drawPictureIn
Signature drawPictureIn(pict: Binary;

x: Real;
y: Real;
x2: Real;
y2: Real);

The drawPictureIn method of the Window class draws a picture stretched or compressed to exactly fit the
rectangle bounded by the x, y and x2, y2 parameter values on a form or control. If this method is not called from a
paint event, set the autoRedraw property to true.

The drawing mode defined by the mode of the drawMode property is used.

When running applications in JADE thin client mode, the picture that is drawn is cached on the presentation client.

The drawPictureIn method parameters are listed in the following table.

Parameter Description

pict Picture image to be drawn

x, y Left and top corner of the drawing rectangle

x2, y2 Bottom and right corner of the drawing rectangle

The code fragment in the following example shows the use of the drawPictureIn method.

form1.drawPictureIn(pic1.picture, 20, 20, 200, 300);

drawPie
Signature drawPie(x1: Real;

y1: Real;
x2: Real;
y2: Real;
startX: Real;
startY: Real;
endX: Real;
endY: Real;
color: Integer);

The drawPie method of the Window class draws a pie-shaped wedge on a form or control, using a colored pen
the width of the drawWidth property, the style of the drawStyle property, and the mode of the drawMode property.
The wedge is an elliptical arc whose center and two end points are joined by lines. If this method is not called from
a paint event, set the autoRedraw property to true.

The figure is filled using the color and style of the drawFillColor and drawFillStyle properties of the object.

The drawPie method parameters are listed in the following table.

Parameter Description

x1, y1, x2, y2 Rectangle bounding the ellipse of which the pie is a part

startX, startY Logical x and y (horizontal and vertical) coordinates of the point that defines the
starting point of the arc

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 650

EncycloWin - 2020.0.02

Parameter Description

endX, endY Logical x and y coordinates of the point that defines the end point of the arc

color Color of the pen used

The position units of the parameters are Real primitive type values in the units of the scaleMode property of the
form or control.

The startX, startY, endX, and endY parameter points do not need to lie exactly on the arc.

The starting point of the arc is the point at which a ray drawn from the center of the bounding rectangle through the
specified starting point intersects the ellipse. The end point of the arc is the point at which a ray drawn from the
center of the bounding rectangle through the specified end point intersects the ellipse.

The figure drawn by this function extends up to but does not include the right and bottom coordinates, so that the
height of the figure is y2 through y1 and the width is x2 through x1. The arc is drawn in a counterclockwise
direction.

The width and height of a rectangle must each be in the range 2 units through 32,767 units.

drawPoint
Signature drawPoint(x1: Real;

y1: Real;
color: Integer);

The drawPoint method of the Window class draws a point on a form or control using a colored pen the width of the
drawWidth property, the style of the drawStyle property, and the mode of the drawMode property. If this method is
not called from a paint event, set the autoRedraw property to true.

The point is drawn as a line of length 1. The position units of the parameters are Real primitive type values in the
units of the scaleMode property of the form or control. The drawPoint method parameters are listed in the
following table.

Parameter Description

x1, y1 Horizontal and vertical position of the point to be drawn

color Color of the pen used

drawPolygon
Signature drawPolygon(points: RealArray;

color: Integer);

The drawPolygon method of the Window class draws the border of a polygon on a form or control using a colored
pen the width of the drawWidth property, the style of the drawStyle property, and the mode of the drawMode
property. The inside of the polygon is not filled. If this method is not called from a paint event, set the autoRedraw
property to true.

The drawPolygon method parameters are listed in the following table.

Parameter Description

points Pairs of left and right (x, y) points, respectively, of the polygon

color Color of the pen used

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 651

EncycloWin - 2020.0.02

The figure drawn by this polygon is equivalent to using the drawFilledPolygon method with the drawFillStyle
property set to DrawFillStyle_Transparent (1), except that the start points (x1, y1) and end points (xn, yn, where
the n value represents a matching set of left and right end points) are not automatically linked. You can therefore
use the drawPolygon method to draw a many-sided irregular shape.

Note that there must be an even number of entries (x, y points) in the array and there must be at least two sets of
points, as shown in the following example.

create realArray transient;
realArray.add(x1);
realArray.add(y1);
realArray.add(x2);
realArray.add(y2);
realArray.add(x3);
realArray.add(y3);
drawPolygon(realArray, Black);
delete realArray;

drawRectangle
Signature drawRectangle(x1: Real;

y1: Real;
x2: Real;
y2: Real;
color: Integer);

The drawRectangle method of the Window class draws the border of a rectangle on a form or control using a
colored pen the width of the drawWidth property, the style of the drawStyle property, and the mode of the
drawMode property.

If this method is not called from a paint event, set the autoRedraw property to true.

The inside of the rectangle is not filled. If the width or the height of the rectangle is zero (0), the function does not
draw the rectangle.

The figure drawn by this function extends up to and includes the right and bottom coordinates.

The figure drawn by this rectangle is equivalent to using the drawFilledRectangle method with the drawFillStyle
property set to DrawFillStyle_Transparent (1).

The drawRectangle method parameters are listed in the following table.

Parameter Description

x1, y1 Horizontal and vertical left and top points of the rectangle

x2, y2 Horizontal and vertical right and bottom points of the rectangle

color Color of the pen used

The code fragment in the following example shows the use of the drawRectangle method.

frame.drawRectangle(30, 100, 70, 200, Red);

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 652

EncycloWin - 2020.0.02

drawRoundRectangle
Signature drawRoundRectangle(x1: Real;

y1: Real;
x2: Real;
y2: Real;
xRoundSize: Real;
yRoundSize: Real;
color: Integer);

The drawRoundRectangle method of the Window class draws a rectangle with rounded corners on a form or
control using a colored pen the width of the drawWidth property, the style of the drawStyle property, and the
mode of the drawMode property. If this method is not called from a paint event, set the autoRedraw property to
true.

The figure is filled using the drawFillColor and drawFillStyle properties of the object. If the width or the height of
the rectangle is zero (0), the function does not draw the rectangle.

The figure drawn by this function extends up to but does not include the right and bottom coordinates, meaning
that the height of the figure is y2 through y1 and the width is x2 through x1.

The width and the height of a rectangle must be in the range 2 units through 32,767 units.

The drawRoundRectangle method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top points of the rectangle

x2, y2 Right and bottom points of the rectangle

xRoundSize Width of ellipse for rounded corners

yRoundSize Height of ellipse for rounded corners

color Color of the pen used

drawSize
Signature drawSize(): Integer;

The drawSize method of the Window class returns the number of entries in the drawing history. If the value of the
autoRedraw property is false, the drawSize method returns zero (0). There are entries in the drawing history only
if drawing has been performed on the form or control since the last clearGraphics or drawUndo method call.

The drawSize method provides the current size of the drawing history. Use this method to record a rollback point
for the image to be used at a later point.

drawSolidRectangle
Signature drawSolidRectangle(x1: Real;

y1: Real;
x2: Real;
y2: Real;
color: Integer);

The drawSolidRectangle method of the Window class draws a rectangle on a form or control using a colored pen
the width of the drawWidth property, the style of the drawStyle property, and the mode of the drawMode property.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 653

EncycloWin - 2020.0.02

If this method is not called from a paint event, set the autoRedraw property to true.

The figure is solidly filled using the same color as the border. The drawFillColor and drawFillStyle properties are
ignored.

The drawSolidRectangle method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top points of the rectangle

x2, y2 Right and bottom points of the rectangle

color Color of the pen used

The position units are Real primitive type values, in the units of the scaleMode property of the form or control.

If the width or the height of the rectangle is zero (0), the function does not draw the rectangle.

The figure drawn by this function extends up to but does not include the right and bottom coordinates, meaning
that the height of the figure is y2 through y1 and the width is x2 through x1.

The figure drawn by this rectangle is equivalent to using the drawFilledRectangle method with the drawFillColor
property set to the appropriate color and the drawFillStyle property set to DrawFillStyle_Solid (0).

When you use the drawFilledRectangle or drawSolidRectangle method to draw a solid rectangle, previous
figures that were drawn in the history but are covered and all property settings that have been made redundant
are removed. In addition, the drawLine method removes any previous lines with the same co-ordinates where the
same width and drawStyle property values apply. The automatic process does not occur if you use flood-fill or
after logic calls to the drawSize method.

drawTextAt
Signature drawTextAt(text: String;

x1: Real;
y1: Real;
color: Integer);

The drawTextAt method of the Window class draws a text string on a form or control using the current values of
the drawFont and drawTextAlign properties. If this method is not called from a paint event, set the autoRedraw
property to true.

Note The drawTextAt property is not affected by the mode defined in the drawMode property.

The drawTextAt method parameters are listed in the following table.

Parameter Description

text Text string that is to be drawn

x1, y1 Horizontal and vertical positions for the text

color Color of the text

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 654

EncycloWin - 2020.0.02

The way in which the text is drawn is determined by the value of the drawTextAlign property, as listed in the
following table.

Window Class Constant Value Description

DrawTextAlign_Left 0 Left-aligned

DrawTextAlign_Right 1 Right-aligned

DrawTextAlign_Center 2 Center-aligned (centered)

The text is drawn in a single line, unless it has embedded carriage return characters within it. Each embedded
carriage return character forces a new line for the remaining text.

The text always starts at the vertical point specified by the y1 parameter.

drawTextHeight
Signature drawTextHeight(text: String): Real;

The drawTextHeight method of the Window class returns the height of the graphical text output that would result
from drawing the passed text string with the drawTextAt method. The text parameter is the text string.

The returned value is a Real primitive type, in the units of the scaleMode property of the form or control.

The height of the text is calculated based on a single line of text, unless it has embedded carriage return
characters within it forcing new lines.

drawTextIn
Signature drawTextIn(text: String;

x1: Real;
y1: Real;
x2: Real;
y2: Real;
color: Integer);

The drawTextIn method of the Window class draws a text string on a form or control within a bounded rectangle,
using the current values of the drawFont and drawTextAlign properties.

Note The drawTextIn property is not affected by the mode defined in the drawMode property.

The drawTextIn method parameters are listed in the following table.

Parameter Description

text Text string that is to be drawn

x1, y1 Left and top points of the bounding rectangle

x2, y2 Right and bottom points of the bounding rectangle

color Color of the text

The text is drawn into the bounding rectangle with word wrap.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 655

EncycloWin - 2020.0.02

The parameter position units are Real primitive type values, in the units of the scaleMode property of the form or
control. The way in which the text is drawn is determined by the value of the drawTextAlign property, as listed in
the following table.

Window Class Constant Value Description

DrawTextAlign_Left 0 Left-aligned

DrawTextAlign_Right 1 Right-aligned

DrawTextAlign_Center 2 Center-aligned (centered)

Any embedded carriage return character within the text forces a new line for the remaining text. The text always
starts at the vertical point specified by the y1 parameter.

If this method is not called from a paint event, set the autoRedraw property to true.

The code fragment in the following example shows the use of the drawTextIn method.

cntrl.drawTextIn(cntrl.name, 0, 30, 100, 70, labelColor);

drawTextWidth
Signature drawTextWidth(text: String): Real;

The drawTextWidth method of the Window class returns the width of the graphical text output that would result
from drawing the passed text string with the drawTextAt method. The text parameter is the text string.

The returned value is a Real primitive type in the units of the scaleMode property of the form or control. The width
of the text is calculated based on a single line of text, unless it has embedded carriage return characters within it
forcing new lines.

The method in the following example shows the use of the drawTextWidth method.

centerText(graphWin: Window; text: String;
pos: Integer; vertical: Boolean): Integer;

begin
if vertical then

return(pos + (graphWin.drawTextHeight(text).Integer/2)).Integer;
else

return(pos - (graphWin.drawTextWidth(text).Integer/2)).Integer;
endif;

end;

drawUndo
Signature drawUndo(toPosn: Integer);

The drawUndo method of the Window class rolls the graphics history back to a previous point in the image
construction and removes the history past the indicated point. A repaint is then caused to draw the image as it was
at that point. The toPosn parameter is the last graphics command to be retained.

If the setting of the autoRedraw property is false or if there is no history, this method has no effect. After the
command has completed, the image is painted at the indicated history point. The graphical attributes are also
reset to the values as at that point.

Encyclopaedia of Classes
(Volume 3)

Graphics Properties and Methods Chapter 2 656

EncycloWin - 2020.0.02

The drawUndo(0); method does the same as clearGraphics method, except that the undo restores the drawing
attributes back to what they were at the start of the history recording process, while the clearGraphics method
retains the current values.

The size of the draw history can be determined at any point, by using the drawSize method.

endBatchDrawing
Signature endBatchDrawing();

The endBatchDrawing method of the Window class marks the end of a batch mode operation and requests that
the window redraw itself by replaying the drawing script.

If the window is repainted while still in batch mode, batch mode is cancelled and another paint request issued.
This is necessary if the whole window has not been redrawn.

During batch mode, drawing requests are collected into the drawing script (as normally occurs when the
autoRedraw property is set to true), but are not drawn. No evaluation of whether previous script entries are
redundant is performed (for example, does a filled rectangle totally cover a previously drawn line?).

Use of batch drawing mode can reduce flicker associated with consecutive drawing operations and improve
performance by using the same window drawing environment for the entire script.

getPoint
Signature getPoint(x1: Real;

y1: Real): Integer;

The getPoint method of the Window class returns the color of the pixel at the specified coordinates on the screen.
The point must be physically visible and within the referenced form or control. If it is not, the getPoint method does
nothing. The x1 and y1 parameters are the coordinates of the point.

Only devices that support raster operations can use this function.

The code fragment in the following example shows the use of the getPoint method.

if getPoint (1,2) <> Blue then
picturePreview.drawFilledRectangle(1, 2, 30, 5, Blue);
picturePreview.drawFilledRectangle(picturePreview.scaleWidth-12,

2, picturePreview.scaleWidth, 5, Blue);
picturePreview.drawLine(1, 7, picturePreview.scaleWidth, 7, Red);

endif;

	Contents
	Before You Begin
	Who Should Read this Encyclopaedia
	What's Included in this Encyclopaedia
	Related Documentation
	Conventions

	Chapter 2 Window Classes
	Window Class
	Window Class Constants
	Window Properties
	Window Methods

	Form Class
	Monitoring the Basic Operating Style of Forms
	Floating, Docking, and Pinning MDI Child Forms
	MDI Child Form Tabs
	Form Class Constants
	Form Properties
	Form Methods
	Form Events

	Control Class
	Testing Tools and Control Identification
	Controls Saved in the JADE Painter
	Controls Created by Runtime Logic
	Internal Controls

	Control Class Constants
	Control Properties
	Control Methods
	Control Events
	ActiveXControl Class
	ActiveXControl Class Property
	ActiveXControl Class Methods
	ActiveXControl Class Event

	BaseControl Class
	BaseControl Properties
	BaseControl Methods
	BaseControl Events

	BrowseButtons Class
	BrowseButtons Class Constants
	BrowseButtons Events

	Button Class
	Button Class Constants
	Button Properties
	Button Events

	CheckBox Class
	CheckBox Class Constants
	CheckBox Properties
	CheckBox Events

	ComboBox Class
	ComboBox Class Constants
	ComboBox Properties
	ComboBox Methods
	ComboBox Events

	Folder Class
	Folder Class Constants
	Folder Properties
	Folder Methods
	Folder Events

	Frame Class
	Three-Dimensional Effects in Frame Controls
	Frame Class Constants
	Frame Properties
	Frame Methods
	Frame Events

	GroupBox Class
	GroupBox Properties
	GroupBox Methods
	GroupBox Events

	JadeDockBar Class
	JadeDockBar Class Constants
	JadeDockBar Properties
	JadeDockBar Events

	JadeDockBase Class
	JadeDockBase Class Constants
	JadeDockBase Properties
	JadeDockBase Methods
	Floating a Docking Control
	Docking a Control

	JadeDockContainer Class
	JadeDockContainer Property
	JadeDockContainer Events

	JadeDotNetVisualComponent Class
	JadeDotNetVisualComponent Class Method

	JadeEditMask Class
	Right-Aligned or Left-Aligned Text Boxes
	JadeEditMask Class Constants
	JadeEditMask Properties
	JadeEditMask Methods
	JadeEditMask Events

	JadeEditor Class
	JadeEditor Methods
	Using the JADE Editor

	JadeMask Class
	JadeMask Constants
	JadeMask Properties
	JadeMask Method
	JadeMask Events

	JadeRichText Class
	JadeRichText Class Constants
	JadeRichText Properties
	JadeRichText Methods
	JadeRichText Events
	Using the JadeRichText Control Class
	Fonts in JadeRichText Controls
	Formatting and Selecting Text
	Formatting Selected Characters
	Formatting Paragraphs

	Applying a Bullet to a Paragraph
	URL Detection
	Initializing the JadeRichText Control
	Clipboard Operations
	File Operations
	Finding and Replacing Text
	Printing Rich Text Control Contents
	Scrolling JadeRichText Controls
	Inserting Objects
	Inserting Tables
	Context Menu
	Unsupported RTF Specification Features

	JadeRichText Control Method Example

	JadeTextEdit Class
	JadeTextEdit Class Constants
	JadeTextEdit Properties
	JadeTextEdit Methods
	JadeTextEdit Events
	Using the JadeTextEdit Control
	Contents of Text Edit Controls
	Navigating Around the Text Editor
	Using the Mouse within the Editor Text Area
	Using the Mouse within the Line Number Margin
	Using the Mouse within the Fold Margin
	Using the Keyboard in the Text Editor

	Coloring and Text Styling
	Folding
	Linemarks
	Settings
	Supported Languages
	Unicode and ANSI Considerations

	JadeXamlControl Class
	JadeXamlControl Property
	JadeXamlControl Methods
	JadeXamlControl Events

	Label Class
	Label Class Constants
	Label Properties
	Label Method
	Label Events

	ListBox Class
	Setting Properties for Individual Items in a List Box
	Using a List Box to Display a Hierarchy or Tree
	Copying Text from a List Box
	Entering Characters to Find an Entry in a List Box
	ListBox Class Constants
	ListBox Properties
	ListBox Methods
	ListBox Events

	MultiMedia Class
	Using MultiMedia Controls
	MultiMedia Device Types
	MultiMedia File Types
	MultiMedia Class Constants
	MultiMedia Properties
	MultiMedia Methods
	MultiMedia Events

	Ocx Class
	Ocx Class Constants
	Ocx Property
	Ocx Methods
	Ocx Events

	OleControl Class
	OleControl Class Constants
	OleControl Properties
	OleControl Methods
	OleControl Events

	OptionButton Class
	OptionButton Class Constants
	OptionButton Properties
	OptionButton Events

	Picture Class
	Picture Class Constants
	Picture Properties
	Picture Methods
	Picture Events

	ProgressBar Class
	ProgressBar Properties
	ProgressBar Method
	ProgressBar Event

	ScrollBar Class
	ScrollBar Properties
	ScrollBar Events

	Sheet Class
	Sheet Property
	Sheet Methods

	StatusLine Class
	StatusLine Class Constants
	StatusLine Properties
	StatusLine Methods
	StatusLine Events

	Table Class
	Directly Accessing Table Elements
	Table Class Constants
	Table Properties
	Table Methods
	Table Events

	TextBox Class
	TextBox Class Constants
	TextBox Properties
	TextBox Methods
	TextBox Events
	Value Round Trips through TextBox Controls
	Number Round Trips
	Currency Round Trips
	Date Round Trips
	Time Round Trips

	WebHotSpot Class
	WebHotSpot Method

	WebHTML Class
	WebHTML Properties

	WebInsert Class
	WebInsert Method

	WebJavaApplet Class
	WebJavaApplet Properties

	Window, Form, and Control Properties
	acceptTabs
	accessedCell
	accessedColumn
	accessedRow
	accessedSheet
	accessMode
	activation
	activeColor
	alignChildren
	alignContainer
	alignment
	allowClose
	allControlChildren
	allMenuItems
	allowDocking
	Multiple Group Toolbar Example
	Multiple Group Toolbar on a Non-MDI Form Example
	Using Align All with Multiple Panes

	allowDrag
	allowInPlace
	allowResize
	alternatingRowBackColor
	alternatingRowBackColorCount
	appletName
	automaticCellControl
	autoSize
	autoSpacingX
	autoSpacingY
	autoTab
	autoURLDetect
	backBrush
	backBrushStyle
	backColor
	bevelColor
	bevelInner
	bevelInnerWidth
	bevelOuter
	bevelOuterWidth
	bevelShadowColor
	borderColorSingle
	borderHeightBottom
	borderHeightTop
	borderStyle
	borderWidthLeft
	borderWidthRight
	boundaryBrush
	boundaryColor
	boundaryWidth
	bubbleHelp
	bulletIndent
	bulletStyle
	buttonPicture
	cachePictures
	cancel
	canHaveFocus
	canPaste
	canRedo
	canUndo
	caption
	captionHeight
	captionLeft
	captionTop
	captionWidth
	case
	cellControl
	clientHeight
	clientWidth
	clipControls
	code
	codebase
	column
	columns
	columnVisible
	columnWidth
	comboIndex
	comboList
	contextMenuOptions
	controlBox
	controlChildren
	createRegionFromMask
	currentColumn
	currentLine
	currentPosition
	dataType
	decimals
	default
	defaultLineHeight
	defaultRowHeight
	description
	disabledForeColor
	disableEvents
	disableReason
	displayAsIcon
	displayHotKey
	dragCursor
	dragMode
	drawGrip
	dropDown
	edgeColor
	edgeColumn
	edgeMode
	editMask
	enabled
	endOfLineMode
	expandedHeight
	firstLineIndent
	firstVisibleLine
	fixed3D
	fixedColumns
	fixedRows
	floatingStyle
	focusBackColor
	focusForeColor
	foldFlags
	foldSymbols
	folding
	fontBold
	fontItalic
	fontName
	fontSize
	fontStrikethru
	fontUnderline
	foreColor
	form
	formatOut
	fullName
	gridColor
	gridLines
	hasPictures
	hasPlusMinus
	hasTreeLines
	height
	helpContextId
	helpKeyword
	hintBackColor
	hintForeColor
	hintText
	horizontalSpace
	hyperlink
	hyperlinkColumn
	icon
	ignoreHeight
	ignoreSkin
	ignoreWidth
	indentGuides
	indentWidth
	index
	initialContent
	inputType
	insertMode
	integralHeight
	itemBackColor
	itemData
	itemEnabled
	itemExpanded
	itemForeColor
	itemLevel
	itemObject
	itemPicture
	itemPictureType
	itemSelected
	itemText
	language
	languageId
	largeChange
	left
	leftColumn
	leftIndent
	lineWidth
	listIndex
	listObject
	listWidth
	markerMargin
	mask
	max
	maxButton
	maximumHeight
	maximumWidth
	maxLength
	mdiChild
	mdiClientScrollHorzPos
	mdiClientScrollVertPos
	mdiFrame
	mdiPinned
	mediaData
	mediaName
	min
	minButton
	minimumHeight
	minimumWidth
	modalResult
	modified
	mouseCursor
	mousePointer
	multiSelect
	name
	nameSeparator
	noPrefix
	oleObject
	parameters
	parent
	parentAspect
	parentBottomOffset
	parentRightOffset
	partialTextIndication
	partsDone
	partsInJob
	passwordField
	picture
	pictureClosed
	pictureCount
	pictureDisabled
	pictureDown
	pictureFocus
	pictureFocusDown
	pictureIndex
	pictureLeaf
	pictureMask
	pictureMinus
	pictureOpen
	picturePlus
	pictureRollOver
	pictureRollUnder
	position
	promptCharacter
	readOnly
	relativeHeight
	relativeLeft
	relativeTop
	relativeWidth
	repeat
	rightIndent
	rotation
	row
	rowHeight
	rows
	rowVisible
	scaleForm
	scaleHeight
	scaleLeft
	scaleMode
	scaleTop
	scaleWidth
	scrollBars
	scrollHorizontal
	scrollHorzPos
	scrollVertical
	scrollVertPos
	secureForm
	securityLevelEnabled
	securityLevelVisible
	selected
	selectionStyle
	selectMode
	selBackColor
	selFontBold
	selFontItalic
	selFontName
	selFontSize
	selFontStrikethru
	selFontUnderline
	selFontUnderlineType
	selForeColor
	selLength
	selLink
	selStart
	selText
	selTextColor
	selTextRTF
	sheet
	sheetCaption
	sheets
	sheetVisible
	shortName
	show3D
	showFocus
	showMdiCloseAllButPinnedMenu
	showMdiCloseAllButThisMenu
	showMdiCloseMenu
	showMdiDockMenu
	showMdiFloatMenu
	showMdiPinMenu
	showMenu
	showMode
	showName
	showOpenMenu
	showPlayBar
	showPosition
	showRecord
	showResizeBar
	showTaskBarProgress
	sizeMode
	skinCategoryName
	smallChange
	sortAsc
	sortCased
	sortColumn
	sorted
	sortType
	speed
	stretch
	style
	tabActiveColor
	tabInactiveColor
	tabIndex
	tabKey
	tabsAlignment
	tabsFixedWidth
	tabsHeight
	tabsLines
	tabsPosition
	tabsRaggedRight
	tabsStyle
	tabStop
	tabWidth
	tag
	targetDevice
	text
	textOffset
	textRTF
	textUser
	thinClientUpdateInterval
	timeFormat
	timerPeriod
	top
	topIndex
	topLevelMenuItems
	topRow
	topSheet
	transparent
	transparentColor
	useDotNetVersion
	usePresentationClient
	userInputEnabled
	userObject
	userScript
	useTabs
	value
	verticalSpace
	viewEndOfLine
	viewLineNumbers
	viewWhitespace
	visible
	volume
	wantReturn
	webBrowserAutoRefreshInterval
	webBrowserAutoRefreshURL
	webBrowserDisableBackButton
	webEncodingType
	webFileName
	webInputType
	width
	windowState
	wordWrap
	wrapIndent
	wrapMode
	wrapVisualFlags
	xaml
	zoom

	Window, Form, and Control Methods
	aboutBox
	accessCell
	accessColumn
	accessRow
	accessSheet
	activeChild
	addControl
	addItem
	addItemAt
	addText
	addWebEventMapping
	allowWebPrinting
	alwaysOnTop
	animateWindow
	append
	applySettings
	applyVerb
	beginNotfiyAutomationEvent
	bindKeyToCommand
	bindKeyToNotification
	bindKeyToText
	callMethod
	canBeChildOf
	canControlHaveChildren
	canEject
	canHaveAsChild
	canPaste_
	canPlay
	canRecord
	canSave
	captureMouse
	centreWindow
	changeKeywords
	clear
	clearAllSelected
	clearAllStyles
	clearHTML
	clearUndoBuffer
	clearWebEventMappings
	clientHeight
	clientWidth
	cloneSelf
	close
	closeDropDown
	colorAs6Hex
	configureFor_Jade
	configureFor_Text
	controlCount
	controlNamePrefix
	controls
	convertEndOfLines
	convertFormPosition
	convertIndentWhitespace
	copyDefaultToAllStyles
	copyToClipboard
	cutToClipboard
	create
	createEventNameMap
	createPicture
	createPictureAsType
	createPictureIndirect
	currentMaskColor
	delete
	deleteColumn
	deleteRow
	deleteSheet
	discard
	displayCollection
	dockMdi
	doLinemarker
	doWindowEvents
	dragColumn
	dragListIndex
	dragRow
	dragSheet
	eject
	embedFromClass
	embedFromFile
	emptyUndoBuffer
	enableEvent
	endNotifyAutomationEvent
	ensureCaptionIsVisible
	eventItemName
	find
	findAgain
	findMarkAll
	findObject
	findReplaceDialog
	findString
	findStringCaseSensitive
	findStringExact
	findStringExactCaseSensitive
	firstVisibleLine
	flagControlForSave
	float
	floatMdi
	generateHTML
	generateHTMLStatic
	getCellFromPosition
	getCellSelected
	getCellText
	getCharacterFormat
	getClipBuffer
	getCollection
	getControl
	getControlByName
	getControlWindowId
	getCoordinates
	getDeskTopWorkArea
	getEndPosition
	getFloatingPosition
	getFormLeft
	getFormTop
	getControlByName
	getFormParent
	getGlobalSettings
	getHwnd
	getInterface
	getLanguageName
	getLength
	getLine
	getLineFromCharacterIndex
	getLineHeight
	getLineStartPosition
	getLineText
	getLinemarkLines
	getListIndex
	getListIndexText
	getMdiFrame
	getMode
	getMonitorArea
	getMonitorWorkArea
	getNamedAttribute
	getParagraphFormat
	getPersistentObject
	getPropertyDisplay
	getRedoAndUndoState
	getRegisteredFormKeys
	getRegisteredKeys
	getScrollRange
	getStartPosition
	getSystemColor
	getSystemMetrics
	getTabStops
	getTextAsDate
	getTextAsCurrencyDecimal
	getTextAsCurrencyReal
	getTextAsDecimal
	getTextAsInteger
	getTextAsInteger64
	getTextAsLongDate
	getTextAsReal
	getTextAsShortDate
	getTextAsTime
	getTextExtent
	getTextHeight
	getTextHeightForWidth
	getTextLength
	getTextProtection
	getTextRange
	getToggleKeyStates
	getUserName
	getValue
	getWebEventMappings
	getWindowHandle
	getWordAt
	hasAudio
	hasPicture
	hasPropertyPage
	hasSystemTrayEntry
	hasVideo
	hwnd
	initializeAppSettings
	initializeJadeEditor
	insertColumn
	insertObject
	insertObjectDialog
	insertTable
	is3D
	isCaptionVisible
	isDroppedDown
	isEmpty
	isEventEnabled
	isFloating
	isHyperlinkSet
	isInPainter
	isMdiFloating
	isModal
	isMoveable
	isMySheetVisible
	isObjectOpen
	isPrinterForm
	isSelectable
	isSizeable
	isValid
	itemFullName
	itemHasSubItems
	itemVisible
	lineCount
	lines
	linkFromFile
	listCollection
	listCount
	load
	loadCollectionEntries
	loadControl
	loadFile
	loadFromDB
	loadFromFile
	loadPicture
	loadTextFromFile
	makeAutomationObject
	makePicture
	menuItemCount
	menuItems
	move
	moveCaret
	moveColumn
	moveMdiClient
	moveRow
	newFile
	newIndex
	objectPropertiesDialog
	objectType
	ocxClassName
	openDialog
	pageMargins
	paintIfRequired
	pasteFromClipboard
	paste_
	pause
	pictureHeight
	pictureType
	Supported Picture Image Formats

	pictureWidth
	play
	playFromTo
	playReverse
	popupMenu
	positionCollection
	positionLeft
	positionTop
	print
	processInputFromWeb
	record
	recordReplay
	redo
	refresh
	refreshEntries
	refreshNow
	registerFormKeys
	registerKeys
	registerWindowMsg
	releaseMouse
	removeItem
	removeSystemTrayEntry
	removeWebEventMapping
	replace
	replaceAll
	replyAsBinary
	resetAllHyperlinks
	resetFirstChange
	resetHyperlinkCell
	resort
	restyleText
	resume
	rgb
	save
	saveInFile
	savePicture
	saveProperties
	saveTextToFile
	screenToWindow
	selectedCount
	selectedNext
	selectAll
	sendString
	setApplicationSkin
	setBackDrop
	setCellSelected
	setCellText
	setCharacterFormat
	setClipBuffer
	setCollectionObject
	setCurrentSchema
	setDefaultPainterControlProperties
	setDragAndDropFiles
	setEventMapping
	setEventMappingEx
	setFocus
	setFontProperties
	setFormSkin
	setFormParent
	setHyperlinkCell
	setIndicatorAttributes
	setLinemarkAttributes
	setLinemarkLines
	setNamedAttribute
	setOneColorText
	setParagraphFormat
	setPicture
	setScrollRange
	setSkin
	setStyleAttributes
	setSystemTrayEntry
	setTabStops
	setTaskBarProgress
	setTaskBarState
	setTextFromCurrencyDecimal
	setTextFromCurrencyReal
	setTextFromDate
	setTextFromDecimal
	setTextFromInteger
	setTextFromInteger64
	setTextFromLongDate
	setTextFromReal
	setTextFromShortDate
	setTextFromTime
	setTextProtection
	setTextRangeToStyle
	setValue
	setWordCharactersets
	setXamlEventMethod
	shareDocumentFrom
	sheets
	show
	showDropDown
	showHelp
	showInsertForm
	showModal
	showMySheet
	showPropertyPage
	stepRelative
	startDrawingCapture
	stop
	stopDrawingCapture
	tabNext
	tabPrior
	undo
	unloadForm
	update
	updateAppSettings
	useImage
	usesFiles
	windowToScreen
	writeHTML
	zOrder

	Window, Form, and Control Events
	Windows Events and JADE Events
	activate
	browse
	cellInputReady
	change
	click
	closeup
	contextMenu
	dblClick
	deactivate
	displayEntry
	displayRow
	docked
	dragDrop
	dragOver
	dropDown
	firstChange
	floated
	formMove
	gotFocus
	keyDown
	keyPress
	keyUp
	linkClicked
	load
	lostFocus
	mdiDocked
	mdiFloated
	mouseDown
	mouseEnter
	mouseHover
	mouseLeave
	mouseMove
	mouseUp
	notifyMedia
	notifyMode
	notifyPosition
	openup
	paint
	pictureClick
	pictureDblClick
	protected
	queryColumnMove
	queryDock
	queryRowColChg
	queryRowMove
	querySheetChg
	queryUnload
	resize
	resizeColumn
	resizeRow
	rowColumnChg
	scrolled
	selChanged
	sheetChg
	sysNotify
	eventType
	theObject
	eventTag

	trayIconClicked
	unload
	updated
	userNotify
	eventType
	theObject
	eventTag
	userInfo

	userResize
	validate
	windowCreated

	Graphics Properties and Methods
	Graphics Properties
	autoRedraw
	drawFillColor
	drawFillStyle
	drawFontBold
	drawFontItalic
	drawFontName
	drawFontSize
	drawFontStrikethru
	drawFontUnderline
	drawMode
	drawStyle
	drawTextAlign
	drawTextCharRotation
	drawTextRotation
	drawWidth
	drawWindow

	Graphics Methods
	beginBatchDrawing
	clearGraphics
	drawArc
	drawChord
	drawDeskTopRectangle
	drawDeskTopRectangleEx
	drawEllipse
	drawFilledPolygon
	drawFilledRectangle
	drawFloodFill
	drawGrid
	drawLine
	drawPictureAt
	drawPictureIn
	drawPie
	drawPoint
	drawPolygon
	drawRectangle
	drawRoundRectangle
	drawSize
	drawSolidRectangle
	drawTextAt
	drawTextHeight
	drawTextIn
	drawTextWidth
	drawUndo
	endBatchDrawing
	getPoint

