
Copyright©2021 Jade Software Corporation Limited. All rights reserved.

Encyclopaedia of Classes
Volume 2

 V E R S I O N 2020.0.02

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information
or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations
of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright © 2021 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the JADEReadme.txt file.

EncycloSys2 - 2020.0.02

Contents

Contents iii

Before You Begin xxxiv
Who Should Read this Encyclopaedia xxxiv
What’s Included in this Encyclopaedia xxxiv
Related Documentation xxxiv
Conventions xxxv

Chapter 1 System Classes 36
JadeSkinApplication Class 48

JadeSkinApplication Properties 48
myFormSkins 48
myControlSkins 48

JadeSkinApplication Method 49
updateSkinTimeStamp 49

JadeSkinArea Class 50
JadeSkinArea Class Constants 52
JadeSkinArea Properties 52

backColor 52
imgBorderBottomLeft 53
imgBorderBottomRight 53
imgBorderBottomStrip 53
imgBorderLeftStrip 54
imgBorderRightStrip 54
imgBorderTopLeft 54
imgBorderTopRight 54
imgBorderTopStrip 54
imgInner 54
innerIsBrush 55

JadeSkinCategory Class 56
JadeSkinControl Class and Subclasses 57

JadeSkinControl Class Constants 57
JadeSkinControl Properties 58

applyCondition 58
borderStyle 59
focusBackColor 59
focusForeColor 61
fontBold 62
fontItalic 63
fontName 63
fontSize 64
fontStrikethru 64
fontUnderline 65
foreColor 65
foreColorDisabled 65

JadeSkinBaseControl Class 66
JadeSkinBrowseButtons Class 66

JadeSkinBrowseButtons Properties 66
myFirstButton 66
myLastButton 66
myNextButton 67
myPriorButton 67

JadeSkinButton Class 67
JadeSkinButton Properties 67

createRegionFromMask 68
myButtonDisabled 68
myButtonDown 68
myButtonFocus 68

EncycloSys2 - 2020.0.02

myButtonFocusDown 68
myButtonRollOver 69
myButtonRollUnder 69
myButtonUp 69

JadeSkinCheckBox Class 69
JadeSkinCheckBox Properties 70

myFalseImage 70
myTrueImage 70

JadeSkinComboBox Class 70
JadeSkinComboBox Properties 71

buttonRightOffset 71
imgComboButtonDownRollOver 71
myComboButton 72
myListBoxSkin 72
mySimpleComboTextBoxSkin 72

JadeSkinFolder Class 72
JadeSkinFolder Properties 72

myTabsButton 73
myTabScrollLeftButton 73
myTabScrollRightButton 74
tabActiveColor 74
tabHeight 74
tabInactiveColor 75
tabScrollButtonBackColor 75

JadeSkinFrame Class 75
JadeSkinGroupBox Class 76

JadeSkinGroupBox Class Constants 76
JadeSkinGroupBox Properties 77

captionPosition 77
captionPositionLeftOffset 77
captionPositionTopOffset 78
myLabelSkin 78

JadeSkinHScroll Class 78
JadeSkinHScroll Properties 79

myLeftButton 79
myRightButton 79

JadeSkinJadeDockBar Class 79
JadeSkinJadeDockBase Class 79

JadeSkinJadeDockBase Properties 80
myHorizontalGripBar 80
myHorizontalResizeBar 80
myVerticalGripBar 80
myVerticalResizeBar 81

JadeSkinJadeDockContainer Class 81
JadeSkinJadeEditMask Class 81
JadeSkinJadeMask Class 81

JadeSkinJadeMask Property 81
myButtonSkin 82

JadeSkinJadeRichText Class 82
JadeSkinLabel Class 82
JadeSkinListBox Class 82

JadeSkinListBox Properties 82
alternatingRowBackColor 83
alternatingRowBackColorCount 84
imgPictureClosed 84
imgPictureLeaf 84
imgPictureMinus 85
imgPictureOpen 85
imgPicturePlus 85
selectionColor 85
selectionColorText 86

Encyclopaedia of Classes
(Volume 2)

Contents iv

EncycloSys2 - 2020.0.02

JadeSkinOleControl Class 86
JadeSkinOptionButton Class 86

JadeSkinOptionButton Properties 86
myFalseImage 87
myTrueImage 87

JadeSkinPicture Class 87
JadeSkinProgressBar Class 87

JadeSkinProgressBar Property 87
myProgressImage 88

JadeSkinScrollBar Class 88
JadeSkinScrollBar Properties 88

imgHighLightBrush 88
myThumbTrack 89
myThumbTrackDisabled 89
myThumbTrackDown 89
myThumbTrackRollOver 89

JadeSkinSheet Class 89
JadeSkinSheet Property 90

myTabButton 90
JadeSkinStatusLine Class 90
JadeSkinTable Class 90

JadeSkinTable Properties 90
alternatingRowBackColor 91
alternatingRowBackColorCount 92
fixed3D 92
fixedColumnsBackColor 93
fixedColumnsForeColor 93
fixedRowColorHasPrecedence 93
fixedRowsBackColor 94
fixedRowsForeColor 94
myCheckBoxSkin 94
selectionColor 95
selectionColorText 95
tabActiveColor 95
tabInactiveColor 95

JadeSkinTextBox Class 96
JadeSkinTextBox Properties 96

hintBackColor 96
hintForeColor 96

JadeSkinVScroll Class 97
JadeSkinVScroll Properties 97

myBottomButton 97
myTopButton 98

JadeSkinEntity Class 99
JadeSkinEntity Class Constant 99
JadeSkinEntity Properties 99

description 99
myOwners 100
mySkinRoot 100
name 100

JadeSkinForm Class 101
JadeSkinForm Properties 102

captionActiveForeColor 104
captionFontBold 104
captionFontItalic 105
captionFontName 105
captionFontSize 106
captionInactiveForeColor 106
captionLeft 106
captionTop 106
centerCaption 107

Encyclopaedia of Classes
(Volume 2)

Contents v

EncycloSys2 - 2020.0.02

drawMenuSelectionFlat 107
imgInactiveBorderBottomLeft 107
imgInactiveBorderBottomRight 107
imgInactiveBorderBottomStrip 108
imgInactiveBorderLeftStrip 108
imgInactiveBorderRightStrip 108
imgInactiveBorderTopLeft 108
imgInactiveBorderTopRight 109
imgInactiveBorderTopStrip 109
imgMenuLeft 109
imgMenuRight 109
imgMenuStrip 109
menuBackColor 110
menuBackColorSelected 110
menuFontBold 110
menuFontItalic 110
menuFontName 110
menuFontSize 111
menuForeColor 111
menuForeColorDisabled 111
menuForeColorSelected 111
menuLeftPosition 111
menuTopPosition 112
myChildMinimizeBtn 112
myChildRestoreBtn 112
myChildTerminateBtn 112
myMaximizeBtn 113
myMaximizedBtn 113
myMenuSkin 113
myMinimizeBtn 113
myTerminateBtn 114
showMenuLineAlways 114
transparentColorForButtons 114
useMenuLineSkinForMenus 114

JadeSkinMenu Class 115
JadeSkinMenu Properties 115

backColorSelected 116
borderStyle 116
drawMenuSelectionFlat 117
fontBold 117
fontItalic 117
fontName 118
fontSize 118
foreColor 118
foreColorDisabled 118
foreColorSelected 119
imgCheckMark 119
imgRightArrow 119
imgSeparator 119
lineHeight 120
pixelsAfterCheckMark 120
pixelsAfterPicture 120
pixelsBeforeAccelerator 120
pixelsBeforeCheckMark 121
pixelsBeforeRightArrow 121

JadeSkinRoot Class 122
JadeSkinRoot Properties 122

allApplicationSkins 122
allControlSkins 122
allFormSkins 123
allMenuSkins 123

Encyclopaedia of Classes
(Volume 2)

Contents vi

EncycloSys2 - 2020.0.02

allSimpleButtonSkins 123
allSkinCategories 123
allSkinEntities 123
allWindowStateImages 124

JadeSkinSimpleButton Class 125
JadeSkinSimpleButton Properties 125

imgDisabled 125
imgDown 126
imgRollOver 126
imgUp 126

JadeSkinWindow Class 127
JadeSkinWindow Properties 127

myHorizontalScrollBarSkin 127
myImageMask 127
mySkinCategory 128
myVerticalScrollBarSkin 128

JadeSkinWindowStateImage Class 129
JadeSkinWindowStateImage Properties 129

foreColor 129
isImageMask 130

JadeSOAPException Class 131
JadeSSLContext Class 132

JadeSSLContext Class Constants 133
JadeSSLContext Properties 133

caFile 134
caPath 134
cipherList 134
methodType 135
verifyDepth 135
verifyRemoteCertificate 135
x509 135

JadeSSLContext Methods 136
getActiveCipher 136
getPeerCertificate 136

JadeSystemAnnotation Class 137
JadeTableCell Class 138

JadeTableCell Properties 138
column 139
comboIndex 139
hyperLink 140
mergeCells 140
picture 142
row 142
sheet 143
text 143

JadeTableCell Methods 143
delete 143
getCellWidth 144
positionLeft 144
positionTop 144
setPictureDescription 145

JadeTableColumn Class 146
JadeTableColumn Properties 146

column 147
maxColumnWidth 147
sheet 148
sortAsc 148
sortCased 148
sortOrder 148
sortType 149
visible 149

Encyclopaedia of Classes
(Volume 2)

Contents vii

EncycloSys2 - 2020.0.02

width 149
widthPercent 150

JadeTableColumn Methods 150
delete 150
findObject 151
findString 151
restoreAutoSize 151

JadeTableElement Class 152
JadeTableElement Properties 153

alignment 154
backColor 154
cellControl 154
comboList 155
decimals 155
editMask 155
enabled 155
fontBold 156
fontItalic 156
fontName 156
fontSize 156
fontStrikethru 157
fontUnderline 157
foreColor 157
gridBottom 157
gridRight 158
inputType 159
itemObject 159
marginBottom 159
marginLeft 160
marginRight 160
marginTop 161
maxLength 161
partialTextIndication 161
selected 162
wordWrap 162

JadeTableRow Class 163
JadeTableRow Properties 163

height 163
row 164
sheet 164
visible 164

JadeTableRow Methods 165
delete 165
findObject 165
findString 165
restoreAutoSize 166

JadeTableSheet Class 167
JadeTableSheet Properties 167

alternatingRowBackColor 168
alternatingRowBackColorCount 169
caption 170
column 170
columns 170
currentRowImage 171
displaySorting 171
extendedColumn 172
fixed3D 173
fixedColumns 173
fixedRows 173
gridColor 173
gridLines 174

Encyclopaedia of Classes
(Volume 2)

Contents viii

EncycloSys2 - 2020.0.02

leftColumn 174
myTable 174
pixelHorzScrollIncrement 174
pixelVertScrollIncrement 175
row 175
rows 176
scrollBars 176
scrollHorzPos 176
scrollMode 177
scrollVertPos 177
sheet 178
showCurrentRowImage 178
showPartialTextBubbleHelp 179
tabInitialPosition 179
tabOffEnds 180
topRow 180
visible 180
widthPercentStyle 181

JadeTableSheet Methods 181
accessCell 182
accessColumn 183
accessRow 183
addItem 183
addItemAt 184
clear 184
delete 184
findColumnObject 184
findObject 185
findRowObject 185
findString 186
getCollection 186
getCellFromPosition 186
insertColumn 187
moveColumn 187
moveRow 187
positionCollection 188
refreshEntries 188
removeItem 188
resort 188
restoreAutoSize 189
selectedCount 189
selectedNext 189
setCollectionObject 189

JadeTcpIpProxy Class 191
Proxy Communication Code Examples 191
Considerations when Implementing JadeTcpIpProxy Class Features 193
JadeTcpIpProxy Class Constants 194
JadeTcpIpProxy Properties 194

browserType 194
domain 195
host 195
password 195
port 196
proxyType 196
userName 197

JadeTcpIpProxy Method 198
connect 198

JadeTestCase Class 199
JadeTestCase Methods 199

assert 200
assertEquals 200

Encyclopaedia of Classes
(Volume 2)

Contents ix

EncycloSys2 - 2020.0.02

assertEqualsMsg 200
assertFalse 201
assertFalseMsg 201
assertNotNull 202
assertNotNullMsg 202
assertNull 202
assertNullMsg 203
assertTrue 203
assertTrueMsg 204
expectedException 204
info 205

JadeTestListenerIF Interface 206
JadeTestListenerIF Interface Callback Method Signatures 207

finish 207
message 208
methodSuccess 208
start 208
testFailure 209
testSkipped 209
testSuccess 209

JadeTestRunner Class 211
JadeTestRunner Class Methods 211

runTests 211
setDebugOnAssert 212
setDebugOnException 212
setDebugOnUnexpectedException 212
setLogCallStack 212
setTestListener 212

JadeTimeZone Class 214
JadeTimeZone Properties 214

currentDaylightBias 215
currentUtcBias 215
daylightSaving 215
daylightTimeName 216
displayName 216
historicalTimeZones 216
ianaName 216
standardTimeName 217

JadeTimeZone Methods 217
convertTimeByTimeZone 218
convertTimeFromUtc 218
convertTimeToUtc 219
createTimeZoneByLocationWindows 219
createTimeZoneByName 221

Mapping IANA Database and Windows Registry Time Zones 222
createTimeZoneByNameWindows 235
getDaylightBias 237
getDaylightSavingName 237
getDaylightTransition 237
getStandardTransition 237
getWindowsTimeZoneNameByLocation 237
getUtcBias 238
isDaylightSaving 238
retrieveHistoricalTimeZone 239

JadeTimeZoneByYearDict Class 240
JadeTransactionTrace Class 241

JadeTransactionTrace Class Constants 241
JadeTransactionTrace Properties 242

myProcess 242
startTime 242
status 242

Encyclopaedia of Classes
(Volume 2)

Contents x

EncycloSys2 - 2020.0.02

stopTime 243
tranId 243

JadeTransactionTrace Methods 243
clear 243
getEntry 243
getEntryCount 244

JadeUserCollClass Class 245
JadeUserCollClass Methods 245

addExternalKey 245
addMemberKey 246
clearKeys 247
endKeys 247
setLength 247
setMembership 247

Using JadeUserCollClass Collections 248
JadeWebService Class 249

JadeWebService Class Constants 249
JadeWebService Methods 249

isNilItem 250
setAnyPropType 250
setError 251

JadeWebServiceConsumer Class 252
JadeWebServiceConsumer Class Constants 252
JadeWebServiceConsumer Properties 252

characterConversionException 253
handleCharConversionException 253
logStatistics 254
password 254
proxyHostName 254
proxyPassword 254
proxyUsername 254
soapHeaders 255
soapRequest 255
soapResponse 255
timeout 255
unknownHeaders 255
userName 256
workerApp 256

JadeWebServiceConsumer Methods 256
addHttpHeader 257
getEndpointURL 257
getHttpHeader 258
getHttpHeaderClient 258
getHttpHeaderServer 258
getLastStatistics 259
getTimeouts 261
invoke 261
invokeAsync 262
invokeAsyncWithVerb 263
invokeWithVerb 264
processReply 265
reset 265
sendRequest 265
setEndpointURL 265
setTimeouts 266

JadeWebServiceProvider Class 267
JadeWebServiceProvider Properties 267

deleteTransientReturnType 267
incomingMessage 267
rawXML 267
unknownHeaders 268

Encyclopaedia of Classes
(Volume 2)

Contents xi

EncycloSys2 - 2020.0.02

JadeWebServiceProvider Methods 268
createVirtualDirectoryFile 268
deleteVirtualDirectoryFile 269
getLastStatistics 269
getServerVariable 271
initialize 273
isVDFilePresent 273
processMessage 273
processRequest 273
processRequestPostHeaders 274
reply 274

JadeWebServiceSoapHeader Class 275
JadeWebServiceSoapHeader Properties 275

actor 275
didUnderstand 275
mustUnderstand 276

JadeWebServiceUnknownHeader Class 277
JadeWebServiceUnknownHeader Properties 277

headerXML 277
webService 277

JadeWebSocket Class 278
JadeWebSocket Property 278

id 278
JadeWebSocket Methods 278

onClose 279
onMsg 279
onOpen 279
send 279
sendText 280

JadeWebSocketServer Class 281
JadeWebSocketServer Methods 281

getWebSocket 281
run 281
stop 282

JadeX509Certificate Class 283
JadeX509Certificate Properties 283

endDate 283
issuer 283
purpose 283
startDate 284
subject 284

JadeX509Certificate Methods 284
readCertificateDataFromFile 284
readPrivateKeyDataFromFile 284

JadeXMLAttribute Class 286
JadeXMLAttribute Properties 286

element 286
localName 286
name 286
namespaceURI 286
value 287

JadeXMLAttribute Method 287
namespacePrefix 287

JadeXMLCDATA Class 288
JadeXMLCharacterData Class 289

JadeXMLCharacterData Property 289
data 289

JadeXMLComment Class 290
JadeXMLDocument Class 291

JadeXMLDocument Properties 291
docType 291

Encyclopaedia of Classes
(Volume 2)

Contents xii

EncycloSys2 - 2020.0.02

endOfLine 292
indentString 292
keepWhitespace 292
outputDeclaration 292
rootElement 292

JadeXMLDocument Methods 292
addComment 293
addCommentObject 293
addDocumentType 294
addDocumentTypeObject 294
addElement 294
addElementNS 295
addElementObject 295
addElementObjectNS 295
addProcessingInstruction 295
addProcessingInstructionObject 295
findElementByNameNS 295
findElementByTagName 296
findElementsByNameNS 296
findElementsByTagName 296
getElementByTagName 297
getElementByTagNameNS 297
getElementsByTagName 297
getElementsByTagNameNS 297
parseFile 298
parseString 298
writeToFile 298

JadeXMLDocumentParser Class 299
JadeXMLDocumentParser Methods 299

comment 299
parseDocumentFile 299
parseDocumentString 300
processingInstruction 300
setClassMapping 300
startCDATA 300

JadeXMLDocumentType Class 301
JadeXMLDocumentType Properties 301

internalSubset 301
name 301
publicId 301
systemId 301

JadeXMLElement Class 302
JadeXMLElement Properties 302

attributes 302
localName 302
namespaceURI 303
tagName 303
textData 303

JadeXMLElement Methods 303
addAttribute 304
addAttributeNS 304
addAttributeObject 305
addAttributeObjectNS 305
addCDATA 305
addCDATAObject 305
addComment 305
addCommentObject 305
addElement 306
addElementNS 306
addElementObject 306
addElementObjectNS 306

Encyclopaedia of Classes
(Volume 2)

Contents xiii

EncycloSys2 - 2020.0.02

addProcessingInstruction 306
addProcessingInstructionObject 306
addText 307
addTextObject 307
findAllElementsByNameNS 307
findAllElementsByTagName 307
getAllElementsByTagName 307
getAllElementsByTagNameNS 308
getAttributeByName 308
getAttributeByNameNS 308
getElementByTagName 308
getElementByTagNameNS 308
getElementsByTagName 309
getElementsByTagNameNS 309
namespacePrefix 309
parentElement 309
setText 309
text 309

JadeXMLException Class 310
JadeXMLException Class Constants 310
JadeXMLException Properties 311

columnNumber 311
fileName 311
lineNumber 311

JadeXMLNode Class 312
JadeXMLNode Properties 312

childNodes 312
document 312
parentNode 312

JadeXMLNode Methods 313
copyAfter 313
copyAsChildOf 313
copyBefore 313
descendsFrom 313
moveAfter 314
moveAsChildOf 314
moveBefore 314
remove 314
writeToString 314

JadeXMLParser Class 316
JadeXMLParser Methods 316

characters 317
columnNumber 317
comment 317
endCDATA 317
endDTD 318
endElement 318
fileName 318
getAttribute 318
getAttributeValueByName 319
getAttributeValueByNameNS 319
lineNumber 320
parseFile 320
parseString 320
processingInstruction 321
startCDATA 321
startDTD 321
startElement 322

JadeXMLProcessingInstruction Class 323
JadeXMLProcessingInstruction Properties 323

data 323

Encyclopaedia of Classes
(Volume 2)

Contents xiv

EncycloSys2 - 2020.0.02

target 323
JadeXMLText Class 324
List Class 325

List Methods 325
clear 325
copy 325
purge 326

Locale Class 327
Locale Class Constants 327
Locale Properties 327

cloneOf 327
clones 328
forms 328
languageId 328
schema 328
translatableStrings 328

Locale Methods 328
getAllTranslatableStrings 329
getForms 329
getStringValue 329
getTranslatableStringLocal 329
getTranslatableStrings 329
getTranslatableStringsByNum 329
hasClones 330
isClone 330
makeLocaleName 330

LocaleFormat Class 331
LocaleFormat Property 331

schema 331
LocaleFullInfo Class 332

LocaleFullInfo Class Constants 332
LocaleFullInfo Properties 332

currencyInfo 333
dateInfo 333
defaultCodePage 333
defaultCountryCode 333
defaultLanguageId 333
listSeparator 334
measurementSystem 334
nativeDigits 334
numericInfo 334
timeInfo 335

LocaleNameInfo Class 336
LocaleNameInfo Properties 336

abbreviatedCountryName 336
abbreviatedLangName 337
countryCode 337
englishCountryName 337
englishLangName 337
languageId 337
localeId 337
localizedCountryName 338
localizedLangName 338
nativeCountryName 338
nativeLangName 338

Lock Class 339
Lock Class Constants 339
Lock Properties 339

duration 340
elapsedTime 340
kind 340

Encyclopaedia of Classes
(Volume 2)

Contents xv

EncycloSys2 - 2020.0.02

lockedBy 341
requestedBy 341
requestTime 342
type 342
waitTime 342

Lock Method 343
target 343

LockArray Class 344
LockContentionInfo Class 345

LockContentionInfo Properties 345
maxWaitTime 345
totalContentions 345
totalWaitTime 345

LockContentionInfo Method 346
target 346

Example of Displaying Lock Contention Information 346
LockException Class 348

LockException Properties 348
lockDuration 348
lockTimeout 349
lockType 350
retryCount 350
targetLockedBy 350

LockException Methods 350
lockTarget 351
retryLock 351
showDialog 352

MemberKeyDictionary Class 353
MemberKeyDictionary Methods 353

add 354
includes 354
indexNear 355
indexNear64 355
purge 355
remove 355
tryAdd 356
tryAddDeferred 356
tryRemove 356
tryRemoveDeferred 356
tryRemoveKeyEntry 357

MenuItem Class 358
Adding User-defined Event Methods to a Menu Item 359
MenuItem Class Constants 360
MenuItem Properties 360

allChildren 361
caption 361
checked 362
children 362
description 362
disableReason 363
enabled 363
form 363
helpContextId 363
helpKeyword 364
index 365
name 365
picture 365
securityLevelEnabled 366
securityLevelVisible 366
userObject 366
visible 366

Encyclopaedia of Classes
(Volume 2)

Contents xvi

EncycloSys2 - 2020.0.02

webFileName 367
MenuItem Methods 367

getLevel 367
getMenuItem 368
loadMenu 368
loadSubMenu 368
setEventMapping 369
setEventMappingEx 370
setShortCutKey 371

MenuItem Events 371
click 371
select 372

MergeIterator Class 373
MergeIterator Property 374

ignoreDuplicates 374
MergeIterator Methods 374

addCollection 375
back 375
current 376
getCollectionAt 376
getCollectionCount 376
getCurrentCollection 376
getCurrentKey 376
getCurrentKeys 376
isValid 377
next 377
removeCollection 378
reset 378
startAtObject 378
startKeyGeq 378
startKeyGtr 379
startKeyLeq 379
startKeyLss 379

MethodCallDesc Class 380
MethodCallDesc Properties 380

invocationMode 380
method 381
position 381

MethodCallDesc Methods 381
getName 381
getReceiver 381
logSelf 382

MultiMediaType Class 383
MultiMediaType Property 383

usePresentationFileSystem 383
NamedPipe Class 384

NamedPipe Property 384
serverName 385

NamedPipe Methods 385
close 385
closeAsynch 386
getMaxMessageSize 386
listen 386
listenAsynch 387
open 387
openAsynch 388
readBinary 388
readBinaryAsynch 388
writeBinary 389
writeBinaryAsynch 389

Node Class 391

Encyclopaedia of Classes
(Volume 2)

Contents xvii

EncycloSys2 - 2020.0.02

Node Class Constants 391
Node Properties 392

accessPatterns 392
name 393
osID 393
processes 393
system 393
userExitCode 393

Node Methods 394
beginIndividualRequestsLogging 397
beginSample 398
clearMethodCache 399
createExternalProcess 399
downloadCount 401
endIndividualRequestsLogging 401
endSample 401
getAppServerGroupName 402
getCacheSizes 402
getCacheSizes64 402
getCharacterSize 402
getCommandLine 403
getComputerName 403
getDefaultLCID 403
getEnvironmentVariable 404
getExecuteFlagValue 404
getIniFileName 404
getJadeInstallDirectory 405
getJadeHomeDirectory 405
getJadeWorkDirectory 405
getLCIDFromCharacterSet 405
getLineDelimiter 406
getLocks 406
getMutexCounts 407
getNotes 408
getObjectCaches 408
getOSDetails 410
getOSPlatform 412
getProfileString 413
getProgramDataDirectory 414
getQueuedLocks 415
getRequestStats 416
getRpcServerStatistics 417
getTempPath 418
getUserDataDirectory 419
isApplicationServer 419
isCacheCoherencyEnabled 419
isReadOnlySchema 420
isReadOnlySystemSchema 420
isServerNode 420
isService 420
logObjectCaches 420
logRequestStatistics 421
logUserCommand 422
networkAddress 423
nodeRole 423
nodeType 423
osProcessId 424
processDump 424
setCacheSizes 424
setCacheSizes64 425
setExecuteFlagValue 425

Encyclopaedia of Classes
(Volume 2)

Contents xviii

EncycloSys2 - 2020.0.02

setProfileString 426
wbemListClasses 427
wbemListInstanceNames 428
wbemQueryQualifiers 429
wbemRetrieveData 431

NormalException Class 435
Notification Class 437

Notification Properties 437
elapsedTime 437
eventType 437
featureNumber 438
isInterface 438
requestedBy 438
requestTime 438
responseType 438
serialNumber 439
typeNumber 439
userTag 439

Notification Methods 439
subscriber 439
target 440

NotificationArray Class 441
NotificationException Class 442

NotificationException Method 442
notificationTarget 442

NumberFormat Class 443
NumberFormat Class Constants 443
NumberFormat Properties 443

decimalPlaces 444
decimalSeparator 444
groupings 444
negativeFormat 444
negativeSign 445
positiveSign 445
showLeadingZeros 445
thousandSeparator 445

NumberFormat Method 445
defineNumberFormat 445

Object Class 447
Object Methods 447

autoPartitionIndex 451
beginClassNotification 451

theClass 453
transients 453
eventType 453
responseType 453
eventTag 454

beginClassNotificationForIF 454
theInterface 454

beginClassesNotification 455
theClass 456
includeSubclasses 456
transients 457
eventType 457
responseType 457
eventTag 457

beginClassesNotificationForIF 458
theInterface 459

beginNotification 459
theObj 460
eventType 460

Encyclopaedia of Classes
(Volume 2)

Contents xix

EncycloSys2 - 2020.0.02

responseType 460
eventTag 461
Example of Beginning Notifications 461

beginNotificationForIF 462
theInterface 463

beginTimer 463
beginTimerForIF 464
causeEvent 465
changeObjectVolatility 466
class 467
cloneSelf 467
cloneSelfAs 467
copySelf 467
copySelfAs 468
creationTime 468
creationTimeUTC 468
deletePropertyValue 468
display 468
edition 469
endClassNotification 469

theClass 469
transients 469
eventType 470

endClassNotificationForIF 470
theInterface 470

endClassesNotification 471
theClass 471
includeSubclasses 471
transients 471
eventType 472

endClassesNotificationForIF 472
theInterface 473

endNotification 473
theObj 473
eventType 473

endNotificationForIF 474
theInterface 474

endNotificationForSubscriber 474
endTimer 475
endTimerForIF 475
exclusiveLock 475
getClassForObject 476
getClassNumberForObject 476
getInstanceIdForObject 476
getInstanceIdForObject64 476
getLockCallStack 476
getLockStatus 477
getModifiedBy 477
getName 477
getObjectStringForObject 477
getObjectVolatility 478
getOidString 479
getOidStringForObject 479
getOwnerForObject 480
getPropertyValue 480
getTimerStatus 480
getTimerStatusForIF 481
getUpdateTranID 481
hasMembers 481
inspect 482
inspectModal 482

Encyclopaedia of Classes
(Volume 2)

Contents xx

EncycloSys2 - 2020.0.02

invokeIOMethod 482
invokeMethod 483
isImportedObject 485
isKindOf 485
isLockedByMe 485
isObjectFrozen 485
isObjectNonSharedTransient 485
isObjectPersistent 486
isObjectSharedTransient 486
isObjectStable 486
isObjectTransient 486
isObjectVolatile 486
isSharedTransient 486
isSystemObject 486
isTransient 487
jadeReportWriterCheck 487
jadeReportWriterDisplay 487
latestEdition 487
lock 488
makeObjectFrozen 489
makeObjectStable 489
makeObjectVolatile 489
moveToPartition 490
reserveLock 490
respondsTo 490
resynch 490
resynchObject 491
sdeCauseEvent 491
sdsCauseEvent 493
sendMsg 494
sendMsgWithIOParams 494
sendMsgWithParams 495
sendTypeMsg 495
sendTypeMsgWithIOParams 495
sendTypeMsgWithParams 496
setPartitionID 496
setPartitionIndex 497
setPropertyValue 497
sharedLock 497
sysNotification 498

eventType 498
theObject 498
eventTag 499

timerEvent 499
tryGetPropertyValue 499
tryLock 499
unlock 501
updateLock 501
updateObjectEdition 501
userNotification 501

eventType 502
theObject 502
eventTag 502
userInfo 502

version 502
ObjectArray Class 503

ObjectArray Method 504
addAll 504

ObjectByObjectDict Class 505
ObjectLongNameDict Class 506
ObjMethodCallDesc Class 507

Encyclopaedia of Classes
(Volume 2)

Contents xxi

EncycloSys2 - 2020.0.02

ObjMethodCallDesc Property 507
interfaceMethod 507

ObjMethodCallDesc Method 507
getReceiver 507

ObjectSet Class 508
ODBCException Class 509

ODBCException Properties 509
nativeError 509
state 509

ODBCException Method 509
showDialog 510

OleObject Class 511
OleObject Properties 511

compressed 511
fullName 511
oleData 512
shortName 512

OleObject Methods 512
copy 512
getData 513
isServerRegistered 513
setData 513

PointArray Class 514
PrimMethodCallDesc Class 515

PrimMethodCallDesc Property 515
primNo 515

PrimMethodCallDesc Method 515
getReceiver 515

PrimType Class 516
PrimType Method 516

findProperty 516
Printer Class 517

Defining Your JADE Report Layouts 518
Layering Print Output 519

Printer Class Constants 520
Printer Properties 521

autoPaging 522
bottomOfPage 522
collate 522
copies 522
documentType 523
drawFillColor 525
drawFillStyle 526
drawFontBold 526
drawFontItalic 527
drawFontName 527
drawFontSize 527
drawFontStrikethru 527
drawFontUnderline 528
drawStyle 528
drawTextAlign 528
drawTextCharRotation 529
drawTextRotation 529
drawWidth 530
duplex 530
footerFrame 530
headerFrame 531
leftMargin 531
orientation 532
pageBorderWidth 532
pageNumber 532

Encyclopaedia of Classes
(Volume 2)

Contents xxii

EncycloSys2 - 2020.0.02

paperSource 533
printPreview 533
printPreviewAllowPrint 534
printPreviewAllowSelect 534
printPreviewReduce 534
retainCMDValues 535
rightMargin 535
suppressDialog 535
title 536
topOfPage 536

Printer Methods 536
abort 538
centreFrame 538
close 539
drawArc 539
drawChord 540
drawEllipse 541
drawFilledRectangle 541
drawGrid 542
drawLine 543
drawPie 544
drawRectangle 544
drawRoundRectangle 545
drawSolidRectangle 546
drawTextAt 546
drawTextIn 547
drawTextSize 548
drawTextSizeIn 549
frameFits 549
getAllPaperSources 550
getAllPrinterPaperSources 550
getAllPrinters 551
getDefaultDocumentType 551
getDefaultPaperSource 552
getFooter 552
getHeader 552
getPrintedStatus 553
getPrinterName 553
getPrintPosition 553
getReport 553
isPrinterOpen 554
newPage 554
pageHeight 555
pageWidth 555
print 555
printActive 557
printPage 558
printReport 558
printUnformatted 558
setCustomPaperSize 559
setFooter 560
setHeader 560
setMargins 561
setPrinter 562
setPrintFileName 563
setPrintPosition 564
setReport 564
useCustomPrinterSettings 565

Using the Common Print Setup Dialog 565
Using the Print Progress Dialog 566
Examples of Printer Methods 566

Encyclopaedia of Classes
(Volume 2)

Contents xxiii

EncycloSys2 - 2020.0.02

Free-Format Printing 567
Previewing Print Output 569

Using the Select Pages To Print Dialog 571
Searching Previewed Output 571

Portable Printing 572
Process Class 574

Process Class Constants 574
Process Properties 574

adminInfo 575
node 575
number 575
persistentApp 575
schema 576
signOnTime 576
signOnUserCode 576
status 576
type 577
userCode 577
userExitCode 578
userInfo 578

Process Methods 579
addLockCallStackFilter 585
adjustObjectCachePriority 585
allowTransientToPersistentInvs 586
allowTransientToSharedTranInvs 586
allTransientInstances 586
analyzeTransientFileUsage 587
appServerPort 587
beginMethodProfiling 587
changeUserCode 588
classAccessFrequenciesStatus 588
clearLockCallStackFilter 589
compactTransientFile 589
countQueuedNotifications 589
createTransientMethod 589
currentStack 590
debug 591
deleteTransientMethod 591
disableAllTransTraceCallbacks 591
enableClassAccessFrequencies 591
enableTransTraceCallback 592
endMethodProfiling 592
executeIOScript 593
executeScript 594
executeTransientIOMethod 596
executeTransientMethod 596
extractRequestStatistics 597
extractWebStatistics 599
finalizePackages 601
getAllApps 601
getBufferStatistics 601
getCallStackInfo 603
getCommandLine 603
getComputerName 604
getDateTimeDelta 604
getExceptionHandlerStack 604
getErrorText 605
getIniFileName 605
getJadeInstallDirectory 605
getJadeHomeDirectory 606
getJadeWorkDirectory 606

Encyclopaedia of Classes
(Volume 2)

Contents xxiv

EncycloSys2 - 2020.0.02

getLastExtFunctionCallError 606
getLockCallStackFilter 606
getMethodCacheLimit 606
getMethodCacheStatistics 607
getMethodProfileInfo 608
getOSDetails 610
getOSPlatform 612
getPersistentDeadlockPriority 613
getProcessApp 613
getProfileString 614
getProgramDataDirectory 615
getRequestStatistics 615
getRpcServerStatistics 616
getSaveLockCallStack 617
getSignOnUsage 617
getStringPoolLimit 617
getTempPath 618
getTimers 618
getTrackedMethod 619
getTrackedMethodReceiver 619
getTrackedMethodReturnValue 619
getTrackedMethodStatus 619
getTransactionId 620
getTransactionId64 620
getTransactionTraceCallbacks 620
getTransactionTraceObject 621
getTransientDeadlockPriority 621
getTransientFileLength 621
getTransientFileName 621
getUserDataDirectory 622
initializePackages 622
isCommitting 622
isInExceptionState 623
isInImportedContext 623
isInLoadState 623
isInLockState 623
isInTransactionState 624
isInTransientTransactionState 624
isRunningScript 624
isUserDataPump 624
isUsingThinClient 625
iteratorsExcludeOfflineObjects 625
networkAddress 625
overrideDeferredInverseMaintenance 625
profileMethod 626
profiler 626
prohibitBeginTransaction 627
prohibitPersistentUpdates 627
removeMethodProfileInfo 628
resumeTimers 628
rpsSuppressTransactionDeletes 628
sendCallStackInfo 628
sendMethodCacheStatistics 629
sendRequestStatistics 630
sendTransientFileAnalysis 631
sendTransientFileInfo 632
sendWebStatistics 633
setDateTimeDelta 634
setDefaultLockTimeout 634
setMethodCacheLimit 635
setObjectCachePriority 635

Encyclopaedia of Classes
(Volume 2)

Contents xxv

EncycloSys2 - 2020.0.02

setPersistentDeadlockPriority 636
setProfileString 636
setSaveLockCallStack 637
setStringPoolLimit 638
setTransientDeadlockPriority 638
sleep 638
startMethodTracking 639
startTransactionTrace 640
stopMethodTracking 640
stopTransactionTrace 640
suspendTimers 640
transactionTraceStarted 641
transientPersistentInvsEnabled 641
transientSharedTranInvsEnabled 641
truncateOnDecimalOverflow 641
useDeferredInverseMaintenance 642
useUpdateLocks 642
waitForMethods 643

ProcessDict Class 644
ProcessStackArray Class 645
RealArray Class 646
Rectangle Class 647

Rectangle Properties 647
bottom 647
left 647
right 647
top 647

Rectangle Methods 648
copy 648
display 648
isEmpty 648
set 648

RelationalView Class 649
RelationalView Class Constants 649
RelationalView Properties 650

creator 650
name 650
rpsDatabaseName 651
rpsDatabaseType 651
rpsDefaultConnectionString 651
rpsDefaultPassword 651
rpsDefaultUserName 651
rpsExceptionCreate 652
rpsExceptionDelete 652
rpsExceptionUpdate 652
rpsLoggingOptions 652
rpsShowMethods 653
rpsShowVirtualProperties 653
rpsTopSchemaName 653
rpsUseOidClassInstMap 653
schema 653
timeCreated 654

RelationalView Methods 654
addUserAttribute 655
addUserTable 655
changeColumnName 656
columnExists 656
createExcludedJcfFile 656
excludeTableColumnName 657
excludeTableName 657
extractData 657

Encyclopaedia of Classes
(Volume 2)

Contents xxvi

EncycloSys2 - 2020.0.02

extractDataAll 658
extractDataUsingIniFileOptions 660
generateRpsTableCreationScript 660
getColumnFeature 661
getExcludedTableColumnNames 661
getExcludedTableNames 661
getRpsMappedClasses 662
getTableColumnNames 662
getTableNames 662
isODBCRelationalView 662
isRpsMapping 663
removeColumn 663
removeTable 663
tableExists 663
versionRpsMapping 663

RootSchemaSession Class 665
RootSchemaSession Properties 665

allowHiddenControlEvents 665
userSecurityLevel 665

Schema Class 667
Schema Class Constants 667
Schema Properties 667

externalDatabases 667
formsManagement 668
jomVersion 668
name 668
needsReorg 668
patchVersion 668
superschema 668
relationalViews 669
rpsDatabases 669
text 669

Schema Methods 669
addCompileTranslatableString 673
addUserCollectionSubclass 673
addUserSubclass 673
allClasses 674
allDatabases 674
allJadeInterfaces 674
allLibraries 674
allPrimitives 674
allSubschemas 674
buildFormData 674
constantNames 675
createWebServiceApplication 675
deleteUserSubclass 677
extractControlIdsCSV 677
extractControlIdsCSVforSchema 678
findClassInBranch 679
findClassInSubschema 679
findFormForLocale 679
findFormForLocaleInAllSchemas 679
findFormForLocaleInSupers 679
findGlobalConstantInBranch 679
findMeForm 679
findName 680
findProperty 680
findType 680
generateWSDL 680
getAllBaseLocales 681
getAllClasses 681

Encyclopaedia of Classes
(Volume 2)

Contents xxvii

EncycloSys2 - 2020.0.02

getAllFormTranslations 681
getAllInheritedLocales 681
getAllLocales 681
getAllLocalLocales 681
getAllSystemLocales 682
getAllRpsMappings 682
getAppliedPatches 682
getBaseLocalesLocal 683
getCategory 683
getClass 683
getClassByNumber 683
getConstant 683
getConstantCategory 683
getControlClasses 684
getCurrentLocaleId 684
getDefaultLocale 684
getExternalDatabase 684
getFormatAnywhereInPath 684
getFormatAnywhereInPathLatest 685
getFormatAnywhereInSubs 685
getFormatAnywhereInSubsLatest 685
getFunction 685
getGlobalClass 685
getGlobalConstant 685
getHtmlDocumentSource 685
getImportedClass 686
getImportedJadeinterface 686
getInheritedFormats 686
getInheritedXlatableStrings 687
getJadeInterface 687
getLibrary 687
getLocalClass 687
getLocale 687
getLocaleCurrencyInfo 687
getLocaleDateInfo 688
getLocaleFullInfo 688
getLocaleInSubschemas 689
getLocaleLocal 689
getLocaleNameInfo 689
getLocaleNumericInfo 689
getLocaleTimeInfo 690
getLocalFormats 690
getLocalLocaleInSubschemas 690
getLocalPrimitive 691
getName 691
getOidForObject 691
getPrimitive 691
getRelationalView 691
getRpsMapping 691
getSchema 691
getSubschema 692
getSubschemas 692
getUserAppliedPatches 692
getUserFormat 693
getWebServiceConsumerNames 693
globalException 693
importWSDL 693
isLocalLocale 694
loadHTMLDocuments 694
makeLocaleNameFromId 695
nonGUIGlobalExceptionHandler 695

Encyclopaedia of Classes
(Volume 2)

Contents xxviii

EncycloSys2 - 2020.0.02

regenerateRelationalView 695
removeWebConsumer 696
reorgInProgress 696
reorgIsWaitingForTransition 696
resetUserAppliedPatches 697
setHtmlDocumentSource 697
withAllSubschemas 697
withAllSuperschemas 697

SchemaEntity Class 698
SchemaEntity Class Constants 698
SchemaEntity Properties 698

abstract 698
access 699
name 699
number 699
subAccess 699
text 700

SchemaEntity Methods 700
getName 700
getPatchNumber 700

SchemaEntityNumberDict Class 701
Script Class 702

Script Properties 702
compiledOK 702
errorCode 702
errorLength 703
errorPosition 703
status 703
warningCount 703

Script Methods 704
getSource 704
inError 704
notCompiled 704

Set Class 705
Set Methods 705

add 705
copy 706
createIterator 707
getStatistics 707
includes 708
indexNear 709
indexNear64 709
remove 709
tryAdd 709
tryAddDeferred 710
tryRemove 710
tryRemoveDeferred 710

SetMergeIterator Class 711
SetMergeIterator Property 711

ignoreDuplicates 711
SetMergeIterator Methods 712

addCollection 712
back 712
current 713
getCollectionAt 713
getCollectionCount 713
getCurrentCollection 713
isValid 713
next 713
removeCollection 714
reset 714

Encyclopaedia of Classes
(Volume 2)

Contents xxix

EncycloSys2 - 2020.0.02

startAtObject 714
SortActor Class 715

SortActor Class Constants 716
SortActor Properties 716

ascending 716
fieldNo 717
length 717
numeric 717
random 718
sortType 718
startPosition 719

SortActorArray Class 720
SortActorArray Properties 720

kway 720
lcid 720
maxMem 720

Sound Class 721
Sound Properties 721

data 721
format 721
name 722

Sound Methods 722
isPlayable 722
loadFromFile 722
play 722

StringArray Class 724
StringUtf8Array Class 725
System Class 726

System Properties 726
name 726
nodes 726

System Methods 726
activateDeltaDatabase 729
beginIndividualRequestsLogging 730
beginLockContentionStats 731
beginObjectTracking 731
beginSample 732
beginSampleGroupDefinition 732
clearLockContentionStats 733
createSystemSequenceNumber 733
disableRemoteSampling 734
dumpCharacterEntityTable 735
enableRemoteSampling 735
endIndividualRequestsLogging 735
endLockContentionStats 736
endObjectTracking 736
endSample 736
endSampleGroupDefinition 737
findCharacterEntityByName 737
findCharacterEntityByNumber 737
forceOffUser 738
getAllUsers 738
getClassAccessFrequencies 738
getDatabaseRole 740
getDatabaseStats 740
getDatabaseSubrole 741
getDbDiskCacheStats 742
getDeltaDatabaseStatus 743
getEnvironmentServerIdentity 743
getLockContentionInfo 743
getLockContentionStats 744

Encyclopaedia of Classes
(Volume 2)

Contents xxx

EncycloSys2 - 2020.0.02

getLocks 744
getMostAccessedClasses 745
getNotes 746
getObjectLockProcesses 747
getObjectPartitionID 748
getQueuedLocks 748
getRequestStats 749
getRpcServerStatistics 750
getStatistics 751
getStatistics64 753
getSystemSequenceNumberNext 754
getTimeInTransactionState 755
interruptUser 755
isDatabaseEncryptionEnabled 756
isDbArchival 756
isRemoteSamplingEnabled 756
isValidProcess 756
logObjectCaches 757
logRequestStatistics 758
logUserCommand 758
processDumpAllNodes 759
queryLockContentionStats 759
removeNode 759
sdsAuditEnableSecondaryApps 760
verifyDbEncryptionMasterKey 760

SystemException Class 761
TcpIpConnection Class 762

TcpIpConnection Class Constants 762
TcpIpConnection Properties 762

authenticationLibrary 763
cryptLibrary 764
decryptMethod 764
encryptMethod 764
genAuthChallengeMethod 765
genAuthResponseMethod 765
localInterface 766
localIpAddress 766
localPort 766
networkProxy 766
port 767
protocolFamily 767
remoteIpAddress 767
remoteName 768
remotePort 768
resolveRemoteName 768
usePresentationClient 768
sslContext 768
userObject 769
verifyAuthResponseMethod 769

TcpIpConnection Methods 770
close 770
closeAsynch 771
getMaxMessageSize 771
listen 772
listenAsynch 772
listenContinuous 773
listenContinuousAsynch 774
open 775
openAsynch 776
readBinary 777
readBinaryAsynch 777

Encyclopaedia of Classes
(Volume 2)

Contents xxxi

EncycloSys2 - 2020.0.02

readUntil 778
readUntilAsynch 779
writeBinary 779
writeBinaryAsynch 780

TimeArray Class 781
TimeFormat Class 782

TimeFormat Properties 782
amText 782
ampmIsSuffix 782
format 783
is12HourFormat 783
pmText 783
separator 783
showLeadingZeros 783
showSeconds 783

TimeFormat Method 783
defineTimeFormat 784

TimeStampArray Class 785
TimeStampIntervalArray Class 786
TranslatableString Class 787

TranslatableString Properties 787
formBuildDataRefs 788
locale 788

TranslatableString Method 788
updateCompile 789

Type Class 790
Type Properties 790

consts 790
methods 790
schema 790
superschemaType 790

Type Methods 791
allMethods 791
findConstant 791
findConstantInSuperschema 792
findProperty 792
getConstant 792
getConstants 792
getConstantsInSchema 792
getMethod 793
getMethods 793
getName 793
getProperty 793
inheritsFrom 793
instancesExist 793
invokeIOTypeMethod 794
invokeTypeMethod 795
sendTypeMsg 796
sendTypeMsgWithIOParams 797
sendTypeMsgWithParams 797

UserInterfaceException Class 799
WebSession Class 800

WebSession Class Constant 800
WebSession Properties 800

lastAccessTime 800
sessionId 801
startTime 801
usePageSequencing 801

WebSession Methods 801
browserType 802
createVirtualDirectoryFile 802

Encyclopaedia of Classes
(Volume 2)

Contents xxxii

EncycloSys2 - 2020.0.02

deleteVirtualDirectoryFile 803
getCurrentLocale 803
getHttpParam 804
getHttpString 804
getServerVariable 804
getSessionForm 806
getWebSessionCount 806
isVDFilePresent 806
processRequest 806
removeSession 807
removeSessionWithMessage 807
reply 808
setCurrentLocale 808
timerEvent 809

WebSocketException Class 810

Encyclopaedia of Classes
(Volume 2)

Contents xxxiii

EncycloSys2 - 2020.0.02

Before You Begin

The JADE Encyclopaedia of Classes is intended as a major source of information when you are developing or
maintaining JADE applications.

Who Should Read this Encyclopaedia
The main audience for the JADE Encyclopaedia of Classes is expected to be developers of JADE application
software products.

What’s Included in this Encyclopaedia
The JADE Encyclopaedia of Classes has two chapters, and is divided into three volumes.

Chapter 1 Gives a reference to system classes and the constants, properties, and methods that they provide

Chapter 2 Gives a reference to Window classes and the constants, properties, methods, and events that they
provide

Note that this second volume contains system (non-GUI) classes in the range JadeSkinApplication class through
WebSession class, inclusive. Volume 1 (that is, EncycloSys1.pdf) contains system (non-GUI) classes in the
range ActiveXAutomation class through JadeSkin class, inclusive. Chapter 2 (Window class and subclasses) is
contained in Volume 3 (that is, EncycloWin.pdf).

Related Documentation
Other documents that are referred to in this encyclopaedia, or that may be helpful, are listed in the following table,
with an indication of the JADE operation or tasks to which they relate.

Title Related to…

JADE Database Administration Guide Administering JADE databases

JADE Development Environment
Administration Guide

Administering JADE development environments

JADE Development Environment User’s
Guide

Using the JADE development environment

JADE Encyclopaedia of Primitive Types Primitive types and global constants

JADE Installation and Configuration Guide Installing and configuring JADE

JADE Initialization File Reference Maintaining JADE initialization file parameter values

JADE Object Manager Guide JADE Object Manager administration

JADE Report Writer User’s Guide Using the JADE Report Writer to develop and run reports

JADE Synchronized Database Service (SDS)
Administration Guide

Administering JADE Synchronized Database Services (SDS),
including Relational Population Services (RPS)

JADE Thin Client Guide Administering JADE thin client environments

EncycloSys2 - 2020.0.02

Conventions
The JADE Encyclopaedia of Classes uses consistent typographic conventions throughout.

Convention Description

Arrow bullet () Step-by-step procedures. You can complete procedural instructions by using either
the mouse or the keyboard.

Bold Items that must be typed exactly as shown. For example, if instructed to type foreach,
type all the bold characters exactly as they are printed.

File, class, primitive type, method, and property names, menu commands, and dialog
controls are also shown in bold type, as well as literal values stored, tested for, and
sent by JADE instructions.

Italic Parameter values or placeholders for information that must be provided; for example,
if instructed to enter class-name, type the actual name of the class instead of the word
or words shown in italic type.

Italic type also signals a new term. An explanation accompanies the italicized type.

Document titles and status and error messages are also shown in italic type.

Blue text Enables you to click anywhere on the cross-reference text (the cursor symbol
changes from an open hand to a hand with the index finger extended) to take you
straight to that topic. For example, click on the "Object Methods" cross-reference to
display that topic.

Bracket symbols ([]) Indicate optional items.

Vertical bar (|) Separates alternative items.

Monospaced font Syntax, code examples, and error and status message text.

ALL CAPITALS Directory names, commands, and acronyms.

Small font Keyboard shortcut keys.

Key combinations and key sequences appear as follows.

Convention Description

Key1+Key2 Press and hold down the first key and then press the second key. For example, "press
Shift+F2" means to press and hold down the Shift key and press the F2 key. Then
release both keys.

Key1,Key2 Press and release the first key, then press and release the second key. For example,
"press Alt+F,X" means to hold down the Alt key, press the F key, and then release both
keys before pressing and releasing the X key.

Encyclopaedia of Classes
(Volume 2)

Before You Begin xxxv

EncycloSys2 - 2020.0.02

Chapter 1 System Classes

JADE provides system classes. System classes are standard classes whose instances provide properties and
methods to encapsulate the behavior of objects in your JADE applications. This chapter contains the classes
summarized in the following table, and is divided into two volumes.

Note This volume (Volume 2) contains system (non-GUI) classes in the range JadeSkinApplication class
through WebSession class, inclusive. Volume 1 (that is, EncycloSys1.pdf) contains system (non-GUI) classes in
the range ActiveXAutomation class through JadeSkin class, inclusive.

Class Description

ActiveXAutomation Provides a superclass for each subclass created when an
ActiveX automation object is imported

ActiveXInterface Provides a superclass for all interfaces of imported ActiveX
automation and control objects

ActiveXInvokeException Defines behavior for exceptions that occur as a result of
accessing an ActiveX property or invoking an ActiveX method

Application Common superclass in the RootSchema for Application
classes defined in subschemas

ApplicationContext Stores transient instances of the application, package,
process, and schema for the main application in which a
package is imported and for each package application when a
process begins

Array Encapsulates behavior required to access entries in an
ordered collection of like objects in which the member objects
are referenced by their position in the collection

BinaryArray Stores and retrieves binaries in an array of Binary primitive
types

BooleanArray Stores and retrieves Boolean values in an array of Boolean
primitive types

Btree Encapsulates behavior required to access entries in a
collection by a key (index)

ByteArray Stores and retrieves characters in an array of Byte primitive
types

CharacterArray Stores and retrieves characters in an array of Character
primitive types

Class Metaclass of all other JADE classes; that is, contains the
definition of all JADE classes

CMDialog Encapsulates behavior for the common dialog subclasses

CMDColor Enables access to the common Color dialog

CMDFileOpen Enables access to the common File Open dialog

CMDFileSave Enables access to the common File Save dialog

Encyclopaedia of Classes
(Volume 2)

Chapter 1 37

EncycloSys2 - 2020.0.02

Class Description

CMDFont Enables access to the common Font dialog

CMDPrint Enables access to the common Print dialogs

Collection Defines the common protocol for all collection subclasses

Connection Provides a generalized interface for communicating with
external systems

ConnectionException Defines behavior for exceptions that occur as a result of
communicating with external systems

ConstantNDict Stores references to instances of the Constant class (or
instances of subclasses)

CurrencyFormat Stores Windows locale currency information

Database Encapsulates the definition of a database for a schema,
including the database files and the class mappings to those
files

DateArray Stores and retrieves dates in an array of Date primitive types

DateFormat Stores Windows locale date information

DbFile Encapsulates the definition of a database file and provides
methods to perform file-level operations

DbFileArray Stores and retrieves objects from an array of database files

DeadlockException Defines behavior for exceptions that occur as a result of
deadlocks

DecimalArray Stores and retrieves decimals in an array of Decimal primitive
types

Dictionary Encapsulates behavior for storing and retrieving objects in a
collection by a user-defined key

DynaDictionary Encapsulates the behavior required to access entries in
member key dictionary subclasses (that is, in dictionaries in
which the keys are properties in the member objects)

Exception Defines the protocol for raising and responding to exception
conditions

ExceptionHandlerDesc Describes an exception handler that is currently armed

ExternalArray Represents rows in a result set generated from an SQL query
containing a sort specification

ExternalCollection Provides the common protocol for external collection classes

ExternalDatabase Represents a connection to an external database

ExternalDictionary Represents the rows in a result set generated from an SQL
query with an ORDER BY sort specification

ExternalIterator Encapsulates behavior required to sequentially access
elements of a collection

ExternalObject Base class for all external database classes

Encyclopaedia of Classes
(Volume 2)

Chapter 1 38

EncycloSys2 - 2020.0.02

Class Description

ExternalSet Represents rows in a result set generated from an SQL query
that has no sort specification

ExtKeyDictionary Encapsulates the behavior required to access entries in
external key dictionary subclasses

FatalError Encapsulates behavior required for serious internal faults

File Enables you to read and write disk files, either sequentially or
with random access

FileException Defines behavior for exceptions that occur as a result of file
handling

FileFolder Contains a collection of files or subdirectories

FileNode Contains the properties and methods common to the File class
and FileFolder class

FileNodeArray Stores and retrieves objects from an array of file nodes

Global Provides a means by which application-specific data can be
shared among users of an application

GUIClass Metaclass containing the definition of all Graphical User
Interface (GUI) classes

HugeStringArray Stores and retrieves large strings in an array of String
primitive types

IDispatch Provides a superclass for all ActiveX automation and control
classes created in JADE during the ActiveX type library import
process

IDispatchArray Stores and retrieves objects from an array of IDispatch objects

Integer64Array Stores and retrieves integers in an array of Integer64 primitive
types

IntegerArray Stores and retrieves integers in an array of Integer primitive
types

IntegrityViolation Defines the behavior of exceptions raised as a result of
integrity rule violations

InternetPipe Provides an interface for communicating with JADE
applications from the Internet through an Internet server

Iterator Encapsulates behavior required to sequentially access
elements of a collection

IUnknown Encapsulates behavior implemented by all COM objects and
inherited by all ActiveX interfaces

JadeAnnotation Abstract superclass of a number of classes that participate in
the definition of additional schema meta information

JadeAuditAccess Provides access to information recorded in database
transaction journals in a form convenient for consumption by
JADE applications

Encyclopaedia of Classes
(Volume 2)

Chapter 1 39

EncycloSys2 - 2020.0.02

Class Description

JadeBytes Stores and retrieves instances of unstructured data of arbitrary
size

JadeDatabaseAdmin Provides an Application Programming Interface (API) to
perform database operations

JadeDbFilePartition Provides an administrative API for manipulating and querying
the state of database partitions

JadeDotNetInvokeException Defines behavior for exceptions that occur as a result of
accessing a .NET property or invoking a .NET method

JadeDotNetType Provides a superclass for all imported .NET non-GUI types

JadeDynamicObject Encapsulates the behavior required to access entries in
dynamic objects (that is, in objects that represent collection
statistics)

JadeDynamicObjectArray Stores and retrieves objects from an array of
JadeDynamicObject objects

JadeDynamicPropertyCluster Stores one or more dynamic properties used to extend a class

JadeGenericMessage Encapsulates the building and analysis of messages

JadeGenericMessagingIF Provides message arrival and queue management callback
methods

JadeGenericQueue Encapsulates a destination for the transmission and retrieval
of messages

JadeGenericQueueManager Encapsulates the management of a single messaging queue

JadeHTMLClass Implements the interface that enables you to support HTML
pages in your JADE applications

JadeHTTPConnection Enables applications to access the standard Internet protocol
HTTP

JadeIdentifierArray Stores and retrieves strings with a maximum length of 100
characters, which is the maximum length of a JADE identifier

JadeInterface Metaclass of all JADE interfaces; that is, contains the definition
of all JADE interfaces

JadeInternetTCPIPConnection Implements the interface defined by the TcpIpConnection
class specifically for the Internet Transmission Control
Protocol / Internet Protocol (TCP/IP) API

JadeIterableIF Provides the contract for an implementing class to be iterable

JadeIteratorIF Provides the contract for an implementing class to sequentially
generate or access elements, one at a time

JadeJson Standalone JSON functionality that is independent of the
Representational State Transfer (REST) Application
Programming Interface (API)

JadeJsonWebKeySetReader Contains type methods used to obtain the public key from a
JSON Web Key Set

Encyclopaedia of Classes
(Volume 2)

Chapter 1 40

EncycloSys2 - 2020.0.02

Class Description

JadeJsonWebToken Represents a symmetrically-signed JSON Web Token (JWT),
which can be used by a JADE REST service to generate
authorization tokens for its clients

JadeJWKSAuthProviderResponse Can be used as the first parameter to the parse method of the
JadeJson class to deserialize the result from a REST
endpoint that contains a JSON Web Token

JadeJWTClaim Represents one claim in a JSON Web Token

JadeJWTModel Abstract superclass of a number of classes that participate in
the definition of additional schema meta information

JadeJWTParser Contains type methods used for parsing JSON Web Tokens

JadeJWTValidator Contains type methods used for validating the signature of
JSON Web tokens and verifying that required claims are
present in the token

JadeLicenceInfo Encapsulates behavior required to get license information

JadeLog Encapsulates behavior required to create text log files in JADE
applications

JadeMessagingException Defines the behavior of exceptions that arise when using the
messaging framework

JadeMessagingFactory Encapsulates the behavior for creating and opening
messaging queues

JadeMetadataAnalyzer Encapsulates behavior required to analyze JADE metadata

JadeMethodContext Provides an interface for invoking asynchronous method calls

JadeMultiWorkerTcpConnection Provides an interface for sharing the messages arriving on
client sockets among a pool of worker server JADE
applications

JadeMultiWorkerTcpTransport Encapsulates behavior required for multiple user TCP/IP
connections between JADE systems

JadeMultiWorkerTcpTransportIF Provides TCP/IP multiple worker connection event callback
methods

JadePatchControlInterface Encapsulates behavior required to dynamically access patch
versioning information

JadeOpenAPI Abstract grouping class for classes relating to the JADE
OpenAPI Generator

JadeOpenAPIGenerator JadeOpenAPI subclass for generating OpenAPI specifications
programmatically, and it is an alternative to the OpenAPI
Generation wizard

JadePrintData Encapsulates the behavior required for report output data
subclasses (that is, for direct print or preview)

JadePrintDirect Provides output report output to be sent directly to the printer

JadePrintPage Encapsulates behavior required to hold a page of printed
output for preview

Encyclopaedia of Classes
(Volume 2)

Chapter 1 41

EncycloSys2 - 2020.0.02

Class Description

JadeProfiler Encapsulates behavior required to configure what is profiled
and reported in the JADE Interpreter

JadeRegex Contains type methods for quick simple use of the
JadeRegexLibrary. Each method has common options so
that it suits most use cases

JadeRegexCapture Capture group of a regular expression, containing information
about it; for example, the text it matched, the group name,
length, and so on

JadeRegexException Transient class that defines behavior for exceptions that occur
as a result of JADE Regular Expression (JadeRegex) pattern
matching

JadeRegexLibrary Abstract superclass of the regular expression (Regex)
pattern-matching Application Programming Interface (API)
subclasses

JadeRegexMatch A single match of a regular expression against the subject
string, optionally containing JadeRegexCapture objects for
the type method or Regex pattern

JadeRegexPattern Compiled Regex object

JadeRegexResult Result of matches that can be iterated through; that is, an array
of match tuples used for Regex operations

JadeRelationalAttributeIF Provides an interface to expose soft attributes

JadeRelationalEntityIF Provides an interface to expose soft entities, which are
mapped to a table in the relational view

JadeRelationalQueryProviderIF Provides a search implementation that optimally finds and
filters instances of a soft entity

JadeReport Encapsulates behavior required to access an entire printed
report

JadeReportWriterManager Provides a superclass for each JADE Report Writer
Configuration or Designer application

JadeReportWriterReport Provides methods that enable you to dynamically override
JADE Report Writer details at run time

JadeReportWriterSecurity Provides a superclass for all user JadeReportWriterSecurity
subclasses

JadeRequiredClaimAnnotation Represents an annotation on a JadeRestService REST API
method

JadeRequiredDelegateClaimAnnotation Represents an annotation on a JadeRestService REST API
method

JadeRequiredOneOfValueClaimAnnotation Represents an annotation on a JadeRestService REST API
method

JadeRequiredSingleValueClaimAnnotation Represents an annotation on a JadeRestService REST API
method

Encyclopaedia of Classes
(Volume 2)

Chapter 1 42

EncycloSys2 - 2020.0.02

Class Description

JadeRestClient Represents the client that sends the REST request to the
server

JadeRestDataModelProxy Grouping class for auto-generated proxy classes that model
the data structure of an imported REST API specification

JadeRestProxy Grouping class for auto-generated proxy classes that model a
REST API specification based on an OpenAPI specification

JadeRestProxyHook Provides hook methods that can be reimplemented in your
subclasses to access JADE REST objects

JadeRestRequest Represents a REST request that is to be sent to a REST API
specification

JadeRestResourceProxy Grouping class for proxy classes that expose the resource
methods of the imported REST API specification

JadeRestResponse Contains the results of a request to a REST API endpoint

JadeRestService Defines the behavior of REST-style Web service applications

JadeReverseIterableIF Extends the JadeIterableIF interface and provides the contract
for an implementing class to be iterated in reverse

JadeReversibleIteratorIF Extends the JadeIterableIF interface and provides the contract
for an implementing class to sequentially generate or access
elements, one at a time, in the opposite direction to the
JadeIteratorIFinterface next method implementation

JadeRpsDataPumpIF Provides an interface for managing output sent to a relational
database from an RPS Datapump application

JadeSerialPort Provides methods for communicating with external systems
through a serial port

JadeSkin Stores JADE skins and encapsulates behavior required to
maintain JADE skins

JadeSkinApplication Stores JADE skins for forms and controls in applications

JadeSkinArea Encapsulates behavior required to define and maintain
rectangular skin areas

JadeSkinCategory Stores skin category definitions

JadeSkinControl Encapsulates behavior required to define and maintain skins
for controls

JadeSkinEntity Encapsulates behavior required to define and maintain skin
entities

JadeSkinForm Encapsulates behavior required to define and maintain skins
for forms

JadeSkinMenu Encapsulates behavior required to define and maintain skins
for menus

JadeSkinRoot Stores dictionaries that reference skin entities

Encyclopaedia of Classes
(Volume 2)

Chapter 1 43

EncycloSys2 - 2020.0.02

Class Description

JadeSkinSimpleButton Stores skin definitions for simple buttons in all four states (that
is, up, down, disabled, and rollover)

JadeSkinWindow Stores the defined image and category of all skins

JadeSkinWindowStateImage Stores images of window areas for specific states (that is, up,
down, disabled, and rollover)

JadeSOAPException Defines the behavior of exceptions that occur as a result of
Web services

JadeSSLContext Implements the Secure Sockets Layer (SSL) protocol that
supports digital certificates over secure connections

JadeSystemAnnotation Abstract superclass of system-defined annotation classes that
participate in the definition of additional schema meta
information

JadeTableCell Internally created proxy class providing direct access to table
cells

JadeTableColumn Internally created proxy class providing direct access to table
columns

JadeTableElement Internally created proxy class encapsulating behavior required
to directly access table elements

JadeTableRow Internally created proxy class providing direct access to table
rows

JadeTableSheet Internally created proxy class providing direct access to table
sheets

JadeTcpIpProxy Implements TCP/IP network proxy support that enables you to
open a TCP/IP network connection through a proxy host

JadeTestCase Provides unit testing functionality for user-written test
subclasses

JadeTestListenerIF Provides callback methods on the progress and results of unit
testing

JadeTestRunner Enables you to run unit test methods in subclasses of the
JadeTestCase class

JadeTimeZone Enables you to obtain information about and perform
conversions between different time zones

JadeTimeZoneByYearDict External key dictionary with keys of the Integer primitive type
and values of the JadeTimeZone class type

JadeTransactionTrace Enables you to identify objects that are updated, created, and
deleted within a transaction

JadeUserCollClass Enables you to create a user collection class at run time

JadeWebService Maintains all Web service information

JadeWebServiceConsumer Defines the behavior of Web service consumers loaded into
your application

Encyclopaedia of Classes
(Volume 2)

Chapter 1 44

EncycloSys2 - 2020.0.02

Class Description

JadeWebServiceProvider Defines the behavior of Web service provider applications

JadeWebServiceSoapHeader Defines the behavior of SOAP headers in Web service
provider applications

JadeWebServiceUnknownHeader Represents an unknown SOAP header in a Web service
provider application

JadeWebSocket Base class for handling a WebSocket connection

JadeWebSocketServer Handles all incoming TCP/IP connections from the
JadeWebsocketIISNativeModule on a specific interface and
TCP port

JadeX509Certificate Stores digital certificates in X509 format for use with the
JadeSSLContext class that provides secure connections

JadeXMLAttribute Represents an attribute of an XML element in an XML
document tree

JadeXMLCDATA Represents a CDATA section in an XML document tree

JadeXMLCharacterData Abstract superclass of character-based nodes in an XML
document tree

JadeXMLComment Represents a comment in an XML document tree

JadeXMLDocument Represents an XML document as a tree of nodes

JadeXMLDocumentParser Represents the interface for parsing XML documents into a
tree of objects

JadeXMLDocumentType Represents the document type declaration in an XML
document tree

JadeXMLElement Represents an XML element in an XML document tree

JadeXMLException Defines behavior for exceptions that occur as a result of XML
processing

JadeXMLNode Abstract superclass of all nodes in an XML document tree

JadeXMLParser Abstract transient-only class that provides the interface for
parsing XML documents

JadeXMLProcessingInstruction Represents a processing instruction in an XML document tree

JadeXMLText Represents the textual content within an XML document tree

List Encapsulates behavior required to reference objects by their
position in the collection

Locale Defines the locales (languages) supported by a schema

LocaleFormat Defines the common protocol for locale format information

LocaleFullInfo Provides Windows locale information for the current
workstation

LocaleNameInfo Provides Windows locale name information for the current
workstation

Lock Describes the lock requests maintained by the system

Encyclopaedia of Classes
(Volume 2)

Chapter 1 45

EncycloSys2 - 2020.0.02

Class Description

LockArray Stores and retrieves objects in an array of locks

LockContentionInfo Stores information about lock contentions for a target
persistent object

LockException Defines the behavior of exceptions raised as a result of
locking conflicts

MemberKeyDictionary Encapsulates the behavior required to access entries in
member key dictionary subclasses

MenuItem Contains the definition of each menu command (item) on a
menu

MergeIterator Encapsulates behavior required to sequentially access
elements of two or more compatible dictionaries

MethodCallDesc Provides information at run time about currently active method
calls

MultiMediaType Provides the behavior for all types of multimedia subclasses

NamedPipe Provides a generalized interface for communicating with
external systems

Node Class for which an instance exists for each node in a system

NormalException Superclass of all non-fatal exceptions

Notification Superclass for objects that describe the notifications
maintained by the system

NotificationArray Stores and retrieves objects from an array of notifications

NotificationException Defines behavior for exceptions that occur as a result of
notifications

NumberFormat Stores Windows locale numeric information

Object Defines default behavior for all other classes in the schema

ObjectArray Stores and retrieves objects in an array

ObjectByObjectDict Encapsulates the behavior required to map one object to
another object

ObjectLongNameDict Encapsulates the behavior for accessing the long names of
objects

ObjMethodCallDesc Provides information at run time about currently active method
calls made to object methods (that is, methods defined on
classes as opposed to primitive types)

ObjectSet Stores and retrieves objects in a set

ODBCException Defines behavior for exceptions that occur as a result of ODBC
communications

OleObject Stores the Object Linking and Editing (OLE) object images for
the OleControl class

PointArray Stores and retrieves points in an array of Point primitive types

Encyclopaedia of Classes
(Volume 2)

Chapter 1 46

EncycloSys2 - 2020.0.02

Class Description

PrimMethodCallDesc Provides information at run time about currently active
methods calls made to primitive methods

PrimType Metaclass of all JADE primitive types, and inherits methods
defined in the Type superclass

Printer Handles printing

Process Class for which an instance exists for each process in the
system

ProcessDict Encapsulates the behavior required to access process objects
in a dictionary

ProcessStackArray Encapsulates the behavior required to access method calls in
the process stack array

RealArray Stores and retrieves Real values in an array of Real primitive
types

Rectangle Encapsulates the dimensions of a rectangle

RelationalView Enables views to be defined for use by the RPS Datapump
application and to allow relational tools to access JADE

RootSchemaSession Defines the common protocol for all Web session classes in
subschemas

Schema Represents the object model for a specific application domain

SchemaEntity Superclass of a number of classes that participate in the
definition of a schema

SchemaEntityNumberDict Stores references to instances of subclasses of the
SchemaEntity class

Script Encapsulates the behavior of schema entities that have
source code

Set Encapsulates the behavior of collection set classes

SetMergeIterator Encapsulates behavior required to sequentially access
elements of two or more sets

SortActor Contains properties that enable you to specify the precedence
of records in the File class

SortActorArray Container for SortActor objects

Sound Contains the properties and methods for the sound multimedia
type

StringArray Stores and retrieves strings in an array of String primitive
types

StringUtf8Array Stores and retrieves strings in an array of StringUtf8 primitive
types

System One instance of this class exists, representing an entire JADE
system (that is, the installed JADE environment)

Encyclopaedia of Classes
(Volume 2)

Chapter 1 47

EncycloSys2 - 2020.0.02

Class Description

SystemException Superclass of all exceptions relating to errors detected by the
JADE kernel

TcpIpConnection Implements the interface defined by the Connection class
specifically for the TCP/IP API

TimeArray Stores and retrieves times in an array of Time primitive types

TimeFormat Stores Windows locale time information

TimeStampArray Stores and retrieves timestamps in an array of TimeStamp
primitive types

TimeStampIntervalArray Stores and retrieves timestamp intervals in an array of
TimeStampInterval primitive types

TranslatableString Stores locale-dependent text to be displayed when a client is
running an application

Type Superclass of all class, primitive type, and interface meta
classes

UserInterfaceException Defines behavior for exceptions relating to the handling of
windows

WebSession Maintains Internet session information

WebSocketException Defines behavior for WebSocket protocol exceptions

For details about user-interface (GUI) classes and their associated constants, properties, methods, and events,
see Chapter 2, "Window Classes", in Volume 3.

Encyclopaedia of Classes
(Volume 2)

JadeSkinApplication Class Chapter 1 48

EncycloSys2 - 2020.0.02

JadeSkinApplication Class
The JadeSkinApplication class stores JADE skins for forms and controls in applications.

An application skin definition consists of a collection of form and control skins. You can define a skin with no form
skins (that is, with control skins only) and the reverse.

For details about the properties defined in the JadeSkinApplication class, see "JadeSkinApplication Properties"
and "JadeSkinApplication Method", in the following subsections. For details about defining and maintaining skins,
see "Defining and Maintaining JADE Skins at Run Time", in Chapter 2 of the JADE Runtime Application Guide.

Inherits From: JadeSkinEntity

Inherited By: (None)

JadeSkinApplication Properties
The properties defined in the JadeSkinApplication class are summarized in the following table.

Property Collection of…

myFormSkins Form skins to be applied to the application

myControlSkins Control skins to be applied to the an application

myFormSkins
Type: JadeSkinFormNameDict

Availability: Read or write at any time

The myFormSkins property of the JadeSkinApplication class contains a reference to a collection of form skins to
be applied to an application.

This collection can contain multiple form skins where each form skin references a different skin category.

Each form skin is applied only to forms that have the same defined skin category (for details, see the Window
class skinCategoryName property).

myControlSkins
Type: JadeSkinControlNameDict

Availability: Read or write at any time

The myControlSkins property of the JadeSkinApplication class contains a reference to a collection of the control
skins to be applied to an application.

Each control class that can be skinned has an equivalent associated skin class. The myControlSkins collection
can include multiple skins for each control type when they reference a different skin category.

A control skin is applied only to controls of the same type with the same defined skin category (for details, see the
Window class skinCategoryName property).

Encyclopaedia of Classes
(Volume 2)

JadeSkinApplication Class Chapter 1 49

EncycloSys2 - 2020.0.02

JadeSkinApplication Method
The method defined in the JadeSkinApplication class is summarized in the following table.

Method Description

updateSkinTimeStamp Resets the instance timestamp and causes the skin build data to be rebuilt.

updateSkinTimeStamp
Signature updateSkinTimeStamp() updating;

The updateSkinTimeStamp method defined in the JadeSkinApplication class resets the instance timestamp and
causes the skin build data to be rebuilt.

You would typically call this method if you updated a skin by any other means than using the
JadeSkinMaintenance form or by loading a form and data definition (.ddb or .ddx) file.

Encyclopaedia of Classes
(Volume 2)

JadeSkinArea Class Chapter 1 50

EncycloSys2 - 2020.0.02

JadeSkinArea Class
The JadeSkinArea class is the abstract class that defines the way in which a rectangular area is drawn.

Note Before you can define a skin area, a picture file (for example, a .gif, .png, .bmp, or .jpg file) must exist for
each of the images that you want to specify.

The following image illustrates the layout of a skin, which is made up of eight border segments and an inner
segment.

A JadeSkinArea is drawn as follows.

Segment 1

The top-left image (imgBorderTopLeft) is drawn at actual size. The top-left of the image is positioned at the top-
left of the control.

The height drawn is usually the minimum of the top-left image height and the top-center strip height.

The exception is if the top-left image height is greater than the top-center strip height and the top-left image width
is less than the left-center strip width. In that case, the top-left image height is used.

The top-left image can be higher than the top-center strip if the left-center strip is at least the same width.

Segment 2

The top-right image (imgBorderTopRight) is drawn at actual size. The top-right of the image is positioned at the
top-right of the control.

The height drawn is usually the minimum of the top-right image height and the top-center strip height.

The exception is if the top-right image height is greater than the top-center strip height and the top-right image
width is less than the right-center strip width. In that case, the top-right image height is used.

The top-right image can be higher than the top-center strip if the right-center strip is at least the same width.

Segment 3

The top center strip (imgBorderTopStrip) is drawn at actual image height and stretched horizontally between the
top-left and top-right images.

Segment 4

The bottom-left image (imgBorderBottomLeft) is drawn at actual size. The bottom-left of the image is positioned
at the bottom-left of the control.

The height drawn is usually the minimum of the bottom-left image height and the bottom-center strip height.

The exception is if the bottom-left image height is greater than the bottom-center strip height and the bottom-left
image width is less than the left-center strip width. In that case, the bottom-left image height is used.

Encyclopaedia of Classes
(Volume 2)

JadeSkinArea Class Chapter 1 51

EncycloSys2 - 2020.0.02

This allows the bottom-left image to be higher than the bottom-center strip if the left-center strip is at least the same
width.

Segment 5

The bottom-right image (imgBorderBottomRight) is drawn at actual size. The bottom-right of the image is
positioned at the bottom-right of the control.

The height drawn is usually the minimum of the bottom-right image height and the bottom-center strip height.

The exception is if the bottom-right image height is greater than the bottom-center strip height and the bottom-right
image width is less than the right-center strip width. In that case, the bottom-right image height is used.

This allows the bottom-right image to be higher that bottom-center strip if the right-center strip is at least the same
width.

Segment 6

The bottom center strip (imgBorderBottomStrip) is drawn at actual image height and stretched horizontally
between the bottom-left and bottom-right images.

Segment 7

The left-center strip (imgBorderLeftStrip) is drawn at actual image width and stretched vertically between the top-
left and the bottom-left images.

Segment 8

The right-center strip (imgBorderRightStrip) is drawn at actual image width and stretched vertically between the
top-right and the bottom-right images

Segment 9

The center image (imgInner) is drawn stretched from the left-center image to the right-center image and from the
top-center image to the bottom-center image. If there is no center image, it is filled with the background color
specified for the skin.

Notes Segments 3 and 6 determine the respective top and bottom heights of the border. Segments 7 and 8
determine the respective left and right widths of the border.

Unexpected results may occur if an image has a size that is inappropriate or does not correspond to a specific
area.

A corner segment is drawn to its full height if the width is the same as the corresponding left or right strip. For
example, segment 1 can be higher that segment 3, provided that segment 1 is the same width as segment 7. You
can use this to achieve rounded border effects. For details, see "JadeSkinWindow Class", later in this chapter.

The following characteristics of the JadeSkinArea class are affected by additional subclass property values.

If optional border images (that is, areas 1 through 8 in the above image) are not present, the inner area of the
skin is the entire area.

You can define the optional inner image by setting the value of the imgInner property to a brush that is
repeatedly drawn over the entire inner area or an image that is drawn centered in the inner area.

A backColor property value is used only if the inner image (that is, the imgInner property) is not defined or it
is not a brush.

Encyclopaedia of Classes
(Volume 2)

JadeSkinArea Class Chapter 1 52

EncycloSys2 - 2020.0.02

For details about the JadeSkinArea class constants and the properties defined in the JadeSkinArea class, see
"JadeSkinArea Class Constants" and "JadeSkinArea Properties", in the following subsections. For details about
defining and maintaining skins, see "Defining and Maintaining JADE Skins at Run Time", in Chapter 2 of the JADE
Runtime Application Guide.

Inherits From: JadeSkinEntity

Inherited By: JadeSkinMenu, JadeSkinWindow, JadeSkinWindowStateImage

JadeSkinArea Class Constants
The constants provided by the JadeSkinArea class are listed in the following table.

Constant Integer Value Constant Integer Value

BorderStyle_3DRaised 3 BorderStyle_3DSunken 2

BorderStyle_Images 4 BorderStyle_None 0

BorderStyle_Single 1

JadeSkinArea Properties
The properties defined in the JadeSkinArea class are summarized in the following table.

Property Description

backColor Background color of the area if the inner image is not supplied or it is not a brush

imgBorderBottomLeft Optional bottom left of the area

imgBorderBottomRight Optional bottom right of the area

imgBorderBottomStrip Optional bottom strip of the area

imgBorderLeftStrip Optional left strip of the area

imgBorderRightStrip Optional right strip of the area

imgBorderTopLeft Optional top left of the area

imgBorderTopRight Optional top right of the area

imgBorderTopStrip Optional top strip of the area

imgInner Optional inner image for the area

innerIsBrush Specifies whether the optional inner image is a brush for the entire area or a
centered image (set to true by default)

backColor
Type: Integer

Availability: Read or write at any time

The backColor property of the JadeSkinArea class contains the global background color of the area if the inner
image is not defined or it is not a brush. The default value of Default_Color for this property means that the
defined value of the Window class backColor property is used, subject to the following rules.

Encyclopaedia of Classes
(Volume 2)

JadeSkinArea Class Chapter 1 53

EncycloSys2 - 2020.0.02

The rules for the backColor of a form are:

If the form has a JadeSkinForm skin set, the JadeSkinForm.backColor value is not Default_Color, and the
backColor of the form is 3D Face, the backColor value of the skin is used.

If the above does not apply, the backColor value of the form is used.

The rules for the backColor of a control are:

If the control is transparent, the background area of the control is not erased and backColor is ignored.

If the backColor of the control is set to Default_Color, the effective backColor of the first parent whose
backColor is not Default_Color is used, regardless of whether a skin is applied.

If the control has its default backColor value set or if the skin was individually set on the control, as shown in
the following example.

label1.setSkin(myJadeSkinLabel);

If the control has a skin and the backColor of the skin is not Default_Color, the backColor of the skin is
used.

If the default backColor of the control is 3D Face, the control is not a button or browse button, and the form
has a JadeSkinForm skin set, the JadeSkinForm.backColor value is used unless its value is Default_
Color.

If either of the above does not apply, the backColor value of the control is used.

For more details about the backColor property, see the Window class backColor property.

imgBorderBottomLeft
Type: Binary

Availability: Read or write at any time

The imgBorderBottomLeft property of the JadeSkinArea class contains the optional image for the bottom left
area of the skin. This image is drawn unstretched.

imgBorderBottomRight
Type: Binary

Availability: Read or write at any time

The imgBorderBottomRight property of the JadeSkinArea class contains the optional image for the bottom right
area of the skin. This image is drawn unstretched.

imgBorderBottomStrip
Type: Binary

Availability: Read or write at any time

The imgBorderBottomStrip property of the JadeSkinArea class contains the optional image for the bottom strip
of the skin. This image is drawn stretched.

Encyclopaedia of Classes
(Volume 2)

JadeSkinArea Class Chapter 1 54

EncycloSys2 - 2020.0.02

imgBorderLeftStrip
Type: Binary

Availability: Read or write at any time

The imgBorderLeftStrip property of the JadeSkinArea class contains the optional image for the left strip of the
skin. This image is drawn stretched.

imgBorderRightStrip
Type: Binary

Availability: Read or write at any time

The imgBorderRightStrip property of the JadeSkinArea class contains the optional image for the right strip of the
skin. This image is drawn stretched.

imgBorderTopLeft
Type: Binary

Availability: Read or write at any time

The imgBorderTopLeft property of the JadeSkinArea class contains the optional image for the top left area of the
skin. This image is drawn unstretched.

imgBorderTopRight
Type: Binary

Availability: Read or write at any time

The imgBorderTopRight property of the JadeSkinArea class contains the optional image for the top right area of
the skin. This image is drawn unstretched.

imgBorderTopStrip
Type: Binary

Availability: Read or write at any time

The imgBorderTopStrip property of the JadeSkinArea class contains the optional image for the top strip of the
skin. This image is drawn stretched.

imgInner
Type: Binary

Availability: Read or write at any time

The imgInner property of the JadeSkinArea class contains the optional image for the inner area of the skin.

You can define a brush that is repeatedly drawn over the entire inner area or an image that is drawn centered in
the inner area.

Encyclopaedia of Classes
(Volume 2)

JadeSkinArea Class Chapter 1 55

EncycloSys2 - 2020.0.02

If you do not define an image for this property or it is not a brush, the backColor property value is used for the
inner area of the skin.

innerIsBrush
Type: Boolean

Availability: Read or write at any time

The innerIsBrush property of the JadeSkinArea class specifies whether the optional inner image (defined in the
imgInner property) is a brush for the entire area or a centered image.

This property is set to true by default.

Encyclopaedia of Classes
(Volume 2)

JadeSkinCategory Class Chapter 1 56

EncycloSys2 - 2020.0.02

JadeSkinCategory Class
The JadeSkinCategory class holds the skin category definitions for applications, forms, and controls.

For details about defining and maintaining skins, see "Defining and Maintaining JADE Skins at Run Time", in
Chapter 2 of the JADE Runtime Application Guide.

Inherits From: JadeSkinEntity

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 57

EncycloSys2 - 2020.0.02

JadeSkinControl Class and Subclasses
The JadeSkinControl class is the abstract superclass that provides the definition of elements common for each
control that can be skinned.

Use the properties of the JadeSkinArea class to define the image drawn for the active border and the inner (client
area) of each control. When erasing the inner area of a control:

1. If the control backBrush property of the form is not null, the inner area is erased using that brush.

2. If the control skin has a JadeSkinArea class imgInner property value that is a brush, the inner area is erased
using that brush.

3. If the backColor property of the skin area is not Default_Color and the backColor property of the control is
the default value or the skin was set by using the Control class setSkin method, erase using the backColor
property value of the skin.

4. If the value of the backColor property of the control is Color_3DFace and the form of the control has a skin
whose backColor property is not set to Default_Color, the inner area is erased using the backColor
property value of the form’s skin.

5. Erase using the backColor property value of the control.

6. If the control was erased using a color and the skin of the control has an inner image defined in the
JadeSkinArea class imgInner property that is not a brush (that is, the JadeSkinArea class innerIsBrush
property is set to false), that image is drawn centered in the inner area.

Skins do not apply to the ActiveXControl, MultiMedia, and Ocx control classes, as these are totally drawn by the
controls themselves.

Note If an application is active with a skin set, a second application initiated from the same jade.exe executable
is now drawn using the current Windows theme if that application does not have a skin set.

For details about the class constants and properties defined in the JadeSkinControl class, see "JadeSkinControl
Class Constants", and "JadeSkinControl Properties", in the following subsections. For details about defining and
maintaining skins, see "Defining and Maintaining JADE Skins at Run Time", in Chapter 2 of the JADE Runtime
Application Guide.

Inherits From: JadeSkinWindow

Inherited By: JadeSkinBaseControl, JadeSkinBrowseButtons, JadeSkinButton, JadeSkinCheckBox,
JadeSkinComboBox, JadeSkinFolder, JadeSkinFrame, JadeSkinGroupBox,
JadeSkinJadeDockBase, JadeSkinJadeEditMask, JadeSkinJadeMask, JadeSkinJadeRichText,
JadeSkinLabel, JadeSkinListBox, JadeSkinOleControl, JadeSkinOptionButton, JadeSkinPicture,
JadeSkinProgressBar, JadeSkinScrollBar, JadeSkinSheet, JadeSkinStatusLine, JadeSkinTable,
JadeSkinTextBox

JadeSkinControl Class Constants
The constants provided by the JadeSkinControl class are listed in the following table.

Constant Integer Value Constant Integer Value

ApplyCondition_3D 2 ApplyCondition_All 0

ApplyCondition_Border 1

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 58

EncycloSys2 - 2020.0.02

JadeSkinControl Properties
The properties defined in the JadeSkinControl class and inherited by all subclasses are summarized in the
following table.

Property Description

applyCondition Determines whether the border area of a control uses a skin

borderStyle Contains the type of border to be drawn

focusBackColor Contains the color to be used for the background of the control when the control has
focus

focusForeColor Contains the color to be used for drawing the text of the control when the control has
focus

fontBold Specifies whether the control font is bold when the control uses the default application
font

fontItalic Specifies whether the control font is italicized when the control uses the default
application font

fontName Font with which the control is drawn (the default null value indicates the control uses its
own default font)

fontSize Specifies the size of the control font when the control uses the default application font

fontStrikethru Specifies whether the control font is strikethrough when the control uses the default
application font

fontUnderline Specifies whether the control font is underlined when the control uses the default
application font

foreColor Contains the color to be used for drawing the text of the control

foreColorDisabled Contains the color to be used for drawing the text of the control when it is disabled

applyCondition
Type: Integer

Availability: Read or write at any time

The applyCondition property of the JadeSkinControl class determines whether the border area of the control
uses a skin.

The applyCondition property values are listed in the following table.

Class Constant Integer Value Description

ApplyCondition_3D 2 The skin is applied to the control but the border area of the skin
is displayed only if the borderStyle property for the control is set
to BorderStyle_3DSunken (2) or BorderStyle_3DRaised (3). If
the borderStyle property of the control is set to BorderStyle_
None (0), the skin is displayed without showing a border. If the
borderStyle property of the control is set to BorderStyle_Single
(1), the single border is displayed and the rest of the control is
displayed with a skin.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 59

EncycloSys2 - 2020.0.02

Class Constant Integer Value Description

ApplyCondition_All 0 The skin is applied to the control, including the border area
definition of the skin.

ApplyCondition_Border 1 The skin is applied to the control but the border area of the skin
is displayed only if the borderStyle property of the control is set
to a value other than BorderStyle_None (0).

The default value is ApplyCondition_Border (1) for BaseControl, Frame, JadeDockBar, JadeDockContainer,
Label, ListBox, OleControl, Picture, StatusLine, Table, and TextBox controls. For all other controls, the default
value is ApplyCondition_All (0). For example, you can define a skin for a Label control with a border and if the
applyCondition property of the skin is not ApplyCondition_All (0), the border displays depends on the value of
the borderStyle property of the label.

borderStyle
Type: Integer

Availability: Read or write at any time

The borderStyle property of the JadeSkinControl class contains the type of border to be drawn on the control
skin. The default value is BorderStyle_Images (4).

The borderStyle property values are listed in the following table.

JadeSkinArea Class Constant Integer Value Description

BorderStyle_3DRaised 3 Raised three-dimensional border (two pixels).

BorderStyle_3DSunken 2 Sunken three-dimensional border (two pixels).

BorderStyle_Images 4 Border is drawn using the supplied images of the
JadeSkinArea class. If there are no images, the control
does not have a border.

BorderStyle_None 0 No border is drawn.

BorderStyle_Single 1 Fixed single-line border.

If you set the borderStyle property to a value other than the default BorderStyle_Images (4), the defined border
is drawn and the border images defined in the JadeSkinArea class are ignored.

For more details about control borders, see the Window class borderStyle property and the JadeSkinControl
class applyCondition property.

focusBackColor
Type: Integer

Availability: Read or write at any time

The focusBackColor property of the JadeSkinControl class contains the background color of a control when the
control has focus or a child of the control has focus. You can use the focusBackColor and focusForeColor
properties to give the user a better visual prompt as to which control has focus.

When a skin is assigned to a control that uses this property, the value is used when the control has focus or a child
of the control has focus if all of the following are true.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 60

EncycloSys2 - 2020.0.02

The value is not Black (0)

The value of the equivalent focusBackColor property of the control is Black (0)

The equivalent backColor value of the control is the default for the control

Note If the control or the control's skin has a brush defined to erase the background area of the control, the
effective value of the focusBackColor property is used instead.

The default value of zero (Black) indicates that the property is always ignored when drawing the control.

JADE uses the RGB scheme for colors. The valid range for a normal RGB color is zero (0) through 16,777,215
(#FFFFFF). The high byte of a number in this range equals 0; the lower three bytes (from least to most significant
byte) determine the amount of red, green, and blue, respectively. The red, green, and blue components are each
represented by a number in the range 0 through 255 (#FF). If the high byte is 128, JADE uses the system colors,
as defined in the Control Panel of the user. To determine the Integer value of a color from the RGB values:

int:= RedValue + (GreenValue * 256) + (BlueValue * 256 * 256);

When the value of the focusBackColor property is not Black, that property value is used instead of the value of
the backColor property to erase the control area when the control has focus or a child of the control has focus.

Note If the control is transparent, the value of the focusBackColor property is not used. (The control area is not
erased as part of the painting of the control.)

The focusBackColor property is not relevant to all controls. The controls that make use of this property must be
capable of gaining the focus, they can be control parents, and they are not external controls such as .NET
controls.

The controls that use the focusBackColor property are:

BaseControl

Button

CheckBox

ComboBox

Folder

Frame

GroupBox

Sheet

ListBox

OptionButton

Picture

StatusLine

Table

TextBox

JadeMask

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 61

EncycloSys2 - 2020.0.02

JadeDockBar

JadeDockContainer

JadeEditMask

JadeRichText.

In addition, the focusBackColor property is defined in the Control class so that you can specify it for individual
controls in development and at run time.

focusForeColor
Type: Integer

Availability: Read or write at any time

The focusForeColor property of the JadeSkinControl class contains the foreground color used to display text
associated with a control when the control has focus or a child of the control has focus. You can use the
focusForeColor and focusBackColor properties to give the user a better visual prompt as to which control has
focus.

When a skin is assigned to a control that uses this property, the value is used when the control has focus or a child
of the control has focus if all of the following are true.

The value is not Black (0)

The value of the equivalent focusForeColor property of the control is Black (0)

The equivalent foreColor value of the control is the default for the control

The default value of zero (Black) indicates that the property is always ignored when drawing the control.

JADE uses the RGB scheme for colors. The valid range for a normal RGB color is zero (0) through 16,777,215
(#FFFFFF). The high byte of a number in this range equals 0; the lower three bytes (from least to most significant
byte) determine the amount of red, green, and blue, respectively. The red, green, and blue components are each
represented by a number in the range 0 through 255 (#FF). If the high byte is 128, JADE uses the system colors,
as defined in the Control Panel of the user. To determine the Integer value of a color from the RGB values:

int:= RedValue + (GreenValue * 256) + (BlueValue * 256 * 256);

When the value of the focusForeColor property is not Black, that property value is used instead of the value of
the foreColor property to draw the text associated with the control when the control has focus or a child of the
control has focus.

The focusForeColor property is not relevant to all controls. The controls that make use of this property must be
capable of gaining the focus, they can be control parents, and they are not external controls such as .NET
controls.

The controls that use the focusForeColor property are:

BaseControl

Button

CheckBox

ComboBox

Folder

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 62

EncycloSys2 - 2020.0.02

Frame

GroupBox

Sheet

ListBox

OptionButton

Picture

StatusLine

Table

TextBox

JadeMask

JadeDockBar

JadeDockContainer

JadeEditMask

JadeRichText.

In addition, the focusForeColor property is defined in the Control class so that you can specify it for individual
controls in development and at run time.

fontBold
Type: Boolean

Availability: Read or write at any time

The fontBold property of the JadeSkinControl class specifies whether the font style of the control skin is bold.
This property is defined for all subclasses of the JadeSkinControl class, but it has no meaning in some cases. For
example, a ScrollBar control has no text, and therefore the font is not relevant.

The settings for the fontBold property are listed in the following table.

Value Description

true Turns on the bold formatting

false Turns off the bold formatting (the default)

Use the fontBold property to format text in a control skin, either in the JADE development environment or at run
time by using logic.

If the fontName property is null (the default), the control continues to use its own defined font. The skin font is
ignored by any control that has its own defined font unless the skin of the control has been set by using the
Control class setSkin method.

Note The font uses the application font if the fontName property for the control skin is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 63

EncycloSys2 - 2020.0.02

fontItalic
Type: Boolean

Availability: Read or write at any time

The fontItalic property of the JadeSkinControl class specifies whether the font style of the control skin is italics.
This property is defined for all subclasses of the JadeSkinControl class, but it has no meaning in some cases. For
example, a ScrollBar control has no text, and therefore the font is not relevant.

The settings for the fontItalic property are listed in the following table.

Value Description

true Turns on the italic formatting

false Turns off the italic formatting (the default)

Use the fontItalic property to format text in a control skin, either in the JADE development environment or at run
time by using logic.

If the fontName property is null (the default), the control continues to use its own defined font. The skin font is
ignored by any control that has its own defined font unless the skin of the control has been set by using the
Control class setSkin method.

Note The font uses the application font if the fontName property for the control skin is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

fontName
Type: String[31]

Availability: Read or write at any time

The fontName property of the JadeSkinControl class contains the font used to display text in a control skin. This
property is defined for all subclasses of the JadeSkinControl class, but it has no meaning in some cases. For
example, a ScrollBar control has no text, and therefore the font is not relevant.

If the fontName property is null (the default), the control continues to use its own defined font. The skin font is
ignored by any control that has its own defined font unless the skin of the control has been set by using the
Control class setSkin method. At run time, the fontName property returns an empty string if the control is using
the default application font. Use app.fontName to obtain the actual font name.

The default value for the fontName property is determined by the system. Fonts that are available with JADE vary,
according to your system configuration, display devices, and printing devices.

Notes Changing the fontName property to an empty string causes the control skin to use the default font. The
fontBold and fontItalic properties revert to the font of the application.

If a control is using the default font for the application (that is, this property contains the null value (""), changing
any font property of the control causes the control to use a local font constructed by using the application font
values with the changed font attribute.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 64

EncycloSys2 - 2020.0.02

fontSize
Type: Real

Availability: Read or write at any time

The fontSize property of the JadeSkinControl class contains the size of the font used for text displayed in a
control skin. This property is defined for all subclasses of the JadeSkinControl class, but it has no meaning in
some cases. For example, a ScrollBar control has no text, and therefore the font is not relevant.

Use the fontSize property to format text in a control skin, either in the JADE development environment or at run
time by using logic.

Use the fontSize property to format text in the required font size. The default value (0) is determined by the system.
To change the default, specify the size of the font in points. If the fontName property is null (the default), the
control continues to use its own defined font. The skin font is ignored by any control that has its own defined font
unless the skin of the control has been set by using the Control class setSkin method.

Note The font uses the application font if the fontName property for the control skin is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

fontStrikethru
Type: Boolean

Availability: Read or write at any time

The fontStrikethru property of the JadeSkinControl class specifies whether the font style is strikethrough. This
property is defined for all subclasses of the JadeSkinControl class, but it has no meaning in some cases. For
example, a ScrollBar control has no text, and therefore the font is not relevant.

The settings for the fontStrikethru property are listed in the following table.

Value Description

true Turns on the strikethru formatting

false Turns off the strikethrough formatting (the default)

Use the fontStrikethru property to format text in a control skin, either in the JADE development environment or at
run time by using logic.

If the fontName property is null (the default), the control continues to use its own defined font. The skin font is
ignored by any control that has its own defined font unless the skin of the control has been set by using the
Control class setSkin method.

Note The font uses the application font if the fontName property for the control skin is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 65

EncycloSys2 - 2020.0.02

fontUnderline
Type: Boolean

Availability: Read or write at any time

The fontUnderline property of the JadeSkinControl class specifies whether the font style of the control skin is
underlined. This property is defined for all subclasses of the JadeSkinControl class, but it has no meaning in
some cases. For example, a ScrollBar control has no text, and therefore the font is not relevant.

The settings for the fontUnderline property are listed in the following table.

Value Description

true Turns on the underline formatting

false Turns off the underline formatting (the default)

Use the fontUnderline property to format text in a control skin, either in the JADE development environment or at
run time by using logic.

If the fontName property is null (the default), the control continues to use its own defined font. The skin font is
ignored by any control that has its own defined font unless the skin of the control has been set by using the
Control class setSkin method.

Note The font uses the application font if the fontName property for the control skin is set to Default during
painting or to an empty string at run time. The fonts that are available in JADE vary, according to your system
configuration, display devices, and printing devices.

foreColor
Type: Integer

Availability: Read or write at any time

The foreColor property of the JadeSkinControl class contains the foreground color used to draw text in a control
skin. JADE uses the RGB scheme for colors.

If the skin captionActiveForeColor is not the Default_Color default value, it is still ignored if the value of the
foreColor property of the control is anything other than its own standard default value.

The default value specified by the JadeSkinEntity class Default_Color constant indicates that a color is not set
and that the control uses its own defined value of the foreColor property.

foreColorDisabled
Type: Integer

Availability: Read or write at any time

The foreColorDisabled property of the JadeSkinControl class contains the foreground color used to draw text in
a disabled control skin. JADE uses the RGB scheme for colors.

The default value specified by the JadeSkinEntity class Default_Color constant indicates that a color is not set
and that the control draws its text as normal.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 66

EncycloSys2 - 2020.0.02

JadeSkinBaseControl Class
The JadeSkinBaseControl class holds the definition of a skin for subclasses of the BaseControl class.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinBrowseButtons Class
The JadeSkinBrowseButtons class holds the definition of a skin for BrowseButtons controls.

If a button image is not supplied for a non-up state, the up image is used. For painting to be successful, the skin
requires all of the up images to be supplied. For details about the properties defined in the
JadeSkinBrowseButtons class, see "JadeSkinBrowseButtons Properties", in the following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinBrowseButtons Properties
The properties defined in the JadeSkinBrowseButtons class are summarized in the following table.

Property Reference to the …

myFirstButton Full image and up, disabled, down, and rollover states of the First button

myLastButton Full image and up, disabled, down, and rollover states of the Last button

myNextButton Full image and up, disabled, down, and rollover states of the Next button

myPriorButton Full image and up, disabled, down, and rollover states of the Prior button

myFirstButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myFirstButton property of the JadeSkinBrowseButtons class contains a reference to the full image and the
up, disabled, down, and rollover states of the First button.

myLastButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myLastButton property of the JadeSkinBrowseButtons class contains a reference to the full image and the
up, disabled, down, and rollover states of the Last button.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 67

EncycloSys2 - 2020.0.02

myNextButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myNextButton property of the JadeSkinBrowseButtons class contains a reference to the full image and the
up, disabled, down, and rollover states of the Next button.

myPriorButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myPriorButton property of the JadeSkinBrowseButtons class contains a reference to the full image and the
up, disabled, down, and rollover states of the Prior button.

JadeSkinButton Class
The JadeSkinButton class holds the definition of a skin for Button controls.

Each state can consist of up to eight border segments and an inner image, an inner image only, or no images (in
which case the background color is used to fill the non-border area). These images are drawn inside any defined
border area. If you do not define a specific state, the myButtonUp image is used.

The following image on the left is an example of a button with a raised three-dimensional effect, and the image on
the right is an example of a button with a sunken three-dimensional effect.

For details about the properties defined in the JadeSkinButton class, see "JadeSkinButton Properties", in the
following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinButton Properties
The properties defined in the JadeSkinButton class are summarized in the following table.

Property Description

createRegionFromMask Specifies whether the JadeSkinWindow::myImageMask property is used to
create a region

myButtonDisabled Reference to the image drawn for the disabled button state

myButtonDown Reference to the image drawn for the down button state

myButtonFocus Reference to the image drawn for the focus button state

myButtonFocusDown Reference to the image drawn for the focus down button state

myButtonRollOver Reference to the image drawn for the rollover button state

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 68

EncycloSys2 - 2020.0.02

Property Description

myButtonRollUnder Reference to the image drawn for the roll-under button state

myButtonUp Reference to the image drawn for the up button state (the default state)

createRegionFromMask
Type: Boolean

Availability: Read or write at any time

The createRegionFromMask property of the JadeSkinButton class specifies whether the JadeSkinWindow
class myImageMask property is used to create a region for the Button control.

If you set this property to true, the myImageMask property is used to create a region to be applied to the control.

The default value of false indicates that the full rectangular button area is drawn using the skin. The region
defined by the myImageMask property then applies only to any mouse actions. For example, if the button is an
unusual shaped image on a background, the button then only displays the rollover and click images when the
mouse is over that special area.

myButtonDisabled
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myButtonDisabled property of the JadeSkinButton class contains a reference to the image drawn for the
disabled button state.

myButtonDown
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myButtonDown property of the JadeSkinButton class contains a reference to the image drawn for the down
button state.

myButtonFocus
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myButtonFocus property of the JadeSkinButton class contains a reference to the image drawn for the focus
button state.

myButtonFocusDown
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myButtonFocusDown property of the JadeSkinButton class contains a reference to the image drawn for the
focus down button state.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 69

EncycloSys2 - 2020.0.02

myButtonRollOver
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myButtonRollOver property of the JadeSkinButton class contains a reference to the image drawn for the
rollover button state.

myButtonRollUnder
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myButtonRollUnder property of the JadeSkinButton class contains a reference to the image drawn for the
roll-under button state that is a rollover state when the button is down.

myButtonUp
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myButtonUp property of the JadeSkinButton class contains a reference to the image drawn for the up
(default) button state.

JadeSkinCheckBox Class
The JadeSkinCheckBox class holds the definition of a skin for CheckBox controls.

If you do not supply a specific state, the appropriate up image is used. If the check box button image of the skin is
higher than the check box control using that skin, the check box control is enlarged in height to display the entire
button image.

If you do not supply the appropriate up image, the default check box image is drawn. For example, the following
image is an example of a CheckBox control with the Control class borderStyle property set to BorderStyle_
3DSunken and the Control class backBrush property set.

For details about the properties defined in the JadeSkinCheckBox class, see "JadeSkinCheckBox Properties", in
the following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 70

EncycloSys2 - 2020.0.02

JadeSkinCheckBox Properties
The properties defined in the JadeSkinCheckBox class are summarized in the following table.

Property Reference to the …

myFalseImage Full image and up, disabled, down, and rollover states of the false value of check boxes

myTrueImage Full image and up, disabled, down, and rollover states of the true value of check boxes

myFalseImage
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myFalseImage property of the JadeSkinCheckBox class contains a reference to the full image and the up,
disabled, down, and rollover states of the false value of check box controls.

myTrueImage
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myTrueImage property of the JadeSkinCheckBox class contains a reference to the full image and the up,
disabled, down, and rollover states of the true value of check box controls.

JadeSkinComboBox Class
The JadeSkinComboBox class holds the definition of a skin for ComboBox controls. When defining the skin for a
ComboBox control, note the following points.

A simple combo box is a text box followed by a list box covering the whole combo area.

A spin box ignores any defined buttons for the combo box skin. The skin of the vertical scroll bar for the
application is used to draw the spin box over the top of any defined border.

When the combo box has a text box portion, the text box allows only a solid background color and does not
successfully handle any defined brush.

A combo box skin consists of a border definition and a button that is placed on the right side of the border
area. The way in which it is painted depends on the defined border, as follows.

If the combo box skin has the JadeSkinControl class borderStyle property set to BorderStyle_
UseImages, the button image is centered vertically and offset from the right-hand edge of the combo
box by the value of the buttonRightOffset property, as shown in the following example.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 71

EncycloSys2 - 2020.0.02

If the combo box skin has the borderStyle property set to a value other than BorderStyle_UseImages,
the button is drawn inside whatever border is defined (against right inner edge of the border and
stretched vertically), as shown in the following example.

For details about the properties defined in the JadeSkinComboBox class, see "JadeSkinComboBox Properties",
in the following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinComboBox Properties
The properties defined in the JadeSkinComboBox class are summarized in the following table.

Property Description

buttonRightOffset Contains the number of pixels from the right edge to position the right
edge of the combo box button.

imgComboButtonDownRollOver Contains the extra button state image required for the combo box button
rollover state in the down position.

myComboButton Reference to the images for the up (normal), down (list box displayed),
rollover (when in the up position), and disabled states.

myListBoxSkin Reference to the skin used to draw the list box part of the combo box.
The list box is not drawn with a skin if the value of this property is null.

mySimpleComboTextBoxSkin Reference to the skin used to draw the text box part of a simple combo
box.

buttonRightOffset
Type: Integer

Availability: Read or write at any time

The buttonRightOffset property of the JadeSkinComboBox class contains the number of pixels from the right
edge to position the right edge of the combo box button.

This property is ignored if the value of the JadeSkinControl class borderStyle property is not BorderStyle_
Images (4).

The button is centered vertically.

imgComboButtonDownRollOver
Type: Binary

Availability: Read or write at any time

The imgComboButtonDownRollOver property of the JadeSkinComboBox class contains the extra button
rollover button state image for the combo box button in the down position.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 72

EncycloSys2 - 2020.0.02

myComboButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myComboButton property of the JadeSkinComboBox class contains a reference to the images for the up
(normal), down (list box displayed), rollover (when in the up position), and disabled states of the combo box
button.

myListBoxSkin
Type: JadeSkinListBox

Availability: Read or write at any time

The myListBoxSkin property of the JadeSkinComboBox class contains a reference to the skin used to draw the
list box area of the combo box.

If this property has a null value, the list box is not drawn with a skin.

mySimpleComboTextBoxSkin
Type: JadeSkinTextBox

Availability: Read or write at any time

The mySimpleComboTextBoxSkin property of the JadeSkinComboBox class contains a reference to the skin
used to draw the text box area of a simple combo box (that is, a text box followed by a list box covering the whole
combo box area).

JadeSkinFolder Class
The JadeSkinFolder class holds the definition of a skin for Folder controls.

For details about the properties defined in the JadeSkinFolder class, see "JadeSkinFolder Properties", in the
following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinFolder Properties
The properties defined in the JadeSkinFolder class are summarized in the following table.

Property Description

myTabsButton Reference to the skin used to draw the tabs of a folder with the tabsStyle
property set to TabsStyle_Buttons.

myTabScrollLeftButton Reference to the skin used to draw the left scroll button when not all sheet tabs
can be displayed

myTabScrollRightButton Reference to the skin used to draw the right scroll button when not all sheet tabs
can be displayed

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 73

EncycloSys2 - 2020.0.02

Property Description

tabActiveColor Contains the color used to draw the background area of active tabs.

tabHeight Contains the height of the tabs in a folder that uses the default tab height.

tabInactiveColor Contains the color used to draw the background area of inactive tabs.

tabScrollButtonBackColor Contains the background color of the left and right scroll buttons when not all
sheet tabs can be displayed

myTabsButton
Type: JadeSkinButton

Availability: Read or write at any time

The myTabsButton property of the JadeSkinFolder class contains a reference to the skin used to draw the tabs of
a folder that has the tabsStyle property set to TabsStyle_Buttons (1).

If this property has a null value, no skin is applied to tab buttons.

Note A button reference may be provided with a sheet skin (for details, see the JadeSkinSheet class
myTabButton property). A sheet skin button image overrides any button image provided by the folder.

Defining several sheet skins with different categories enables you to have different images and colors for the tabs
of a folder. To achieve this, set the Window::skinCategoryName property on each sheet to match the category of
the sheet skin that you require.

myTabScrollLeftButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myTabScrollLeftButton property of the JadeSkinFolder class contains a reference to the skin used to draw
the left scroll button when not all sheet tabs can be displayed. If this property has a null value, no skin is applied to
tab buttons.

When not all sheet tabs can be displayed in a folder, tab scroll buttons are displayed as follows.

The left arrow button is displayed on the left of the tabs line.

The sheet tab that is farthest left is positioned to the right of the arrow.

The right arrow is displayed at the end of the tab line, possibly obscuring part of the last sheet tab that is
displayed.

The arrows are drawn bordered with a black box and the background color is the value of the backColor
property of the folder. Each box is the height of the tab line. The tabScrollButtonBackColor property
enables you to specify an alternative background color of the left scroll button area when not all sheet tabs
can be displayed.

If a folder skin does not specify a button image, the appropriate default arrow is displayed.

When the button image is set, the width of the normal state image defines the width of the button area.

If a button image is not defined, the value of the tabScrollButtonBackColor property is ignored.

The button image is vertically centered in the tab line.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 74

EncycloSys2 - 2020.0.02

Applies to Version: 2020.0.01 and higher

myTabScrollRightButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myTabScrollRightButton property of the JadeSkinFolder class contains a reference to the skin used to draw
the right scroll button when not all sheet tabs can be displayed. If this property has a null value, no skin is applied
to tab buttons.

When not all sheet tabs can be displayed in a folder, tab scroll buttons are displayed as follows.

The left arrow button is displayed on the left of the tabs line.

The sheet tab that is farthest left is positioned to the right of the arrow.

The right arrow is displayed at the end of the tab line, possibly obscuring part of the last sheet tab that is
displayed.

The arrows are drawn bordered with a black box and the background color is the value of the backColor
property of the folder. Each box is the height of the tab line. The tabScrollButtonBackColor property
enables you to specify an alternative background color of the right scroll button area when not all sheet tabs
can be displayed.

If a folder skin does not specify a button image, the appropriate default arrow is displayed.

When the button image is set, the width of the normal state image defines the width of the button area.

If a button image is not defined, the value of the tabScrollButtonBackColor property is ignored.

The button image is vertically centered in the tab line.

Applies to Version: 2020.0.01 and higher

tabActiveColor
Type: Integer

Availability: Read or write at any time

The tabActiveColor property of the JadeSkinFolder class contains the color used to draw the background area of
the active tab. JADE uses the RGB scheme for colors. The default value specified by the JadeSkinEntity class
Default_Color constant indicates that the normal color of the folder is used.

The tabActiveColor property values for the skin are ignored for any sheet that has a backColor property value
other than Color_3Dface, because the tab of the sheet is then drawn using that color.

tabHeight
Type: Integer

Availability: Read or write at any time

The tabHeight property of the JadeSkinFolder class contains the height of the tabs in a folder that uses the
default tab height determination (that is, the Folder class tabsHeight property is set to the default value of 0).

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 75

EncycloSys2 - 2020.0.02

If the height of the tabs for the folder has been specifically set, the tabHeight property of the skin is ignored. By
default, the tabHeight property is set to zero (0), indicating that the default height is the calculated text height
using the font of the folder. If the tabHeight property is set to a positive value, each tab is drawn the specified
number of pixels high.

Note If the tabHeight property is zero (0) and a button image is provided (by the JadeSkinSheet class
myTabButton property), the height of the tabs is incremented by the height of the top and bottom border areas of
the button and by the height of its skin top and bottom images (that is, the JadeSkinButton class myButtonUp
property imgBorderBottomStrip and imgBorderTopStrip values).

tabInactiveColor
Type: Integer

Availability: Read or write at any time

The tabInactiveColor property of the JadeSkinFolder class contains the color used to draw the background area
of the inactive tab. JADE uses the RGB scheme for colors. The default value specified by the JadeSkinEntity
class Default_Color constant indicates that the normal color of the folder is used.

The values of the tabInactiveColor property for the skin are ignored for any sheet that has a backColor property
value other than Color_3Dface, because the tab of the sheet is then drawn using that color.

tabScrollButtonBackColor
Type: Integer

Availability: Read or write at any time

The tabScrollButtonBackColor property of the JadeSkinFolder class contains the background color of the left
and right scroll buttons when not all sheet tabs can be displayed in the folder.

When a skin is assigned to a scroll button, the left and right tab arrows are drawn bordered with a black box and
the background color is the value of the backColor property of the folder, by default.

If a button image is not defined, the value of the tabScrollButtonBackColor property is ignored.

If the value of this property of a folder skin is:

Not the default (that is, #80000000), the background of the button area is drawn using the specified color

The default value (#80000000), the background of the tab area is drawn using the background color of the
parent of the folder.

Applies to Version: 2020.0.01 and higher

JadeSkinFrame Class
The JadeSkinFrame class holds the definition of a skin for Frame controls.

Inherits From: JadeSkinControl

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 76

EncycloSys2 - 2020.0.02

JadeSkinGroupBox Class
The JadeSkinGroupBox class holds the definition of a skin for GroupBox controls. As a group box control has no
non-client area (border area) and the entire skin image is drawn in the client area, children may be positioned
anywhere within that control and cover the drawn images.

The group box skin images are drawn over the entire control area. The drawing of the caption depends on
whether the skin definition includes a skin label reference (myLabelSkin). If there is no skin label reference, the
caption is drawn transparently over the skin image. If the skin references a label definition, that label skin is drawn
on top of the group box skin image. The label is sized so that there is a three-pixel gap from the border area of the
label to the left, right, top, and bottom of the caption. The caption or the label is drawn at the position indicated by
the captionPosition, captionPositionLeftOffset, and captionPositionTopOffset properties.

The following image is an example of two group boxes. The example at the left has only the top and right border
strips set.

For details about the constants and properties defined in the JadeSkinGroupBox class, see "JadeSkinGroupBox
Class Constants" and "JadeSkinGroupBox Properties", in the following subsections.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinGroupBox Class Constants
The constants provided by the JadeSkinGroupBox class are listed in the following table.

Constant Integer Value Description

CaptionPosition_Left_Top 0 Left-justified at the top

CaptionPosition_Left_Middle 1 Left-justified and centered vertically

CaptionPosition_Left_Bottom 2 Left-justified at the bottom

CaptionPosition_Right_Top 3 Right-justified at the top

CaptionPosition_Right_Middle 4 Right-justified and centered vertically

CaptionPosition_Right_Bottom 5 Right-justified at the bottom

CaptionPosition_Center_Top 6 Centered horizontally at the top

CaptionPosition_Center_Middle 7 Centered horizontally and vertically

CaptionPosition_Center_Bottom 8 Centered horizontally at the bottom

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 77

EncycloSys2 - 2020.0.02

JadeSkinGroupBox Properties
The properties defined in the JadeSkinGroupBox class are summarized in the following table.

Property Contains…

captionPosition The position of the caption.

captionPositionLeftOffset The value that is added to the calculated left position resulting from the
captionPosition property value.

captionPositionTopOffset The value that is added to the calculated top position resulting from the
captionPosition property value.

myLabelSkin A reference to the JadeSkinLabel class.

captionPosition
Type: Integer

Availability: Read or write at any time

The captionPosition property of the JadeSkinGroupBox class contains the position of the caption (or the value of
the myLabelSkin property) using the constant values listed in the following table.

Class Constant Integer Value Description

CaptionPosition_Left_Top 0 Left-justified at the top (the default)

CaptionPosition_Left_Middle 1 Left-justified and centered vertically

CaptionPosition_Left_Bottom 2 Left-justified at the bottom

CaptionPosition_Right_Top 3 Right-justified at the top

CaptionPosition_Right_Middle 4 Right-justified and centered vertically

CaptionPosition_Right_Bottom 5 Right-justified at the bottom

CaptionPosition_Center_Top 6 Centered horizontally at the top

CaptionPosition_Center_Middle 7 Centered horizontally and vertically

CaptionPosition_Center_Bottom 8 Centered horizontally at the bottom

captionPositionLeftOffset
Type: Integer

Availability: Read or write at any time

The captionPositionLeftOffset property of the JadeSkinGroupBox class contains the value that is added to the
calculated left position resulting from the captionPosition property value.

For example, to position the caption nine pixels from the top right of the group box control, set the value of the
captionPositionLeftOffset to -9 and the value of the captionPosition property to CaptionPosition_Right_Top (3).

The value of the captionPositionLeftOffset property is ignored if the position causes the caption to fall outside the
group box area.

The default value of zero (0) indicates that the left position of the group box caption is not offset.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 78

EncycloSys2 - 2020.0.02

captionPositionTopOffset
Type: Integer

Availability: Read or write at any time

The captionPositionTopOffset property of the JadeSkinGroupBox class contains the value that is added to the
calculated top position resulting from the captionPosition property value.

For example, to position the caption nine pixels from the bottom right of the group box control, set the value of the
captionPositionTopOffset to -9 and the value of the captionPosition property to CaptionPosition_Right_Bottom
(5).

The value of the captionPositionTopOffset property is ignored if the position causes the caption to fall outside the
group box area.

The default value of zero (0) indicates that the top position of the group box caption is not offset.

myLabelSkin
Type: JadeSkinLabel

Availability: Read or write at any time

The myLabelSkin property of the JadeSkinGroupBox class contains a reference to the JadeSkinLabel class.

If this property is set, this skin is used to draw the text as though it were a label so that the text portion of the group
box can have its own border and background color, brush, or image.

If this property has a null value, no skin is applied to the group box.

JadeSkinHScroll Class
The JadeSkinHScroll class holds the definition of a skin for HScroll subclasses of the ScrollBar control.

Note This skin is also used for drawing the horizontal scroll bar for any control or form in the application.

The height of the border area and the height of the myLeftButton.imgUp image determine the height of the scroll
bar. For a scroll bar control, the image is stretched vertically to fit the area inside the borders, as shown in the
example in the following image.

If you do not supply the image for a specific state, the appropriate up image is used. The default scroll button
image is drawn if you do not supply the up image.

For details about the properties defined in the JadeSkinHScroll class, see "JadeSkinHScroll Properties", in the
following subsection.

Inherits From: JadeSkinScrollBar

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 79

EncycloSys2 - 2020.0.02

JadeSkinHScroll Properties
The properties defined in the JadeSkinHScroll class are summarized in the following table.

Property Reference to the image used to draw the …

myLeftButton Left button of a horizontal scroll bar in its various states (the button is placed inside the
scroll bar borders)

myRightButton Right button of a horizontal scroll bar in its various states (the button is placed inside the
scroll bar borders)

myLeftButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myLeftButton property of the JadeSkinHScroll class contains a reference to the image used to draw the left
button of a horizontal scroll bar in its up, disabled, down, and rollover states. (The button is placed inside the scroll
bar borders.)

myRightButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myRightButton property of the JadeSkinHScroll class contains a reference to the image used to draw the
right button of a horizontal scroll bar in its up, disabled, down, and rollover states. (The button is placed inside the
scroll bar borders.)

JadeSkinJadeDockBar Class
The JadeSkinJadeDockBar class holds the definition of a skin for JadeDockBar controls.

Inherits From: JadeSkinJadeDockBase

Inherited By: (None)

JadeSkinJadeDockBase Class
The JadeSkinJadeDockBase class is the abstract class that defines elements of a skin for docking controls,
described in the JadeDockBase class, in Chapter 2.

For details about the properties defined in the JadeSkinJadeDockBase class, see "JadeSkinJadeDockBase
Properties", in the following subsection.

Inherits From: JadeSkinControl

Inherited By: JadeSkinJadeDockBar, JadeSkinJadeDockContainer

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 80

EncycloSys2 - 2020.0.02

JadeSkinJadeDockBase Properties
The properties defined in the JadeSkinJadeDockBase class are summarized in the following table.

Property Contains the image drawn for a …

myHorizontalGripBar Horizontal grip bar for a vertically aligned docking control

myHorizontalResizeBar Horizontal resize bar drawn on the bottom border of a docking control

myVerticalGripBar Vertical grip bar for a horizontally aligned docking control

myVerticalResizeBar Vertical resize bar drawn on the right border of a docking control

myHorizontalGripBar
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myHorizontalGripBar property of the JadeSkinJadeDockBase class contains a reference to the image
drawn horizontally for the grip bar of a vertically aligned docking control (that is, the grip bar is the two horizontal
lines at the top of the image).

The image is stretched to fit the width of the docking control. The standard docking control grip is drawn if you do
not supply an image.

myHorizontalResizeBar
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myHorizontalResizeBar property of the JadeSkinJadeDockBase class contains a reference to the image
drawn horizontally for a resize bar drawn on the bottom border of a vertical docking control. In the previous
example, the horizontal resize bar is the dark border at the bottom of the image. The image is stretched to fit the
width of the docking control. The standard docking control resize bar is drawn if you do not supply an image.

myVerticalGripBar
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myVerticalGripBar property of the JadeSkinJadeDockBase class contains a reference to the image drawn
vertically for the grip bar for a horizontally aligned docking control (that is, the grip bar is the two vertical lines at
the left of the image).

The image is stretched to fit the height of the docking control. The standard docking control grip is drawn if you do
not supply an image.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 81

EncycloSys2 - 2020.0.02

myVerticalResizeBar
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myVerticalResizeBar property of the JadeSkinJadeDockBase class contains a reference to the image
drawn vertically for a resize bar drawn on the right border of a horizontal docking control. In the previous example,
the vertical resize bar is the dark border at the right of the image.

The image is stretched to fit the height of the docking control. The standard docking control resize bar is drawn if
you do not supply an image.

JadeSkinJadeDockContainer Class
The JadeSkinJadeDockContainer class holds the definition of a skin for JadeDockContainer controls.

Inherits From: JadeSkinJadeDockBase

Inherited By: (None)

JadeSkinJadeEditMask Class
The JadeSkinJadeEditMask class holds the definition of a skin for JadeEditMask controls.

Note The background area of a JadeEditMask control outside of the text box children is always drawn using the
value of the backColor property of its parent and is unaffected by the skin.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinJadeMask Class
The JadeSkinJadeMask class holds the definition of a skin for JadeMask controls.

For details about the property defined in the JadeSkinJadeMask class, see "JadeSkinJadeMask Property", in the
following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinJadeMask Property
The property defined in the JadeSkinJadeMask class is summarized in the following table.

Property Reference to the …

myButtonSkin Skin used to draw any JadeMask controls that will be treated like a button (with no picture
images defined)

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 82

EncycloSys2 - 2020.0.02

myButtonSkin
Type: JadeSkinButton

Availability: Read or write at any time

The myButtonSkin property of the JadeSkinJadeMask class contains a reference to the image used to draw any
JadeMask controls that are treated like a button (with no defined picture images).

If the value of this property is null, JadeMask controls treated like a button are not skinned.

JadeSkinJadeRichText Class
The JadeSkinJadeRichText class holds the definition of a skin for JadeRichText controls.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinLabel Class
The JadeSkinLabel class holds the definition of a skin for Label controls.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinListBox Class
The JadeSkinListBox class holds the definition of a skin for ListBox controls.

Note The images defined in these properties replace the equivalent image only if the standard JADE image has
not been replaced in the list box.

For details about the properties defined in the JadeSkinListBox class, see "JadeSkinListBox Properties", in the
following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinListBox Properties
The properties defined in the JadeSkinListBox class are summarized in the following table.

Property Contains the …

alternatingRowBackColor Specifies an alternate entry background color

alternatingRowBackColorCount Specifies the number of visible list box entries at which the alternating
background color of each visible entry is displayed

imgPictureClosed Closed image that replaces a list box with the hasPictures or
hasPlusMinus property set to true

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 83

EncycloSys2 - 2020.0.02

Property Contains the …

imgPictureLeaf Leaf image that replaces a list box with the hasPictures or
hasPlusMinus property set to true

imgPictureMinus Minus image that replaces a list box with the hasPictures or
hasPlusMinus property set to true

imgPictureOpen Open image that replaces a list box with the hasPictures or
hasPlusMinus property set to true

imgPicturePlus Plus image that replaces a list box with the hasPictures or
hasPlusMinus property set to true

selectionColor Specifies the background color of the selected item in a skinned list box

selectionColorText Specifies the text color of the selected item in a skinned list box

alternatingRowBackColor
Type: Integer

Availability: Read or write at any time

The alternatingRowBackColor property of the JadeSkinListBox class and JadeSkinTable class specifies an
alternate row background color. By default, alternating list box and table rows have a background color of Azure.
When you set this property to a value other than Azure, the specified value is used as the default background
color of each alternate non-fixed row.

If the value of the alternatingRowBackColorCount property is 2, the first, third, and so on non-fixed row default
background color is the backColor property value of the list box or table sheet. The second, fourth, and so on
non-fixed row default background color is the alternatingRowBackColor property value when it is not the default
value (otherwise the backColor property value of the list box or sheet is used).

If the value of the backColor property of a list entry, cell, row, or column is specifically set and it is not #800000000
(that is, transparent), the default value of the entry or cell is ignored and the specific value of the backColor
property is used.

Note When a list entry or cell is drawn, the backColor property value is overridden by any specified backColor
value set for that list entry, cell, its row, or its column.

Note that when the list box or table is scrolled, the colors do not move with a row. The color scheme is applied to
the rows, starting with the first visible non-fixed row; for example:

table1.accessSheet(1).alternatingRowBackColorCount := 2;
table1.accessSheet(1).alternatingRowBackColor := Azure;

listbox1.alternatingRowBackColorCount := 3;
listbox1.alternatingRowBackColor := DarkGray;

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 84

EncycloSys2 - 2020.0.02

alternatingRowBackColorCount
Type: Integer

Availability: Read or write at any time

The alternatingRowBackColorCount property of the JadeSkinListBox class and JadeSkinTable class specifies
the number of list box or table rows at which the alternating background color of each visible list entry row,
non-fixed row, and non-fixed cell is displayed.

If the value of the alternatingRowBackColorCount property is:

Less than or equal to zero (0), the background color of each list entry or non-fixed cell defaults to the value of
the backColor property of the list box or sheet, or of the list box or table itself if the value of the sheet is not
specifically set. The alternatingRowBackColor property value is ignored.

Greater than zero (0), for each visible alternatingRowBackColorCount list entry, non-fixed row, and
non-fixed cell, the background color defaults to the value of the alternatingRowBackColor property.

For example, if the count is 2, the first, third, fifth, and so on, list box entries, non-fixed rows, and the non-fixed cells
in that row default to the value of the backColor property of the list box or sheet, while the second, fourth, sixth,
and so on list entries, non-fixed rows, and the non-fixed cells in that row default to the value of the
alternatingRowBackColor property.

If the value of the backColor property of a list entry, cell, row, or column is specifically set and it is not #800000000
(that is, transparent), the default value of the row or cell is ignored and the specific value of the backColor
property is used.

Note that when the list box or table is scrolled, the colors do not move with a row. The color scheme is applied to
the rows, starting with the first visible non-fixed row; for example:

table1.accessSheet(1).alternatingRowBackColorCount := 2;
table1.accessSheet(1).alternatingRowBackColor := Azure;

listbox1.alternatingRowBackColorCount := 3;
listbox1.alternatingRowBackColor := DarkGray;

Applies to Version: 2018.0.01 and higher

imgPictureClosed
Type: Binary

Availability: Read or write at any time

The imgPictureClosed property of the JadeSkinListBox class contains the closed image that replaces a list box
with the ListBox class hasPictures or hasPlusMinus property set to true.

The defined image replaces the equivalent image only if the standard JADE image has not been replaced in the
list box.

imgPictureLeaf
Type: Binary

Availability: Read or write at any time

The imgPictureLeaf property of the JadeSkinListBox class contains the leaf image that replaces a list box with
the ListBox class hasPictures or hasPlusMinus property set to true.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 85

EncycloSys2 - 2020.0.02

The defined image replaces the equivalent image only if the standard JADE image has not been replaced in the
list box.

imgPictureMinus
Type: Binary

Availability: Read or write at any time

The imgPictureMinus property of the JadeSkinListBox class contains the minus image that replaces a list box
with the ListBox class hasPictures or hasPlusMinus property set to true.

The defined image replaces the equivalent image only if the standard JADE image has not been replaced in the
list box.

imgPictureOpen
Type: Binary

Availability: Read or write at any time

The imgPictureOpen property of the JadeSkinListBox class contains the open image that replaces a list box with
the ListBox class hasPictures or hasPlusMinus property set to true.

The defined image replaces the equivalent image only if the standard JADE image has not been replaced in the
list box.

imgPicturePlus
Type: Binary

Availability: Read or write at any time

The imgPicturePlus property of the JadeSkinListBox class contains the plus image that replaces a list box with
the ListBox class hasPictures or hasPlusMinus property set to true.

The defined image replaces the equivalent image only if the standard JADE image has not been replaced in the
list box.

selectionColor
Type: Integer

Availability: Read or write at any time

The selectionColor property of the JadeSkinListBox class and JadeSkinTable class specifies the background
color that is used to draw a selected item in a skinned list box or table. The default value of #80000000 (that is,
transparent) means that the default selection color defined by Windows is used.

If the value of the backColor property of a list entry, cell, row, or column is specifically set and it is not #800000000
(that is, transparent), the default value of the selected list item, cell, row, or column is ignored and the specific
value of the backColor property is used.

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 86

EncycloSys2 - 2020.0.02

selectionColorText
Type: Integer

Availability: Read or write at any time

The selectionColorText property of the JadeSkinListBox class and JadeSkinTable class specifies the text color
of a selected item in a skinned list box or table. The default value of #80000000 (that is, transparent) means that
the default selection color defined by Windows is used.

If the value of the foreColor property of a selected list entry, cell, row, or column is specifically set and it is not
#80000000, the default value of the list item, cell, row, or column text is ignored and the specific value of the
foreColor property is used.

Applies to Version: 2018.0.01 and higher

JadeSkinOleControl Class
The JadeSkinOleControl class holds the definition of a skin for OleControl controls.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinOptionButton Class
The JadeSkinOptionButton class holds the definition of a skin for OptionButton controls. If a specific state is not
supplied, the appropriate up image is used. If the up image is not supplied, the default option button image is
drawn.

If the option button image of the skin is higher than the option button control using that skin, the option button
control is enlarged in height to display the entire image.

For details about the properties defined in the JadeSkinOptionButton class, see "JadeSkinOptionButton
Properties", in the following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinOptionButton Properties
The properties defined in the JadeSkinOptionButton class are summarized in the following table.

Property Reference to the …

myFalseImage Full image and up, disabled, down, and rollover states of the false value of option buttons

myTrueImage Full image and up, disabled, down, and rollover states of the true value of option buttons

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 87

EncycloSys2 - 2020.0.02

myFalseImage
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myFalseImage property of the JadeSkinOptionButton class contains a reference to the full image and the
up, disabled, down, and rollover states of the false value of OptionButton controls.

If a specific state is not supplied, the appropriate up image is used. If the up image is not supplied, the default
option button image is drawn.

myTrueImage
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myTrueImage property of the JadeSkinOptionButton class contains a reference to the full image and the up,
disabled, down, and rollover states of the true value of OptionButton controls. If a specific state is not supplied,
the appropriate up image is used. If the up image is not supplied, the default option button image is drawn.

JadeSkinPicture Class
The JadeSkinPicture class holds the definition of a skin for Picture controls.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinProgressBar Class
The JadeSkinProgressBar class holds the definition of a skin for ProgressBar controls. For details about the
property defined in the JadeSkinProgressBar class, see "JadeSkinProgressBar Property", in the following
subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinProgressBar Property
The property defined in the JadeSkinProgressBar class is summarized in the following table.

Property Reference to the …

myProgressImage Skin used to draw the completed progress part of ProgressBar controls.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 88

EncycloSys2 - 2020.0.02

myProgressImage
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myProgressImage property of the JadeSkinProgressBar class contains a reference to the image used to
draw the completed progress part of ProgressBar controls. The progress bar is initially drawn by using the
JadeSkinControl definition for the border and incomplete parts of the progress bar.

The progress percentage portion is then drawn by using the myProgressImage property definition. If the value of
the myProgressImage property is null, the progress percentage portion is drawn by using the value of the
foreColor property of the JadeSkinControl superclass. The percentage text is drawn centered in the control,
using the value of the backColor property for any part of the text over the progress percentage portion and the
value of the foreColor property for any text over the other area.

JadeSkinScrollBar Class
The JadeSkinScrollBar class is the abstract class that contains information common to vertical and horizontal
ScrollBar controls. For details about the properties defined in the JadeSkinScrollBar class, see
"JadeSkinScrollBar Properties", in the following section.

Inherits From: JadeSkinControl

Inherited By: JadeSkinHScroll, JadeSkinVScroll

JadeSkinScrollBar Properties
The properties defined in the JadeSkinScrollBar class are summarized in the following table.

Property Description

imgHighLightBrush Contains the image for the brush used when the user clicks on the scroll bar
stem itself (that is, not the thumb track or the arrows).

myThumbTrack Reference to the JadeSkinWindowStateImage object that defines the thumb
track in the up position.

myThumbTrackDisabled Reference to the JadeSkinWindowStateImage object that defines the disabled
thumb track.

myThumbTrackDown Reference to the JadeSkinWindowStateImage object that defines the clicked
thumb track.

myThumbTrackRollOver Reference to the JadeSkinWindowStateImage object that defines how to the
thumb track in the rollover state.

imgHighLightBrush
Type: Binary

Availability: Read or write at any time

The imgHighLightBrush property of the JadeSkinScrollBar class contains the image for the brush used when the
user clicks on the scroll bar stem itself (that is, not the thumb track or the arrows).

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 89

EncycloSys2 - 2020.0.02

When the mouse is down in this situation, that portion of the scroll bar is highlighted. If you supply this brush
image, highlighting is drawn using this brush, or it is drawn with a black brush if you do not supply a highlight
brush.

myThumbTrack
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myThumbTrack property of the JadeSkinScrollBar class contains a reference to the
JadeSkinWindowStateImage object that defines the thumb track in the up position. If this property has a null
value, the thumb track is drawn as normal.

myThumbTrackDisabled
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myThumbTrackDisabled property of the JadeSkinScrollBar class contains a reference to the
JadeSkinWindowStateImage object that defines the disabled thumb track.

If this property has a null value, the thumb track is drawn using the value of the myThumbTrack property.

myThumbTrackDown
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myThumbTrackDown property of the JadeSkinScrollBar class contains a reference to the
JadeSkinWindowStateImage object that defines the clicked thumb track.

If this property has a null value, the thumb track is drawn using the value of the myThumbTrack property.

myThumbTrackRollOver
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myThumbTrackRollOver property of the JadeSkinScrollBar class contains a reference to the
JadeSkinWindowStateImage object that defines how to draw the thumb track in the rollover state.

If this property has a null value, the thumb track is drawn using the value of the myThumbTrack property.

JadeSkinSheet Class
The JadeSkinSheet class holds the definition of a skin for Sheet controls.

For details about the property defined in the JadeSkinSheet class, see "JadeSkinSheet Property", in the following
subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 90

EncycloSys2 - 2020.0.02

JadeSkinSheet Property
The property defined in the JadeSkinSheet class is summarized in the following table.

Property Description

myTabButton Contains a reference to the skin used to draw the tab of a folder.

myTabButton
Type: JadeSkinButton

Availability: Read or write at any time

The myTabButton property of the JadeSkinSheet class contains a reference to the skin used to draw the tab of a
folder for a sheet that has the tabsStyle property set to TabsStyle_Buttons (1). If this property is null, any skin
button of the folder is used instead. If this property is not null, any skin button setting of the folder is ignored.

Note The size of the tab area of a folder is defined by using the JadeSkinFolder skin type. Any tab defined for a
sheet has no impact on the determination of the tab height.

The main use of defining a button skin for a sheet is to enable each tab of a folder to be drawn with different
images and colors. To achieve this, define several sheet skins with different categories and then set the
Window::skinCategoryName property on the sheets that you want to use each specific sheet skin.

JadeSkinStatusLine Class
The JadeSkinStatusLine class holds the definition of a skin for StatusLine controls.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinTable Class
The JadeSkinTable class holds the definition of a skin for Table controls.

For details about the properties defined in the JadeSkinTable class, see "JadeSkinTable Properties", in the
following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinTable Properties
The properties defined in the JadeSkinTable class are summarized in the following table.

Property Description

alternatingRowBackColor Specifies an alternate row background color

alternatingRowBackColorCount Specifies the number of table rows at which the alternating background
color of each visible non-fixed row and non-fixed cell is displayed

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 91

EncycloSys2 - 2020.0.02

Property Description

fixed3D Specifies whether the table fixed cells are drawn in three-dimensional
style

fixedColumnsBackColor Specifies the color with which the background of fixed columns is drawn

fixedColumnsForeColor Specifies the color with which the foreground of fixed columns is drawn

fixedRowColorHasPrecedence Specifies whether cells that are in both a fixed row and a fixed column
are drawn using the values of the fixedRowsBackColor and
fixedRowsForeColor properties

fixedRowsBackColor Specifies the color with which the background of fixed rows is drawn

fixedRowsForeColor Specifies the color with which the foreground of fixed rows is drawn

myCheckBoxSkin Specifies the check box skin that is used when drawing a cell that has
the Table class inputType property set to InputType_CheckBox or a
cell control set to a CheckBox control

selectionColor Specifies the background color of the selected item in a skinned table

selectionColorText Specifies the text color of the selected item in a skinned table

tabActiveColor Contains the color used to draw the background area of the active tab.

tabInactiveColor Contains the color used to draw the background area of inactive tabs.

alternatingRowBackColor
Type: Integer

Availability: Read or write at any time

The alternatingRowBackColor property of the JadeSkinListBox class and JadeSkinTable class specifies an
alternate row background color. By default, alternating list box and table rows have a background color of Azure.
When you set this property to a value other than Azure, the specified value is used as the default background
color of each alternate non-fixed row.

If the value of the alternatingRowBackColorCount property is 2, the first, third, and so on non-fixed row default
background color is the backColor property value of the list box or table sheet. The second, fourth, and so on
non-fixed row default background color is the alternatingRowBackColor property value when it is not the default
value (otherwise the backColor property value of the list box or sheet is used).

If the value of the backColor property of a list entry, cell, row, or column is specifically set and it is not #800000000
(that is, transparent), the default value of the entry or cell is ignored and the specific value of the backColor
property is used.

Note When a list entry or cell is drawn, the backColor property value is overridden by any specified backColor
value set for that list entry, cell, its row, or its column.

Note that when the list box or table is scrolled, the colors do not move with a row. The color scheme is applied to
the rows, starting with the first visible non-fixed row; for example:

table1.accessSheet(1).alternatingRowBackColorCount := 2;
table1.accessSheet(1).alternatingRowBackColor := Azure;

listbox1.alternatingRowBackColorCount := 3;
listbox1.alternatingRowBackColor := DarkGray;

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 92

EncycloSys2 - 2020.0.02

alternatingRowBackColorCount
Type: Integer

Availability: Read or write at any time

The alternatingRowBackColorCount property of the JadeSkinListBox class and JadeSkinTable class specifies
the number of list box or table rows at which the alternating background color of each visible list entry row,
non-fixed row, and non-fixed cell is displayed.

If the value of the alternatingRowBackColorCount property is:

Less than or equal to zero (0), the background color of each list entry or non-fixed cell defaults to the value of
the backColor property of the list box or sheet, or of the list box or table itself if the value of the sheet is not
specifically set. The alternatingRowBackColor property value is ignored.

Greater than zero (0), for each visible alternatingRowBackColorCount list entry, non-fixed row, and
non-fixed cell, the background color defaults to the value of the alternatingRowBackColor property.

For example, if the count is 2, the first, third, fifth, and so on, list box entries, non-fixed rows, and the non-fixed cells
in that row default to the value of the backColor property of the list box or sheet, while the second, fourth, sixth,
and so on list entries, non-fixed rows, and the non-fixed cells in that row default to the value of the
alternatingRowBackColor property.

If the value of the backColor property of a list entry, cell, row, or column is specifically set and it is not #800000000
(that is, transparent), the default value of the row or cell is ignored and the specific value of the backColor
property is used.

Note that when the list box or table is scrolled, the colors do not move with a row. The color scheme is applied to
the rows, starting with the first visible non-fixed row; for example:

table1.accessSheet(1).alternatingRowBackColorCount := 2;
table1.accessSheet(1).alternatingRowBackColor := Azure;

listbox1.alternatingRowBackColorCount := 3;
listbox1.alternatingRowBackColor := DarkGray;

Applies to Version: 2018.0.01 and higher

fixed3D
Type: Integer

Availability: Read or write at any time

The fixed3D property of the JadeSkinTable class specifies whether the skinned table fixed cells are drawn in
three-dimensional style. The property can be set to one of the following values.

Integer Value Description

0 (the default) A table that uses this skin does not draw the fixed cells as 3D elements.
(The value of the Table class fixed3D property value is ignored.)

1 (true) A table that uses this skin draws the fixed cells as 3D elements. (The value
of the Table class fixed3D property is ignored.)

2 (use the Table control value) Ignores this skin property and uses the value of the Table class fixed3D
property.

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 93

EncycloSys2 - 2020.0.02

fixedColumnsBackColor
Type: Integer

Availability: Read or write at any time

The fixedColumnsBackColor property of the JadeSkinTable class specifies the color with which the background
of fixed columns is drawn.

The default value of #80000000 means that this property is ignored. The background color of fixed columns for
any other value is drawn using the specified value of this property.

Note If a fixed cell has a specific background color set via a cell, row, column Table class backColor property,
the skin background color value specified by the fixedColumnsBackColor property is ignored.

Applies to Version: 2018.0.01 and higher

fixedColumnsForeColor
Type: Integer

Availability: Read or write at any time

The fixedColumnsForeColor property of the JadeSkinTable class specifies the color with which the text of fixed
columns is drawn. The default value of #80000000 means that this property is ignored. The foreground color of
fixed columns for any other value is drawn using the specified value of this property.

Note If a fixed cell has a specific foreground color set via a cell, row, column Table class foreColor property, the
skin background color value specified by the fixedColumnsForeColor property is ignored.

Applies to Version: 2020.0.01 and higher

fixedRowColorHasPrecedence
Type: Boolean

Availability: Read or write at any time

The fixedRowColorHasPrecedence property of the JadeSkinTable class specifies whether cells that are in both
a fixed row and a fixed column are drawn using the value of the fixedRowsBackColor property. The default value
is true.

When true, cells that are in both a fixed row and a fixed column are drawn using the value of the
fixedRowsBackColor property. When false, cells that are in both a fixed row and a fixed column are drawn using
the value of the fixedColumnsBackColor property.

Note If a fixed cell has a specific background color set via a cell, row, column Table class backColor property,
the skin background color value specified by this parameter is ignored.

Applies to Version: 2018.0.01 and higher

From version 2020.0.01, the fixedRowColorHasPrecedence property specifies whether cells that are in both a
fixed row and a fixed column are drawn using the value of the fixedRowsBackColor and the
fixedRowsForeColor properties.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 94

EncycloSys2 - 2020.0.02

The default value of true specifies that cells that are in both a fixed row and a fixed column are drawn using the
value of the fixedRowsBackColor and the fixedRowsForeColor properties. When the value is false, cells that
are in both a fixed row and a fixed column are drawn using the value of the fixedColumnsBackColor and
fixedColumnsForeColor properties.

If a fixed cell has a specific:

Background color set by the backColor property of the Table class for a cell, row, or column, the skin
background color value specified by the fixedRowColorHasPrecedence property is ignored when drawing
the background of a fixed cell.

Foreground color set by the foreColor property of the Table class for a cell, row, column, the skin foreground
color value specified by the fixedRowColorHasPrecedence property is ignored when drawing the text of a
fixed cell.

fixedRowsBackColor
Type: Integer

Availability: Read or write at any time

The fixedRowsBackColor property of the JadeSkinTable class specifies the color with which the background of
fixed rows is drawn. The default value of #80000000 means that this property is ignored. The background color of
fixed rows for any other value is drawn using the specified value of this property.

Note If a fixed cell has a specific background color set via a cell, row, column Table class backColor property,
the skin background color value specified by the fixedRowsBackColor property is ignored.

Applies to Version: 2018.0.01 and higher

fixedRowsForeColor
Type: Integer

Availability: Read or write at any time

The fixedRowsForeColor property of the JadeSkinTable class specifies the color with which the foreground of
fixed rows is drawn. The default value of #80000000 means that this property is ignored. The foreground color of
fixed rows for any other value is drawn using the specified value of this property.

Note If a fixed cell has a specific foreground color set via a cell, row, column Table class foreColor property, the
skin foreground color value specified by the fixedRowsForeColor property is ignored.

Applies to Version: 2020.0.01 and higher

myCheckBoxSkin
Type: JadeSkinCheckBox

Availability: Read or write at any time

The myCheckBoxSkin property of the JadeSkinTable class specifies the check box skin that is used when
drawing a cell that has the Table class inputType property set to InputType_CheckBox or a cell control set to a
CheckBox control.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 95

EncycloSys2 - 2020.0.02

The value for a check box skin is defined in the Table control types on the Controls sheet of the Jade Skin
Maintenance dialog. The default value of <none> indicates that check boxes in table cells are drawn without a
skin.

Applies to Version: 2018.0.01 and higher

selectionColor
Type: Integer

Availability: Read or write at any time

The selectionColor property of the JadeSkinListBox class and JadeSkinTable class specifies the background
color that is used to draw a selected item in a skinned list box or table. The default value of #80000000 (that is,
transparent) means that the default selection color defined by Windows is used.

If the value of the backColor property of a list entry, cell, row, or column is specifically set and it is not #800000000
(that is, transparent), the default value of the selected list item, cell, row, or column is ignored and the specific
value of the backColor property is used.

Applies to Version: 2018.0.01 and higher

selectionColorText
Type: Integer

Availability: Read or write at any time

The selectionColorText property of the JadeSkinListBox class and JadeSkinTable class specifies the text color
of a selected item in a skinned list box or table. The default value of #80000000 (that is, transparent) means that
the default selection color defined by Windows is used.

If the value of the foreColor property of a selected list entry, cell, row, or column is specifically set and it is not
#80000000, the default value of the list item, cell, row, or column text is ignored and the specific value of the
foreColor property is used.

Applies to Version: 2018.0.01 and higher

tabActiveColor
Type: Integer

Availability: Read or write at any time

The tabActiveColor property of the JadeSkinTable class contains the color used to draw the background area of
the active tab on Table controls. JADE uses the RGB scheme for colors. The default value specified by the
JadeSkinEntity class Default_Color constant indicates that the normal color of the table is used.

tabInactiveColor
Type: Integer

Availability: Read or write at any time

The tabInactiveColor property of the JadeSkinTable class contains the color used to draw the background area
of the inactive tabs on Table controls. JADE uses the RGB scheme for colors. The default value specified by the
JadeSkinEntity class Default_Color constant indicates that the normal color of the table is used.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 96

EncycloSys2 - 2020.0.02

JadeSkinTextBox Class
The JadeSkinTextBox class holds the definition of a skin for TextBox controls.

Note Text box controls do not successfully handle back brushes and non-solid colors for the backColor
property.

For details about the properties defined in the JadeSkinTextBox class, see "JadeSkinTextBox Properties", in the
following subsection.

Inherits From: JadeSkinControl

Inherited By: (None)

JadeSkinTextBox Properties
The properties defined in the JadeSkinTextBox class are summarized in the following table.

Property Description

hintBackColor Specifies the background color of hint text

hintForeColor Specifies the foreground color of hint text

Applies to Version: 2018.0.01 and higher

hintBackColor
Type: Integer

Availability: Read or write at any time

The hintBackColor property of the JadeSkinTextBox class specifies the color with which the text box background
is displayed when hint text is displayed. (JADE uses the RGB scheme for colors.) The default value of #80000000
means that the property is ignored and the defined TextBox class hintBackColor property value is used.

This value applies only if the TextBox class hintText property is not null (""), the hint text is displayed (that is, the
text box is empty), and the JadeSkinTextBox class hint value is not #80000000 (the default).

The property value is also ignored when the hint text is displayed and the text box text is disabled, in which case
the text box is drawn in its disabled state (with the hint text still displayed).

For details about the TextBox class hint background color, see the TextBox class hintBackColor property in
Volume 3 of the JADE Encyclopedia of Classes.

Applies to Version: 2018.0.01 and higher

hintForeColor
Type: Integer

Availability: Read or write at any time

The hintForeColor property of the JadeSkinTextBox class specifies the color with which the text box foreground
(text) is displayed when hint text is displayed. (JADE uses the RGB scheme for colors.) The default value of
#80000000 means that the property is ignored and the defined TextBox class hintForeColor property value is
used.

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 97

EncycloSys2 - 2020.0.02

This value applies only if the TextBox class hintText property is not null (""), the hint text is displayed (that is, the
text box is empty), and the JadeSkinTextBox class hint value is not #80000000 (the default).

The property value is also ignored when the hint text is displayed and the text box text is disabled, in which case
the text box is drawn in its disabled state (with the hint text still displayed).

For details about the TextBox class hint foreground color, see the TextBox class hintForeColor property in
Volume 3 of the JADE Encyclopedia of Classes.

Applies to Version: 2018.0.01 and higher

JadeSkinVScroll Class
The JadeSkinVScroll class holds the definition of a skin for VScroll subclasses of the ScrollBar control. The
width of the border area and the width of the myTopButton.imgUp image determine the width of the scroll bar.

For a scroll bar control, the image is stretched horizontally to fit the area inside the borders.

Note This skin is also used for drawing the vertical scroll bar for any control or form in the application.

If you do not supply the image for a specific state, the appropriate up image is used. The default scroll button
image is drawn if you do not supply the up image.

For details about the properties defined in the JadeSkinVScroll class, see "JadeSkinHScroll Properties", in the
following subsection.

Inherits From: JadeSkinScrollBar

Inherited By: (None)

JadeSkinVScroll Properties
The properties defined in the JadeSkinVScroll class are summarized in the following table.

Property Reference to the image used to draw the …

myBottomButton Top button of a vertical scroll bar in its various states (the button is placed inside the
scroll bar borders)

myTopButton Bottom button of a vertical scroll bar in its various states (the button is placed inside the
scroll bar borders)

myBottomButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myBottomButton property of the JadeSkinVScroll class contains a reference to the image used to draw the
bottom button of a vertical scroll bar in its up, disabled, down, and rollover states. (The button is placed inside the
scroll bar borders.)

Encyclopaedia of Classes
(Volume 2)

JadeSkinControl Class and Subclasses Chapter 1 98

EncycloSys2 - 2020.0.02

myTopButton
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myTopButton property of the JadeSkinVScroll class contains a reference to the image used to draw the top
button of a vertical scroll bar in its up, disabled, down, and rollover states. (The button is placed inside the scroll
bar borders.)

Encyclopaedia of Classes
(Volume 2)

JadeSkinEntity Class Chapter 1 99

EncycloSys2 - 2020.0.02

JadeSkinEntity Class
The JadeSkinEntity class is the abstract superclass of the skin entities.

The JadeSkinEntity class contains the JADE skins defined for your applications, forms, controls, and menus, and
encapsulates the behavior required to define and maintain JADE skins using the JadeSkinMaintenance and
JadeSkinSelection forms provided by the JADE RootSchema. For details about defining and maintaining skins,
see "Defining and Maintaining JADE Skins at Run Time", in Chapter 2 of your JADE Runtime Application Guide.

Note If an application is active with a skin set, a second application initiated from the same jade.exe executable
is now drawn using the current Windows theme if that application does not have a skin set.

For details about the constant and properties defined in the JadeSkinEntity class, see "JadeSkinEntity Class
Constant" and "JadeSkinEntity Properties", in the following subsections.

Inherits From: Object

Inherited By: JadeSkinApplication, JadeSkinArea, JadeSkinCategory, JadeSkinSimpleButton

JadeSkinEntity Class Constant
The JadeSkinEntity class provides the constant listed in the following table.

JadeSkinEntity Class Constant Integer Value Description

Default_Color #80000000 Color is not set

JadeSkinEntity Properties
The JadeSkinEntity class provides the properties summarized in the following table.

Property Description

description Text that can be used for documentation purposes

myOwners Automatic collection of other skin entities that reference this object

mySkinRoot Inverse reference to the instance of the JadeSkinRoot class

name Name used to identify the skin entity

description
Type: String

Availability: Read or write at any time

The description property of the JadeSkinEntity class contains the text that can be used for documentation
purposes for the skin.

Encyclopaedia of Classes
(Volume 2)

JadeSkinEntity Class Chapter 1 100

EncycloSys2 - 2020.0.02

myOwners
Type: JadeSkinEntityNameDict

Availability: Read or write at any time

The myOwners property of the JadeSkinEntity class contains a reference to the automatic collection of other skin
entities that reference this object.

mySkinRoot
Type: JadeSkinRoot

Availability: Read or write at any time

The mySkinRoot property of the JadeSkinEntity class contains an inverse reference to the instance of the
JadeSkinRoot class.

name
Type: String

Availability: Read or write at any time

The name property of the JadeSkinEntity class contains the name used to identify the skin entity.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 101

EncycloSys2 - 2020.0.02

JadeSkinForm Class
The JadeSkinForm class contains the JADE skins defined for forms in your applications and encapsulates the
behavior required to define and maintain JADE skins using the JadeSkinMaintenance and JadeSkinSelection
forms provided by the JADE RootSchema.

Use the JadeSkinArea class to define the image drawn for the active border and the inner (client area) of the
form. If the form has a backdrop picture (set by using the Form class setBackDrop method), this image is drawn.

When drawing an inactive form image, if an image is not provided for a border segment, the equivalent image for
the active form is drawn instead.

When erasing the inner area of the form:

1. If the form backBrush property is not null, the inner area is erased using that brush.

2. If the form skin has a JadeSkinArea class imgInner property value that is a brush, the inner area is erased
using that brush.

3. If the form backColor property is not Color_3DFace, the inner area is erased using the background color of
the form.

4. If the backColor property of the skin area is not Default_Color, erase using the backColor property value of
the skin.

5. The Color_3DFace value is used when erasing.

6. If the form was erased using a color and the skin of the form has a JadeSkinArea class imgInner property
value that is not a brush, that image is drawn centered in the inner area of the form skin.

The set of skin images used by JADE is provided with the product release so that you can use these skins in your
applications, if required. (By default, skins are not used.)

The form border for a skin is made up of 11 images, as shown in the following image.

The following is a description of the form border areas.

Images 1, 3, 4, 6, 9, and 11 are shown at actual size.

Images 2, 5, 7, 8, and 10 are stretched to fit the width or height of the form.

Images 1, 2, and 3 must have the same height to enable the form to display correctly.

Images 4, 5, and 6 must have the same height to enable the form to display correctly.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 102

EncycloSys2 - 2020.0.02

Images 9, 10, and 11 must have the same height to enable the form to display correctly.

The whole of image 1 is treated as the control menu area for the form.

If the menu does not fit on the menu line, the menu is extended to include additional lines, as required. Each
line is drawn with the same skin images as the first menu line.

When an MDI child is maximized, the whole of image 4 is treated as the system menu area for the MDI child.

Form icons are placed adjacently at the top right hand edge of the area defined by image 3.

MDI child form icons are placed adjacently at the top right hand edge of the area defined by image 6.

Form icons that are disabled are not displayed if there is no disabled image.

The following areas are not affected by using a skin.

Only JADE forms adopt the skin presentation. Windows forms such as message boxes, common dialogs, and
the JADE exception dialogs are unchanged.

When a form is resized, Windows draws the standard form image while the resize is occurring.

A minimized MDI form displays the standard image, as there is normally insufficient room to display the
skinned image for that short caption line.

Windows-drawn menu items are unchanged by the skin. This includes the system menus.

Any changes made to the skin do not affect any current users of that skin.

Windows sounds do not occur when forms are minimized, maximized, and so on, as the form buttons are not
in the Windows standard positions and their actions must be performed programmatically by JADE.
(Windows does not issue those sounds when such actions are performed programmatically.)

For details about defining and maintaining skins, see "Defining and Maintaining JADE Skins at Run Time", in
Chapter 2 of the JADE Runtime Application Guide. For details about using JADE skins in your JADE development
environment, see "Specifying Your JADE Installation Preferences", in Chapter 2 of the JADE Installation and
Configuration Guide. For details about the properties defined in the JadeSkinForm class, see "JadeSkinForm
Properties", in the following subsection.

Inherits From: JadeSkinWindow

Inherited By: (None)

JadeSkinForm Properties
The JadeSkinForm class provides the properties summarized in the following table.

Property Description

captionActiveForeColor Color used to draw caption text when the form is active.

captionFontBold Specifies whether the caption of the form is bold.

captionFontItalic Specifies whether the caption of the form is italics.

captionFontName Font with which the form caption is displayed.

captionFontSize Size of the font with which the form caption is displayed.

captionInactiveForeColor Color used to draw the caption text of the form when the form is inactive.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 103

EncycloSys2 - 2020.0.02

Property Description

captionLeft Starting left position of the caption text of the form.

captionTop Starting right position of the caption text of the form.

centerCaption Specifies whether the caption is centered within the top strip area of the
skin of the form.

drawMenuSelectionFlat Specifies how the menu line items are drawn when the skinned menu line
item is selected.

imgInactiveBorderBottomLeft Border area image to be drawn for the bottom left of the inactive form.

imgInactiveBorderBottomRight Border area image to be drawn for the bottom right of the inactive form.

imgInactiveBorderBottomStrip Border area image to be drawn for the bottom strip of the inactive form.

imgInactiveBorderLeftStrip Border area image to be drawn for the left strip of the inactive form.

imgInactiveBorderRightStrip Border area image to be drawn for the right strip of the inactive form.

imgInactiveBorderTopLeft Border area image to be drawn for the top left of the inactive form.

imgInactiveBorderTopRight Border area image to be drawn for the top right of the inactive form.

imgInactiveBorderTopStrip Border area image to be drawn for the top strip of the inactive form.

imgMenuLeft Image drawn for the left of the menu line of the form.

imgMenuRight Image drawn for the right of the menu line of the form.

imgMenuStrip Image drawn for the strip of the menu line of the form.

menuBackColor Background color for the menu line if the skin has no defined
imgMenuStrip property value.

menuBackColorSelected Background color of the border drawn around the selected menu using the
Windows three-dimensional colors or the default color used to draw the
background area for selected menu items for drop-down or popup menus.

menuFontBold Specifies whether menu line item, drop-down menu, and popup menu
captions are bold.

menuFontItalic Specifies whether menu line item, drop-down menu, and popup menu
captions are italics.

menuFontName Font with which menu line items, drop-down menus, and popup menus are
displayed.

menuFontSize Size of the font with which menu line items, drop-down menus, and popup
menus are displayed.

menuForeColor Color used to draw the text for non-selected and enabled menu line items.

menuForeColorDisabled Color used to draw the text for disabled menu line items and the default
disabled text color for drop-down and popup menus.

menuForeColorSelected Default selected text color for drop-down and popup menus.

menuLeftPosition Starting left position of the form menus.

menuTopPosition Offset of the top position of the form menu drawn on the skin.

myChildMinimizeBtn Reference to the simple button images drawn for an MDI child minimize
button in its four states (up, down, rollover, and disabled).

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 104

EncycloSys2 - 2020.0.02

Property Description

myChildRestoreBtn Reference to the simple button images drawn for an MDI child restore
button in its four states.

myChildTerminateBtn Reference to the simple button images drawn for an MDI child terminate
button in its four states.

myMaximizeBtn Reference to the simple button images drawn for an MDI child maximize
button in its four states.

myMaximizedBtn Reference to the simple button images drawn for an MDI child maximized
button in its four states.

myMenuSkin Reference to the menu definition of the form.

myMinimizeBtn Reference to the simple button images to be drawn for the form minimize
button in its four states.

myTerminateBtn Reference to the simple button images to be drawn for the form terminate
button in its four states.

showMenuLineAlways Specifies whether the menu line of the skin is always drawn, regardless of
whether the form has a menu.

transparentColorForButtons Transparent color to be applied to maximize, minimize, and terminate
buttons drawn for the skin of the form.

useMenuLineSkinForMenus Specifies whether the menu line definition of a form skin is used to draw
menus when the value of the myMenuSkin property is null.

captionActiveForeColor
Type: Integer

Availability: Read or write at any time

The captionActiveForeColor property of the JadeSkinForm class contains the foreground color used to draw the
caption text on active forms.

JADE uses the RGB scheme for colors.

The JadeSkinEntity class Default_Color constant default value for this property indicates that no color is set in
the form skin, and the desktop active caption text color defined by the user is used.

captionFontBold
Type: Boolean

Availability: Read or write at any time

The captionFontBold property of the JadeSkinForm class specifies whether the font style of the form skin text is
bold.

Use this property to format text in a form skin, either in the JADE development environment or at run time by using
logic.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 105

EncycloSys2 - 2020.0.02

The settings for the captionFontBold property are listed in the following table.

Value Description

true Turns on the bold formatting (the default)

false Turns off the bold formatting

If the captionFontName property is null (the default), the form caption is drawn using the desktop active caption
font defined by the user.

captionFontItalic
Type: Boolean

Availability: Read or write at any time

The captionFontItalic property of the JadeSkinForm class specifies whether the font style of the form skin text is
italics.

Use this property to format text in a form skin, either in the JADE development environment or at run time by using
logic.

The settings for the captionFontItalic property are listed in the following table.

Value Description

true Turns on the italic formatting

false Turns off the italic formatting (the default)

If the captionFontName property is null (the default), the form caption is drawn using the desktop active caption
font defined by the user.

captionFontName
Type: String[31]

Availability: Read or write at any time

The captionFontName property of the JadeSkinForm class contains the name of the font used to display text on
form skins.

Use this property to format text in a form skin, either in the JADE development environment or at run time by using
logic.

The default value is Tahoma.

Note The fonts that are available in JADE vary, according to your system configuration, display devices, and
printing devices.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 106

EncycloSys2 - 2020.0.02

captionFontSize
Type: Real

Availability: Read or write at any time

The captionFontSize property of the JadeSkinForm class contains the size of the font used for text displayed on a
form skin.

Use this property to format text in a form skin, either in the JADE development environment or at run time by using
logic.

The default value for the captionFontSize property is 8.25.

If the captionFontName property is null (the default), the form caption is drawn using the desktop active caption
font defined by the user.

captionInactiveForeColor
Type: Integer

Availability: Read or write at any time

The captionInactiveForeColor property of the JadeSkinForm class contains the foreground color used to draw
the caption text on inactive forms. JADE uses the RGB scheme for colors.

The JadeSkinEntity class Default_Color constant default value for this property indicates that no color is set in
the skin and the text color of the desktop inactive caption defined by the user is used.

captionLeft
Type: Integer

Availability: Read or write at any time

The captionLeft property of the JadeSkinForm class contains the starting left position of the caption text on the
form skin. The default value is zero (0).

This property is ignored if the value of the centerCaption property is true unless the caption cannot fit within the
top strip area of the form skin.

captionTop
Type: Integer

Availability: Read or write at any time

The captionTop property of the JadeSkinForm class contains the top position where the caption is drawn on the
form skin. The default value is zero (0).

The form caption top position is adjusted downwards at run time if the value is greater than zero (0) and the
caption text will overflow off the bottom of the caption area of the form’s skin.

Under different workstation font setups, the height of the caption text can be larger than the image that defines the
height of the caption.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 107

EncycloSys2 - 2020.0.02

centerCaption
Type: Boolean

Availability: Read or write at any time

The centerCaption property of the JadeSkinForm class specifies whether the caption is centered within the top
strip area of the form skin. The default value is false.

If the caption cannot fit within this top strip area, the value of this property is ignored.

drawMenuSelectionFlat
Type: Boolean

Availability: Read or write at any time

The drawMenuSelectionFlat property of the JadeSkinForm class specifies how the menu line items are drawn
when the skinned menu line item is selected. If the value is:

False (the default), a selected menu line item is drawn using the effective menu item selection background
and foreground (text) colors with a border that is the same color as the text of the menu item.

In addition, when a menu is dropped down directly below a menu item (the menu does not have to be moved
to fit on the current display), the selected menu item is drawn as though it is part of the dropped-down menu,
using the same background color and text color defined for the popup menu.

True, the selected menu line item is always drawn in a flat manner using the effective menu item selection
background and foreground (text) colors with no surrounding border.

In addition, the menu line item is not drawn as though it is part of the popup menu.

Control the drawMenuSelectionFlat property with the Draw Flat Selection check box on the Forms sheet of the
Jade Skin Maintenance dialog.

Applies to Version: 2018.0.01 and higher

imgInactiveBorderBottomLeft
Type: Binary

Availability: Read or write at any time

The imgInactiveBorderBottomLeft property of the JadeSkinForm class contains the bottom left border area for
inactive form skins. This image is drawn unstretched.

When drawing an inactive form image, if you do not supply the bottom left border image, the equivalent image for
the active form is drawn instead.

imgInactiveBorderBottomRight
Type: Binary

Availability: Read or write at any time

The imgInactiveBorderBottomRight property of the JadeSkinForm class contains the bottom right border area
for inactive form skins. This image is drawn unstretched.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 108

EncycloSys2 - 2020.0.02

When drawing an inactive form image, if you do not supply the bottom right border image, the equivalent image for
the active form is drawn instead.

imgInactiveBorderBottomStrip
Type: Binary

Availability: Read or write at any time

The imgInactiveBorderBottomStrip property of the JadeSkinForm class contains the bottom strip for inactive
form skins. This image is drawn stretched.

When drawing an inactive form image, if you do not supply the bottom border strip image, the equivalent image for
the active form is drawn instead.

imgInactiveBorderLeftStrip
Type: Binary

Availability: Read or write at any time

The imgInactiveBorderLeftStrip property of the JadeSkinForm class contains the left strip for inactive form skins.
This image is drawn stretched.

When drawing an inactive form image, if you do not supply the left border strip image, the equivalent image for the
active form is drawn instead.

imgInactiveBorderRightStrip
Type: Binary

Availability: Read or write at any time

The imgInactiveBorderRightStrip property of the JadeSkinForm class contains the right strip for inactive form
skins. This image is drawn stretched.

When drawing an inactive form image, if you do not supply the right border strip image, the equivalent image for
the active form is drawn instead.

imgInactiveBorderTopLeft
Type: Binary

Availability: Read or write at any time

The imgInactiveBorderTopLeft property of the JadeSkinForm class contains the top left border area for inactive
form skins. This image is drawn unstretched.

When drawing an inactive form image, if you do not supply the top left border image, the equivalent image for the
active form is drawn instead.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 109

EncycloSys2 - 2020.0.02

imgInactiveBorderTopRight
Type: Binary

Availability: Read or write at any time

The imgInactiveBorderTopRight property of the JadeSkinForm class contains the top right border area for
inactive form skins. This image is drawn unstretched.

When drawing an inactive form image, if you do not supply the top right border image, the equivalent image for the
active form is drawn instead.

imgInactiveBorderTopStrip
Type: Binary

Availability: Read or write at any time

The imgInactiveBorderTopStrip property of the JadeSkinForm class contains the top strip for inactive form skins.
This image is drawn stretched.

When drawing an inactive form image, if you do not supply the top border strip image, the equivalent image for the
active form is drawn instead.

imgMenuLeft
Type: Binary

Availability: Read or write at any time

The imgMenuLeft property of the JadeSkinForm class contains the left menu area for form skins. This image is
drawn unstretched.

imgMenuRight
Type: Binary

Availability: Read or write at any time

The imgMenuRight property of the JadeSkinForm class contains the right menu area for form skins. This image is
drawn unstretched.

imgMenuStrip
Type: Binary

Availability: Read or write at any time

The imgMenuStrip property of the JadeSkinForm class contains the menu strip area for form skins. This image is
drawn stretched.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 110

EncycloSys2 - 2020.0.02

menuBackColor
Type: Integer

Availability: Read or write at any time

The menuBackColor property of the JadeSkinForm class contains the background color for the menu line if the
skin has no defined imgMenuStrip property value.

This property also contains the default color used to draw the background of non-selected and enabled drop-
down and popup menu items.

The default value of Default_Color indicates that the default color of the window is used.

menuBackColorSelected
Type: Integer

Availability: Read or write at any time

The menuBackColorSelected property of the JadeSkinForm class contains the default color used to draw the
background area for selected menu items for drop-down and popup (context) menus.

The default value of Default_Color indicates that the default color of the window is used.

menuFontBold
Type: Boolean

Availability: Read or write at any time

The menuFontBold property of the JadeSkinForm class specifies whether the bold font attribute is applied to
menu line item, drop-down menu, and popup menu captions. The default value is false.

menuFontItalic
Type: Boolean

Availability: Read or write at any time

The menuFontItalic property of the JadeSkinForm class specifies whether the italic font attribute is applied to
menu line item, drop-down menu, and popup menu captions. The default value is false.

menuFontName
Type: String

Availability: Read or write at any time

The menuFontName property of the JadeSkinForm class contains the name of the font with which menu line
items, drop-down menus, and popup menus are displayed. This property is set to null ("") by default, and the
standard menu font is used.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 111

EncycloSys2 - 2020.0.02

menuFontSize
Type: Real

Availability: Read or write at any time

The menuFontSize property of the JadeSkinForm class contains the size of the font with which menu line items,
drop-down menus, and popup menus are displayed. The default value is zero (0).

menuForeColor
Type: Integer

Availability: Read or write at any time

The menuForeColor property of the JadeSkinForm class contains the color used to draw the text for non-selected
and enabled menu line items and the default text color of any non-selected and enabled drop-down and popup
menus.

The default value of Default_Color indicates that the Windows-defined menu text color is used.

menuForeColorDisabled
Type: Integer

Availability: Read or write at any time

The menuForeColorDisabled property of the JadeSkinForm class contains the color used to draw the text for
disabled menu line items and the default disabled text color for drop-down and popup menus.

The default value of Default_Color indicates that the Windows-defined disabled menu text color is used.

menuForeColorSelected
Type: Integer

Availability: Read or write at any time

The menuForeColorSelected property of the JadeSkinForm class contains the default selected text color for
drop-down and popup menus.

The default value of Default_Color indicates that the Windows-defined selected menu text color is used.

menuLeftPosition
Type: Integer

Availability: Read or write at any time

The menuLeftPosition property of the JadeSkinForm class contains the starting left position of menus on the form
skin. The default value is zero (0).

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 112

EncycloSys2 - 2020.0.02

menuTopPosition
Type: Integer

Availability: Read or write at any time

The menuTopPosition property of the JadeSkinForm class contains the starting top position of menus on the form
skin. The default value is zero (0).

The menu top position is adjusted downwards at run time if the value is greater than zero (0) and the menu text
will overflow off the bottom of the form menu area.

Under different workstation font set-ups, the height of the menu text can be larger than the image that defines the
height of the menu.

myChildMinimizeBtn
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myChildMinimizeBtn property of the JadeSkinForm class contains a reference to the simple button images
drawn for an MDI child minimize button in its four states (that is, up, down, rollover, and disabled).

If this reference is null or the up image is null, the default minimize button is drawn. If the down or rollover states
are not provided, the up image is drawn. If the disabled image is not provided, the button is not drawn when it is
disabled.

myChildRestoreBtn
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myChildRestoreBtn property of the JadeSkinForm class contains a reference to the simple button images
drawn for an MDI child restore button in its four states (that is, up, down, rollover, and disabled).

If this reference is null or the up image is null, the default restore button is drawn. If the down or rollover states are
not provided, the up image is drawn. If the disabled image is not provided, the button is not drawn when it is
disabled.

myChildTerminateBtn
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myChildTerminateBtn property of the JadeSkinForm class contains a reference to the simple button images
drawn for an MDI child terminate button in its four states (that is, up, down, rollover, and disabled).

If this reference is null or the up image is null, the default terminate button is drawn. If the down or rollover states
are not provided, the up image is drawn. If the disabled image is not provided, the button is not drawn when it is
disabled.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 113

EncycloSys2 - 2020.0.02

myMaximizeBtn
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myMaximizeBtn property of the JadeSkinForm class contains a reference to the simple button images
drawn for a form maximize button in its four states (that is, up, down, rollover, and disabled).

If this reference is null or the up image is null, the default maximize button is drawn. If the down or rollover states
are not provided, the up image is drawn. If the disabled image is not provided, the button is not drawn when it is
disabled.

myMaximizedBtn
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myMaximizedBtn property of the JadeSkinForm class contains a reference to the simple button images
drawn for a form maximized button in its four states (that is, up, down, rollover, and disabled).

If this reference is null or the up image is null, the default maximized button is drawn. If the down or rollover states
are not provided, the up image is drawn. If the disabled image is not provided, the button is not drawn when it is
disabled.

myMenuSkin
Type: JadeSkinMenu

Availability: Read or write at any time

The myMenuSkin property of the JadeSkinForm class contains a reference to the menu definition that applies to
the form for drop-down and popup menus. If this property is null, drop-down and popup menus use the
JadeSkinForm class menu properties to draw the menu.

myMinimizeBtn
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myMinimizeBtn property of the JadeSkinForm class contains a reference to the simple button images drawn
for a form minimize button in its four states (that is, up, down, rollover, and disabled). If this reference is null or the
up image is null, the default minimize button is drawn.

If the down or rollover states are not provided, the up image is drawn. If the disabled image is not provided, the
button is not drawn when it is disabled.

Encyclopaedia of Classes
(Volume 2)

JadeSkinForm Class Chapter 1 114

EncycloSys2 - 2020.0.02

myTerminateBtn
Type: JadeSkinSimpleButton

Availability: Read or write at any time

The myTerminateBtn property of the JadeSkinForm class contains a reference to the simple button images
drawn for a form terminate button in its four states (that is, up, down, rollover, and disabled). If this reference is null
or the up image is null, the default terminate button is drawn.

If the down or rollover states are not provided, the up image is drawn. If the disabled image is not provided, the
button is not drawn when it is disabled.

showMenuLineAlways
Type: Boolean

Availability: Read or write at any time

The showMenuLineAlways property of the JadeSkinForm class specifies whether the menu line of the skin is
always drawn, regardless of whether the form has a menu. The default value of false indicates that the menu line
is not drawn if the form does not have a menu or if the form is an MDI child.

transparentColorForButtons
Type: Integer

Availability: Read or write at any time

The transparentColorForButtons property of the JadeSkinForm class contains the transparent color applied to
maximize, minimize, and terminate buttons drawn for the form skin. JADE uses the RGB scheme for colors.

The JadeSkinEntity class Default_Color constant default value for this property indicates that no transparent
color is set.

useMenuLineSkinForMenus
Type: Boolean

Availability: Read or write at any time

The useMenuLineSkinForMenus property of the JadeSkinForm class specifies whether the menu line definition
of a form skin is used to draw menus when the value of the myMenuSkin property is null ("").

If the value of the useMenuLineSkinForMenus property is:

False and the value of the myMenuSkin property is null (""), menus are not skinned.

True and the value of the myMenuSkin property is null (""), menus are drawn using the menu line properties
(that is, font, colors, and so on).

Control the useMenuLineSkinForMenus property with the Use Menu Line Options For Menus check box on the
Forms sheet of the Jade Skin Maintenance dialog. If a popup menu skin is set for the form, the Use Menu Line
Options For Menus check box is set to false (that is, unchecked) and disabled.

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeSkinMenu Class Chapter 1 115

EncycloSys2 - 2020.0.02

JadeSkinMenu Class
The JadeSkinMenu class holds the skin definitions drop-down and popup menus.

Notes Windows system menus are drawn by Windows and are not skinned.

If the JadeSkinForm class myMenuSkin property is null (a reference to the JadeSkinMenu class), drop-down and
popup menus are drawn using the skin menu color and font properties of the form, with a border style of
BorderStyle_3DRaised (3).

You can skin drop-down menus and popup (context) menus, as follows.

Type of border in terms of the borderStyle property or by using eight images

Inner image, backBrush, or backColor

backColor of selected items

Menu text, selected, and disabled foreground colors

Font

Check box, separator, and right arrow images

The JadeSkinArea class backColor property defines the background color to be used to draw the background of
non-selected and enabled menu items in the drop-down or popup menu. The default value of Default_Color for
this property indicates that the default background color is defined by the form skin menuBackColor property. If
that property is also set to Default_Color, the Windows default background color is used.

For details about the properties defined in the JadeSkinMenu class, see "JadeSkinMenu Properties", in the
following subsection. For details about defining and maintaining skins, see "Defining and Maintaining JADE Skins
at Run Time", in Chapter 2 of the JADE Runtime Application Guide.

Inherits From: JadeSkinArea

Inherited By: (None)

JadeSkinMenu Properties
The JadeSkinMenu class provides the properties summarized in the following table.

Property Description

backColorSelected Contains the color used to draw the background of selected and enabled menu
items in the drop-down or popup menu

borderStyle Contains the type of border to be drawn

drawMenuSelectionFlat Specifies how menu items are drawn in the popup menu when a menu item is
selected (which is false by default)

fontBold Specifies whether the menu font is bold (which is false by default)

fontItalic Specifies whether the menu font is bold (which is false by default)

fontName Contains the name of the menu font ("Tahoma" is the default value)

fontSize Contains the size of the menu font (8.25 points is the default value)

Encyclopaedia of Classes
(Volume 2)

JadeSkinMenu Class Chapter 1 116

EncycloSys2 - 2020.0.02

Property Description

foreColor Contains the color used to draw the text for non-selected and enabled menu
items in the drop-down or popup menu

foreColorDisabled Contains the color used to draw the text for disabled menu items in the drop-
down or popup menu

foreColorSelected Contains the color used to draw the text for selected menu items in the drop-
down or popup menu

imgCheckMark Contains the image used to draw for checked menu items

imgRightArrow Contains the image used to draw the right arrow submenu indicator

imgSeparator Contains the image used to draw menu separators

lineHeight Contains the height in pixels of each menu line item

pixelsAfterCheckMark Contains the amount of space left after the check mark column

pixelsAfterPicture Contains the amount of space left after the picture image column

pixelsBeforeAccelerator Contains the amount of space left before the accelerator text column

pixelsBeforeCheckMark Contains the amount of space left before the check mark column

pixelsBeforeRightArrow Contains the amount space left before the right arrow column

backColorSelected
Type: Integer

Availability: Read or write at any time

The backColorSelected property of the JadeSkinMenu class contains the color used to draw the background of
selected and enabled menu items in the drop-down or popup menu.

The default value of Default_Color indicates that the defined default background color of the JadeSkinForm class
menuBackColorSelected property is used. If that property is also set to Default_Color, the Windows default
value is used.

borderStyle
Type: Integer

Availability: Read or write at any time

The borderStyle property of the JadeSkinMenu class contains the type of border to be drawn for a drop-down or
popup menu. The default value is BorderStyle_3DRaised (3).

The borderStyle property values are listed in the following table.

JadeSkinArea Class Constant Integer Value Description

BorderStyle_3DRaised 3 Raised three-dimensional border (two pixels).

BorderStyle_3DSunken 2 Sunken three-dimensional border (two pixels).

Encyclopaedia of Classes
(Volume 2)

JadeSkinMenu Class Chapter 1 117

EncycloSys2 - 2020.0.02

JadeSkinArea Class Constant Integer Value Description

BorderStyle_Images 4 Border is drawn using the supplied images of the
JadeSkinArea class. If there are no images, the control
does not have a border.

BorderStyle_None 0 No border is drawn.

BorderStyle_Single 1 Fixed single-line border.

If this property is not set to BorderStyle_Images (4), the defined border is drawn and the border images are
ignored (see the JadeSkinArea class properties).

drawMenuSelectionFlat
Type: Boolean

Availability: Read or write at any time

The drawMenuSelectionFlat property of the JadeSkinMenu class specifies how menu items are drawn in the
popup menu when a menu item is selected. If the value is:

False (the default), the selected menu item is drawn using the effective menu item selection background and
foreground colors with a border that is the same color as the text of the menu item.

True, the selected menu item is always drawn in a flat manner using the defined menu item selection colors
(with no surrounding border).

Control the drawMenuSelectionFlat property with the Draw Flat Selection check box on the Menus sheet of the
Jade Skin Maintenance dialog.

Applies to Version: 2018.0.01 and higher

fontBold
Type: Boolean

Availability: Read or write at any time

The fontBold property of the JadeSkinMenu class specifies whether the bold font attribute is applied to text on
drop-down or popup menus.

The settings for the fontBold property are listed in the following table.

Value Description

true Turns on the bold formatting

false Turns off the bold formatting (the default)

fontItalic
Type: Boolean

Availability: Read or write at any time

The fontItalic property of the JadeSkinMenu class specifies whether the italic font attribute is applied to text on
drop-down or popup menus.

Encyclopaedia of Classes
(Volume 2)

JadeSkinMenu Class Chapter 1 118

EncycloSys2 - 2020.0.02

The settings for the fontItalic property are listed in the following table.

Value Description

true Turns on the italic formatting

false Turns off the italic formatting (the default)

fontName
Type: String[31]

Availability: Read or write at any time

The fontName property of the JadeSkinMenu class contains the name of the font used to display menu text on
drop-down or popup menus.

The default value is null (""), meaning that the font defined by the JadeSkinForm class menuFontName,
menuFontSize, menuFontBold, and menuFontItalic properties is used.

Note The fonts that are available in JADE vary, according to your system configuration, display devices, and
printing devices.

fontSize
Type: Real

Availability: Read or write at any time

The fontSize property of the JadeSkinMenu class contains the size of the font used for menu text displayed on
drop-down or popup menus. The default value is 0.

foreColor
Type: Integer

Availability: Read or write at any time

The foreColor property of the JadeSkinMenu class contains the color used to draw the text for non-selected and
enabled menu items of drop-down or popup menus.

The default value of Default_Color indicates that the defined default background color of the JadeSkinForm class
menuForeColor property is used. If that property is also set to Default_Color, the Windows default value is used.

foreColorDisabled
Type: Integer

Availability: Read or write at any time

The foreColorDisabled property of the JadeSkinMenu class contains the color used to draw the text for disabled
menu items on drop-down and popup menus.

The default value of Default_Color indicates that the defined default background color of the JadeSkinForm class
menuForeColorDisabled property is used. If that property is also set to Default_Color, the Windows default value
is used.

Encyclopaedia of Classes
(Volume 2)

JadeSkinMenu Class Chapter 1 119

EncycloSys2 - 2020.0.02

foreColorSelected
Type: Integer

Availability: Read or write at any time

The foreColorSelected property of the JadeSkinMenu class contains the color used to draw the text for selected
items on drop-down and popup menus.

The default value of Default_Color indicates that the defined default background color of the JadeSkinForm class
menuForeColorSelected property is used. If that property is also set to Default_Color, the Windows default value
is used.

imgCheckMark
Type: Binary

Availability: Read or write at any time

The imgCheckMark property of the JadeSkinMenu class contains the image used to draw checked menu items.
The default value of null indicates that the default check mark image is drawn.

Note If the image is a monochrome bitmap, the image is drawn using the background and foreground colors of
the menu item.

imgRightArrow
Type: Binary

Availability: Read or write at any time

The imgRightArrow property of the JadeSkinMenu class contains the image used to draw the right arrow
submenu indicator. The default value of null indicates that the default right arrow image is drawn.

Note If the image is a monochrome bitmap, the image is drawn using the background and foreground colors of
the menu item.

imgSeparator
Type: Binary

Availability: Read or write at any time

The imgSeparator property of the JadeSkinMenu class contains the image used to draw menu separators. The
default value of null indicates that the default menu separator image is drawn. This image is stretched horizontally
to fit.

Note If the image is a monochrome bitmap, the image is drawn using the background and foreground colors of
the menu item.

Encyclopaedia of Classes
(Volume 2)

JadeSkinMenu Class Chapter 1 120

EncycloSys2 - 2020.0.02

lineHeight
Type: Integer

Availability: Read or write at any time

The lineHeight property of the JadeSkinMenu class contains the height of each menu line item.

The default value of zero (0) indicates that the default menu spacing is used.

If the value of this property is not zero (0) and it is less than the height of the font text + 2, the height that is used is
the height of font text height + 2.

pixelsAfterCheckMark
Type: Integer

Availability: Read or write at any time

The pixelsAfterCheckMark property of the JadeSkinMenu class contains the amount of space left after the check
mark column.

The default value is zero (0), because the default check mark image includes that spacing in the image. The check
mark column is always displayed.

pixelsAfterPicture
Type: Integer

Availability: Read or write at any time

The pixelsAfterPicture property of the JadeSkinMenu class contains the amount of space left after the picture
image column. The default value is 5 pixels.

Note If none of the displayed menu items has a picture image, the picture column and the value of the
pixelsAfterPicture property are ignored.

pixelsBeforeAccelerator
Type: Integer

Availability: Read or write at any time

The pixelsBeforeAccelerator property of the JadeSkinMenu class contains the amount of space left before the
accelerator text column. The default value is 5 pixels.

Note If none of the displayed menu items has an accelerator, the accelerator column and the value of the
pixelsBeforeAccelerator property are ignored.

Encyclopaedia of Classes
(Volume 2)

JadeSkinMenu Class Chapter 1 121

EncycloSys2 - 2020.0.02

pixelsBeforeCheckMark
Type: Integer

Availability: Read or write at any time

The pixelsBeforeCheckMark property of the JadeSkinMenu class contains the amount of space left before the
check mark column. The default value is zero (0), because the default check mark image includes that spacing in
the image.

The check mark column is always displayed.

pixelsBeforeRightArrow
Type: Integer

Availability: Read or write at any time

The pixelsBeforeRightArrow property of the JadeSkinMenu class contains the amount of space left before the
right arrow column. The default value is 5 pixels.

Note If none of the displayed menu items has a submenu, the right arrow column and the value of the
pixelsBeforeRightArrow property are ignored.

Encyclopaedia of Classes
(Volume 2)

JadeSkinRoot Class Chapter 1 122

EncycloSys2 - 2020.0.02

JadeSkinRoot Class
The JadeSkinRoot class is the root class for all of the skin entities. This class contains a series of dictionaries that
enable you to reference the skin entities. Obtain the JadeSkinRoot class instance as follows.

root := JadeSkinRoot.firstInstance;

The JadeSkinRoot class properties are automatically maintained member key dictionaries that use the name
property of the JadeSkinEntity class as the key. For details about the properties defined in the JadeSkinRoot
class, see "JadeSkinRoot Properties", in the following subsection. For details about defining and maintaining
skins, see "Defining and Maintaining JADE Skins at Run Time", in Chapter 2 of the JADE Runtime Application
Guide.

Inherits From: JadeSkinEntity

Inherited By: (None)

JadeSkinRoot Properties
The JadeSkinRoot class provides the properties summarized in the following table.

Property Reference to the dictionary containing the name of all…

allApplicationSkins Application skins

allControlSkins Control skins

allFormSkins Form skins

allMenuSkins Menu skins

allSimpleButtonSkins Simple button skins

allSkinCategories Skin categories

allSkinEntities Skin entities

allWindowStateImages Window state images

allApplicationSkins
Type: JadeSkinApplicationNameDict

Availability: Read or write at any time

The allApplicationSkins property of the JadeSkinRoot class contains an automatic reference to the collection of
all application skins.

The key of the member key dictionary containing all application skins is the JadeSkinEntity class name property.

allControlSkins
Type: JadeSkinControlNameDict

Availability: Read or write at any time

The allControlSkins property of the JadeSkinRoot class contains an automatic reference to the collection of all
control skins.

The key of the member key dictionary containing all control skins is the JadeSkinEntity class name property.

Encyclopaedia of Classes
(Volume 2)

JadeSkinRoot Class Chapter 1 123

EncycloSys2 - 2020.0.02

allFormSkins
Type: JadeSkinFormNameDict

Availability: Read or write at any time

The allFormSkins property of the JadeSkinRoot class contains an automatic reference to the collection of all form
skins.

The key of the member key dictionary containing all form skins is the JadeSkinEntity class name property.

allMenuSkins
Type: JadeSkinMenuNameDict

Availability: Read or write at any time

The allMenuSkins property of the JadeSkinRoot class contains an automatic reference to the collection of all
menu skins.

The key of the member key dictionary containing all menu skins is the JadeSkinEntity class name property.

allSimpleButtonSkins
Type: JadeSkinSimpleButtonNameDict

Availability: Read or write at any time

The allSimpleButtonSkins property of the JadeSkinRoot class contains an automatic reference to the collection
of all simple button skins.

The key of the member key dictionary containing all simple button skins is the JadeSkinEntity class name
property.

allSkinCategories
Type: JadeSkinCategoryNameDict

Availability: Read or write at any time

The allSkinCategories property of the JadeSkinRoot class contains an automatic reference to the collection of all
skin categories.

The key of the member key dictionary containing all skin categories is the JadeSkinEntity class name property.

allSkinEntities
Type: JadeSkinEntityNameDict

Availability: Read or write at any time

The allSkinEntities property of the JadeSkinRoot class contains an automatic reference to the collection of all
skin entities.

The key of the member key dictionary containing all skin entities is the JadeSkinEntity class name property.

Encyclopaedia of Classes
(Volume 2)

JadeSkinRoot Class Chapter 1 124

EncycloSys2 - 2020.0.02

allWindowStateImages
Type: JadeSkinWindowStateNameDict

Availability: Read or write at any time

The allWindowStateImages property of the JadeSkinRoot class contains an automatic reference to the collection
of all window state images.

The key of the member key dictionary containing all window state images is the JadeSkinEntity class name
property.

Encyclopaedia of Classes
(Volume 2)

JadeSkinSimpleButton Class Chapter 1 125

EncycloSys2 - 2020.0.02

JadeSkinSimpleButton Class
The JadeSkinSimpleButton class holds the skin definitions for a simple button and its various states, which are:

Up

Down

Disabled

Rollover

Each state is defined by using a single image.

Simple buttons are used to define the form buttons such as the Maximize and Minimize buttons and the buttons
for CheckBox, ComboBox, OptionButton, and ScrollBar controls.

For details about the properties defined in the JadeSkinSimpleButton class, see "JadeSkinSimpleButton
Properties", in the following subsection. For details about defining and maintaining skins, see "Defining and
Maintaining JADE Skins at Run Time", in Chapter 2 of the JADE Runtime Application Guide.

Inherits From: JadeSkinEntity

Inherited By: (None)

JadeSkinSimpleButton Properties
The JadeSkinSimpleButton class provides the properties summarized in the following table.

Property Image displayed…

imgDisabled For the disabled state.

imgDown For the down state when the button is clicked. If you do not supply the image, the imgUp
image is used.

imgRollOver When the mouse is over the button in the up state. If you do not supply the image, the imgUp
image is used.

imgUp For the up or normal state. If you do not supply the image, the default button is drawn.

imgDisabled
Type: Binary

Availability: Read or write at any time

The imgDisabled property of the JadeSkinSimpleButton class contains the image that is displayed for the
disabled state of simple buttons.

If you do not supply the disabled image, the image contained in the imgUp property is used.

Encyclopaedia of Classes
(Volume 2)

JadeSkinSimpleButton Class Chapter 1 126

EncycloSys2 - 2020.0.02

imgDown
Type: Binary

Availability: Read or write at any time

The imgDown property of the JadeSkinSimpleButton class contains the image that is displayed for the down
state of simple buttons.

If you do not supply the down image, the image contained in the imgUp property is used.

imgRollOver
Type: Binary

Availability: Read or write at any time

The imgRollOver property of the JadeSkinSimpleButton class contains the image that is displayed for the
rollover state of simple buttons.

If you do not supply the rollover image, the image contained in the imgUp property is used.

imgUp
Type: Binary

Availability: Read or write at any time

The imgUp property of the JadeSkinSimpleButton class contains the image that is displayed for the up state of
simple buttons.

If you do not supply the up image, the default button is drawn.

Encyclopaedia of Classes
(Volume 2)

JadeSkinWindow Class Chapter 1 127

EncycloSys2 - 2020.0.02

JadeSkinWindow Class
The JadeSkinWindow class, which is the abstract superclass of all Window class skins, contains the defined
image and category of the skins. For details about the properties defined in the JadeSkinWindow class, see
"JadeSkinWindow Properties", in the following subsection. For details about defining and maintaining skins, see
"Defining and Maintaining JADE Skins at Run Time", in Chapter 2 of the JADE Runtime Application Guide.

Inherits From: JadeSkinArea

Inherited By: JadeSkinControl, JadeSkinForm

JadeSkinWindow Properties
The JadeSkinWindow class provides the properties summarized in the following table.

Property Reference to the …

myHorizontalScrollBarSkin Skin used to display horizontal scroll bars in JADE windows

myImageMask JadeSkinWindowStateImage object used to construct a Windows region for
the window

mySkinCategory Skin category that applies to the skin

myVerticalScrollBarSkin Skin used to display vertical scroll bars in JADE windows

myHorizontalScrollBarSkin
Type: JadeSkinHScroll

Default: Null

Availability: Read or write at any time

The myHorizontalScrollBarSkin property of the JadeSkinWindow class contains a reference to the skin used to
draw the horizontal scroll bar on BaseControl, ComboBox list box, ListBox, Picture, JadeRichText, Table, and
TextBox controls on JADE windows and the Form class.

This property, which you can set on the Jade Skin Maintenance dialog, applies only to the BaseControl,
ComboBox list box, ListBox, Picture, JadeRichText, Table, and TextBox controls and the Form class, and is
ignored for any other controls.

Applies to Version: 2020.0.01 and higher

myImageMask
Type: JadeSkinWindowStateImage

Availability: Read or write at any time

The myImageMask property of the JadeSkinWindow class contains an optional reference to the
JadeSkinWindowStateImage object used to construct a Windows region for the window. (See also the
JadeSkinButton class createRegionFromMask property.)

By default, all windows are rectangular. Applying a region to a window enables it to be of any shape and include
‘holes’ inside it.

Encyclopaedia of Classes
(Volume 2)

JadeSkinWindow Class Chapter 1 128

EncycloSys2 - 2020.0.02

Note Any part of any child outside the defined region is not displayed.

To understand the way in which a region is constructed, consider that the image specified by the myImageMask
property is drawn (stretched) over the top of the window, including any border area.

Only black pixels are considered part of the window when it is painted or clicked on. The result could be a window
with rounded corners, a window with holes in it, and so on.

Because the mask image is built to the same size as the actual window, if border masks are defined, the only
reasonable region that could be constructed is one where the corners as shaped. As all other areas are stretched
to fit, it is likely that they would not provide a suitable result. You would achieve a better result by defining only an
inner image for the mask that is stretched.

mySkinCategory
Type: JadeSkinCategory

Availability: Read or write at any time

The mySkinCategory property of the JadeSkinWindow class contains an optional reference to the skin category
that applies to the skin.

If the mySkinCategory property is set to "Company Logo", for example, the skin is applied only to a window of
the appropriate type that has the skinCategoryName property also set to "Company Logo".

In addition, you can define a skin category for a Control subclass (for example, each BaseControl subclass) and
associate a different category name with each of those skins. The constructor of each control subclass can then
set the appropriate category name on the control so that the correct JadeSkinBaseControl skin is then applied.

myVerticalScrollBarSkin
Type: JadeSkinVScroll

Default: Null

Availability: Read or write at any time

The myVerticalScrollBarSkin property of the JadeSkinWindow class contains a reference to the skin used to
draw the vertical scroll bar on BaseControl, ComboBox list box, ListBox, Picture, JadeRichText, Table, and
TextBox controls on JADE windows and the Form class.

This property, which you can set on the Jade Skin Maintenance dialog, applies only to the BaseControl,
ComboBox list box, ListBox, Picture, JadeRichText, Table, and TextBox controls and the Form class, and is
ignored for any other controls.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeSkinWindowStateImage Class Chapter 1 129

EncycloSys2 - 2020.0.02

JadeSkinWindowStateImage Class
The JadeSkinWindowStateImage class defines the image of a window area for a specific state (that is, for the up,
down, rollover, or disabled state).

For details about the properties defined in the JadeSkinWindowStateImage class, see
"JadeSkinWindowStateImage Properties", in the following subsection. For details about defining and maintaining
skins, see "Defining and Maintaining JADE Skins at Run Time", in Chapter 2 of the JADE Runtime Application
Guide.

Inherits From: JadeSkinArea

Inherited By: (None)

JadeSkinWindowStateImage Properties
The JadeSkinWindowStateImage class provides the properties summarized in the following table.

Property Description

foreColor Specifies the color of the text for the defined window state

isImageMask Specifies whether this image is to be used for a window region mask.

foreColor
Type: Integer

Availability: Read or write at any time

The foreColor property of the JadeSkinWindowStateImage class contains the foreground color used to draw text
for the defined window state. This property is used for the text for a defined window state of a Button, Folder
control sheet tab, and JadeMask control when a JadeSkinButton skin is assigned.

The default value of #80000000 means that no foreground color is applied to the text color of the control by the
window state so that the text color is defined by the value of the foreColor property of the JadeSkinButton class
or Control class; otherwise the value is used to draw the text when a specific window state is active. For example,
when the mouse is moved over a button and an imgRollOver property value is defined for that state, the text is
drawn using the foreColor property value when it is not #80000000.

This behavior is not affected by any foreColor property value assigned to the control. It would therefore normally
not be used to draw the text in its normal state, because otherwise a skinned control will not show a foreColor
value assigned by logic to the control.

Use the Default foreColor check box on the Window State Image sheet of the Jade Skin Maintenance form to
specify the rollover foreground color. When you uncheck this check box, the common Color dialog is displayed, to
enable you to select or define the foreground color you require for the rollOver state of the skin.

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeSkinWindowStateImage Class Chapter 1 130

EncycloSys2 - 2020.0.02

isImageMask
Type: Boolean

Availability: Read or write at any time

The isImageMask property of the JadeSkinWindowStateImage class specifies whether the image is to be used
for a window region mask. This causes the images to be built in a special way for region handling.

It is also used to filter out images not suitable for region masks (that is, icons, cursors, and meta files).

Encyclopaedia of Classes
(Volume 2)

JadeSOAPException Class Chapter 1 131

EncycloSys2 - 2020.0.02

JadeSOAPException Class
The JadeSOAPException class is the transient class that defines behavior for exceptions that occur as a result of
Web service handling.

For details about Web services exceptions, see the error messages in the range 11000 through 11052 in "Error
Messages and System Messages", in the JADEMsgs.pdf file.

Inherits From: NormalException

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

JadeSSLContext Class Chapter 1 132

EncycloSys2 - 2020.0.02

JadeSSLContext Class
The JadeSSLContext class implements the behavior required for secure connections using a Secure Sockets
Layer (SSL) library protocol instead of the Transmission Control Protocol / Internet Protocol (TCP/IP) protocol
when the TcpIpConnection class sslContext property contains a reference to a JadeSSLContext transient
object.

SSL is a secure communication protocol on top of an already established TCP/IP connection. SSL libraries are
generated from publicly available third-party sources, maintained by the OpenSSL Group
(http://www.openssl.org). JADE supports TLS (Transport Layer Security) version 1, TLS version 1.1, and TLS
version 1.2.

JadeSSLContext connections use digital certificates in X509 format, which must exist on disk in
Privacy-Enhanced Electronic Mail (PEM)-encoded certificate (PEM) format.

The method in the following example opens an outgoing SSL connection.

vars
tcpip : TcpIpConnection;
sslContext : JadeSSLContext;
x509 : JadeX509Certificate;

begin
create x509 transient;
x509.readCertificateDataFromFile("c:\Certificates\client.pem");
x509.readPrivateKeyDataFromFile("c:\Certificates\client.key", "myPassword");
create sslContext transient;
sslContext.methodType := JadeSSLContext.MethodTLSv1_2;
sslContext.caFile := "c:\Certificates\serverCAcerts.pem";
sslContext.x509 := x509;
create tcpip transient;
tcpip.name := "mySSLNode";
tcpip.port := 8097;
tcpip.sslContext := sslContext;
tcpip.open;
// ... send and receive some data
tcpip.close;

epilog
delete x509;
delete sslContext;
delete tcpip;

end;

The method in the following example listens for an incoming SSL connection request.

vars
tcpip : TcpIpConnection;
sslContext : JadeSSLContext;
x509: JadeX509Certificate;

begin
create x509 transient;
x509.readCertificateDataFromFile("c:\Certificates\server.pem");
x509.readPrivateKeyDataFromFile("c:\Certificates\server.key", "mySrvPassword");
create sslContext transient;
sslContext.methodType := JadeSSLContext.MethodTLSv1_2;
sslContext.caFile := "c:\Certificates\clientCAcerts.pem";
sslContext.x509 := x509;

http://www.openssl.org/

Encyclopaedia of Classes
(Volume 2)

JadeSSLContext Class Chapter 1 133

EncycloSys2 - 2020.0.02

create tcpip transient;
tcpip.port := 8097;
tcpip.sslContext := sslContext;
tcpip.listen;
// ... send and receive some data
tcpip.close;

epilog
delete x509;
delete sslContext;
delete tcpip;

end;

For details about the constants, properties and methods defined in the JadeSSLContext class, see
"JadeSSLContext Class Constants", "JadeSSLContext Properties" and "JadeSSLContext Methods", in the
following subsections. For details about returning the type of encryption being used by a JADE thin client TCP/IP
connection in the current application, see the Application class getThinClientEncryptionType method.

Inherits From: Object

Inherited By: (None)

JadeSSLContext Class Constants
The constants provided by the JadeSSLContext class are listed in the following table.

JadeSSLContext Class Constant Integer Value

MethodSSLNone 0

MethodSSLv2 (superseded) 1

MethodSSLv23 (superseded) 2

MethodSSLv3 (superseded) 3

MethodTLSv1 4

MethodTLSv1_1 5

MethodTLSv1_2 6

JadeSSLContext Properties
The properties defined in the JadeSSLContext class are summarized in the following table.

Property Description

caFile Contains the name of the file containing the digital certificate or certificates of
Certificate Authorities

caPath Contains the absolute path of the directory containing digital Certificate Authority
files

cipherList Contains a colon-separated list of ciphers that can be used for the connection
object

methodType Contains the indicator to the SSL library of which secure protocol to use

Encyclopaedia of Classes
(Volume 2)

JadeSSLContext Class Chapter 1 134

EncycloSys2 - 2020.0.02

Property Description

verifyDepth Contains the maximum verification depth in a chain of certificates

verifyRemoteCertificate Specifies whether the peer certificate is verified when the SSL connection is
established

x509 Contains a reference to the JadeX509Certificate object

caFile
Type: String

The caFile property of the JadeSSLContext class contains the name of the Certificate Authority file containing the
Privacy-Enhanced Electronic Mail (PEM)-encoded digital certificate or certificates used by the SSL libraries to
validate the issuers of the peer certificate.

Local operating system file naming conventions apply.

This file is located in the directory specified in the caPath property.

caPath
Type: String

The caPath property of the JadeSSLContext class contains the absolute path of the directory or directories
containing the master public certificates for Certificate Authority files (for example, Verisign) used by the SSL
libraries to validate the issuers of the peer certificate or certificates. Each file in the specified directory can contain
only a single certificate.

Local operating system file naming conventions apply. If you specify more than one directory, separate each path
name with a semicolon character (;). The path name can contain a drive letter.

Note Support of OpenSSL requires file names need to be hashed and the OpenSSL-supplied Practical
Extraction and Report Language (Perl) script for hashing does not work on Windows operating systems because
Perl does not support symbolic linking.

cipherList
Type: String

The cipherList property of the JadeSSLContext class contains a colon-separated list of ciphers that can be used
for the connection object. Separate each cipher with a colon character (:).

As the default value is null (""), you must specify this property before establishing a connection if you want to use
a list. When SSL detects a null value, it finds the strongest matching cipher. The connection fails if both ends (that
is, the server and client nodes) do not have at least one cipher in common.

SSL selects the strongest common cipher available to both ends of the connection. For details, see "Secure
Sockets Layer (SSL) Security", in Chapter 2 of the JADE Object Manager Guide.

Encyclopaedia of Classes
(Volume 2)

JadeSSLContext Class Chapter 1 135

EncycloSys2 - 2020.0.02

methodType
Type: Integer

The methodType property of the JadeSSLContext class contains the indicator to the SSL library of which
Transport Layer Security (TLS) version that the application server and presentation clients use to communicate.

The methodType property can contain one of the JadeSSLContext class constants listed in the following table.

JadeSSLContext Class Constant Integer Value

MethodSSLNone (the default value) 0

MethodSSLv2 (superseded) 1

MethodSSLv23 (superseded) 2

MethodSSLv3 (superseded) 3

MethodTLSv1 4

MethodTLSv1_1 5

MethodTLSv1_2 6

verifyDepth
Type: Integer

The verifyDepth property of the JadeSSLContext class contains the maximum verification depth in a chain of
certificates. This value specifies how far back in the certificate chain checking for the Certificate Authority signature
goes. A certificate is signed by a Certificate Authority (CA) certificate. The CA certificate is signed by a more-
trusted CA or it is signed by itself.

If you know the maximum depth of certificate chain, set the property to that value, or depth. A large value allows
more checking but too small a value may not verify the complete certificate chain. Specify zero (0) if you want
unlimited depth checking. The default value is 9.

verifyRemoteCertificate
Type: Boolean

The verifyRemoteCertificate property of the JadeSSLContext class specifies whether the peer certificate is
verified when the SSL connection is established. (The remote program must have a file defined in the caFile
property for that node.) The default value of false indicates that the remote peer certificate is not verified.

x509
Type: JadeX509Certificate

The x509 property of the JadeSSLContext class contains a reference to the JadeX509Certificate object of the
digital certificate to be used for identification when establishing an SSL connection. The default value is null; that
is, there is no X509 certificate reference.

Encyclopaedia of Classes
(Volume 2)

JadeSSLContext Class Chapter 1 136

EncycloSys2 - 2020.0.02

JadeSSLContext Methods
The methods defined in the JadeSSLContext class are summarized in the following table.

Method Returns …

getActiveCipher The active cipher for the specified TCP/IP connection

getPeerCertificate Reference to the certificate object used by the connection peer

getActiveCipher
Signature getActiveCipher(tcp: TcpIpConnection): String;

The getActiveCipher method of the JadeSSLContext class returns a string containing the active cipher for the
TCP/IP connection specified in the tcp parameter.

If the specified connection is not currently connected, this method returns null ("").

getPeerCertificate
Signature getPeerCertificate(tcp: TcpIpConnection): JadeX509Certificate;

The getPeerCertificate method of the JadeSSLContext class returns a read-only reference to a
JadeX509Certificate object that contains information about the certificate used by the connection peer if an SSL
connection has been successfully established or it returns null ("") if an SSL connection has not been
established.

Encyclopaedia of Classes
(Volume 2)

JadeSystemAnnotation Class Chapter 1 137

EncycloSys2 - 2020.0.02

JadeSystemAnnotation Class
The JadeSystemAnnotation class is the abstract superclass of system-defined annotation classes that participate
in the definition of additional schema meta information. It is the root class of other annotation classes; for example,
the JadeRequiredDelegateClaimAnnotation class.

Inherits From: JadeAnnotation

Inherited By: JadeRequiredClaimAnnotation

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTableCell Class Chapter 1 138

EncycloSys2 - 2020.0.02

JadeTableCell Class
The JadeTableCell class provides access to an internally created cell object that you can use to directly reference
the properties and methods of the table cell. This object is created on the first call to the Table class accessCell
method or the JadeTableSheet class accessCell method for each Table control.

Using instances of the JadeTableCell class is equivalent to setting the accessMode property of the Table control
to the Table.AccessMode_Cell value without having to set the row, column, or sheet property.

One JadeTableCell object only is created for each Table control, as there would be too much overhead required
in creating an object for each cell. This object is a proxy object holding the reference to the cell that was last
accessed by using the Table class accessCell method or the JadeTableSheet class accessCell method.

Accessing a cell by using the Table class accessCell method or the JadeTableSheet class accessCell method
also sets the accessedCell property in the Table class, allowing subsequent access to that table cell.

The following code fragments show examples of accessing the last table elements that were accessed.

table1.accessCell(2, 3).inputType := Table.InputType_TextBox;
table1.accessedCell.foreColor := Red;

table1.accessSheet(2).accessCell(1, 4).text := "Company";
table1.accessedCell.alignment := Table.Alignment_Right_Middle;

Storing a reference to a returned cell causes problems unless you take a copy of that cell, as shown in the
following example in which both cell1 and cell2 refer to the same object, which is referencing cell(3, 4).

cell1 := table1.accessCell(2, 3);
cell2 := table1.accessCell(3, 4);
cell1.text := "abc";

In the following example, cell1 has been cloned and still refers to cell(2, 3).

cell1 := table1.accessCell(2, 3).cloneSelf(true);
// the cloned cell must be deleted by your logic
cell2 := table1.accessCell(3, 4);
cell1.text := "abc";

For details about the properties and methods defined in the JadeTableCell class, see "JadeTableCell Properties"
and "JadeTableCell Methods", in the following subsections.

For details about the superclass that encapsulates the behavior required to directly access the properties and
methods of a table cell, see "JadeTableElement Class", later in this chapter, and for details about the table control
and the constants, properties, methods, and events that it provides, see "Table Class", in Chapter 2.

Inherits From: JadeTableElement

Inherited By: (None)

JadeTableCell Properties
The properties defined in the JadeTableCell class are summarized in the following table.

Property Description

column Contains the column number of the accessed cell

Encyclopaedia of Classes
(Volume 2)

JadeTableCell Class Chapter 1 139

EncycloSys2 - 2020.0.02

Property Description

comboIndex Contains the index of a combo box in the cell

hyperLink Specifies whether the cell contains a hyperlink string that is programmatically attached to the
cell

mergeCells Contains a value representing the type of cell merging that can be performed, if any

picture Contains a graphic to be displayed in the cell

row Contains the row number of the accessed cell

sheet Contains the sheet number of the accessed cell

text Contains the text in the cell

column
Type: Integer

Availability: Read or write at any time

The column, row, and sheet properties of the JadeTableCell class define the cell referenced by this object. These
properties are set when the Table class accessCell method or the JadeTableSheet class accessCell method is
called.

You can also set this property manually, allowing your logic to dynamically modify the cell that is being
referenced.

The following example shows the use of the column property.

tableCell := table1.accessCell(2, 10);
counter := 10;
while counter >= 1 do

tableCell.column := counter;
tableCell.selected := true;
counter := counter - 1;

endwhile;

comboIndex
Type: Integer

Availability: Read or write at run time only (for a cell with inputType set to 3 only)

The comboIndex property of the JadeTableCell class contains the index of a combo box in a cell of a Table cell
referenced by this object.

This property applies only to a cell that has the inputType property of the Table class set to InputType_
ComboBox (3).

For a description of this property, see the Table class comboIndex property.

The code fragment in the following example shows the use of the comboIndex property.

table1.accessCell(2, 3).comboIndex := listBox.listIndex;

Encyclopaedia of Classes
(Volume 2)

JadeTableCell Class Chapter 1 140

EncycloSys2 - 2020.0.02

hyperLink
Type: Boolean

Availability: Read or write at run time only

The hyperLink property of the JadeTableCell class specifies whether the cell referenced by this object contains a
hyperlink string that is programmatically attached to the cell; that is, it holds the value for the Table class
isHyperlinkSet, resetHyperlinkCell, or setHyperlinkCell method.

Note The hyperLink property is ignored for JADE applications that are Web-enabled. For these applications,
you should use the hyperlinkColumn array property of the Table class.

The code fragment in the following example shows the use of the hyperlink property.

table1.accessCell(2, 4).hyperLink := checkbox.value;

mergeCells
Type: Integer

Availability: Read or write at run time only

The mergeCells property of the JadeTableCell class contains a value that specifies the type of cell merging that
can be performed, if any. You can set the mergeCells property to one of the Table class constants listed in the
following table.

Table Class Constant Value Description

MergeCells_Available 0 Cell available for merging if empty (the default value)

MergeCells_Merge 1 Merge all following empty cells

MergeCells_MergeSelectable 2 Merge all following empty cells (cells still selectable)

MergeCells_NotAvailable 3 Current cell not available for merging

The mergeCells property enables you to extend a cell over adjacent cells, as shown in the following image.

In this example, the table holds entries divided into months, with the month heading centered across three cells
and an extended fixed-column cell further dividing each month.

Setting the mergeCells property of a cell to MergeCells_MergeSelectable (2) or MergeCells_Merge (1) causes
that cell to be drawn across adjacent cells of the same row. The drawing stops prior to a cell in which one of the
following applies.

The mergeCells property of the cell is not set to MergeCells_Available (0).

The cell has a non-null text value.

Encyclopaedia of Classes
(Volume 2)

JadeTableCell Class Chapter 1 141

EncycloSys2 - 2020.0.02

The cell has a non-null picture value.

The cell is the current cell.

The mergeCells property can be set to a value represented by a Table control class constant, as follows.

MergeCells_Available (0)

If the cell has no text or picture, it can be merged into a preceding cell. (This is the default value for all cells.)

MergeCells_Merge (1)

The cells following the cell will be merged into this cell up to the end of the row or up to (but not including):

A cell that contains a text or picture

The mergeCells property of the cell is not MergeCells_Available (0)

The cell is the current cell

Clicking anywhere in the expanded cell is treated as a click event in that cell and the hidden cell or cells
cannot be accessed. Similarly, the left and right arrow keys ignore the covered cells.

The getCellFromPosition method also returns the merged cell for any position within the whole of the drawn
cell.

MergeCells_MergeSelectable (2)

Cells are merged in exactly the same way as they are when the property is set to the MergeCells_Merge
value, but the covered cells can be ‘brought back to life’ by clicking on the expanded cell in the position
corresponding to the hidden cell. Similarly, the left and right arrow keys step into the previously hidden cells
rather than skipping to the start or end of the merged cell.

The getCellFromPosition method also returns the cell that corresponds to the position, ignoring any merged
cell size.

MergeCells_NotAvailable (3)

This setting has no effect on that cell except to specifically terminate any merging process; that is, this cell
cannot be merged.

This value is required only to terminate the merging process prior to an empty cell.

If the cells are automatically resized (by using the Table class autoSize property) and the cell contents do not fit
within the whole of the merged columns, the first column of the merged columns is enlarged. (This size is
calculated by determining the size of the merged columns using the above rules, except that the current cell does
not terminate the merging of the cells.)

The following example shows the use of the mergeCells property.

table1.accessCell(2, 2).mergeCells := Table.MergeCells_Merge;
// column 2 merges following cells

table1.accessedCell.text := "Heading 1";
table1.accessedCell.alignment := Table.Alignment_Center_Middle;

// center
table1.accessCell(2, 7).mergeCells := Table.MergeCells_NotAvailable;

// ensure merging ended

Encyclopaedia of Classes
(Volume 2)

JadeTableCell Class Chapter 1 142

EncycloSys2 - 2020.0.02

Notes Merged cells do not affect the values of the Table control class columnWidth property.

A merged cell uses the total displayed width for data entry when used with a cell that has the inputType property
set or that has a JadeTableElement class cellControl property.

If the horizontal alignment of the cell is not left aligned, the alignment is performed based on the total width of the
merged cell.

You can also merge cells belonging to a fixed row and column to allow, for example, headings that span more
than one column. If you merge fixed cells, the moving and resizing processes of columns and rows are also
affected by whether the MergeCells_MergeSelectable (2) or MergeCells_Merge (1) value applies. For the
MergeCells_Merge value, the hidden cells cannot be moved or resized, while they can be for the MergeCells_
MergeSelectable value.

See also the JadeTableCell class getCellWidth method.

picture
Type: Binary

Availability: Read or write at run time only

The picture property of the JadeTableCell class contains a graphic to be displayed in the cell referenced by this
object. For a description of this property, see the Table class picture property.

The code fragment in the following example shows the use of the picture property.

table1.accessCell(2, 3).picture := app.loadPicture("c:\images\company.ico");

row
Type: Integer

Availability: Read or write at any time

The row, column, and sheet properties of the JadeTableCell class define the cell referenced by this object. These
properties are set when the Table class accessCell method or the JadeTableSheet class accessCell method is
called.

You can also set this property manually, allowing your logic to dynamically modify the cell that is being
referenced, as shown in the following example.

tableCell := table1.accessCell(10, 2);
counter := 10;
while counter >= 1 do

tableCell.row := counter;
tableCell.selected := true;
counter := counter - 1;

endwhile;

Encyclopaedia of Classes
(Volume 2)

JadeTableCell Class Chapter 1 143

EncycloSys2 - 2020.0.02

sheet
Type: Integer

Availability: Read or write at any time

The sheet, column, and row properties of the JadeTableCell class define the cell referenced by this object. These
properties are set when the Table class accessCell method or the JadeTableSheet class accessCell method is
called.

You can also set this property manually, allowing your logic to dynamically modify the cell that is being
referenced.

text
Type: String

Availability: Read or write at run time only

The text property of the JadeTableCell class contains the text of the cell referenced by this object. For a
description of this property, see the Table class text property.

The code fragment in the following example shows the use of the text property.

table1.accessCell(1, 2).text := "Company";

The code fragment in the following example uses concatenation with the Tab character to store text in cells to the
right of the specified cell.

// Set up column headings
table1.accessCell(1, 1).text := "Name" & Tab & "Address" & Tab & "Phone";

JadeTableCell Methods
The methods defined in the JadeTableCell class are summarized in the following table.

Property Description

delete Deletes the JadeTableCell object but has no impact on the contents of the table

getCellWidth Returns the logical width of the cell in pixels

positionLeft Returns the displayed left position of the cell in pixels

positionTop Returns the displayed top position of the cell in pixels

setPictureDescription Assigns a description to a picture in a cell

delete
Signature delete() updating;

The delete method deletes the JadeTableCell object but has no impact on the contents of the Table control.

A new JadeTableCell object is created on the next call of the Table class accessCell method or the
JadeTableSheet class accessCell method.

Encyclopaedia of Classes
(Volume 2)

JadeTableCell Class Chapter 1 144

EncycloSys2 - 2020.0.02

getCellWidth
Signature getCellWidth(): Integer;

The getCellWidth method of the JadeTableCell class returns the logical width of the cell in pixels.

For a merged cell where the mergeCells property is set to the MergeCells_MergeSelectable (2) or MergeCells_
Merge (1) value, the width is the size after the merging process.

For a cell that is hidden by the merge process, this method returns zero (0).

For a non-merged cell, this method returns the same value as the Table control class columnWidth property of the
cell.

The following example, which ensures that a merged cell is always totally displayed, shows the use of the
getCellWidth method.

// If the first cell is a hidden cell of the merge, move the table
// to the start of a merged cell
while table1.leftColumn > 2 and table1.accessCell(table1.row,

table1.leftColumn).getCellWidth = 0 do
table1.leftColumn := table1.leftColumn - 1;

endwhile;

See also the JadeTableCell class mergeCells property.

positionLeft
Signature positionLeft(): Integer;

The positionLeft property of the JadeTableCell class returns the displayed position in pixels of the cell referenced
by this object, relative to the client area of the Table control (the area inside borders).

The sheet, row, and column properties define the current cell.

If the current cell is not visible, one or both of the positionLeft or positionTop methods returns -1.

The code fragment in the following example shows the use of the positionLeft method.

if table1.accessCell(2, 3).positionLeft >= 0 then
myTextBox.left := table1.accessedCell.positionLeft;

endif;

positionTop
Signature positionTop(): Integer;

The positionTop property of the JadeTableCell class returns the displayed position in pixels of the cell referenced
by this object, relative to the client area of the Table control (the area inside borders).

If the current cell is not visible, one or both of the positionLeft or positionTop methods returns -1.

The code fragment in the following example shows the use of the positionTop method.

if table1.accessCell(2, 3).positionTop >= 0 then
myTextBox.top := table1.accessedCell.positionTop;

endif;

Encyclopaedia of Classes
(Volume 2)

JadeTableCell Class Chapter 1 145

EncycloSys2 - 2020.0.02

setPictureDescription
Signature setPictureDescription(desc: String) updating;

The setPictureDescription property of the JadeTableCell class assigns a description to a picture in a cell. This
description is used when accessibility screen-reading software (for example, Scientific Freedom Jaws) reads the
contents of a cell that has no cell text.

The assignment associates the description with the picture, not with the cell, so if the same picture is assigned to
more than one cell, the last description set for the image applies to all cells.

If the method is called for a cell that does not have an assigned image, an exception is raised. Ensure that the
picture is assigned to the cell before the description is attached, as in the following example.

vars
jtc : JadeTableCell;

begin
jtc := table1.accessCell(2,1);
jtc.picture := app.loadPicture("C:\bridge.jpg");
jtc.setPictureDescription("London Bridge");

end;

Encyclopaedia of Classes
(Volume 2)

JadeTableColumn Class Chapter 1 146

EncycloSys2 - 2020.0.02

JadeTableColumn Class
The JadeTableColumn class provides access to an internally created column object that you can use to directly
reference the properties and methods of the table column. This object is created on the first call to the Table class
accessColumn method or the JadeTableSheet class accessColumn method for each Table control.

Using instances of the JadeTableColumn class is equivalent to setting the accessMode property of the Table
control to the Table.AccessMode_Column value without having to set the sheet or column property.

One JadeTableColumn object only is created for each Table control, as there would be too much overhead
required in creating an object for each column. This object is a proxy object that holds the reference to the column
that was last accessed by using the Table class accessColumn method or JadeTableSheet class
accessColumn method.

Accessing a column by using the Table class accessColumn method or JadeTableSheet class accessColumn
method sets the accessedColumn property in the Table class, allowing subsequent access to that table column.

Storing a reference to a returned column causes problems unless you take a copy of that column, as there is only
one such object. (Your logic must delete the cloned column.)

For details about the properties and methods defined in the JadeTableColumn class, see "JadeTableColumn
Properties" and "JadeTableColumn Methods", in the following subsections. For details about the table control and
the constants, properties, methods, and events that it provides, see "Table Class", in Chapter 2.

Inherits From: JadeTableElement

Inherited By: (None)

JadeTableColumn Properties
The properties defined in the JadeTableColumn class are summarized in the following table.

Property Description

column Contains the column number of the accessed column

maxColumnWidth Contains the maximum width (in pixels) for a column when determining the width during
the column width auto-size processing

sheet Contains the sheet number of the accessed column

sortAsc Specifies whether the sorting is ascending or descending

sortCased Specifies whether sorting is case-sensitive

sortOrder Specifies the precedence of the column for sorting (1 through 6) or zero to remove
sorting on the column

sortType Specifies the type of data the cell text represents during sorting

visible Specifies the visibility of the column

width Contains the size of the column

widthPercent Contains the width of a column to a percentage of the client width of the table

Encyclopaedia of Classes
(Volume 2)

JadeTableColumn Class Chapter 1 147

EncycloSys2 - 2020.0.02

column
Type: Integer

Availability: Read or write at any time

The column and sheet properties of the JadeTableColumn class define the column referenced by this object.
These properties are set when the Table class accessColumn method or the JadeTableSheet class
accessColumn method is called.

You can also set this property manually, allowing your logic to dynamically modify the column that is being
referenced, as shown in the following example.

tableColumn := table1.accessColumn(10);
counter := 10;
while counter >= 1 do

tableColumn.column := counter;
tableColumn.inputType := Table.InputType_Numeric;
counter := counter - 1;

endwhile;

maxColumnWidth
Type: Integer

Availability: Read or write at any time

The maxColumnWidth property of the JadeTableColumn class specifies the maximum width (in pixels) for a
column when determining the width during the column width auto-size processing.

The default value is zero (0), with values in the range zero (0) through 32767 pixels permitted. The default value of
zero (0) means that there is no maximum width and the column will be as wide as required by the content if the
column width is auto-sized. If the cell contains a long text string, the column will be as wide as is required to
display the entire string.

If the value of the maxColumnWidth property is greater than zero (0) and column width is determined by the
autoSize process, the width is restricted to a maximum value of the maxColumnWidth property.

The maxColumnWidth property is used only during the autoSize process and is ignored if the:

Table class autoSizeproperty value is not one of AutoSize_Both, AutoSize_BothColumnMinimum,
AutoSize_Column, or AutoSize_ColumnMinimum.

Column width has been set by logic (that is, set by the Table class columnWidth property or the
JadeTableColumn class width property).

Value of the JadeTableColumn class widthPercent property is not zero (0).

The maxColumnWidthproperty value does not prevent logic from setting a larger column width, nor does it
prevent the user from resizing the column width to be larger than the value of thewidthproperty.

Applies to Version: 2016.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTableColumn Class Chapter 1 148

EncycloSys2 - 2020.0.02

sheet
Type: Integer

Availability: Read or write at any time

The sheet and column properties of the JadeTableColumn class define the column referenced by this object.
These properties are set when the Table class accessColumn or JadeTableSheet class accessColumn method
is called.

You can also set this property manually, allowing your logic to dynamically modify the column that is being
referenced.

sortAsc
Type: Boolean

Availability: Read or write at run time only

The sortAsc property of the JadeTableColumn class controls whether the column referenced by this object is
sorted in ascending or descending order. The sortAsc property defaults to true.

This property is dependent on the column already being recorded as a sort column by the sortOrder property. For
a description of this property, see the Table class sortAsc property.

The code fragment in the following example shows the use of the sortAsc property.

table1.accessColumn(2).sortOrder := 1;
table1.accessedColumn.sortAsc := false;

sortCased
Type: Boolean

Availability: Read or write at run time only

The sortCased property of the JadeTableColumn class controls whether the column referenced by this object is
sorted according to case. The sortCased property defaults to false.

This property is dependent on the column already being recorded as a sort column by the sortOrder property.

For a description of this property, see the Table control sortCased property.

The code fragment in the following example shows the use of the sortCased property.

table1.accessColumn(2).sortOrder := 1;
table1.accessedColumn.sortCased := true;

sortOrder
Type: Integer

Availability: Read or write at run time only

The sortOrder property of the JadeTableColumn class contains the precedence of the column referenced by this
object when sorting, in the range 1 through 3, or it contains zero (0) to remove sorting on the current column.

Encyclopaedia of Classes
(Volume 2)

JadeTableColumn Class Chapter 1 149

EncycloSys2 - 2020.0.02

For a description of this property, see the Table control sortColumn property. See also the JadeTableColumn
class sortAsc, sortCased, and sortType properties, which are dependent on the column already being recorded
as a sort column by the sortOrder property.

The code fragment in the following example shows the use of the sortOrder property.

table1.accessColumn(2).sortOrder := 1; // first column in sort
table1.accessColumn(4).sortOrder := 2; // second column
table1.accessColumn(5).sortOrder := 3; // third column

sortType
Type: Integer

Availability: Read or write at run time only

The sortType property of the JadeTableColumn class contains the type of sorting that is performed on the column
referenced by this object. This property is dependent on the column already being recorded as a sort column by
the sortOrder property. For a description of this property, see the Table control sortType property.

The code fragment in the following example shows the use of the sortType property.

table1.accessColumn(2).sortOrder := 1; // first column in sort
table1.accessedColumn.sortType := Table.SortType_Numeric;

visible
Type: Boolean

Availability: Read or write at any time

The visible property of the JadeTableColumn class specifies whether the column referenced by this object is
displayed or hidden, or the visibility status to be obtained. For a description of this property, see the Table control
columnVisible property.

The code fragment in the following example shows the use of the visible property.

if table1.accessColumn(indx).visible then
table1.accessedColumn.backColor := Red;

endif;

width
Type: Integer

Availability: Read or write at any time

The width property of the JadeTableColumn class enables the size of the column referenced by this object to be
accessed. For a description of this property, see the Table control columnWidth property.

The code fragment in the following example shows the use of the width property.

myTextBox.width := table1.accessColumn(table1.column).width;

Encyclopaedia of Classes
(Volume 2)

JadeTableColumn Class Chapter 1 150

EncycloSys2 - 2020.0.02

widthPercent
Type: Real

Availability: Read or write at any time

The widthPercent property of the JadeTableColumn class contains the width of a column to a percentage of the
client width of the table, as shown in the following example.

table.accessColumn(2).widthPercent := 20;

The default value of zero (0.0) indicates that the property does not apply, and the width of a column is then the
default (set by the Table::columnWidth or JadeTableColumn::width property) or automatically calculated, by
using the Table class autoSize property.

If a column has a positive widthPercent value, the width of the column is set to that percentage of the client width
of the table. If the table width changes, this value is recalculated accordingly.

If all of the visible columns of a table have a non-zero widthPercent value and those values add up to 100
percent, the table is guaranteed not to have a horizontal scroll bar and the columns exactly fill the width of the
table. It is not necessary for the values to add up to 100 percent or for all columns to have a value set.

To use mixed column width values in a table (that is, fixed-width and percent-width values), use the
widthPercentStyle property of the JadeTableSheet class.

You can use this property in conjunction with the Table class wordWrap and autoSize properties. If word wrap
applies to the cells of a column, setting the Table class autoSize property to AutoSize_Row, AutoSize_Both, or
AutoSize_BothColumnMinimum determines the row height by using the column width for the word-wrapped text.

Notes Setting the Table class columnWidth property for a column resets the value of the widthPercent property
to zero for that column.

If the user resizes a column manually, the value of the widthPercent property for that column is set to zero.

Setting the value of the widthPercent property to any value, including zero, clears any manual resizing of the
column and causes the automatic width processes to apply again for that column.

JadeTableColumn Methods
The methods defined in the JadeTableColumn class are summarized in the following table.

Property Description

delete Deletes the JadeTableColumn object and the column reference in the table

findObject Returns the row of the cell holding the specified object

findString Searches the cells in a column of a table for the specified string

restoreAutoSize Recalculates column widths, ignoring a width set by logic or by any user resize of that
column

delete
Signature delete() updating;

The delete method deletes the column referenced by this object from the Table control.

Encyclopaedia of Classes
(Volume 2)

JadeTableColumn Class Chapter 1 151

EncycloSys2 - 2020.0.02

A new JadeTableColumn object is created on the next call of the Table class accessColumn method or the
JadeTableSheet class accessColumn method.

findObject
Signature findObject(object: Object;

row: Integer io): Boolean;

The findObject method of the JadeTableColumn class searches the itemObject property value of every cell in the
column referenced by this object for the value specified in the object parameter, starting from the row specified in
the row parameter value. If the row parameter contains a zero (0) value indicating that it is not specified, the row is
treated as the first row; that is, the row value is set to 1.

If the specified object is found, this method returns true and the row of the cell that contains the specified object. If
the object is not found, this method returns false.

The code fragment in the following example shows the use of the findObject method.

bool := table1.accessColumn(table1.column).findObject(obj, row);

findString
Signature findString(str: String;

row: Integer io;
caseSensitive: Boolean;
exact: Boolean): Boolean;

The findString method of the JadeTableColumn class searches the cells in a column of a Table control for the
string specified in the str parameter. The search starts at the cell row specified by the row parameter or at the first
row if the parameter value is less than 1.

The case-sensitivity of the search is determined by the value of the caseSensitive parameter.

If the exact parameter value is false, the search matches any cell text with the specified prefix. If the exact
parameter value is true, the search matches only cells whose text is an exact match.

If the search does not find a cell containing the string with the required caseSensitive and exact parameter
values, this method returns false. If the search finds a cell containing the string with the required case-sensitive
and exact options, this method returns true and the row of the located cell is returned; for example:

row := 0;
while table1.accessColumn(2).findString("city", row, false, false) do

 row := row + 1; // repeat the search starting in the next row
endwhile;

Applies to Version: 2016.0.02 (Service Pack 1) and higher

restoreAutoSize
Signature restoreAutoSize();

The restoreAutoSize method of the JadeTableColumn class results in the column width being re-evaluated,
ignoring a width set by logic or by any user resize of that column.

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 152

EncycloSys2 - 2020.0.02

JadeTableElement Class
The Table control provides access to each of an internally created sheet, row, column, and cell object; that is, the
JadeTableElement class and its subclasses.

The JadeTableElement class encapsulates the behavior required to directly access the properties and methods
of a table object (that is, a cell, column, row, or sheet) without using the accessMode property.

Using instances of the JadeTableElement subclasses is equivalent to setting the accessMode property of the
Table control using the constant values listed in the following table without having to set the row, column, or
sheet property of the Table control.

JadeTableElement Subclass Equivalent to the accessMode Value for the Table class…

JadeTableCell Table.AccessMode_Cell

JadeTableColumn Table.AccessMode_Column

JadeTableRow Table.AccessMode_Row

JadeTableSheet Table.AccessMode_Sheet

As the overhead required to create an object for each cell, column, row, and sheet of the table would be too great,
only one object of each type is created. These objects are proxy objects that hold a reference to the cell, column,
row, or sheet that was last accessed by using the methods listed below. Accessing a cell, column, row, or sheet
sets a corresponding property in the Table class, allowing subsequent access to that table element, as follows.

accessCell method sets the accessedCell property to the returned cell

accessColumn method sets accessedColumn property to the returned column

accessRow method sets accessedRow property to the returned row

accessSheet method sets accessedSheet property to the returned sheet

The following code fragments show examples of accessing the last table elements that were accessed.

table1.accessCell(2, 3).inputType := Table.InputType_TextBox;
table1.accessedCell.foreColor := Red;

table1.accessSheet(2).accessCell(1, 4).text := "Company";
table1.accessedCell.alignment := Table.Alignment_Right_Middle;

Storing a reference to a returned cell causes problems unless you take a copy of that cell, as shown in the
following example in which both cell1 and cell2 refer to the same object, which is referencing cell(3, 4).

cell1 := table1.accessCell(2, 3);
cell2 := table1.accessCell(3, 4);
cell1.text := "abc";

In the following example, cell1 has been cloned and still refers to cell(2, 3).

cell1 := table1.accessCell(2, 3).cloneSelf(true);
// the cloned cell must be deleted by your logic
cell2 := table1.accessCell(3, 4);
cell1.text := "abc";

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 153

EncycloSys2 - 2020.0.02

For details about the properties defined in the JadeTableElement class, see "JadeTableElement Properties", in
the following subsection. For details about the table control and the constants, properties, methods, and events
that it provides, see "Table Class", in Chapter 2.

Inherits From: Object

Inherited By: JadeTableCell, JadeTableColumn, JadeTableRow, JadeTableSheet

JadeTableElement Properties
The properties defined in the JadeTableElement class are summarized in the following table.

Property Description

alignment Contains the placement of text in a table element

backColor Contains the background color of a table element

cellControl Controls the input and display within a table element by defining a user-specified
control that is placed over the table element when that element becomes current

comboList Contains the list entries displayed in a combo box in the table element

decimals Specifies that a cell can accept decimal input for table elements with a numeric text
or signed numeric input type

editMask Sets the mask used for edit mask input for a cell, row, column, or sheet

enabled Specifies whether the cell, column, row, or sheet of the table can respond to user-
generated events

fontBold Specifies whether the font style is bold

fontItalic Specifies whether the font style is italic

fontName Contains the font name used for text displayed in a table element

fontSize Contains the size of the font used for text displayed in a table element

fontStrikethru Specifies whether the font style is strikethrough

fontUnderline Specifies whether the font style is underlined

foreColor Contains the foreground color used to display text in a table element

gridBottom Specifies whether a grid line is drawn along the bottom edge of cells in a table
element

gridRight Specifies whether a grid line is drawn along the right-hand edge of cells in a table
element

inputType Contains the type of input (if any) that is accepted by a table element

itemObject Contains an object for each table element

marginBottom Contains the amount by which content is offset from the bottom edge of cells in a
table element

marginLeft Contains the amount by which content is offset from the left-hand edge of cells in a
table element

marginRight Contains the amount by which content is offset from the right-hand edge of cells in a
table element

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 154

EncycloSys2 - 2020.0.02

Property Description

marginTop Contains the amount by which content is offset from the top edge of cells in a table
element

maxLength Contains the amount of text that can be entered into a table element

partialTextIndication Specifies whether to indicate that not all text can be displayed

selected Contains the selected status of the table element

wordWrap Specifies whether the text of a cell is displayed using word wrap when the width of
the cell is less than the length of the text

alignment
Type: Integer

Availability: Read or write at any time

The alignment property of the JadeTableElement class sets the alignment of the text in a table element. For a
description of this property, see the Table control alignment property.

The code fragment in the following example shows the use of the alignment property.

table.accessColumn(2).alignment := Table.Alignment_Center_Top;

backColor
Type: Integer

Availability: Read or write at any time

The backColor property of the JadeTableElement class determines the background color of a table element. For
a description of this property, see the Window class backColor property.

The following example shows the use of the backColor property.

table1.accessRow(2).backColor := Red;

cellControl
Type: Control

Availability: Read or write at run time only

The cellControl property of the JadeTableElement class allows control over the input and display within the table
by defining a user-supplied control that is placed over the cell when that cell becomes current.

For a description of this property, see the Table control cellControl property. See also the inputType property and
the Table control cellInputReady event method.

The code fragment in the following example shows the use of the cellControl property.

table1.accessCell(2, 4).cellControl := myTextBox;

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 155

EncycloSys2 - 2020.0.02

comboList
Type: String

Availability: Read or write at run time only (for a cell with inputType set to 3 only)

The comboList property of the JadeTableElement class contains the list entries displayed in a combo box in the
table element.

This property applies only to a cell that has an effective inputType property set to InputType_ComboBox (3).

For a description of this property, see the Table control comboList property.

The code fragment in the following example shows the use of the comboList property.

table1.accessColumn(2).comboList := "one" & Tab & "two" & Tab & "three";

decimals
Type: Integer

Availability: Read or write at any time

The decimals property of the JadeTableElement class is used in conjunction with the Table control inputType
property to indicate whether the text in an input cell is a Decimal primitive type numeric. For a description of this
property, see the Table control comboList property.

The code fragment in the following example shows the use of the decimals property.

table1.accessColumn(2).decimals := 2;

editMask
Type: String

Availability: Read or write at any time

The editMask property of the JadeTableElement class sets the mask used for edit mask input for a table cell, row,
column, or sheet when the value of the Table class inputType property is set to InputType_EditMask (7).

For more details, see the Table class editMask property.

enabled
Type: Boolean

Availability: Read or write at any time

The enabled property of the JadeTableElement class specifies whether the status of a cell, a row, a column, or all
the cells of a sheet is enabled (that is, can respond to user-generated events).

By default, the value of the enabled property for JadeTableCell, JadeTableColumn, JadeTableRow, and
JadeTableSheet subclasses is true.

If the effective enabled status of a cell is disabled (that is, any of the cell, row, column, or sheet enabled properties
are false), the cell will not respond to mouse clicks, will not allow cell input, and will be skipped by any keyboard
actions such as arrow, Page, Home, and End keys.

This property allows table cells, rows, columns, or sheets to be enabled or disabled at run time.

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 156

EncycloSys2 - 2020.0.02

fontBold
Type: Boolean

Availability: Read or write at any time

The fontBold property of the JadeTableElement class specifies whether the font style of text in a table element is
bold. For a description of this property, see the Control class fontBold property.

The code fragment in the following example shows the use of the fontBold property.

table1.accessCell(2, 3).fontBold := true;

fontItalic
Type: Boolean

Availability: Read or write at any time

The fontItalic property of the JadeTableElement class specifies whether the font style of text in a table element is
italic. For a description of this property, see the Control class fontItalic property.

The code fragment in the following example shows the use of the fontItalic property.

table1.accessCell(2, 3).fontItalic := true;

fontName
Type: String[31]

Availability: Read or write at any time

The fontName property of the JadeTableElement class contains the font used to display text in a table element.
For a description of this property, see the Control class fontName property.

The code fragment in the following example shows the use of the fontName property.

table1.accessCell(2, 3).fontName := "Arial";

fontSize
Type: Real

Availability: Read or write at any time

The fontSize property of the JadeTableElement class contains the size of the font to be used for text displayed in
a table element. For a description of this property, see the Control class fontSize property.

The code fragment in the following example shows the use of the fontSize property.

table1.accessCell(2, 3).fontSize := 9;

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 157

EncycloSys2 - 2020.0.02

fontStrikethru
Type: Boolean

Availability: Read or write at any time

The fontStrikethru property of the JadeTableElement class specifies whether the font style for text displayed in a
table element is strikethrough.

For a description of this property, see the Control class fontStrikethru property.

The code fragment in the following example shows the use of the fontStrikethru property.

table1.accessCell(2, 3).fontStrikethru := true;

fontUnderline
Type: Boolean

Availability: Read or write at any time

The fontUnderline property of the JadeTableElement class specifies whether the font style for text displayed in a
table element text is underlined. For a description of this property, see the Control class fontUnderline property.

The code fragment in the following example shows the use of the fontUnderline property.

table1.accessCell(2, 3).fontUnderline := true;

foreColor
Type: Integer

Availability: Read or write at any time

The foreColor property of the JadeTableElement class contains the foreground color used to display text in a
table element. For a description of this property, see the Control class foreColor property.

The code fragment in the following example shows the use of the foreColor property.

table1.accessRow(2).foreColor := Red;

gridBottom
Type: Boolean

Availability: Read or write at any time

The gridBottom property of the JadeTableElement class specifies whether a grid line is drawn along the bottom
edge of cells in a table element. If the gridLines property for the table or the JadeTableSheet object is false, the
property is ignored.

The code fragment in the following example shows the use of the gridBottom property to suppress the printing of
horizontal grid lines for the sheet.

table1.accessSheet(1).gridBottom := false;

The value of the gridBottom property for a cell, which is true by default, can be changed through code at
increasingly more-specific levels: JadeTableSheet, JadeTableRow, JadeTableColumn, and JadeTableCell.
Where there are conflicting changes, the most-specific change determines the resulting value of the property.

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 158

EncycloSys2 - 2020.0.02

The code fragment in the following example shows a change at the JadeTableCell level overriding a change at
the JadeTableSheet level.

table1.accessCell(3,3).gridBottom := true;
table1.accessSheet(1).gridBottom := false;

Note When the value of the gridLines property is true, a pixel is always used for the grid to the right and bottom
of each cell, regardless of whether it is drawn or not. Grid lines are never drawn for fixed cells drawn as three-
dimensional (3D) buttons, so the value of gridBottom has no effect on those cells.

gridRight
Type: Boolean

Availability: Read or write at any time

The gridRight property of the JadeTableElement class specifies whether a grid line is drawn along the right edge
of cells in a table element. If the gridLines property for the table or the JadeTableSheet object is false, the
property is ignored.

The code fragment in the following example shows the use of the gridRight property to suppress the printing of
vertical grid lines for the sheet.

table1.accessSheet(1).gridRight := false;

The value of the gridRight property for a cell, which is true by default, can be changed through code at
increasingly more-specific levels: JadeTableSheet, JadeTableRow, JadeTableColumn, and JadeTableCell.
Where there are conflicting changes, the most-specific change determines the resulting value of the property.

The code fragment in the following example shows a change at the JadeTableCell level overriding a change at
the JadeTableSheet level.

table1.accessCell(3,3).gridRight := true;
table1.accessSheet(1).gridRight := false;

Note When the value of the gridLines property is true, a pixel is always used for the grid to the right and bottom
of each cell, regardless of whether it is drawn or not. Grid lines are never drawn for fixed cells drawn as three-
dimensional (3D) buttons, so the value of gridRight has no effect on those cells.

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 159

EncycloSys2 - 2020.0.02

inputType
Type: Integer

Availability: Read or write at run time only

The inputType property of the JadeTableElement class contains the type of input (if any) that is accepted by a
table element.

For a description of this property, see the Table control inputType property.

The code fragment in the following example shows the use of the inputType property.

table1.accessColumn(2).inputType := Table.InputType_Numeric;

itemObject
Type: Object array

Availability: Read or write at run time only

The itemObject property of the JadeTableElement class enables you to store an object with each element of a
table. This allows an object to be stored with each sheet, row, column, and cell of the table.

For a description of this property, see the Table control itemObject property.

Note As the object reference that is stored is of the Object class, you may then need to cast it to the required
class so that it can be used. (For details about type casting, see "Type Casts", in Chapter 1 of the JADE
Developer’s Reference.)

The following example shows the use of the itemObject property.

vars
atest : Atest;

begin
beginTransaction;
atest := table1.accessRow(table1.row).itemObject.Atest;
delete atest;
commitTransaction;

end;

marginBottom
Type: Integer

Availability: Read or write at run time only

The marginBottom property of the JadeTableElement class contains the amount by which the cell content is
offset from the bottom edge for all cells in a table element. Effectively, the margins create a rectangle inside the
cell into which the image, text, or cell control is placed.

The value of the marginBottom property for a cell is initially unset but can be changed through code at
increasingly more-specific levels: JadeTableSheet, JadeTableRow, JadeTableColumn, and JadeTableCell.
Where there are conflicting changes, the most-specific change determines the resulting value of the property.

The value is in the range 0 through 255, with the value 255 having the special meaning of returning the property
to its unset state. If no value has been set, the default value is zero (0).

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 160

EncycloSys2 - 2020.0.02

If the autoSize property is set for the table, changing the value of the marginBottom property affects the height of
the row unless the rowHeight property has been specifically set by logic.

The code fragment in the following example sets the bottom margin of 3 pixels for all cells in the sheet.

table1.accessSheet(1).marginBottom := 3;

Note When merging cells, the marginBottom value of the first cell in the range is used.

marginLeft
Type: Integer

Availability: Read or write at run time only

The marginLeft property of the JadeTableElement class contains the amount by which the cell content is offset
from the left-hand edge for all cells in a table element. Effectively, the margins create a rectangle inside the cell
into which the image, text, or cell control is placed.

The value of the marginLeft property for a cell is initially unset but can be changed through code at increasingly
more-specific levels: JadeTableSheet, JadeTableRow, JadeTableColumn, and JadeTableCell. Where there are
conflicting changes, the most-specific change determines the resulting value of the property.

The value is in the range 0 through 255, with the value 255 having the special meaning of returning the property
to its unset state. If no value has been set, the default value is zero (0).

If the autoSize property is set for the table, changing the value of the marginLeft property affects the width of the
column unless the columnWidth property has been specifically set by logic.

The code fragment in the following example sets the left-hand margin of 3 pixels for all cells in the sheet.

table1.accessSheet(1).marginLeft := 3;

Note When merging cells, the marginLeft value of the first cell in the range is used.

marginRight
Type: Integer

Availability: Read or write at run time only

The marginRight property of the JadeTableElement class contains the amount by which the cell content is offset
from the right-hand edge for all cells in a table element. Effectively, the margins create a rectangle inside the cell
into which the image, text, or cell control is placed.

The value of the marginRight property for a cell is initially unset but can be changed through code at increasingly
more-specific levels: JadeTableSheet, JadeTableRow, JadeTableColumn, and JadeTableCell. Where there are
conflicting changes, the most-specific change determines the resulting value of the property.

The value is in the range 0 through 255, with the value 255 having the special meaning of returning the property
to its unset state. If no value has been set, the default value is zero (0).

If the autoSize property is set for the table, changing the value of the marginRight property affects the width of the
column unless the columnWidth property has been specifically set by logic.

The code fragment in the following example sets the right-hand margin of 3 pixels for all cells in the sheet.

table1.accessSheet(1).marginRight := 3;

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 161

EncycloSys2 - 2020.0.02

Note When merging cells, the marginLeft value of the first cell in the range is used.

marginTop
Type: Integer

Availability: Read or write at run time only

The marginTop property of the JadeTableElement class contains the amount by which the cell content is offset
from the top edge for all cells in a table element. Effectively, the margins create a rectangle inside the cell into
which the image, text, or cell control is placed.

The value of the marginTop property for a cell is initially unset but can be changed through code at increasingly
more-specific levels: JadeTableSheet, JadeTableRow, JadeTableColumn, and JadeTableCell. Where there are
conflicting changes, the most-specific change determines the resulting value of the property.

The value is in the range 0 through 255, with the value 255 having the special meaning of returning the property
to its unset state. If no value has been set, the default value is zero (0).

If the autoSize property is set for the table, changing the value of the marginTop property affects the height of the
row unless the rowHeight property has been specifically set by logic.

The code fragment in the following example sets the top margin of 3 pixels for all cells in the sheet.

table1.accessSheet(1).marginTop := 3;

Note When merging cells, the marginTop value of the first cell in the range is used.

maxLength
Type: Integer

Availability: Read or write at any time

The maxLength property of the JadeTableElement class contains the maximum amount of text that can be
entered into a table element that has the inputType property set to the Table class constant value of InputType_
TextBox (2), InputType_TextNumeric (4), or InputType_SignedNumeric (6). For a description of this property,
see the Table control maxLength property.

The code fragment in the following example shows the use of the maxLength property.

table1.accessColumn(2).maxLength := 6;

partialTextIndication
Type: Boolean

Availability: Read or write at run time only

The partialTextIndication property of the JadeTableElement class specifies whether an indication is displayed
when there is insufficient room to show all of the text in a cell. For a description of this property, see the Table
control partialTextIndication property. For details about word wrapping when displaying text in a table cell, see
the Table class wordWrap property.

The code fragment in the following example shows the use of the partialTextIndication property.

table1.accessSheet(1).partialTextIndication := true;

Encyclopaedia of Classes
(Volume 2)

JadeTableElement Class Chapter 1 162

EncycloSys2 - 2020.0.02

selected
Type: Boolean

Availability: Read or write at run time

The selected property of the JadeTableElement class accesses the selected status of a Table element, as
follows.

Retrieving the selected status

JadeTableCell class selected property returns whether the referenced cell is selected.

JadeTableColumn class selected property returns whether all non-fixed cells of the column are
selected.

JadeTableRow class selected property returns whether all non-fixed cells of the row are selected.

JadeTableSheet class selected property returns whether all non-fixed cells of the whole sheet are
selected.

Setting the selected status

JadeTableCell class selected property sets whether the referenced cell is selected.

JadeTableColumn class selected property sets the selected status of all non-fixed cells in the column.

JadeTableRow class selected property sets the selected status of all non-fixed cells in the row.

JadeTableSheet class selected property sets the selected status of all non-fixed cells in the whole
sheet.

For a description of this property, see the Table control selected property.

The code fragment in the following example shows the use of the selected property.

table1.accessCell(2, 3).selected := true; // set selected status of a cell
table1.accessColumn(4).selected := true; // set selected status of a column
table1.accessRow(6).selected := true; // set selected status of a row
if table1.accessSheet(1).selected then // are all cells selected?

wordWrap
Type: Boolean

Availability: Read or write at run time only

The wordWrap property of the JadeTableElement class specifies whether the text of a cell is displayed using
word wrap when the width of the cell is less than the length of the text.

For a description of this property, see the Table control wordWrap property.

Encyclopaedia of Classes
(Volume 2)

JadeTableRow Class Chapter 1 163

EncycloSys2 - 2020.0.02

JadeTableRow Class
The JadeTableRow class provides access to an internally created row object that you can use to directly
reference the properties and methods of the table row. This object is created on the first call to the Table class
accessRow method or the JadeTableSheet class accessRow method for each Table control.

Using instances of the JadeTableRow class is equivalent to setting the accessMode property of the Table control
to the Table.AccessMode_Row value without having to set the row or sheet properties.

One JadeTableRow object only is created for each Table control, as there would be too much overhead in
creating an object for each row. This object is a proxy object that holds the reference to the row that was last
accessed by the Table class accessRow method or the JadeTableSheet class accessRow method.

Accessing a row by using the Table class accessRow method or the JadeTableSheet class accessRow method
sets the accessedRow property in the Table class, allowing subsequent access to that table row.

Storing a reference to a returned row causes problems unless you take a copy of that row, as there is one row
object only. (Your logic must delete the cloned row.)

For details about the properties and methods defined in the JadeTableRow class, see "JadeTableRow
Properties" and "JadeTableRow Methods", in the following subsections. For details about the table control and the
constants, properties, methods, and events that it provides, see "Table Class", in Chapter 2.

Inherits From: JadeTableElement

Inherited By: (None)

JadeTableRow Properties
The properties defined in the JadeTableRow class are summarized in the following table.

Property Description

height Contains the size of the row

row Contains the row number of the accessed row

sheet Contains the sheet number of the accessed row

visible Specifies whether the current row is displayed or hidden, or the visibility status

height
Type: Integer

Availability: Read or write at run time only

The height property of the JadeTableRow class enables the size of the row referenced by this object to be
accessed.

For a description of this property, see the Table control rowHeight property.

The code fragment in the following example shows the use of the height property.

myTextBox.height := table1.accessRow(table.row).height;

Encyclopaedia of Classes
(Volume 2)

JadeTableRow Class Chapter 1 164

EncycloSys2 - 2020.0.02

row
Type: Integer

Availability: Read or write at any time

The row property and the sheet property of the JadeTableRow class define the row referenced by this object.
These properties are set when the Table class accessRow method or the JadeTableSheet class accessRow
method is called.

You can also set this property manually, allowing your logic to dynamically modify the row that is being
referenced, as shown in the following example.

tableRow := table1.accessRow(table1.rows);
counter := table1.rows;
while counter >= 1 do

tableRow.row := counter;
tableRow.visible := true;
counter := counter - 1;

endwhile;

sheet
Type: Integer

Availability: Read or write at any time

The row property and the sheet property of the JadeTableRow class define the row referenced by this object.
These properties are set when the Table class accessRow method or the JadeTableSheet class accessRow
method is called.

You can also set this property manually, allowing your logic to dynamically modify the sheet that is being
referenced.

visible
Type: Boolean

Availability: Read or write at any time

The visible property of the JadeTableRow specifies whether the row referenced by this object is displayed or
hidden, or the visibility status to be obtained.

For a description of this property, see the Table control rowVisible property.

The code fragment in the following example shows the use of the visible property.

if table1.accessRow(indx).visible then
table1.accessedRow.backColor := Red;

endif;

Encyclopaedia of Classes
(Volume 2)

JadeTableRow Class Chapter 1 165

EncycloSys2 - 2020.0.02

JadeTableRow Methods
The methods defined in the JadeTableRow class are summarized in the following table.

Method Description

delete Deletes the entire row from the sheet

findObject Returns the column of the cell holding the specified object

findString Searches the cells in a row of a table for the specified string

restoreAutoSize Recalculates row heights, ignoring a height set by logic or by any user resize of that row

delete
Signature delete() updating;

The delete method of the JadeTableRow class deletes the row referenced by this object from the Table control.

A new JadeTableRow object is created on the next call of the Table class accessRow method or the
JadeTableSheet class accessRow method.

findObject
Signature findObject(object: Object;

column: Integer io): Boolean;

The findObject method of the JadeTableRow class searches the itemObject property value of every cell in the
row referenced by this object for the value specified in the object parameter, starting from the column specified in
the column parameter value.

If the column parameter contains a zero (0) value indicating that it is not specified, the column is treated as the first
column; that is, the column value is set to 1.

If the specified object is found, this method returns true and the column of the cell that contains the specified
object. If the object is not found, this method returns false.

The code fragment in the following example shows the use of the findObject method.

bool := table1.accessRow(table1.row).findObject(obj, column);

findString
Signature findString(str: String;

row: Integer io;
caseSensitive: Boolean;
exact: Boolean): Boolean;

The findString method of the JadeTableRow class searches the cells in a row of a Table control for the string
specified in the str parameter. The search starts at the cell column specified by the column parameter or at the
first column if the parameter value is less than 1.

The case-sensitivity of the search is determined by the value of the caseSensitive parameter.

If the exact parameter value is false, the search matches any cell text with the specified prefix. If the exact
parameter value is true, the search matches only cells whose text is an exact match.

Encyclopaedia of Classes
(Volume 2)

JadeTableRow Class Chapter 1 166

EncycloSys2 - 2020.0.02

If the search does not find a cell containing the string with the required caseSensitive and exact parameter
values, this method returns false. If the search finds a cell containing the string with the required case-sensitive
and exact options, this method returns true and the column of the located cell is returned; for example:

col := 0;
while table1.accessRow(2).findString("city", col, false, false) do

 col := col + 1; // repeat the search starting in the next column
endwhile;

Applies to Version: 2016.0.02 (Service Pack 1) and higher

restoreAutoSize
Signature restoreAutoSize();

The restoreAutoSize method of the JadeTableRow class results in the row height being re-evaluated, ignoring a
height set by logic or by any user resize of that row.

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 167

EncycloSys2 - 2020.0.02

JadeTableSheet Class
The JadeTableSheet class provides access to an internally created sheet object that you can use to directly
reference the properties and methods of the table sheet. This object is created on the first call to the Table class
accessSheet method for each Table control. Using instances of the JadeTableSheet class is equivalent to setting
the accessMode property of the Table control to the Table.AccessMode_Sheet value without having to set the
Table control sheet property.

One JadeTableSheet object only is created, which is a proxy object that holds the last reference to the sheet that
was last accessed.

Accessing a sheet by using the Table class accessSheet method sets the accessedSheet property in the Table
class, allowing subsequent access to that table sheet.

The following code fragment shows an example of these methods.

table1.accessSheet(1).caption := "Company";
table1.accessedSheet.columns := 5;
table1.accessedSheet.fixedColumns := 0;
table1.accessSheet(2).caption := "Group";
table1.accessedSheet.columns := 3;

Storing a reference to a returned sheet causes problems unless you take a copy of that sheet, as there is one
sheet object only. (Your logic must delete the cloned sheet.)

For details about the properties and methods defined in the JadeTableSheet class, see "JadeTableSheet
Properties" and "JadeTableSheet Methods", in the following subsections. For details about the table control and
the constants, properties, methods, and events that it provides, see "Table Class", in Chapter 2.

Inherits From: JadeTableElement

Inherited By: (None)

JadeTableSheet Properties
The properties defined in the JadeTableSheet class are summarized in the following table.

Property Description

alternatingRowBackColor Specifies an alternate row background color

alternatingRowBackColorCount Specifies the number of table rows at which the alternating background
color of each visible non-fixed row and non-fixed cell is displayed

caption Contains the caption for the sheet

column Contains the current column on the sheet

columns Contains the number of columns on the sheet

currentRowImage Contains the image to display in the first fixed cell of the current row

displaySorting Specifies whether a column used for sorting displays a sorting indicator
in the fixed cell

extendedColumn Specifies that when a table is auto-sized, the specified column is
enlarged to use the remaining space

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 168

EncycloSys2 - 2020.0.02

Property Description

fixed3D Specifies whether a three-dimensional (3D) button image is painted on
the cells in the fixed area

fixedColumns Contains the number of fixed columns in the sheet

fixedRows Contains the number of fixed rows in the sheet

gridColor Contains the color of grid lines

gridLines Specifies whether lines are drawn between the rows and columns of the
sheet

leftColumn Contains the column that is displayed at the left edge of the non-fixed
area of the sheet

myTable Contains a reference to the table that owns the sheet

pixelHorzScrollIncrement Specifies the number of pixels that are scrolled horizontally when the
scrolling mode of the sheet is pixels

pixelVertScrollIncrement Specifies the number of pixels that are scrolled vertically when the
scrolling mode of the sheet is pixels

row Contains the current row on the sheet

rows Contains the number of rows on the sheet

scrollBars Specifies whether the sheet has horizontal or vertical scroll bars when
required

scrollHorzPos Contains the number of pixels that the current left column is scrolled

scrollMode Specifies how the table scrolls when using the mouse

scrollVertPos Contains the number of pixels that the current top row is scrolled

sheet Contains the sheet number of the sheet being accessed

showCurrentRowImage Contains the image to display in the first fixed cell of the current row

showPartialTextBubbleHelp Specifies whether the full text is displayed in a cell in which the text is not
fully visible when the user moves the cursor over the cell

tabInitialPosition Specifies how the table row and column properties are set when
tabbing into a table

tabOffEnds Specifies the result of tabbing out of the last visible, enabled cell of the
sheet

topRow Contains the row that is displayed at the top edge of the non-fixed area
of the sheet

visible Specifies whether the sheet is displayed or hidden, or the visibility status

widthPercentStyle Specifies whether fixed columns are included or excluded when
calculating the percentage widths of columns in a sheet

alternatingRowBackColor
Type: Integer

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 169

EncycloSys2 - 2020.0.02

Availability: Read or write run time only

The alternatingRowBackColor property of the JadeTableSheet class specifies an alternate row background
color. By default, alternating table rows have a background color of Azure. When you set this property to a value
other than Azure, the specified value is used as the default background color of each alternate non-fixed row.

If the value of the alternatingRowBackColorCount property is 2, the first, third, and so on non-fixed row default
background color is the backColor property value of the sheet. The second, fourth, and so on non-fixed row
default background color is the alternatingRowBackColor property value when it is not the default value
(otherwise the backColor property value of the sheet is used).

If the value of the backColor property of a cell, row, or column is specifically set and it is not #800000000 (that is,
transparent), the default value of the cell is ignored and the specific value of the backColor property is used.

Note When a cell is drawn, the backColor property value is overridden by any specified backColor value set for
that cell, its row, or its column.

Note that when the table is scrolled, the colors do not move with a row. The color scheme is applied to the rows,
starting with the first visible non-fixed row; for example:

table1.accessSheet(1).alternatingRowBackColorCount := 2;
table1.accessSheet(1).alternatingRowBackColor := Azure;

Applies to Version: 2018.0.01 and higher

alternatingRowBackColorCount
Type: Integer

Availability: Read or write at run time only

The alternatingRowBackColorCount property of the JadeTableSheet class specifies the number of table rows at
which the alternating background color of each visible non-fixed row and non-fixed cell is displayed.

If the value of the alternatingRowBackColorCount property is:

Less than or equal to zero (0), the background color of each non-fixed cell defaults to the value of the
backColor property of the sheet, or of the table itself if the value of the sheet is not specifically set. The
alternatingRowBackColor property value is ignored.

Greater than zero (0), for each visible alternatingRowBackColorCount non-fixed row and non-fixed cell, the
background color defaults to the value of the alternatingRowBackColor property.

For example, if the count is 2, the first, third, fifth, and so on non-fixed rows and the non-fixed cells in that row
default to the value of the backColor property of the sheet, while the second, fourth, sixth, and so on non-fixed
rows and the non-fixed cells in that row default to the value of the alternatingRowBackColor property.

Note When the table is scrolled, the colors do not move with a row. The color scheme is applied to the rows,
starting with the first visible non-fixed row; for example:

table1.accessSheet(1).alternatingRowBackColorCount := 2;
table1.accessSheet(1).alternatingRowBackColor := Azure;

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 170

EncycloSys2 - 2020.0.02

caption
Type: String

Availability: Read or write at run time only

The caption property of the JadeTableSheet class contains the text for the caption of the sheet referenced by this
object. This caption is displayed in the tabs area of the current table.

For a description of this property, see the Table control sheetCaption property.

The code fragment in the following example shows the use of the caption property.

table1.accessSheet(2).caption := "Company";

column
Type: Integer

Availability: Read or write at run time only

The column property of the JadeTableSheet class contains the current column on the sheet referenced by this
object.

For a description of this property, see the Table control column property.

The code fragment in the following example shows the use of the column property.

table1.accessSheet(2).column := 2;

columns
Type: Integer

Availability: Read or write at run time only

The columns property of the JadeTableSheet class contains the number of columns on the sheet referenced by
this object.

For a description of this property, see the Table control columns property.

The code fragment in the following example shows the use of the columns property.

table1.accessSheet(2).columns := 5;

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 171

EncycloSys2 - 2020.0.02

currentRowImage
Type: Binary

Availability: Read or write at run time only

The currentRowImage property of the JadeTableSheet class contains a binary image to be displayed in the fixed
cell at the start of the current row, as shown in the following image.

The image is displayed only when the showCurrentRowImage property of the JadeTableSheet class is set to
true and the table has a fixed column. A default image is used if the value of the currentRowImage property is
null (the default).

The image is displayed as if the stretch property of the table were set to Stretch_None_Picture_First (2) and the
cell text is displayed as if the value of the partialTextIndication property is true.

Note Row heights and the width of the first column could be affected by this image. The spacing between the
image and the text is 3 through 15 pixels, depending on the extra space available.

The code fragment in the following example shows the use of the currentRowImage property.

table1.accessSheet(1).currentRowImage := app.loadPicture("c:\select.png");
table1.accessSheet(1).showCurrentRowImage := true;

displaySorting
Type: Integer

Availability: Read or write at run time only

The displaySorting property of the JadeTableSheet class displays a sorting indicator after the text in the fixed row
cells of a table to indicate an ascending or descending sort order for the column. The image for the sorting
indicator is an up or down arrow.

The property is ignored if the sheet does not have a fixed row or the cells in the fixed row already contain a
picture.

The values for displaySorting and their effects are summarized in the following table.

Table Class Constant Value Description

DisplaySorting_None 0 Default value, which indicates no sorting indicator is displayed.

DisplaySorting_First 1 First sort column displays a sorting indicator in the cell in the first
fixed row, depending on the sortAsc property for the column.

DisplaySorting_AllColumns 2 Displays a sorting indicator for all sort columns.

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 172

EncycloSys2 - 2020.0.02

Table Class Constant Value Description

DisplaySorting_Numbers 3 Displays a sorting indicator for all sort columns where the image
includes an integer that indicates the sort preference in the range 1
through 6.

When display sorting is specified:

The spacing of the image from the text varies, depending on the space available, and it is in the range 3
through 15 pixels.

The arrow is displayed after any cell text and the image takes precedence over the text.

The picture is displayed as if the stretch property is set to Stretch_None_Picture_First (2) and the cell text
is displayed as if the partialTextIndication property is set to true.

Note that the display is based on the value of the sortAsc property for the cell, regardless of how the table is
actually sorted. If the cell has no text, the arrow is centered; otherwise the cell and arrow are displayed
according to the effective alignment property of the cell.

Setting the value of the displaySorting property affects the size of a column that has the autoSize property set, to
allow for the size of the sorting indicator. If you change the width of a column, the size of the image does not
change and any text in the cell is truncated, if necessary.

The code fragment in the following example shows the use of the displaySorting property.

table1.sortColumn[1] := 1;
table1.sortColumn[2] := 3;
table1.sortAsc[2] := false;
table1.accessSheet(1).displaySorting := Table.DisplaySorting_AllColumns;

extendedColumn
Type: Integer

Availability: Read or write at run time only

The extendedColumn property of the JadeTableSheet class specifies when the Table class autoSize property is
set to true, after the table columns are auto-sized to fit the minimum size for their contents and the total width of the
visible columns is less than the value of the clientWidth property, the specified column is enlarged to use the
remaining space. The value of the JadeTableColumn class maxColumnWidth property is ignored.

The value of the extendedColumn property is ignored unless all of the following are true.

1. The autoSize property is set to AutoSize_BothColumnMinimum or AutoSize_ColumnMinimum.

2. The extendedColumn property is set to a valid visible column number.

3. The columnWidth property has not been set manually by the user or by logic.

4. The total width of all visible columns is less than the value of the clientWidth property of the table.

The default value is zero (0).

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 173

EncycloSys2 - 2020.0.02

fixed3D
Type: Boolean

Availability: Read or write at any time

The fixed3D property of the JadeTableSheet class specifies whether a three-dimensional (3D) button image is
painted on the cells in the fixed area of the sheet referenced by this object.

For a description of this property, see the Table control fixed3D property.

The code fragment in the following example shows the use of the fixed3D property.

table1.accessSheet(2).fixed3D := false;

fixedColumns
Type: Integer

Availability: Read or write at any time

The fixedColumns property of the JadeTableSheet class contains the number of fixed columns in the sheet
referenced by this object.

For a description of this property, see the Table control fixedColumns property.

The code fragment in the following example shows the use of the fixedColumns property.

table1.accessSheet(2).fixedColumns := 2;

fixedRows
Type: Integer

Availability: Read or write at any time

The fixedRows property of the JadeTableSheet class contains the number of fixed rows in the sheet referenced
by this object.

For a description of this property, see the Table control fixedRows property.

The code fragment in the following example shows the use of the fixedRows property.

table1.accessSheet(2).fixedRows := 1;

gridColor
Type: Integer

Availability: Read or write at any time

The gridColor property of the JadeTableSheet class contains the color of grid lines in the sheet referenced by this
object.

For a description of this property, see the Table control gridColor property.

The code fragment in the following example shows the use of the gridColor property.

table1.accessSheet(2).gridColor := Red;

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 174

EncycloSys2 - 2020.0.02

gridLines
Type: Boolean

Availability: Read or write at any time

The gridLines property of the JadeTableSheet class specifies whether lines are drawn between the rows and
columns of the sheet referenced by this object.

For a description of this property, see the Table control gridLines property.

The code fragment in the following example shows the use of the gridLines property.

table1.accessSheet(2).gridLines := false;

leftColumn
Type: Integer

Availability: Read or write at run time

The leftColumn property of the JadeTableSheet class contains the column that is displayed at the left edge of the
non-fixed area of the sheet referenced by this object.

For a description of this property, see the Table control leftColumn property.

The code fragment in the following example shows the use of the leftColumn property.

table1.accessSheet(2).leftColumn := 2;

myTable
Type: Table

Availability: Read or write at run time only

The myTable property of the JadeTableSheet class contains a reference to the Table control that owns the sheet
referenced by this object.

pixelHorzScrollIncrement
Type: Integer

Availability: Read or write at any time

The pixelHorzScrollIncrement property of the JadeTableSheet class specifies the number of pixels that are
scrolled horizontally when the scrolling mode of the sheet is pixels (that is, the value of the JadeTableSheet class
scrollMode property is ScrollMode_HorzPixel_VertCell (1) or ScrollMode_Both_Pixel (3).

The default value is 1, and the value can be in the range 1 through 32767. Values outside of this range are treated
as 1.

The property enables the amount of horizontal scrolling to be increased. For example, by setting the horizontal
pixel increment to 10 pixels at a time, the scrolling would scroll ten pixels.

The increment value is used only when the user clicks on a horizontal scroll bar arrow or scrolls using the mouse
wheel and the scrolling mode is pixels for that scroll bar.

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 175

EncycloSys2 - 2020.0.02

Note When scrolling with the mouse wheel, the scrolling amount is multiplied by an increment set by the user.
(This increment is usually 3.)

The pixelHorzScrollIncrement property value is ignored unless the value of the scrollMode property of the sheet
is ScrollMode_Both_Pixel or ScrollMode_HorzPixel_VertCell.

The code fragment in the following example shows the use of the pixelHorzScrollIncrement property.

table1.accessSheet(1).pixelHorzScrollIncrement := 15;

Applies to Version: 2018.0.01 and higher

pixelVertScrollIncrement
Type: Integer

Availability: Read or write at any time

The pixelVertScrollIncrement property of the JadeTableSheet class specifies the number of pixels that are
scrolled vertically when the scrolling mode of the sheet is pixels (that is, the value of the JadeTableSheet class
scrollMode property is ScrollMode_VertPixel_VertCell or ScrollMode_Both_Pixel (3).

The default value is 1, and the value can be in the range 1 through 32767. Values outside of this range are treated
as 1.

The pixelVertScrollIncrement property enables the amount of vertical scrolling to be increased. For example, by
setting the vertical pixel increment to the height of the displayed text in the table, the scrolling would scroll a line at
a time.

The increment value is used only when the user clicks on a vertical scroll bar arrow or scrolls using the mouse
wheel and the scrolling mode is pixels for that scroll bar.

Note When scrolling with the mouse wheel, the scrolling amount is multiplied by an increment set by the user.
(This increment is usually 3.)

The pixelVertScrollIncrement value is ignored unless the value of the scrollMode property of the sheet is
ScrollMode_Both_Pixel or ScrollMode_VertPixel_HorzCell.

The code fragment in the following example shows the use of the pixelVertScrollIncrement property.

table1.accessSheet(1).pixelVertScrollIncrement := 14;

Applies to Version: 2018.0.01 and higher

row
Type: Integer

Availability: Read or write at run time only

The row property of the JadeTableSheet class contains the current row on the sheet referenced by this object.

For a description of this property, see the Table control row property.

The code fragment in the following example shows the use of the row property.

table1.accessSheet(2).row := 3;

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 176

EncycloSys2 - 2020.0.02

rows
Type: Integer

Availability: Read or write at run time only

The rows property of the JadeTableSheet class contains the number of rows on the sheet referenced by this
object.

For a description of this property, see the Table control rows property.

The code fragment in the following example shows the use of the rows property.

table1.accessSheet(2).rows := 9;

scrollBars
Type: Integer

Availability: Read or write at any time

The scrollBars property of the JadeTableSheet class determines whether the sheet referenced by this object has
horizontal or vertical scroll bars.

For a description of this property, see the Table control scrollBars property.

The code fragment in the following example shows the use of the scrollBars property.

table1.accessSheet(2).scrollBars := ScrollBars_None;

scrollHorzPos
Type: Integer

Availability: Read or write at any time

The scrollHorzPos property of the JadeTableSheet class is set to the number of pixels that the current left column
(identified by the leftColumn property of the Table control) is scrolled. The scrollHorzPos property is reset to zero
(0) when the value of the leftColumn property is set by logic. To establish a scrolled position by logic, set the
value of the leftColumn property and then that of the scrollHorzPos property.

The value of the scrollHorzPos property must be less than the width of the leftColumn column. (The leftColumn
property value applies to the first cell to the right of the fixed columns, regardless of how much of that cell is on
view.)

The code fragment in the following example shows the use of the scrollHorzPos property.

// Enable scrolling by pixel for a sheet
table1.accessSheet(2).scrollMode := Table.ScrollMode_Both_Pixel;
// Select a column as the ′left′ column of the sheet
table1.sheet := 2;
table1.leftColumn := 5;
// Scroll the selected column
table1.accessSheet(2).scrollHorzPos := 10;

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 177

EncycloSys2 - 2020.0.02

scrollMode
Type: Integer

Availability: Read or write at any time

The scrollMode property of the JadeTableSheet class determines how the table scrolls when using the mouse,
determined by the Table control class constants listed in the following table.

Table Class Constant Description

ScrollMode_Cell (0) The default, indicating the table scrolls vertically and horizontally by cell

ScrollMode_HorzPixel_VertCell (1) Allows horizontal scrolling by pixel and vertical scrolling by cell

ScrollMode_VertPixel_HorzCell (2) Allows vertical scrolling by pixel and horizontal scrolling by cell

ScrollMode_Both_Pixel (3) Allows vertical and horizontal scrolling by pixel

Note Using the arrow or page keys to move around the table always scrolls by cell, regardless of the value of
the scrollMode property. Pixel scrolling occurs only when the table is scrolled using the mouse.

The code fragment in the following example shows the use of the scrollMode property.

table1.accessSheet(2).scrollMode := Table.ScrollMode_Both_Pixel;

Note Scrolling by pixel is much slower than scrolling by cell.

A scroll event is generated for every scroll position generated, which could significantly increase thin client traffic if
the scrolled event is defined. Other than the scrolled event, thin client traffic is not affected by the value of the
scrollMode property.

When a cell control is displayed on a partially hidden cell, the cell control is only partly shown. To achieve this,
when scrolling by pixel is enabled, an extra window layer is inserted between the table and the cell control. This is
transparent, and is mentioned only in case your code is performing some very unusual logic that may be affected.

When using the displayCollection method and vertical pixel scrolling, the scroll bar thumb size and position may
vary unusually when scrolling if there are variable height rows, because the scroll bar has to estimate the number
of pixels for all of the collection entries.

scrollVertPos
Type: Integer

Availability: Read or write at any time

The scrollVertPos property of the JadeTableSheet class is set to the number of pixels that the current top row
(identified by the topRow property of the Table control) is scrolled. The scrollVertPos property is reset to zero (0)
when the value of the topRow property is set by logic. To establish a scrolled position by logic, set the value of the
topRow property and then that of the scrollVertPos property.

The value of the scrollVertPos property must be less than the height of the topRow column. (The topRow
property value applies to the first cell below the fixed rows, regardless of how much of that cell is on view.)

The code fragment in the following example shows the use of the scrollVertPos property.

// Enable scrolling by pixel for this sheet
table1.accessSheet(2).scrollMode := Table.ScrollMode_Both_Pixel;

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 178

EncycloSys2 - 2020.0.02

// Select the top row
table1.sheet := 2;
table1.topRow := 3;
// Scroll the selected row
table1.accessSheet(2).scrollVertPos := 5;

sheet
Type: Integer

Availability: Read or write at any time

The sheet property of the JadeTableSheet class contains the last sheet requested by the accessSheet method of
the Table class. This value is used to determine the required sheet when a property or method of the
JadeTableSheet object is referenced. (See also the Table control sheet property.)

Your JADE logic can change the value of this property dynamically, allowing control over the sheet that is
accessed by this object.

showCurrentRowImage
Type: Boolean

Availability: Read or write at run time only

The showCurrentRowImage property of the JadeTableSheet class specifies whether a binary image is displayed
in the fixed cell at the start of the currently selected row, as shown in the following image.

If the value of the showCurrentRowImage property is false (the default) or the sheet has no fixed columns, there
is no impact. If the value is true, the first fixed cell displays an image indicating that it is the current row (unless that
cell already has a picture assigned) for the current non-fixed row. The image is displayed after any cell text and
takes precedence over the text. A default image is displayed unless a different image is set for the
currentRowImage property.

The image is displayed after any cell text as if the stretch property of the Table control were set to Stretch_None_
Picture_First (2) and the cell text is displayed as if the value of the partialTextIndication property is true. The
effective alignment property of the cell is still used to draw the image.

Note Row heights and the width of the first column could be affected by this image. The spacing between the
image and the text is 3 through 15 pixels, depending on the extra space available.

The code fragment in the following example shows the use of the showCurrentRowImage property.

table1.accessSheet(1).showCurrentRowImage := true;

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 179

EncycloSys2 - 2020.0.02

showPartialTextBubbleHelp
Type: Boolean

Availability: Read or write at run time only

The showPartialTextBubbleHelp property of the JadeTableSheet class specifies whether a bubble help window
displaying the full text is shown when the user moves the cursor over a table cell for which the text is not fully
visible.

When the value of this property is true (the default value), the bubble help is displayed when the cursor is over a
cell in which the text is not fully visible, with the following exceptions.

The value of the Window class bubbleHelp property is not null (bubbleHelp text takes precedence)

The cell is disabled

The cell displays a hyperlink

The cell is displaying a cell control

A mouse button is down

The bubble help is hidden when any of the following conditions applies.

After a short delay (three seconds plus the text length increment)

If the user moves the cursor out of the cell boundaries

If the user clicks the mouse

If the user presses a key

Note If the user clicks the mouse while over the bubble help, the table cell is clicked as normal.

The code fragment in the following example shows the use of the showPartialTextBubbleHelp property.

table.accessSheet(1).showPartialTextBubbleHelp := false;

Applies to Version: 2016.0.01 and higher

tabInitialPosition
Type: Integer

Availability: Read or write at run time only

The tabInitialPosition property of the JadeTableSheet class can change the cell that becomes current when you
tab into a Table control; that is, the values of the row and column properties can change. The values for
tabInitialPosition and their effects are summarized in the following table.

Table Class Constant Integer Value Effect on the Current Cell

TabInitialPosition_None 0 No change. This is the default action.

TabInitialPosition_First 1 Current cell becomes first visible, enabled cell in non-fixed area
of the table.

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 180

EncycloSys2 - 2020.0.02

Table Class Constant Integer Value Effect on the Current Cell

TabInitialPosition_Last 2 Current cell becomes last visible, enabled cell in non-fixed area
of the table.

TabInitialPosition_First_
Last

3 For a forward tab, current cell is first visible, enabled cell in non-
fixed table area. For a back tab, current cell is last visible,
enabled cell in non-fixed table area.

If the row or the column changes, the queryRowColChg event is called. If that event is successful, the
rowColumnChg event is called.

tabOffEnds
Type: Boolean

Availability: Read or write at run time only

Pressing the Tab key specified for the table moves focus from one visible, enabled cell to the next (the autoTab
property of a cell control can result in the same shift in focus). The tabOffEnds property of the JadeTableSheet
class determines what happens when a tab action occurs from the last visible, enabled cell in the sheet.

If the value of the tabOffEnds property is true, which is the default value, focus moves to the next control in the tab
order after the table; that is, focus moves out of the table. If the value of the tabOffEnds property is false, focus
moves to the next non-fixed cell that is visible and enabled, the search for such a cell resuming at the start of the
sheet.

For a back tab, if the value of the tabOffEnds property is true and the current cell is the first visible, enabled cell of
the non-fixed area of the table, focus moves to the prior control in the tab order before the table; that is, focus
moves out of the table.

topRow
Type: Integer

Availability: Read or write at run time

The topRow property of the JadeTableSheet class contains the row that is displayed at the top edge of the non-
fixed area of the sheet referenced by this object.

For a description of this property, see the Table control topRow property.

The code fragment in the following example shows the use of the topRow property.

table1.accessSheet(2).topRow := 2;

visible
Type: Boolean

Availability: Read or write at run time only

The visible property of the JadeTableSheet class enables the visibility of the sheet referenced by this object to be
accessed. For a description of this property, see the Table control sheetVisible property.

The code fragment in the following example shows the use of the visible property.

table1.accessSheet(2).visible := false;

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 181

EncycloSys2 - 2020.0.02

widthPercentStyle
Type: Integer

Availability: Read or write at run time only

The widthPercentStyleproperty of the JadeTableSheet class controls how any columns percentages set on the
table sheet using the JadeTableColumn class widthPercent property are interpreted.

The property values can be one of the new Table class constants listed in the following table.

Table Class Constant Value Description

WidthPercent_Style_ClientWidth 0 The default value, which specifies that if the value of the
JadeTableColumn class widthPercent property is greater than
zero (0), the width of the column is calculated using the formula
(Table.clientWidth * JadeTableColumn.widthPercent) / 100

WidthPercent_Style_NoSetWidths 1 Specifies that if the value of the JadeTableColumn class
widthPercent property is greater than zero (0), the width of the
column is calculated using the formula ((Table.clientWidth -
<set widths>) * JadeTableColumn.widthPercent) / 100

In this table, the <set widths> value is the sum of all column widths that have been specifically set by user logic or
by the user resizing the column, which means that if the widthPercent property values of the other columns add
up to 100 percent, those columns fully use the remaining horizontal space in the table.

If the value of <set widths> is greater than the value of the Table class clientWidth property, the width is
calculated as if the value of the widthPercentStyle property is zero (0).

The code fragment in the following example shows the use of the widthPercentStyle property.

table1.accessSheet(table1.sheet).widthPercentStyle := WidthPercent_Style_
NoSetWidths;

Applies to Version: 2016.0.01 and higher

JadeTableSheet Methods
The methods defined in the JadeTableSheet class are summarized in the following table.

Method Description

accessCell Returns a reference to the requested cell

accessColumn Returns a reference to the requested column

accessRow Returns a reference to the requested row

addItem Adds a new row to the sheet

addItemAt Adds a new row to the sheet at a specified position

clear Clears the contents of the sheet

delete Deletes the entire sheet if it is not the only sheet on the table

findColumnObject Searches the column itemObjects for an object, if it exists

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 182

EncycloSys2 - 2020.0.02

Method Description

findObject Returns the column and row containing the specified object, if it exists in the current
sheet

findRowObject Searches the row itemObjects for an object, if it exists

findString Searches the cells in a sheet of a table for the specified string

getCellFromPosition Returns the cell at the specified position, and the row and column of that cell

getCollection Returns the collection attached to the associated sheet of the table

insertColumn Enables a single column to be inserted into the sheet

moveColumn Moves a column of the sheet

moveRow Moves a row of the sheet

positionCollection Positions the collection attached to the Table control to an object in that collection
and to a row within the table

refreshEntries Refreshes the displayed list of entries on the current sheet of the table

removeItem Removes a row from the sheet at run time

resort Resorts the contents of the sheet

restoreAutoSize Recalculates row heights and column widths, ignoring changes made by logic or
user resize

selectedCount Returns the number of cells with the selected status set

selectedNext Returns the next selected cell

setCollectionObject Sets the object in the collection attached to the current sheet of the table

accessCell
Signature accessCell(row: Integer;

column: Integer): JadeTableCell updating;

The accessCell method of the JadeTableSheet class returns a reference to the JadeTableCell object for the
requested row and column on that sheet.

This method also sets the Table class accessedCell property to the returned cell, allowing subsequent reuse of
that object.

Storing a reference to a returned cell causes problems unless you take a copy of that column, as there is one
JadeTableCell object for each Table control only.

Note Your logic must delete cloned cells.

The code fragment in the following example shows the use of the accessCell method.

table1.accessSheet(2).accessCell(4, 5).text := "test";

See also the JadeTableSheet class accessColumn and accessRow methods and the Table class accessCell,
accessColumn, accessRow, and accessSheet methods.

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 183

EncycloSys2 - 2020.0.02

accessColumn
Signature accessColumn(column: Integer): JadeTableColumn updating;

The accessColumn method of the JadeTableSheet class returns a reference to the JadeTableColumn object for
the requested column on that sheet. This method also sets the Table class accessedColumn property to the
returned column, allowing subsequent reuse of that object.

Storing a reference to a returned column causes problems unless you take a copy of that column, as there is one
JadeTableColumn object for each Table control only.

Note Your logic must delete cloned columns.

The code fragment in the following example shows the use of the accessColumn method.

while index <=10 do
col := table1.accessColumn(index);
if index = 6 then

col.sortOrder := 1;
col.sortType := SortType_Time;
table1.sortAsc[1] := true;
table1.sortCased[1] := true;

endif;
endwhile;

See also the JadeTableSheet class accessCell and accessRow methods and the Table class accessCell,
accessColumn, accessRow, and accessSheet methods.

accessRow
Signature accessRow(row: Integer): JadeTableRow updating;

The accessRow method of the JadeTableSheet class returns a reference to the JadeTableRow object for the
requested row on that sheet. This method also sets the corresponding Table class accessRow property to the
returned row, allowing subsequent reuse of that object.

Storing a reference to a returned row causes problems unless you take a copy of that row, as there is one
JadeTableRow object for each Table control only.

Note Your logic must delete cloned rows.

See also the JadeTableSheet class accessCell and accessColumn methods and the Table class accessCell,
accessColumn, accessRow, and accessSheet methods.

addItem
Signature addItem(str: String): Integer;

The addItem method of the JadeTableSheet class adds a new row to the Table sheet referenced by this object.
For a description of this method, see the Table control addItem method.

The following example shows the use of the addItem method.

// add a new row that has two columns for company name and address line 1
table1.accessSheet(2).addItem(coy.name & Tab & coy.address1);

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 184

EncycloSys2 - 2020.0.02

addItemAt
Signature addItemAt(str: String;

index: Integer);

The addItemAt method of the JadeTableSheet class adds a new row to the Table sheet referenced by this object.
For a description of this method, see the Table control addItemAt method.

The code fragment in the following example shows the use of the addItemAt method.

table1.accessSheet(2).addItemAt(coy.name & Tab & coy.address1, 2);

clear
Signature clear();

The clear method of the JadeTableSheet class clears the contents of the Table sheet referenced by this object.
For a description of this method, see the Table control clear method.

The code fragment in the following example shows the use of the addItem method.

table1.accessSheet(2).clear;

delete
Signature delete() updating;

The delete method of the JadeTableSheet class deletes the entire sheet referenced by this object if the Table
control contains two or more sheets.

A new JadeTableSheet object is created during the next call to the accessSheet method of the Table class.

If the current sheet is the only sheet in the table, this method does nothing.

findColumnObject
Signature findColumnObject(object: Object;

column: Integer io): Boolean;

The findColumnObject method of the JadeTableSheet class searches the item object values for each column (set
by the JadeTableElement class itemObject property) on the sheet for the value specified in the object parameter,
starting from the column specified in the column parameter.

A zero (0) value in the column parameter is treated as 1; that is, if this parameter is not specified, the search starts
at the first column of the current sheet.

If the specified object is found, this method returns true and the value of the column that contains the specified
object. If the specified object is not found, this method returns false and a zero (0) column value.

The code fragment in the following example shows the use of the findColumnObject method.

int := 0;
bool := table1.accessSheet(2).findColumnObject(obj, int);

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 185

EncycloSys2 - 2020.0.02

findObject
Signature findObject(object: Object;

column: Integer io;
row: Integer io): Boolean;

The findObject method of the JadeTableSheet class searches every cell of the sheet for the value specified in the
object parameter, starting from the cell specified by the column and row parameters.

The column of each row is searched, and zero (0) values in the column and row parameters are treated as 1; that
is, if these parameters are not specified, the search starts at the first column of the first row of the current sheet.

If the specified object is found, this method returns true and the values of the column and row that contain the
specified object. If the specified object is not found, this method returns false and a zero (0) column and row
value.

The code fragment in the following example shows the use of the findObject method.

row := 0;
col := 0;
if table1.accessSheet(2).findObject(obj, row, col) then

delete obj;
table1.accessSheet.removeItem(row);

endif;

findRowObject
Signature findRowObject(object: Object;

row: Integer io): Boolean;

The findRowObject method of the JadeTableSheet class searches the item object values for each row (set by the
JadeTableElement class itemObject property) on the sheet for the value specified in the object parameter,
starting from the row specified in the row parameter.

A zero (0) value in the row parameter is treated as 1; that is, if this parameter is not specified, the search starts at
the first row of the current sheet.

If the specified object is found, this method returns true and the value of the row that contains the specified object.
If the specified object is not found, this method returns false and a zero (0) row value. The code fragment in the
following example shows the use of the findRowObject method.

row := 0;
if table1.accessSheet(2).findRowObject(obj, row) then

delete obj;
table1.accessSheet.removeItem(row);

endif;

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 186

EncycloSys2 - 2020.0.02

findString
Signature findString(str: String;

row: Integer io;
column: Integer io;
caseSensitive: Boolean;
exact: Boolean): Boolean;

The findString method of the JadeTableSheet class searches the cells in a sheet of a Table control for the string
specified in the str parameter. The search starts at the cell row and column specified by the respective row and
column parameter values or at the first row and column if the parameter values are less than 1. The
case-sensitivity of the search is determined by the value of the caseSensitive parameter.

If the exact parameter value is false, the search matches any cell text with the specified prefix. If the exact
parameter value is true, the search matches only cells whose text is an exact match.

If the search does not find a cell containing the string with the required caseSensitive and exact parameter
values, this method returns false. If the search finds a cell containing the string with the required case-sensitive
and exact options, this method returns true and the row and column of the located cell are returned; for example:

col := 0;
row := 0;
while table1.accessSheet(1).findString("city", row, col, false, false) do

 col := col + 1; // repeat the search starting in the next column
endwhile;

Applies to Version: 2016.0.02 (Service Pack 1) and higher

getCollection
Signature getCollection(): Collection;

The getCollection method of the JadeTableSheet class returns a reference to the collection attached to the
associated sheet of the Table control by the listCollection or displayCollection method; for example:

coll := table1.accessSheet(1).getCollection;

If no collection is attached to the sheet, null is returned.

getCellFromPosition
Signature getCellFromPosition(x: Real;

y: Real;
row: Integer output;
column: Integer output): Boolean;

The getCellFromPosition method of the JadeTableSheet class returns a reference to the cell at the position
specified by the horizontal and vertical x and y parameters of the sheet referenced by this object (in units
specified by the value of the Table class scaleMode property).

This method returns true if the row and column parameter values of the cell have been returned, or false if the x
and y parameters do not correspond to a cell position on the current sheet.

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 187

EncycloSys2 - 2020.0.02

insertColumn
Signature insertColumn(at: Integer);

The insertColumn method of the JadeTableSheet class enables a single column to be inserted into the Table
sheet referenced by this object.

The column is empty and assumes the default column width.

The existing columns are shifted to the right of the column specified in the at parameter and remain untouched.

For a description of this method, see the Table control insertColumn method.

The code fragment in the following example shows the use of the insertColumn method.

table1.accessSheet(2).insertColumn(6);

moveColumn
Signature moveColumn(src: Integer;

dst: Integer);

The moveColumn method of the JadeTableSheet class can be used to move a column of the Table sheet
referenced by this object. For a description of this method, see the Table control moveColumn method.

The following example of the moveColumn method moves column 4 to column 2. Column 2 becomes column 3,
and column 3 becomes column 4.

table1.accessSheet(2).moveColumn(4, 2);

The following example of the moveColumn method moves column 2 to column 4. Column 3 becomes column 2,
and column 4 becomes column 3.

table1.accessSheet(2).moveColumn(2, 4);

moveRow
Signature moveRow(src: Integer;

dst: Integer);

The moveRow method of the JadeTableSheet class can be used to move a row of the Table sheet referenced by
this object.

The following example of the moveRow method moves row 4 to row 2. Row 2 becomes row 3, and row 3
becomes row 4.

table1.accessSheet(2).moveRow(4, 2);

The following example of the moveRow method moves row 2 to row 4. Row 3 becomes row 2, and row 4
becomes row 3.

table1.accessSheet(2).moveRow(2, 4);

The current row is adjusted if that row is affected.

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 188

EncycloSys2 - 2020.0.02

positionCollection
Signature positionCollection(obj: Object;

row: Integer) updating;

The positionCollection method of the JadeTableSheet class positions the collection attached to the Table control
to an object in that collection and to a row within the table. Use the obj parameter to specify the object to be
positioned and the row parameter to specify the visible row in which to position that object.

You can use this method to scroll through an existing collection display by specifying the new position of an object
within the current display. For example, the following code fragment scrolls the current collection view so that the
second item is positioned in the top row (if the value of the fixedRows property is 0).

table1.accessSheet(2).positionCollection(table1.itemObject[2], 1);

When using the positionCollection method:

The specified row may not be the resulting displayed row if the required table cannot display sufficient
entries to fill the Table control.

The row property is set to the row of the object.

If the specified object is not a visible member of the collection in the table, the display starts from the first
visible collection entry.

If the specified row is:

Less than fixedRows + 1, fixedRows + 1 is assumed.

Greater than the number of rows in a table, the number of visible rows is assumed.

refreshEntries
Signature refreshEntries(obj: Object) updating;

The refreshEntries method of the JadeTableSheet class refreshes the list of entries on the current sheet of the
table when a collection is attached to the table. For a description of this method, see the Table control
refreshEntries method.

removeItem
Signature removeItem(index: Integer);

The removeItem method of the JadeTableSheet class removes a row from the Table sheet referenced by this
object. For a description of this method, see the Table control removeItem method.

The code fragment in the following example shows the use of the removeItem method.

table1.accessSheet(2).removeItem(2);

resort
Signature resort();

The resort method of the JadeTableSheet class resorts the contents of the Table sheet referenced by this object.
For a description of this method, see the Table control resort method.

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 189

EncycloSys2 - 2020.0.02

The code fragments in the following examples show the use of the resort method.

table1.accessSheet(1).accessColumn(table1.column).sortOrder := 1;

table1.accessedSheet.resort;

restoreAutoSize
Signature restoreAutoSize();

The restoreAutoSize method of the JadeTableSheet class results in all row and column heights and widths
being recalculated, ignoring any column widths or row heights set by logic or by user resize.

selectedCount
Signature selectedCount(): Integer;

The selectedCount method of the JadeTableSheet class returns the number of selected cells in the Table sheet
referenced by this object.

For a description of this method, see the Table control selectedCount method.

The code fragment in the following example shows the use of the selectedCount method.

if table1.accessSheet(2).selectedCount > 0 then

selectedNext
Signature selectedNext(r: Integer io;

c: Integer io): Boolean;

The selectedNext method of the JadeTableSheet class returns the next selected cell following the row and
column specified in the r and c parameters for the Table sheet referenced by this object.

For a description of this method, see the Table control selectedNext method.

The following example steps through all of the selected cells of the current sheet of a table.

vars
row : Integer;
col : Integer;
tblSheet : JadeTableSheet;

begin
tblSheet := table1.accessSheet(2);
while tblSheet.selectedNext(row, col) do

...
endwhile;

end;

setCollectionObject
Signature setCollectionObject(obj: Object) updating;

The setCollectionObject method of the JadeTableSheet class refreshes the list of entries on the current sheet of
the table when a collection is attached to the current sheet. This ensures that the object referenced is in the
displayed list of collection entries for the table sheet; for example:

table1.accessSheet(1).setCollectionObject(obj);

Encyclopaedia of Classes
(Volume 2)

JadeTableSheet Class Chapter 1 190

EncycloSys2 - 2020.0.02

For a description of this method, see the Table control setCollectionObject method.

Encyclopaedia of Classes
(Volume 2)

JadeTcpIpProxy Class Chapter 1 191

EncycloSys2 - 2020.0.02

JadeTcpIpProxy Class
The transient JadeTcpIpProxy class implements TCP/IP network proxy support that enables you to open a TCP/IP
network connection through a proxy server.

Note Asynchronous connection operations are executed on another thread. If this asynchronous worker thread
needs to access JADE objects (for example, TcpIpConnection and JadeTcpIpProxy objects), these objects need
to be shared transient or persistent objects.

If you cannot establish a direct TCP/IP connection because of physical network layouts or restrictions (for
example, the use of a firewall), you may have to establish a connection through a proxy server by using the
functionality provided by the JadeTcpIpProxy class.

You can use proxies as part of a firewall solution, as they sit between the client application and the server
application, and may not permit the client to connect directly to the server. The client is required to connect to the
proxy and asks the proxy to connect to the server on behalf of the client. The proxy may also require
authentication from the client before it allows the connection to the server.

There are a number of different types of proxies, the two major types being HyperText Transfer Protocol (HTTP)
and SOCKS. From the perspective of the client, the difference between the types of proxy is the protocol (that is,
the type and format of messages) used between the client and the proxy. The other issue for the client is
determining the type of proxy and where it is running.

The TcpIpConnection class networkProxy property contains a reference to a JadeTcpIpProxy object. If this
reference contains a non-null value, the JadeTcpIpProxy class connect method is executed instead of the
TcpIpConnection class open or openAsynch method for each attempt to connect to the proxy.

If the networkProxy property value is null, the TcpIpConnection class open or openAsynch method is executed.

For details about the JadeTcpIpProxy class constants and the properties and method defined in the
JadeTcpIpProxy class, see "JadeTcpIpProxy Class Constants", "JadeTcpIpProxy Properties", and
"JadeTcpIpProxy Method", in the following subsections.

For details about reimplementing JadeTcpIpProxy class functionality, see "Proxy Communication Code
Examples" and "Considerations when Implementing JadeTcpIpProxy Class Features", in the following
subsections. (See also "Firewall for the JADE Internet Environment", in Chapter 2 of the JADE Installation and
Configuration Guide.)

Inherits From: Object

Inherited By: (None)

Proxy Communication Code Examples
In the following example of a method that defines values for JadeTcpIpProxy class properties, note the following
points that are referred to in comments within the method.

1. Setting the browserType property controls how the proxy object behaves. To indicate that the proxy object
should not go looking for any configuration information and that all required details are available as property
values on the proxy object, set the browser type to BrowserType_None (0).

2. For the location and type of the proxy server in this example, the proxy server is running on the
proxyhost.testing.com, and it is listening for connections on port 8088. In addition, the proxy server is an
HTTP-based server so the proxyType property is set to ProxyType_Http (1).

Encyclopaedia of Classes
(Volume 2)

JadeTcpIpProxy Class Chapter 1 192

EncycloSys2 - 2020.0.02

3. The proxy server requires authentication. If the proxy server supports the Windows Challenge/Response
(NTLM) authentication protocol on a Windows PC logged into the domain, the proxy object uses the PC log-
in details. If these details fail or if NTLM is not supported, the values in the userName and password
properties are used for authentication.

vars
tcpip : TcpIpConnection;
proxy : JadeTcpIpProxy;

begin
// Create and setup the proxy object
create proxy transient;
// Set the properties we need on the proxy
// [1] We want total control
proxy.browserType := JadeTcpIpProxy.BrowserType_None;
// [2] We know the location and type of the proxy server.
proxy.host := "proxyhost.testing.com";
proxy.port := 8088;
proxy.proxyType := JadeTcpIpProxy.ProxyType_Http;
// We know it is an HTTP proxy
// [3] Authentication details are required
proxy.userName := "Dr. Who";
proxy.password := "tardis";
// Set up the TCP/IP-based connection
create tcpip transient;
// Normal TCP/IP connection details
tcpip.name := "server.internet.com";
tcpip.port := 5432;
// Add a reference to the proxy object from the TCP/IP object so
// that the connection is attempted through a proxy server
tcpip.networkProxy := proxy;
// Now perform standard TCP/IP logic
tcpip.open;
. . . // do some processing here

In the following example of a method that shows JADE locating and using proxy values for the appropriate type of
browser, note the following points that are referred to in comments within the method.

1. Setting the browserType property controls how the proxy object behaves. Set the browser type to
BrowserType_InternetExplorer (1) if the proxy server details have been configured into Internet Explorer or
to BrowserType_Netscape (2) if they have been configured into a Mozilla-style Web browser.

2. As the proxy object needs to know the location and type of the proxy server in this example, we assume that
all of the necessary details can be obtained automatically, as follows.

If the browser type is BrowserType_InternetExplorer (1), the registry is checked.

If the browser type is BrowserType_Netscape (2), JADE checks the MozillaPrefs parameter in the
[JadeClient] section of the JADE initialization file for the name of a valid Mozilla-style Web browser user
preferences file (which is usually called prefs.js).

3. The proxy server requires authentication. In the following example, we assume that the proxy server does
not require authentication or that the proxy object can obtain the necessary information from the operating
system and pass this behind the scenes to the proxy server without involving us.

vars
tcpip : TcpIpConnection;
proxy : JadeTcpIpProxy;

Encyclopaedia of Classes
(Volume 2)

JadeTcpIpProxy Class Chapter 1 193

EncycloSys2 - 2020.0.02

begin
// Create and set up the proxy object
create proxy transient;
// Set the properties we need on the proxy
// [1] We are running on a Windows platform
proxy.browserType := JadeTcpIpProxy.BrowserType_InternetExplorer;
// [2] Assume that the location and type of proxy server can
// be discovered from the registry.
// [3] Assume that the proxy server does not require authentication
// or that we are authenticated as part of log on to our PC.
// Setup the TCP/IP-based connection.
create tcpip transient;
// Normal TCP/IP connection details
tcpip.name := "server.internet.com";
tcpip.port := 5432;
// Add a reference to the proxy object from the TCP/IP object so
// that the connection is attempted through a proxy server.
tcpip.networkProxy := proxy;
// Now perform standard TCP/IP logic
tcpip.open;
. . . // do some processing here

Considerations when Implementing JadeTcpIpProxy Class Features
When implementing features of the JadeTcpIpProxy class, consider the following issues.

For HTTP proxy servers, NTLM and Basic authentication modes only are supported (that is, message digest
is not supported).

The degree of impact depends on the type of proxy server. Microsoft Proxy Server supports message digest
authentication.

HTTP-based proxy servers that implement redirection are not supported. You are more likely to use
redirection if you are a large site or you have multiple proxies that are geographically distributed.

The Internet Explorer (version 5.0 or higher) ability to automatically discover the location of proxy server
configuration information is not implemented in any form.

The Internet Explorer ability to check a destination server address to see if it is a "local address" that should
optionally be excluded from using a proxy server is not supported. This may affect you if you are connecting
locally to a server but you require a proxy to access sites on the Internet.

The Web browser feature that excludes specific hosts, domains, or IP address ranges is not supported. This
may affect you if you are connecting locally to a server but you require a proxy to access sites on the Internet.

There is no ability to select between multiple available proxy servers based on the higher-level protocol that
is being used or implemented by the TcpIpConnection object. The proxy server to use for File Transfer
Protocol (FTP) transfers can be different from the proxy server for HTTP, HTTPS, or Gopher.

You cannot control the authentication method that the proxy object uses if the proxy server supports multiple
authentication methods. The proxy server attempts authentication using the methods listed by the proxy
server in the specified order, if it understands that authentication method.

If the user name and password combination fails, the entire connection process fails. This requires the
userName and password properties to be updated before the connection is retried.

Encyclopaedia of Classes
(Volume 2)

JadeTcpIpProxy Class Chapter 1 194

EncycloSys2 - 2020.0.02

If both NTLM and Basic authentication are supported and the user is not allowed to connect through an
NTLM-based authentication, JADE still tries NTLM authentication each time before it retries with Basic
authentication, which could lead to a possible account lockout.

The SOCKS_SERVER and /etc/socks.conf files are not supported.

JadeTcpIpProxy Class Constants
The constants provided by the JadeTcpIpProxy class are listed in the following table.

Constant Integer Value Constant Integer Value

BrowserType_Auto 3 ProxyType_Auto 0

BrowserType_InternetExplorer 1 ProxyType_Direct 5

BrowserType_Netscape 2 ProxyType_Http 1

BrowserType_None 0 ProxyType_Https 4

ProxyType_Socks4 2

JadeTcpIpProxy Properties
The properties defined in the JadeTcpIpProxy class are summarized in the following table.

Property Contains the…

browserType Browser type whose proxy host configuration settings are used

domain Domain name to log in to the host

host Name or IP address of the host

password Password that is to complete the log in to the host

port Port number used to connect to the host

proxyType Communications protocol used to connect to the proxy host

userName User name that logs in to the host

browserType
Type: Integer

The browserType property of the JadeTcpIpProxy class contains the type of Web browser whose configuration
settings are used for the proxy connection and controls how the proxy object behaves.

If this property contains a non-zero value, JADE attempts to read proxy host configuration settings from that
browser.

The browserType property can be set to one of the values listed in the following table.

JadeTcpIpProxy Class Constant Integer Value

BrowserType_None 0 (the default)

BrowserType_InternetExplorer 1

Encyclopaedia of Classes
(Volume 2)

JadeTcpIpProxy Class Chapter 1 195

EncycloSys2 - 2020.0.02

JadeTcpIpProxy Class Constant Integer Value

BrowserType_Netscape 2

BrowserType_Auto 3

Use the BrowserType_InternetExplorer (1) value if your proxy server details have been configured into Internet
Explorer or the BrowserType_Netscape (2) value if your proxy server details have been configured into a
Mozilla-style Web browser.

If the browser type is BrowserType_InternetExplorer (1), the registry is checked. If the browser type is
BrowserType_Netscape (2), JADE checks the MozillaPrefs parameter in the [JadeClient] section of the JADE
initialization file for the name of a valid Mozilla-style Web browser user preferences file (which is usually called
prefs.js). If you want your application to have its proxy settings set externally from your JADE code, use the
BrowserType_Auto (3) value.

BrowserType_InternetExplorer (1) is used for client nodes.

The default value of BrowserType_None (0) indicates that the JadeTcpIpProxy object does not have to look for
configuration information and that all required details are available as properties on the proxy object.

For examples of reimplementing JadeTcpIpProxy class functionality, see "Proxy Communication Code
Examples", earlier in this chapter. See also "Considerations when Implementing JadeTcpIpProxy Class Features",
earlier in this chapter.

domain
Type: String[255]

The domain property of the JadeTcpIpProxy class contains the name that identifies the secure proxy server
controller through which a connection is made to the host server. Set this property if you require authentication to
connect through a Windows secure proxy server to the host (for example, mydomain).

If your Windows proxy server controller requires authentication, the userName property can contain both the
domain name and user name, separated by a backslash character (for example, mydomain\myloginname).

host
Type: String[255]

The host property of the JadeTcpIpProxy class contains the network name or Internet Protocol (IP) address of the
proxy server controller through which a connection is made to the host server.

If your application is behind a firewall and your network administrator requires connections to the Internet to be
done through a proxy server, this property and the port property identify the proxy server controller through which
connections are made to the host server. For examples of reimplementing JadeTcpIpProxy class functionality,
see "Proxy Communication Code Examples", earlier in this chapter. See also "Considerations when Implementing
JadeTcpIpProxy Class Features", earlier in this chapter.

password
Type: String[255]

The password property of the JadeTcpIpProxy class contains the text that is used for log-in authentication on the
proxy server in conjunction with userName property, if required, to enable you to communicate through the proxy
server to the host server. Set this property if you require authentication to connect to the proxy server.

Encyclopaedia of Classes
(Volume 2)

JadeTcpIpProxy Class Chapter 1 196

EncycloSys2 - 2020.0.02

For examples of reimplementing JadeTcpIpProxy class functionality, see "Proxy Communication Code
Examples", earlier in this chapter. See also "Considerations when Implementing JadeTcpIpProxy Class Features",
earlier in this chapter.

port
Type: Integer[4]

The port property of the JadeTcpIpProxy class contains the port number of the proxy server controller through
which a connection is made to the host server. If your application is behind a firewall and your network
administrator requires connections to the Internet to be done through a proxy server, this property and the host
property identify the proxy server controller through which connections are made to the host server.

Note If the value of the proxyType property is set to ProxyType_Auto (0) and the value of the port property is
zero (0), the default port number is used for each attempted protocol. The default port number is 80 for HyperText
Transfer Protocol (http), 3128 for HyperText Transfer Protocol secure (https), and 1080 for SOCKS V4.

For examples of reimplementing JadeTcpIpProxy class functionality, see "Proxy Communication Code
Examples", earlier in this chapter. See also "Considerations when Implementing JadeTcpIpProxy Class Features",
earlier in this chapter.

proxyType
Type: Integer[4]

The proxyType property of the JadeTcpIpProxy class contains the proxy server communications protocol through
which client nodes connect to the host server.

Note Only the HyperText Transfer Protocol (HTTP) proxy type and the connect part of the SOCKS V4 protocol is
implemented (that is, SOCKS V4 binding is not implemented).

The constants provided by the JadeTcpIpProxy class for the proxyType property are listed in the following table.

Class Constant Integer Value Comment

ProxyType_Auto 0 The default value.

ProxyType_Direct 5 Protocol allowing a reference from a TcpIpConnection object to a
JadeTcpIpProxy object to be defined, but the network connection will
not attempt to connect via a proxy server.

The behavior is equivalent to having the TcpIpConnection class
networkProxy property set to null.

ProxyType_Http 1 Protocol allowing redirection based on domain that is currently
supported.

ProxyType_Https 4 Attempts to connect to the destination host via a proxy that supports
the HTTP CONNECT protocol.

ProxyType_Socks4 2 Connect part only is implemented in this release.

Encyclopaedia of Classes
(Volume 2)

JadeTcpIpProxy Class Chapter 1 197

EncycloSys2 - 2020.0.02

When the proxyType property is set to ProxyType_Auto (the default), you can retrieve network proxy settings
automatically, by using the parameters in the [JadeClient] section of the JADE initialization file listed in the
following table. (For details, see "JADE Object Manager Client Section [JadeClient]", in the JADE Initialization File
Reference.)

Parameter Specifies…

ProxyAutoconfigUrl The name of URL used for automatic configuration of the client node, used only
when the ProxySettingsLocation parameter is set to ini.

ProxySettingsLocation Where proxy configuration details are defined. The settings location can be one of
the following values.

Undefined (defaults to registry)

auto (retrieves network proxy settings automatically)

direct or none (direct network connection that does not attempt to connect via
a proxy server and is equivalent to having the TcpIpConnection class
networkProxy property set to null)

environment (looks for the http_proxy environment variable, to obtain proxy
host and port numbers)

ini (read further settings from the ProxyAutoconfigUrl, ProxyHost,
ProxyPort, and ProxyType parameters)

mozilla or netscape (read values from the file specified in the MozillaPrefs
parameter in the [JadeClient] section of the JADE initialization file)

registry (read settings from the Windows registry)

ProxyHost The host name or IP address number of the proxy server controller through which
a connection is made to the host server, used only when the
ProxySettingsLocation parameter is set to ini.

ProxyPort The valid port number of the proxy server controller through which a connection is
made to the host server, used only when the ProxySettingsLocation parameter is
set to ini.

ProxyType The proxy server communications protocol through which client nodes connect to
the host server, used only when the ProxySettingsLocation parameter is set to
ini.

For examples of reimplementing JadeTcpIpProxy class functionality, see "Proxy Communication Code
Examples", earlier in this chapter. See also "Considerations when Implementing JadeTcpIpProxy Class Features",
earlier in this chapter.

userName
Type: String[255]

The userName property of the JadeTcpIpProxy class contains the user name that is used for log-in
authentication on the proxy server in conjunction with the password property, if required, to enable you to
communicate through the proxy server to the host server (for example, myloginname).

If your proxy server controller requires authentication, the userName property can contain both the domain name
(optionally specified by using the domain property) and user name, separated by a backslash character (for
example, mydomain\myloginname).

Encyclopaedia of Classes
(Volume 2)

JadeTcpIpProxy Class Chapter 1 198

EncycloSys2 - 2020.0.02

For examples of reimplementing JadeTcpIpProxy class functionality, see "Proxy Communication Code
Examples", earlier in this chapter. See also "Considerations when Implementing JadeTcpIpProxy Class Features",
earlier in this chapter.

JadeTcpIpProxy Method
The method defined in the JadeTcpIpProxy class is summarized in the following table.

Method Description

connect Establishes a connection to the target host through the specified network proxy

connect
Signature connect(tcpipConnection: TcpIpConnection);

The connect method defined in the JadeTcpIpProxy class connects to the target host through the specified proxy
server. When a TcpIpConnection class open or openAsynch method is called, JADE checks to see if the
TcpIpConnection class networkProxy property contains a reference to a JadeTcpIpProxy object.

If a connection to the host server through a proxy server is required (that is, the networkProxy property contains a
JadeTcpIpProxy reference), the TcpIpConnection object is passed to the connect method of the
JadeTcpIpProxy object.

The connect method establishes a connection to a remote application through a proxy server and returns when
the connection is established. An exception is raised if an object reference mismatch is detected between the
proxy server and the proxy specified in the tcpipConnection parameter or if the attempt to establish a connection
fails.

You can reimplement the connect method if you have special proxy requirements. The reimplementing method
must use the TcpIpConnection object specified in the tcpipConnection parameter to perform the necessary
TCP/IP communications with the proxy server.

For examples of reimplementing JadeTcpIpProxy class functionality, see "Proxy Communication Code
Examples", earlier in this chapter. See also "Considerations when Implementing JadeTcpIpProxy Class Features",
earlier in this chapter.

Encyclopaedia of Classes
(Volume 2)

JadeTestCase Class Chapter 1 199

EncycloSys2 - 2020.0.02

JadeTestCase Class
The JadeTestCase class provides unit testing functionality for user-written test subclasses.

For details about the methods defined in the JadeTestCase class, see "JadeTestCase Methods", in the following
subsection.

For details about using the JADE unit testing framework to provide unit testing services for your own applications,
see "Using the JADE Testing Framework", in Chapter 17 of the JADE Developer’s Reference.

Inherits From: Object

Inherited By: (None)

JadeTestCase Methods
The methods defined in the JadeTestCase class are summarized in the following table.

Method Description

assert Invoked by a user test method if the method fails.

assertEquals Asserts that an actual test result is equal to the expected result. If this is not the case,
the test fails. A failure message is generated.

assertEqualsMsg Asserts that an actual test result is equal to the expected result. If this is not the case,
the test fails. The failure message passed to the method is used.

assertFalse Asserts that a condition is false. If this is not the case, the test fails. A failure message
is generated.

assertFalseMsg Asserts that a condition is false. If this is not the case, the test fails. The failure
message passed to the method is used.

assertNotNull Asserts that an object exists. If this is not the case, the test fails. A failure message is
generated.

assertNotNullMsg Asserts that an object exists. If this is not the case, the test fails. The failure message
passed to the method is used.

assertNull Asserts that an object does not exist. If this is not the case, the test fails. A failure
message is generated.

assertNullMsg Asserts that an object does not exist. If this is not the case, the test fails. The failure
message passed to the method is used.

assertTrue Asserts that a condition is true. If this is not the case, the test fails. A failure message is
generated.

assertTrueMsg Asserts that a condition is true. If this is not the case, the test fails. The failure message
passed to the method is used.

expectedException Registers expected exceptions before a test method is executed.

info Outputs the specified message but does not cause the test to fail.

Encyclopaedia of Classes
(Volume 2)

JadeTestCase Class Chapter 1 200

EncycloSys2 - 2020.0.02

assert
Signature assert(message: String);

The assert method of the JadeTestCase class is invoked by a user test method if the method fails. It can be
invoked directly by the user test method, or indirectly by one of the specific assert methods in the JadeTestCase
class (for example, the assertEquals method).

A message describing the failure is passed to the method as the value of the message parameter.

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertEquals
Signature assertEquals(expected: Any;

actual: Any);

The assertEquals method of the JadeTestCase class is invoked by a user test method to compare the result of
the test, represented by the value of the actual parameter, with the expected result represented by the value of the
expected parameter.

If the test fails, indicated by the values of the expected and actual parameters being different, a message is
generated in the following format.

assertEquals - expected m but actual = n

The following code example shows the use of the assertEquals method in a user test method.

add() unitTest;
begin

calculator.add(1);
calculator.add(1);
assertEquals(2, calculator.getResult());

end;

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the
JADE Developer’s Reference.

assertEqualsMsg
Signature assertEqualsMsg(message: String;

expected: Any;
actual: Any);

The assertEqualsMsg method of the JadeTestCase class is invoked by a user test method to compare the result
of the test, represented by the value of the actual parameter, with the expected result represented by the value of
the expected parameter.

If the test fails, indicated by the values of the expected and actual parameters being different, a message is
generated in the following format.

assertEqualsMsg - expected m but actual = n

Encyclopaedia of Classes
(Volume 2)

JadeTestCase Class Chapter 1 201

EncycloSys2 - 2020.0.02

The following code example shows the use of the assertEqualsMsg method in a user test method.

add() unitTest;
begin

calculator.add(1);
calculator.add(1);
assertEqualsMsg("Addition error", 2, calculator.getResult());

end;

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertFalse
Signature assertFalse(condition: Boolean);

The assertFalse method of the JadeTestCase class is invoked by a user test method to evaluate the result of the
test, represented by the value of the condition parameter.

If the test fails, indicated by the condition parameter evaluating to true, the following message is generated to
describe the failure.

assertFalse

The following code example shows the use of the assertFalse method in a user test method.

add() unitTest;
begin

calculator.add(1);
calculator.add(1);
assertFalse(calculator.getResult() <> 2);

end;

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertFalseMsg
Signature assertFalseMsg(message: String;

condition: Boolean);

The assertFalseMsg method of the JadeTestCase class is invoked by a user test method to evaluate the result of
the test, represented by the value of the condition parameter. A message is provided in the message parameter
for the case when the test fails, indicated by the condition parameter evaluating to true.

The following code example shows the use of the assertFalseMsg method in a user test method.

add() unitTest;
begin

calculator.add(1);
calculator.add(1);
assertFalseMsg("Addition error", calculator.getResult() <> 2);

end;

Encyclopaedia of Classes
(Volume 2)

JadeTestCase Class Chapter 1 202

EncycloSys2 - 2020.0.02

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertNotNull
Signature assertNotNull(object: Object);

The assertNotNull method of the JadeTestCase class is invoked by a user test method to confirm that the object
specified by the object parameter exists (that is, it is not a null reference).

If the test fails, indicated by the object parameter being a null reference, the following message is generated to
describe the failure.

assertNotNull - object is null

The following code example shows the use of the assertNotNull method in a user test method.

calculatorSetup() unitTest;
begin

create calculator transient;
assertNotNull(calculator);

end;

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertNotNullMsg
Signature assertNotNullMsg(message: String;

object: Object);

The assertNotNullMsg method of the JadeTestCase class is invoked by a user test method to confirm that the
object specified by the object parameter exists (that is, it is not a null reference).

A message is provided in the message parameter for the case when the test fails, indicated by the object
parameter being a null reference.

The following code example shows the use of the assertNotNullMsg method in a user test method.

calculatorSetup() unitTest;
begin

create calculator transient;
assertNotNullMsg("Calculator missing", calculator);

end;

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertNull
Signature assertNull(object: Object);

The assertNull method of the JadeTestCase class is invoked by a user test method to confirm that the object
specified by the object parameter is a null reference.

Encyclopaedia of Classes
(Volume 2)

JadeTestCase Class Chapter 1 203

EncycloSys2 - 2020.0.02

If the test fails, indicated by the object parameter not being a null reference, the following message is generated to
describe the failure.

assertNull - object <class name and oid>

The following code example shows the use of the assertNotNull method in a user test method.

calculatorTeardown() unitTest;
begin

delete calculator;
assertNull(calculator);

end;

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertNullMsg
Signature assertNullMsg(message: String;

object: Object);

The assertNullMsg method of the JadeTestCase class is invoked by a user test method to confirm that the object
specified by the object parameter is a null reference.

A message is provided in the message parameter for the case when the test fails, indicated by the object
parameter being a null reference.

The following code example shows the use of the assertNullMsg method in a user test method.

calculatorTeardown() unitTest;
begin

delete calculator;
assertNullMsg("Calculator still present", calculator);

end;

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertTrue
Signature assertTrue(condition: Boolean);

The assertTrue method of the JadeTestCase class is invoked by a user test method to evaluate the result of the
test, represented by the value of the condition parameter. If the test fails, indicated by the condition parameter
evaluating to false, the following message is generated to describe the failure.

assertTrue

The following code example shows the use of the assertTrue method in a user test method.

add() unitTest;
begin

calculator.add(1);
calculator.add(1);
assertTrue(calculator.getResult() = 2);

end;

Encyclopaedia of Classes
(Volume 2)

JadeTestCase Class Chapter 1 204

EncycloSys2 - 2020.0.02

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

assertTrueMsg
Signature assertTrueMsg(message: String;

condition: Boolean);

The assertTrueMsg method of the JadeTestCase class is invoked by a user test method to evaluate the result of
the test, represented by the value of the condition parameter.

A message is provided in the message parameter for the case when the test fails, indicated by the condition
parameter evaluating to false.

The following code example shows the use of the assertTrueMsg method in a user test method.

add() unitTest;
begin

calculator.add(1);
calculator.add(1);
assertTrueMsg("Addition error", calculator.getResult() = 2);

end;

A failure in the test method results in the testFailure method being executed by an object implementing the
JadeTestListenerIF interface. For details, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

expectedException
Signature expectedException(params: ParamListType);

The expectedException method of the JadeTestCase class is invoked by a user test method to register
exceptions that are expected during execution of the test method.

A test method that encounters an exception is considered to have failed, unless the exception is registered as an
expected exception.

The params parameter specifies expected exceptions by the class of the exception or the errorCode property.

In the following example, a 1035 (String too long) exception, a 5011 (Record truncated) exception, and any
exception of type FileException are expected.

someTest() unitTest;
begin

expectedException(1035, FileException, 5011);
// test instructions omitted

end;

You can also register expected exceptions by calling the expectedException method a number of times, as
shown in the following code fragment.

expectedException(1035);
expectedException(FileException);
expectedException(5011);

Encyclopaedia of Classes
(Volume 2)

JadeTestCase Class Chapter 1 205

EncycloSys2 - 2020.0.02

info
Signature info(message: String);

The info method of the JadeTestCase class outputs the message contained in the message parameter but does
not cause the test to fail. This method enables you to log user information (for example, progress or test
descriptions) with error output.

Tip Use the info method to provide feedback when debugging a test method.

Encyclopaedia of Classes
(Volume 2)

JadeTestListenerIF Interface Chapter 1 206

EncycloSys2 - 2020.0.02

JadeTestListenerIF Interface
The JadeTestListenerIF interface, defined in the RootSchema, provides the definition of the event callback
methods that you can implement in your user schema classes to display or report on the progress of unit tests run
for one or more JadeTestCase instances.

For details about using the JADE unit testing framework, see "Using the JADE Testing Framework", in Chapter 17
of the JADE Developer’s Reference.

You can view the JadeTestListenerIF interface and its methods only in the Interface Browser of a user schema
that has an implementation mapping to this RootSchema interface, as shown in the following image.

For details about implementing the JadeTestListenerIF interface for a class selected in the Class Browser of a
user schema, see "Implementing an Interface", in Chapter 14, "Adding and Maintaining Interfaces", of the JADE
Development Environment User’s Guide.

Notes Automatically generated stub methods in classes that implement the interface contain no body logic.

It is your responsibility to provide the source that meets your application requirements for each stub method.

For details about the JadeTestListenerIF interface methods, see "JadeTestListenerIF Interface Method Callback
Signatures", in the following subsection.

Encyclopaedia of Classes
(Volume 2)

JadeTestListenerIF Interface Chapter 1 207

EncycloSys2 - 2020.0.02

JadeTestListenerIF Interface Callback Method Signatures
The signatures of callback methods provided the JadeTestListenerIF interface are summarized in the following
table.

Method When the callback method is invoked…

finish After the last test method for the last JadeTestCase subclass completes

message Before the first test method for a JadeTestCase subclass starts or after the last test
method completes

methodSuccess If a test method completes successfully without an exception or an assertion failure

start Before the first test method for the first JadeTestCase subclass starts

testFailure If a test method results in an exception or an assertion failure

testSkipped If a test method has the unitTestIgnore method option and is skipped

testSuccess For each individual assertion that passes, in each test method run

For details about the method options that are available for methods in a unit test class (for example, the
unitTestIgnore method option), see "Writing Unit Tests", in Chapter 17 of the JADE Developer’s Reference. For
details about method options, see "Method Options", in Chapter 1 of the JADE Developer’s Reference.

finish
Signature finish(elapsedTime: Time;

testsFailed: Integer;
testsSkipped: Integer;
testsSucceeded: Integer);

When unit tests are run, all of the test methods for each class in a collection of JadeTestCase subclasses are
executed.

The finish event occurs just once, at the conclusion of the unit test run. The finish callback method is then invoked
for the test listener object, if it exists.

The parameters for the finish method are listed in the following table.

Parameter Contains the…

elapsedTime Time to run all the test methods

testsFailed Number of test methods that failed

testsSkipped Number of test methods that were skipped

testsSucceeded Number of test methods that succeeded

For details about running unit tests, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

JadeTestListenerIF Interface Chapter 1 208

EncycloSys2 - 2020.0.02

message
Signature message(messageText: String);

When unit tests are run, all of the test methods for each class in a collection of JadeTestCase subclasses are
executed.

The JadeTestListenerIF class message event occurs before the first JadeTestCase unit test method is executed
and after the last JadeTestCase unit test method is executed, for each schema that has tests being run. The
message callback method is then invoked for the test listener object, if it exists.

The start and end messages specify the schema or schemas being tested.

For details about running unit tests, see "Using the JADE Testing Framework", in Chapter 17 of the
JADE Developer’s Reference.

methodSuccess
Signature methodSuccess(testMethodName: String);

When unit tests are run, all of the test methods for each class in a collection of JadeTestCase subclasses are
executed.

The methodSuccess event occurs for each test method from a JadeTestCase class that completes successfully
without an assertion failing or an exception occurring. The methodSuccess callback method is then invoked for
the test listener object, if it exists.

The testMethodName parameter is the fully qualified name of the successful method in the following format.

schema-name::class-name::method-name

For details about running unit tests, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

start
Signature start(numberOfTestMethods: Integer);

When unit tests are run, all of the test methods for each class in a collection of JadeTestCase subclasses are
executed.

The start event occurs just once, at the beginning of the unit test run. The start callback method is then invoked
for the test listener object, if it exists.

The numberOfTestMethods parameter contains the number of test methods that have the unitTest or the
unitTestIgnore method option.

For details about running unit tests, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

JadeTestListenerIF Interface Chapter 1 209

EncycloSys2 - 2020.0.02

testFailure
Signature testFailure(testMethodName: String;

callStack: String;
failureReason: String);

When unit tests are run, all of the test methods for each class in a collection of JadeTestCase subclasses are
executed.

The testFailure event occurs for each test method from a JadeTestCase class that fails because an assertion
fails or an exception is raised. The testFailure callback method is then invoked for the test listener object, if it
exists.

The parameters for the testFailure method are listed in the following table.

Parameter Contains the…

testMethodName Name of the test method that failed in the schema-name::class-name::method-name fully
qualified format .

callStack Call stack of all user test methods at the point of the assertion failure or the captured
exception in the form schema-name::class-name::method-name, followed by the position
within the method source in parentheses. The top method in the stack is the one in which
the assertion failed or the exception was captured.

failureReason Reason the test method failed.

For details about running unit tests, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

testSkipped
Signature testSkipped(testMethodName: String);

When unit tests are run, all of the test methods for each class in a collection of JadeTestCase subclasses are
executed, apart from those methods that have unitTestIgnore method parameter, which are skipped.

A typical reason for skipping a test is that the functionality to be tested has not yet been completed.

The testSkipped event occurs for each test method from a JadeTestCase class that is skipped. The testSkipped
callback method is then invoked for the test listener object, if it exists.

The testMethodName parameter is the fully qualified name of the skipped method in the following format.

schema-name::class-name::method-name

For details about running unit tests, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

testSuccess
Signature testSuccess(testMethodName: String);

When unit tests are run, all of the test methods for each class in a collection of JadeTestCase subclasses are
executed.

The testSuccess event occurs for each individual assertion that succeeds, in each test method run. The
testSuccess callback method is then invoked for the test listener object, if it exists.

Encyclopaedia of Classes
(Volume 2)

JadeTestListenerIF Interface Chapter 1 210

EncycloSys2 - 2020.0.02

The testMethodName parameter is the fully qualified name of the successful method in the following format.

schema-name::class-name::method-name

For details about running unit tests, see "Using the JADE Testing Framework", in Chapter 17 of the JADE
Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

JadeTestRunner Class Chapter 1 211

EncycloSys2 - 2020.0.02

JadeTestRunner Class
The JadeTestRunner class enables you to run unit tests that have been defined in subclasses of the
JadeTestCase class. The class is involved regardless of whether the unit tests are run from the JADE
development environment, from an application, or by using a batch process.

For details about using the JADE unit testing framework, see "Using the JADE Testing Framework", in Chapter 17
of the JADE Developer’s Reference. For details about the methods defined in the JadeTestRunner class, see
"JadeTestRunner Methods", in the following subsection.

Inherits From: Object

Inherited By: (None)

JadeTestRunner Class Methods
The methods provided by the JadeTestRunner class are listed in the following table.

Method Description

runTests Executes the specified test methods

setDebugOnAssert Specifies that the test runner invokes the Process class debug method
if an assert fails

setDebugOnException Specifies that the test runner invokes the Process class debug method
if any exception occurs

setDebugOnUnexpectedException Specifies that the unit test is paused and the call stack is displayed
when the unit test encounters an unexpected exception.

setLogCallStack Specifies that the test runner reports the call stack when a test method
assertion fails or an exception is raised

setTestListener Specifies the object that will listen for the results of test methods

runTests
Signature runTests(tests: ObjectArray): Integer;

The runTests method of the JadeTestRunner class executes the test methods of all test classes in the collection
specified in the tests parameter.

The tests parameter is a collection of unit test classes and individual unit test methods. For a unit test class
included in the collection, all unit test methods are executed.

The test classes must all be subclasses of the JadeTestCase class.

The following example shows the use of the runTests method to run all unit test methods for the TestConvertor
class and two unit test methods for the TestCalculator class.

vars
tests : ObjectArray;
jtr : JadeTestRunner;

begin
create tests transient;
tests.add(TestConvertor);
tests.add(TestCalculator::add);

Encyclopaedia of Classes
(Volume 2)

JadeTestRunner Class Chapter 1 212

EncycloSys2 - 2020.0.02

tests.add(TestCalculator::divide);
create jtr transient;
jtr.runTests(tests);

epilog
delete tests;
delete jtr;

end;

setDebugOnAssert
Signature setDebugOnAssert(value: Boolean);

The setDebugOnAssert method of the JadeTestRunner class specifies that the test runner invokes the Process
class debug method if an assert fails.

Applies to Version: 2016.0.02 (Service Pack 1) and higher

setDebugOnException
Signature setDebugOnException(value: Boolean);

The setDebugOnException method of the JadeTestRunner class specifies that the test runner invokes the
Process class debug method if an exception occurs. (See also the JadeTestCase class expectedException
method.)

Applies to Version: 2016.0.02 (Service Pack 1) and higher

setDebugOnUnexpectedException
Signature setDebugOnUnexpectedException(value: Boolean);

The setDebugOnUnexpectedException method of the JadeTestRunner class specifies that the test runner
pauses and invokes the Process class debug method to display the call stack when the unit test encounters an
unexpected exception so that you can debug exceptions other than any that the test has registered with the
JadeTestCase class expectedException method.

Applies to Version: 2016.0.02 (Service Pack 1) and higher

setLogCallStack
Signature setLogCallStack(value: Boolean);

The setLogCallStack method of the JadeTestRunner class specifies that the test runner reports the call stack
when a test method assertion fails or an exception is raised.

Applies to Version: 2016.0.02 (Service Pack 1) and higher

setTestListener
Signature setTestListener(listener: JadeTestListenerIF);

The setTestListener method of the JadeTestRunner class identifies the object specified by the listener
parameter that will listen to information about the progress and results of test methods.

The listener object must implement the methods of the JadeTestListenerIF interface, which receive information
about the success or failure of test methods as they are run.

Encyclopaedia of Classes
(Volume 2)

JadeTestRunner Class Chapter 1 213

EncycloSys2 - 2020.0.02

There can be, at most, one listener object for a test run. If a listener object is not specified, information about the
test run is output to the Jade Interpreter Output Viewer.

The following example shows the use of the setTestListener method to specify the test listener object.

vars
tests : ObjectArray;
file : ListenerFile;

// ListenerFile is a subclass of File that implements JadeTestListenerIF
jtr : JadeTestRunner;

begin
create file transient;
file.mode := File.Mode_Append;
file.fileName := "C:\UnitTests\results.txt";
create tests transient;
tests.add(TestCalculator);
create jtr transient;
jtr.setTestListener(file);
jtr.runTests(tests);

epilog
delete tests;
delete file;
delete jtr;

end;

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 214

EncycloSys2 - 2020.0.02

JadeTimeZone Class
The JadeTimeZone class enables you to obtain information about and perform conversions between different
time zones. It also supports differing daylight saving rules across different time zones.

JadeTimeZone objects are transient only. You cannot create persistent or shared transient instances.

The JadeTimeZone class cannot be instantiated with a create call. You must instantiate it with the
createTimeZoneByName or createTimeZoneByLocation method, both of which are type methods of the
JadeTimeZone class that return an instantiated JadeTimeZone object.

The JadeTimeZone class takes its time zone information from the Windows registry, where the time zone data is
located at device\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time Zones.
When not running in single user mode, time zone information is always taken from the registry of the device on
which the database server is running, to ensure consistent information across all nodes.

Create your own transient JadeTimeZone subclasses to:

Obtain information about time offsets and daylight saving for various regions; for example, coordinating
communication between different time zones, providing information about time zones, having systems
automatically perform actions switching over to or from daylight saving, and so on

Use JadeTimeZone objects to perform timestamp conversions for different time zones and timestamps

Convert a time zone for a past or future timestamp, where the daylight saving state may differ from the current
daylight saving state

Note When performing time conversions, time offsets are measured in minutes.

For details about the properties and methods defined in the JadeTimeZone class, see "JadeTimeZone Properties"
and "JadeTimeZone Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

Applies to Version: 2020.0.01 and higher

JadeTimeZone Properties
The read-only properties defined in the JadeTimeZone class are summarized in the following table.

Properties Description

currentDaylightBias Current additional offset in minutes between the time zone and the UTC time
zone that is applied when daylight saving is active in the time zone

currentUtcBias Current offset in minutes between the time zone and the UTC time zone, not
accounting for daylight saving

daylightSaving Specifies whether the time zone supports daylight saving

daylightTimeName Name used to refer to the time zone during daylight saving

displayName General name of the time zone

historicalTimeZones Historical time zone information for years in which that information exists

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 215

EncycloSys2 - 2020.0.02

Properties Description

ianaName Name of the time zone within the Internet Assigned Numbers Authority (IANA) tz
database

standardTimeName Name of the time zone during standard (non-daylight saving) time

Applies to Version: 2020.0.01 and higher

currentDaylightBias
Type: Integer

The read-only currentDaylightBias property of the JadeTimeZone class contains the current additional offset
between the time zone and the Coordinated Universal Time (UTC) time zone, in minutes, that is applied when
daylight saving is active in the time zone; for example, if daylight time is an hour ahead of standard time in a time
zone, the value of the currentDaylightBias property for that time zone is -60.

The information stored in this property refers only to the daylight bias at the time of creation of the JadeTimeZone
object and does not provide any information about what the daylight bias may have been in the past.

If the time zone does not observe daylight saving, the value of the currentDaylightBias property is zero (0).

Applies to Version: 2020.0.01 and higher

currentUtcBias
Type: Integer

The read-only currentUtcBias property of the JadeTimeZone class contains the current offset in minutes
between the time zone and the Coordinated Universal Time (UTC) time zone, not accounting for daylight saving.
The bias is measured from this time zone to the UTC time zone; for example, if the time zone is 12 hours ahead of
UTC, the value of the currentUtcBias property for the time zone is -720.

The information stored in this property refers only to the UTC bias at the time of creation of the JadeTimeZone
object and does not provide any information about what the UTC bias may have been in the past.

Applies to Version: 2020.0.01 and higher

daylightSaving
Type: Boolean

The read-only daylightSaving property of the JadeTimeZone class specifies whether daylight saving is observed
in the time zone at the time of creation of the JadeTimeZone object.

This property provides information about whether daylight saving is observed. It does not say whether it is
currently active.

Note Observed means that this time zone currently uses daylight saving; active means that this time zone is
currently applying the daylight saving offset.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 216

EncycloSys2 - 2020.0.02

daylightTimeName
Type: String

The read-only daylightTimeName property of the JadeTimeZone class contains the name used to refer to the
time zone during daylight saving; for example, the daylightTimeName of the New Zealand time zone is New
Zealand Daylight Time.

If the time zone does not observe daylight saving, the value of the daylightTimeName property is an empty string
("").

Applies to Version: 2020.0.01 and higher

displayName
Type: String

The read-only displayName property of the JadeTimeZone class contains the general name of the time zone.
This includes the Coordinated Universal Time (UTC) offset of the time zone and the names of major places where
the time zone is observed; for example, the display name for the New Zealand time zone is (UTC+12:00)
Auckland, Wellington.

Applies to Version: 2020.0.01 and higher

historicalTimeZones
Type: JadeTimeZoneByYearDict

The read-only historicalTimeZones property of the JadeTimeZone class contains JadeTimeZone objects that
represent historical time zone information for years in which that information exists. During these years,
Coordinated Universal Time (UTC) bias and daylight saving rules were observed that differ from the rules
currently observed.

These historical time zones are stored as values in the JadeTimeZoneByYearDict class and which themselves
have an empty JadeTimeZoneByYearDict; that is, they have no keys or values. (All JadeTimeZone objects must
have a historicalTimeZones property, but JadeTimeZone objects that represent historical time zones do not
themselves have historical time zones so their historicalTimeZones dictionary is left empty.)

Applies to Version: 2020.0.01 and higher

ianaName
Type: String

The read-only ianaName property of the JadeTimeZone class contains the name of the time zone within the
Internet Assigned Numbers Authority (IANA) tz database; for example, the ianaName value of the New Zealand
time zone is Pacific/Auckland. This property is defined only for JadeTimeZone objects that have been created
with the createTimeZoneByName method.

If the JadeTimeZone object was created with the createTimeZoneByLocationWindows method, this property has
an empty string ("") value.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 217

EncycloSys2 - 2020.0.02

standardTimeName
Type: String

The read-only standardTimeName property of the JadeTimeZone class contains the name used to refer to the
time zone during standard time; for example, the standard time name of the New Zealand time zone is New
Zealand Standard Time.

If the time zone does not observe daylight saving, you can use this name to refer to the time zone year-round.

The value of the standardTimeName property is the same as the string used to instantiate the JadeTimeZone
object with the createTimeZoneByName type method.

Applies to Version: 2020.0.01 and higher

JadeTimeZone Methods
The methods defined in the JadeTimeZone class are summarized in the following table.

Methods Description

convertTimeByTimeZone Converts the timestamp of the specified receiver time zone to the
timestamp of the specified foreign time zone

convertTimeFromUtc Converts the specified timestamp from Coordinated Universal
Time (UTC) to the time zone

convertTimeToUtc Converts the specified timestamp from the local time zone to UTC

createTimeZoneByLocationWindows Returns a JadeTimeZone object that matches the local time zone
defined in the Windows registry of the specified location

createTimeZoneByName Returns the time zone information matching the specified name
(in IANA format) from the registry

createTimeZoneByNameWindows Returns the time zone information matching the specified
Windows name from the registry

getDaylightBias Returns the daylight saving time offset in minutes from UTC to the
time zone of the specified year

getDaylightSavingName Returns the value of the daylightTimeName or
standardTimeName property, depending on whether daylight
savings is active for the specified timestamp

getDaylightTransition Returns a timestamp representing the date and time at which the
time zone transitions to daylight saving time in the specified year

getStandardTransition Returns a timestamp representing the date and time at which the
time zone transitions to standard time in the specified year

getWindowsTimeZoneNameByLocation Returns the Windows name of the local time zone of the device at
the specified location

getUtcBias Returns the time offset in minutes from UTC to the time zone at the
specified timestamp, accounting for whether daylight saving is
active for the specified timestamp

isDaylightSaving Returns whether daylight saving is active during the specified
timestamp for the time zone

retrieveHistoricalTimeZone Returns a historical time zone for the specified year

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 218

EncycloSys2 - 2020.0.02

Applies to Version: 2020.0.01 and higher

convertTimeByTimeZone
Signature convertTimeByTimeZone(localTimestamp: TimeStamp

foreignTimeZone: JadeTimeZone): TimeStamp;

The convertTimeByTimeZone method of the JadeTimeZone class converts the timestamp of the local time zone
specified in the localTimestamp parameter to the timestamp of the foreign time zone specified in the
foreignTimeZone parameter, accounting for daylight saving and any historical time zone information available in
both time zones.

The following example shows the use of the convertTimeByTimeZone method that converts time between Rome
and New York when the clock strikes 12.

example_convertTimeByTimeZone();
vars

romeDate: Date;
romeTime: Time;
romeTimeStamp: TimeStamp;
romeTimeZone: JadeTimeZone;
newYorkTimeStamp: TimeStamp;
newYorkTimeZone: JadeTimeZone;

begin
romeTime.setTime(0,0,0,0); // Set the time in Rome to midnight
romeDate.setDate(1,1,2020); // Set the day in Rome to the 1st of January 2020
romeTimeStamp.setTime(romeTime);
romeTimeStamp.setDate(romeDate);
romeTimeZone := JadeTimeZone@createTimeZoneByName("Europe/Rome");

// Create a JadeTimeZone for Rome
newYorkTimeZone := JadeTimeZone@createTimeZoneByName("America/New_York");

// Create a JadeTimeZone for New York
newYorkTimeStamp := romeTimeZone.convertTimeByTimeZone(romeTimeStamp,

newYorkTimeZone); // Convert the time for Rome zone to New York time
write "The time in New York when the clock strikes twelve in Rome is

" & newYorkTimeStamp.String;
epilog

delete romeTimeZone;
delete newYorkTimeZone;

end;

Applies to Version: 2020.0.01 and higher

convertTimeFromUtc
Signature convertTimeFromUtc(utcTimestamp: TimeStamp): TimeStamp;

The convertTimeFromUtc method of the JadeTimeZone class converts a timestamp for the Coordinated
Universal Time (UTC) time zone to a timestamp for the time zone of the receiver, accounting for daylight saving
and any historical time zone information that is available.

The following example shows the use of the convertTimeFromUtc method that finds out what time it is in Rome
right now.

example_convertTimeFromUtc();
vars

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 219

EncycloSys2 - 2020.0.02

utcTimeStamp: TimeStamp;
romeTimeStamp: TimeStamp;
romeTimeZone: JadeTimeZone;

begin
utcTimeStamp := app.getUTCTime();

// Get the current UTC time
romeTimeZone := JadeTimeZone@createTimeZoneByName("Europe/Rome");

// Create a JadeTimeZone for Rome
romeTimeStamp := romeTimeZone.convertTimeFromUtc(utcTimeStamp);
write "The time in Rome right now is " & romeTimeStamp.String;

epilog
delete romeTimeZone;

end;

Applies to Version: 2020.0.01 and higher

convertTimeToUtc
Signature convertTimeToUtc(localTimestamp: TimeStamp): TimeStamp;

The convertTimeToUtc method of the JadeTimeZone class converts a timestamp for the time zone of the receiver
to a timestamp for the Coordinated Universal Time (UTC) time zone, accounting for daylight saving and any
historical time zone information that is available.

The following example shows the use of the convertTimeToUtc method that finds out what time it is in Rome right
now.

example_convertTimeToUtc();
vars

utcTimeStamp: TimeStamp;
romeTimeStamp: TimeStamp;
romeTimeZone: JadeTimeZone;

begin
utcTimeStamp := app.getUTCTime();

// Get the current UTC time
romeTimeZone := JadeTimeZone@createTimeZoneByName("Europe/Rome");

// Create a JadeTimeZone for Rome
romeTimeStamp := romeTimeZone.convertTimeFromUtc(utcTimeStamp);
write "The time in Rome right now is " & romeTimeStamp.String;

epilog
delete romeTimeZone;

end;

Applies to Version: 2020.0.01 and higher

createTimeZoneByLocationWindows
Signature createTimeZoneByLocationWindows(location: Integer}: JadeTimeZone typeMethod;

The createTimeZoneByLocationWindows method of the JadeTimeZone class returns a JadeTimeZone object
that matches the local time zone defined in the Windows registry of the location specified in the location
parameter.

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 220

EncycloSys2 - 2020.0.02

The location parameter values are provided by the global constants in the ExecutionLocation category listed in
the following table.

Global Constant Integer Value Method is executed...

DatabaseServer 1 On the database server node

PresentationClient 2 On the presentation client (applicable to applications running in thin
client mode)

CurrentLocation 0 The database server node or presentation client, depending on
whether the method is executed on a presentation client node or the
database server

The full list of time zones available in the registry on a device can be found at:

device\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time Zones

An up-to-date list of time zones maintained by Windows can be found at:

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-
zones

If the local time zone of the specified location does not exist in the registry of the database server, exception 1469
(Time zone not found) is raised.

The following example shows the use of the createTimeZoneByLocationWindows method that converts a
timestamp from the database server to the time zone of the client node.

example_createTimeZoneByLocationWindows();
vars

clientTimeStamp: TimeStamp;
clientTimeZone: JadeTimeZone;
databaseTime: Time;
databaseDate: Date;
databaseTimeStamp: TimeStamp;
databaseTimeZone: JadeTimeZone;

begin
/* Some setup to create a timestamp for the database server, usually
the database server would pass this through to the client node */
databaseTime.setTime(18,0,0,0);
databaseDate.setDate(1,6,2020);
databaseTimeStamp.setTime(databaseTime);
databaseTimeStamp.setDate(databaseDate);
clientTimeZone := JadeTimeZone@createTimeZoneByLocationWindows

(PresentationClient);
// Create a JadeTimeZone for the client node

databaseTimeZone := JadeTimeZone@createTimeZoneByLocationWindows
(DatabaseServer);

// Create a JadeTimeZone for the database server
clientTimeStamp := databaseTimeZone.convertTimeByTimeZone(databaseTimeStamp,

clientTimeZone);
// Convert the timestamp from database time to client time

write "The given timestamp is " & clientTimeStamp.String & ", local time";
epilog

delete clientTimeZone;

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 221

EncycloSys2 - 2020.0.02

delete databaseTimeZone;
end;

Applies to Version: 2020.0.01 and higher

createTimeZoneByName
Signature createTimeZoneByName(timeZoneName: String}: JadeTimeZone typeMethod;

The createTimeZoneByName method of the JadeTimeZone class takes the name in Internet Assigned Numbers
Authority (IANA) format of the time zone specified in the timeZoneName parameter to represent the name of a
time zone within the Windows registry and returns a JadeTimeZone object with properties that match that time
zone.

The names used in the timeZoneName parameter are from the IANA database; that is:

https://data.iana.org/time-zones/tz-link.html

For a list of the world's time zones in the tz database (or tzdata), see:

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

For a list of the IANA database and Windows registry time zone mappings, see "Mapping IANA Database and
Windows Registry Time Zones", in the following subsection.

To ensure that time zone information is consistent between different nodes, which may be running on different
versions and update levels of Windows and therefore may have different time zone information in their registries,
time zone information is taken from the registry of the device that is running the database server or single-user
node.

If the map-transformed version of the time zone name specified in the timeZoneName parameter does not match
a time zone specified in the Windows registry, exception 1469 (Time zone not found) is raised.

The following example shows the use of the createTimeZoneByName method that converts time between Rome
and New York when the clock strikes 12.

example_createTimeZoneByName();
vars

romeDate: Date;
romeTime: Time;
romeTimeStamp: TimeStamp;
romeTimeZone: JadeTimeZone;
newYorkTimeStamp: TimeStamp;
newYorkTimeZone: JadeTimeZone;

begin
romeTime.setTime(0,0,0,0); // Set the time in Rome to midnight
romeDate.setDate(1,1,2020); // Set the day in Rome to the 1st of January 2020
romeTimeStamp.setTime(romeTime);
romeTimeStamp.setDate(romeDate);
romeTimeZone := JadeTimeZone@createTimeZoneByName("Europe/Rome");

// Create a JadeTimeZone for Rome
newYorkTimeZone := JadeTimeZone@createTimeZoneByName("America/New_York");

// Create a JadeTimeZone for New York
newYorkTimeStamp := romeTimeZone.convertTimeByTimeZone(romeTimeStamp,

newYorkTimeZone); // Convert the time for Rome zone to New York time
write "The time in New York when the clock strikes twelve in Rome is

" & newYorkTimeStamp.String;

https://data.iana.org/time-zones/tz-link.html
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 222

EncycloSys2 - 2020.0.02

epilog
delete romeTimeZone;
delete newYorkTimeZone;

end;

Applies to Version: 2020.0.01 and higher

Mapping IANA Database and Windows Registry Time Zones
The following table lists the Internet Assigned Numbers Authority (IANA) database and Windows registry time
zone mappings, which can be specified in the timeZoneName parameter of the JadeTimeZone class
createTimeZoneByName method.

IANA Database Name Windows Registry Name

Etc/GMT+12 Dateline Standard Time

Etc/GMT+11 UTC-11

Pacific/Pago_Pago UTC-11

Pacific/Niue UTC-11

Pacific/Midway UTC-11

America/Adak Aleutian Standard Time

Pacific/Honolulu Hawaiian Standard Time

Pacific/Rarotonga Hawaiian Standard Time

Pacific/Tahiti Hawaiian Standard Time

Pacific/Johnston Hawaiian Standard Time

Etc/GMT+10 Hawaiian Standard Time

Pacific/Marquesas Marquesas Standard Time

America/Anchorage Alaskan Standard Time

America/Juneau Alaskan Standard Time

America/Metlakatla Alaskan Standard Time

America/Nome Alaskan Standard Time

America/Sitka Alaskan Standard Time

America/Yakutat Alaskan Standard Time

Etc/GMT+9 UTC-09

Pacific/Gambier UTC-09

America/Tijuana Pacific Standard Time (Mexico)

America/Santa_Isabel Pacific Standard Time (Mexico)

Etc/GMT+8 UTC-08

Pacific/Pitcairn UTC-08

America/Los_Angeles Pacific Standard Time

America/Vancouver Pacific Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 223

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

America/Dawson Pacific Standard Time

America/Whitehorse Pacific Standard Time

PST8PDT Pacific Standard Time

America/Phoenix US Mountain Standard Time

America/Dawson_Creek US Mountain Standard Time

America/Creston US Mountain Standard Time

America/Fort_Nelson US Mountain Standard Time

America/Hermosillo US Mountain Standard Time

Etc/GMT+7 US Mountain Standard Time

America/Chihuahua Mountain Standard Time (Mexico)

America/Mazatlan Mountain Standard Time (Mexico)

America/Denver Mountain Standard Time

America/Edmonton Mountain Standard Time

America/Cambridge_Bay Mountain Standard Time

America/Inuvik Mountain Standard Time

America/Yellowknife Mountain Standard Time

America/Ojinaga Mountain Standard Time

America/Boise Mountain Standard Time

MST7MDT Mountain Standard Time

America/Guatemala Central America Standard Time

America/Belize Central America Standard Time

America/Costa_Rica Central America Standard Time

Pacific/Galapagos Central America Standard Time

America/Tegucigalpa Central America Standard Time

America/Managua Central America Standard Time

America/El_Salvador Central America Standard Time

Etc/GMT+6 Central America Standard Time

America/Chicago Central Standard Time

America/Winnipeg Central Standard Time

America/Rainy_River Central Standard Time

America/Rankin_Inlet Central Standard Time

America/Resolute Central Standard Time

America/Matamoros Central Standard Time

America/Indiana/Knox Central Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 224

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

America/Indiana/Tell_City Central Standard Time

America/Menominee Central Standard Time

America/North_Dakota/Beulah Central Standard Time

America/North_Dakota/Center Central Standard Time

America/North_Dakota/New_Salem Central Standard Time

CST6CDT Central Standard Time

Pacific/Easter Easter Island Standard Time

America/Mexico_City Central Standard Time (Mexico)

America/Bahia_Banderas Central Standard Time (Mexico)

America/Merida Central Standard Time (Mexico)

America/Monterrey Central Standard Time (Mexico)

America/Regina Canada Central Standard Time

America/Swift_Current Canada Central Standard Time

America/Bogota SA Pacific Standard Time

America/Rio_Branco SA Pacific Standard Time

America/Eirunepe SA Pacific Standard Time

America/Coral_Harbour SA Pacific Standard Time

America/Guayaquil SA Pacific Standard Time

America/Jamaica SA Pacific Standard Time

America/Cayman SA Pacific Standard Time

America/Panama SA Pacific Standard Time

America/Lima SA Pacific Standard Time

Etc/GMT+5 SA Pacific Standard Time

America/Cancun Eastern Standard Time (Mexico)

America/New_York Eastern Standard Time

America/Nassau Eastern Standard Time

America/Toronto Eastern Standard Time

America/Iqaluit Eastern Standard Time

America/Montreal Eastern Standard Time

America/Nipigon Eastern Standard Time

America/Pangnirtung Eastern Standard Time

America/Thunder_Bay Eastern Standard Time

America/Detroit Eastern Standard Time

America/Indiana/Petersburg Eastern Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 225

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

America/Indiana/Vincennes Eastern Standard Time

America/Indiana/Winamac Eastern Standard Time

America/Kentucky/Monticello Eastern Standard Time

America/Louisville Eastern Standard Time

EST5EDT Eastern Standard Time

America/Port-au-Prince Haiti Standard Time

America/Havana Cuba Standard Time

America/Indianapolis US Eastern Standard Time

America/Indiana/Marengo US Eastern Standard Time

America/Indiana/Vevay US Eastern Standard Time

America/Grand_Turk Turks And Caicos Standard Time

America/Asuncion Paraguay Standard Time

America/Halifax Atlantic Standard Time

Atlantic/Bermuda Atlantic Standard Time

America/Glace_Bay Atlantic Standard Time

America/Goose_Bay Atlantic Standard Time

America/Moncton Atlantic Standard Time

America/Thule Atlantic Standard Time

America/Caracas Venezuela Standard Time

America/Cuiaba Central Brazilian Standard Time

America/Campo_Grande Central Brazilian Standard Time

America/La_Paz SA Western Standard Time

America/Antigua SA Western Standard Time

America/Anguilla SA Western Standard Time

America/Aruba SA Western Standard Time

America/Barbados SA Western Standard Time

America/St_Barthelemy SA Western Standard Time

America/Kralendijk SA Western Standard Time

America/Manaus SA Western Standard Time

America/Boa_Vista SA Western Standard Time

America/Porto_Velho SA Western Standard Time

America/Blanc-Sablon SA Western Standard Time

America/Curacao SA Western Standard Time

America/Dominica SA Western Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 226

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

America/Santo_Domingo SA Western Standard Time

America/Grenada SA Western Standard Time

America/Guadeloupe SA Western Standard Time

America/Guyana SA Western Standard Time

America/St_Kitts SA Western Standard Time

America/St_Lucia SA Western Standard Time

America/Marigot SA Western Standard Time

America/Martinique SA Western Standard Time

America/Montserrat SA Western Standard Time

America/Puerto_Rico SA Western Standard Time

America/Lower_Princes SA Western Standard Time

America/Port_of_Spain SA Western Standard Time

America/St_Vincent SA Western Standard Time

America/Tortola SA Western Standard Time

America/St_Thomas SA Western Standard Time

Etc/GMT+4 SA Western Standard Time

America/Santiago Pacific SA Standard Time

America/St_Johns Newfoundland Standard Time

America/Araguaina Tocantins Standard Time

America/Sao_Paulo E. South America Standard Time

America/Cayenne SA Eastern Standard Time

Antarctica/Rothera SA Eastern Standard Time

Antarctica/Palmer SA Eastern Standard Time

America/Fortaleza SA Eastern Standard Time

America/Belem SA Eastern Standard Time

America/Maceio SA Eastern Standard Time

America/Recife SA Eastern Standard Time

America/Santarem SA Eastern Standard Time

Atlantic/Stanley SA Eastern Standard Time

America/Paramaribo SA Eastern Standard Time

Etc/GMT+3 SA Eastern Standard Time

America/Buenos_Aires Argentina Standard Time

America/Argentina/La_Rioja Argentina Standard Time

America/Argentina/Rio_Gallegos Argentina Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 227

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

America/Argentina/Salta Argentina Standard Time

America/Argentina/San_Juan Argentina Standard Time

America/Argentina/San_Luis Argentina Standard Time

America/Argentina/Tucuman Argentina Standard Time

America/Argentina/Ushuaia Argentina Standard Time

America/Catamarca Argentina Standard Time

America/Cordoba Argentina Standard Time

America/Jujuy Argentina Standard Time

America/Mendoza Argentina Standard Time

America/Godthab Greenland Standard Time

America/Montevideo Montevideo Standard Time

America/Punta_Arenas Magallanes Standard Time

America/Miquelon Saint Pierre Standard Time

America/Bahia Bahia Standard Time

Etc/GMT+2 UTC-02

America/Noronha UTC-02

Atlantic/South_Georgia UTC-02

Atlantic/Azores Azores Standard Time

America/Scoresbysund Azores Standard Time

Atlantic/Cape_Verde Cape Verde Standard Time

Etc/GMT+1 Cape Verde Standard Time

Etc/GMT UTC

America/Danmarkshavn UTC

Etc/UTC UTC

Europe/London GMT Standard Time

Atlantic/Canary GMT Standard Time

Atlantic/Faeroe GMT Standard Time

Europe/Guernsey GMT Standard Time

Europe/Dublin GMT Standard Time

Europe/Isle_of_Man GMT Standard Time

Europe/Jersey GMT Standard Time

Europe/Lisbon GMT Standard Time

Atlantic/Madeira GMT Standard Time

Atlantic/Reykjavik Greenwich Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 228

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

Africa/Ouagadougou Greenwich Standard Time

Africa/Abidjan Greenwich Standard Time

Africa/Accra Greenwich Standard Time

Africa/Banjul Greenwich Standard Time

Africa/Conakry Greenwich Standard Time

Africa/Bissau Greenwich Standard Time

Africa/Monrovia Greenwich Standard Time

Africa/Bamako Greenwich Standard Time

Africa/Nouakchott Greenwich Standard Time

Atlantic/St_Helena Greenwich Standard Time

Africa/Freetown Greenwich Standard Time

Africa/Dakar Greenwich Standard Time

Africa/Lome Greenwich Standard Time

Africa/Sao_Tome Sao Tome Standard Time

Africa/Casablanca Morocco Standard Time

Africa/El_Aaiun Morocco Standard Time

Europe/Berlin W. Europe Standard Time

Europe/Andorra W. Europe Standard Time

Europe/Vienna W. Europe Standard Time

Europe/Zurich W. Europe Standard Time

Europe/Busingen W. Europe Standard Time

Europe/Gibraltar W. Europe Standard Time

Europe/Rome W. Europe Standard Time

Europe/Vaduz W. Europe Standard Time

Europe/Luxembourg W. Europe Standard Time

Europe/Monaco W. Europe Standard Time

Europe/Malta W. Europe Standard Time

Europe/Amsterdam W. Europe Standard Time

Europe/Oslo W. Europe Standard Time

Europe/Stockholm W. Europe Standard Time

Arctic/Longyearbyen W. Europe Standard Time

Europe/San_Marino W. Europe Standard Time

Europe/Vatican W. Europe Standard Time

Europe/Budapest Central Europe Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 229

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

Europe/Tirane Central Europe Standard Time

Europe/Prague Central Europe Standard Time

Europe/Podgorica Central Europe Standard Time

Europe/Belgrade Central Europe Standard Time

Europe/Ljubljana Central Europe Standard Time

Europe/Bratislava Central Europe Standard Time

Europe/Paris Romance Standard Time

Europe/Brussels Romance Standard Time

Europe/Copenhagen Romance Standard Time

Europe/Madrid Romance Standard Time

Africa/Ceuta Romance Standard Time

Europe/Warsaw Central European Standard Time

Europe/Sarajevo Central European Standard Time

Europe/Zagreb Central European Standard Time

Europe/Skopje Central European Standard Time

Africa/Lagos W. Central Africa Standard Time

Africa/Luanda W. Central Africa Standard Time

Africa/Porto-Novo W. Central Africa Standard Time

Africa/Kinshasa W. Central Africa Standard Time

Africa/Bangui W. Central Africa Standard Time

Africa/Brazzaville W. Central Africa Standard Time

Africa/Douala W. Central Africa Standard Time

Africa/Algiers W. Central Africa Standard Time

Africa/Libreville W. Central Africa Standard Time

Africa/Malabo W. Central Africa Standard Time

Africa/Niamey W. Central Africa Standard Time

Africa/Ndjamena W. Central Africa Standard Time

Africa/Tunis W. Central Africa Standard Time

Etc/GMT-1 W. Central Africa Standard Time

Asia/Amman Jordan Standard Time

Europe/Bucharest GTB Standard Time

Asia/Nicosia GTB Standard Time

Asia/Famagusta GTB Standard Time

Europe/Athens GTB Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 230

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

Asia/Beirut Middle East Standard Time

Africa/Cairo Egypt Standard Time

Europe/Chisinau E. Europe Standard Time

Asia/Damascus Syria Standard Time

Asia/Hebron West Bank Standard Time

Asia/Gaza West Bank Standard Time

Africa/Johannesburg South Africa Standard Time

Africa/Bujumbura South Africa Standard Time

Africa/Gaborone South Africa Standard Time

Africa/Lubumbashi South Africa Standard Time

Africa/Maseru South Africa Standard Time

Africa/Blantyre South Africa Standard Time

Africa/Maputo South Africa Standard Time

Africa/Kigali South Africa Standard Time

Africa/Mbabane South Africa Standard Time

Africa/Lusaka South Africa Standard Time

Africa/Harare South Africa Standard Time

Etc/GMT-2 South Africa Standard Time

Europe/Kiev FLE Standard Time

Europe/Mariehamn FLE Standard Time

Europe/Sofia FLE Standard Time

Europe/Tallinn FLE Standard Time

Europe/Helsinki FLE Standard Time

Europe/Vilnius FLE Standard Time

Europe/Riga FLE Standard Time

Europe/Uzhgorod FLE Standard Time

Europe/Zaporozhye FLE Standard Time

Asia/Jerusalem Israel Standard Time

Europe/Kaliningrad Kaliningrad Standard Time

Africa/Khartoum Sudan Standard Time

Africa/Tripoli Libya Standard Time

Africa/Windhoek Namibia Standard Time

Asia/Baghdad Arabic Standard Time

Europe/Istanbul Turkey Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 231

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

Asia/Riyadh Arab Standard Time

Asia/Bahrain Arab Standard Time

Asia/Kuwait Arab Standard Time

Asia/Qatar Arab Standard Time

Asia/Aden Arab Standard Time

Europe/Minsk Belarus Standard Time

Europe/Moscow Russian Standard Time

Europe/Kirov Russian Standard Time

Europe/Simferopol Russian Standard Time

Africa/Nairobi E. Africa Standard Time

Antarctica/Syowa E. Africa Standard Time

Africa/Djibouti E. Africa Standard Time

Africa/Asmera E. Africa Standard Time

Africa/Addis_Ababa E. Africa Standard Time

Indian/Comoro E. Africa Standard Time

Indian/Antananarivo E. Africa Standard Time

Africa/Mogadishu E. Africa Standard Time

Africa/Juba E. Africa Standard Time

Africa/Dar_es_Salaam E. Africa Standard Time

Africa/Kampala E. Africa Standard Time

Indian/Mayotte E. Africa Standard Time

Etc/GMT-3 E. Africa Standard Time

Asia/Tehran Iran Standard Time

Asia/Dubai Arabian Standard Time

Asia/Muscat Arabian Standard Time

Etc/GMT-4 Arabian Standard Time

Europe/Astrakhan Astrakhan Standard Time

Europe/Ulyanovsk Astrakhan Standard Time

Asia/Baku Azerbaijan Standard Time

Europe/Samara Russia Time Zone 3

Indian/Mauritius Mauritius Standard Time

Indian/Reunion Mauritius Standard Time

Indian/Mahe Mauritius Standard Time

Europe/Saratov Saratov Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 232

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

Asia/Tbilisi Georgian Standard Time

Europe/Volgograd Volgograd Standard Time

Asia/Yerevan Caucasus Standard Time

Asia/Kabul Afghanistan Standard Time

Asia/Tashkent West Asia Standard Time

Antarctica/Mawson West Asia Standard Time

Asia/Oral West Asia Standard Time

Asia/Aqtau West Asia Standard Time

Asia/Aqtobe West Asia Standard Time

Asia/Atyrau West Asia Standard Time

Indian/Maldives West Asia Standard Time

Indian/Kerguelen West Asia Standard Time

Asia/Dushanbe West Asia Standard Time

Asia/Ashgabat West Asia Standard Time

Asia/Samarkand West Asia Standard Time

Etc/GMT-5 West Asia Standard Time

Asia/Yekaterinburg Ekaterinburg Standard Time

Asia/Karachi Pakistan Standard Time

Asia/Qyzylorda Qyzylorda Standard Time

Asia/Calcutta India Standard Time

Asia/Colombo Sri Lanka Standard Time

Asia/Katmandu Nepal Standard Time

Asia/Almaty Central Asia Standard Time

Antarctica/Vostok Central Asia Standard Time

Asia/Urumqi Central Asia Standard Time

Indian/Chagos Central Asia Standard Time

Asia/Bishkek Central Asia Standard Time

Asia/Qostanay Central Asia Standard Time

Etc/GMT-6 Central Asia Standard Time

Asia/Dhaka Bangladesh Standard Time

Asia/Thimphu Bangladesh Standard Time

Asia/Omsk Omsk Standard Time

Asia/Rangoon Myanmar Standard Time

Indian/Cocos Myanmar Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 233

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

Asia/Bangkok SE Asia Standard Time

Antarctica/Davis SE Asia Standard Time

Indian/Christmas SE Asia Standard Time

Asia/Jakarta SE Asia Standard Time

Asia/Pontianak SE Asia Standard Time

Asia/Phnom_Penh SE Asia Standard Time

Asia/Vientiane SE Asia Standard Time

Asia/Saigon SE Asia Standard Time

Etc/GMT-7 SE Asia Standard Time

Asia/Barnaul Altai Standard Time

Asia/Hovd W. Mongolia Standard Time

Asia/Krasnoyarsk North Asia Standard Time

Asia/Novokuznetsk North Asia Standard Time

Asia/Novosibirsk N. Central Asia Standard Time

Asia/Tomsk Tomsk Standard Time

Asia/Shanghai China Standard Time

Asia/Hong_Kong China Standard Time

Asia/Macau China Standard Time

Asia/Irkutsk North Asia East Standard Time

Asia/Singapore Singapore Standard Time

Antarctica/Casey Singapore Standard Time

Asia/Brunei Singapore Standard Time

Asia/Makassar Singapore Standard Time

Asia/Kuala_Lumpur Singapore Standard Time

Asia/Kuching Singapore Standard Time

Asia/Manila Singapore Standard Time

Etc/GMT-8 Singapore Standard Time

Australia/Perth W. Australia Standard Time

Asia/Taipei Taipei Standard Time

Asia/Ulaanbaatar Ulaanbaatar Standard Time

Asia/Choibalsan Ulaanbaatar Standard Time

Australia/Eucla Aus Central W. Standard Time

Asia/Chita Transbaikal Standard Time

Asia/Tokyo Tokyo Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 234

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

Asia/Jayapura Tokyo Standard Time

Pacific/Palau Tokyo Standard Time

Asia/Dili Tokyo Standard Time

Etc/GMT-9 Tokyo Standard Time

Asia/Pyongyang North Korea Standard Time

Asia/Seoul Korea Standard Time

Asia/Yakutsk Yakutsk Standard Time

Asia/Khandyga Yakutsk Standard Time

Australia/Adelaide Cen. Australia Standard Time

Australia/Broken_Hill Cen. Australia Standard Time

Australia/Darwin AUS Central Standard Time

Australia/Brisbane E. Australia Standard Time

Australia/Lindeman E. Australia Standard Time

Australia/Sydney AUS Eastern Standard Time

Australia/Melbourne AUS Eastern Standard Time

Pacific/Port_Moresby West Pacific Standard Time

Antarctica/DumontDUrville West Pacific Standard Time

Pacific/Truk West Pacific Standard Time

Pacific/Guam West Pacific Standard Time

Pacific/Saipan West Pacific Standard Time

Etc/GMT-10 West Pacific Standard Time

Australia/Hobart Tasmania Standard Time

Australia/Currie Tasmania Standard Time

Asia/Vladivostok Vladivostok Standard Time

Asia/Ust-Nera Vladivostok Standard Time

Australia/Lord_Howe Lord Howe Standard Time

Pacific/Bougainville Bougainville Standard Time

Asia/Srednekolymsk Russia Time Zone 10

Asia/Magadan Magadan Standard Time

Pacific/Norfolk Norfolk Standard Time

Asia/Sakhalin Sakhalin Standard Time

Pacific/Guadalcanal Central Pacific Standard Time

Antarctica/Macquarie Central Pacific Standard Time

Pacific/Ponape Central Pacific Standard Time

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 235

EncycloSys2 - 2020.0.02

IANA Database Name Windows Registry Name

Pacific/Kosrae Central Pacific Standard Time

Pacific/Noumea Central Pacific Standard Time

Pacific/Efate Central Pacific Standard Time

Etc/GMT-11 Central Pacific Standard Time

Asia/Kamchatka Russia Time Zone 11

Asia/Anadyr Russia Time Zone 11

Pacific/Auckland New Zealand Standard Time

Antarctica/McMurdo New Zealand Standard Time

Etc/GMT-12 UTC+12

Pacific/Tarawa UTC+12

Pacific/Majuro UTC+12

Pacific/Kwajalein UTC+12

Pacific/Nauru UTC+12

Pacific/Funafuti UTC+12

Pacific/Wake UTC+12

Pacific/Wallis UTC+12

Pacific/Fiji Fiji Standard Time

Pacific/Chatham Chatham Islands Standard Time

Etc/GMT-13 UTC+13

Pacific/Enderbury UTC+13

Pacific/Fakaofo UTC+13

Pacific/Tongatapu Tonga Standard Time

Pacific/Apia Samoa Standard Time

Pacific/Kiritimati Line Islands Standard Time

Etc/GMT-14 Line Islands Standard Time

createTimeZoneByNameWindows
Signature createTimeZoneByNameWindows(timeZoneName: String}: JadeTimeZone typeMethod;

The createTimeZoneByNameWindows method of the JadeTimeZone class takes the name (in Windows format)
of the time zone specified in the timeZoneName parameter to represent the name of a time zone within the
Windows registry and returns a JadeTimeZone object with properties that match that time zone.

Any JadeTimeZone objects created with the createTimeZoneByNameWindows method have an ianaName
property value of "" (an empty string). It is not possible to determine an equivalent IANA time zone for a time zone
created with a Windows time zone name because Windows to IANA time zones have a one-to-many relationship.

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 236

EncycloSys2 - 2020.0.02

For a complete list of the time zones in the Windows registry, see device\HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time Zones, where the key directly under the
above path is the time zone name used as the timeZoneName parameter value. For example, specifying
"Afghanistan Standard Time" as the timeZoneName parameter value creates a JadeTimeZone object using the
data found at device\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time
Zones\Afghanistan Standard Time.

To ensure that time zone information is consistent between different nodes, which can be running on different
versions and update levels of Windows and therefore may have different time zone information in their registries,
time zone information is always taken from the registry of the device that is running the database server or
single-user node.

If the time zone name specified in the timeZoneName parameter does not match a time zone specified in the
Windows registry, exception 1469 (Time zone not found) is raised.

The following example shows the use of the createTimeZoneByNameWindows method that converts time
between Western European Time and Eastern Standard Time when the clock strikes 12.

example_createTimeZoneByNameWindows();
vars

wEuropeanDate: Date;
wEuropeanTime: Time;
wEuropeanTimeStamp: TimeStamp;
wEuropeanTimeZone: JadeTimeZone;
eStandardTimeStamp: TimeStamp;
eStandardTimeZone: JadeTimeZone;

begin
wEuropeanTime.setTime(0,0,0,0);

// Set the Western European timestamp to midnight
wEuropeanDate.setDate(1,1,2020);

// Set the Western European timestamp to the 1st of January 2020
wEuropeanTimeStamp.setTime(wEuropeanTime);
wEuropeanTimeStamp.setDate(wEuropeanDate);
wEuropeanTimeZone := JadeTimeZone@createTimeZoneByNameWindows("W.

Europe Standard Time");
// Create a JadeTimeZone for Western European, using the Windows name

eStandardTimeZone := JadeTimeZone@createTimeZoneByNameWindows("Eastern
Standard Time");
// Create a JadeTimeZone for Eastern Standard, using the Windows name

eStandardTimeStamp := wEuropeanTimeZone.convertTimeByTimeZone
(wEuropeanTimeStamp, eStandardTimeZone);
// Convert the time from Western European to Eastern Standard

write "The time in Eastern Standard when the clock strikes twelve in
Western Europe is " & eStandardTimeStamp.String;

epilog
delete wEuropeanTimeZone;
delete eStandardTimeZone;

end;

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 237

EncycloSys2 - 2020.0.02

getDaylightBias
Signature getDaylightBias(year: Integer): Integer;

The getDaylightBias method of the JadeTimeZone class returns the additional offset between the time zone and
the Coordinated Universal Time (UTC) time zone, in minutes, that is applied when daylight saving is active in the
time zone for the year specified in the year parameter. For example, if daylight saving time is an hour ahead of
standard time in a time zone in the specified year, invoking the getDaylightBias method with the specified year
returns -60.

If the time zone does not observe daylight saving in the specified year, the getDaylightBias method returns zero
(0).

Applies to Version: 2020.0.01 and higher

getDaylightSavingName
Signature getDaylightSavingName(timestamp: TimeStamp): String;

The getDaylightSavingName method of the JadeTimeZone class returns the name used to refer to the time zone
based on whether daylight saving is active in the time zone at the time specified in the timestamp parameter. The
returned value is the value of the standardTimeName or daylightTimeName property of the JadeTimeZone
object.

If daylight saving is not observed in the time zone at the specified timestamp, the getDaylightSavingName
method returns the value of the standardTimeName property.

Applies to Version: 2020.0.01 and higher

getDaylightTransition
Signature getDaylightTransition(year: Integer): TimeStamp;

The getDaylightTransition method of the JadeTimeZone class returns a TimeStamp representing the date and
time at which the time zone transitions to daylight saving time in the year specified in the year parameter.

If the time zone does not support daylight saving for the specified year, an invalid date value is returned.

Applies to Version: 2020.0.01 and higher

getStandardTransition
Signature getStandardTransition(year: Integer): TimeStamp;

The getStandardTransition method of the JadeTimeZone class returns a TimeStamp representing the date and
time at which the time zone transitions to standard time in the year specified in the year parameter.

If the time zone does not support daylight saving for the specified year, an invalid date value is returned.

Applies to Version: 2020.0.01 and higher

getWindowsTimeZoneNameByLocation
Signature getWindowsTimeZoneNameByLocation(location: Integer}: String typeMethod;

The getWindowsTimeZoneNameByLocation method of the JadeTimeZone class returns the Windows name of
the local time zone of the device at the location specified in the location parameter.

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 238

EncycloSys2 - 2020.0.02

The location parameter values are provided by the global constants in the ExecutionLocation category listed in
the following table.

Global Constant Integer Value Method is executed...

DatabaseServer 1 On the database server node

PresentationClient 2 On the presentation client (applicable to applications running in thin
client mode)

CurrentLocation 0 The database server node or the presentation client, depending on
whether the method is executed on a presentation client node or the
database server

Note The getWindowsTimeZoneNameByLocation method is a type method, so it can therefore be called
without instantiating a JadeTimeZone object.

You can obtain the time zone of a device in the Date and Time dialog accessed from the Clock and Region
Control Panel applet.

The following example shows the use of the getWindowsTimeZoneNameByLocation method.

example_getWindowsTimeZoneNameByLocation();
begin

write "The client is in the " & JadeTimeZone@getWindowsTimeZoneNameByLocation
(PresentationClient) & " time zone";

write "The database is in the " & JadeTimeZone@getWindowsTimeZoneNameByLocation
(DatabaseServer) & " time zone";

write "This code is being executed from the " &
JadeTimeZone@getWindowsTimeZoneNameByLocation(CurrentLocation) & " time zone";
end;

Applies to Version: 2020.0.01 and higher

getUtcBias
Signature getUtcBias(timestamp: TimeStamp): Integer;

The getUtcBias method of the JadeTimeZone class returns the offset from the time zone to the Coordinated
Universal Time (UTC) time zone, in minutes, at the specified timestamp. This accounts for daylight saving and any
historical time zone rules that are available for the timestamp.

The bias is measured from this time zone to the UTC time zone; for example, if the time zone is 12 hours ahead of
UTC at the specified timestamp, the returned value is -720.

Applies to Version: 2020.0.01 and higher

isDaylightSaving
Signature isDaylightSaving(timestamp: TimeStamp): Boolean;

The isDaylightSaving method of the JadeTimeZone class returns whether daylight saving is active in the time
zone at the date and time specified in the timestamp parameter.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTimeZone Class Chapter 1 239

EncycloSys2 - 2020.0.02

retrieveHistoricalTimeZone
Signature retrieveHistoricalTimeZone(year: Integer): JadeTimeZone;

The retrieveHistoricalTimeZone method of the JadeTimeZone class return a historical time zone for the year
specified in the year parameter. If no historical time zone for the specified year exists in the historicalTimeZones
property, this method returns itself; that is, the default time zone.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTimeZoneByYearDict Class Chapter 1 240

EncycloSys2 - 2020.0.02

JadeTimeZoneByYearDict Class
The JadeTimeZoneByYearDict class is an external key dictionary with keys of the Integer primitive type and
values of the JadeTimeZone class type.

The keys represent years in which historical time zone information exists (that is, years in which time zone rules
differ from standard) and the JadeTimeZone values represent the relevant changes in time zone information for
those years.

Duplicate keys are disallowed.

Inherits From: ExtKeyDictionary

Inherited By: (None)

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeTransactionTrace Class Chapter 1 241

EncycloSys2 - 2020.0.02

JadeTransactionTrace Class
The JadeTransactionTrace class enables you to identify objects that are updated, created, and deleted within a
transaction. For details about transaction tracing, see "Tracing Transactions", in Chapter 19 of the
JADE Developer’s Reference.

For details about the constants, properties, and methods defined in the JadeTransactionTrace class, see
"JadeTransactionTrace Class Constants", "JadeTransactionTrace Properties", and "JadeTransactionTrace
Methods", in the following subsections.

Inherits From: Object

JadeTransactionTrace Class Constants
The constants provided by the JadeTransactionTrace class are listed in the following table.

Constant Value Description

CallbackMethod "callbackMethod" Identify callback methods returned by the
Process class getTransactionTraceCallbacks
method

CallbackReceiver "callbackReceiver" Identify callback receivers returned by the
Process class getTransactionTraceCallbacks
method

OperationAutoAdd 10 An object has been automatically added to a
collection

OperationAutoAddDeferred 14 An object has been automatically defer-added to
a collection

OperationAutoProp 8 A property of an object has been set automatically

OperationAutoRemove 12 An object has been automatically removed from a
collection

OperationAutoRemoveDeferred 16 An object has been automatically defer-removed
from a collection

OperationCollAdd 9 An object has been manually added to a
collection

OperationCollAddDeferred 13 An object has been defer-added to a collection

OperationCollRemove 11 An object has been manually removed from a
collection

OperationCollRemoveDeferred 15 An object has been defer-removed from a
collection

OperationCreate 4 An object has been created

OperationDelete 6 An object has been deleted

OperationSetProp 7 A property of an object has been set manually

OperationUpdate 3 An object has been updated

TraceAborted 11 The traced transaction has been aborted

Encyclopaedia of Classes
(Volume 2)

JadeTransactionTrace Class Chapter 1 242

EncycloSys2 - 2020.0.02

Constant Value Description

TraceCommitted 10 The traced transaction has been committed

TraceCommitting 9 The traced transaction is about to be committed

TraceStarted 1 Transaction tracing is currently active

TraceStopped 2 Transaction tracing has been stopped

TraceUndefined 0 The tracing is unknown

JadeTransactionTrace Properties
The properties defined in the JadeTransactionTrace class are summarized in the following table.

Property Contains …

myProcess A reference to the current process instance

startTime Start time of the current transaction

status Status of the current transaction

stopTime End time of the current transaction

tranId Transaction id of the current transaction

myProcess
Type: Process

The myProcess property of the JadeTransactionTrace class contains a reference to the current process.

startTime
Type: TimeStamp

The startTime property of the JadeTransactionTrace class contains the time at which the transaction started.

If a transaction has not started since transaction tracing was initiated, the startTime property is null.

status
Type: Integer

The status property of the JadeTransactionTrace class indicates the current tracing and transaction status.

The status property can have one of the class constant values listed in the following table.

Value Class Constant Description

0 TraceUndefined The tracing status is unknown

1 TraceStarted Transaction tracing is currently active

2 TraceStopped Transaction tracing has been stopped

9 TraceCommitting The traced transaction is about to be committed

Encyclopaedia of Classes
(Volume 2)

JadeTransactionTrace Class Chapter 1 243

EncycloSys2 - 2020.0.02

Value Class Constant Description

10 TraceCommitted The traced transaction has been committed

11 TraceAborted The traced transaction has been aborted

stopTime
Type: TimeStamp

The stopTime property of the JadeTransactionTrace class contains the time at which the transaction was
stopped, if transaction tracing is stopped within a transaction by using the stopTransactionTrace method of the
Process class. Otherwise, it contains the time at which the most recent transaction was committed or aborted.

tranId
Type: Integer

The tranId property of the JadeTransactionTrace class contains an Integer64 value representing the transaction
id of the traced transaction.

The property value is the same as that returned by the getTransactionId or getTransactionId64 or method of the
Process class.

JadeTransactionTrace Methods
The methods defined in the JadeTransactionTrace class are summarized in the following table.

Method Description

clear Clears all transaction information

getEntry Returns a specific item in the list

getEntryCount Returns the number of entries in the list

clear
Signature clear() updating;

The clear method of the JadeTransactionTrace class clears information in the receiver.

getEntry
Signature getEntry(index: Integer input;

object: Object output;
operation: Integer output;
prop: Property output;
value: Any output);

The getEntry method of the JadeTransactionTrace class returns information from a specified entry in the list held
by the receiver.

Encyclopaedia of Classes
(Volume 2)

JadeTransactionTrace Class Chapter 1 244

EncycloSys2 - 2020.0.02

The getEntry method parameters, representing JadeTransactionTrace property values, are listed in the
following table.

Parameter Description

index Identifies the entry to be accessed. The first entry in the list has an index of one (1).

object References an object that was created, updated, or deleted by the transaction.

operation Specifies the action that was carried out on the object. The possible values are listed in the
following table.

Value Class Constant Description

3 OperationUpdate The object was updated

4 OperationCreate The object was created

6 OperationDelete The object was deleted

7 OperationSetProp The property of an object has been set
manually

8 OperationAutoProp Indicates an automatic set property

9 OperationCollAdd Indicates a manual collection add

10 OperationAutoAdd Indicates an automatic collection add

11 OperationCollRemove Indicates a manual collection remove

12 OperationAutoRemove Indicates an automatic collection
remove

prop References a property that was modified by the transaction. The object parameter contains
the owner of the property.

value Contains the value of the prop parameter immediately after the update.

There can be more than one entry for the same object (for example, if an object is updated and then deleted in a
transaction). However, objects that are updated more than once in a transaction usually appear once only in the
list.

The list includes collections and other objects that are updated automatically.

getEntryCount
Signature getEntryCount(): Integer;

The getEntryCount method of the JadeTransactionTrace class returns the number of entries in the list held by
the receiving JadeTransactionTrace instance.

Encyclopaedia of Classes
(Volume 2)

JadeUserCollClass Class Chapter 1 245

EncycloSys2 - 2020.0.02

JadeUserCollClass Class
The JadeUserCollClass class

For details about the methods defined in the JadeUserCollClass class and usage of this class, see
"JadeUserCollClass Methods" and "Using JadeUserCollClass Collections", respectively, in the following
subsections.

Inherits From: CollClass

Inherited By: (None)

JadeUserCollClass Methods
The methods defined in the JadeUserCollClass class are summarized in the following table.

Method Description

addExternalKey Adds an external key definition to a user class at run time

addMemberKey Adds a member key definition to a user class at run time

clearKeys Clears existing key definitions

endKeys Indicates the end of a single or multiple key definition

setLength Sets or changes the element length for an array

setMembership Sets or changes the membership of a user class

For examples of the use of JadeUserCollClass class methods, see "Using JadeUserCollClass Collections", later
in this chapter.

addExternalKey
Signature addExternalKey(keyType: PrimType;

keyLength: Integer;
scaleFactor: Integer;
descending: Boolean;
caseInsensitive: Boolean;
sortOrder: Integer) updating;

The addExternalKey method of the JadeUserCollClass class adds an external key specification to a user
collection that is a subclass of ExtKeyDictionary.

Use the keyType to specify the primitive type for the key. (For more details, see "Pseudo Types" and "Passing
Variable Parameters to Methods", in Chapter 1 of the JADE Developer’s Reference.)

For String, StringUtf8, Binary, and Decimal keys, you must specify the keyLength parameter. This parameter is
ignored for keys of other primitive types. For Decimal keys, you must also specify the scaleFactor parameter.

Set the descending parameter to true if you want keys sorted in descending order and the caseInsensitive
parameter to true if case-sensitivity is not required.

For String and StringUtf8 keys, the sortOrder parameter specifies the locale identifier for the locale used to order
entries in the collection. This parameter is ignored for keys of other primitive types. A value of zero (0) indicates
the binary sort order.

Encyclopaedia of Classes
(Volume 2)

JadeUserCollClass Class Chapter 1 246

EncycloSys2 - 2020.0.02

If you require multiple keys, call the addExternalKey method to define each key in sequence. To signify that all
keys have been defined, call the endKeys method.

The following preconditions apply when adding keys to a dynamic dictionary.

The collection is empty

The member type has been specified by using the setMembership method

The dictionary contains external key definitions only

The total concatenated key size does not exceed the current key size limit (512 character units)

The appropriate system exception is raised if any of these preconditions are violated.

addMemberKey
Signature addMemberKey(propertyName: String;

descending: Boolean;
caseInsensitive: Boolean;
sortOrder: Integer) updating;

The addMemberKey method of the JadeUserCollClass class adds a member key specification to a user
collection that is a subclass of MemberKeyDictionary.

If you require multiple keys, call the addMemberKey method to define each key in sequence. To signify that all
keys have been defined, call the endKeys method.

Specify a key path by passing a key-path expression in the propertyName parameter; for example,
"shipment.supplier.name". Set the descending parameter to true if you want keys sorted in descending order
and the caseInsensitive parameter to true if case-sensitivity is not required.

For String and StringUtf8 keys, the sortOrder parameter specifies the locale identifier for the locale used to order
entries in the collection. This parameter is ignored for keys of other primitive types. A value of zero (0) indicates
the binary sort order.

The following preconditions apply when adding keys to a dynamic dictionary.

The collection is empty

The member type has been specified by using the setMembership method

The dictionary contains member key definition only

The propertyName parameter represents a valid property for the member type

The propertyName parameter is not an exclusive collection

The total concatenated key size does not exceed the current key size limit (512 key units)

The appropriate system exception is raised if any of these preconditions are violated.

For an example of the use of the addMemberKey method, see "Using JadeUserCollClass Collections", later in
this chapter.

Encyclopaedia of Classes
(Volume 2)

JadeUserCollClass Class Chapter 1 247

EncycloSys2 - 2020.0.02

clearKeys
Signature clearKeys() updating;

The clearKeys method of the JadeUserCollClass class clears existing dictionary key definitions so that the user
collection can be reused.

Before the clearKeys method is called, the collection must be empty; that is, it cannot contain data. If this
precondition is violated, the appropriate system exception is raised.

endKeys
Signature endKeys(duplicatesAllowed: Boolean) updating;

The endKeys method of the JadeUserCollClass class indicates the end of a single or multiple key specification.

Use the duplicatesAllowed parameter to specify whether the dictionary allows or disallows duplicate key entries.

At least one key must have been defined (by using the addExternalKey or addMemberKey method). If this
precondition is violated, the appropriate system exception is raised.

For an example of the use of the endKeys method, see "Using JadeUserCollClass Collections", later in this
chapter.

setLength
Signature setLength(length: Integer;

scaleFactor: Byte) updating;

The setLength method of the JadeUserCollClass class sets or changes the element length for a user collection
that is a subclass of Array.

The length parameter has a maximum value of:

16,000 for arrays with membership String or Binary

8,000 for arrays with membership StringUtf8

23 for arrays with membership Decimal

The scaleFactor parameter applies to arrays with membership Decimal only.

setMembership
Signature setMembership(type: Class) updating;

The setMembership method of the JadeUserCollClass class sets the membership (that is, the base type for
members) of a user collection.

Before the setMembership method is called, the collection must be empty; that is, it cannot contain data. If this
precondition is violated, the appropriate system exception is raised. This method implicitly calls the clearKeys
method.

For an example of the use of this method, see "Using JadeUserCollClass Collections", later in this chapter.

Encyclopaedia of Classes
(Volume 2)

JadeUserCollClass Class Chapter 1 248

EncycloSys2 - 2020.0.02

Using JadeUserCollClass Collections
In the following example that shows the use of the JadeUserCollClass class, a user collection is defined as a
subclass of MemberKeyDictionary. This collection class is used as the type for an exclusive runtime dynamic
property that is added to the class of the root object.

vars
dict : JadeUserCollClass;
cluster : JadeDynamicPropertyCluster;

begin
// Define the user collection as a member key dictionary
beginTransaction;
dict := currentSchema.addUserCollectionSubclass(MemberKeyDictionary,

"CustomersByName",
"dbfilename");

dict.setMembership(Customer);
dict.addMemberKey("lastName", false, true, 0);
dict.endKeys(true);
commitTransaction;

// Make a runtime dynamic property using the user collection
beginTransaction;
cluster := Root.addDynamicPropertyCluster("RootCluster");
cluster.addExclusiveDynamicProperty("allCustomersByName", dict);
commitTransaction;

end;

Encyclopaedia of Classes
(Volume 2)

JadeWebService Class Chapter 1 249

EncycloSys2 - 2020.0.02

JadeWebService Class
The JadeWebService class maintains all Web service information.

Note Methods declared on the JadeWebService class and its subclasses that are marked as Web service
methods cannot have a return type of Any and cannot have parameters of type Any. (For details about specifying
Web service methods, see "webService Option" under "Method Options", in Chapter 1 of the JADE Developer’s
Reference.)

JADE timestamp values use the local time zone. External Web service consumers often expect Coordinated
Universal Time (UTC) values and external Web service providers often return UTC values. You may need to
convert between UTC and local timestamp values, by using the localToUTCTime and utcToLocalTime methods
of the TimeStamp primitive type.

For details about the constants and methods defined in the JadeWebService class, see "JadeWebService Class
Constants" and "JadeWebService Methods", in the following subsections.

Inherits From: Object

Inherited By: JadeWebServiceConsumer, JadeWebServiceProvider, JadeWebServiceSoapHeader

JadeWebService Class Constants
The constants defined in the JadeWebService class are listed in the following table.

JadeWebService Class Constant Integer or String Value

RIA_MODULE_API 1

RIA_MODULE_TYPES 2

RIA_MODULE_UTIL 0

SOAP_12_RPC "http://www.w3.org/2003/05/soap-rpc"

JadeWebService Methods
The methods defined in the JadeWebService class are summarized in the following table.

Method Description

isNilItem Returns true if the specified element in the receiver has a nil attribute value of
true

setAnyPropType Specifies the type of an imported primitive of type Any in an external Web service
application

setError Specifies the Web service provider error code, item, and text of the SOAP error

Encyclopaedia of Classes
(Volume 2)

JadeWebService Class Chapter 1 250

EncycloSys2 - 2020.0.02

isNilItem
Signature isNilItem(obj: Object;

propertyName: String;
indx: Integer): Boolean;

The isNilItem method of the JadeWebService class returns true if the item defined in the method parameters was
specified as having a nil state in the XML message that is being processed.

The isNilItem method parameters are listed in the following table.

Parameters Description

obj The JADE object containing the property to be examined or an array containing the index
to be examined

propertyName The JADE name of the property in the object to be examined or null ("") when examining
the object itself

indx The array index of the entry to be examined when an array is specified by the other
parameters

In a JadeWebServiceConsumer method, call this method to determine whether an item received in response to a
Web service request is specified as having a nil state, as shown in the following code fragment.

if myWebServiceConsumer.isNilItem(employee, 'spouse', null) then
// employee has no spouse

endif;
if myWebServiceConsumer.isNilItem(addressArray, null, 3) then

// addressArray[3] is empty
endif;

In a JadeWebServiceProvider method, call this method to determine whether an item received in the Web
service request is specified as having a nil value, as shown in the following code fragment.

if isNilItem(employee, 'spouse', null) then
// employee has no spouse

endif;
if isNilItem(addressArray, null, 3) then

// addressArray[3] is empty
endif;

For both Web service consumer and Web service provider calls, the item received will have a JADE value of null.

Note The nil state of an element applies only to element values and not to attribute values. (An element whose
nil value is true may not have any element content, but it may still carry attributes.)

setAnyPropType
Signature setAnyPropType(prop: Object;

primType: Object) updating;

The setAnyPropType method of the JadeWebService class is used to handle primitive types that are defined as
being of type Any in an external Web service application.

Encyclopaedia of Classes
(Volume 2)

JadeWebService Class Chapter 1 251

EncycloSys2 - 2020.0.02

When the WSDL for the Web service is imported into JADE, the properties in the Web service classes have the
corresponding types corresponding to the primitive entities; that is, strings are of type String, integers of type
Integer, and so on. However, JADE does not permit properties to be defined as being of type Any, so the default
type is String for those properties.

You can use the setAnyPropType to specify that the property specified by the prop parameter is actually of the
type specified by the primType parameter, thereby enabling JADE to generate the appropriate Web service
request.

setError
Signature setError(errorCode: Integer;

errorItem: String;
errorText: String);

The setError method of the JadeWebService class specifies the error code, item, and text of the SOAP error. This
generates a SOAP fault to be returned to the client.

If you do not want to return a SOAP fault, you must handle it differently (for example, by sending a message back
as part of your response).

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 252

EncycloSys2 - 2020.0.02

JadeWebServiceConsumer Class
The JADE Web service consumer enables you to access external Web services (including JADE Web services)
from within your JADE application. A Web service consumer cannot be called asynchronously from a JADE
application. When a WSDL file is imported into JADE, a subclass of the JadeWebServiceConsumer class is
created for each service that is defined in the WSDL.

Note The JADE Web services framework does not have special code for cookie handling. This is left to the
underlying Microsoft Windows Internet (WinINet) or Microsoft Windows HTTP Services (WinHTTP) library to
manage.

When a JADE Web services consumer is first invoked, the WINHTTP (default) or WININET library is loaded and
this is shared by all consumers within the node. As cookies are managed by the library, the same cookies are sent
with every consumer Web service request from the node. For consumers to have unique cookies, they must run in
separate nodes.

For details about the constants, properties, and methods defined in the JadeWebServiceConsumer class, see
"JadeWebServiceConsumer Class Constants", "JadeWebServiceConsumer Properties", and
"JadeWebServiceConsumer Methods", in the following subsections. See also "JADE Web Service Consumer", in
Chapter 11 of the JADE Developer’s Reference and "Generating a Web Service Consumer Unit Test Class and
Stub Methods", in Chapter 17 of the JADE Developer's Reference.

Inherits From: JadeWebService

Inherited By: (None)

JadeWebServiceConsumer Class Constants
The constants defined in the JadeWebServiceConsumer class are listed in the following table.

JadeWebService Class Constant Integer or String Value

INTERNET_OPEN_TYPE_DIRECT 1

INTERNET_OPEN_TYPE_PRECONFIG 0

INTERNET_OPEN_TYPE_PRE_NOAUTO 4

INTERNET_OPEN_TYPE_PROXY 3

Jdo_Delimiter '::'

Jdo_in_use 2

Jdo_PropertyNamePrefix_w_ 'w_'

Jdo_PropertyNamePrefix_wsp_ 'wsp_'

JadeWebServiceConsumer Properties
The properties defined in the JadeWebServiceConsumer class are summarized in the following table.

Property Description

characterConversionException Specifies whether a Web service response on an ANSI system contains
non-ANSI characters

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 253

EncycloSys2 - 2020.0.02

Property Description

handleCharConversionException Specifies whether an exception is raised on an ANSI system if a Web
service response contains non-ANSI characters

logStatistics Value that specifies whether Web service request statistics are logged

password Web service consumer user authentication password, if required

proxyHostName Host name of the proxy server for the Web service consumer, if required

proxyPassword Web service consumer user authentication password for proxy servers,
if required

proxyUsername Web service consumer user authentication identifier for proxy servers, if
required

soapHeaders List of SOAP headers sent by the Web service consumer

soapRequest Outgoing SOAP message sent to the Web service provider

soapResponse SOAP message response received from the Web service provider

timeout Number of milliseconds after which the Web service times out if a
response has not been received

unknownHeaders Contains an array of any SOAP headers that were part of the response
but could not be processed

userName Web service consumer user authentication identifier, if required

workerApp Name of a worker application configured to process a Web service
request asynchronously

characterConversionException
Type: Boolean

The characterConversionException property of the JadeWebServiceConsumer class is set to true by the
framework if a Web service response on an ANSI system contains non-ANSI characters (that is, characters with a
code greater than 127) and the option not to raise a character conversion exception has been set. For details
about whether a character conversion exception is raised, see the handleCharConversionException property.

If the characterConversionException property is true, the value of the soapResponse property is the
unconverted response string containing the non-ANSI characters.

handleCharConversionException
Type: Boolean

The handleCharConversionException property of the JadeWebServiceConsumer class specifies whether an
exception is raised by an ANSI JADE system if a response from a Web service contains non-ANSI characters (that
is, characters with a code greater than 127).

Note A character conversion exception occurs only on a Unicode system if the Web service response contains
invalid UTF8 characters.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 254

EncycloSys2 - 2020.0.02

If the value of the property is false, the default value, a character conversion exception is raised and the
extendedErrorText property of the exception object is set to the unconverted response string containing the non-
ANSI characters. If the value of the property is true, instead of raising an exception, the
characterConversionException property is set to true and the value of the soapResponse property is set to the
unconverted response string containing the non-ANSI characters.

logStatistics
Type: Boolean

The logStatistics property of the JadeWebServiceConsumer class specifies whether statistics are logged for a
Web service request. The default value is false.

password
Type: String

The password property of the JadeWebServiceConsumer class contains a password, if user authentication is
required by a site.

This property is used for authentication in conjunction with the userName property, if required, and the JADE Web
services framework sends this information when requesting a connection.

The default value is null ("").

proxyHostName
Type: String

If your site uses proxy servers and these servers require authentication, the proxyHostName property of the
JadeWebServiceConsumer class contains the host name of the proxy server to which the JADE Web services
framework connects.

proxyPassword
Type: String

If your site uses proxy servers and these servers require authentication, the proxyPassword property of the
JadeWebServiceConsumer class contains the proxy password that the JADE Web services framework sends
when requesting a connection.

This property is used for proxy server authentication in conjunction with the proxyUsername property. The default
value is null ("").

proxyUsername
Type: String

If your site uses proxy servers and these servers require authentication, the proxyUsername property of the
JadeWebServiceConsumer class contains the proxy user identifier that the JADE Web services framework sends
when requesting a connection.

This property is used for proxy server authentication in conjunction with the proxyPassword property. The default
value is null ("").

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 255

EncycloSys2 - 2020.0.02

soapHeaders
Type: ObjectArray

The soapHeaders property of the JadeWebServiceConsumer class contains a reference to an object array of
SOAP headers that were sent to the Web service provider by the Web service consumer.

soapRequest
Type: String

The soapRequest property of the JadeWebServiceConsumer class contains the outgoing SOAP message that is
sent to the Web service provider.

soapResponse
Type: String

The soapResponse property of the JadeWebServiceConsumer class contains the SOAP message that was sent
to the Web service consumer from the Web service provider.

timeout
Type: Integer

The timeout property of the JadeWebServiceConsumer class contains the number of milliseconds after which a
Web service consumer session times out if no SOAP message is received from the Web service provider.

The timeout value remains active until you reset the value in your application for that transient instance of the Web
service consumer object. For details about setting and getting timeout values for connect, send, and receive
messages, see the getTimeouts and setTimeouts methods.

If you do not set this property, the request times out after two minutes (that is, 120,000 milliseconds).

When you specify the number of milliseconds after which control is regained if the remote server fails to respond
and the specified time is exceeded, a JadeSOAPException (exception 11052) is raised and the body of the
message states:

HTTP Error 12002 HTTP Send Request Failed

Error 12002 is a WinINET or WinHTTP error that indicates that the request has timed out.

You can control the length of time that the JADE Web service consumer waits for the response by using the
JadeWebServiceConsumer class setTimeouts method.

unknownHeaders
Type: JadeWebServiceUnknownHdrArray

The unknownHeaders property of the JadeWebServiceConsumer class contains an array of any SOAP headers
that were part of the response but could not be processed.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 256

EncycloSys2 - 2020.0.02

userName
Type: String

The userName property of the JadeWebServiceConsumer class contains the name of a valid user id, if user
authentication is required by a site.

This property is used for authentication in conjunction with the password property, if required, so that the JADE
Web services framework sends this information when requesting a connection. The default value is null ("").

workerApp
Type: String[100]

The workerApp property of the JadeWebServiceConsumer class contains the name of a worker application that
can process a Web service request asynchronously. The name must be the name of an application defined in the
same schema or a superschema of the one containing the JadeWebServiceConsumer class.

The initialize and finalize methods of the application must execute the asyncInitialize and asyncFinalize
methods of the Application class, respectively. Additionally, the WSDL for the Web service must specify that the
Web service is to be executed asynchronously.

JadeWebServiceConsumer Methods
The methods defined in the JadeWebServiceConsumer class are summarized in the following table.

Method Description

addHttpHeader Adds, changes, or removes HTTP headers from a Web service consumer request

getEndpointURL Returns the name of the end-point URL to which the Web service consumer request
is sent

getHttpHeader Returns the value of a specified user-defined HTTP header

getHttpHeaderClient Returns the value of a specified client HTTP header sent with a Web service
request

getHttpHeaderServer Returns the value of a specified server HTTP header sent with a Web service
response

getLastStatistics Returns statistics relating to the last Web service consumer SOAP message

getTimeouts Returns the timeout values in milliseconds for connect, send, and receive
messages, respectively

invoke Sends the message to your Web service provider using your own communication
handlers or dynamically connects to a Web service (that is, without using or
importing a WSDL file)

invokeAsync Sends the message asynchronously to your Web service provider using your own
communication handlers or dynamically connects to a Web service (that is, without
using or importing a WSDL file)

invokeAsyncWithVerb Sends the message and the specified verb asynchronously to your Web service
provider using your own communication handlers or dynamically connects to a
Web service (that is, without using or importing a WSDL file)

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 257

EncycloSys2 - 2020.0.02

Method Description

invokeWithVerb Sends the message and the specified verb to your Web service provider using your
own communication handlers or dynamically connects to a Web service (that is,
without using or importing a WSDL file)

processReply Processes the result of a Web service request (that is, a SOAP message) and sets
up transient objects for further processing by your application

reset Deletes all transient objects created by the Web service consumer when making a
Web service request

sendRequest Sets up the SOAP message for a Web service request and sends the message to
the Web service provider

setEndpointURL Dynamically changes the URL to which the Web service request is sent

setTimeouts Sets the timeout values for connect, send, and receive messages, respectively

addHttpHeader
Signature addHttpHeader(key: String;

value: String);

The addHttpHeader method of the JadeWebServiceConsumer class enables you to add, change, or remove
HTTP headers from a Web service consumer request.

The value of the key parameter is the HTTP header to create and the value of the value parameter is the value to
assign to that key.

In the following code fragment, the Authorization: Basic c29hcHRlc3Q6cGFzc3dvcmQ=\r\n header is added to
a request message sent to a Web service provider.

webService.addHttpHeader("Authorization",
"Basic c29hcHRlc3Q6cGFzc3dvcmQ=\r\n");

The following example shows the removal of an HTTP header with a key of Authorization.

webService.addHttpHeader("Authorization", "");

Note The framework creates and passes the HTTP headers to the underlying libraries (wininet.dll and
winhttp.dll) that you specified and does not attempt to validate their accuracy. It is your responsibility to ensure
that the HTTP headers are valid.

getEndpointURL
Signature getEndpointURL(): String;

The getEndpointURL method of the JadeWebServiceConsumer class returns the name of the end-point URL to
which a Web service request is sent.

The default value of the URL end-point is obtained from the WSDL file.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 258

EncycloSys2 - 2020.0.02

getHttpHeader
Signature getHttpHeader(key: String): String;

The getHttpHeader method of the JadeWebServiceConsumer class returns the value of a user-defined HTTP
header specified by the value of the key parameter.

If the HTTP header does not exist, a null string is returned.

getHttpHeaderClient
Signature getHttpHeaderClient(key: String): String;

The getHttpHeaderClient method of the JadeWebServiceConsumer class returns the value of a client HTTP
header specified by the value of the key parameter. Client HTTP headers are sent with a Web service request.

If the HTTP header does not exist, a null string is returned; for example, a Web service request has the following
HTTP headers.

Accept: text/plain
Accept: text/html
Accept: text/xml
Content-Type: text/xml; charset=utf-8
Host: cnwcrs1a
Pragma: no-cache
Proxy-Connection: Keep-Alive
SOAPAction: "urn:JadeWebServices/CalculatorService/add"
User-Agent: Jade/9.9.00

The following code fragment shows the getHttpHeaderClient method used with the example Web service
request.

// Output from the next instruction is "Keep-Alive"
write webService.getHttpHeaderClient("Proxy-Connection");

getHttpHeaderServer
Signature getHttpHeaderServer(key: String): String;

The getHttpHeaderServer method of the JadeWebServiceConsumer class returns the value of a server HTTP
header specified by the value of the key parameter. Server HTTP headers are sent in a response message from
the server.

If the HTTP header does not exist, a null string is returned; for example, a Web service response has the following
HTTP headers.

HTTP/1.1 200 OK
Content-Length: 1034
Content-Type: text/xml; charset=utf-8
Server: Microsoft-IIS/7.0
X-Powered-By: ASP.NET
Date: Thu, 15 Apr 2010 03:03:04 GMT

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 259

EncycloSys2 - 2020.0.02

The following code fragment shows the getHttpHeaderServer method used with the example Web service
response.

// Output from the next instruction is "ASP.NET"
write webService.getHttpHeaderServer("X-Powered-By");

getLastStatistics
Signature getLastStatistics(headerOnly: Boolean): String;

The getLastStatistics method of the JadeWebServiceConsumer class returns a string containing statistics data
of the last Web service request.

Note Web service statistics are logged only when the logStatistics property is set to true.

If the headerOnly parameter is set to true, the data listed in the following table is returned (in XML format).

Value Description

name Web service name

operation Web service operation that was invoked

url Uniform Resource Locator (URL) of the Web service

dateTime Timestamp of when the request was sent

responseTime Time from the time the request is sent to the time a response is received, including the
time the Web service spends processing user logic

processingTime Total time the Web service consumer takes to formulate the request plus the time the Web
service consumer takes to process the reply; that is, the total time taken by the Web
service consumer, excluding the time in the Web service itself

errorCode Error code if an error was returned by the Web service

requestSize Size of the SOAP message request

responseSize Size of the SOAP message response

In addition to the above data that is returned when the headerOnly parameter is set to true, the data listed in the
following table is also returned (in XML format) when the headerOnly parameter is set to false.

Value Description

requestHeaders HTTP request headers

soapRequest The SOAP request message

responseHeaders HTTP response headers

soapResponse The SOAP response message

The following example of the data returned from the getLastStatistics method invokes an operation called
getQuote from the Web service at http://www.webservicex.netstockquote.asmx. In this example, all details are
returned because the headerOnly parameter is set to false.

<?xml version="1.0" encoding="utf-8"?>
<WebServiceStatistics>

<name>StockQuote</name>

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 260

EncycloSys2 - 2020.0.02

<operation>getQuote</operation>
<url>http://www.webservicex.netstockquote.asmx</url>
<dateTime>30 March 2004, 11:00:54</dateTime>
<responseTime>846</responseTime>
<processingTime>3</processingTime>
<errorCode>0</errorCode>
<requestSize>349</requestSize>
<responseSize>988</responseSize>
<requestHeaders>Accept: text/plain

Accept: text/html
Accept: text/xml
Content-Type: text/xml; charset=utf-8
Host: www.webservicex.net
Pragma: no-cache
Proxy-Connection: Keep-Alive
SOAPAction: http://www.webserviceX.NET/GetQuote
User-Agent: Jade/2016

</requestHeaders>
<soapRequest><?xml version="1.0"
encoding="utf-8"?>

<soap:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<GetQuote xmlns="http://www.webserviceX.NET/">

<symbol>IBM</symbol>
</GetQuote>

</soap:Body>
</soap:Envelope>

</soapRequest>
<responseHeaders>HTTP/1.0 200 OK

Server: Microsoft-IIS/5.0
Date: Mon, 29 Mar 2004 23:00:53 GMT
X-Powered-By: ASP.NET
Cache-Control: private, max-age=0
Content-Type: text/xml; charset=utf-8
Content-Length: 988
X-Cache: MISS from localhost.localdomain
Proxy-Connection: close

</responseHeaders>
<soapResponse><?xml version="1.0"
encoding="utf-8"?><soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body>
<GetQuoteResponse
xmlns="http://www.webserviceX.NET/"><GetQuoteResult>&
lt;StockQuotes&gt;&lt;Stock&gt;&lt;Symbol&gt;IBM&lt;
/Symbol&gt;&lt;Last&gt;92.68&lt;/Last&gt;&lt;
Date&gt;3/29/2004&lt;/Date&gt;&lt;Time&gt;4:01pm&lt;
/Time&gt;&lt;Change&gt;-0.09&lt;/Change&gt;&
lt;Open&gt;92.99&lt;/Open&gt;&lt;High&gt;93.61&lt;
/High&gt;&lt;Low&gt;92.18&lt;/Low&gt;&lt;Volume&
gt;4876300&lt;/Volume&gt;&lt;MktCap&gt;157.5B&lt;

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 261

EncycloSys2 - 2020.0.02

/MktCap&gt;&lt;PreviousClose&gt;92.77&lt;/PreviousClose&
gt;&lt;PercentageChange&gt;-0.10%&lt;/PercentageChange&
gt;&lt;AnnRange&gt;78.12 -100.43&lt;/AnnRange&gt;&lt;
Earns&gt;4.34&lt;/Earns&gt;&lt;P-E&gt;21.38&lt;
/P-E&gt;&lt;Name&gt;INTL BUSMACHINE&lt;/Name&gt;&lt;
/Stock&gt;&lt;/StockQuotes&gt;</GetQuoteResult><
/GetQuoteResponse></soap:Body></soap:Envelope>

</soapResponse>
</WebServiceStatistics>

getTimeouts
Signature getTimeouts(connectTimeout: Integer output;

sendTimeout: Integer output;
receiveTimeout: Integer output);

The getTimeouts method of the JadeWebServiceConsumer class returns the timeout values in milliseconds for
connect, send, and receive messages, respectively.

The connectTimeout, sendTimeout, and receiveTimeout parameters are populated with the number of
milliseconds after which a Web service consumer session times out if no SOAP connect, send, or receive
message is received from the Web service provider.

See also the timeout property (which you can use to set all three message types to the same value) and the
setTimeouts method.

invoke
Signature invoke(inputMessage: String): String updating;

The invoke method of the JadeWebServiceConsumer class sends the SOAP-formatted message specified in the
inputMessage parameter to the Web service and returns the response from the Web service provider (a SOAP
message).

Re-implement the invoke method in the following situations.

If you do not want to use the JADE Web service communications framework, which currently supports only
HTTP (for example, if you prefer to use SMTP rather than the HTTP protocol), so that you can use your own
communication handlers.

If you want to dynamically connect to a Web service (that is, without using or importing a WSDL file).

For example, if you have a JadeWebServiceConsumer subclass called DoItMyself, the method in the
following example illustrates calling the Amazon Web service dynamically.

vars
doItMyself : DoItMyself;
inputMsg : String;
outputMsg : String;

begin
create doItMyself transient;
doItMyself.setEndpointURL('http://soap.amazon.com/onca/soap2');
inputMsg := ""; //soap request here
outputMsg := doItMyself.invoke(inputMsg);
// outputMsg will now contain the response from the Web service
// provider or a SOAP fault raised by the JADE Web services

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 262

EncycloSys2 - 2020.0.02

// framework (for example, if the connection failed)
epilog

delete doItMyself;
end;

Note In this case, you are dealing directly with SOAP messages.

This method uses the POST verb to send a message to the Web service via the associated
JadeHTTPConnection. Use the JadeWebServiceConsumer class invokeWithVerb method to send a
message to the Web service using a verb other than POST.

invokeAsync
Signature invokeAsync(inputMessage: String): JadeMethodContext updating;

The invokeAsync method of the JadeWebServiceConsumer class sends the SOAP-formatted message
specified in the inputMessage parameter to the Web service and returns an instance of the JadeMethodContext
class that handles the asynchronous execution of the Web service request and waits for the response from the
Web service provider (a SOAP message).

The workerApp property must be set to the name of an asynchronous worker application, which must execute the
asyncInitialize and asyncFinalize methods of the Application class in the initialize and finalize methods of the
application, respectively.

The JadeMethodContext instance can be used as input to the waitForMethods method on the Process class, to
enable your code to wait for the completion of the asynchronous execution of the Web service and obtain the
results.

Reimplement the invokeAsync method in the following situations.

If you do not want to use the JADE Web service communications framework, which currently supports only
HTTP (for example, if you prefer to use SMTP rather than the HTTP protocol), so that you can use your own
communication handlers.

If you want to dynamically connect to a Web service (that is, without using or importing a WSDL file). If you
have a JadeWebServiceConsumer subclass called DoItMyself, the method in the following example
illustrates calling the Amazon Web service dynamically.

vars
doItMyself : DoItMyself;
inputMsg : String;
context : JadeMethodContext;
outputMsg : String;

begin
create doItMyself transient;
doItMyself.workerApp := "AsyncWorkerApp";
doItMyself.setEndpointURL('http://soap.amazon.com/onca/soap2');
inputMsg := ""; //soap request here
context := doItMyself.invokeAsync(inputMsg);
// context now contains the JadeMethodContext that will send
// the Web service request in a worker application and receive
// the response from the Web service provider
process.waitForMethods(context);
// wait for asynchronous Web service message to complete
// could do other processing while waiting for the completion
outputMsg := context.getReturnValue.String;

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 263

EncycloSys2 - 2020.0.02

// outputMsg now contains the response from the Web service
write outputMsg;

epilog
delete doItMyself;

end;

Note In this case, you are dealing directly with SOAP messages.

This method uses the POST verb to send a message to the Web service via the associated
JadeHTTPConnection. Use the JadeWebServiceConsumer class invokeAsyncWithVerb method to send
a message to the Web service using a verb other than POST.

invokeAsyncWithVerb
Signature invokeAsyncWithVerb(inputMessage: String;

verbIn: String): JadeMethodContext updating;

The invokeAsyncWithVerb method of the JadeWebServiceConsumer class sends the SOAP-formatted
message specified in the inputMessage parameter, using the verb specified in the verbIn parameter, to the Web
service and returns an instance of the JadeMethodContext class that handles the asynchronous execution of the
Web service request and waits for the response from the Web service provider (a SOAP message).

This method does the same as the JadeWebServiceConsumer class invokeAsync method, except that the verb
specified in the verbIn parameter is used (for example, "GET" or "PUT") instead of "POST". Calling the
invokeAsync method is the same as calling the invokeAsyncWithVerb method with "POST" specified in the
verbIn parameter.

The workerApp property must be set to the name of an asynchronous worker application, which must execute the
asyncInitialize and asyncFinalize methods of the Application class in the initialize and finalize methods of the
application, respectively.

The JadeMethodContext instance can be used as input to the waitForMethods method on the Process class, to
enable your code to wait for the completion of the asynchronous execution of the Web service and obtain the
results.

Reimplement the invokeAsyncWithVerb method in the following situations when you also need to specify the
verb that is used.

If you do not want to use the JADE Web service communications framework, which currently supports only
HTTP (for example, if you prefer to use SMTP rather than the HTTP protocol), so that you can use your own
communication handlers.

If you want to dynamically connect to a Web service (that is, without using or importing a WSDL file). If you
have a JadeWebServiceConsumer subclass called DoItMyself, the method in the following example
illustrates calling the Amazon Web service dynamically.

vars
doItMyself : DoItMyself;
inputMsg : String;
context : JadeMethodContext;
outputMsg : String;

begin
create doItMyself transient;
doItMyself.workerApp := "AsyncWorkerApp";
doItMyself.setEndpointURL('http://soap.amazon.com/onca/soap2');
inputMsg := ""; //soap request here

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 264

EncycloSys2 - 2020.0.02

context := doItMyself.invokeAsyncWithVerb(inputMsg, verb);
// context now contains the JadeMethodContext that will send
// the Web service request in a worker application and receive
// the response from the Web service provider
process.waitForMethods(context);
// wait for asynchronous Web service message to complete
// could do other processing while waiting for the completion
outputMsg := context.getReturnValue.String;
// outputMsg now contains the response from the Web service
write outputMsg;

epilog
delete doItMyself;

end;

Note In this case, you are dealing directly with SOAP messages.

You can use the invokeAsyncWithVerb method, for example, to allow users to access a REST service using the
HTTP GET verb.

Applies to Version: 2016.0.01 and higher

invokeWithVerb
Signature invokeWithVerb(inputMessage: String;

verbIn: String): String updating;

The invokeWithVerb method of the JadeWebServiceConsumer class sends the SOAP-formatted message
specified in the inputMessage parameter, using the verb specified in the verbIn parameter, to the Web service
and returns the response from the Web service provider (a SOAP message).

This method does the same as the JadeWebServiceConsumer class invoke method, except that the verb
specified in the verbIn parameter is used (for example, "GET" or "PUT") instead of "POST". Calling the invoke
method is the same as calling the invokeWithVerb method with "POST" specified in the verbIn parameter.

Re-implement the invokeWithVerb method in the following situations when you also need to specify the verb that
is used.

If you do not want to use the JADE Web service communications framework, which currently supports only
HTTP (for example, if you prefer to use SMTP rather than the HTTP protocol), so that you can use your own
communication handlers.

If you want to dynamically connect to a Web service (that is, without using or importing a WSDL file).

For example, if you have a JadeWebServiceConsumer subclass called DoItMyself, the method in the
following example illustrates calling the Amazon Web service dynamically.

vars
doItMyself : DoItMyself;
inputMsg : String;
outputMsg : String;

begin
create doItMyself transient;
doItMyself.setEndpointURL('http://soap.amazon.com/onca/soap2');
inputMsg := ""; //soap request here
outputMsg := doItMyself.invokeWithVerb(inputMsg, verb);
// outputMsg will now contain the response from the Web service

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 265

EncycloSys2 - 2020.0.02

// provider or a SOAP fault raised by the JADE Web services
// framework (for example, if the connection failed)

epilog
delete doItMyself;

end;

Note In this case, you are dealing directly with SOAP messages.

You can use the invokeWithVerb method, for example, to allow users to access a REST service using the HTTP
GET verb.

Applies to Version: 2016.0.01 and higher

processReply
Signature processReply(): Any protected, updating;

Reimplement the processReply method in your user-defined JadeWebServiceConsumer subclasses if you
want to take the result of a Web service request (that is, a SOAP message), process the message, and set up
transient objects for further processing by your application.

Note If the JADE implementation of this method is not called (by using the inheritMethod instruction), it is your
responsibility to do any processing that is necessary. For details, see the JadeWebServiceConsumer class
sendRequest method.

reset
Signature reset() updating;

The reset method of the JadeWebServiceConsumer class removes all transient objects that were created by the
Web services framework when making a Web service request.

This method deletes all transient objects created by the Web service consumer but retains the Web service
consumer. By default, these transient objects are deleted only when the Web service consumer is deleted.

The following code fragment shows the use of the rest method.

websvc.reset;

sendRequest
Signature sendRequest(methodName: String): Any updating;

Re-implement the sendRequest method of the JadeWebServiceConsumer class if you want to set up the SOAP
message for a Web service request and send the message to the Web service provider.

Use the methodName parameter to specify the Web service method to invoke.

The sendRequest method returns the result of the invocation.

setEndpointURL
Signature setEndpointURL(endpoint: String) updating;

The setEndpointURL method of the JadeWebServiceConsumer class cannot be reimplemented in your user-
defined Web service consumer subclasses.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceConsumer Class Chapter 1 266

EncycloSys2 - 2020.0.02

To change the end-point URL (for example, if you want to dynamically change the end-point of the URL for your
Web service consumer instance at run time), call the setEndpointURL method, passing the appropriate end-point
URL as a parameter.

setTimeouts
Signature setTimeouts(connectTimeout: Integer;

sendTimeout: Integer;
receiveTimeout: Integer);

The setTimeouts method of the JadeWebServiceConsumer class sets the timeout values for connect, send, and
receive messages, respectively.

By default, Web service consumer messages time out after 2 minutes (120,000 milliseconds).

Use the connectTimeout, sendTimeout, and receiveTimeout parameters to specify the respective number of
milliseconds after which a Web service consumer session times out if no SOAP connect, send, or receive
message is received from the Web service provider.

When specify the number of milliseconds after which control is regained if the remote server fails to respond and
the specified time is exceeded, a JadeSOAPException (exception 11052) is raised and the body of the message
states:

HTTP Error 12002 HTTP Send Request Failed

Error 12002 is a WinINET or WinHTTP error that indicates that the request has timed out.

See also the timeout property (which you can use to set all three message types to the same value) and the
getTimeouts method.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceProvider Class Chapter 1 267

EncycloSys2 - 2020.0.02

JadeWebServiceProvider Class
The JadeWebServiceProvider class maintains all Internet service provider information.

For details about the properties and methods defined in the JadeWebServiceProvider class, see
"JadeWebServiceProvider Properties" and "JadeWebServiceProvider Methods", in the following subsections.

Inherits From: JadeWebService

Inherited By: (None)

JadeWebServiceProvider Properties
The properties defined in the JadeWebServiceProvider class are summarized in the following table.

Property Description

deleteTransientReturnType Specifies whether the transient object return type from a Web service method
is deleted when processing is complete

incomingMessage Contains the incoming SOAP message string from the Web service consumer

rawXML Specifies whether the Web service framework does any further XML
processing of the data that is returned from a Web service method

unknownHeaders Contains an array of any SOAP headers that were part of the request but
could not be processed

deleteTransientReturnType
Type: Boolean

The deleteTransientReturnType property of the JadeWebServiceProvider class specifies whether the transient
object return type from a Web service method is deleted when processing is complete. The object is deleted only if
it is a transient object.

If the return type is a collection, all transient members of this collection are also deleted.

This property is set to true by default. If you do not want the framework to delete transient return types, you must
set this property to false in your code.

incomingMessage
Type: String

The incomingMessage property of the JadeWebServiceProvider class contains the incoming SOAP message
string sent by the Web service consumer.

rawXML
Type: Boolean

The rawXML property of the JadeWebServiceProvider class specifies whether the Web services framework does
any further XML processing of the data that is returned from a Web service method. This property is set to false, by
default.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceProvider Class Chapter 1 268

EncycloSys2 - 2020.0.02

When you do not want any further processing of the data returned from the Web service performed, set this
property to true. The <body> element of the SOAP message then contains the returned value.

unknownHeaders
Type: JadeWebServiceUnknownHdrArray

The unknownHeaders property of the JadeWebServiceProvider class contains an array of any SOAP headers
that were part of the request but could not be processed.

JadeWebServiceProvider Methods
The methods defined in the JadeWebServiceProvider class are summarized in the following table.

Method Descriptions

createVirtualDirectoryFile Passes files created by a JADE application to the jadehttp library

deleteVirtualDirectoryFile Deletes specified files from the virtual directory used by the jadehttp library

getLastStatistics Returns an XML-formatted string containing information about the current
request

getServerVariable Returns HyperText Transfer Protocol (HTTP) header information for your
Web service request

initialize Sets up the appropriate options for the specified Web service application
when the default HTTP implementation is not used

isVDFilePresent Returns true if the specified file is present in the virtual directory used by the
jadehttp library

processMessage Calls the relevant Web service method and returns the result of the
processing as a SOAP message

processRequest Processes Web service requests received from a Web service consumer

processRequestPostHeaders Processes Web service requests received from a Web service consumer
after the SOAP headers for the request have been processed

reply Executed when a request is received from a Web service consumer

createVirtualDirectoryFile
Signature createVirtualDirectoryFile(filename: String;

contents: Binary;
retain: Boolean): Integer;

The createVirtualDirectoryFile method of the JadeWebServiceProvider class enables you to pass files created
by a JADE application to the jadehttp library. The jadehttp library creates the specified file in the directory
specified by the VirtualDirectory parameter in the jadehttp.ini file.

The createVirtualDirectoryFile method parameters are listed in the following table.

Parameter Description

fileName Name of the file to be created in the virtual directory

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceProvider Class Chapter 1 269

EncycloSys2 - 2020.0.02

Parameter Description

contents Binary holding the file contents

retain Creates read-only files when set to true or standard files when set to false

The jadehttp library creates the specified file in the directory (the virtual directory visible to Web browsers) in
which the library is running. This method returns zero (0) if the method successfully formats a request to the
jadehttp library or it returns the non-zero operating system error code indicating the failure to create the file.

You can specify whether files created in the virtual directory are deleted automatically and how this happens, by
setting the PurgeDirectoryRule parameter in the [application-name] section of the jadehttp.ini file or the
PurgeDirectoryRule configuration directive in the JADE mod_jadehttp file. If this parameter or directive is not set,
files of type .jpg, .png, or .gif that are more than 12 hours old are removed. For details, see "Internal Housekeeping
of the Virtual Directory", in Chapter 2 of the JADE Installation and Configuration Guide.

Note This method must be called during the processing cycle of the message.

deleteVirtualDirectoryFile
Signature deleteVirtualDirectoryFile(filename: String;

deleteIfReadOnly: Boolean): Integer;

The deleteVirtualDirectoryFile method of the JadeWebServiceProvider class enables you to delete files that are
in the directory specified by the VirtualDirectory parameter in the jadehttp.ini file.

The deleteVirtualDirectoryFile method parameters are listed in the following table.

Parameter Description

filename Name of the file to be deleted from the virtual directory

deleteIfReadOnly Deletes files marked as read-only when set to true

This method returns zero (0) if the file deletion is successful or a non-zero error code if it fails.

You can specify whether files created in the virtual directory are deleted automatically and how this happens, by
setting the PurgeDirectoryRule parameter in the [application-name] section of the jadehttp.ini file or the
PurgeDirectoryRule configuration directive in the JADE mod_jadehttp file. If this parameter or directive is not set,
files of type .jpg, .png, or .gif that are more than 12 hours old are removed. For details, see "Internal Housekeeping
of the Virtual Directory", in Chapter 2 of the JADE Installation and Configuration Guide.

Note This method must be called during the processing cycle of the message.

getLastStatistics
Signature getLastStatistics(headerOnly: Boolean): String;

The getLastStatistics method of the JadeWebServiceProvider class returns an XML-formatted string that
represents the information listed in the following table for the current request.

Statistic Description

<queuedTime> Time spent in the queue

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceProvider Class Chapter 1 270

EncycloSys2 - 2020.0.02

Statistic Description

<requestTime> Time taken to process the request

<webServiceTime> Time spent in the Web service method

<responseTime> Time taken to generate the SOAP message and send the response

<requestSize> Size of the request message

<responseSize> Size of the response message

In addition, the information listed in the following table is returned when you set the headerOnly parameter to
false.

Statistic Description

<requestHeaders> The HTTP headers that were received in the request

<soapRequest> The SOAP message that was received

<soapResponse> The SOAP message that was sent

To obtain all statistics for the request, you must call this method in your reimplemented JadeWebServiceProvider
class reply method or in the destructor of the Web service.

Setting the value of the headerOnly parameter to true returns a string similar to the following example.

<?xml version="1.0" encoding="utf-8"?>
<WebServiceStatistics>

<queuedTime>5030</queuedTime>
<requestTime>5</requestTime>
<webServiceTime>4999</webServiceTime>
<responseTime>4</responseTime>
<requestSize>423</requestSize>
<responseSize>387</responseSize>

</WebServiceStatistics>

Setting the value of the headerOnly parameter to false returns a string similar to the following example.

<?xml version="1.0" encoding="utf-8"?>
<WebServiceStatistics>

<queuedTime>5016</queuedTime>
<requestTime>5</requestTime>
<webServiceTime>5000</webServiceTime>
<responseTime>3</responseTime>
<requestSize>423</requestSize>
<responseSize>387</responseSize>
<requestHeaders><![CDATA[Cache-Control: no-cache

Connection: Keep-Alive
Content-Length: 423
Content-Type: text/xml; charset=utf-8
Accept: text/plain, text/html, text/xml
Host: localhost
User-Agent: Jade/2016
SOAPAction: "urn:JadeWebServices/Mine/helloWorld"
]]></requestHeaders>

<soapRequest><![CDATA[<?xml version="1.0" encoding="utf-8"?>

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceProvider Class Chapter 1 271

EncycloSys2 - 2020.0.02

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tns="urn:JadeWebServices/Mine/" xmlns:s1="urn:JadeWebServices/Mine/">

<soap:Body>
<s1:helloWorld>

<s1:user/>
<s1:date>1900-01-01</s1:date>

</s1:helloWorld>
</soap:Body>

</soap:Envelope>
]]></soapRequest>

<soapResponse><![CDATA[<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<helloWorldResponse xmlns="urn:JadeWebServices/Mine/">

<helloWorldResult>true</helloWorldResult>
</helloWorldResponse>

</soap:Body>
</soap:Envelope>
]]></soapResponse>
</WebServiceStatistics>

getServerVariable
Signature getServerVariable(var: String): String;

The getServerVariable method of the JadeWebServiceProvider class returns the specified HTTP header
information for your Web service request from the Internet Information Server (IIS).

As the var parameter is IIS-dependent and is therefore subject to change, refer to the ServerVariables function in
your Internet Information Services (IIS) documentation for details.

The code fragment in the following example returns the IP address of the current Web service as determined by
IIS.

JadeWebServiceProvider.getServerVariable('REMOTE_ADDR');

Common server environment variables, documented in the IIS documentation under the ServerVariables
function, include those listed in the following table.

Variable Returns…

HTTP_ACCEPT_LANGUAGE A string describing the language to use for displaying content

HTTP_USER_AGENT A string describing the browser that sent the request

HTTPS ON if the request came in through a secure channel (SSL) or it returns OFF if
the request is for a non-secure channel

REMOTE_ADDR IP address of the remote host making the request

SERVER_NAME Host name, DNS alias, or IP address of the server as it would appear in self-
referencing URLs

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceProvider Class Chapter 1 272

EncycloSys2 - 2020.0.02

Variable Returns…

SERVER_PORT Port number to which the request was sent

URL Base portion of the URL

An exception is raised if this method is invoked from a server method.

The Web service provider requires the name of the method to invoke. In order to obtain this, the
getServerVariable method is called. When the name that is retrieved is longer than 100 characters, the name is
truncated to 100 characters. In addition, if the first character of the name is uppercase, it is changed to lowercase.

This name is used to determine the method to invoke when using non-wrapped document literal format
messages. When the name does not meet the JADE method-naming requirements, the method invocation is likely
to fail and a SOAP fault will be returned to the Web service consumer.

You can implement your own getServerVariable method (equivalent to this method in the
JadeWebServiceProvider class) if you are using a JadeInternetTCPIPConnection instance to communicate with
the jadehttp library (that is, jadehttp.dll) when your application does not use WebSession functionality.

The following method returns the value of the Internet Server Application Programming Interface (ISAPI) variable
(specified by the var parameter) associated with an Internet message that is received.

getServerVariable(var: String): String;
// The request for the ISAPI variable var is built in the bin variable
// The JadeInternetTCPIPConnection instance must exist and be connected
constants

NULL: Character = #00.Character;
vars

bin: Binary;
connection: JadeInternetTCPIPConnection;

begin
if connection <> null and connection.state = Connection.Connected then

 if IsUnicodeSystem then
 bin := ("GSV" & NULL & var.trimBlanks() & NULL).asANSI(0);

 else
 bin := ("GSV" & NULL & var.trimBlanks() & NULL).Binary;
 endif;
 connection.writeBinary(bin);

bin := connection.readBinary(0);
endif;
if IsUnicodeSystem then

return bin.ansiToUnicode.trimBlanks;
else

return bin.String.trimBlanks;
endif;

end;

Caution You can call this method only during the processing of a received Internet message and before the
reply is sent. Accessing the method at any other time causes the process to wait indefinitely for the connection
read or causes the message exchange process with the jadehttp library to be out of step.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceProvider Class Chapter 1 273

EncycloSys2 - 2020.0.02

initialize
Signature initialize(appName: String): Boolean updating;

When the default HTTP implementation is not used, no Web service application is run. However, you must still
define a Web service application and set up the appropriate options.

In your application code, create an instance of your JadeWebServiceProvider subclass and then set up that
instance with your options, by calling the JadeWebServiceProvider class initialize method, specifying the name
of your Web-enabled application in the appName parameter. The Web service options are then set up.

If the application specified in the appName parameter does not exist or it is not a Web service application, this
method returns false.

For more details and an example of this use of this method, see "Using Communications Protocols Other than
HTTP in your Web Service", in Chapter 11 of the JADE Developer’s Reference.

isVDFilePresent
Signature isVDFilePresent(fileName: String): Boolean;

The isVDFilePresent method of the JadeWebServiceProvider class determines whether the file specified in the
fileName parameter is present in the directory specified by the VirtualDirectory parameter in the JadeHttp.ini file.

The method returns true if the specified file exists or it returns false if it does not exist.

Note This method must be called during the processing cycle of the message.

processMessage
Signature processMessage(message: String): String updating;

The JadeWebServiceProvider class processMessage method takes the value of the message parameter as
input (which is assumed to be a SOAP message), calls the relevant Web service method, passing it the necessary
parameters, and returns the result of the processing as a SOAP message.

If the incoming message is not a SOAP message, an exception is raised. Similarly, if the method name or the
parameters are not valid, an exception is raised. It is your responsibility to trap this exception and take whatever
action is necessary. Use the Exception class createSOAPMessage method to transform this error into a SOAP
message.

For more details and an example of this use of this method, see "Using Communications Protocols Other than
HTTP in your Web Service", in Chapter 11 of the JADE Developer’s Reference.

processRequest
Signature processRequest() protected, updating;

When a request is received from the Web service consumer, a transient instance of the class corresponding to this
request is created and the processRequest method of the JadeWebServiceProvider class is called. This
method identifies the Web service method in your user-defined JadeWebServiceProvider subclass to be invoked
for the request but does not invoke the method.

Reimplement this method in your user-defined JadeWebServiceProvider subclasses if you want to process Web
requests and send a reply back to the Web service consumer after all processing is complete.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceProvider Class Chapter 1 274

EncycloSys2 - 2020.0.02

Note If the JADE implementation of this method is not called (by using the inheritMethod instruction), it is your
responsibility to do any processing that is necessary and to send a reply back to the consumer. For details, see
the JadeWebServiceProvider class processRequestPostHeaders and reply methods.

processRequestPostHeaders
Signature processRequestPostHeaders();

The JadeWebServiceProvider class processRequestPostHeaders method enables you to process a request
from the Web service consumer after the processRequest method has processed the SOAP headers for the
request but before it has processed the body of the request.

If you reimplement the processRequest method by first calling the inheritMethod instruction, the SOAP headers
and the body of the request have both been processed.

reply
Signature reply(): String protected, updating;

The reply method of the JadeWebServiceProvider class invokes the Web service method in your user-defined
JadeWebServiceProvider subclass and builds the response string that is returned to the Web service consumer.

Reimplement in your user-defined Web service provider subclasses.

The following example manipulates the string before sending a reply back to the Web service consumer.

reply(): String updating, protected;
vars

response : String;
begin

response := inheritMethod();
// invokes your Web service method and builds a response string
// manipulate the response
return response;

end;

Note If the JADE implementation of this method is not called (by using the inheritMethod instruction), it is your
responsibility to send a response back to the Web service consumer.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceSoapHeader Class Chapter 1 275

EncycloSys2 - 2020.0.02

JadeWebServiceSoapHeader Class
The JadeWebServiceSoapHeader class defines the behavior of SOAP headers in Web service provider
applications. For details about the properties defined in the JadeWebServiceSoapHeader class, see
"JadeWebServiceSoapHeader Properties", in the following subsection.

Inherits From: JadeWebService

Inherited By: (None)

JadeWebServiceSoapHeader Properties
The properties defined in the JadeWebServiceSoapHeader class are summarized in the following table.

Property Descriptions

actor Contains the URL of the SOAP header recipient

didUnderstand Specifies whether a mandatory SOAP header has been understood as part of
processing the request

mustUnderstand Specifies whether it is mandatory for the recipient of the SOAP header to process the
header

actor
Type: String

The actor property of the JadeWebServiceSoapHeader class contains the URL of the SOAP header recipient.
Use this property when you do not intend all parts of a SOAP message to be sent to the ultimate destination of the
SOAP message but to one or more intermediaries on the message path.

Only the consumer of a SOAP header can receive the SOAP header; that is, a consumer of a SOAP header cannot
forward the header to the next application in the SOAP message path. The consumer can insert a similar header,
which can be provided to another consumer of the SOAP header.

The value of the SOAP header actor is a Uniform Resource Identifier (URI). The special URI
http://schemas.xmlsoap.org/soap/actor/next indicates that the SOAP header is intended for the first SOAP
application to process the message.

If you do not specify an actor of the SOAP header, the recipient (consumer) of the Web service provider is the
ultimate destination of the SOAP message.

didUnderstand
Type: Boolean

The didUnderstand property of the JadeWebServiceSoapHeader class specifies whether a mandatory SOAP
header has been understood as part of processing the request. A mandatory SOAP request has the value of the
mustUnderstand property set to true.

If the header is understood, your code should set the value of the didUnderstand property to true. If the header is
not understood, a SOAP Must Understand error is returned as the response.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceSoapHeader Class Chapter 1 276

EncycloSys2 - 2020.0.02

mustUnderstand
Type: Boolean

The mustUnderstand property of the JadeWebServiceSoapHeader class specifies whether the SOAP header is
mandatory for the Web service consumer recipients to process.

As the value of this property is false by default, the SOAP header is optional.

When you set this property to true at run time to make the SOAP header mandatory, the consumer of the header
entry must obey the semantics conveyed by the fully qualified name of the SOAP header and process correctly to
those semantics, or it must fail processing the message.

As SOAP headers that must be understood can modify the semantics of their parent or peer headers, those who
do not fully understand them cannot ignore the semantics.

Encyclopaedia of Classes
(Volume 2)

JadeWebServiceUnknownHeader Class Chapter 1 277

EncycloSys2 - 2020.0.02

JadeWebServiceUnknownHeader Class
The JadeWebServiceUnknownHeader class encapsulates an unknown SOAP header in a Web service provider
application; that is, a SOAP header included with the request that the provider was unable to process.

For details about the properties defined in the JadeWebServiceUnknownHeader class, see
"JadeWebServiceUnknownHeader Properties", in the following subsection.

Inherits From: JadeWebService

Inherited By: (None)

JadeWebServiceUnknownHeader Properties
The properties defined in the JadeWebServiceUnknownHeader class are summarized in the following table.

Property Contains …

headerXML The XML content of the unknown SOAP header

webService A reference to the JadeWebService that contained the unknown SOAP header

headerXML
Type: String

The headerXML property of the JadeWebServiceUnknownHeader class contains the XML content of the
unknown SOAP header.

webService
Type: JadeWebService

The webService property of the JadeWebServiceUnknownHeader class specifies the JadeWebService for
which the unknown SOAP header could not be processed.

Encyclopaedia of Classes
(Volume 2)

JadeWebSocket Class Chapter 1 278

EncycloSys2 - 2020.0.02

JadeWebSocket Class
The JadeWebSocket class is the base class for handling a WebSocket connection.

Create your own JadeWebSocket subclasses to define the required WebSocket behavior for your application.
From the perspective of a JADE developer, Web Socket processing:

1. Starts with a call to your JadeWebSocket-subclass.onOpen method

2. Is followed by zero or more calls to your JadeWebSocket-subclass.onMsg method

3. Ends with a call to your JadeWebSocket-subclass.onClose method

For details about the property and methods defined in the JadeWebSocket class, see "JadeWebSocket Property"
and "JadeWebSocket Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

Applies to Version: 2018.0.01 and higher

JadeWebSocket Property
The property defined in the JadeWebSocket class is summarized in the following table.

Property Description

id WebSocket identifier

Applies to Version: 2018.0.01 and higher

id
Type: Integer64

The read-only id property of the JadeWebSocket class contains the identifier of the WebSocket connection.

Applies to Version: 2018.0.01 and higher

JadeWebSocket Methods
The methods defined in the JadeWebSocket class are summarized in the following table.

Method Description

onClose Called when the WebSocket is closed

onMsg Called when the WebSocket receives a message from the client side of the connection

onOpen Called when the WebSocket is opened from the client side of the connection

send Sends a binary message via the WebSocket connection

sendText Sends a UTF8-encoded message via the WebSocket connection

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeWebSocket Class Chapter 1 279

EncycloSys2 - 2020.0.02

onClose
Signature onClose() protected;

The onClose method of the JadeWebSocket class is called when the WebSocket is closed.

Applies to Version: 2018.0.01 and higher

onMsg
Signature onMsg(msg: Binary;

utf8encoded: Boolean;
finalFragment: Boolean) updating, protected;

The onMsg method of the JadeWebSocket class is called when the WebSocket receives a message from the
client side of the connection. The msg parameter contains the original WebSocket message sent by the client.

The value of the utf8encoded parameter is true if the message contains Unicode text in a UTF8-encoded format;
otherwise the value is false.

The value of the finalFragment parameter is true if the message is the final data fragment sent by the client;
otherwise the value is false.

Applies to Version: 2018.0.01 and higher

onOpen
Signature onOpen(fullUrl: String) protected;

The onOpen method of the JadeWebSocket class is called when the WebSocket is opened from the client side of
the connection.

The fullUrl parameter specifies the full URL of the WebSocket (for example,
http://host.domain.co.nz:80/WebSocketBrowserClientTest/websocket.ws) used by the WebSocket initiating
client (for example, the web browser).

Applies to Version: 2018.0.01 and higher

send
Signature send(msg: Binary

finalFragment: Boolean);

The send method of the JadeWebSocket class sends the binary message specified in the msg parameter to the
client via the WebSocket connection.

The value of the finalFragment parameter is true if the message is the final data fragment to send; otherwise the
value is false.

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeWebSocket Class Chapter 1 280

EncycloSys2 - 2020.0.02

sendText
Signature sendText(msg: utf8;

finalFragment: Boolean);

The sendText method of the JadeWebSocket class sends the Unicode text in a UTF8-encoded format specified
in the msg parameter to the client via the WebSocket connection.

The value of the finalFragment parameter is true if the message is the final data fragment to send; otherwise the
value is false.

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeWebSocketServer Class Chapter 1 281

EncycloSys2 - 2020.0.02

JadeWebSocketServer Class
The JadeWebSocketServer class handles all incoming TCP/IP connections from the
JadeWebSocketIISNativeModule on a specific interface and TCP port.

For details about the methods defined in the JadeWebSocketServer class, see "JadeWebSocketServer
Methods", in the following subsection.

Inherits From: Object

Inherited By: (None)

Applies to Version: 2018.0.01 and higher

JadeWebSocketServer Methods
The methods defined in the JadeWebSocketServer class are summarized in the following table.

Method Description

getWebSocket Retrieves the instance of a subclass of JadeWebSocket identified by its web
socket id.

run Starts a WebSocket server, accepting TCP connections from IIS

stop Signals an active run method to stop listening on the local interface and TCP/IP
port, and terminates all WebSocket connections

Applies to Version: 2018.0.01 and higher

getWebSocket
Signature getWebSocket(wsId: Integer64): JadeWebSocket;

The getWebSocket method of the JadeWebSocketServer class retrieves the instance of a subclass of
JadeWebSocket identified by its web socket id. The web socket id is stored in the id property of the associated
JadeWebSocket object.

This method returns null if the JadeWebSocket does not exist.

Note The WebSockets are automatically deleted when the TCP/IP connection is closed.

Applies to Version: 2018.0.01 and higher

run
Signature run(localInterface: String;

tcpPort: Integer;
webSocketClass: Class) updating;

The run method of the JadeWebSocketServer class starts listening on the local interface and TCP/IP port
specified in the respective localInterface and tcpPort parameters for connections from WebSocket clients and
creates an instance of WebSocketClass for every new WebSocket connection.

You can use the value of the localInterface parameter to limit the interfaces on which incoming connections are
accepted. To accept connections on all interfaces, the localInterface parameter must have a null ("") value.

Encyclopaedia of Classes
(Volume 2)

JadeWebSocketServer Class Chapter 1 282

EncycloSys2 - 2020.0.02

The tcpPort parameter specifies the TCP port on which the server listens for incoming connections.

The value of the webSocketClass parameter specifies the user subclass of JadeWebSocket.

Applies to Version: 2018.0.01 and higher

stop
Signature stop() updating;

The stop method of the JadeWebSocketServer class signals an active run method to stop listening on the local
interface and TCP/IP port, and terminates all WebSocket connections.

Applies to Version: 2018.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

JadeX509Certificate Class Chapter 1 283

EncycloSys2 - 2020.0.02

JadeX509Certificate Class
The transient JadeX509Certificate class stores the digital certificates in X509 format, which are written to disk in
Privacy-Enhanced Electronic Mail (PEM)-encoded certificate (PEM) format, for use with the JadeSSLContext
class that provides secure connections when the TcpIpConnection class sslContext property contains a
reference to a JadeSSLContext transient object.

JadeSSLContext connections use digital certificates in X509 format. For details about the properties and methods
defined in the JadeX509Certificate class, see "JadeX509Certificate Properties" and "JadeX509Certificate
Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

JadeX509Certificate Properties
The properties defined in the JadeX509Certificate class are summarized in the following table.

Property Contains …

endDate The expiry date of the certificate

issuer The issuer string from the certificate in readable format

purpose A comma-separated list of the purposes of the certificate

startDate The first valid date of the certificate

subject The subject string of the certificate in readable format

endDate
Type: TimeStamp

The read-only endDate property of the JadeX509Certificate class contains the timestamp of the expiry date of the
certificate.

issuer
Type: String

The read-only issuer property of the JadeX509Certificate class contains the issuer string from the certificate in
readable format.

purpose
Type: String

The read-only purpose property of the JadeX509Certificate class contains a comma-separated list of the
purposes indicated by the certificate.

Encyclopaedia of Classes
(Volume 2)

JadeX509Certificate Class Chapter 1 284

EncycloSys2 - 2020.0.02

startDate
Type: TimeStamp

The read-only startDate property of the JadeX509Certificate class contains the timestamp of the first valid date
of the certificate.

subject
Type: JadeSSLContext

The read-only subject property of the JadeX509Certificate class contains the subject string of the certificate in
readable format.

JadeX509Certificate Methods
The methods defined in the JadeX509Certificate class are summarized in the following table.

Method Description

readCertificateDataFromFile Reads certificate data from the specified file

readPrivateKeyDataFromFile Reads private data from the specified file using the specified password

readCertificateDataFromFile
Signature readCertificateDataFromFile(fileName: String) updating;

The readCertificateDataFromFile method of the JadeX509Certificate class reads data from the certificate
specified in the fileName parameter, as shown in the following example.

vars
x509 : JadeX509Certificate;

begin
create x509 transient;
x509.readCertificateDataFromFile("c:\certificates\mycert.pem");

epilog
delete x509;

end;

readPrivateKeyDataFromFile
Signature readPrivateKeyDataFromFile(fileName: String;

password: String) updating;

The readPrivateKeyDataFromFile method of the JadeX509Certificate class reads private key data from the file
specified in the fileName parameter, using the password specified in the password parameter.

The following example shows the use of the readPrivateKeyDataFromFile method.

vars
x509 : JadeX509Certificate;

begin
create x509 transient;
x509.readPrivateKeyDataFromFile("c:\certificates\myprivate.pem",

"zz99zz99demo");

Encyclopaedia of Classes
(Volume 2)

JadeX509Certificate Class Chapter 1 285

EncycloSys2 - 2020.0.02

epilog
delete x509;

end;

Encyclopaedia of Classes
(Volume 2)

JadeXMLAttribute Class Chapter 1 286

EncycloSys2 - 2020.0.02

JadeXMLAttribute Class
The JadeXMLAttribute class defines the behavior for attributes of XML elements in a document tree. An attribute
has a name, an optional namespace, and a value.

For details about the properties and method defined in the JadeXMLAttribute class, see "JadeXMLAttribute
Properties" and "JadeXMLAttribute Method", in the following sections.

Inherits From: JadeXMLNode

Inherited By: (None)

JadeXMLAttribute Properties
The properties defined in the JadeXMLAttribute class are summarized in the following table.

Property Contains the …

element Owning element of the attribute

localName Local name (without prefix) of the attribute

name Qualified name (with prefix) of the attribute

namespaceURI Namespace URI of the attribute

value Value of the attribute

element
Type: JadeXMLElement

The read-only element property of the JadeXMLAttribute class contains a reference to the owning element of the
attribute.

localName
Type: String

The localName property of the JadeXMLAttribute class contains the local name (without a prefix) of the attribute.

name
Type: String

The name property of the JadeXMLAttribute class contains the qualified name (with prefix) of the attribute.

namespaceURI
Type: String

The namespaceURI property of the JadeXMLAttribute class contains the namespace Uniform Resource
Identifier (URI) of the attribute or it contains null ("") if the attribute has no namespace URI.

Encyclopaedia of Classes
(Volume 2)

JadeXMLAttribute Class Chapter 1 287

EncycloSys2 - 2020.0.02

value
Type: String

The value property of the JadeXMLAttribute class contains the value of the attribute.

JadeXMLAttribute Method
The method defined in the JadeXMLAttribute class is summarized in the following table.

Method Description

namespacePrefix Returns the namespace prefix

namespacePrefix
Signature namespacePrefix(): String;

The namespacePrefix method of the JadeXMLAttribute class returns a string containing the namespace prefix of
the attribute or it returns null ("") if the namespace prefix is unspecified.

Encyclopaedia of Classes
(Volume 2)

JadeXMLCDATA Class Chapter 1 288

EncycloSys2 - 2020.0.02

JadeXMLCDATA Class
The JadeXMLCDATA class represents a CDATA section in an XML document tree.

CDATA sections are used to escape blocks of text containing characters that would otherwise be regarded as
markup.

Note If you do not want the framework to interpret the XML special characters (that is, <, >, &, and ") for a string,
call the String primitive type makeXMLCData method, which returns a new string of the receiver prepended with
<![CDATA[and appended with]]>.

Inherits From: JadeXMLCharacterData

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

JadeXMLCharacterData Class Chapter 1 289

EncycloSys2 - 2020.0.02

JadeXMLCharacterData Class
The JadeXMLCharacterData class is the abstract superclass of character-based nodes in an XML document
tree; that is, the text, CDATA, and comment nodes.

For details about the property defined in the JadeXMLCharacterData class, see "JadeXMLCharacterData
Property", in the following section.

Inherits From: JadeXMLNode

Inherited By: JadeXMLCDATA, JadeXMLComment, JadeXMLText

JadeXMLCharacterData Property
The property defined in the JadeXMLCharacterData class is summarized in the following table.

Property Contains the …

data Text value of the node

data
Type: String

The data property of the JadeXMLCharacterData class contains the text value of the node.

Encyclopaedia of Classes
(Volume 2)

JadeXMLComment Class Chapter 1 290

EncycloSys2 - 2020.0.02

JadeXMLComment Class
The JadeXMLComment class represents the content of a comment in an XML document; that is, all of the
characters between the starting '<!--' and the ending '-->'.

Inherits From: JadeXMLCharacterData

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocument Class Chapter 1 291

EncycloSys2 - 2020.0.02

JadeXMLDocument Class
The JadeXMLDocument class represents an XML document as a tree of nodes. It defines the owning object of all
objects in the tree.

Note As the getElementByTagName, getElementByTagNameNS, getElementsByTagName, and
getElementsByTagNameNS methods scan sequentially to locate requested elements, they always returned
requested elements in document sequence. To improve performance, you can use the findElementByNameNS,
findElementByTagName, findElementsByNameNS, and findElementsByTagName methods to retrieve
elements more directly through a collection, using the collection sequence. JADE fully supports the use of a
mixture of the document and collection sequence methods to locate the requested elements. The find methods
may locate the elements in a different sequence from the get methods.

The collection sequence methods provide a performance boost only if a localName or tagName parameter value
is explicitly specified in the calling parameters. If you specify "*" in the localName or tagName parameter, the
access method reverts to the functionality and performance of the document sequence methods to locate the
requested elements.

For details about the properties and methods defined in the JadeXMLDocument class, see "JadeXMLDocument
Properties" and "JadeXMLDocument Methods", in the following sections.

Inherits From: JadeXMLNode

Inherited By: (None)

JadeXMLDocument Properties
The properties defined in the JadeXMLDocument class are summarized in the following table.

Property Description

docType Document type of the document

endOfLine End-of-line separator for output

indentString Indentation string for output

keepWhitespace Specifies whether extra whitespace is discarded

outputDeclaration Specifies whether the XML declaration is output

rootElement Root element of the document

docType
Type: JadeXMLDocumentType

The read-only docType property of the JadeXMLDocument class contains a reference to the document type of
the XML document. (See also the JadeXMLDocumentType class.) If the document has no specified document
type, this property contains a null value.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocument Class Chapter 1 292

EncycloSys2 - 2020.0.02

endOfLine
Type: String

The endOfLine property of the JadeXMLDocument class contains the end-of-line separator that is used to delimit
lines when writing XML documents. By default, this property contains carriage return and line feed (Cr/Lf)
characters.

indentString
Type: String

The indentString property of the JadeXMLDocument class contains the indentation string used to indent each
level of the tree when writing XML documents. The default value is two spaces. If you do not want indentation to
occur, set this property to null ("").

keepWhitespace
Type: Boolean

The keepWhitespace property of the JadeXMLDocument class specifies whether extra whitespace between
adjacent tags is discarded during parsing in XML documents. As JADE assumes that the XML document contains
data, this property is set to false by default. This optimization improves parsing performance and reduces the size
of the object tree because the extra whitespace does not need to be stored as text nodes.

If the extra whitespace is significant and this property is set to true, you should set the indentString property to null
("") to turn off the automatic indentation when writing the document.

outputDeclaration
Type: Boolean

The outputDeclaration property of the JadeXMLDocument class specifies whether the XML declaration (that is,
<?xml version="1.0"?>) is output when writing XML documents.

As the default value is true, set this property to false if you do not want the XML declaration output.

rootElement
Type: JadeXMLElement

The read-only rootElement property of the JadeXMLDocument class contains a reference to the root element of
the XML document.

The root element is the top-level element in the document, and all the other elements are its children. An XML
document must have one root element only.

JadeXMLDocument Methods
The methods defined in the JadeXMLDocument class are summarized in the following table.

Method Description

addComment Creates and adds a comment

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocument Class Chapter 1 293

EncycloSys2 - 2020.0.02

Method Description

addCommentObject Adds a comment object

addDocumentType Creates and adds a document type

addDocumentTypeObject Adds a document type object

addElement Creates and adds an element

addElementNS Creates and adds an element with a namespace

addElementObject Adds an element object

addElementObjectNS Adds an element object with a namespace

addProcessingInstruction Creates and adds a processing instruction

addProcessingInstructionObject Adds a processing instruction object

findElementByNameNS Returns an element with the specified namespace URI and local name

findElementByTagName Returns an element with the specified tag name

findElementsByNameNS Fills an array with all elements in the document with the specified
namespace URI and local name

findElementsByTagName Fills an array with all elements in the document with the specified tag
name

getElementByTagName Returns the first element with the specified tag name

getElementByTagNameNS Returns the first element with the specified namespace URI and local
name

getElementsByTagName Fills an array with all elements in the document with the specified tag
name

getElementsByTagNameNS Fills an array with all elements in the document with the specified
namespace URI and local name

parseFile Parses an XML document file

parseString Parses an XML document string

writeToFile Writes the XML representation of the document to a file

addComment
Signature addComment(text: String): JadeXMLComment updating;

The addComment method of the JadeXMLDocument class creates and adds the comment node specified in the
text parameter and returns a reference to the created JadeXMLComment node instance.

addCommentObject
Signature addCommentObject(comment: JadeXMLComment;

text: String): JadeXMLComment updating;

The addCommentObject method of the JadeXMLDocument class adds a comment object with the text specified
in the text parameter and returns a reference to the added JadeXMLComment object instance.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocument Class Chapter 1 294

EncycloSys2 - 2020.0.02

addDocumentType
Signature addDocumentType(name: String;

publicId: String;
systemId: String;
internalSubset: String): JadeXMLDocumentType updating;

The addDocumentType method of the JadeXMLDocument class creates and adds a document type node with
the specified parameter values and returns a reference to the created JadeXMLDocumentType node instance.

The addDocumentType method parameters are listed in the following table.

Parameter Description

name Name of the Document Type Definition (DTD)

publicId Public identifier of the external subset

systemId System identifier of the external subset

internalSubset Internal subset

addDocumentTypeObject
addDocumentTypeObject(documentType: JadeXMLDocumentType;

name: String;
publicId: String;
systemId: String;
internalSubset: String): JadeXMLDocumentType updating;

The addDocumentTypeObject method of the JadeXMLDocument class adds a document type object with the
specified parameter values and returns a reference to the added JadeXMLDocumentType object instance.

The addDocumentTypeObject method parameters are listed in the following table.

Parameter Description

name Name of the Document Type Definition (DTD)

publicId Public identifier of the external subset

systemId System identifier of the external subset

internalSubset Internal subset

addElement
Signature addElement(tagName: String): JadeXMLElement updating;

The addElement method of the JadeXMLDocument class creates and adds an element node with the tag name
specified in the tagName parameter and returns a reference to the created JadeXMLElement node instance.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocument Class Chapter 1 295

EncycloSys2 - 2020.0.02

addElementNS
Signature addElementNS(namespaceURI: String;

qualifiedName: String): JadeXMLElement updating;

The addElementNS method of the JadeXMLDocument class creates and adds an element node with the
namespace and qualified name specified in the namespaceURI and qualifiedName parameters, respectively,
and returns a reference to the created JadeXMLElement node instance.

addElementObject
Signature addElementObject(element: JadeXMLElement;

tagName: String): JadeXMLElement updating;

The addElementObject method of the JadeXMLDocument class adds an element object with the tag name
specified in the tagName parameter and returns a reference to the added JadeXMLElement object instance.

addElementObjectNS
Signature addElementObjectNS(element: JadeXMLElement;

namespaceURI: String;
qualifiedName: String): JadeXMLElement updating;

The addElementObjectNS method of the JadeXMLDocument class adds an element object with the namespace
and qualified name specified in the namespaceURI and qualifiedName parameters, respectively, and returns a
reference to the added JadeXMLElement object instance.

addProcessingInstruction
Signature addProcessingInstruction(target: String;

data: String): JadeXMLProcessingInstruction updating;

The addProcessingInstruction method of the JadeXMLDocument class creates and adds a processing
instruction node with the values specified in the target and data parameters, and returns a reference to the
created JadeXMLProcessingInstruction node instance.

addProcessingInstructionObject
Signature addProcessingInstructionObject(procInstr: JadeXMLProcessingInstruction;

target: String;
data: String): JadeXMLProcessingInstruction updating;

The addProcessingInstructionObject method of the JadeXMLDocument class adds a processing instruction
object with the values specified in the target and data parameters, and returns a reference to the added
JadeXMLProcessingInstruction object instance.

findElementByNameNS
Signature findElementByNameNS(namespaceURI: String;

localName: String): JadeXMLElement;

The findElementByNameNS method of the JadeXMLDocument class returns a reference to a JadeXMLElement
instance that has the namespace URI and local name specified in the namespaceURI and localName
parameters, respectively.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocument Class Chapter 1 296

EncycloSys2 - 2020.0.02

Note As the search uses the collection sequence, the located element may not be the first element with the
matching namespace URI and local name in the document sequence.

If you want to match any namespace URIs or any local names, specify an asterisk character ('*') in the
namespaceURI or localName parameter. Note, however, that if you specify "*" in the localName parameter, the
access method uses the document sequence to locate the requested elements rather than the collection
sequence that optimizes performance.

findElementByTagName
Signature findElementByTagName(tagName: String): JadeXMLElement;

The findElementByTagName method of the JadeXMLDocument class returns a reference to a
JadeXMLElement instance that has the tag name specified in the tagName parameter.

Note As the search uses the collection sequence, the located element may not be the first element with the
matching tag name in the document sequence.

If you want to match any tag names, specify an asterisk character ('*') in the tagName parameter. Note, however,
that if you specify "*" in the tagName parameter, the access method uses the document sequence to locate the
requested elements rather than the collection sequence that optimizes performance.

findElementsByNameNS
Signature findElementsByNameNS(namespaceURI: String;

localName: String;
elements: JadeXMLElementArray input);

The findElementsByNameNS method of the JadeXMLDocument class fills the elements array with all elements
that have the values specified in the namespaceURI and localName parameters, respectively.

Note As the search uses the collection sequence, the elements may not be in the document sequence.

If you want to match all namespace URIs or all local names, specify an asterisk character ('*') in the
namespaceURI or localName parameter. Note, however, that if you specify "*" in the localName parameter, the
access method uses the document sequence to locate the requested elements rather than the collection
sequence that optimizes performance.

findElementsByTagName
Signature findElementsByTagName(tagName: String;

elements: JadeXMLElementArray input);

The findElementsByTagName method of the JadeXMLDocument class fills the elements array with all elements
that have the value specified in the tagName parameter.

Note As the search uses the collection sequence, the elements may not be in the document sequence.

If you want to match all tag names, specify an asterisk character ('*') in the tagName parameter. Note, however,
that if you specify "*" in the tagName parameter, the access method uses the document sequence to locate the
requested elements rather than the collection sequence that optimizes performance.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocument Class Chapter 1 297

EncycloSys2 - 2020.0.02

getElementByTagName
Signature getElementByTagName(tagName: String): JadeXMLElement;

The getElementByTagName method of the JadeXMLDocument class returns a reference to the first
JadeXMLElement instance that has the tag name specified in the tagName parameter.

Tip To improve performance when the sequence is not important, use the findElementByTagName method to
retrieve the element more directly through a collection, by using the collection sequence.

getElementByTagNameNS
Signature getElementByTagNameNS(namespaceURI: String;

localName: String): JadeXMLElement;

The getElementByTagNameNS method of the JadeXMLDocument class returns a reference to the first
JadeXMLElement instance that has the namespace URI and local name specified in the namespaceURI and
localName parameters, respectively.

If you want to match all namespace URIs or local names, specify an asterisk character ('*') in the namespaceURI
or localName parameter.

Tip To improve performance when the sequence is not important, use the findElementByNameNS method to
retrieve the element more directly through a collection, by using the collection sequence.

getElementsByTagName
Signature getElementsByTagName(tagName: String;

elements: JadeXMLElementArray input);

The getElementsByTagName method of the JadeXMLDocument class fills the elements array with all elements
in document order (that is, using a preorder traversal) that have the value specified in the tagName parameter.

If you want to match all tags, specify an asterisk character ('*') in the tagName parameter.

Tip To improve performance when the sequence is not important, use the findElementsByTagName method to
retrieve elements more directly through a collection, by using the collection sequence.

getElementsByTagNameNS
Signature getElementsByTagNameNS(namespaceURI: String;

localName: String;
elements: JadeXMLElementArray input);

The getElementsByTagNameNS method of the JadeXMLDocument class fills the elements array with all
elements in document order (that is, using a preorder traversal) that have the values specified in the
namespaceURI and localName parameters, respectively.

If you want to match all namespace URIs or local names, specify an asterisk character ('*') in the namespaceURI
or localName parameter.

Tip To improve performance when the sequence is not important, use the findElementsByNameNS method to
retrieve elements more directly through a collection, by using the collection sequence.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocument Class Chapter 1 298

EncycloSys2 - 2020.0.02

parseFile
Signature parseFile(fileName: String) updating;

The parseFile method of the JadeXMLDocument class parses the XML document file specified in the fileName
parameter and creates a tree of nodes representing the document. (See also the JadeXMLDocumentParser
class parseDocumentFile method.)

Any existing child nodes in the document object are removed before the tree is created.

parseString
Signature parseString(inputDocument: String) updating;

The parseString method of the JadeXMLDocument class parses the XML document string specified in the
inputDocument parameter and creates a tree of nodes representing the document. (See also the
JadeXMLDocumentParser class parseDocumentString method.)

The following example shows the use of the parseString method.

vars
doc : JadeXMLDocument;

begin
create doc;
doc.parseString('<employee>John Smith</employee>');

end;

Any existing child nodes in the document object are removed before the tree is created.

writeToFile
Signature writeToFile(fileName: String);

The writeToFile method of the JadeXMLDocument class writes the XML representation of the document to the file
specified in the fileName parameter.

You can control the format of the output by setting the JadeXMLDocument class formatting properties of the
document object; for example, the endOfLine and indentString properties.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocumentParser Class Chapter 1 299

EncycloSys2 - 2020.0.02

JadeXMLDocumentParser Class
The JadeXMLDocumentParser class is the transient class that represents the interface for parsing XML
documents into a tree of objects.

The parser reads an XML document and creates a tree of object nodes that are instances of the JadeXMLNode
classes or user subclasses.

The JadeXMLDocumentParser class provides a more-flexible method of parsing document trees compared to
the parseFile and parseString methods of the JadeXMLDocument class. Because you can set up a mapping of
user subclasses to node classes, the JadeXMLDocumentParser class enables you to parse documents into
persistent trees that reside in user-specified map files.

For details about the methods defined in the JadeXMLDocumentParser class, see "JadeXMLDocumentParser
Methods", in the following section.

Inherits From: JadeXMLParser

Inherited By: (None)

JadeXMLDocumentParser Methods
The methods defined in the JadeXMLDocumentParser class are summarized in the following table.

Method Description

comment Receives notification of a comment

parseDocumentFile Parses an XML document file

parseDocumentString Parses an XML document string

processingInstruction Receives notification of a processing instruction

setClassMapping Sets the mapping of a JadeXMLNode class to a user subclass

startCDATA Receives notification of the start of DTD declarations

comment
Signature comment(text: String) updating, protected;

The comment event method of the JadeXMLDocumentParser class receives notification of an XML comment
specified in the characters in the text parameter.

The parser calls this event method (if implemented) to report comments anywhere in the XML document (that is,
inside or outside the root element).

parseDocumentFile
Signature parseDocumentFile(doc: JadeXMLDocument input;

fileName: String) updating;

The parseDocumentFile method of the JadeXMLDocumentParser class parses the XML document file specified
in the fileName parameter and creates a tree of nodes in the document object specified in the doc parameter.

Any existing child nodes in the document object are removed before the tree is created.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocumentParser Class Chapter 1 300

EncycloSys2 - 2020.0.02

parseDocumentString
Signature parseDocumentString(doc: JadeXMLDocument input;

str: String) updating;

The parseDocumentString method of the JadeXMLDocumentParser class parses the XML document string
specified in the str parameter and creates a tree of nodes in the document object specified in the doc parameter.

Any existing child nodes in the document object are removed before the tree is created.

processingInstruction
Signature processingInstruction(target: String;

data: String) updating, protected;

The processingInstruction event method of the JadeXMLDocumentParser class receives notification of a
processing instruction.

The processingInstruction event method parameters are listed in the following table.

Parameter Description

target The processing instruction target.

data The processing instruction data or null ("") if none was supplied. The data does not include
any whitespace separating it from the target.

The parser invokes this event method (if implemented) for each processing instruction that it locates.

Note Processing instructions can occur before or after the root element.

setClassMapping
Signature setClassMapping(nodeClass: Class;

mappedClass: Class) updating;

The setClassMapping method of the JadeXMLDocumentParser class enables you to specify the class of tree
instances created during parsing; for example:

setClassMapping(JadeXMLElement, MyElement);

This method sets the mapping of the JadeXMLNode class specified in the nodeClass parameter to the user-
specified class in the mappedClass parameter.

When creating persistent documents, an exception is raised if all concrete JadeXMLNode classes are not
mapped to user subclasses.

startCDATA
Signature startCDATA() updating, protected;

The startCDATA event method of the JadeXMLDocumentParser class receives notification of the start of a
CDATA section.

The contents of the CDATA section are reported through the regular characters event method.

Encyclopaedia of Classes
(Volume 2)

JadeXMLDocumentType Class Chapter 1 301

EncycloSys2 - 2020.0.02

JadeXMLDocumentType Class
The JadeXMLDocumentType class represents the document type declaration in an XML document tree. A
reference to the document type (if the document has one) is stored in the docType property of the
JadeXMLDocument class.

For details about the properties defined in the JadeXMLDocumentType class, see "JadeXMLDocumentType
Properties", in the following section.

Inherits From: JadeXMLNode

Inherited By: (None)

JadeXMLDocumentType Properties
The properties defined in the JadeXMLDocumentType class are summarized in the following table.

Property Contains the …

internalSubset Internal subset

name Name of the Document Type Definition (DTD)

publicId Public identifier of the external subset

systemId System identifier of the external subset

internalSubset
Type: String

The internalSubset property of the JadeXMLDocumentType class contains the internal subset of the document
type, or null ("") if there is no internal subset. When building a document using the parser, this property is set to
null ("").

name
Type: String

The name property of the JadeXMLDocumentType class contains the name of the Document Type Definition
(DTD), which is the name immediately following the DOCTYPE keyword in the XML document.

publicId
Type: String

The publicId property of the JadeXMLDocumentType class contains the public identifier of the external subset.

systemId
Type: String

The systemId property of the JadeXMLDocumentType class contains the system identifier of the external subset.

Encyclopaedia of Classes
(Volume 2)

JadeXMLElement Class Chapter 1 302

EncycloSys2 - 2020.0.02

JadeXMLElement Class
The JadeXMLElement class represents an XML element in a document tree. An element can have attributes,
child nodes, and textual content. For an example of using methods defined in the JadeXMLElement class to
create an XML document, see "Creating XML Tree Documents", in Chapter 12 of the JADE Developer’s
Reference.

Note As the getAllElementsByTagNameNS and getAllElementsByTagName methods scan sequentially to
locate all requested elements, they always return requested elements in document sequence. To improve
performance, you can use the findAllElementsByNameNS and findAllElementsByTagName methods to retrieve
elements more directly through a collection, using the collection sequence. JADE fully supports the use of a
mixture of the document and collection sequence methods to locate the requested elements. The find methods
may locate the elements in a different sequence from the get methods.

The collection sequence methods provide a performance boost only if a localName or tagName parameter value
is explicitly specified in the calling parameters. If you specify "*" in the localName or tagName parameter, the
access method reverts to the functionality and performance of the document sequence methods to locate the
requested elements.

For details about the properties and methods defined in the JadeXMLElement class, see "JadeXMLElement
Properties" and "JadeXMLElement Methods", in the following sections.

Inherits From: JadeXMLNode

Inherited By: (None)

JadeXMLElement Properties
The properties defined in the JadeXMLElement class are summarized in the following table.

Property Contains the …

attributes Array of attributes of the element

localName Local name (without the prefix) of the element

namespaceURI Namespace URI of the element

tagName Qualified name (with the prefix) of the element

textData Text data of a text-only element

attributes
Type: JadeXMLAttributeArray

The read-only attributes property of the JadeXMLElement class contains a reference to an array of attributes of
the element.

localName
Type: String

The localName property of the JadeXMLElement class contains the local name (without a prefix) of the element.

Encyclopaedia of Classes
(Volume 2)

JadeXMLElement Class Chapter 1 303

EncycloSys2 - 2020.0.02

namespaceURI
Type: String

The namespaceURI property of the JadeXMLElement class contains the namespace Uniform Resource Identifier
(URI) of the element or it contains null ("") if the element has no namespace URI.

tagName
Type: String

The tagName property of the JadeXMLElement class contains the qualified name (with the prefix) of the element.

textData
Type: String

The read-only textData property of the JadeXMLElement class contains the text data of a text-only element.

Note As an optimization, an element that contains only a single block of text can have its text content stored in
the textData property, rather than in a separate child text node.

JadeXMLElement Methods
The methods defined in the JadeXMLElement class are summarized in the following table.

Method Description

addAttribute Creates and adds an attribute

addAttributeNS Creates and adds an attribute with a namespace

addAttributeObject Adds an attribute object

addAttributeObjectNS Adds an attribute object with a namespace

addCDATA Creates and adds a CDATA node

addCDATAObject Adds a CDATA object

addComment Creates and adds a comment

addCommentObject Adds a comment object

addElement Creates and adds an element

addElementNS Creates and adds an element with a namespace

addElementObject Adds an element object

addElementObjectNS Adds an element object with a namespace

addProcessingInstruction Creates and adds a processing instruction

addProcessingInstructionObject Adds a processing instruction object

addText Creates and adds a text node

addTextObject Adds a text object

Encyclopaedia of Classes
(Volume 2)

JadeXMLElement Class Chapter 1 304

EncycloSys2 - 2020.0.02

Method Description

findAllElementsByNameNS Fills an array with all descendant elements with the specified namespace
URI and local name

findAllElementsByTagName Fills an array with all descendant elements with the specified tag name

getAllElementsByTagName Fills an array with all descendant elements with the specified tag name

getAllElementsByTagNameNS Fills an array with all descendant elements with the specified namespace
URI and local name

getAttributeByName Returns the attribute with the specified name

getAttributeByNameNS Returns the attribute with the specified namespace URI and local name

getElementByTagName Returns the first immediate child element with the specified tag name

getElementByTagNameNS Returns the first immediate child element with the specified namespace
URI and local name

getElementsByTagName Fills an array with the immediate child elements with the specified tag
name

getElementsByTagNameNS Fills an array with the immediate child elements with the specified
namespace URI and local name

namespacePrefix Returns the namespace prefix

parentElement Returns the parent element of the element

setText Sets the text content of the element

text Returns the text content of the element

addAttribute
Signature addAttribute(name: String;

value: String): JadeXMLAttribute updating;

The addAttribute method of the JadeXMLElement class creates and adds an attribute node with the values
specified in the name and value parameters and returns a reference to the created JadeXMLAttribute node
instance.

addAttributeNS
Signature addAttributeNS(namespaceURI: String;

qualifiedName: String;
value: String): JadeXMLAttribute updating;

The addAttributeNS method of the JadeXMLElement class creates and adds an attribute node with the values
specified in the namespaceURI, qualifiedName, and value parameters and returns a reference to the created
JadeXMLAttribute node instance.

Encyclopaedia of Classes
(Volume 2)

JadeXMLElement Class Chapter 1 305

EncycloSys2 - 2020.0.02

addAttributeObject
Signature addAttributeObject(attribute: JadeXMLAttribute;

name: String;
value: String): JadeXMLAttribute updating;

The addAttributeObject method of the JadeXMLElement class adds an attribute object with the values specified
in the name and value parameters and returns a reference to the added JadeXMLAttribute object instance.

addAttributeObjectNS
Signature addAttributeObjectNS(attribute: JadeXMLAttribute;

namespaceURI: String;
qualifiedName: String;
value: String): JadeXMLAttribute updating;

The addAttributeObjectNS method of the JadeXMLElement class adds an attribute object with the values
specified in the namespaceURI, qualifiedName, and value parameters and returns a reference to the added
JadeXMLAttribute object instance.

addCDATA
Signature addCDATA(data: String): JadeXMLCDATA updating

The addCDATA method of the JadeXMLElement class creates and adds a CDATA node with the value specified
in the data parameter and returns a reference to the created JadeXMLCDATA node instance.

addCDATAObject
Signature addCDATAObject(cdata: JadeXMLCDATA;

data: String): JadeXMLCDATA updating

The addCDATAObject method of the JadeXMLElement class adds a CDATA object with the value specified in
the data parameter and returns a reference to the added JadeXMLCDATA object instance.

addComment
Signature addComment(text: String): JadeXMLComment updating;

The addComment method of the JadeXMLElement class creates and adds a comment node with the value
specified in the text parameter and returns a reference to the created JadeXMLComment node instance.

addCommentObject
Signature addCommentObject(comment: JadeXMLComment;

text: String): JadeXMLComment updating;

The addCommentObject method of the JadeXMLElement class adds a comment object with the value specified
in the text parameter and returns a reference to the added JadeXMLComment object instance.

Encyclopaedia of Classes
(Volume 2)

JadeXMLElement Class Chapter 1 306

EncycloSys2 - 2020.0.02

addElement
Signature addElement(tagName: String): JadeXMLElement updating;

The addElement method of the JadeXMLElement class adds a new JadeXMLElement node with the value
specified in the tagName parameter to the receiver element and returns a reference to the created
JadeXMLElement instance.

addElementNS
Signature addElementNS(namespaceURI: String;

qualifiedName: String): JadeXMLElement updating;

The addElementNS method of the JadeXMLElement class adds a new JadeXMLElement node with the values
specified in the namespaceURI and qualifiedName parameters to the receiver element and returns a reference
to the created JadeXMLElement instance.

addElementObject
Signature addElementObject(element: JadeXMLElement;

tagName: String): JadeXMLElement updating;

The addElementObject method of the JadeXMLElement class adds a new JadeXMLElement object with the
value specified in the tagName parameter to the receiver element and returns a reference to the added
JadeXMLElement object instance.

addElementObjectNS
Signature addElementObjectNS(element: JadeXMLElement;

namespaceURI: String;
qualifiedName: String): JadeXMLElement updating;

The addElementObjectNS method of the JadeXMLElement class adds a new JadeXMLElement object with the
values specified in the namespaceURI and qualifiedName parameters to the receiver element and returns a
reference to the added JadeXMLElement object instance.

addProcessingInstruction
Signature addProcessingInstruction(target: String;

data: String): JadeXMLProcessingInstruction updating;

The addProcessingInstruction method of the JadeXMLElement class creates and adds a processing instruction
node with the values specified in the target and data parameters and returns a reference to the created
JadeXMLProcessingInstruction node instance.

addProcessingInstructionObject
Signature addProcessingInstructionObject(procInstr: JadeXMLProcessingInstruction;

target: String;
data: String): JadeXMLProcessingInstruction updating;

The addProcessingInstructionObject method of the JadeXMLElement class adds a processing instruction
object with the values specified in the target and data parameters and returns a reference to the added
JadeXMLProcessingInstruction object instance.

Encyclopaedia of Classes
(Volume 2)

JadeXMLElement Class Chapter 1 307

EncycloSys2 - 2020.0.02

addText
Signature addText(data: String): JadeXMLText updating;

The addText method of the JadeXMLElement class creates and adds a text node with the value specified in the
data parameter and returns a reference to the created JadeXMLText node instance.

addTextObject
Signature addTextObject(text: JadeXMLText;

data: String): JadeXMLText updating;

The addTextObject method of the JadeXMLElement class adds a text object with the value specified in the data
parameter and returns a reference to the added JadeXMLText object instance.

findAllElementsByNameNS
Signature findAllElementsByNameNS(namespaceURI: String;

localName: String;
elements: JadeXMLElementArray input);

The findAllElementsByNameNS method of the JadeXMLElement class fills the elements array with all
descendant elements that have the values specified in the namespaceURI and localName parameters,
respectively.

Note As the search uses the collection sequence, the elements may not be in the document sequence.

If you want to match all namespaces or local names, specify an asterisk character ('*') in the namespaceURI or
localName parameter. Note, however, that if you specify "*" in the localName parameter, the access method
uses the document sequence to locate the requested elements rather than the collection sequence that optimizes
performance.

findAllElementsByTagName
Signature findAllElementsByTagName(tagName: String;

elements: JadeXMLElementArray input);

The findAllElementsByTagName method of the JadeXMLElement class fills the elements array with all
descendant elements that have the value specified in the tagName parameter.

Note As the search uses the collection sequence, the elements may not be in the document sequence.

If you want to match all tag names, specify an asterisk character ('*') in the tagName parameter. Note, however,
that if you specify "*" in the tagName parameter, the access method uses the document sequence to locate the
requested elements rather than the collection sequence that optimizes performance.

getAllElementsByTagName
Signature getAllElementsByTagName(tagName: String;

elements: JadeXMLElementArray input);

The getAllElementsByTagName method of the JadeXMLElement class fills the elements array with all
descendant elements in document order (that is, using a preorder traversal) that have the value specified in the
tagName parameter.

Encyclopaedia of Classes
(Volume 2)

JadeXMLElement Class Chapter 1 308

EncycloSys2 - 2020.0.02

If you want to match all tags, specify an asterisk character ('*') in the tagName parameter.

Tip To improve performance when the sequence is not important, use the findAllElementsByTagName method
to retrieve elements more directly through a collection, by using the collection sequence.

getAllElementsByTagNameNS
Signature getAllElementsByTagNameNS(namespaceURI: String;

localName: String;
elements: JadeXMLElementArray input);

The getAllElementsByTagNameNS method of the JadeXMLElement class fills the elements array with all
descendant elements in document order (that is, using a preorder traversal) that have the values specified in the
namespaceURI and localName parameters, respectively.

If you want to match all namespaces or local names, specify an asterisk character ('*') in the namespaceURI or
localName parameter.

Tip To improve performance when the sequence is not important, use the findAllElementsByNameNS method
to retrieve elements more directly through a collection, by using the collection sequence.

getAttributeByName
Signature getAttributeByName(name: String): JadeXMLAttribute;

The getAttributeByName method of the JadeXMLElement class returns a reference to the JadeXMLAttribute
node instance that has the name specified in the name parameter.

getAttributeByNameNS
Signature addAttributeByNameNS(namespaceURI: String;

localName: String): JadeXMLAttribute;

The addAttributeByNameNS method of the JadeXMLElement class returns a reference to the
JadeXMLAttribute node instance that has the namespace URI and local name specified in the namespaceURI
and localName parameters, respectively.

getElementByTagName
Signature getElementByTagName(tagName: String): JadeXMLElement;

The getElementByTagName method of the JadeXMLElement class returns a reference to the first immediate
child JadeXMLElement node instance that has the tag name specified in the tagName parameter. If you want to
return the first child element, specify an asterisk character ('*') in the tagName parameter.

getElementByTagNameNS
Signature getElementByTagNameNS(namespaceURI: String;

localName: String): JadeXMLElement;

The getElementByTagNameNS method of the JadeXMLElement class returns a reference to the first immediate
child JadeXMLElement node instance that has the namespace URI and local name specified in the
namespaceURI and localName parameters, respectively.

Encyclopaedia of Classes
(Volume 2)

JadeXMLElement Class Chapter 1 309

EncycloSys2 - 2020.0.02

If you want to match all namespaces or local names, specify an asterisk character ('*') in the namespaceURI or
localName parameter.

getElementsByTagName
Signature getElementsByTagName(tagName: String;

elements: JadeXMLElementArray input);

The getElementsByTagName method of the JadeXMLElement class fills the elements array with the immediate
child elements in document order (that is, using a preorder traversal) that have the value specified in the tagName
parameter.

If you want to match all tags, specify an asterisk character ('*') in the tagName parameter.

getElementsByTagNameNS
Signature getElementsByTagNameNS(namespaceURI: String;

localName: String;
elements: JadeXMLElementArray input);

The getElementsByTagNameNS method of the JadeXMLElement class fills the elements array with the
immediate child elements in document order (that is, using a preorder traversal) that have the values specified in
the namespaceURI and localName parameters, respectively.

If you want to match all namespaces or local names, specify an asterisk character ('*') in the namespaceURI or
localName parameter.

namespacePrefix
Signature namespacePrefix(): String;

The namespacePrefix method of the JadeXMLElement class returns the namespace prefix of the element or it
returns null ("") if the namespace is not specified.

parentElement
Signature parentElement(): JadeXMLElement;

The parentElement method of the JadeXMLElement class returns the parent element of the receiver element.

All elements except the root element have a parent element reference.

setText
Signature setText(data: String) updating;

The setText method of the JadeXMLElement class sets the text of the receiver element with the text specified in
the data parameter and deletes all existing child elements.

text
Signature text(): String;

The text method of the JadeXMLElement class returns the text content of the receiver element. The returned text
is the value of the textData property if the element has no children or it is the concatenated text of all immediate
JadeXMLText and JadeXMLCDATA child nodes.

Encyclopaedia of Classes
(Volume 2)

JadeXMLException Class Chapter 1 310

EncycloSys2 - 2020.0.02

JadeXMLException Class
The JadeXMLException class is the transient class that defines behavior for exceptions that occur as a result of
XML processing.

For an example of using methods defined in the JadeXMLException class to check that the XML document files
are well-formed, see "Handling XML Tree Exceptions", in Chapter 12 of the JADE Developer’s Reference.

The Exception class errorItem and extendedErrorText properties and the JadeXMLException class properties
(for details, see "JadeXMLException Properties", in the following section) are used to describe the XML
processing exception in more detail. For details about Web service XML exceptions, see the error messages in
the range 8900 through 8999 in "Error Messages and System Messages", in the JADEMsgs.pdf file. See also the
JadeXMLParser class.

Inherits From: NormalException

Inherited By: (None)

JadeXMLException Class Constants
The constants provided by the JadeXMLException class are listed in the following table.

Constant Value Returned when you attempt to…

CannotParsePersistent 8910 Parse an XML document into a persistent object tree using the
parseFile or parseFile method of the JadeXMLDocument class.
This is not allowed. To parse persistent documents, you must use
the JadeXMLDocumentParser class and set up a mapping of
node.

DocTypeAlreadyDefined 8903 Add a document type declaration to an XML document and one
exists already. An XML document can have only one document
type declaration.

InvalidClassMapping 8909 Set an invalid mapping for a JadeXMLNode class. The mapping
is used when instances are created during the parsing of an XML
document.

InvalidHierarchyRequest 8905 Add a node to an XML document at an invalid position; for
example, moving an element to before a document or attribute.

NullNode 8904 Pass a null node reference to an XML processing method and the
parameter cannot be null; for example, specifying a null value as
the destination position when moving a node in the document
tree.

ParserCreateFailed 8900 Create an instance of the XML parsing engine that cannot be
created.

ParserError 8901 Parse an XML document and an error occurs; for example, the
document is not well-formed.

ParserNodeMismatch 8908 Access an XML parser object on a different node to the one that
created the parser; for example, when a parser is opened on a
client node and a server method attempts to use the parser, this
exception is raised.

Encyclopaedia of Classes
(Volume 2)

JadeXMLException Class Chapter 1 311

EncycloSys2 - 2020.0.02

Constant Value Returned when you attempt to…

RootElementAlreadyDefined 8902 Add a root (top-level) element to an XML document and one
exists already. An XML document must have a single root
element.

StringToUTF8Failed 8906 Parse an XML document that cannot be converted from JADE
native format to UTF8 format.

UTF8ToStringFailed 8907 Parse an XML document that cannot be converted from UTF8
format to JADE native format.

JadeXMLException Properties
The properties defined in the JadeXMLException class are summarized in the following table.

Property Contains the…

columnNumber Column number of text where the exception occurred

fileName Name of the file where the exception occurred

lineNumber Line number of text where the exception occurred

columnNumber
Type: Integer

The columnNumber property of the JadeXMLException class contains the column number of the text where the
exception occurred or it contains -1 if no column number is available.

The first column in a line is position 1.

fileName
Type: String

The fileName property of the JadeXMLException class contains the name of the file in which the exception
occurred or it contains null ("") if no file name is available.

lineNumber
Type: Integer

The lineNumber property of the JadeXMLException class contains the line number of the text where the
exception occurred or it contains -1 if no line number is available.

The first line in an XML document is position 1.

Encyclopaedia of Classes
(Volume 2)

JadeXMLNode Class Chapter 1 312

EncycloSys2 - 2020.0.02

JadeXMLNode Class
The JadeXMLNode class is the abstract superclass of all nodes in an XML document tree. A node has an owning
document and it can have child nodes and a parent node.

A node can be copied, moved, or removed, and it can have its XML representation output. (See also "Using the
XML Tree Model", in Chapter 12 of the JADE Developer’s Reference.)

For an example of using methods defined in the JadeXMLNode class to search the library document, list all books
with a specified author, read a document, and print the names of the elements in that document, indented to show
the hierarchy, see "Retrieving Information from XML Tree Documents", in Chapter 12 of the JADE Developer’s
Reference.

For details about the properties and methods defined in the JadeXMLNode class, see "JadeXMLNode Properties"
and "JadeXMLNode Methods", in the following sections.

For more details and detailed examples, see the XML in JADE White Paper.

Inherits From: Object

Inherited By: JadeXMLAttribute, JadeXMLCharacterData, JadeXMLDocument, JadeXMLDocumentType,
JadeXMLElement, JadeXMLProcessingInstruction

JadeXMLNode Properties
The properties defined in the JadeXMLNode class are summarized in the following table.

Property Contains…

childNodes Array of children of the node

document Owning document of the node

parentNode Parent of the node

childNodes
Type: JadeXMLNodeArray

The read-only childNodes property of the JadeXMLNode class contains a reference to an array of children of the
receiver node.

document
Type: JadeXMLDocument

The read-only document property of the JadeXMLNode class contains a reference to the owning document of the
receiver node.

parentNode
Type: JadeXMLNode

The read-only parent property of the JadeXMLNode class contains a reference to the parent of the receiver node.

Encyclopaedia of Classes
(Volume 2)

JadeXMLNode Class Chapter 1 313

EncycloSys2 - 2020.0.02

JadeXMLNode Methods
The methods defined in the JadeXMLNode class are summarized in the following table.

Method Description

copyAfter Copies the node and inserts it after the specified node

copyAsChildOf Copies the node and inserts it as a child of the specified node

copyBefore Copies the node and inserts it before the specified node

descendsFrom Specifies whether the specified XML node is an ancestor of the receiver JadeXMLNode
class

moveAfter Moves the node to the position after the specified node

moveAsChildOf Moves the node to the position as a child of the specified node

moveBefore Moves the node to the position before the specified node

remove Removes the node from the XML tree and then deletes the node

writeToString Writes the node to a string

copyAfter
Signature copyAfter(siblingNode: JadeXMLNode input): JadeXMLNode;

The copyAfter method of the JadeXMLNode class creates a copy of the node and all of its descendant nodes,
inserts it into the XML tree after the node specified in the siblingNode parameter, and returns a reference to the
created JadeXMLNode node instance.

copyAsChildOf
Signature copyAsChildOf(parentNode: JadeXMLNode input): JadeXMLNode;

The copyAsChildOf method of the JadeXMLNode class creates a copy of the node and all of its descendant
nodes, inserts it into the XML tree as a child of the node specified in the parentNode parameter, and returns a
reference to the created JadeXMLNode node instance.

copyBefore
Signature copyBefore(siblingNode: JadeXMLNode input): JadeXMLNode;

The copyBefore method of the JadeXMLNode class creates a copy of the node and all of its descendant nodes,
inserts it into the XML tree before the node specified in the siblingNode parameter, and returns a reference to the
created JadeXMLNode node instance.

descendsFrom
Signature descendsFrom(nod: JadeXMLNode): Boolean;

The descendsFrom method of the JadeXMLNode class returns true if the JadeXMLNode node specified in the
nod parameter is an ancestor of the receiver JadeXMLNode object.

Encyclopaedia of Classes
(Volume 2)

JadeXMLNode Class Chapter 1 314

EncycloSys2 - 2020.0.02

moveAfter
Signature moveAfter(siblingNode: JadeXMLNode input): JadeXMLNode updating;

The moveAfter method of the JadeXMLNode class moves the node to the position in the XML tree after the node
specified in the siblingNode parameter, and returns a reference to the moved JadeXMLNode node instance.

moveAsChildOf
Signature moveAsChildOf(parentNode: JadeXMLNode input): JadeXMLNode updating;

The moveAsChildOf method of the JadeXMLNode class moves the node to the position in the XML tree as a
child of the node specified in the parentNode parameter, and returns a reference to the moved JadeXMLNode
node instance.

moveBefore
Signature moveBefore(siblingNode: JadeXMLNode input): JadeXMLNode updating;

The moveBefore method of the JadeXMLNode class moves the node to the position in the XML tree before the
node specified in the siblingNode parameter, and returns a reference to the moved JadeXMLNode node
instance.

remove
Signature remove() updating;

The remove method of the JadeXMLNode class removes the node from the XML tree and then deletes the node
instance.

writeToString
Signature writeToString(): String;

The writeToString method of the JadeXMLNode class writes the XML representation of the node to a string and
then returns the string.

You can control the format of the output by setting the JadeXMLDocument class formatting properties of the
document object; for example, the endOfLine and indentString properties.

The following example parses a simple document string and formats the print output.

write1();
vars

doc : JadeXMLDocument;
begin

create doc;
doc.indentString := ' ';
doc.parseString('<name><first>John</first><last>Smith</last></name>');
write doc.writeToString;
delete doc;

end;

Encyclopaedia of Classes
(Volume 2)

JadeXMLNode Class Chapter 1 315

EncycloSys2 - 2020.0.02

The output from the write1 method shown in the previous example is as follows.

<?xml version="1.0"?>
<name>

<first>John</first>
<last>Smith</last>

</name>

Encyclopaedia of Classes
(Volume 2)

JadeXMLParser Class Chapter 1 316

EncycloSys2 - 2020.0.02

JadeXMLParser Class
The JadeXMLParser class is the abstract transient class that defines behavior for parsing XML documents. The
parser reads an XML document and reports basic document-related events; for example, the start and end of
elements and character data. (See also "JADE XML Parser Model", in Chapter 12 of the JADE Developer’s
Reference.)

The JADE XML Parser model reads an XML document from beginning to end. As it encounters start-tags, end-
tags, text, comments, and so on, it notifies the client application by calling event handler methods defined by the
application.

Define a subclass of the JadeXMLParser class in your application and implement callback methods for events
about which you require notification. The application creates an instance of the subclass and then calls the
parseFile or parseString method to parse an XML document.

The parser raises a JadeXMLException object if it detects any errors resulting from XML documents that are not
well-formed.

Note The order of events is very important, and mirrors the order of information in the document itself. For
example, all contents of a JadeXMLElement (that is, character data, processing instructions, and any sub-
elements) appear in order between the startElement event and the corresponding endElement event.

For examples of using methods defined in the JadeXMLParser class to parse a document and print the names of
the elements in that document, showing the hierarchy, and to check that documents are well-formed, see "Parsing
an XML Document" and "Handling XML Parser Exceptions", respectively, in Chapter 12 of the JADE Developer’s
Reference.

For details about the methods defined in the JadeXMLParser class, see "JadeXMLParser Methods", in the
following section. See also "Parsing an XML Tree Document" and "Parsing an XML Document", in Chapter 12 of
the JADE Developer’s Reference.

Inherits From: Object

Inherited By: JadeXMLDocumentParser

JadeXMLParser Methods
The methods defined in the JadeXMLParser class are summarized in the following table.

Method Description

characters Receives notification of character data

columnNumber Returns the column number at which the current document event ends

comment Receives notification of a comment

endCDATA Receives notification of the end of a CDATA section

endDTD Receives notification of the end of DTD declarations

endElement Receives notification of the end of an element

fileName Returns the file name for the current document event

getAttribute Retrieves the attribute with the specified index

getAttributeValueByName Retrieves the value of the attribute with the specified qualified name

Encyclopaedia of Classes
(Volume 2)

JadeXMLParser Class Chapter 1 317

EncycloSys2 - 2020.0.02

Method Description

getAttributeValueByNameNS Retrieves the value of the attribute with the specified namespace URI and
local name

lineNumber Returns the line number at which the current document event ends

parseFile Parses the specified XML document file

parseString Parses the specified XML document string

processingInstruction Receives notification of a processing instruction

startCDATA Receives notification of the start of a CDATA section

startDTD Receives notification of the start of DTD declarations

startElement Receives notification of the beginning of an element

characters
Signature characters(text: String);

The characters event method of the JadeXMLParser class receives notification of the character data specified in
the text parameter.

The parser calls this event method (if implemented) to report each chunk of character data. The parser may return
all contiguous character data in a single chunk or it may split it into several chunks.

columnNumber
Signature columnNumber(): Integer;

The columnNumber method of the JadeXMLParser class returns the number of the column at which the current
document event ends.

Note This is the column number of the first character after the text associated with the document event. The first
column in a line is position 1.

If the column number is not available, -1 is returned.

comment
Signature comment(text: String);

The comment event method of the JadeXMLParser class receives notification of an XML comment specified in
the characters in the text parameter.

The parser calls this event method (if implemented) to report comments anywhere in the XML document (that is,
inside or outside the root element).

endCDATA
Signature endCDATA();

The endCDATA event method of the JadeXMLParser class receives notification of the end of a CDATA section.

Encyclopaedia of Classes
(Volume 2)

JadeXMLParser Class Chapter 1 318

EncycloSys2 - 2020.0.02

endDTD
Signature endDTD();

The endDTD event method of the JadeXMLParser class receives notification of the end of DTD declarations.

The parser invokes this event method (if implemented) at the end of the DOCTYPE declaration. If the document
has no DOCTYPE declaration, this method is not invoked.

endElement
Signature endElement(namespaceURI: String;

localName: String;
qualifiedName: String);

The endElement event method of the JadeXMLParser class receives notification of the end of an element. The
endElement event method parameters are listed in the following table.

Parameter Description

namespaceURI Namespace URI or null ("") if the element has no namespace URI

localName Local name (without the prefix)

qualifiedName Qualified name (with the prefix)

The parser invokes this event method (if implemented) at the end of every element in the XML document.

There is a corresponding startElement event method for each endElement event, even when the element is
empty.

fileName
Signature fileName(): String;

The fileName method of the JadeXMLParser class returns the file name for the current document event or null
("") if it is not available.

getAttribute
Signature getAttribute(index: Integer;

namespaceURI: String output;
localName: String output;
qualifiedName: String output;
type: String output;
value: String output): Boolean;

The getAttribute method of the JadeXMLParser class retrieves the attribute with the value specified in the index
parameter. The getAttribute method parameters are listed in the following table.

Parameter Description

index The index (starting from 1)

namespaceURI Namespace URI or null ("") if the name has no namespace URI

Encyclopaedia of Classes
(Volume 2)

JadeXMLParser Class Chapter 1 319

EncycloSys2 - 2020.0.02

Parameter Description

localName Local name (without the prefix)

qualifiedName Qualified name (with the prefix)

type Reserved for future use

value The value of the attribute

The getAttribute method returns true if the specified index is in range or it returns false if it is not in range.

The number of attributes attached to the element is passed as a parameter to the startElement event method.

The getAttribute method returns valid results only during the scope of the startElement method invocation.

getAttributeValueByName
Signature getAttributeValueByName(qualifiedName: String;

value: String output): Boolean;

The getAttributeValueByName method of the JadeXMLParser class retrieves the value of the attribute with the
qualified name specified in the qualifiedName parameter.

The getAttributeValueByName method parameters are listed in the following table.

Parameter Description

qualifiedName The qualified name (with the prefix)

value The value of the attribute

The getAttributeValueByName method returns true if the specified name was found or it returns false if it is not
found.

This method returns valid results only during the scope of the startElement method invocation.

getAttributeValueByNameNS
Signature getAttributeValueByNameNS(namespaceURI: String;

localName: String;
value: String output): Boolean;

The getAttributeValueByNameNS method of the JadeXMLParser class retrieves the value of the attribute with
the namespace URI and local name specified in the namespaceURI and localName parameters, respectively.

The getAttributeValueByName method parameters are listed in the following table.

Parameter Description

namespaceURI Namespace URI or null ("") if the name has no namespace URI

localName The local name (without the prefix)

value The value of the attribute

The getAttributeValueByNameNS method returns true if the specified name was found or it returns false if it is
not found. This method returns valid results only during the scope of the startElement method invocation.

Encyclopaedia of Classes
(Volume 2)

JadeXMLParser Class Chapter 1 320

EncycloSys2 - 2020.0.02

lineNumber
Signature lineNumber(): Integer;

The lineNumber method of the JadeXMLParser class returns the number of the line at which the current
document event ends.

Note This is the line position of the first character after the text associated with the document event. The first line
in a document is position 1.

If the line number is not available, -1 is returned.

parseFile
Signature parseFile(fileName: String);

The parseFile method of the JadeXMLParser class parses the XML document file specified by the fileName
parameter. This method is synchronous, and it will not return until parsing has ended. An application in which you
may require early termination of parsing should raise an exception.

Note As applications cannot invoke this method while a parse operation is in progress, create a new
JadeXMLParser object instead for each nested XML document. When a parse is complete, the application can
reuse the same JadeXMLParser object.

During the parse operation, the JADE Parser provides information about the XML document through the
implemented callback methods.

parseString
Signature parseString(str: String

isFinal: ParamListType);

The parseString method of the JadeXMLParser class parses the XML document string (or the next part of the
document string) specified in the str parameter. The optional isFinal parameter is a Boolean parameter (which is
true by default) that informs the parser that this is the last piece of the document. The following example shows the
use of the parseString method.

vars
parser : MyDocXMLParser;

begin
create parser transient;
assertFalse(parser.foundEntity);
parser.parseString('<DocEg></DocEg>', true);
assertTrue(parser.foundEntity);
assertEquals("Doc", parser.entityValue);

epilog
delete parser;

end;

This method is synchronous, and it will not return until parsing has ended. An application in which you may
require early termination of parsing should raise an exception.

Encyclopaedia of Classes
(Volume 2)

JadeXMLParser Class Chapter 1 321

EncycloSys2 - 2020.0.02

Note As applications cannot invoke this method while a parse operation is in progress, create a new
JadeXMLParser object instead for each nested XML document. When a parse is complete, the application can
reuse the same JadeXMLParser object.

During the parse operation, the JADE Parser provides information about the XML document through the
implemented callback methods.

processingInstruction
Signature processingInstruction(target: String;

data String);

The processingInstruction event method of the JadeXMLParser class receives notification of a processing
instruction.

The processingInstruction event method parameters are listed in the following table.

Parameter Description

target The processing instruction target.

data The processing instruction data or null ("") if none was supplied. The data does not include
any whitespace separating it from the target.

The parser invokes this event method (if implemented) for each processing instruction that it locates.

Note Processing instructions can occur before or after the root element.

startCDATA
Signature startCDATA();

The startCDATA event method of the JadeXMLParser class receives notification of the start of a CDATA section.
The contents of the CDATA section are reported through the regular characters event method.

startDTD
Signature startDTD(name: String;

publicId: String;
systemId: String);

The startDTD event method of the JadeXMLParser class receives notification of the start of DTD declarations, if
any. The startDTD event method parameters are listed in the following table.

Parameter Description

name Document-type name

publicId Declared public identifier for the external DTD subset or null ("") if none was declared

systemId Declared system identifier for the external DTD subset or null ("") if none was declared

The parser invokes this method (if implemented) at the beginning of the DOCTYPE declaration. If the document
has no DOCTYPE declaration, this method is not invoked.

Encyclopaedia of Classes
(Volume 2)

JadeXMLParser Class Chapter 1 322

EncycloSys2 - 2020.0.02

startElement
Signature startElement(namespaceURI: String;

localName: String;
qualifiedName: String;
attributeCount: Integer);

The startElement event method of the JadeXMLParser class receives notification of the beginning of an element.
The startElement event method parameters are listed in the following table.

Parameter Description

namespaceURI Namespace URI or null ("") if the element has no namespace URI.

localName Local name (without the prefix).

qualifiedName Qualified name (with the prefix).

attributeCount Number of attributes attached to the element. You can retrieve attributes by calling the get
attribute methods (that is, the getAttribute, getAttributeValueByName, or
getAttributeValueByNameNS method) from within the startElement method.

The parser invokes this method (if implemented) at the beginning of every element in the XML document.

There is a corresponding endElement event for every startElement event (even when the element is empty).

All of the content of an element is reported, in order, before the corresponding endElement event.

Encyclopaedia of Classes
(Volume 2)

JadeXMLProcessingInstruction Class Chapter 1 323

EncycloSys2 - 2020.0.02

JadeXMLProcessingInstruction Class
The JadeXMLProcessingInstruction class represents an XML processing instruction (that is, an application-
specific instruction on how to handle an XML document after the document has been parsed).

For details about the properties defined in the JadeXMLProcessingInstruction class, see
"JadeXMLProcessingInstruction Properties", in the following section.

Inherits From: JadeXMLNode

Inherited By: (None)

JadeXMLProcessingInstruction Properties
The properties defined in the JadeXMLProcessingInstruction class are summarized in the following table.

Property Contains the …

data Content of the processing instruction

target Target of the processing instruction

data
Type: String

The data property of the JadeXMLProcessingInstruction class contains the content of the processing instruction.

target
Type: String

The target property of the JadeXMLProcessingInstruction class contains the target of the processing instruction;
that is, the name of the application to which the processing instruction should be passed.

Encyclopaedia of Classes
(Volume 2)

JadeXMLText Class Chapter 1 324

EncycloSys2 - 2020.0.02

JadeXMLText Class
The JadeXMLText class represents the textual content within an XML document tree.

If there is no markup inside the content of an element, the text may be stored directly in the JadeXMLElement
class textData property of the element rather than as a child text node. This optimization reduces the size of the
document tree and improves parsing performance.

Inherits From: JadeXMLCharacterData

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

List Class Chapter 1 325

EncycloSys2 - 2020.0.02

List Class
The List class encapsulates behavior required to reference objects by their position in the collection. This position
is sometimes referred to as an index or subscript.

Note A list is an ordered collection.

For details about the methods defined in the List class, see "List Methods", in the following subsection.

Inherits From: Collection

Inherited By: Array

List Methods
The methods defined in the List class are summarized in the following table.

Method Description

clear Clears all entries from the collection

copy Copies entries from the receiver to a compatible collection

purge Deletes all object references in the collection

clear
Signature clear() updating;

The clear method of the List class clears all entries from the collection array, as shown in the following example.

countNotes();
vars

noteArray : NotificationArray;
begin

create noteArray transient;
system.getNotes(noteArray, true, 32000);
write noteArray.size.String & ' transient notifications';
noteArray.clear;
system.getNotes(noteArray, false, 32000);
write noteArray.size.String & ' persistent notifications';

epilog
delete noteArray;

end;

copy
Signature copy(toColl: Collection input);

The copy method of the List class copies entries from the receiver collection to a compatible collection passed as
the toColl parameter. In this case, compatible means that the memberships of the receiver and destination
collections are type-compatible.

Note By default, entries copied from the receiver collection are added to entries that already exist in the
collection to which you copy them.

Encyclopaedia of Classes
(Volume 2)

List Class Chapter 1 326

EncycloSys2 - 2020.0.02

purge
Signature purge() updating;

The purge method of the List class deletes all objects referenced in a list and clears the list collection; that is, size
= 0.

The code fragment in the following example shows the use of the purge method.

myPopupColumnList.purge;

Encyclopaedia of Classes
(Volume 2)

Locale Class Chapter 1 327

EncycloSys2 - 2020.0.02

Locale Class
The Locale class is the persistent class that defines the locales (languages) supported by a schema. Although a
schema inherits all of the locales of its superschemas, a locale can be updated only in the schema in which it was
defined.

In JADE thin client mode, all locale information is based on the locale of the presentation client that initiated the
application. Only the options defined by the application server for that locale apply. This locale must be installed
on the application server workstation. Any local changes on the presentation client to the locale options are
ignored (for example, the date format).

As supported Windows operating systems do not allow different threads of the same process to use different
locales, each presentation client application uses the default locale for the application server workstation.

For details about the constants, properties, and methods defined in the Locale class, see "Locale Class
Constants", "Locale Properties", and "Locale Methods", in the following subsections.

Inherits From: SchemaEntity

Inherited By: (None)

Locale Class Constants
The constants provided by the Locale class are listed in the following table.

Constant Character Value Specifies that the …

INHERITED ‘I’ Current locale is inherited from a superschema

LOCAL ‘L’ Locale is local to (defined in) the current schema

Locale Properties
The properties defined in the Locale class are summarized in the following table.

Property Contains …

cloneOf The locale from which the receiver is cloned

clones All of the locales that are clones of the receiver

forms All of the forms for the locale

languageId The Windows language identifier of the locale

schema The schema in which the locale is defined

translatableStrings All translatable strings for the locale

cloneOf
Type: Locale

The cloneOf property of the Locale class is a protected property that is for internal system use only. It contains a
reference to the locale from which the receiver is cloned.

Encyclopaedia of Classes
(Volume 2)

Locale Class Chapter 1 328

EncycloSys2 - 2020.0.02

clones
Type: LocaleNDict

The clones property of the Locale class is a protected property that is for internal system use only. It contains a
reference to all of the locales that are clones of the receiver.

forms
Type: FormNameDict

The forms property of the Locale class is a protected property that is for internal system use only. It contains a
reference to all of the forms for the locale.

languageId
Type: Integer

The read-only languageId property of the Locale class contains the Windows language identifier for the locale.

schema
Type: Schema

The schema property of the Locale class is a protected property that is for internal system use only. It contains a
reference to the schema in which the locale of the receiver is defined.

translatableStrings
Type: ConstantNDict

The translatableStrings property of the Locale class is a protected property that is for internal system use only. It
contains a reference to all translatable strings for the locale.

Locale Methods
The methods defined in the Locale class are summarized in the following table.

Method Description

getAllTranslatableStrings Returns all translatable strings for this locale in the current schema and
superschemas

getForms Returns all forms for the locale

getStringValue Returns the definition of the specified translatable string in the receiver
locale

getTranslatableStringLocal Returns the translatable string with the specified name in the receiver
locale

getTranslatableStrings Returns the translatable strings ordered by name in the current locale

getTranslatableStringsByNum Returns the translatable strings ordered by number in the current locale

hasClones Specifies whether clones of the locale exist

Encyclopaedia of Classes
(Volume 2)

Locale Class Chapter 1 329

EncycloSys2 - 2020.0.02

Method Description

isClone Specifies whether the locale is a clone of another locale

makeLocaleName Returns the name of the locale

getAllTranslatableStrings
Signature getAllTranslatableStrings(): ConstantNDict;

The getAllTranslatableStrings method of the Locale class returns a reference to a dictionary containing the
translatable strings for the receiver locale in the current schema and all superschemas except for the
RootSchema.

getForms
Signature getForms(): FormNameDict;

The getForms method of the Locale class returns a reference to a dictionary of all forms for the locale.

getStringValue
Signature getStringValue(xltStringName: String): String;

The getStringValue method of the Locale class returns a string containing the value (definition) of the translatable
string specified in the xltStringName parameter.

This method is valid only for translatable strings that can be evaluated at compile time; that is, they do not have
parameters and they do not reference other translatable strings or constants.

getTranslatableStringLocal
Signature getTranslatableStringLocal(name: String): TranslatableString;

The getTranslatableStringLocal method of the Locale class returns a translatable string from the collection of
translatable strings in the receiver locale with the name specified by the value of the name parameter.

getTranslatableStrings
Signature getTranslatableStrings(): ConstantNDict;

The getTranslatableStrings method of the Locale class returns a reference to a dictionary containing the
translatable strings in the locale of the receiver ordered by name.

If the receiver is a clone, the collection is that of the associated base locale.

getTranslatableStringsByNum
Signature getTranslatableStringsByNum():SchemaEntityNumberDict;

The getTranslatableStringsByNum method of the Locale class returns a reference to a dictionary containing the
translatable strings in the locale of the receiver ordered by number.

If the receiver is a clone, the collection is that of the associated base locale.

Encyclopaedia of Classes
(Volume 2)

Locale Class Chapter 1 330

EncycloSys2 - 2020.0.02

hasClones
Signature hasClones(): Boolean;

The hasClones method of the Locale class returns true if clones of the locale exist.

isClone
Signature isClone(): Boolean;

The isClone method of the Locale class returns true if the locale is a clone of another locale.

makeLocaleName
Signature makeLocaleName(): String;

The makeLocaleName method of the Locale class returns a string containing the name of the locale; for
example, English (New Zealand).

Encyclopaedia of Classes
(Volume 2)

LocaleFormat Class Chapter 1 331

EncycloSys2 - 2020.0.02

LocaleFormat Class
The LocaleFormat class defines the common protocol for locale format information.

For details about the property defined in the LocaleFormat class, see "LocaleFormat Property", in the following
subsection.

Inherits From: Feature

Inherited By: DateFormat, NumberFormat, TimeFormat

LocaleFormat Property
The property defined in the LocaleFormat class is summarized in the following table.

Property Description

schema Contains the schema in which the locale format is defined

schema
Type: Schema

The schema property of the LocaleFormat class is a protected property that is for internal system use only.

This property contains a reference to the schema in which the locale format is defined.

Encyclopaedia of Classes
(Volume 2)

LocaleFullInfo Class Chapter 1 332

EncycloSys2 - 2020.0.02

LocaleFullInfo Class
The LocaleFullInfo class is used to provide Windows locale information for the current workstation. An instance of
the LocaleFullInfo class is created when an application starts, and it is accessible from the currentLocaleInfo
property of the Application class.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.
Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client. For example, if the locale of your application server is set to English (United Kingdom), which has a default
short date format of dd/mm/yyyy, and it has been overridden with a short date format of yyyy-mm-dd, this is
returned in the default dd/mm/yyyy format.

For details about the constants and properties defined in the LocaleFullInfo class, see "LocaleFullInfo Class
Constants" and "LocaleFullInfo Properties", in the following subsections.

Inherits From: LocaleNameInfo

Inherited By: (None)

LocaleFullInfo Class Constants
The constants provided by the LocaleFullInfo class are listed in the following table.

Constant Integer Value

Imperial 1

Metric 0

LocaleFullInfo Properties
The properties defined in the LocaleFullInfo class are summarized in the following table.

Property Contains …

currencyInfo Currency formatting information for the current locale

dateInfo Date formatting information for the current locale

defaultCodePage Code page associated with the current locale

defaultCountryCode The default country code for the current locale

defaultLanguageId The default language for the current locale

listSeparator The separator used to separate elements in a list in the current locale

measurementSystem The measurement system of the current locale

nativeDigits The ten characters in the native encoding equivalent to the ASCII values 0 through 9

numericInfo Numeric formatting information for the current locale

timeInfo Time formatting information for the current locale

Encyclopaedia of Classes
(Volume 2)

LocaleFullInfo Class Chapter 1 333

EncycloSys2 - 2020.0.02

currencyInfo
Type: CurrencyFormat

Availability: Read-only at any time

The currencyInfo property of the LocaleFullInfo class contains a reference to the currency formatting information
for the current locale. For details, see the CurrencyFormat class.

dateInfo
Type: DateFormat

Availability: Read-only at any time

The dateInfo property of the LocaleFullInfo class contains a reference to date formatting information for the
current locale. For details, see the DateFormat class.

defaultCodePage
Type: Integer

Availability: Read-only at any time

The defaultCodePage property of the LocaleFullInfo class contains the default code page for the current locale.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

defaultCountryCode
Type: Integer

Availability: Read-only at any time

The defaultCountryCode property of the LocaleFullInfo class contains the default country code for the current
locale. The default country code is the code of the principal language for this locale.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

defaultLanguageId
Type: Integer

Availability: Read-only at any time

The defaultLanguageId property of the LocaleFullInfo class contains the default language identifier for the current
locale.

The default language identifier is the identifier of the principal language for this locale.

Encyclopaedia of Classes
(Volume 2)

LocaleFullInfo Class Chapter 1 334

EncycloSys2 - 2020.0.02

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.
Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client.

listSeparator
Type: String[20]

Availability: Read-only at any time

The listSeparator property of the LocaleFullInfo class contains the list separator used to separate elements in a
list for the current locale.

measurementSystem
Type: Integer

Availability: Read-only at any time

The measurementSystem property of the LocaleFullInfo class contains the measurement system for the current
locale.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

The measurement can be one of the values specified in the following table.

Value LocaleFullInfo Class Constant Description

0 Metric Metric measurement system

1 Imperial Imperial measurement system

nativeDigits
Type: String[10]

Availability: Read-only at any time

The nativeDigits property of the LocaleFullInfo class contains the ten characters in the native encoding
equivalent to the ASCII values 0 through 9 for the current locale; for example, Arabic or Kanji native digits.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

numericInfo
Type: NumberFormat

Availability: Read-only at any time

The numericInfo property of the LocaleFullInfo class contains a reference to the numeric formatting information
for the current locale. For details, see the NumberFormat class.

Encyclopaedia of Classes
(Volume 2)

LocaleFullInfo Class Chapter 1 335

EncycloSys2 - 2020.0.02

timeInfo
Type: TimeFormat

Availability: Read-only at any time

The timeInfo property of the LocaleFullInfo class contains a reference to time formatting information for the current
locale. For details, see the TimeFormat class.

Encyclopaedia of Classes
(Volume 2)

LocaleNameInfo Class Chapter 1 336

EncycloSys2 - 2020.0.02

LocaleNameInfo Class
The LocaleNameInfo class is used to provide Windows locale information for the current workstation. An instance
of LocaleFullInfo (a subclass of LocaleNameInfo) is created when an application starts, and it is accessible from
the currentLocaleInfo property of the Application class.

All properties of the LocaleNameInfo class are available from the currentLocaleInfo property of the Application
class.

For details about the properties defined in the LocaleNameInfo class, see "LocaleNameInfo Properties", in the
following subsection.

Inherits From: Object

Inherited By: LocaleFullInfo

LocaleNameInfo Properties
The properties defined in the LocaleNameInfo class are summarized in the following table.

Property Contains the …

abbreviatedCountryName Abbreviated country name

abbreviatedLangName Abbreviated language name

countryCode Country code

englishCountryName English language name of the country

englishLangName Language name in English

languageId Language identifier of the locale

localeId Locale identifier

localizedCountryName Localized name of the country

localizedLangName Localized name of the language

nativeCountryName Native name of the country

nativeLangName Native name of the language

abbreviatedCountryName
Type: String[127]

Availability: Read-only at any time

The abbreviatedCountryName property of the LocaleNameInfo class contains the abbreviated name of the
country (conforming to ISO Standard 3166) for the current locale.

Encyclopaedia of Classes
(Volume 2)

LocaleNameInfo Class Chapter 1 337

EncycloSys2 - 2020.0.02

abbreviatedLangName
Type: String[10]

Availability: Read-only at any time

The abbreviatedLangName property of the LocaleNameInfo class contains the abbreviated name of the
language for the current locale.

The abbreviated language name consists of the two-letter ISO Standard 639 language abbreviation followed by a
third letter that represents the language form, or dialectical variant, as appropriate.

countryCode
Type: Integer

Availability: Read-only at any time

The countryCode property of the LocaleNameInfo class contains the country code of the current locale.

The country code consists of the telephone country code.

englishCountryName
Type: String[127]

Availability: Read-only at any time

The englishCountryName property of the LocaleNameInfo class contains the full English name of the country of
the current locale.

englishLangName
Type: String[127]

Availability: Read-only at any time

The englishLangName property of the LocaleNameInfo class contains the full English name of the language from
ISO Standard 639.

languageId
Type: Integer

Availability: Read-only at any time

The languageId property of the LocaleNameInfo class contains the Windows language identifier for the current
locale.

localeId
Type: Integer

Availability: Read-only at any time

The localeId property of the LocaleNameInfo class contains the Windows locale identifier for the current locale.

Encyclopaedia of Classes
(Volume 2)

LocaleNameInfo Class Chapter 1 338

EncycloSys2 - 2020.0.02

localizedCountryName
Type: String[127]

Availability: Read-only at any time

The localizedCountryName property of the LocaleNameInfo class contains the full localized name of the country
for the current locale.

localizedLangName
Type: String[127]

Availability: Read-only at any time

The localizedLangName property of the LocaleNameInfo class contains the full localized name of the language
for the current locale.

nativeCountryName
Type: String[127]

Availability: Read-only at any time

The nativeCountryName property of the LocaleNameInfo class contains the native name of the country for the
current locale.

nativeLangName
Type: String[127]

Availability: Read-only at any time

The nativeLangName property of the LocaleNameInfo class contains the native name of the language for the
current locale.

Encyclopaedia of Classes
(Volume 2)

Lock Class Chapter 1 339

EncycloSys2 - 2020.0.02

Lock Class
Instances of the Lock class are used to describe the locks and lock requests maintained by the system.

For details about the class constants, properties, and method defined in the Lock class, see "Lock Class
Constants", "Lock Properties", and "Lock Method", in the following subsections.

Inherits From: Object

Inherited By: (None)

Lock Class Constants
The constants provided by the Lock class are listed in the following table.

Constant Character Value Description

Kind_Local '01' Applies to stable objects and represents a shared, transient duration
lock that has an associated node lock (Kind_Node) entry in the
database server lock tables. There is no individual lock entry for the
process in the database server lock tables (unless the process is a
server application).

Kind_Node '02' Applies to stable objects and represents a shared, transient duration
lock that can be held by one or more processes on the node associated
with the node lock. The associated background process of the node is
used as the locking process. A node lock is released when an exclusive
lock request is received or the object is removed from the node’s cache
and there are no processes on the associated node that have the object
locked with local locks.

Kind_Normal '00' Represents a lock held by a process. It is released when the process
unlocks the object.

For more details, see the kind property.

Lock Properties
The properties defined in the Lock class are summarized in the following table.

Property Description

duration Specifies when the object is automatically unlocked

elapsedTime Contains the time that the lock has been in place

kind Contains the type of lock (that is, normal, local, node, or node lock to be removed)

lockedBy Contains the process that currently holds a lock

requestedBy Contains the process that submitted the lock request

requestTime Contains the date and time of the lock request

type Contains the type of lock request

waitTime Contains the length of time the lock request waits

Encyclopaedia of Classes
(Volume 2)

Lock Class Chapter 1 340

EncycloSys2 - 2020.0.02

duration
Type: Character[1]

The read-only duration property of the Lock class is set to the value of the duration parameter of the lock request.

The duration parameter of the lock request specifies if the object is automatically unlocked at the end of
transaction time or at the end of the current session (that is, the current thread, or process).

If a manual unlock is issued, the object is unlocked only if you are not in transaction or load state.

In persistent transaction state, all unlock requests for persistent objects are ignored. Similarly, in transient
transaction state, all unlock requests for shared transient objects are ignored. A session lock is therefore not
released if the unlock request is made while in transaction state. To release a session lock, the unlock request
must be made while not in transaction state.

The character values correspond to the Transaction_Duration and Session_Duration global constants in the
LockDurations category, respectively.

The following example shows the use of the duration property.

vars
lock : Lock;
locksArray : LockArray;

begin
create locksArray transient;
system.getLocks(locksArray, 40);

foreach lock in locksArray do //access the lock entry properties
write lock.duration.Integer.String;

endforeach;
locksArray.purge;
delete locksArray;

end;

elapsedTime
Type: Time

The read-only elapsedTime property of the Lock class is set to the time that the lock request has been in place.

For a queued lock entry, this is the time that the request has been waiting. (If you want to obtain the total length of
time from the first attempt to obtain the lock up to the time it times out, use the Lock class waitTime property.)

kind
Type: Character[1]

The read-only kind property of the Lock class is set to the kind of node lock for stable objects. (For details, see
"Stable Objects" under "Cache Concurrency", in Chapter 6 of the JADE Developer’s Reference.)

Encyclopaedia of Classes
(Volume 2)

Lock Class Chapter 1 341

EncycloSys2 - 2020.0.02

The character values correspond to the Lock class constants listed in the following table.

Constant Character Value Description

Kind_Local '01' Applies to stable objects and represents a shared, transient duration lock
that has an associated node lock (Kind_Node) entry in the database
server lock tables. There is no individual lock entry for the process in the
database server lock tables (unless the process is a server application).

Kind_Node '02' Applies to stable objects and represents a shared, transient duration lock
that can be held by one or more processes on the node associated with
the node lock. The associated background process of the node is used
as the locking process. A node lock is released when an exclusive lock
request is received or the object is removed from the node’s cache and
there are no processes on the associated node that have the object
locked with local locks.

Kind_Normal '00' Represents a lock held by a process. It is released when the process
unlocks the object.

Kind_Local locks are present only on the local node on which the lock request was issued.

You can use the lockedBy property to determine the node associated with a Kind_Node, as it contains a
reference to the background process of the associated node.

The code fragment in the following example shows the use of the kind property.

foreach lock in locksArray do
if lock.kind = lock.Kind_Node then

write "Exclusive lock request pending";
write lock.lockedBy.String;

endif;
endforeach;

lockedBy
Type: Process

The read-only lockedBy property of the Lock class is a read-only property that is set to the process that currently
holds a lock on the target object of the lock.

If the lock request is not waiting in the locks queue, this reference is set to null.

The code fragment in the following example shows the use of the lockedBy property.

foreach lock in locksArray do
write lock.target.String;
write lock.lockedBy.String;

endforeach;

requestedBy
Type: Process

The read-only requestedBy property of the Lock class is a read-only property that is set to the process that
submitted the lock request.

Encyclopaedia of Classes
(Volume 2)

Lock Class Chapter 1 342

EncycloSys2 - 2020.0.02

The code fragment in the following example shows the use of the requestedBy property.

foreach lock in locksArray do
listBoxQueue.addItem(lock.requestedBy.node.system.name.String);

endforeach;

requestTime
Type: TimeStamp

The read-only requestTime property of the Lock class is set to the date and time of the lock request.

type
Type: Character[1]

The read-only type property of the Lock class is set to the value of the type parameter of the lock request. The
character values correspond to the Update_Lock, Share_Lock, Reserve_Lock, and Exclusive_Lock global
constant in the Locks category.

For more details, see "Locks Category", in Appendix A of the JADE Encyclopaedia of Primitive Types, and "JADE
Locking", in Chapter 6 of the JADE Developer’s Reference.

The code fragment in the following example shows the use of the type property.

foreach lock in locksArray do
if lock.type.Integer = Share_Lock then

write "Shared lock";
elseif lock.type.Integer = Exclusive_Lock then

write "Exclusive lock";
elseif lock.type.Integer = Reserve_Lock then

write "Reserve lock";
endif;

endforeach;

waitTime
Type: Time

The read-only waitTime property of the Lock class is set to the timeout parameter of the lock request. This
property specifies the total length of time the lock request waits from the time it first attempted to get the lock until a
lock exception is reported back if the object is currently locked by another user.

The following example shows the use of the waitTime property.

vars
lock : Lock;
locksArray : LockArray;

begin
create locksArray transient;
system.getQueuedLocks(locksArray, 40);
foreach lock in locksArray do //access the lock entry properties

write lock.requestedBy.String;
write lock.elapsedTime.String;
write lock.waitTime.String;

endforeach;

Encyclopaedia of Classes
(Volume 2)

Lock Class Chapter 1 343

EncycloSys2 - 2020.0.02

locksArray.purge;
delete locksArray;

end;

If you want to obtain the length of time the lock request has been in place, use the Lock class elapsedTime
property.

Lock Method
The method defined in the Lock class is summarized in the following table.

Method Description

target Gets the object that is the target of the lock request

target
Signature target(): Object;

The target method of the Lock class is used to obtain a reference to the object that is the target of a lock request.

The following example shows the use of the target method.

vars
lock : Lock;
locksArray : LockArray;

begin
create locksArray transient;
system.getLocks(locksArray, 40);

foreach lock in locksArray do
//access the lock entry properties
write lock.requestedBy.String;
write lock.target.String;

endforeach;
locksArray.purge;
delete locksArray;

end;

Encyclopaedia of Classes
(Volume 2)

LockArray Class Chapter 1 344

EncycloSys2 - 2020.0.02

LockArray Class
The LockArray class is the transient class that encapsulates behavior required to access Lock objects in an
array.

The locks are referenced by their position in the collection.

The bracket ([]) subscript operators enable you to assign values to and receive values from a lock array.

Inherits From: ObjectArray

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

LockContentionInfo Class Chapter 1 345

EncycloSys2 - 2020.0.02

LockContentionInfo Class
The LockContentionInfo class is the class that is used to retrieve information about lock contentions. A lock
contention occurs when an attempt to lock a persistent object is queued because the object is already locked.
Lock contention information is recorded on the database server node. By default, lock contentions are not
recorded.

The beginLockContentionStats, clearLockContentionStats, and endLockContentionStats methods defined in
the System class enable you control the recording of lock contentions. The getLockContentionStats and
getLockContentionInfo methods defined in the System class enable you to retrieve recorded lock contention
information.

For details about the properties and method defined in the LockContentionInfo class and an example of
displaying lock contention information, see "LockContentionInfo Properties", "LockContentionInfo Method", and
"Example of Displaying Lock Contention Information", in the following subsections.

Inherits From: Object

Inherited By: None

LockContentionInfo Properties
The properties defined in the LockContentionInfo class are summarized in the following table.

Property Description

maxWaitTime The longest time in milliseconds that any process spent queued waiting to obtain a lock
on the object

totalContentions The number of lock contentions recorded for the object

totalWaitTime The total time in milliseconds that all processes spent queued waiting to obtain locks on
the object

maxWaitTime
Type: Integer64

The maxWaitTime property of the LockContentionInfo class contains the longest time in milliseconds that any
process spent queued waiting to obtain a lock on the object.

totalContentions
Type: Integer64

The totalContentions property of the LockContentionInfo class contains the number of lock contentions recorded
for the object.

totalWaitTime
Type: Integer64

The totalWaitTime property of the LockContentionInfo class contains the total time in milliseconds that all
processes spent queued waiting to obtain locks on the object.

Encyclopaedia of Classes
(Volume 2)

LockContentionInfo Class Chapter 1 346

EncycloSys2 - 2020.0.02

LockContentionInfo Method
The method defined in the LockContentionInfo class is summarized in the following table.

Method Description

target Returns a reference to the object to which the lock contention information relates

target
Signature target(): Object;

The target method of the LockContentionInfo class returns a reference to the object to which the lock contention
information relates.

Example of Displaying Lock Contention Information
The following example shows how to display recorded lock contention information.

showLockContentions();
vars

oa : ObjectArray;
o : Object;
lci : LockContentionInfo;
ts : TimeStamp;
avgWaitTime : Decimal[10,1];

begin
create oa transient;
system.beginLockContentionStats(10000);
process.sleep(60000); //record 1 minute of lock activity
system.getLockContentionStats(oa, 10000, 5, ts);
write "FIRST MINUTE";
foreach o in oa do

lci := o.LockContentionInfo;
write CrLf & "Object= " & lci.target.String;
write "Contentions= " & lci.totalContentions.String;
avgWaitTime := (lci.totalWaitTime / lci.totalContentions);
write "Average wait time= " & avgWaitTime.String;

endforeach;
oa.purge;
//Repeat
system.clearLockContentionStats();
process.sleep(60000); //record 1 minute of lock activity
system.getLockContentionStats(oa, 10000, 5, ts);
write CrLf & "SECOND MINUTE";
foreach o in oa do

lci := o.LockContentionInfo;
write CrLf & "Object= " & lci.target.String;
write "Contentions= " & lci.totalContentions.String;
avgWaitTime := (lci.totalWaitTime / lci.totalContentions);
write "Average wait time= " & avgWaitTime.String;

endforeach;
oa.purge;
system.endLockContentionStats();

Encyclopaedia of Classes
(Volume 2)

LockContentionInfo Class Chapter 1 347

EncycloSys2 - 2020.0.02

epilog
delete oa;

end;

The output from the LockContentionInfo method shown in the previous example is as follows.

FIRST MINUTE

Object= Branch/2631.1
Contentions= 8
Average wait time= 4516.0

Object= Account/2635.2
Contentions= 6
Average wait time= 3531.0

SECOND MINUTE

Object= Branch/2631.1
Contentions= 9
Average wait time= 2640.0

Object= Account/2635.1
Contentions= 6
Average wait time= 2250.0

Object= Account/2635.2
Contentions= 6
Average wait time= 1937.0

Object= Account/2635.3
Contentions= 8
Average wait time= 5046.0

Encyclopaedia of Classes
(Volume 2)

LockException Class Chapter 1 348

EncycloSys2 - 2020.0.02

LockException Class
The LockException class is the transient class that defines the behavior of exceptions raised as a result of locking
conflicts. This class enables you to write a generic lock exception handler that can retry a lock operation.

Global lock exceptions can be handled in your logic in the following way.

on LockException do global.lockException(exception) global;

Each process can have up to 128 global exception handlers armed at any one time.

Lock exceptions are continuable; that is, the continuable property is set to true. A lock exception handler could
therefore attempt to acquire the lock using the tryLock method and if successful, return Ex_Continue.

For details about the properties and methods defined in the LockException class, see "LockException Properties"
and "LockException Methods", in the following subsections.

Inherits From: SystemException

Inherited By: (None)

LockException Properties
The properties defined in the LockException class are summarized in the following table.

Property Description

lockDuration Contains the duration of the lock

lockTimeout Contains the timeout period of the lock

lockType Contains the type of lock

retryCount Contains the number of lock retries that were encountered

targetLockedBy Contains the process that locked the object

lockDuration
Type: Integer

The read-only lockDuration property of the LockException class contains the duration of the lock that was
encountered in a multiuser environment.

The lock durations (whose values are provided by global constants in the LockDurations category) that can raise
exceptions are listed in the following table.

Global Constant Integer

Persistent_Duration 2

Session_Duration 1

Transaction_Duration 0

The following example shows the use of the lockDuration property.

handleLockException(le: LockException): Integer;
//Example using tryLock to retry a lock

Encyclopaedia of Classes
(Volume 2)

LockException Class Chapter 1 349

EncycloSys2 - 2020.0.02

vars
result : Integer;
message : String;

begin
message := 'Cannot get lock for ' & le.lockTarget.String &

'. It is locked by user ' ;
result := app.msgBox('Lock Error', message & le.targetLockedBy.userCode

& '. Retry?', MsgBox_Question_Mark_Icon + MsgBox_Yes_No);
if result = MsgBox_Return_Yes then

app.mousePointer := Busy;
while not tryLock(le.lockTarget, le.lockType, le.lockDuration,

LockTimeout_Server_Defined) do
app.mousePointer := Idle;
result := app.msgBox('Lock Error', message &

le.targetLockedBy.userCode & '. Retry?',
MsgBox_Question_Mark_Icon + MsgBox_Yes_No);

if result = MsgBox_Return_No then
return Ex_Abort_Action;

endif;
app.mousePointer := Busy;
endwhile;
return Ex_Resume_Next;

endif;
return Ex_Abort_Action;

epilog
app.mousePointer := Idle;

end;

lockTimeout
Type: Integer

The read-only lockTimeout property of the LockException class contains the timeout period of the lock that was
encountered in a multiuser environment.

The timeout periods (whose values are provided by global constants in the LockTimeouts category) that can
raise exceptions are listed in the following table.

Global Constant Integer

LockTimeout_Immediate -1

LockTimeout_Infinite Max_Integer (#7FFFFFFF, equates to 2147483647)

LockTimeout_Process_Defined -2 (use the process-defined default)

LockTimeout_Server_Defined 0 (use the server-defined default)

You can set the process-defined default lock request timeout programmatically, by calling the Process class
setDefaultLockTimeout method. By default (that is, if you do not call this method), the default lock timeout for a
process is the value of the ServerTimeout parameter in the [JadeServer] section of the JADE initialization file.

Encyclopaedia of Classes
(Volume 2)

LockException Class Chapter 1 350

EncycloSys2 - 2020.0.02

lockType
Type: Integer

The read-only lockType property of the LockException class contains the type of lock that was encountered in a
multiuser environment. (For an example of the use of the lockType property, see the LockException class
lockDuration property.)

The types of lock (whose values are provided by global constants in the Locks category) that can raise exceptions
are listed in the following table.

Global Constant Integer Value Description

Exclusive_Lock 3 No other process can lock the same object.

Get_Lock 0 Not valid for lock requests. This lock type indicates a process is
waiting to acquire a lock that will cause all other lock requests for the
object to be queued (for example, when upgrading a lock from update
to exclusive).

Reserve_Lock 2 When you place a reserve lock on an object, other processes
attempting to acquire an exclusive lock or reserve lock on that same
object wait until the reserve lock is relinquished, but those attempting
to acquire a shared lock succeed.

Share_Lock 1 When you place a shared lock on an object, other processes
attempting to update the object or explicitly acquire an exclusive lock
wait until the lock is released but can acquire a shared lock or a
reserve lock.

Update_Lock 4 Placing an update lock allows you to update the object, while still
allowing other processes to acquire shared locks to view the most
recently committed edition.

retryCount
Type: Integer

The read-only retryCount property of the LockException class is a work area for the user that contains the
number of times that the lock encountered in a multiuser environment user application was retried.

targetLockedBy
Type: Process

The read-only targetLockedBy property of the LockException class contains a reference to the process that
locked the object in a multiuser environment. (For an example of the use of the targetLockedBy property, see the
LockException class lockDuration property.)

LockException Methods
The methods defined in the LockException class are summarized in the following table.

Method Description

lockTarget Returns the target object of the lock

Encyclopaedia of Classes
(Volume 2)

LockException Class Chapter 1 351

EncycloSys2 - 2020.0.02

Method Description

retryLock Retries the lock in a multiuser environment user application, increments the retryCount
property, and returns true if the lock was obtained

showDialog Displays the default lock exception dialog

lockTarget
Signature lockTarget(): Object;

The lockTarget method of the LockException class returns a reference to the object that is the target of the lock
on which an exception is raised.

The following example shows the use of the lockTarget method.

handleLockException(le: LockException): Integer;
vars

result : Integer;
message : String;

begin
message := "Cannot get lock for " & le.lockTarget.String &

". It is locked by user " ;
result := app.msgBox(message & le.targetLockedBy.userCode & ". Retry?",

"Lock Error", MsgBox_Question_Mark_Icon + MsgBox_Yes_No);
if result = MsgBox_Return_Yes then

app.mousePointer := Busy;
while not tryLock(le.lockTarget, le.lockType, le.lockDuration,

LockTimeout_Server_Defined) do
app.mousePointer := Idle;
result := app.msgBox(message & le.targetLockedBy.userCode &

". Retry?", "Lock Error", MsgBox_Question_Mark_Icon +
MsgBox_Yes_No);

if result = MsgBox_Return_No then
return Ex_Abort_Action;

endif;
app.mousePointer := Busy;

endwhile;
return Ex_Resume_Next;

else
return Ex_Abort_Action;

endif;
epilog

app.mousePointer := Idle;
end;

retryLock
Signature retryLock(): Boolean;

The retryLock method of the LockException class retries the lock in a multiuser environment user application,
increments the retryCount property, and returns true if the lock was obtained.

If the lock was not obtained, this method returns false.

Encyclopaedia of Classes
(Volume 2)

LockException Class Chapter 1 352

EncycloSys2 - 2020.0.02

showDialog
Signature showDialog(): Boolean;

The showDialog method of the LockException class displays the default lock exception dialog.

If the showDialog method returns true, the action is resumed. If this method returns false, the action is aborted.

Encyclopaedia of Classes
(Volume 2)

MemberKeyDictionary Class Chapter 1 353

EncycloSys2 - 2020.0.02

MemberKeyDictionary Class
The MemberKeyDictionary class encapsulates the behavior required to access entries in member key dictionary
subclasses. Member key dictionaries are dictionaries for which the keys are properties in the member objects.

For details about the methods defined in the MemberKeyDictionary class, see "MemberKeyDictionary Methods",
in the following subsection.

Inherits From: Dictionary

Inherited By: JadeSkinApplicationNameDict, JadeSkinCategoryNameDict, JadeSkinControlNameDict,
JadeSkinEntityNameDict, JadeSkinFormNameDict, JadeSkinMenuNameDict,
JadeSkinSimpleButtonNameDict, JadeSkinWindowStateNameDict,
JadeUserProfileShortCutByAction, JadeUserProfileShortCutDict, JadeWebSocketDictionary,
ProcessDict

With the exception of the JadeSkinEntityNameDict class, which allows duplicate keys, the member key
dictionaries for subclasses of the JadeSkinEntity class are defined with one key (that is, the name property of the
JadeSkinEntity class), which is case-sensitive and does not allow for duplicate keys. These dictionaries are
referenced by the JadeSkinRoot class and are automatically maintained by inverses defined using the
mySkinRoot property of the JadeSkinEntity class.

In addition, each skin entity has a JadeSkinEntityNameDict dictionary of other skin entities that reference that
skin. This myOwners dictionary is automatically maintained by inverses between the referencing property and the
dictionary.

For details about specifying and maintaining JADE skins, see Chapter 9 of the JADE Developer’s Reference. See
also "Defining and Maintaining JADE Skins at Run Time", in Chapter 2 of the JADE Runtime Application Guide.

MemberKeyDictionary Methods
The methods defined in the MemberKeyDictionary class are summarized in the following table.

Method Description

add Adds an object to a dictionary

includes Returns true if the member key dictionary contains a specified object

indexNear Returns an approximate index of an object in a collection

indexNear64 Returns an approximate index of an object in a collection

purge Deletes all object references in a member key dictionary

remove Removes an item from a dictionary with member keys

tryAdd Attempts to add the specified value to the member key dictionary

tryAddDeferred Executes a deferred attempt to add a value to the member key dictionary

tryRemove Attempts to remove the specified value from the member key dictionary

tryRemoveDeferred Executes a deferred attempt to remove the specified value from the member key
dictionary

tryRemoveKeyEntry Attempts to add the specified key and value pair to the member key dictionary

Encyclopaedia of Classes
(Volume 2)

MemberKeyDictionary Class Chapter 1 354

EncycloSys2 - 2020.0.02

add
Signature add(value: MemberType);

The add method of the MemberKeyDictionary class adds the object specified in the value parameter to the
receiver.

If there is already an entry with the same key and the collection does not allow duplicate entries, an exception is
raised.

The following example shows the use of the add method to populate a member key dictionary referenced by
customerDict with 80 customer instances.

load() updating;
vars

count : Integer;
cust : Customer;

begin
beginTransaction;

count := 1;
while count < 81 do

create cust;
cust.key := count;
cust.name := "Customer " & count.String;
cust.address := "Address " & count.String;
cust.phoneNo := "364589" & count.String;
self.customerDict.add(cust);
count := count + 1;

endwhile;
commitTransaction;

end;

includes
Signature includes(value: MemberType): Boolean;

The includes method of the MemberKeyDictionary class searches the dictionary using the member keys of the
object and returns true if the object is located with its current member key values.

This method will not find an object if its key has changed since it was added to a manually maintained dictionary.
(A manually maintained dictionary can contain an object with a key that differs from the value that is currently in
the attribute on which the dictionary is keyed.)

This method returns true only if the object is in the dictionary with its current key values; for example:

if self.myEmployees.includes(emp) then
return true;

else
foreach child in self.myEmployees do

if child.isEmployee(emp) = true then
return true;
break;

endif;
endforeach;

endif;

Encyclopaedia of Classes
(Volume 2)

MemberKeyDictionary Class Chapter 1 355

EncycloSys2 - 2020.0.02

indexNear
Signature indexNear(value: MemberType): Integer;

The indexNear method of the MemberKeyDictionary class returns an approximate index for the entry specified
in the value parameter if it exists in the collection or it returns zero (0) if it does not exist. (See also the Iterator
class startNearIndex method.)

If the specified value occurs more than once in the collection, the approximate index of the first occurrence is
returned.

Notes This method calculates and returns an approximate index. This incurs less processing overhead than
using the indexOf method.

Use the indexNear64 method instead of the indexNear method if the number of entries in the collection could
exceed the maximum integer value of 2,147,483,647.

indexNear64
Signature indexNear64(value: MemberType): Integer64;

The indexNear64 method of the MemberKeyDictionary class returns an approximate index for the entry
specified in the value parameter if it exists in the collection or it returns zero (0) if it does not exist. (See also the
Iterator class startNearIndex method.)

If the specified value occurs more than once in the collection, the approximate index of the first occurrence is
returned.

Note This method calculates and returns an approximate index. This incurs less processing overhead than
using the indexOf64 method.

purge
Signature purge();

The purge method of the MemberKeyDictionary class deletes all objects in a member key dictionary and clears
the dictionary; that is, size = 0.

Caution The objects that are removed are physically deleted.

The following example shows the use of the purge method.

unload() updating;
begin

beginTransaction;
self.customerDict.purge;

commitTransaction;
end;

remove
Signature remove(value: MemberType);

The remove method of the MemberKeyDictionary class removes the item specified in the value parameter from
a dictionary with member keys.

Encyclopaedia of Classes
(Volume 2)

MemberKeyDictionary Class Chapter 1 356

EncycloSys2 - 2020.0.02

If the collection does not contain the specified item, an exception is raised.

The code fragment in the following is an example of the use of the remove method.

self.custNameDict.remove(cust);

tryAdd
Signature tryAdd(value: MemberType): Boolean, lockReceiver, updating;

The tryAdd method of the MemberKeyDictionary class attempts to add the value specified by the value
parameter to the member key dictionary if it is not already present. It returns true if the value was successfully
added; otherwise it returns false.

Note Member key dictionaries with a no-duplicates constraint raise exception 1310 (Key already used in this
dictionary) when the collection already contains the member key or keys with a different value, because the
tryAdd method is attempting to add a different object that conflicts with an existing entry.

Applies to Version: 2020.0.01 and higher

tryAddDeferred
Signature tryAddDeferred(value: MemberType): Boolean, receiverByReference, updating;

The tryAddDeferred method of the MemberKeyDictionary class attempts to add the value specified by the value
parameter to the member key dictionary if it is not already present. For persistent dictionaries, the attempt is
queued and executed when the database transaction commits. For transient dictionaries, the attempt is executed
immediately.

This method returns true if the dictionary is persistent or the dictionary is transient and the value was added;
otherwise it returns false.

Applies to Version: 2020.0.01 and higher

tryRemove
Signature tryRemove(value: MemberType): Boolean, lockReceiver, updating;

The tryRemove method of the MemberKeyDictionary class attempts to remove the value specified in the value
parameter from the member key dictionary if it is present. It returns true if the value was successfully removed;
otherwise it returns false.

Applies to Version: 2020.0.01 and higher

tryRemoveDeferred
Signature tryRemoveDeferred(value: MemberType): Boolean, receiverByReference,

updating;

The tryRemoveDeferred method of the MemberKeyDictionary class attempts to remove the value specified in
the value parameter from the member key dictionary if it is present. For persistent dictionaries, the attempt is
queued and executed when the database transaction commits. For transient dictionaries, the attempt is executed
immediately.

This method returns true if the dictionary is persistent or the dictionary is transient and the value was removed;
otherwise it returns false.

Encyclopaedia of Classes
(Volume 2)

MemberKeyDictionary Class Chapter 1 357

EncycloSys2 - 2020.0.02

Applies to Version: 2020.0.01 and higher

tryRemoveKeyEntry
Signature tryRemoveKeyEntry(keys: KeyType;

value: MemberType): Boolean, lockReceiver, updating;

The tryRemoveKeyEntry method of the MemberKeyDictionary class attempts to remove the (key, value) pair
specified in the keys and value parameters from the member key dictionary if it is present. This method returns
true if the (key, value) pair was removed; otherwise it returns false.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 358

EncycloSys2 - 2020.0.02

MenuItem Class
The MenuItem class contains the definition of each menu item (command) on a menu. A menu for a form is
constructed in the JADE development environment, by using the Menu Design window in the JADE Painter. You
cannot add a subclass to the MenuItem class.

A menu can include items, submenu titles, and separator bars. A menu can have submenu items. Define menu
items with names to which they can be referred at run time.

Menus are displayed in four columns: check mark, picture, text, and shortcut text. The width of the picture, text, and
shortcut text columns is set to the maximum width of all the menu items in the popup menu that is being displayed.

Menus are drawn in the .NET style. A menu is drawn with a left gutter border and draws the selected background
using the current Windows theme set. In addition, menus activated from the form’s menu are drawn as though the
form menu item is part of the activated menu. The form’s menu bar is also drawn using the current Windows
theme. The exception to this is when a skin is currently active for the form, in which case the skin definition of any
menu elements is still used instead.

Menu items are generated as static text for HTML on Web pages. All menu items that have an associated click
event also have a HyperText link.

Each menu item can be defined with the following set of attributes.

A separator (all other properties are then ignored).

A check mark can be displayed to the left of a menu item. The default value is none. Menu items that are
popup menus or top-level items ignore this attribute.

A picture, displayed after the check mark.

A caption, displayed after the picture.

Although you cannot assign a shortcut key to top-level and popup menus, other menu items can have a
shortcut key assigned to them, with a default value of none. The menu item executes its click event logic
when the shortcut key is pressed. A textual description of the key is displayed after the caption.

Can be enabled (the default) or disabled (the caption will be gray, or dimmed). If the item has subitems, the
menu does not drop down when selected.

Can be initially visible (the default) or hidden. If the item has subitems, then they are also hidden.

A context-sensitive help identifier (helpContextId) or keyword (helpKeyword).

One top-level menu item can have a standard set of help items added to it, by checking the Help list option.
This list includes an Index entry for the help file of the application and an About box for the application. No
logic is required to handle these options. These entries can be moved and deleted, but they cannot be
altered. The Help menu item is moved to the end of the top menu items at run time.

One top-level menu item can also have a standard set of items added to it for MDI window control, by
checking the Window list option. This list includes the ability to cascade, tile, or arrange the icons, and create
a new copy of an MDI form. No logic is required to handle these options. These entries can be moved and
deleted, but they cannot be altered.

These options are ignored if they are included in the menu for a non-MDI form. The Window menu item is
moved to the end of the top menu items (but before any Help item) at run time. (Alternatively, you can make
an MDI child form invisible if you do not want to include it in the list of currently open MDI forms.)

When you create a Multiple-Document Interface (MDI) application, the menu bar on the MDI child form replaces
the menu bar on the MDI form when the child form is active.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 359

EncycloSys2 - 2020.0.02

Menu items and submenu items can be loaded at run time, by using the loadMenu and loadSubMenu methods,
respectively. The loaded menu items can then be accessed by using the getMenuItem method.

A menu item can be deleted at run time, by using the delete instruction (as opposed to making it invisible).
Deleted menus cannot be reinstated. If the deleted menu item is a popup menu, all members of that popup menu
are also deleted.

Notes If you invoke the JADE Debugger while processing JADE menu logic, Windows discards subsequent
menu actions. For example, if you break in the click event of a popup menu, the menu is not displayed.

An exception is raised if a MenuItem method is invoked from a server method.

For the arrays associated with control and menu item children (for example, the Window class allControlChildren
and MenuItem class children properties), the only methods that are implemented are at (which allows the use of
square brackets to access the elements), createIterator (which allows logic to do a foreach over the array), size,
and size64.

For details about adding user-defined event methods for menu items to handle populating or refreshing the state
of each in a recursive manner, see "Adding User-defined Event Methods to a Menu Item", later in this section.

For details about the constants, properties, methods, and events defined in the MenuItem class, see "MenuItem
Class Constants", "MenuItem Properties", "MenuItem Methods", and "MenuItem Events", in the following
subsections.

Inherits From: MenuItemData

Inherited By: (None)

Adding User-defined Event Methods to a Menu Item
You can add user-defined event methods for menu items, to handle populating or refreshing the state of each in a
recursive manner in a similar way that you can controls. (See "Adding Methods to Your Subclassed Control", in
Chapter 5 of the JADE Developer's Reference".) In earlier releases, only the click and select events were
available.

Menu items have the following method types.

Event external methods

Standard methods

Event methods are methods that are usually triggered by an event.

Event methods execute the logic in the method and then call a method (whose method name is specified by the
menu-name_this-method-name signature) of the form on which the menu is placed.

Notes When you reimplement an event method, include the inheritMethod instruction call.

You must add event methods as external methods.

To add a custom menu item event method, add an external method to the MenuItem class as follows:

event-name(parameter-list) is CallMenuEvent in jadpmap updating;

After you have defined the custom menu item, clicking on a menu item property of a form will include that menu
item name in the menu item event list that is displayed.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 360

EncycloSys2 - 2020.0.02

You can then define the event logic. To take effect, this event must be called manually in logic; for example:

mnuAddCustomer.event-name();

If the menu item is deleted, the associated event methods (including any custom events) are also deleted.

At run time, it is this call that causes a form message to be generated. Methods are event methods only if the
highest level of method implementation has a signature with this format.

Note If you reimplement these methods, ensure that you include an inheritMethod call. For example, if you add
a method named initialize to the MenuItem class, calling inheritMethod will result in menu_itemname_initialize
being called. When you add an event to your menu item, JADE does nothing to that event unless you write code to
implement it.

Applies to Version: 2020.0.02 and higher

MenuItem Class Constants
The constants provided by the MenuItem class are listed in the following table.

Constant Bit Value Description

ShortCutFlag_Alt #10 The Alt key must also be pressed

ShortCutFlag_Ctrl #8 The Ctrl key must also be pressed

ShortCutFlag_Shift #4 The Shift key must also be pressed

MenuItem Properties
The properties defined in the MenuItem class are summarized in the following table.

Property Description

allChildren Contains an array of all children of a menu item, including children of children

caption Contains the text displayed in the menu items caption

checked Specifies whether a check mark is displayed next to a menu caption

children Contains an array of immediate children of a menu item

description Contains a textual description of the Window object

disableReason Contains a reason for the menu item being disabled

enabled Specifies whether the menu can respond to user-generated events

form Contains the form on which the menu is placed

helpContextId Contains an associated context number for an object

helpKeyword Contains text used to access the help file while the menu item is selected

index Contains an identifier to differentiate between menu items that have been created
by logic

name Contains the name used in logic to identify a menu item object

picture Contains a graphic to be displayed in a menu

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 361

EncycloSys2 - 2020.0.02

Property Description

securityLevelEnabled Specifies whether the menu is automatically disabled

securityLevelVisible Specifies whether the menu is automatically made invisible

userObject Contains an object to associate with the menu

visible Specifies whether a menu is visible or hidden

webFileName Contains the name of the image displayed in a menu on a Web page

allChildren
Type: MenuItemArray

Availability: Read at run time only

The allChildren property of the MenuItem class contains a reference to an array of all of the children of the menu
item, including children of children. The collection is ordered according to the defined menu item list.

The following code fragment is an example of the use of the allChildren property.

foreach control in frameLeft.allChildren do
if control.isKindOf(Label) then

control.fontBold := true;
endif;

endforeach;

Applies to Version: 2016.0.01 and higher

caption
Type: String[100]

Availability: Read or write at any time

The caption property of the MenuItem class contains the text displayed in the menu item caption.

You can use the caption property to assign an access key to a menu. In the caption, include an ampersand
character (&) immediately preceding the character that you want for an accelerator key. The accelerator key
character is underlined. To activate that menu or item, press Alt and the key of the underlined character.

To include an ampersand in a caption without creating an access key, enter two ampersand characters (&&). A
single ampersand is displayed in the caption and no character is underlined.

This property can be translated when the value of the Schema class formsManagement property is
FormsMngmt_Single_Multi (2).

The code fragment in the following example shows the use of the caption property.

// For multilanguage, check locale and display the appropriate message string
MenuItemGreeting.caption := $Hello;

Tip To dynamically add a separator to a menu at run time, specify a caption property value of "-" (that is, a
hyphen character) so that the item is displayed as a separator line when the menu is displayed.

The maximum length of a menu caption is 100 characters.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 362

EncycloSys2 - 2020.0.02

checked
Type: Boolean

Availability: Read or write at any time

The checked property of the MenuItem class specifies whether a check mark is displayed next to a menu caption.
If the menu item has a submenu or it is a top-level menu item, the checked property has no effect.

The checked property settings are listed in the following table.

Setting Description

true Places a check mark next to the menu command

false Removes a check mark from a menu command (the default value)

The code fragment in the following example shows the use of the checked property.

if menuItem1.caption = self.myTable.text then
menuItem1.checked := false;
return;

endif;

children
Type: MenuItemArray

Availability: Read at run time only

The children property of the MenuItem class contains a reference to an array of all of the immediate children of
the menu item (that is, the menu item is the direct parent of the menu items in the collection). The collection is
ordered according to the defined menu item list.

The following code fragment is an example of the use of the children property.

foreach menu in mnuOptions.children do
if menu.checked then

.... // do some processing here
endif;

endforeach;

Applies to Version: 2016.0.01 and higher

description
Type: String

Availability: Read or write at any time

The description property of the MenuItem class contains a textual description of the Window object. The
description can be in the range 0 through 32,767 characters. (This description is not automatically displayed
anywhere.)

Any change to the value at run time is not retained after the form on which the control (or the form itself) is
unloaded.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 363

EncycloSys2 - 2020.0.02

disableReason
Type: String

Availability: Read or write at any time

The disableReason property of the MenuItem class contains a reason for the menu item being disabled.

JADE does not use this property. It is your responsibility to display the text, as appropriate.

enabled
Type: Boolean

Availability: Read or write at any time

The enabled property of the MenuItem class specifies whether the menu can respond to user-generated events.

The enabled property settings are listed in the following table.

Setting Description

true Enables the object to respond to events (the default)

false Prevents the object from responding to events

This property allows menu items to be enabled or disabled at run time.

form
Type: Form

Availability: Read-only at run time

The form property of the MenuItem class provides access to the form on which the menu is placed. Use this
property when the menu object is passed as a parameter to a generalized method, so that the logic can still
access the form of the menu.

helpContextId
Type: Integer

Availability: Read or write at any time

The helpContextId property of the MenuItem class contains an associated context number for a menu item object.
This property is used to provide context-sensitive help for your menu. If the helpKeyword property is also set, the
keyword is used in preference to the context number.

For context-sensitive help on an object in your application, you must assign the same context number to both the
object and to the associated help topic when you compile your help file.

If you have created a Windows environment help file for your application (that is, a .hlp or .chm file), JADE
automatically calls help when a user presses F1 and requests the topic identified by the current context number
(or the helpKeyword property).

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 364

EncycloSys2 - 2020.0.02

The current context number is the value of the helpContextId property for the object that has the focus or the
selected menu item. If this property is set to zero (and its helpKeyword property value is null), JADE looks in the
helpContextId property (and the helpKeyword property) of the form of the object. If a non-zero current context
number cannot be found, the Contents section of the help file is requested. If the helpFile property of the
Application class is not set, no help file is opened.

Note Building a help file requires the Adobe Acrobat application, Microsoft Windows Help Compiler, or any
other Windows help compiler.

helpKeyword
Type: String

Availability: Read or write at any time

If a help keyword is provided for a menu, the helpKeyword property of the MenuItem class contains text that is
used to access the help file when the user presses F1 for help while the menu item is selected.

The current keyword is the value of the helpKeyword property for the object that has the focus or a selected menu
item. If the helpKeyword property is empty and its helpContextId property is set to zero (0), JADE looks in the
helpKeyword property (and the helpContextId property) of the form of the object. If no help keyword or context
number can be found, the Contents section of the help file is requested. If the helpFile property of the Application
class is not set, no help file is opened. If the helpContextId property is also set, the keyword is used in preference
to the context number.

This property can be translated when the value of the Schema class formsManagement property is
FormsMngmt_Single_Multi (2).

When help is requested, if the help file specifies a:

Portable Document Format (PDF) file (detected by the .pdf file suffix), JADE attempts to execute Adobe
Acrobat to handle the file. JADE checks the Windows registry for the Acrobat Reader (AcroRd32) or for the
acrobat executable program. If Adobe Reader is not found, the help request is ignored and entries
explaining the cause of the failure are output to the jommsg.log file. If Adobe Reader is located, it is initiated
for the PDF help file defined in JADE.

For a helpKeyword help request, the helpKeyword property is passed to Acrobat as a named destination,
which Acrobat uses to position the help file display. As there are no equivalent concepts in a PDF file to any
other type of help request (for example, helpContextId, index request, and so on), only the first page of the
PDF file is displayed for help requested using anything other than the helpKeyword property.

Windows help file (detected by the .hlp file suffix), JADE automatically calls help and requests the topic
identified by the current helpKeyword property or the helpContextId property.

Compiled help file (detected by the .chm file suffix), JADE calls the HtmlHelp entry point of the htmlhelp.dll
file and requests the topic identified by the current helpKeyword property or the helpContextId property. You
can use the compiled help file (.chm) format files when producing online help for HTML thin client
applications, for example.

For more details, see "Creating Context Links to Your Own Application Help File", in Chapter 2 of the
JADE Development Environment User’s Guide.

Note Building a help file requires the Adobe Acrobat application, Microsoft Windows Help Compiler, or any
other Windows help compiler.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 365

EncycloSys2 - 2020.0.02

index
Type: Integer

Availability: Read-only at run time only

The index property of the MenuItem class is used only when menu items are created by logic; that is, when they
are cloned by calling the loadMenu or loadSubMenu method.

Logic calling the loadMenu or loadSubMenu method passes a unique identifier (id) that is assigned to the created
menu, which is usually an index value stored in the index property. As this property is read-only, any attempt to
change the value is rejected.

You can also use the value of the index property to distinguish between menu items passed to the same menu
click or select event method defined for the base menu item and used by all menu items cloned from that menu.
Most commonly, you would assign the index values sequentially, using them like indexes.

The index property of menus created in the JADE Painter is set to zero (0).

name
Type: String[100]

Availability: Read or write at design time, read-only at run time

The name property of the MenuItem class contains the name used in logic to identify a menu item object.

Menu items are defined in the JADE database as properties, and the first character of the name is converted to a
lowercase character.

A name property of an object must start with a letter, with a maximum length of 100, although 7 characters are
reserved by JADE. This property can include numbers and underscore characters, but it cannot include
punctuation symbols or spaces.

Subclassed forms cannot have menus with the same name as a control or menu on a superclass of the form.

picture
Type: Binary

Availability: Read or write at any time

The picture property of the MenuItem class contains a graphic to be displayed in a menu.

The picture property settings are listed in the following table.

Setting Description

(none) No picture (the default).

Any valid picture format
(that is, .bmp, .cur, .ico,
.jpg, .png, .wmf, .gif,
and so on)

Specifies a graphic. You can load the graphic from the Picture list box in the Menu
Item sheet of the JADE development environment Menu Design dialog. At run time,
you can set this property, by using the loadPicture method on a bitmap, icon,
metafile, or other valid picture.

When setting the picture property from JADE Painter, the graphic is saved and loaded with the form. When you
load a graphic at run time, the graphic is not saved with the application. The graphic can be set by setting the
picture property of the control to the picture property of another control, or by using the loadPicture method.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 366

EncycloSys2 - 2020.0.02

For menus, the picture can be any valid picture format; for example, a bitmap, icon, cursor, or metafile. The picture
is drawn at actual size, except for a metafile, which is scaled to fit the menu line size. Menus are drawn in four
columns, as follows.

checkMark : picture : text : accelerator text

The width of each column is defined to be the maximum of all the displayed items in that popup menu.

See also the picture property defined in subclasses of the Window class.

securityLevelEnabled
Type: Integer

Availability: Read or write at any time

The securityLevelEnabled property of the MenuItem class determines whether the menu is automatically
disabled when its form is created and loaded or when this property is changed.

If the value of the securityLevelEnabled property of the menu is greater than the value of the userSecurityLevel
property of the Application class (that is, app.userSecurityLevel), it is disabled regardless of the value of its
enabled property when it is created.

securityLevelVisible
Type: Integer

Availability: Read or write at any time

The securityLevelVisible property of the MenuItem class determines whether the menu is automatically made
invisible when its form is created and loaded or when this property is changed.

If the value of the securityLevelVisible property of the menu is greater than the value of the userSecurityLevel
property of the Application class (that is, app.userSecurityLevel), it is made invisible regardless of the value of its
visible property when it is created.

userObject
Type: Object

Availability: Read or write at run time only

The userObject property allows you to associate an object with any object of the MenuItem class.

This is a run time-only property that is not used by any JADE process. It is defined only for your convenience. The
default value for the userObject property is null.

visible
Type: Boolean

Availability: Read or write at any time

The visible property of the MenuItem class specifies whether a menu is visible or hidden. Hiding an item with
submenu items also hides all of the subitems.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 367

EncycloSys2 - 2020.0.02

The settings of the visible property are listed in the following table.

Setting Description

true The menu is visible (the default)

false The menu is hidden

To hide a menu at start up, set the visible property to false in the JADE development environment. Setting this
property in logic enables you to hide and later redisplay a menu at run time in response to a specific event.

webFileName
Type: String

Availability: Read or write at any time

The webFileName property of the MenuItem class contains the name of the image that is to be displayed in a
menu on the Web page; for example, "image.jpg" or "mypic.png".

Tip Use this property for static images, as performance is greatly improved.

MenuItem Methods
The methods defined in the MenuItem class are summarized in the following table.

Method Description

getLevel Returns the level of the menu item

getMenuItem Accesses a dynamically created menu item

loadMenu Dynamically creates a menu item

loadSubMenu Dynamically creates a submenu item

setEventMapping Dynamically sets the method executed for a menu event at run time

setEventMappingEx Dynamically sets the method executed for a menu event at run time

setShortCutKey Dynamically sets the shortcut key displayed for most development
environment and editor shortcut keys to values of your choice

Note An exception is raised if event methods in this class are invoked from a server method.

getLevel
Signature getLevel(): Integer;

The getLevel method of the MenuItem class returns the level of the menu item.

An exception is raised if a MenuItem method is invoked from a server method.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 368

EncycloSys2 - 2020.0.02

getMenuItem
Signature getMenuItem(id: Integer): MenuItem;

The getMenuItem method of the MenuItem class accesses a dynamically created menu item. This method returns
null if there is no menu for the unique identifier of the menu specified in the id parameter.

An exception is raised if a MenuItem method is invoked from a server method.

loadMenu
Signature loadMenu(index: Integer): MenuItem;

The loadMenu method of the MenuItem class enables an existing menu item to be "cloned" at run time; that is,
one or more copies of that menu item can be created at run time in the menu of the form.

The cloned menu can be a menu item created at run time (to control ordering) or it can be one created in JADE
Painter.

The menu item is added to the menu directly after the menu item that is being cloned. New clone menu items are
created using the runtime copy of the menu item.

Each menu item calls the same methods defined for the original menu item, passing their own menu item object
as the first parameter. In addition, you must assign a unique identifier to each menu item, which is passed to the
loadMenu method in the index parameter.

Menu items that are created in the JADE Painter have an index parameter value of zero (0).

Most commonly, the value of the index would be just that: an index. The values need not be sequential, but they
cannot be duplicated.

An exception is raised if a MenuItem method is invoked from a server method.

The code fragment in the following example shows the creation of a new menu item.

menu := menuItem.loadMenu(count);

In this example, the menuItem value is the menu item that is being cloned, the menu value is the new copy of the
menu item created, and the count value is the unique copy index supplied by the caller.

Any menu item that is added is automatically deleted when the form is destroyed. You can also delete these menu
items dynamically, by using the delete instruction. To access these cloned menu items, use the getMenuItem
method.

loadSubMenu
Signature loadSubMenu(index: Integer): MenuItem;

The loadSubMenu method of the MenuItem class enables an existing submenu item to be "cloned" at run time;
that is, one or more copies of that submenu item can be created at run time in the submenu of the form as
subitems of that menu item.

The cloned submenu can be a submenu item created at run time (to control ordering) or it can be one created in
JADE Painter.

The submenu item is added to the end of existing subitems of the menu that is being cloned or as the first subitem
if that menu did not previously have any subitems. New clone submenu items are created using the runtime copy
of the submenu item.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 369

EncycloSys2 - 2020.0.02

Each submenu item calls the same methods defined for the original submenu item, passing their own submenu
item object as the first parameter. In addition, you must assign a unique identifier to each submenu item, which is
passed to the loadSubMenu method in the index parameter.

Submenu items that are created in the JADE Painter have an index parameter value of zero (0).

Most commonly, the value of the index parameter would be just that: an index. The values need not be sequential,
but they cannot be duplicated.

An exception is raised if a MenuItem method is invoked from a server method.

The code fragment in the following example shows the creation of a new submenu item.

submenu := myTestSubmenu.loadSubMenu(count);

In this example, the myTestSubmenu value is the submenu item that is being cloned, the submenu value is the
new copy of the submenu item created, and the count value is the unique copy index supplied by the caller.

Any submenu item that is added is automatically deleted when the form is destroyed. You can also delete these
submenu items dynamically, by using the delete instruction. To access these cloned submenu items, use the
getMenuItem method.

setEventMapping
Signature setEventMapping(eventName: String;

mappedName: String);

The setEventMapping method of the MenuItem class enables the method that is to be executed for an event to be
dynamically set at run time. (See also the setEventMapping method of the Window class.)

Tip This method is equivalent to the setEventMappingEx method but it is less efficient, as it must find the
methods by name. You should therefore use the setEventMappingEx method to improve performance.

An exception is raised if a MenuItem method is invoked from a server method.

By default, the JADE development environment allows the definition of event methods (menu-name_event-name)
for a menu; for example:

mTickerTimer_click(menuItem: MenuItem input) updating;

The parameters of the setEventMapping method are listed in the following table.

Setting Description

eventName Must be a defined event name for the menu; for example, click.

mappedName The name of the method that is to be called. This method must exist on the form that is the
parent of the menu or window for which you are calling the setEventMapping method.

The code fragment in the following example shows the use of the setEventMapping method.

mTickerTimer.setEventMapping("click", "myOtherMenu");

The method checks that:

The event method is valid for the menu

The method to be called exists

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 370

EncycloSys2 - 2020.0.02

The signature of the method matches the event method signature

setEventMappingEx
Signature setEventMappingEx(eventMethod: Method;

mappedMethod: Method);

The setEventMappingEx method of the MenuItem class enables the method that is to be executed for an event to
be dynamically set at run time and the mapping cached on each JADE node. (See also the setEventMappingEx
method of the Window class.)

An exception is raised if a MenuItem method is invoked from a server method.

Repeat calls for a mapping that has been previously used is recognized and the signature check is not repeated
unless the timestamp of the mapped method has changed since the previous signature check. The cost of
reloading a form that assigns event mappings is therefore subsequently less expensive on that node. If an
application server is involved, only the first assignment by any user performs the signature check. Subsequent
repeat calls for any user on that application server avoid that overhead.

The event method being mapped and the mapped method are passed as parameters. The underlying logic,
therefore, does not have to find the methods by name, making the execution more efficient; for example:

mnuCustomer.setEventMethodEx(MenuItem::click, CustomerDialog::customerMenu);

Tip This method is equivalent to the setEventMapping method but as it is more efficient, you should use the
setEventMappingEx method to improve performance.

The parameters of the setEventMappingEx method are listed in the following table.

Setting Description

eventMethod Specifies the event method, which must belong to the class of the receiver of the
setEventMappingEx call, and must be a defined event name for the menu; for example,
click.

mappedMethod The method that is to be called. This method must exist on the form that is the parent of the
menu or window for which you are calling the setEventMappingEx.

The code fragment in the following example shows the use of the setEventMappingEx method.

mTickerTimer.setEventMapping(Button::click, MyForm::myOtherMenu);

The method checks that:

The event method is valid for the menu

The method to be called exists

The signature of the method matches the event method signature

Applies to Version: 2016.0.02 (Service Pack 1) and higher

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 371

EncycloSys2 - 2020.0.02

setShortCutKey
Signature setShortCutKey(key: Character;

flags: Integer);

The setShortCutKey method of the MenuItem class enables you to set the shortcut key displayed for a menu item
at run time in your JADE system with the values specified in the key and flags method parameters.

The value of the key parameter must be one of "0" through "9", "A" through "Z", J_key_F1 though J_key_F12,
J_key_Delete, J_key_Insert, J_key_Back, J_key_UpArrow, or J_key_DownArrow. (The J_key_ values are
global constants in the KeyCharacterCodes category.)

The value of the flags parameter can be zero (0) if there is no shortcut flag or it can be a combination of the
following MenuItem class constants.

Constant Bit Value Description

ShortCutFlag_Alt #10 The Alt key must also be pressed

ShortCutFlag_Ctrl #8 The Ctrl key must also be pressed

ShortCutFlag_Shift #4 The Shift key must also be pressed

The method generates an exception if the parameters are invalid.

The code fragment in the following example displays Shift+Ctrl+Alt+Delete as the menu accelerator.

menu1.setShortCutKey(J_key_Delete.Character, MenuItem.ShortCutFlag_Alt +
MenuItem.ShortCutFlag_Ctrl + MenuItem.ShortCutFlag_Shift);

Applies to Version: 2018.0.01 and higher

MenuItem Events
The events defined in the MenuItem class are summarized in the following table.

Event Description

click Occurs when the user presses and then releases the left mouse button over a menu item or when
the menu item is activated by a control sequence or an attached accelerator key

select Occurs when a menu item is highlighted

Note An exception is raised if the event methods in this class are invoked from a server method.

click
Signature click(menuItem: MenuItem input);

The click event of the MenuItem class occurs when the user presses and then releases the left mouse button over
a menu item or when the menu item is activated by a control sequence or an attached accelerator key. If the menu
item has a submenu, logic in this event allows the contents of the submenu to be changed before it becomes
visible.

An exception is raised if a MenuItem method is invoked from a server method.

Typically, you attach a click event to a menu to carry out commands and command-like actions.

Encyclopaedia of Classes
(Volume 2)

MenuItem Class Chapter 1 372

EncycloSys2 - 2020.0.02

The following is an example of the event definition.

menuEmpList_click(menuItem: MenuItem) updating;
vars

form : ListEmp;
begin

create form;
list.show;

end;

select
Signature select(menuItem: MenuItem input;

closed: Boolean);

The select event of the MenuItem class is generated for a menu item when the user selects or deselects a menu
item. The select event occurs when menu item is highlighted. When another menu item is selected or the menu
operation is completed (or cancelled), the previously selected menu item has another select event generated,
indicating that it was deselected.

The closed parameter is set to true when the menu item is deselected and to false when it is selected.

An exception is raised if a MenuItem method is invoked from a server method.

The following is an example of the event definition.

menuEmpList_select(menuItem: MenuItem;
closed: Boolean);

begin
if not closed then

StatusLine.caption := "List of Employees";
else

StatusLine.caption := "";
endif;

end;

In this example, the menuEmpList is the menu item that is clicked. The closed parameter returns false for the
initial select call and true for the deselect call.

This event is designed for the developer to be able to display help text about the menu item while the user
considers whether to click the item. The deselect event call enables that help text to be cleared.

The select event also occurs for disabled menu items when they are selected; for example, by holding the left
mouse button down and dragging over those items.

Encyclopaedia of Classes
(Volume 2)

MergeIterator Class Chapter 1 373

EncycloSys2 - 2020.0.02

MergeIterator Class
The MergeIterator class encapsulates the behavior required to sequentially access objects from a merged view
of two or more compatible dictionary instances. Dictionary instances need not have the same membership but
must have at least the first key in common.

In the first example, only the first keys of DictionaryA and DictionaryB are compatible.

In the second example, the first two keys of DictionaryC and DictionaryD are compatible.

When iterating multiple dictionaries, the merged iterator returns objects in key sequence for the compatible keys.

To iterate a single collection, the iterator is created and associated with the collection by using the createIterator
method on the collection object. To iterate a merged view of more than one collection, first create the iterator and
the addCollection method called for each dictionary to be attached to the iterator, as shown in the following
example.

vars
iter : MergeIterator;
dict1, dict2 : CustomsByNameAndAddress;
cust : Customer;

begin
// Assign dict1 and dict2
create iter transient;
iter.addCollection(dict1);
iter.addCollection(dict2);
while iter.next(cust) do

write cust.name;
endwhile;

end;

For details about the property and methods defined in the MergeIterator class, see "MergeIterator Property" and
"MergeIterator Methods", in the following subsections.

Inherits From: Iterator

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

MergeIterator Class Chapter 1 374

EncycloSys2 - 2020.0.02

MergeIterator Property
The property defined in the MergeIterator class is summarized in the following table.

Property Description

ignoreDuplicates Skips duplicate entries in the merged iterator view

ignoreDuplicates
Type: Boolean

Default Value: True

The ignoreDuplicates property of the MergeIterator class specifies whether duplicate entries in the merged view
should be skipped when iterating using the next and back methods.

Duplicate entries can occur in the merged view when an object is included in more than one of the attached
dictionaries.

MergeIterator Methods
The methods defined in the MergeIterator class are summarized in the following table.

Method Description

addCollection Adds the specified dictionary to the merged iterator view

back Accesses entries in reverse order in the merged iterator view

current Returns the last value iterated by the back or next method

getCollectionAt Returns the dictionary at the specified index in the collection of dictionaries making
up the merged iterator view

getCollectionCount Returns the number of dictionaries

getCurrentCollection Returns the dictionary containing the last value iterated by the back or next method

getCurrentKey Retrieves a single key from a dictionary while iterating through the merged iterator
view

getCurrentKeys Retrieves keys from a dictionary while iterating through the merged iterator view

isValid Returns true if the receiver is a valid iterator

next Accesses successive entries in the merged iterator view

removeCollection Removes the specified dictionary from the merged iterator view

reset Initializes the iterator

startAtObject Sets the starting position of the iterator at the position of the specified object

startKeyGeq Sets a start position within the merged iterator view at the object equal to or after the
specified key

startKeyGtr Sets a start position within the merged iterator view at the object after the specified
key

Encyclopaedia of Classes
(Volume 2)

MergeIterator Class Chapter 1 375

EncycloSys2 - 2020.0.02

Method Description

startKeyLeq Sets a start position within the merged iterator view at the object equal to or before
the specified key

startKeyLss Sets a start position within the merged iterator view at the object before the specified
key

addCollection
Signature addCollection(dict: Dictionary);

The addCollection method of the MergeIterator class adds the collection specified by the value of the dict
parameter to the merged iterator view.

The parameter value must be a Dictionary type with a membership compatible with existing collections
associated with the iterator. When multiple dictionaries are added to the iterator, they must also have a common
compatible subset of keys.

An exception is raised if you attempt to add a dictionary that is already attached to the iterator and therefore part of
the merged iterator view.

back
Signature back(value: Any output): Boolean;

The back method of the MergeIterator class accesses entries in reverse order one at a time in the dictionaries
comprising the merged iterator view.

This method returns true when a prior entry is found, and the entry is assigned to the value parameter. It returns
false when a prior entry is not found because the iterator is positioned before the first entry in the merged view,
and the value parameter becomes a null reference.

When the back method is used with an iterator where that iterator has been passed to a method as a method
parameter, the iterator must be defined as a usage input; that is, the iterator cannot be modified by the called
method.

The following example shows the use of the back method.

getReversedPosition(pObj: Object; pIter: MergeIterator input): Integer;
vars

pos : Integer;
obj : Object;

begin
while pIter.back(obj) do

pos := pos - 1;
if obj = pObj then

return pos;
endif;

endwhile;
return 0;

end;

Encyclopaedia of Classes
(Volume 2)

MergeIterator Class Chapter 1 376

EncycloSys2 - 2020.0.02

current
Signature current(value: Any output): Boolean;

The current method of the MergeIterator class returns the last value iterated by using the back or next method.

This method returns true if the iterator is positioned on an entry in the merged view, or it returns false if the iterator
is reset or it is positioned beyond the start or end of the merged view. The value parameter receives the entry of
the current iterator position in the merged view.

getCollectionAt
Signature getCollectionAt(index: Integer): Dictionary;

The getCollectionAt method of the MergeIterator class returns the dictionary at the index position specified by
the index parameter in the array of collections attached to the iterator.

getCollectionCount
Signature getCollectionCount(): Integer;

The getCollectionCount method of the MergeIterator class returns the number of dictionaries that have been
attached to the iterator by using the addCollection method.

getCurrentCollection
Signature getCurrentCollection(): Dictionary;

The getCurrentCollection method of the MergeIterator class returns the dictionary containing the last value
iterated by using the back or next method.

getCurrentKey
Signature getCurrentKey(ordinal: Integer): Any;

The getCurrentKey method of the MergeIterator class retrieves the keys from a dictionary while iterating through
the merged view and returns the value of a single key at the current position.

This method can be used to access the keys of an external key dictionary or to access key properties in a member
key dictionary directly from the dictionary without having to access the member object itself. The ordinal parameter
specifies the relative key by ordinal position of the iterator in the associated dictionary and should be a number in
the range 1 through the number of keys in the dictionary.

When you use this method for filtering based on key conditions or populating list views with key data, judicious
use of this method may result in performance improvements. (Performance improvements occur when you can
avoid fetching objects from the server to access key properties.)

getCurrentKeys
Signature getCurrentKeys(keys: ParamListType output);

The getCurrentKeys method of the MergeIterator class retrieves one or more keys at the current iterator position
in the merged view.

This method can be used to access the keys of an external key dictionary or to access key properties in a member
key dictionary from the iterator without having to access the member object itself.

Encyclopaedia of Classes
(Volume 2)

MergeIterator Class Chapter 1 377

EncycloSys2 - 2020.0.02

The method can be called with a partial key list; for example, when iterating dictionaries with three keys, you can
pass one, two, or three parameters to receive the output. The parameters must be of the same type as the keys or
of type Any. If the parameter types do not match the key types or are not of type Any, a runtime exception is
raised.

The following example shows the use of the getCurrentKeys method.

demoGetKeys(pIter: MergeIterator): Integer;
vars

iter : Iterator;
cust : Customer;
name, address : String; // variables to receive dictionary key values

begin
while pIter.next(cust) do

// retrieve the first key
iter.getCurrentKeys(name);
// retrieve the first two keys
iter.getCurrentKeys(name, city);

endwhile;
end;

When you use the getCurrentKeys method for filtering based on key conditions or populating list views with key
data, judicious use of this method may result in performance improvements. (Performance improvements occur
when you can avoid fetching objects from the server to access key properties.)

isValid
Signature isValid(): Boolean;

The isValid method of the MergeIterator class returns true if the receiver is a valid iterator for all of the
dictionaries in the merged view.

next
Signature next(value: Any output): Boolean;

The next method of the MergeIterator class accesses successive entries in the dictionaries comprising the
merged iterator view.

This method returns true when a next entry is found, and the entry is assigned to the value parameter. It returns
false when a next entry is not found because the iterator is positioned after the last entry in the merged view, and
the value parameter becomes a null reference.

When the next method is used with an iterator where that iterator has been passed to a method as a method
parameter, the iterator must be defined as a usage input; that is, the iterator cannot be modified by the called
method.

The following example shows the use of the next method.

getPosition(pObj: Object; pIter: MergeIterator input): Integer;
vars

pos : Integer;
obj : Object;

begin
while pIter.next(obj) do

pos := pos + 1;
if obj = pObj then

Encyclopaedia of Classes
(Volume 2)

MergeIterator Class Chapter 1 378

EncycloSys2 - 2020.0.02

return pos;
endif;

endwhile;
return 0;

end;

removeCollection
Signature removeCollection(dict: Dictionary)

The removeCollection method of the MergeIterator class removes the dictionary specified by the dict parameter
from the array of dictionaries associated with the iterator.

An exception is raised if you attempt to remove a dictionary that is not attached to the iterator and therefore is not
part of the merged iterator view.

reset
Signature reset() updating;

The reset method of the MergeIterator class restarts an iteration. After executing this method, the following next
method would start from the first entry in the merged view; that is, it would apply to all dictionaries. Similarly, the
back method would start from the last entry in the merged view.

startAtObject
Signature startAtObject(object: Object) updating;

The startAtObject method of the MergeIterator class sets the starting position of the iterator for the merged view
at the position of the object specified in the object parameter.

An exception is raised if this object is not compatible with the membership of the collection being iterated.

Note If a collection does not allow duplicate keys and the startAtObject method is called with an object that is
not in the collection but the object has the same keys as an object that is in the collection, the iterator will be
positioned to return the object with that key in the collection when either the next or back method is called. If the
next method is called, the object will be returned even if the instance identifier is less than the instance identifier
of the startAtObject method object parameter value. If the back method is called, the object will be returned even
if the instance identifier is greater than the instance identifier of the startAtObject method object parameter value.

If a collection allows duplicate keys and the startAtObject method is called with an object that is not in the
collection but the object has the same keys as one or more objects that are in the collection, the instance identifier
of the object passed to the startAtObject method is taken into account when positioning the iterator. Only the
objects in the collection with an instance identifier greater than the object identifier of the startAtObject method
will be returned for the next method and less than the object identifier of the startAtObject method for the back
method.

startKeyGeq
Signature startKeyGeq(keys: ParamListType);

The startKeyGeq method of the MergeIterator class sets a start position of the iterator for the merged view at the
object equal to or after the key specified in the keys parameter. If the attached dictionaries do not have the same
keys, the types of the values specified in the keys parameter must be the same as the subset of common keys of
the attached dictionaries.

Encyclopaedia of Classes
(Volume 2)

MergeIterator Class Chapter 1 379

EncycloSys2 - 2020.0.02

This method is used in conjunction with the next method.

startKeyGtr
Signature startKeyGtr(keys: ParamListType);

The startKeyGtr method of the MergeIterator class sets a start position of the iterator for the merged view at the
object after the key specified in the keys parameter. If the attached dictionaries do not have the same keys, the
types of the values specified in the keys parameter must be the same as the subset of common keys of the
attached dictionaries.

This method is used in conjunction with the next method.

startKeyLeq
Signature startKeyLeq(keys: ParamListType);

The startKeyLeq method of the MergeIterator class sets a start position of the iterator for the merged view at the
object equal to or before the key specified in the keys parameter. If the attached dictionaries do not have the
same keys, the types of the values specified in the keys parameter must be the same as the subset of common
keys of the attached dictionaries.

This method is used in conjunction with the back method.

startKeyLss
Signature startKeyLss(keys: ParamListType);

The startKeyLss method of the MergeIterator class sets a start position of the iterator for the merged view at the
object before the key specified in the keys parameter. If the attached dictionaries do not have the same keys, the
types of the values specified in the keys parameter must be the same as the subset of common keys of the
attached dictionaries.

This method is used in conjunction with the back method.

Encyclopaedia of Classes
(Volume 2)

MethodCallDesc Class Chapter 1 380

EncycloSys2 - 2020.0.02

MethodCallDesc Class
The MethodCallDesc class provides information at run time about currently active method calls. It is the abstract
class that defines the behavior of the MethodCallDesc objects that contain a reference to prior method call
descriptions.

MethodCallDesc objects are used to represent the execution history of a JADE application thread and they are
linked together in a stack. These objects are created only on demand, when it is necessary to take a "snapshot" of
the current execution stack.

Use the currentStack method of the Process class to obtain the call stack for the current process. In addition,
when an exception is raised, a MethodCallDesc object is attached to the Exception object, to represent the
method and position where the exception was raised. ObjMethodCallDesc objects are created when the receiver
is an instance of a class. PrimMethodCallDesc objects are created when the receiver is a primitive value.

For details about the properties and methods defined in the MethodCallDesc class, see "MethodCallDesc
Properties" and "MethodCallDesc Methods", in the following subsections.

Inherits From: Object

Inherited By: ObjMethodCallDesc, PrimMethodCallDesc

MethodCallDesc Properties
The properties defined in the MethodCallDesc class are summarized in the following table.

Property Contains the …

invocationMode Mode in which the method was sent its message

method Method executing in the context of the "stack frame" represented by the method call
description

position Position in the source of a method where an operation occurred

invocationMode
Type: Character[1]

The invocationMode property of the MethodCallDesc class contains the mode in which the method was sent its
message. The following example shows the use of this method to display the mode.

vars
mod : MethodCallDesc;

begin
... // do some processing here
write mod.invocationMode.Integer.String;
...

end;

The values of the invocationMode property are listed in the following table.

Value Message sent…

0 From another method, or message was the result of an event

Encyclopaedia of Classes
(Volume 2)

MethodCallDesc Class Chapter 1 381

EncycloSys2 - 2020.0.02

Value Message sent…

1 To the constructor of the object (that is, the create method of the object)

2 To the destructor of the object (that is, the delete method of the object)

3 To a mapping method to retrieve an attribute value

4 To a mapping method to alter an attribute value

method
Type: Method

The method property of the MethodCallDesc class contains a reference to the method executing in the context of
the "stack frame" represented by the method call description.

position
Type: Integer

The position property of the MethodCallDesc class contains the position in the source of a method at which an
operation occurred, such as a send message or get or set property that requires a call to the JADE kernel. (For
external methods, this is the line number.)

MethodCallDesc Methods
The methods defined in the MethodCallDesc class are summarized in the following table.

Method Description

getName Returns the name of the current receiver

getReceiver Returns the receiver

logSelf Appends a description of the exception object to a file

getName
Signature getName(): String;

The getName method of the MethodCallDesc class returns a string representing the name of the current method
in the stack.

getReceiver
Signature getReceiver(): Object;

The getReceiver method of the MethodCallDesc class is an abstract method that returns a reference to the
receiver object.

Encyclopaedia of Classes
(Volume 2)

MethodCallDesc Class Chapter 1 382

EncycloSys2 - 2020.0.02

logSelf
Signature logSelf(logFileName: String);

The logSelf method of the MethodCallDesc class enables you to log diagnostic information from an exception
handler.

This method appends a description of the receiver to the file specified in the logFileName parameter.

Encyclopaedia of Classes
(Volume 2)

MultiMediaType Class Chapter 1 383

EncycloSys2 - 2020.0.02

MultiMediaType Class
The MultiMediaType class encapsulates the behavior for all types of multimedia subclasses; for example, sound
and video.

For details about the property defined in the MultiMediaType class, see "MultiMediaType Property", in the
following subsection.

Inherits From: Object

Inherited By: Sound

MultiMediaType Property
The property defined in the MultiMediaType class is summarized in the following table.

Property Description

usePresentationFileSystem Specifies whether the Sound class loadFromFile method is processed on the
application server or presentation client when the receiver is running in JADE
thin client mode

usePresentationFileSystem
Type: Boolean

Default Value: True

The usePresentationFileSystem property of the MultiMediaType class specifies whether the Sound class
loadFromFile method is processed on the application server or presentation client when the receiver is running in
JADE thin client mode.

If you are not running in JADE thin client mode, the value of this property has no effect.

This property is set to true by default, when running in JADE thin client mode. Set this property to false to cause
the file system where the application server is running to be used when running the application in JADE thin client
mode.

Any change to this property is ignored if the file has already been opened.

The Sound class loadFromFile method is processed on the presentation client when the MultiMediaType class
usePresentationFileSystem property is set to true, including shared transient instances of the Sound class. The
loadFromFile method loads the data from the file into the object, which can then be played by any user of that
object.

Although a file opened on one presentation client cannot be accessed by another client, as the file access occurs
only on the load (which could be from the presentation client), that file is not used thereafter.

Encyclopaedia of Classes
(Volume 2)

NamedPipe Class Chapter 1 384

EncycloSys2 - 2020.0.02

NamedPipe Class
The NamedPipe class, a subclass of the Connection class, provides a generalized interface for communicating
with external systems. The NamedPipe class uses the Windows Named Pipe feature to establish a two-way
communication channel between a JADE process and another JADE or non–JADE process.

One process must offer the server end of the Named Pipe channel, and another process can then connect to the
client end of the channel. After the connection is made and while it remains valid, both sides of the pipe have
equal status (that is, the terms server and client do not apply).

Note The client node has the same software and hardware requirements as a JADE presentation client and the
server node has the same software and hardware requirements as a JADE standard client. For details about the
current operational requirements, see "Software Requirements" and "Hardware Requirements", in Chapter 1 of
the JADE Installation and Configuration Guide.

The NamedPipe class objects are transient. If an attempt is made to create a persistent NamedPipe object, an
exception is raised. Multiple instances of the pipe can be opened, by running multiple copies of the JADE
application from the same jade.exe executable program, where each application opens the same pipe name.

The NamedPipe class supports both synchronous and asynchronous operations, as follows.

Synchronous methods have no defined timeout mechanism at the NamedPipe class level. These operations
will wait forever for completion.

Asynchronous methods have a receiver object and a message (method name) specified as parameters.

When the method (I/O) completes, the specified (callback) method of the object is called. The callback
method must match the signature required by the calling asynchronous method.

Only one synchronous or asynchronous read operation can be in effect at each end of each instance of the pipe.
Multiple asynchronous write operations can be in effect.

Opening the server end of the pipe waits until the other end of the pipe is connected. Opening the client end of the
pipe fails immediately if the server end of the pipe has not been offered.

The timeout property and the listenContinuous and listenContinuousAsynch methods reimplemented from the
Connection superclass are not supported for the NamedPipe class. An exception is raised when attempting to
use these methods.

For details about the property and methods defined in the NamedPipe class, see "NamedPipe Property" and
"NamedPipe Methods", in the following subsections.

Inherits From: Connection

Inherited By: InternetPipe

NamedPipe Property
The property defined in the NamedPipe class is summarized in the following table.

Property Description

serverName Contains the name of the server workstation

Encyclopaedia of Classes
(Volume 2)

NamedPipe Class Chapter 1 385

EncycloSys2 - 2020.0.02

serverName
Type: String[128]

Availability: Read or write at any time

For the client end of the named pipe, the serverName property of the NamedPipe class contains the name of the
server on which the named pipe connection is offered; for example, "JADE_Dev_2".

This property must be set before the connection open or openAsynch method is attempted.

By default, this property contains a null string (""), indicating that the client and server ends of the connection are
on the same workstation.

NamedPipe Methods
The methods defined in the NamedPipe class are summarized in the following table.

Method Description

close Closes a connection to a remote application

closeAsynch Closes a connection to a remote application and returns immediately

getMaxMessageSize Gets the maximum message size that can be sent or received at one time

listen Offers a connection to a remote application and returns when established

listenAsynch Offers a connection to a remote application and returns immediately

open Attempts to open the client end of a named pipe connection

openAsynch Attempts to open a connection to a named pipe and returns immediately

readBinary Reads binary data from the connection and returns when the data has been read

readBinaryAsynch Initiates a read of binary data from the connection and returns immediately

writeBinary Writes binary data to the connection and returns when the operation is complete

writeBinaryAsynch Initiates a write of binary data to the connection and returns immediately

close
Signature close();

The close method of the NamedPipe class closes a connection to a remote application and returns when the
connection is closed. The closure occurs immediately for a named pipe, and there is no delay. This method can
be called when the connection is in any state.

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

The other end of the pipe is notified the next time that it performs a read or write operation on the pipe, or if an
asynchronous operation is currently in progress. The pipe is then automatically closed; that is, the value of the
Connection superclass state property is set to Disconnected (0).

You can reopen a closed pipe again by using the listen, listenAsynch, open, or openAsynch method. You
should delete the pipe instance when you have finished with it.

Encyclopaedia of Classes
(Volume 2)

NamedPipe Class Chapter 1 386

EncycloSys2 - 2020.0.02

Caution When an application is terminated, failure to close a pipe when there are asynchronous operations in
progress may result in a fatal crash.

closeAsynch
Signature closeAsynch(receiver: Object;

msg: String);

The closeAsynch method of the NamedPipe class closes a connection to a named pipe and returns immediately.
When the connection is closed, the object specified in the receiver parameter is sent the name of the callback
method specified in the msg parameter. The closeAsynch method can be called when the connection is in any
state.

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

When the closeAsynch method completes, the user-written callback method specified in the msg parameter is
called. The callback method must match the signature required by the calling closeAsynch method, as follows.

Signature closeCallback(pipe: NamedPipe);

getMaxMessageSize
Signature getMaxMessageSize(): Integer;

The getMaxMessageSize method of the NamedPipe class always returns zero (0), indicating that there is no
upper limit to the allowable message size.

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

listen
Signature listen();

The listen method of the NamedPipe class offers the server end of a named pipe connection and returns only
when the offer has been accepted. The open offer remains in effect until a connection is established. The offer can
be accepted only by a process that opens the client end of the offered pipe (for details, see the open method).

The listen method can be called only when the value of the Connection superclass state property is set to
Disconnected (0).

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

The connection is established by opening a pipe name using the contents of the name property. Each end of the
named pipe must open the pipe by using the same name.

The Connection superclass fillReadBuffer property determines whether the pipe is opened in bytes or in
message mode. Both ends of the pipe must use the same mode.

The value of the state property changes to Connected (2) when the connection is open.

Multiple instances of the pipe can be opened by the same process or by multiple copies of the JADE application
running from the same copy of the jade.exe executable program.

Encyclopaedia of Classes
(Volume 2)

NamedPipe Class Chapter 1 387

EncycloSys2 - 2020.0.02

listenAsynch
Signature listenAsynch(receiver: Object;

msg: String);

The listenAsynch method of the NamedPipe class offers a connection to a remote application and returns
immediately.

The listenAsynch method can be called only when the value of the Connection superclass state property is
Disconnected (0).

When the listenAsynch method is called, the value of the state property is changed to Connecting (1).

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

When the connection is established, the callback method name specified in the msg parameter is called for the
receiver object. The callback method must match the signature required by the calling listenAsynch method, as
follows.

Signature listenCallback(pipe: NamedPipe);

The connection is established by opening a pipe name using the contents of the Connection superclass name
property. Each end of the named pipe must open the pipe by using the same name.

The Connection superclass fillReadBuffer property determines whether the pipe is opened in bytes or in
message mode. Both ends of the pipe must use the same mode.

The value of the state property changes to Connected (2) when the connection is open.

Multiple instances of the pipe can be opened by the same process or by multiple copies of the JADE application
running from the same jade.exe executable program.

If the close method is called before a connection is made, the listenAsynch callback routine is not called. If the
listenAsynch method call fails, a connection exception is raised.

open
Signature open();

The open method of the NamedPipe class attempts to open the client end of an offered connection and returns
immediately, if successful. If the connection attempt fails, an exception is raised. The Windows implementation of
the Named Pipe connection does not allow the client side of the connection to wait for the offer to be made.

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

The open method can be called only when the value of the Connection superclass state property is
Disconnected (0).

The connection is established by opening a pipe name using the contents of the Connection superclass name
property. Each end of the named pipe must open the pipe by using the same name.

The pipe can be opened across a network, by specifying the name of the server end of the pipe in the
serverName property. If the processes opening both ends of the pipe are on the same workstation, the
serverName property must be set to null or to the name of the current workstation.

The Connection superclass fillReadBuffer property determines whether the pipe is opened in bytes or in
message mode. Both ends of the pipe must use the same mode.

Encyclopaedia of Classes
(Volume 2)

NamedPipe Class Chapter 1 388

EncycloSys2 - 2020.0.02

The value of the state property changes to Connected (2) when the connection is open.

Multiple instances of the pipe can be opened by the same process, or by multiple copies of the JADE application
running from the same jade.exe executable program.

openAsynch
Signature openAsynch(receiver: Object;

msg: String);

The openAsynch method of the NamedPipe class attempts to establish a connection to a named pipe and returns
immediately. When the connection is established, the object specified in the receiver parameter is sent the name
of the callback method specified in the msg parameter.

If the connection attempt fails, an exception is raised. The connection attempt fails unless the server end of the
connection is being offered.

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

The openAsynch method can be called only when the value of the Connection class state property is
Disconnected (0). When this method is called, the value of the state property is changed to Connecting (1).

When the openAsynch method establishes a connection, the user-written callback method specified in the msg
parameter is called. The callback method must match the signature required by the calling openAsynch method,
as follows.

Signature openCallback(pipe: NamedPipe);

readBinary
Signature readBinary(length: Integer): Binary;

The readBinary method of the NamedPipe class reads binary data from the connection.

If the value of the Connection superclass fillReadBuffer property is true, the readBinary method returns when
the number of bytes of data specified in the length parameter have been read.

If the value of the fillReadBuffer property is false, the method returns when the entire message has been
received. The readBinary method uses the length parameter as the block size for reading and assembling the
entire message. If the length parameter is set to zero (0), 4,000 bytes are used as the block size.

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

This method can be called only when the value of the Connection superclass state property is Connected (2).

One synchronous or asynchronous read operation only can be performed at a time for any one connection.

readBinaryAsynch
Signature readBinaryAsynch(length: Integer;

receiver: Object;
msg: String);

The readBinaryAsynch method of the NamedPipe class initiates a read of binary data from the connection and
returns immediately.

Encyclopaedia of Classes
(Volume 2)

NamedPipe Class Chapter 1 389

EncycloSys2 - 2020.0.02

If the value of the Connection superclass fillReadBuffer property is true, when the bytes of data specified in the
length parameter have been read, the callback method name is called for the object specified in the receiver
parameter.

If the value of the fillReadBuffer property is false, when the entire message has been read, the callback method
name specified in the msg parameter is called for the object specified in the receiver parameter. The length
parameter is used as the block size for reading and assembling the entire message. If the length parameter is set
to zero (0), 4,000 bytes are used as the block size.

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

One synchronous or asynchronous read operation only can be performed at a time for any one connection.

The readBinaryAsynch method can be called only when the value of the Connection superclass state property
is Connected (2).

The callback method must match the signature required by the calling readBinaryAsynch method, as follows.

Signature readBinaryCallback(pipe: NamedPipe;
buffer: Binary);

If the read fails, a connection exception is raised, specifying a Windows error number and description.

Note If the other end of the connection has been closed, this end of the connection is also closed. If this occurs,
the value of the Connection superclass state property is Disconnected (0) and the Microsoft Windows exception
that is raised is usually 109 (broken pipe).

writeBinary
Signature writeBinary(buffer: Binary);

The writeBinary method of the NamedPipe class writes binary data to the connection and returns when the
operation is complete.

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

The writeBinary method can be called only when the value of the Connection superclass state property is
Connected (2).

writeBinaryAsynch
Signature writeBinaryAsynch(buffer: Binary:

receiver: Object;
msg: String);

The writeBinaryAsynch method of the NamedPipe class writes binary data to the connection and returns
immediately.

When the operation is complete, the callback method name specified in the msg parameter is called for the
receiver object parameter. The callback method must match the signature required by the calling
writeBinaryAsynch method, as follows.

Signature writeBinaryCallback(pipe: NamedPipe);

If the write operation fails, a connection exception is raised, with a Windows error number.

Encyclopaedia of Classes
(Volume 2)

NamedPipe Class Chapter 1 390

EncycloSys2 - 2020.0.02

An exception is raised if this method is invoked from a server method when the server node is not running under a
Windows operating system that supports services.

Note If the other end of the connection has been closed, this end of the connection is also closed. If this occurs,
the value of the Connection superclass state property is Disconnected (0) and the exception raised is usually
109 (broken pipe).

The writeBinaryAsynch method can be called only when the value of the Connection superclass state property
is Connected (2).

Another asynchronous write operation can be issued before the previous write operation is complete if it calls the
same object and method on completion.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 391

EncycloSys2 - 2020.0.02

Node Class
The Node class is the class for which an instance exists for each node in a system. A node is a physical
workstation participating in a particular application. A node can be a server node or a client node.

One node object exists for each logical workstation connected to the server node workstation. There is one fixed
server node and one, none, or many client nodes.

A node represents a workstation that hosts the execution of one or several processes and it contains a dictionary
of the processes currently active in the node. A node object is created for each JADE executable program that is
running; that is, a workstation that is running two JADE applications has two node objects, or logical workstation
connections, to the server.

For details about the constants, properties, and methods defined in the Node class, see "Node Class Constants",
"Node Properties", and "Node Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

Node Class Constants
The constants provided by the Node class are listed in the following table.

Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system
(currently Windows 32-bit little-endian)

ExternalProcess_Failed External process failed, due to an exception (modal
parameter is set to true)

ExternalProcess_InitiateFailed External process failed to initiate

ExternalProcess_InitiateOK External process initiated successfully (modal parameter
is set to false)

ExternalProcess_InvalidParam Invalid parameter in the external process

ExternalProcess_Successful External process was successful (modal parameter is set
to true)

OSUnknown Operating system is unrecognized or cannot be
determined

OSWindows Operating system is Microsoft Windows

OSWindowsEnterprise Operating system is Microsoft Windows 10, Windows
Server 2019, Windows Server 2016, or Windows Server
2012

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 392

EncycloSys2 - 2020.0.02

Constant Description

OSWindowsHome Operating system is Microsoft Windows 98 (not a
supported operating system)

OSWindowsMobile Operating system is Microsoft Windows CE (not a
supported operating system)

Role_Replay Replay node role

Role_Standard Standard node role

Role_Unknown Unknown node role

Type_Undefined Undefined

Type_DatabaseServer Database server (jadrap or jadserv)

Type_ApplicationServer Application server (jadapp or jadappb in multiuser mode)

Type_ApplicationServerAndDatabaseServer Application server and database server (jadapp or
jadappb in single user mode)

Type_StandardClient Standard client node (jade in multiuser mode; not as a
thin client)

Type_StandardClientAndDatabaseServer Standard client node and database server (jade in single
user mode)

Type_NonGuiClient Non-GUI (jadclient) node

Type_NonGuiClientAndDatabaseServer Non-GUI (jadclient) node and database server

Type_DatabaseAdmin Database administration (jdbadmin) node

Type_DatabaseAdminAndDatabaseServer Database administration (jdbadmin) node and database
server

Non-GUI nodes include user-written executables that use the JADE Object Manger API (C++) and the JADE .NET
API (C#).

Node Properties
The properties defined in the Node class are summarized in the following table.

Property Description

accessPatterns Reserved for future use

name Contains a read-only string of the node name

osID Contains the process identifier of the operating system for the node

processes Contains all processes currently executing in the node

system Contains a read-only reference to the system object

userExitCode Contains a value returned by your application when the JADE program exits

accessPatterns
Type: ProcessDict

The accessPatterns property of the Node class is not yet implemented. It is reserved for future use.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 393

EncycloSys2 - 2020.0.02

name
Type: String[255]

The name property of the Node class contains a read-only string of the node name. The computer name, obtained
from the operating system, has a unique numeric identifier appended to it.

osID
Type: Integer

The osID property of the Node class contains the read-only process identifier of the operating system for the node.

You should use this property in preference to the less-efficient Node class osProcessId method.

processes
Type: ProcessDict

The read-only processes property of the Node class is a read-only property that contains a reference to all
processes currently executing in the node.

The key of the dictionary is the userCode property of the process.

If abnormal terminations have occurred in a node, duplicated processes can exist.

Caution Lock environmental object collections with extreme caution, as this can cause hold-ups when
processes sign off and on and when nodes initiate and terminate; for example, you should never use the foreach
instruction to iterate through an environmental object collection. Instead, create a transient clone of the collection
and iterate through that.

system
Type: System

The system property of the Node class contains a read-only reference to the system object, as shown in the code
fragment in the following example.

foreach lock in locksArray do
listBoxQueue.addItem(lock.requestedBy.node.system.name.String);

endforeach;

userExitCode
Type: Integer

The userExitCode property of the Node class contains a value returned by your applications when a JADE
program (for example, jade.exe, jadapp, jadrap.exe, jaded, and so on) exits. The default value is zero (0). For
more details, see Appendix A, "Exit Values", in the JADE Installation and Configuration Guide.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 394

EncycloSys2 - 2020.0.02

Tip You can use this property, for example, to set a non-zero exit code that can then be checked in a batch file
by using the ERRORLEVEL keyword to check for appropriate userExitCode values, as shown in the following
example.

begin
beginTransaction;
node.userExitCode := 123;
commitTransaction;
terminate;

end;

The specified value is returned only if the JADE program would have normally returned zero (0); that is, if JADE
wants to return a non-zero exit value, the JADE value takes precedence over your value specified in this property.

If the StandardExitValues parameter in the [FaultHandling] section of the JADE initialization file is set to false,
any exit code value that you specify in this property is returned, within any limitations imposed by Microsoft
Windows.

Conversely, if the StandardExitValues parameter is set to true, your user-supplied value must be in the range
zero (0) through 127, inclusive. If it is outside this range, it is reset to 63. As values in the range 32 through 63,
inclusive, are for your use as exit codes, JADE code will not remap JADE error numbers into this range.

Note As the userExitCode property applies to the JADE node, any JADE application can set this value.
Cooperation between applications wanting to set this attribute may therefore be required.

Node Methods
The methods defined in the Node class are summarized in the following table.

Method Description

beginIndividualRequestsLogging Manually starts sampling individual remote requests of all processes in
the local node

beginSample Manually opens a new sample file and begins accumulating local node
statistics

clearMethodCache Clears previously loaded methods from method cache

createExternalProcess Initiates an external process from within JADE logic

downloadCount Returns the number of processes currently performing an automatic
download of software

endIndividualRequestsLogging Manually terminates sampling of individual remote requests of all
process in the local node

endSample Manually terminates sampling of statistics in the local node and
releases the current file

getAppServerGroupName Returns a string containing the name of the AppServerGroupName
parameter in the JADE initialization file

getCacheSizes Retrieves the cache sizes of the node on which the method is executing

getCacheSizes64 Retrieves the cache sizes of the node on which the method is executing
when running in a 64-bit JADE environment

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 395

EncycloSys2 - 2020.0.02

Method Description

getCharacterSize Returns an integer value representing the character size of the node of
the receiver object

getCommandLine Returns a string containing the command line of the node of the receiver
object

getComputerName Returns a string containing the computer name of the receiving node
object

getDefaultLCID Returns the number of the locale with which the background process for
the node was initiated

getEnvironmentVariable Returns a string containing the value of the specified user or system
environment variable on the node of the receiver object

getExecuteFlagValue Returns a boolean value containing the effective value of a flag used in
executeWhen instructions

getIniFileName Returns a string containing the name and full path of the JADE
initialization file

getJadeHomeDirectory Returns a string containing the JADE HOME directory

getJadeInstallDirectory Returns a string containing the directory in which the JADE binaries are
installed

getJadeWorkDirectory Returns a string containing the directory in which JADE work files are
created

getLCIDFromCharacterSet Returns a locale ID corresponding to the specified short name of a
character set

getLineDelimiter Returns a string containing the line delimiter of the node of the receiver
object

getLocks Populates the specified array with transient instances of the current
locks for shared transient instances

getMutexCounts Retrieves the number of contentions on mutexes (locking mechanism
used to ensure thread safety when executing critical sections of code)
used internally by JADE for the node

getNotes Reserved for future use

getObjectCaches Retrieves node sampling values relating to cache activity

getOSDetails Returns comprehensive information about the operating system and
machine architecture of the node of the receiver object

getOSPlatform Returns the operating system of the receiver object

getProfileString Retrieves a string from the specified section in an initialization file on the
application server workstation when the application is running in JADE
thin client mode

getProgramDataDirectory Returns a string containing the program data directory

getQueuedLocks Populates the specified array with transient instances of the lock
requests waiting for shared transient object to be unlocked

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 396

EncycloSys2 - 2020.0.02

Method Description

getRequestStats Returns node statistics relating to persistent database requests from the
node of the receiver object

getRpcServerStatistics Retrieves statistics relating to RPC activity between the database server
node and the node of the receiver object

getTempPath Returns a string containing the architecture-specific version of the
directory in which temporary files are created on the node of the receiver
object

getUserDataDirectory Returns a string containing the user data directory

isApplicationServer Specifies whether the method is executing on an application server
node

isCacheCoherencyEnabled Specifies whether the receiving node has cache coherency enabled

isReadOnlySchema Specifies whether the node on which the method is executing is a read-
only schema

isReadOnlySystemSchema Specifies whether the node on which the method is executing is a read-
only system schema

isServerNode Specifies whether the node on which the method is executing is the
server

isService Specifies whether the executable that is currently running on the node of
the receiver object is running as a service

logObjectCaches Specifies the local node object cache statistics logged to the sample
statistics file

logRequestStatistics Specifies the request statistics logged for processes in the local node

logUserCommand Invokes the NodeSampleUserCommandCallBack entry point in the
user library

networkAddress Returns the IP address of the network interface connection to the
database server

nodeRole Returns an integer value that represents the database role of the node
of the receiver object

nodeType Returns an integer value that indicates the role of the node with regard
to processes and the Synchronized Database Service (SDS)

osProcessId Returns the process identifier of the executable that is currently running
on the node of the receiver object

processDump Invokes a non-fatal process dump of the node specified by the receiver

setCacheSizes Sets the cache size values on the node on which the method is
executing and retrieves the current values after the operation

setCacheSizes64 Sets the cache size values on the node on which the method is
executing and retrieves the current values after the operation when
running in a 64-bit JADE environment

setExecuteFlagValue Sets the effective value of a flag used in executeWhen instructions

setProfileString Copies a string into the specified section of the JADE initialization file

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 397

EncycloSys2 - 2020.0.02

Method Description

wbemListClasses Retrieves a list of the WBEM classes that can be queried for the node of
the receiver object

wbemListInstanceNames Retrieves the names of all instances of a specified WBEM class for the
node of the receiver object

wbemQueryQualifiers Retrieves the name, type, and scale factor for each attribute of a
specified WBEM class

wbemRetrieveData Retrieves instances and attribute values for a specified WBEM class for
the node of the receiver object

beginIndividualRequestsLogging
Signature beginIndividualRequestsLogging(samplingHandle: Integer;

localRequests: Boolean;
remoteRequests: Boolean;
persistentCacheBuffers: Boolean;
transientCacheBuffers: Boolean;
remoteTransientCacheBuffers: Boolean;
userNumber: Integer;
userText: String);

The beginIndividualRequestsLogging method of the Node class starts sampling the individual requests or cache
activities, or both, of all processes in the local node and invokes the NodeSampleIndividualRequestCallBack or
NodeSampleObjectBufferCallBack entry point, or both of these entry points, in the user library specified in the
libraryName parameter of the beginSample method.

The NodeSampleIntervalCallBack entry point is invoked once only before these entry points, with the eventType
parameter in the entry point set to 1.

The beginIndividualRequestsLogging method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the beginSample method when
sampling for the node started

localRequests Logs individual requests to the database of the node

remoteRequests Logs individual requests to remote nodes

persistentCacheBuffers Logs activities in the persistent object cache

transientCacheBuffers Logs activities in the transient object cache

remoteTransientCacheBuffers Logs activities in the remote transient object cache

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

To enable the sampling of the statistics that you require, set the appropriate Boolean parameters to true. The
following code fragment shows an example of the beginIndividualRequestsLogging method and its parameters.

node.beginIndividualRequestsLogging(samplingHandle, false, true, false,
false, false, 4, "Start logging of remote requests");

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 398

EncycloSys2 - 2020.0.02

The JADE sampling libraries produce the following record types.

Begin process record (type 6), which is optional

BeginInterval record (type 11), containing your specified user number and text to the output file immediately,
followed by one IndividualRequest record for each of the subsequent individual requests or one cache
buffer activity record for each of the subsequent buffer cache activities, or both

Individual local request records (record type 14)

Individual remote request records (record type 10)

Cache buffer activity records (record type 2)

For more details about the individual remote requests that are sampled in record types 2, 6, 7, 10, 11, and 14, see
Chapter 4 of the JADE Object Manager Guide.

beginSample
Signature beginSample(libraryName: String;

initializationParameter: String): Integer;

The beginSample method of the Node class opens a new sample context for the node, begins the accumulation
of sampling statistics on that node, and invokes the following entry points.

NodeSampleInfoCallBack, passing it the initializationParameter string and setting the eventType
parameter in the user library entry point to 1.

NodeSampleNodeInfoCallBack, passing it information about the local node and setting the eventType
parameter in the user library entry point to 1.

NodeSampleProcessInfoCallBack, invoked every time that a process begins and once for every existing
process at the time sampling begins.

This method returns the sampling handle number used to identify the sampling context that is opened. All
subsequent methods use this sampling context handle as the first parameter.

When the beginSample method is called in your application, request statistics are stored in transient memory for
every process in the node until they are passed to the corresponding entry point in the user library specified in the
libraryName parameter. The JADE-supplied library writes a begin process record (type 6) to the statistics file.

If you are using the filesmpl or tcpsmpl JADE sampling library, you can set the initializationParameter parameter
to "<null>" or to "" so that sample values will not be output. For filesmpl, the values will not be written to a file. For
tcpsmpl, the values will not be sent to a TCP/IP connection. Use this option in situations where node sampling
needs to be enabled for the Process class getRequestStatistics method but no file or TCP/IP output is wanted.

For more details, see "Direct Node Sampling", in Chapter 4 of the JADE Object Manager Guide.

The following is an example of a method that manually samples node statistics.

testManualSamplingFullInterval();
vars

coy : Company;
cust : Customer;
custDict : CustomerByNameDict;
samplingHandle : Integer;

begin
samplingHandle := node.beginSample("filesmpl",

"c:\temp\fullInterval%p, txt");

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 399

EncycloSys2 - 2020.0.02

node.beginIndividualRequestsLogging(samplingHandle, false,
true, true, true, false, 557, "fullInterval");

coy := Company.firstInstance;
foreach cust in coy.CustDict do

write cust.name;
endforeach;
node.endIndividualRequestsLogging(samplingHandle, 557, "fullInterval");
node.endSample(samplingHandle);

end;

clearMethodCache
Signature clearMethodCache();

The clearMethodCache method of the Node class clears previously loaded methods from method cache. Use this
method is if you have called the setExecuteFlagValue method to change the value of the executeWhen flag that
conditionally loads method code, as shown in the following code fragment.

node.setExecuteFlagValue("DebugTest", true);
node.clearMethodCache();

createExternalProcess
Signature createExternalProcess(directory: String;

command: String;
args: StringArray;
alias: String;
thinClient: Boolean;
modal: Boolean;
result: Integer output): Integer;

The createExternalProcess method of the Node class initiates an external process from within JADE logic. The
parameters of the createExternalProcess method are listed in the following table.

Parameter Usage

directory Specifies the directory that you require for the working directory when you run the external
process application specified in the command parameter. The current directory is used if this
parameter contains an empty string.

command Specifies the fully qualified path of the application (that is, the external process) that you want
to run.

Note To ensure that the expected executable is started, specify the full path to the
executable. If the path includes spaces, the value should be in double quotes.

args Specifies the external process parameters, or arguments. Each string in the array is passed as
a separate argument to the command. This can be null if there are no arguments. If an
argument contains white space, you will need to protect it by using quote marks; for example:

args[2] := 'ini="c:\Program files\jade\jade.ini"';

alias Not currently implemented (that is, this parameter is ignored).

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 400

EncycloSys2 - 2020.0.02

Parameter Usage

thinClient If running in a JADE thin client environment, specifies whether the external process is
executed on a presentation client workstation or the application server. If this parameter is set
to true, the process is initiated on the presentation client workstation, or thin client.

modal When true, specifies the suspension of the JADE application until the external process
terminates, or when false, specifies that the JADE application is to run in parallel with the
process.

result Returns the exit value from the external process. This has meaning only when the modal
parameter is set to true.

The values that are returned by this method are listed in the following table.

Node Class Constant Integer Value Description

ExternalProcess_Failed 3 External process failed, due to an exception (modal
parameter is set to true)

ExternalProcess_InitiateFailed 2 External process failed to initiate

ExternalProcess_InitiateOK 0 External process initiated successfully (modal parameter
is set to false)

ExternalProcess_InvalidParam 1 Invalid parameter in the external process

ExternalProcess_Successful 4 External process was successful (modal parameter is set
to true)

The following example shows the use of the createExternalProcess method.

vars
command, alias : String;
args : StringArray;
exitValue : Integer; // random value if modal = false
result : Integer;

begin
command := "mycommand";
alias := command;
create args transient;
args[1] := "first";
args[2] := '"white space"';
result := node.createExternalProcess(".", command, args, alias,

false, false, exitValue);
if result = node.ExternalProcess_InvalidParam then

write "Something is wrong with node.createExternalProcess arguments";
elseif result = node.ExternalProcess_InitiateFailed then

write "Could not start " & command;
elseif result = node.ExternalProcess_InitiateOK then

write "Non-modal command '" & command & "' started successfully";
elseif result = node.ExternalProcess_Failed then

write "Modal command '" & command & "' started, but died under
abnormal conditions";

elseif result = node.ExternalProcess_Successful then
write "Modal command '" & command & "' started, and exited with " &

exitValue.String;
endif;

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 401

EncycloSys2 - 2020.0.02

epilog
delete args;

end;

downloadCount
Signature downloadCount(): Integer;

The downloadCount method of the Node class returns the number of processes that are currently performing an
automatic download of software, to enable you to monitor the automatic download process.

For more details, see "Upgrading Software on Presentation Clients", in Appendix B of the JADE Thin Client Guide.

endIndividualRequestsLogging
Signature endIndividualRequestsLogging(samplingHandle: Integer;

userNumber: Integer;
userText: String);

The endIndividualRequestsLogging method of the Node class terminates the sampling of individual remote
requests or cache activities started by the beginIndividualRequestsLogging method of the Node class.

The NodeSamplIntervalCallBack entry point is invoked with the eventType parameter set to 2.

The endIndividualRequestsLogging method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the beginSample method when sampling for
the node started

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

The following code fragment shows an example of the endIndividualRequestsLogging method and its
parameters.

node.endIndividualRequestsLogging(samplingHandle, 4, "End logging of remote
requests");

The JADE-supplied library writes an endInterval record (type 12), containing your specified user number and text,
which is written to the output file specified in the initializationParameter parameter of the beginSample method.

For more details, see Chapter 4 of the JADE Object Manager Guide.

endSample
Signature endSample(samplingHandle: Integer);

The endSample method of the Node class terminates the sampling of statistics on the local node for the context
identified by the samplingHandle parameter (returned by the beginSample method when sampling for the node
started) and invokes the following entry points.

NodeSampleNodeInfoCallBack, passing it information about the local node and setting the eventType
parameter in the user library entry point to 2.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 402

EncycloSys2 - 2020.0.02

NodeSampleInfoCallBack, which your user library should consider the last call for the node sampling
context.

The JADE-supplied library closes and releases the current sampling file, which you can then analyze.

You can produce multiple files during a node lifetime, by using the Node class beginSample and endSample
methods, but you cannot sample statistics simultaneously on the same node. For more details, see Chapter 4 of
the JADE Object Manager Guide.

getAppServerGroupName
Signature getAppServerGroupName(): String;

The getAppServerGroupName method of the Node class containing the name of the AppServerGroupName
parameter in the [JadeAppServer] section of the JADE initialization file.

If the AppServerGroupName parameter is not specified, this method returns an empty string.

For details about application groups, see "Thin Client Connection Balancing", in Chapter 3 of the JADE Thin
Client Guide.

getCacheSizes
Signature getCacheSizes(persistentCache: Integer output;

transientCache: Integer output;
remoteTransientCache: Integer output);

The getCacheSizes method of the Node class retrieves the persistent, transient, and remote transient cache
values of the node on which the method is executing.

These values, which are in bytes, represent the maximum amount of memory that is allocated by the JADE Object
Manager library for caching objects in the node. See also the setCacheSizes method.

getCacheSizes64
Signature getCacheSizes64(persistentCache: Integer64 output;

transientCache: Integer64 output;
remoteTransientCache: Integer64 output);

The Node class getCacheSizes64 method retrieves the persistent, transient, and remote transient cache values
of the node on which the method is executing.

These values, which are in bytes, represent the maximum amount of memory that is allocated by the JADE Object
Manager library for caching objects in the node. See also the setCacheSizes64 method.

getCharacterSize
Signature getCharacterSize(): Integer;

The getCharacterSize method of the Node class returns an integer value that represents the size of the character
for the JADE version and operating system (for the Unicode version) under which the node of the receiver object
is running.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 403

EncycloSys2 - 2020.0.02

The values that can be returned are listed in the following table.

Returned Value Description

1 ANSI version of JADE

2 Unicode version of JADE in a Windows operating system

getCommandLine
Signature getCommandLine(): String;

The getCommandLine method of the Node class returns a string containing the current command line of the node
of the receiver object.

In JADE thin client mode, this method returns the command line file from the application server. (Use
process.getCommandLine to return the current command line of the presentation client.)

The command line of the specified node instance is returned, which does not have to be the current node. If you
require the command line of the current node, use the node environmental object (system variable).

The following example shows the use of the getCommandLine method.

vars
cmdLine, myOption : String;
int : Integer;

begin
cmdLine := node.getCommandLine; // get command line
// look for my command line option ('myOption')
int := cmdLine.pos('myOption', 1);
if int <> 0 then

int := cmdLine.pos('=', int) + 1; // look for '='
// skip any blanks after the '='
cmdLine.scanWhile(' ', int);
// return input up to next blank
myOption := cmdLine.scanUntil(' ', int);
write myOption;

endif;
end;

getComputerName
Signature getComputerName(): String;

The getComputerName method of the Node class returns the computer name of the receiving node object.

getDefaultLCID
Signature getDefaultLCID(): Integer;

The getDefaultLCID method of the Node class returns an integer for the locale ID (LCID) with which the
background process for the node was initiated.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 404

EncycloSys2 - 2020.0.02

In the following example, a presentation client determines the LCID of its application server node to obtain
information about the locale.

vars
lcid: Integer;
info: LocaleFullInfo;

begin
create info transient;
lcid := node.getDefaultLCID;
currentSchema.getLocaleFullInfo(lcid, info);
. . .

epilog
delete info;

end;

getEnvironmentVariable
Signature getEnvironmentVariable(name: String): String;

The getEnvironmentVariable method of the Node class returns a string containing the value of the user or system
environment variable specified in the name parameter of the node of the receiver object.

The value specified in the name parameter equates to a variable listed in the Variable column on the
Environment Variables dialog (accessed by selecting the Advanced sheet on the System Properties dialog). The
returned value equates to the corresponding value listed in the Value column on the Environment Variables
dialog for that row. For example, envvar := node.getEnvironmentVariable("TEMP"); could return
C:\WINNT\TEMP.

For details about returning the architecture-specific version of the directory in which temporary files are placed,
see the Node class getTempPath method.

getExecuteFlagValue
Signature getExecuteFlagValue(name: String): Boolean;

The getExecuteFlagValue method of the Node class returns a boolean value containing the current, effective
value of a flag used in executeWhen instructions.

The effective value of the flag is read from the [JadeExecuteFlags] section of the JADE initialization file when the
node is initialized, but can be changed by calling the setExecuteFlagValue method.

getIniFileName
Signature getIniFileName(): String;

The getIniFileName method of the Node class returns the full path and file name of the JADE initialization file; for
example:

c:\jade\system\jade.ini

The name of the JADE initialization file is returned in the form that it was entered on the command line. If no
initialization file name was specified, JADE looks for an initialization file with the name jade.ini in the default
location and either finds the file or creates it.

The name and full path of that default initialization file is returned with forward slash characters (for example,
c:/jade/system/jade.ini).

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 405

EncycloSys2 - 2020.0.02

The JADE initialization file is returned on the specified node instance, which does not have to be the current node.
If you require the JADE initialization file on the current node, use the node environmental object (system variable).

In JADE thin client mode, this method returns the initialization file from the application server. Use the Application
class getIniFileName method or the Process class getIniFileName to obtain the file from the thin client.

Note If you create a shortcut that has the newcopy parameter set to false and you specify a different JADE
initialization file from the one with which the node was started, the active JADE initialization file is the one that was
specified when the node started up and not the one specified in the newcopy=false shortcut.

Calling the getIniFileName method in a new application enables you to get the name of the initialization file that
was used when the node started up.

getJadeInstallDirectory
Signature getJadeInstallDirectory(): String;

The getJadeInstallDirectory method of the Node class returns a string containing the JADE installation directory,
from which the JADE executable program is running; for example:

c:\jade\bin

getJadeHomeDirectory
Signature getJadeHomeDirectory(): String;

The getJadeHomeDirectory method of the Node class returns a string containing the JADE HOME directory,
which is the parent directory of the JADE installation directory; for example:

c:\jade \\ if the installation directory was c:\jade\bin

getJadeWorkDirectory
Signature getJadeWorkDirectory(): String;

The getJadeWorkDirectory method of the Node class returns a string containing the directory where work files
are created by JADE. When you call the getJadeWorkDirectory method and the directory does not exist, JADE
creates it based on the value of the JadeWorkDirectory parameter in the [JadeEnvironment] section of the JADE
initialization file.

By default, this directory is created at the same level as the JADE installation directory (that is, the directory in
which the jade.exe executable program is located) and is named temp. For example, if the JADE installation
directory is c:\jade\bin, the working directory would be c:\jade\temp.

The cache file for a thin client (which contains all forms and pictures sent by logic from the application server) is
stored in the work directory, unless another location is specified by the FormCacheFile parameter in the
[JadeThinClient] section. The thin client automatic download interlock file (thinlock.fil) is also created in the work
directory.

getLCIDFromCharacterSet
Signature getLCIDFromCharacterSet(charset: String): Integer;

The getLCIDFromCharacterSet method of the Node class returns an integer for the locale ID (LCID) that
corresponds to the character set specified by the value of the charset parameter. If the value of the charset
parameter is not a valid value or if the locale is not installed, the method returns zero (0).

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 406

EncycloSys2 - 2020.0.02

Web pages and HTTP headers should contain the name of the character set of the encoding being used. The
Euro symbol (€) is encoded as 0x80 and 0xA4, depending on the character set being used. As the JADE Unicode
to ANSI conversion routines use the locale ID instead of the character set, the getLCIDFromCharacterSet
method enables you to determine the locale ID to use in those routines and to determine whether the locale is
installed.

The following example obtains the locale for the fr-FR character set.

lcid := node.getLCIDFromCharacterSet("fr-FR"); // locale ID is 1036

getLineDelimiter
Signature getLineDelimiter(): String;

The getLineDelimiter method of the Node class returns a string containing the line delimiter of the node of the
receiver object (that is, CrLf).

getLocks
Signature getLocks(locks: LockArray input;

maxEntries: Integer);

The getLocks method of the Node class populates the array specified in the locks parameter with transient
instances of the current locks for the shared transient objects in the node specified as the method receiver.

The parameters for the getLocks method are listed in the following table.

Parameter Specifies the …

locks Locks array that is to be populated with the lock instances

maxEntries Maximum number of lock instances that are to be included in the array

The following example shows the use of the getLocks method.

showSharedTransientLocks();
vars

lock : Lock;
lockArray : LockArray;
nodedict : NodeDict;
n : Node;

begin
create lockArray transient;
create nodedict transient;
system.nodes.copy(nodedict);
foreach n in nodedict do

write "Shared transient locks for node " & n.String;
n.getLocks(lockArray, 100);
foreach lock in lockArray do

write 'Oid ' & lock.target.String;
write 'Locked by ' & lock.requestedBy.String;

endforeach;
lockArray.purge;

endforeach;
epilog

delete nodedict;

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 407

EncycloSys2 - 2020.0.02

delete lockArray;
end;

The output from the getLocks method shown in the previous example is as follows.

Shared transient locks for node Node/186.1
Shared transient locks for node Node/186.2
Oid Animal/51248.1
Locked by Process/187.04

getMutexCounts
Signature getMutexCounts(jdo: JadeDynamicObject input;

includeZeroContentions: Boolean);

The getMutexCounts method of the Node class retrieves the number of contentions on mutexes used internally
by JADE for the particular node identified as the method receiver. A mutex is a locking mechanism used to ensure
thread safety when executing critical sections of code.

The contention counts are returned as Integer64 properties of the JadeDynamicObject instance specified by the
jdo parameter. The name of each property represents the internal mutex name, and the value represents the
number of times that mutex has been contended (that is, the number of times execution of a thread has been
temporarily suspended because another thread was executing in a section of code protected by the mutex).

The contention counts are cumulative from the time the specified node is initiated.

The includeZeroContentions parameter indicates whether mutexes that have not yet encountered any
contentions should be included in the information returned. If set to false, only information for those mutexes that
have had at least one contention are added to the dynamic object. If this parameter is set to true, information
about all current mutexes is added.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. The
getMutexCounts method clears any existing properties from the JadeDynamicObject instance each time it is
called.

The number of mutexes reported and the order that the properties are added to the dynamic object can vary from
call to call, because mutexes can be dynamically created and deleted.

Note If a mutex is deleted then recreated between getMutexCounts calls, the contention count can appear to
reduce in value. Any application attempting to calculate contention count differences should take this into account.

The mutex contention information is primarily for internal use. High mutex contention counts can indicate
bottlenecks that are impacting overall system performance.

The following example shows the use of the getMutexCounts method.

tryMutexCounts();
vars

jdo : JadeDynamicObject;
begin

create jdo transient;
node.getMutexCounts(jdo, false);
write jdo.display;

epilog
delete jdo;

end;

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 408

EncycloSys2 - 2020.0.02

The output from the getMutexCounts method shown in the previous example is as follows.

---MutexStatistics(111)---
InterpreterOutp = 13
DrawTextLock = 17
PDB BuffChgLock = 1
PersistentCache = 102
PersistentDelet = 7
ClientTransient = 9
tblMgtLock = 2

getNotes
Signature getNotes(notes: NotificationArray input;

transients: Boolean;
maxEntries: Integer);

The getNotes method of the Node class is not yet implemented. It is reserved for future use.

getObjectCaches
Signature getObjectCaches(dynObj: JadeDynamicObject input;

cacheType: Integer);

The getObjectCaches method of the Node class retrieves statistics relating to cache activity for the node specified
as the method receiver.

The cache statistics values are returned as properties of a JadeDynamicObject object.

The cumulative counter values are not reset during the lifetime of the database server node, and you need to
compare values from one execution of the getObjectCaches method with previous values to work out the
differences.

The cumulative values are held as 64-bit unsigned integers, which are copied to the dynamic object as Integer64
values. The maximum value before they wrap around to negative values is therefore 2^63 - 1 (approximately 8
Exabytes).

You can use the getObjectCaches method regardless of whether node sampling is enabled.

The cacheType parameter specifies whether information is retrieved from the persistent, transient, or remote
transient cache. The retrieved values are listed in the following table.

Value Description

1 Persistent cache

2 Transient cache

3 Remote transient cache (applicable only on server nodes)

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls. For a list and
explanations about the properties that are returned by this method, see "Node::getObjectCaches Method", in
Chapter 4 of the JADE Object Manager Guide.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 409

EncycloSys2 - 2020.0.02

If the dynamic object passed to the method already contains properties but they do not match the properties to be
returned, the existing dynamic object properties are removed and replaced with the appropriate properties. The
method is most efficient when the properties match those to be returned. The following example shows the use of
the getObjectCaches method.

showCacheStatistics();
vars

jdo : JadeDynamicObject;
begin

create jdo transient;
node.getObjectCaches(jdo, 1 /*Persistent*/);
write jdo.display;

epilog
delete jdo;

end;

The output from the getObjectCaches method shown in the previous example is as follows.

---CacheStatistics(103)---
clockTicks = 103739652
nodeCPUTime = 7625000
nodeTicks = 452891
cacheType = 1
hits = 310723
misses = 29737
topOfLRUHits = 0
createdBuffers = 29745
cleanSwappedBuffers = 19297
dirtySwappedBuffers = 0
resizedBuffers = 1367
maximumBufferSize = 5000000
totalNumberOfBuffers = 10448
availableBufferSize = 159
maximumOverdraftBufferSize = 2500000
overdraftBufferSize = 0
deadBuffers = 0
totalOperations = 426611
currentOperations = 301982
currentBuffers = 10448
deletedBuffers = 19297
copiedBuffers = 0
newBuffers = 18
fetches = 29727
duplicateFetches = 4662
totalSwaps = 19297
totalOpsWhenSwapped = 124629
minOpsWhenSwapped = 1
maxOpsWhenSwapped = 289
totalAgeWhenSwapped = 2570606545
minAgeWhenSwapped = 104864
maxAgeWhenSwapped = 366995
lruTraversals = 2
totalLruTraversalTicks = 237599
latestLruTraversalTicks = 115197
totalCacheCoherencyNotifications = 0
cacheCoherencyNotificationHits = 0

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 410

EncycloSys2 - 2020.0.02

cacheCoherencyUpdatedObjects = 0
cacheCoherencyObjectHits = 0
cacheCoherencyObjectMisses = 0
cacheCoherencyRangeRequests = 0
nodeLockRemoveRequestsSent = 0
nodeLockRemoveRequestsRcvd = 0
nodeLockSwapOutRequestsSent = 0

getOSDetails
Signature getOSDetails(jdo: JadeDynamicObject input);

The getOSDetails method of the Node class populates a JadeDynamicObject object with information about the
operating system and architecture of the receiver node.

This method enables you to determine the various usages of JADE for a specific environment; for example, the
type of binaries required for thin client downloads (for example, x64-msoft-win64-ansi).

The properties that are returned in the dynamic object specified in the jdo parameter are listed in the following
table.

Property Type Description

version String Specific version of the operating system.

architecture Integer Internal byte ordering and alignment information relevant to JADE
release. It is used by the setByteOrderLocal and
setByteOrderRemote methods of the Character, Date, Decimal,
Integer, Integer64, Real, Time, and TimeStamp primitive types.

The architecture can be one of the values listed in the following
table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal
byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal
byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal
byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal
byte ordering and alignment

Architecture_Gui Binary data passed in the
byte order of the GUI system
(currently Windows 32-bit
little-endian)

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 411

EncycloSys2 - 2020.0.02

Property Type Description

platformId Integer Operating system of the server node of the receiver object. The
operating system returned by this method can be one of the
values listed in the following table.

Node Class Constant Description

OSWindowsEnterprise Microsoft Windows 10, Windows
Server 2019, Windows Server
2016, or Windows Server 2012

OSWindowsHome Microsoft Windows 98 (not a
supported operating system)

OSWindowsMobile Microsoft Windows CE (not a
supported operating system)

buildArchitecture String Details about the platform and build type for which the binaries
where built (for example, x64-msoft-win64-ansi). This can be
used to determine the type of binaries required for thin client
downloads.

currentBuildArchitectureList String Complete list of current buildArchitecture strings, separated by
semicolons.

fullBuildArchitectureList String Complete list of past and current buildArchitecture strings,
separated by semicolons.

isBigEndian Boolean Indicates if CPU for the node is running big-endian (PowerPC can
switch from big-endian to little-endian, and the reverse).

characterSize Integer 1 for ANSI, 2 for Unicode.

addressWidth Integer 32 indicates 32-bit executing binaries, 64 indicates 64-bit
executing binaries.

osAddressWidth Integer 32 indicates a 32-bit operating system, 64 indicates a 64-bit
operating system.

osVersionEnum Integer Internal unique number representing the operating system and
hardware combination.

osVersionString String Description of the operating system in a readable format.

The first three properties (version, architecture, and platformId) are the same as the values returned by the
getOSPlatform method.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. The following
example shows the use of the getOSDetails method.

vars
jdo : JadeDynamicObject;

begin
create jdo transient;
node.getOSDetails(jdo);
write jdo.display;

epilog
delete jdo;

end;

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 412

EncycloSys2 - 2020.0.02

The output from the getOSDetails method shown in the previous example is as follows.

---GetOSDetails(300)---children = JadeDynamicObjectArray/4194888.1.4194886.2.1 : 0
name = "GetOSDetails"
parent = *** <null> object reference ***
type = 300
version = 10.0
architecture = 3
platformId = 17
buildArchitecture = x64-msoft-win64-ansi
fullBuildArchitectureList = i686-msoft-win32-ansi;ppc-ibm-aix433-ansi;i686-suse-
sles9-ansi;i686-redhat-rh9-ansi;i686-redhat-rhel3-ansi;i686-msoft-win32-
unicode;i686-redhat-rhel3-unicode;i686-suse-sles9-unicode;armv4-msoft-wince42-
unicode;i686-msoft-win32_6x-unicode;armv4-msoft-wince42_6x-unicode;armv4i-msoft-
wince50_6x-unicode;armv4i-msoft-wince50-unicode;i686-msoft-x86emu-unicode;i686-
suse-sles10-ansi;i686-suse-sles10-unicode;i686-redhat-rhel5-ansi;i686-redhat-rhel5-
unicode;x64-msoft-win64-ansi;x64-msoft-win64-unicode;x86_64-suse-sles10-ansi;x86_
64-suse-sles10-unicode;x86_64-redhat-rhel5-ansi;x86_64-redhat-rhel5-unicode;armv4i-
msoft-wm60-unicode;i686-msoft-win32_VS2005-ansi;i686-msoft-win32_VS2005-unicode
currentBuildArchitectureList = i686-msoft-win32-ansi;i686-msoft-win32-
unicode;armv4i-msoft-wince50-unicode;i686-msoft-x86emu-unicode;x64-msoft-win64-
ansi;x64-msoft-win64-unicode;armv4i-msoft-wm60-unicode
isBigEndian = false
characterSize = 1
addressWidth = 64
osAddressWidth = 64
osVersionEnum = 80
osVersionString = Windows 10 Enterprise, 64-bit Edition

getOSPlatform
Signature getOSPlatform(version: String output;

architecture: Integer output): Integer;

The getOSPlatform method of the Node class returns an integer value that indicates the operating system of the
receiver object. The operating system returned by this method can be one of the values listed in the following
table.

Constant Operating system is …

OSWindowsEnterprise Microsoft Windows 10, Windows Server 2019, Windows Server 2016, or
Windows Server 2012

OSWindowsHome Microsoft Windows 98 (not a supported operating system)

OSWindowsMobile Microsoft Windows CE (not a supported operating system)

The version parameter specifies the specific version of the operating system.

The following example uses the OSWindows class constant, which is a bit mask that enables you to identify a
family of operating systems.

vars
platform : Integer;
version : String;
architecture : Integer;

begin

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 413

EncycloSys2 - 2020.0.02

platform := node.getOSPlatform(version, architecture);
if platform.bitAnd(Node.OSWindows) <> 0 then

// operating system is Windows family (Windows 10, Windows Server 2019,
// Windows Server 2016, or Windows Server 2012)
if platform = Node.OSWindowsHome then

// version is an older version of Windows (unsupported)
return 'Windows (unsupported) ' & version;

endif;
if platform = Node.OSWindowsEnterprise then

// version is Windows 10, Windows Server 2019, Windows Server 2016,
// or Windows Server 2012
return 'Windows ' & version;

endif;
if platform = Node.OSWindowsMobile then

// version is Windows CE
return 'Windows CE (unsupported) ' & version;

endif;
endif;
return '* Unknown platform: '& platform.String & ' version: ' & version;

end;

The architecture parameter indicates internal byte ordering and alignment information relevant to this release of
JADE. It is used by the setByteOrderLocal and setByteOrderRemote methods of the Character, Date, Decimal,
Integer, Integer64, Real, Time, and TimeStamp primitive types.

The architecture can be one of the values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

In JADE thin client mode, this method returns the operating platform of the workstation that is running the JADE
logic; that is, the application server. (To return the operating system of the presentation client, use the
getOSPlatform method of the Process class.)

getProfileString
Signature getProfileString(fileName: String;

section: String;
keyName: String;
default: String): String;

The getProfileString method of the Node class retrieves a parameter (key name) string from the specified section
of the JADE initialization file on the application server workstation when the application is running in JADE thin
client mode.

The key name string is returned on the specified node instance, which does not have to be the current node. If you
require the key name on the current node, use the node environmental object (system variable).

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 414

EncycloSys2 - 2020.0.02

If the application is not running in JADE thin client mode, this method functions like the Application class
getProfileStringAppServer method or process.getProfileString; that is, it returns the specified profile string from
the workstation in which the application or process is running.

The setProfileString method copies the string into the specified section of an initialization file on the node.

Use the Application class getProfileString method or Process class getProfileString method to obtain the file
from the application server.

The parameters for the getProfileString method are listed in the following table.

Parameter Specifies the…

fileName Initialization file. If you set this parameter to windows, the win.ini file on the application server
workstation is used. If it does not contain a full path to the file, Windows searches for the file in
the Windows directory on the application server.

section Initialization file section containing the key (parameter) name.

keyName Name of the key (parameter) whose associated string is to be retrieved.

default Default value for the specified key if the key cannot be found in the initialization file.

You can return all initialization file sections or all parameters in a section, by using the JadeProfileString category
global constants listed in the following table.

Global Constant Specified in the… Returns all…

ProfileAllKeys keyName
parameter

Key (parameter) strings in the initialization file section, separated
by spaces

ProfileAllSections section parameter Initialization file sections, separated by spaces

You can use this method to retrieve a string from a two-level section name (prefixed with a unique identifier) within
a JADE initialization file shared by multiple programs on the same application server host. For details, see "Two-
Level Section Names" under "Format of the JADE Initialization File", in the JADE Initialization File Reference.

getProgramDataDirectory
Signature getProgramDataDirectory(): String;

The getProgramDataDirectory method of the Node class returns a string containing the path of the program data
directory.

The program data directory is used to share files among the users of the executables; for example, the
jommsg.log file or shared dictionary spelling files that are updated.

If JADE is not installed under the \Program Files directory, the path of the JADE HOME directory is returned. If
JADE is installed under the \Program Files directory, the value that is returned by the getProgramDataDirectory
method depends on the value of the ProgramDataDirectory parameter in the [JadeEnvironment] section of the
JADE initialization file.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 415

EncycloSys2 - 2020.0.02

If the directory does not exist, JADE creates it. The values of the ProgramDataDirectory parameter and the
corresponding values returned by the getProgramDataDirectory method are shown in the following table.

ProgramDataDirectory Value Return Value

<default> For a Windows release earlier than Windows 7, Windows Server 2019,
Windows Server 2016, or Windows Server 2008, the value returned is the
same as for <homedir>. For Windows 10, Windows Server 2012, or
Windows Server 2008, the value returned is the same as for
<programdata>.

<homedir> The path of the JADE HOME directory.

<programdata> The path of the JADE HOME directory with the \Program Files portion
replaced with the programmatically obtained path of the common
application data directory. For example, a presentation client installed in
\Program Files\Jade Software\parsys returns \Documents and
Settings\All Users\Application Data\Jade Software\parsys on a Windows
operating system earlier than Windows 7, or Windows Server 2008, or
\ProgramData\Jade Software\parsys on Windows 10, Windows 8,
Windows 7, Windows Server 2019, Windows Server 2016, Windows Server
2012, or Windows Server 2008.

Directory name Directory name.

getQueuedLocks
Signature getQueuedLocks(locks: LockArray input;

maxEntries: Integer);

The getQueuedLocks method of the Node class populates the array specified in the locks parameter with
transient instances of the lock requests that are waiting for shared transient objects in the node specified as the
method receiver to be unlocked by the processes that currently have them locked.

The parameters for the getQueuedLocks method are listed in the following table.

Parameter Specifies the …

locks Locks array that is to be populated with the lock request instances

maxEntries Maximum number of lock instances that are to be included in the array

The calling process is responsible for creating and deleting the LockArray instance used with this method, as
well as deleting the Lock instances inserted into the array.

The following example shows the use of the getQueuedLocks method.

showQueuedSharedTransientLocks();
vars

lock : Lock;
lockArray : LockArray;
nodedict : NodeDict;
n : Node;

begin
create lockArray transient;
create nodedict transient;
system.nodes.copy(nodedict);

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 416

EncycloSys2 - 2020.0.02

foreach n in nodedict do
write 'Queued shared transient locks for node ' & n.String;
n.getQueuedLocks(lockArray, 100);
foreach lock in lockArray do

write 'Oid ' & lock.target.String;
write 'Locked by ' & lock.lockedBy.String;
write 'Requested by ' & lock.requestedBy.String;

endforeach;
lockArray.purge;

endforeach;
epilog

delete nodedict;
delete lockArray;

end;

The output from the getQueuedLocks method shown in the previous example is as follows.

Queued shared transient locks for node Node/186.1
Queued shared transient locks for node Node/186.2
Oid Animal/51248.1
Locked by Process/187.5
Requested by Process/187.6

getRequestStats
Signature getRequestStats(jdo: JadeDynamicObject input);

The getRequestStats method of the Node class returns node statistics relating to persistent database requests
from the receiving node that is the method receiver.

The values are returned as Integer64 properties in the dynamic object specified by the jdo parameter.

The calling process is responsible for creating and deleting the JadeDynamicObject instance.

The node statistics are held on the database server node and relate to persistent object requests received from
the node specified as the method receiver. For details about the properties returned in the dynamic object, see
"Node::getRequestStats Method" in Chapter 4 of the JADE Object Manager Guide.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls.

If the dynamic object passed to the method already contains properties that do not match the properties to be
returned, the existing dynamic object properties are removed and replaced with the appropriate properties. The
method is most efficient when the properties match those to be returned.

The cumulative counter values are not reset during the lifetime of the database server node, and you may need to
compare values from one execution of the getRequestStats method with previous values to work out the
differences.

The cumulative values are held as 64-bit unsigned integers, which are copied to the dynamic object as Integer64
values. The maximum value before they wrap around to negative values is therefore 2^63 - 1 (approximately 8
Exabytes).

The following example shows the use of the getRequestStats method.

showNodeRequestStats();
vars

jdo : JadeDynamicObject;

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 417

EncycloSys2 - 2020.0.02

begin
create jdo transient;
node.getRequestStats(jdo);
write jdo.display;

epilog
delete jdo;

end;

The output from the getRequestStats method shown in the previous example is as follows.

---NodeStatistics(104)---
committedTransactions = 43
abortedTransactions = 0
getObjects = 10173
createObjects = 363
deleteObjects = 136
updateObjects = 526
lockObjects = 15588
unlockObjects = 6797
beginNotifications = 537
endNotifications = 52
serverMethodExecutions = 0
causeEvents = 60

getRpcServerStatistics
Signature getRpcServerStatistics(jdo: JadeDynamicObject input;

detailed: Boolean);

The getRpcServerStatistics method of the Node class RPC statistics relating to activity between the database
server node and the client node represented by the Node instance used as the method receiver.

The values returned represent information about the connection to the specified node and totals for requests
received and replies sent to it. The values are returned as Integer64 properties in the dynamic object specified by
the jdo parameter. The calling process is responsible for creating and deleting the JadeDynamicObject instance.

The detailed parameter specifies whether the values returned should include individual totals for each request
type. For details about the returned values, see "Node::getRpcServerStatistics Method", in Chapter 4 of the JADE
Object Manager Guide.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls.

If the dynamic object passed to the method already contains properties that do not match the properties to be
returned, the existing dynamic object properties are removed and replaced with the appropriate properties. The
method is most efficient when the properties match those to be returned.

The cumulative counter values are not reset during the lifetime of the database server node, and you may need to
compare values from one execution of the getRpcServerStatistics method with previous values to work out the
differences.

The cumulative values are held as 64-bit unsigned integers, which are copied to the dynamic object as Integer64
values. The maximum value before they wrap around to negative values is therefore 2^63 - 1 (approximately 8
Exabytes).

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 418

EncycloSys2 - 2020.0.02

The following example shows the use of the getRpcServerStatistics method.

showRpcNodeStats();
vars

jdo : JadeDynamicObject;
begin

create jdo transient;
node.getRpcServerStatistics(jdo, false);
write jdo.display;

epilog
delete jdo;

end;

The output from the getRpcServerStatistics method shown in the previous example is as follows.

---RPCServerStatistics(106)---
timeStarted = 27 April 2007, 12:31:43
connectionType = 1
lastInboundRequest = 27 April 2007, 14:38:30
requestsFromClients = 24155
repliesToClients = 24154
requestPacketsFromClients = 24155
replyPacketsToClients = 24154
requestBytesFromClients = 3719096
replyBytesToClients = 9861812
requestsToClients = 38
repliesFromClients = 38
requestPacketsToClients = 38
replyPacketsFromClients = 38
requestBytesToClients = 40611
replyBytesFromClients = 20962
notificationPacketsToClients = 3
notificationBytesToClients = 1122

getTempPath
Signature getTempPath(): String;

The getTempPath method of the Node class returns a string containing the architecture-specific version of the
directory in which temporary files are created on the node of the receiver object. For example, this method returns
TEMP or TMP, as appropriate.

The temporary path of the specified node instance is returned, which does not have to be the current node. If you
require the temporary path of the current node, use the node environmental object (system variable).

For details about returning the value of a specified environment variable, see the Node class
getEnvironmentVariable method.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 419

EncycloSys2 - 2020.0.02

getUserDataDirectory
Signature getUserDataDirectory(): String;

The getUserDataDirectory method of the Node class returns a string containing the path of the user data
directory. The user data directory is used for files that are specific to each user of the JADE executables; for
example, if a presentation client installation occurs on a Windows machine running Citrix or Terminal Services
and all users run the same thin client binaries, any data created on the client file system should be stored under
this directory (that is, in separate directories for each user).

If JADE is not installed under the \Program Files directory, the location of the JADE HOME directory is returned.

If JADE is installed under the \Program Files directory, the value that is returned depends on the value of the
UserDataDirectory parameter in the [JadeEnvironment] section of the JADE initialization file. If the directory does
not exist, JADE creates it.

The values of the UserDataDirectory parameter and the corresponding values returned by the
getUserDataDirectory method are shown in the following table.

UserDataDirectory Value Return Value

<default> The path of the JADE HOME directory with the \Program Files portion replaced
with the programmatically obtained path for the specific user application private
data directory. For example, a presentation client installed into \Program
Files\Jade Software\parsys and executed by user wilbur returns
\Users\wilbur\AppData\Local\Jade Software\parsys.

<homedir> The path of the JADE HOME directory.

<userdata> The same as for <default>.

Directory name Directory name.

isApplicationServer
Signature isApplicationServer(): Boolean;

The isApplicationServer method of the Node class returns true if the method is executing on an application
server node (that is, the application is running in JADE thin client mode).

isCacheCoherencyEnabled
Signature isCacheCoherencyEnabled(): Boolean;

The isCacheCoherencyEnabled method of the Node class returns true if the receiving node has cache
coherency enabled.

For details, see the AutomaticCacheCoherency parameter in the [JadeClient] section and the
AutomaticCacheCoherency or AutomaticCacheCoherencyDefault parameter in the [JadeServer] section of the
JADE initialization file.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 420

EncycloSys2 - 2020.0.02

isReadOnlySchema
Signature isReadOnlySchema(): Boolean;

The isReadOnlySchema method of the Node class returns true if the JADE schema in the node on which the
method is executing is a read-only schema, specified by using the ReadOnlySchema parameter in the
appropriate [JadeClient] or [JadeServer] section of the JADE initialization file.

For details about the ReadOnlySchema parameter, see "JADE Object Manager Client Section [JadeClient]" or
"JADE Object Manager Server Section [JadeServer]", in the JADE Initialization File Reference.

isReadOnlySystemSchema
Signature isReadOnlySystemSchema(): Boolean;

The isReadOnlySystemSchema method of the Node class returns true if the JADE schema in the node on which
the method is executing is a read-only system schema, specified by using the ReadOnlySystemSchema
parameter in the appropriate [JadeClient] or [JadeServer] section of the JADE initialization file.

For details about the ReadOnlySystemSchema parameter, see "JADE Object Manager Client Section
[JadeClient]" or "JADE Object Manager Server Section [JadeServer]", in the JADE Initialization File Reference.

isServerNode
Signature isServerNode(): Boolean;

The isServerNode method of the Node class returns true if the node on which the method is executing is the
server node. This method returns false if the node on which the method is executing is running as a client in a
multiuser JADE configuration.

isService
Signature isService(): Boolean;

The isService method of the Node class returns true if the executable that is currently running on the node of the
receiver object is running as a service or it returns false if the executable is not running as a service.

logObjectCaches
Signature logObjectCaches(samplingHandle: Integer;

persistentCacheStats: Boolean;
persistentCacheBuffers: Boolean;
transientCacheStats: Boolean;
transientCacheBuffers: Boolean;
remoteTransientCacheStats: Boolean;
remoteTransientCacheBuffers: Boolean;
userNumber: Integer;
userText: String);

The logObjectCaches method of the Node class specifies the local node object cache statistics that are logged by
invoking the NodeSampleCacheInfoCallBack or NodeSampleObjectBuffer entry point, or both of these entry
points, in the user library.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 421

EncycloSys2 - 2020.0.02

The JADE-supplied library logs the statistics to the file specified in the initializationParameter parameter of the
beginSample method and writes the following statistics to your output file.

Cache header record (type 1) for cache statistics

Cache buffer records (type 2) for individual object buffers

The logObjectCaches method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the beginSample method when
sampling for the node started

persistentCacheStats Logs statistics of the persistent objects cache

persistentCacheBuffers Logs statistics of the persistent object cache buffers

transientCacheStats Logs statistics of the transient objects cache

transientCacheBuffers Logs statistics of the transient object cache buffers

remoteTransientCacheStats Logs statistics of the remote transient objects cache

remoteTransientCacheBuffers Logs activities in the remote transient object cache buffers

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

To enable the logging of the cache statistics that you require, set the appropriate Boolean cache parameters to
true.

The following code fragment shows an example of the logObjectCaches method and its parameters.

node.logObjectCaches(samplingHandle, true, true, false, false, false, false,
50, "After the load data operation");

All buffers containing non-shared transient objects are listed when node sampling snapshots are requested.

For more details, see "Statistics File Format", in Chapter 4 of the JADE Object Manager Guide.

logRequestStatistics
Signature logRequestStatistics(samplingHandle: Integer;

local: Boolean;
remote: Boolean;
userNumber: Integer;
userText: String);

The logRequestStatistics method of the Node class specifies the request statistics that are logged for all
processes in the node that are logged by invoking the NodeSampleRequestStatisticsCallBack entry point in the
user library.

The JADE-supplied library automatically writes the following statistics.

Local request statistics record (type 8)

Remote request statistics record (type 9)

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 422

EncycloSys2 - 2020.0.02

The logRequestStatistics method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the beginSample method when sampling for
the node started

local Logs statistics of all requests invoked on the local node

remote Logs statistics of all requests from the local node to remote nodes

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

To enable the logging of the request statistics that you require, set the appropriate Boolean cache parameters to
true. The user number and text values specified in the userNumber and userText parameters are written in the
corresponding records.

The following code fragment shows an example of the logRequestStatistics method and its parameters.

node.logRequestStatistics(samplingHandle, true, true, 23, "Before
method m1");

For more details, see "Statistics File Format", in Chapter 4 of the JADE Object Manager Guide.

logUserCommand
Signature logUserCommand(samplingHandle: Integer;

command: String;
userNumber: Integer;
userText: String);

The logUserCommand method of the Node class invokes the NodeSampleUserCommandCallBack entry point
in the user library, passing the command parameter to it.

The JADE-supplied library automatically writes the user command (type 13).

The logUserCommand method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the beginSample method when sampling for
the node started

command Action specific to your user library (for example, the JADE-supplied library uses this
command for filtering and setting the SamplingExceptionEvent)

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

For more details, see "JADE Sampling Libraries", "Statistics File Format", and "Sampling Exception Handling", in
Chapter 4 of the JADE Object Manager Guide.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 423

EncycloSys2 - 2020.0.02

networkAddress
Signature networkAddress(): String;

The networkAddress method of the Node class returns a string whose contents depend on the type of transport
used for the connection to the database server.

When the transport is TCP/IP, the string contains the IP address used by the client for the connection to the
database server; for example, 127.0.0.1 or ::1.

When the transport is JadeLocal, the returned string is empty.

When the transport is HPSM, the returned string contains "procNNNN", where the NNNN value is the decimal
number of the process at the other end of the connection.

nodeRole
Signature nodeRole(): Integer;

The nodeRole method of the Node class returns an integer value that represents the role of the node with regard
to processes and the Synchronized Database Service (SDS). The role can be one of the values listed in the
following table.

Node Class Constant Integer Value Description

Role_Replay 2 Replay node role

Role_Standard 1 Standard node role

Role_Unknown 0 Unknown node role

An SDS secondary server has two node objects, as follows.

A standard node object to which processes initiated on the secondary server are attached

A replay node object to which pseudo-processes representing processes on the primary server are attached

The nodeRole method allows processes initiated on SDS secondary servers to be distinguished from pseudo-
processes automatically created to represent processes on the primary server, by using the
process.node.nodeRole method.

nodeType
Signature nodeType(): Integer;

The nodeType method of the Node class returns a Node class constant integer value that represents the type of
the node object. The values that can be returned are listed in the following table.

Node Class Constant Description

Type_Undefined Undefined

Type_DatabaseServer Database server (jadrap or jadserv)

Type_ApplicationServer Application server (jadapp or jadappb in multiuser mode)

Type_ApplicationServerAndDatabaseServer Application server and database server (jadapp or jadappb in
single user mode)

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 424

EncycloSys2 - 2020.0.02

Node Class Constant Description

Type_StandardClient Standard client node (jade in multiuser mode; not as a thin
client)

Type_StandardClientAndDatabaseServer Standard client node and database server (jade in single user
mode)

Type_NonGuiClient Non-GUI (jadclient) node

Type_NonGuiClientAndDatabaseServer Non-GUI (jadclient) node and database server

Type_DatabaseAdmin Database administration (jdbadmin) node

Type_DatabaseAdminAndDatabaseServer Database administration (jdbadmin) node and database
server

Non-GUI nodes include user-written executables that use the JADE Object Manger API (C++) and the JADE .NET
API (C#).

osProcessId
Signature osProcessId(): Integer;

The osProcessId method of the Node class returns the process identifier (or process id) of the executable that is
currently running on the node of the receiver object. (See also the osID property.)

The process id is the number before the dash character (-) in the third column in a jommsg.log file. For example,
in the 2002/01/18 07:10:28 00618-6a4 PDB: Database closed successfully record in a JADE message log file,
00618 is the hexadecimal process id.

This method returns the process identifier from the node on which the fat client executes when running in standard
(fat) client mode or it returns the value from the application server when the method is executed from a
presentation client running in JADE thin client mode.

processDump
Signature processDump();

The processDump method of the Node class invokes a non-fatal process dump of the node specified by the
receiver.

setCacheSizes
Signature setCacheSizes(persistentCache: Integer io;

transientCache: Integer io;
remoteTransientCache: Integer io);

The setCacheSizes method of the Node class changes the sizes of the persistent, transient, and remote transient
cache on the node on which the method is executing to be set to the specified values.

The cache size cannot be set lower than the minimum for that type of cache or higher than two-thirds of the
physical memory size. In addition, the cache size sometimes cannot be reduced because of current usage of
objects on it.

If the cache size cannot be set to the requested value, it is increased or reduced as much as possible at that time.
No exception is raised.

The parameter values are then updated with the actual new cache sizes.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 425

EncycloSys2 - 2020.0.02

The cache size on 32-bit systems cannot exceed 4G bytes.

Note The values are set for the current JADE session only.

When you next initiate JADE, the values in the ObjectCacheSizeLimit, TransientCacheSizeLimit, and
RemoteTransientCacheSizeLimit parameters in the appropriate [JadeClient] or [JadeServer] section of the JADE
initialization file are those that are used for the persistent, transient, and remote transient cache sizes,
respectively.

For details about cache sizes, see the appropriate parameters in "JADE Object Manager Client Section
[JadeClient]" or "JADE Object Manager Server Section [JadeServer]", in the JADE Initialization File Reference.
See also the getCacheSizes method.

setCacheSizes64
Signature setCacheSizes64(persistentCache: Integer64 io;

transientCache: Integer64 io;
remoteTransientCache: Integer64 io);

The setCacheSizes64 method of the Node class changes the sizes of the persistent, transient, and remote
transient cache on the node on which the method is executing to be set to the specified values.

The cache size cannot be set lower than the minimum for that type of cache or higher than two-thirds of the
physical memory size. In addition, the cache size sometimes cannot be reduced because of current usage of
objects on it. If the cache size cannot be set to the requested value, it is increased or reduced as much as possible
at that time. No exception is raised.

The parameter values are then updated with the actual new cache sizes.

The cache size on 32-bit systems cannot exceed 4G bytes.

Note The values are set for the current JADE session only.

When you next initiate JADE, the values in the ObjectCacheSizeLimit, TransientCacheSizeLimit, and
RemoteTransientCacheSizeLimit parameters in the appropriate [JadeClient] or [JadeServer] section of the JADE
initialization file are those that are used for the persistent, transient, and remote transient cache sizes,
respectively.

For details about cache sizes, see the appropriate parameters in "JADE Object Manager Client Section
[JadeClient]" or "JADE Object Manager Server Section [JadeServer]", in the JADE Initialization File Reference.
See also the getCacheSizes64 method.

setExecuteFlagValue
Signature setExecuteFlagValue(name: String

value: Boolean): Boolean;

The setExecuteFlagValue method of the Node class sets the effective value of a flag used in executeWhen
instructions.

The flag is a Boolean global constant. However, the defined value of the global constant is not used for an
executeWhen instruction. Instead, the effective value of the global constant is read from the [JadeExecuteFlags]
section of the JADE initialization file when the node is initialized.

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 426

EncycloSys2 - 2020.0.02

The following code fragment shows the use of the setExecuteFlagValue method with the clearMethodCache
method, which is required to cause methods to be reloaded with changed flag values.

node.setExecuteFlagValue("DebugTest", true);
node.clearMethodCache();

setProfileString
Signature setProfileString(fileName: String;

section: String;
keyName: String;
string: String): Boolean;

The setProfileString method of the Node class copies a parameter (key name) string specified in the section
parameter into the section of an initialization file on the application server.

The key name string is set on the specified node, which does not have to be the current node. If you want to set
the key name on the current node, use the node environmental object (system variable).

This method returns true if it succeeds in storing the specified string. Conversely, if the value of the section or
keyName parameter is null ("") or empty, this method returns false, to indicate that the JADE initialization file has
not been updated.

Use the respective ProfileRemoveSection or ProfileRemoveKey global constant in the JadeProfileString
category to delete a section or key, rather than passing a null or empty string in the appropriate parameter of this
method.

To retrieve a stored string, use the getProfileString method.

The parameters for the setProfileString method are listed in the following table.

Parameter Description

fileName Specifies the initialization file. If you set this parameter to windows, the win.ini file is used. If
this parameter does not contain a full path to the file, Windows searches for the file in the
Windows directory.

section Specifies the initialization file section containing the key (parameter) name.

keyName Specifies the name of the key (parameter) whose associated string is to be stored.

string Specifies the string that is to be written to the file.

In JADE thin client mode, this method sets the initialization file string in the specified initialization file on the
application server.

If the application is not running in JADE thin client mode, this method functions like the Application class
setProfileStringAppServer method or process.getProfileString; that is, it sets the specified profile string on the
workstation in which the application or process is running.

The following example shows the use of this method to remove an entire [mySection] section and the WindowPos
parameter in the [InternalAS.JadeAppServer] section from the JADE initialization file.

begin
node.setProfileString(node.getIniFileName, "mySection",

ProfileRemoveSection, "");
// If the user has moved the window, reset it to the default values
node.setProfileString(node.getIniFileName, "JadeAppServer", "WindowPos",

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 427

EncycloSys2 - 2020.0.02

ProfileRemoveKey);
end;

wbemListClasses
Signature wbemListClasses(hsa: HugeStringArray input);

The wbemListClasses method of the Node class retrieves a list of the Web-Based Enterprise Management
(WBEM) classes that can be queried for the host machine on which the node specified by the receiver object is
running. This is a subset of the full WBEM classes available, as JADE allows only a subset of classes to be
queried. The allowed classes are those relating to cache, memory, system, processor, server, disk, and network
interface information.

The method inserts strings containing the allowed class names into the HugeStringArray specified by the hsa
parameter.

The wbemListClasses method always empties the array before inserting the class names. The caller is
responsible for creating and deleting this array.

The strings that are inserted into the HugeStringArray parameter are fully qualified WBEM class names that can
be used directly as class names for the other WBEM methods provided by the Node class.

The following example shows the use of the wbemListClasses method.

showWbemClasses()
vars

hsa: HugeStringArray;
str : String;

begin
create hsa transient;
node.wbemListClasses(hsa);
foreach str in hsa do

write "WBEM class name : " & str;
endforeach;

epilog
delete hsa;

end;

An example of the output from this method is as follows:

WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfRawData.Win32_PerfRawData_PerfDisk_LogicalDisk
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfRawData.Win32_PerfRawData_PerfOS_Cache
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfRawData.Win32_PerfRawData_PerfOS_System
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfRawData.Win32_PerfRawData_Tcpip_NetworkInterface
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfRawData.Win32_PerfRawData_PerfNet_Server
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfRawData.Win32_PerfRawData_PerfOS_Processor
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfFormattedData.Win32_PerfFormattedData_PerfOS_Processor
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfFormattedData.Win32_PerfFormattedData_PerfDisk_LogicalDisk
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 428

EncycloSys2 - 2020.0.02

PerfFormattedData.Win32_PerfFormattedData_PerfOS_Cache
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfFormattedData.Win32_PerfFormattedData_PerfOS_System
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfFormattedData.Win32_PerfFormattedData_Tcpip_NetworkInterface
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfFormattedData.Win32_PerfFormattedData_PerfOS_Memory
WBEM class name : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfFormattedData.Win32_PerfFormattedData_PerfNet_Server

wbemListInstanceNames
Signature wbemListInstanceNames(className: String;

instNameArray: HugeStringArray input);

The wbemListInstanceNames method of the Node class retrieves the names of all instances of the Web-Based
Enterprise Management (WBEM) class specified by the className parameter for the host machine in which the
node of the receiver object is running.

The class name must be a fully qualified WBEM class name. The instance names are inserted as strings into the
HugeStringArray specified by the instNameArray parameter. This method always empties the array before
inserting the instance names. The caller is responsible for creating and deleting this array.

JADE allows only a subset of the available WBEM classes to be used. The allowed classes are those relating to
cache, memory, system, processor, server, disk, and network interface information. You can use the Node class
wbemListClasses method to retrieve the fully qualified WBEM class names that can be used.

An exception is raised if a name that is not allowed or recognized is used.

The following example shows the use of the wbemListInstanceNames method.

showWbemInstances();
vars

hsa : HugeStringArray;
cls : String;
inst : String;

begin
create hsa transient;
node.wbemListClasses(hsa);
if hsa.size > 0 then

cls := hsa[1];
hsa.purge;
write "WBEM class : " & cls;
node.wbemListInstanceNames(cls, hsa);
foreach inst in hsa do

write "Instance : " & inst;
endforeach;

endif;
epilog

delete hsa;
end;

The output from the wbemListInstanceNames method shown in the previous example is as follows.

WBEM class : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfRawData.Win32_PerfRawData_PerfDisk_LogicalDisk
Instance : C:

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 429

EncycloSys2 - 2020.0.02

Instance : E:
Instance : _Total

wbemQueryQualifiers
Signature wbemQueryQualifiers(className: String;

attributeNames: StringArray input;
counterTypes: IntegerArray input;
scaleFactors: IntegerArray input);

The wbemQueryQualifiers method of the Node class retrieves the names, type, and scale factor for each attribute
of Web-Based Enterprise Management (WBEM) class specified by the className parameter. This allows
attribute values returned by the wbemRetrieveData method defined in the Node class to be correctly interpreted.

The qualifier information is placed into three matched arrays. Information for the first attribute is placed into the first
member of each of the three arrays, information for the second attribute is placed into the second member, and so
on.

The caller is responsible for creating and deleting the three arrays. This method always empties these arrays
before inserting the qualifier information.

The class name must be a fully qualified WBEM class name.

JADE allows only a subset of the available WBEM classes to be used. The allowed classes are those relating to
cache, memory, system, processor, server, disk, and network interface information. The wbemListClasses
method of the Node class can be used to retrieve the fully qualified WBEM class names that can be used.

An exception is raised if a name that is not allowed or recognized is used.

The string array specified by the attributeNames parameter contains the name of each attribute for the specified
class. These match the names of the attributes that the wbemRetrieveData method creates in the
JadeDynamicObject it uses.

The integer array specified by the counterTypes parameter contains performance counter type values for the
attributes. The values are those defined by Microsoft and documented in the MSDN (Microsoft Developer
Network) literature.

The integer array specified by the scaleFactors parameter contains the default scale factor to be applied to the
attribute values. This is a power of 10 that can be used to estimate the likely range of the value.

The meaning of each counter type value and the correct way to extract meaningful information from the attribute
values is described in the MSDN literature. Searching using WMI Performance Counter Types should locate the
relevant information.

The following example shows the use of the wbemQueryQualifiers method.

showWbemQualifiers();
vars

hsa : HugeStringArray;
ctrNames : StringArray;
ctrTypes : IntegerArray;
ctrScaleFactors : IntegerArray;
cls : String;
i : Integer;

begin
create hsa transient;
create ctrNames transient;
create ctrTypes transient;

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 430

EncycloSys2 - 2020.0.02

create ctrScaleFactors transient;
node.wbemListClasses(hsa);
if hsa.size > 0 then

cls := hsa[1];
hsa.purge;
write "WBEM class : " & cls;
node.wbemQueryQualifiers(cls, ctrNames, ctrTypes, ctrScaleFactors);
foreach i in 1 to ctrNames.size do

write "Attribute: " & ctrNames[i] &
" type: " & ctrTypes[i].String &
" scale factor: " & ctrScaleFactors[i].String;

endforeach;
endif;

epilog
delete hsa;
delete ctrNames;
delete ctrTypes;
delete ctrScaleFactors;

end;

The output from the wbemQueryQualifiers method shown in the previous example is as follows.

WBEM class : Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_
PerfRawData.Win32_PerfRawData_PerfDisk_LogicalDisk
Attribute: AvgDiskBytesPerRead type: 1073874176 scale factor: -2
Attribute: AvgDiskBytesPerRead_Base type: 1073939458 scale factor: 0
Attribute: AvgDiskBytesPerTransfer type: 1073874176 scale factor: -2
Attribute: AvgDiskBytesPerTransfer_Base type: 1073939458 scale factor: 0
Attribute: AvgDiskBytesPerWrite type: 1073874176 scale factor: -2
Attribute: AvgDiskBytesPerWrite_Base type: 1073939458 scale factor: 0
Attribute: AvgDiskQueueLength type: 5571840 scale factor: 2
Attribute: AvgDiskReadQueueLength type: 5571840 scale factor: 2
Attribute: AvgDisksecPerRead type: 805438464 scale factor: 3
Attribute: AvgDisksecPerRead_Base type: 1073939458 scale factor: 0
Attribute: AvgDisksecPerTransfer type: 805438464 scale factor: 3
Attribute: AvgDisksecPerTransfer_Base type: 1073939458 scale factor: 0
Attribute: AvgDisksecPerWrite type: 805438464 scale factor: 3
Attribute: AvgDisksecPerWrite_Base type: 1073939458 scale factor: 0
Attribute: AvgDiskWriteQueueLength type: 5571840 scale factor: 2
Attribute: Caption type: 0 scale factor: 0
Attribute: CurrentDiskQueueLength type: 65536 scale factor: 1
Attribute: Description type: 0 scale factor: 0
Attribute: DiskBytesPersec type: 272696576 scale factor: -4
Attribute: DiskReadBytesPersec type: 272696576 scale factor: -4
Attribute: DiskReadsPersec type: 272696320 scale factor: 0
Attribute: DiskTransfersPersec type: 272696320 scale factor: 0
Attribute: DiskWriteBytesPersec type: 272696576 scale factor: -4
Attribute: DiskWritesPersec type: 272696320 scale factor: 0
Attribute: FreeMegabytes type: 65536 scale factor: 0
Attribute: Frequency_Object type: 0 scale factor: 0
Attribute: Frequency_PerfTime type: 0 scale factor: 0
Attribute: Frequency_Sys100NS type: 0 scale factor: 0
Attribute: Name type: 0 scale factor: 0
Attribute: PercentDiskReadTime type: 542573824 scale factor: 0
Attribute: PercentDiskReadTime_Base type: 1073939712 scale factor: 0

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 431

EncycloSys2 - 2020.0.02

Attribute: PercentDiskTime type: 542573824 scale factor: 0
Attribute: PercentDiskTime_Base type: 1073939712 scale factor: 0
Attribute: PercentDiskWriteTime type: 542573824 scale factor: 0
Attribute: PercentDiskWriteTime_Base type: 1073939712 scale factor: 0
Attribute: PercentFreeSpace type: 537003008 scale factor: 0
Attribute: PercentFreeSpace_Base type: 1073939459 scale factor: 0
Attribute: PercentIdleTime type: 542573824 scale factor: 0
Attribute: PercentIdleTime_Base type: 1073939712 scale factor: 0
Attribute: SplitIOPerSec type: 272696320 scale factor: 0
Attribute: Timestamp_Object type: 0 scale factor: 0
Attribute: Timestamp_PerfTime type: 0 scale factor: 0
Attribute: Timestamp_Sys100NS type: 0 scale factor: 0

wbemRetrieveData
Signature wbemRetrieveData(className: String;

instNameArray: HugeStringArray;
jdoArray: JadeDynamicObjectArray input);

The wbemRetrieveData method of the Node class retrieves Web-Based Enterprise Management (WBEM)
instances and attribute values for a specified WBEM class. The values are retrieved from the machine in which the
node of the receiver object is running.

JADE allows only a subset of classes to be used. The allowed classes are those relating to cache, memory,
system, processor, server, disk, and network interface information.

A JadeDynamicObject instance is created for each WBEM instance that is retrieved and added to the instance of
the JadeDynamicObjectArray specified by the jdoArray input parameter. If the array is transient, the
JadeDynamicObject instances are transient (not shared). If the array is persistent, the instances are persistent.

The caller is responsible for creating and deleting the JadeDynamicObjectArray instance, and for deleting any
JadeDynamicObject instances that are added to it.

The instNameArray parameter is used to select the set of WBEM instances that are retrieved. If used, the array
should contain a set of strings representing the names of the WBEM instances to be retrieved. Only WBEM
instances that have names that match entries in the array are returned. If the value of the instNameArray
parameter is null, all instances for the class specified by the className parameter are returned.

As this method does not clear or purge the JadeDynamicObjectArray before inserting the JadeDynamicObject
instances, if it is called multiple times without first calling the purge or clear methods, previously added entries will
remain in the array.

Each JadeDynamicObject that is created contains attributes representing each attribute of the corresponding
WBEM instance. The name of each attribute matches the WBEM class attribute name. The attribute value is one of
the following types, depending on the corresponding WBEM attribute type:

Integer64

String

Real

Decimal

Boolean

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 432

EncycloSys2 - 2020.0.02

JADE converts WBEM attributes that are arrays into individual attributes with the array index inserted at the end of
each attribute name. Although unlikely, applications should be prepared for the possibility that cumulative
Integer64 values will overflow to negative values. The maximum value before they overflow to a negative value is
2^63 - 1 (approximately 8 Exabytes).

There are some attributes that are not returned by JADE. These are mainly attributes that pertain to WBEM class
and superclass names.

There is a limit of approximately 48K bytes to the size of the WBEM data that can be retrieved from remote nodes.
If this limit is exceeded, exception 1141 is raised, in which case you should use the instNameArray parameter to
restrict the number of WBEM class instances that are retrieved.

If a name that is not allowed or recognized is used, exception 1136 is raised.

The following example shows the use of the wbemRetrieveData method.

showWbemCPUInformation();
vars

wbemClassName : String;
jdoArray : JadeDynamicObjectArray;
jdo : JadeDynamicObject;

begin
wbemClassName := "Root.CIMV2.CIM_StatisticalInformation.Win32_Perf."

& "Win32_PerfFormattedData.Win32_PerfFormattedData_"
& "PerfOS_Processor";

create jdoArray transient;
node.wbemRetrieveData(wbemClassName, null, jdoArray);
foreach jdo in jdoArray do

write jdo.display;
endforeach;

epilog
jdoArray.purge;
delete jdoArray;

end;

The following example shows the use of the instNameArray parameter to restrict the number of WBEM class
instances retrieved by the wbemRetrieveData method.

showWbemLogicalDiskInformation();
vars

wbemClassName : String;
jdoArray : JadeDynamicObjectArray;
hsa : HugeStringArray;
jdo : JadeDynamicObject;

begin
wbemClassName := "Root.CIMV2.CIM_StatisticalInformation.Win32_Perf."

& "Win32_PerfRawData.Win32_PerfRawData_PerfDisk_
& "LogicalDisk";

create hsa transient;
hsa[1] := "C:";
hsa[2] := "E:";
create jdoArray transient;
node.wbemRetrieveData(wbemClassName, hsa, jdoArray);
foreach jdo in jdoArray do

write jdo.display;
endforeach;

epilog

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 433

EncycloSys2 - 2020.0.02

delete hsa;
jdoArray.purge;
delete jdoArray;

end;

The output from the wbemRetrieveData method shown in the previous example is as follows.

Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_PerfRawData.Win32_
PerfRawData_PerfDisk_LogicalDisk(116)---
CIMPath = \\wilbur2a\root\cimv2:Win32_PerfRawData_PerfDisk_LogicalDisk.Name="C:"
CIMServer = WILBUR2A
CIMClass = Win32_PerfRawData_PerfDisk_LogicalDisk
AvgDiskBytesPerRead = 10004757504
AvgDiskBytesPerRead_Base = 450205
AvgDiskBytesPerTransfer = 27031866880
AvgDiskBytesPerTransfer_Base = 1234382
AvgDiskBytesPerWrite = 17027109376
AvgDiskBytesPerWrite_Base = 784177
AvgDiskQueueLength = 2183210108
AvgDiskReadQueueLength = 2379370099
AvgDisksecPerRead = 3604485205
AvgDisksecPerRead_Base = 450205
AvgDisksecPerTransfer = 1117796622
AvgDisksecPerTransfer_Base = 1234382
AvgDisksecPerWrite = 1808278713
AvgDisksecPerWrite_Base = 784177
AvgDiskWriteQueueLength = -196159991
Caption = NULL
CurrentDiskQueueLength = 0
Description = NULL
DiskBytesPersec = 27031866880
DiskReadBytesPersec = 10004757504
DiskReadsPersec = 450205
DiskTransfersPersec = 1234382
DiskWriteBytesPersec = 17027109376
DiskWritesPersec = 784177
FreeMegabytes = 15309
Frequency_Object = 0
Frequency_PerfTime = 3192100000
Frequency_Sys100NS = 10000000
Name = C:
PercentDiskReadTime = 2379370099
PercentDiskReadTime_Base = 128217570284699662
PercentDiskTime = 2183210108
PercentDiskTime_Base = 128217570284699662
PercentDiskWriteTime = -196159991
PercentDiskWriteTime_Base = 128217570284699662
PercentFreeSpace = 15309
PercentFreeSpace_Base = 72763
PercentIdleTime = -742782462
PercentIdleTime_Base = 128217570284699662
SplitIOPerSec = 69672
Timestamp_Object = 0
Timestamp_PerfTime = 1651626206541880
Timestamp_Sys100NS = 128217570284699662

Encyclopaedia of Classes
(Volume 2)

Node Class Chapter 1 434

EncycloSys2 - 2020.0.02

---Root.CIMV2.CIM_StatisticalInformation.Win32_Perf.Win32_PerfRawData.Win32_
PerfRawData_PerfDisk_LogicalDisk(116)---
CIMPath = \\wilbur2a\root\cimv2:Win32_PerfRawData_PerfDisk_LogicalDisk.Name="E:"
CIMServer = WILBUR2A
CIMClass = Win32_PerfRawData_PerfDisk_LogicalDisk
AvgDiskBytesPerRead = 9827585536
AvgDiskBytesPerRead_Base = 290889
AvgDiskBytesPerTransfer = 15723511808
AvgDiskBytesPerTransfer_Base = 397212
AvgDiskBytesPerWrite = 5895926272
AvgDiskBytesPerWrite_Base = 106323
AvgDiskQueueLength = 3881830496
AvgDiskReadQueueLength = 2274370873
AvgDisksecPerRead = 152453346
AvgDisksecPerRead_Base = 290889
AvgDisksecPerTransfer = 2168531380
AvgDisksecPerTransfer_Base = 397212
AvgDisksecPerWrite = 2016078033
AvgDisksecPerWrite_Base = 106323
AvgDiskWriteQueueLength = 1607459623
Caption = NULL
CurrentDiskQueueLength = 0
Description = NULL
DiskBytesPersec = 15723511808
DiskReadBytesPersec = 9827585536
DiskReadsPersec = 290889
DiskTransfersPersec = 397212
DiskWriteBytesPersec = 5895926272
DiskWritesPersec = 106323
FreeMegabytes = 103216
Frequency_Object = 0
Frequency_PerfTime = 3192100000
Frequency_Sys100NS = 10000000
Name = E:
PercentDiskReadTime = 2274370873
PercentDiskReadTime_Base = 128217570284699662
PercentDiskTime = 3881830496
PercentDiskTime_Base = 128217570284699662
PercentDiskWriteTime = 1607459623
PercentDiskWriteTime_Base = 128217570284699662
PercentFreeSpace = 103216
PercentFreeSpace_Base = 190779
PercentIdleTime = 1794241932
PercentIdleTime_Base = 128217570284699662
SplitIOPerSec = 6177
Timestamp_Object = 0
Timestamp_PerfTime = 1651626206541880
Timestamp_Sys100NS = 128217570284699662

Encyclopaedia of Classes
(Volume 2)

NormalException Class Chapter 1 435

EncycloSys2 - 2020.0.02

NormalException Class
The NormalException class is the superclass of all non-fatal exceptions. You may occasionally want to define
exceptions other than those automatically captured by the system. In this case, create a subclass of the
NormalException class in order to add new properties and methods specific to your own exception protocol or to
override system methods such as the showDialog method.

Inherits From: Exception

Inherited By: ConnectionException, FileException, JadeMessagingException, JadeRegexException,
JadeSOAPException, JadeXMLException, ODBCException, SystemException, user-defined
exception classes, UserInterfaceException, WebSocketException

The method in the following example arms the exception handler so that the exceptionHandler method is called
when an exception of the NormalException class is encountered and is passed the exception object as a
parameter.

method1();
begin

on NormalException do exceptionHandler(exception);
self.method2;
status.caption := "Resuming execution after exception throwing

method invocation";
end;

The method in the following example causes a 1035 - String Too Long exception, by assigning a four-character
string to a variable defined as being a three-character string.

method2();
vars

str : String[3];
begin

str := "Long string value";
end;

The method in the following example arms the exception handler so that the exceptionHandler method is called
when an exception of the UserException class is raised and is passed the exception object as a parameter.

method3();
begin

on UserException do exceptionHandler(exception);
self.method4;

end;

The method in the following example creates an object of the UserException class and defines the properties for
this object. The exception is then raised.

method4();
vars

ex : UserException;
begin

create ex;
ex.errorCode := 64000;
ex.continuable := true;
ex.resumable := true;
raise ex;

Encyclopaedia of Classes
(Volume 2)

NormalException Class Chapter 1 436

EncycloSys2 - 2020.0.02

status.caption := "Resuming execution after raising of exception";
end;

The following is an example of an exceptionHandler method in a UserException subclass of the
NormalException class.

exceptionHandler(ex: NormalException): Integer;
vars

returnCode : Integer;
begin

// Exception handling method specified when arming the handler, and
// called when the appropriate exceptions are raised. If the error
// code of the exception is 1035, the exception is identified as
// being the String Too Long exception and is handled appropriately.
if ex.errorCode = 1035 then

returnCode := app.msgBox("String too long. Resume execution after
method?", "String too long", 52);

if returnCode = MsgBox_Return_Yes then
// The Ex_Resume_Next return value passes control back to
// the method that armed the exception handler (in this
// case, method1) and resumes execution after the
// invocation of the method that raised the exception.
return Ex_Resume_Next;

else
// The Ex_Abort_Action return value causes all currently
// executing methods to be aborted. In this case, the
// application reverts to execution after the invocation
// of the method that raised the idle state, and awaits
// further user input.
status.caption := "Aborting all currently executing methods";
return Ex_Abort_Action;

endif;
// If the error code of the exception is 64000, the exception is
// identified as the user-defined exception that was assigned this
// code, and is handled appropriately.
elseif ex.errorCode = 64000 then

returnCode := app.msgBox("User-defined exception. Continue method
execution?", "User-defined exception", 52);

if returnCode = MsgBox_Return_Yes then
// The Ex_Continue return value passes control back to the
// method that raised the exception handler (in this case,
// method4) and resumes execution after raising the exception.
return Ex_Continue;

else
// The Ex_Resume_Next return value passes control back to the
// method that armed the exception handler (in this case,
// method1) and resumes execution after the invocation of
// the method that raised the exception.
status.caption := "Resuming execution after exception throwing

method invocation";
return Ex_Resume_Next;

endif;
endif;

end;

Encyclopaedia of Classes
(Volume 2)

Notification Class Chapter 1 437

EncycloSys2 - 2020.0.02

Notification Class
Instances of the Notification class are used to describe the notifications registered by the system. JADE
notifications may have a differing execution order when intermixed with Window events in JADE thin client mode.
This difference arises because the notifications occur on the application server rather than the presentation client.

Notifications are usually interlaced with any Window events that may occur. In thin client mode, the notification
occurs when the application server thread processing the presentation client operations becomes idle. However,
the presentation client may also be idle and send event notifications such as form activations, focus changes, and
so on, at the same time. This asynchronous operation may result in a slightly different execution order for these
events from that experienced in JADE when it is not running in thin client mode.

For details about the properties and methods defined in the Notification class, see "Notification Properties" and
"Notification Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

Notification Properties
The properties defined in the Notification class are summarized in the following table.

Property Description

elapsedTime Contains the time that the notification request has been in place

eventType Contains the event type of the notification request

featureNumber Contains the interface number and method number that allows identification of the
interface method that was mapped by the subscriber

isInterface Specifies whether the notification was registered by an interface notification method

requestedBy Contains the process that submitted the notification request

requestTime Contains the date and time of the notification request

responseType Contains the response type of the notification request

serialNumber Contains the serial number that is internally assigned by JADE

typeNumber Contains a number that allows identification of the associated interface

userTag Contains the user tag of the notification request

elapsedTime
Type: Time

The read-only elapsedTime property of the Notification class is set to the time that the notification request has
been in place.

eventType
Type: Integer

The read-only eventType property of the Notification class is set to the eventType parameter of the notification
request.

Encyclopaedia of Classes
(Volume 2)

Notification Class Chapter 1 438

EncycloSys2 - 2020.0.02

The eventType property specifies the type of event for which the notification is requested. The global constants in
the SystemEvents category for the types of event that can be requested are listed in the following table.

Global Constant Integer Value Description

Any_System_Event 0 Object has been created, deleted, or updated

Object_Create_Event 4 Object has been created

Object_Delete_Event 6 Object has been deleted

Object_Update_Event 3 Object has been updated

featureNumber
Type: Integer

If the notification was registered by the Object class beginClassNotificationForIF,
beginClassesNotificationForIF, or beginNotificationForIF method, the read-only featureNumber property of the
Notification class contains the identifying number of the interface method that was mapped by the subscriber to
receive an event notification.

If the notification was registered by the Object class beginClassNotification, beginClassesNotification, or
beginNotification method, this property contains zero (0).

isInterface
Type: Boolean

The read-only isInterface property of the Notification class contains true if the notification was registered by the
Object class beginClassNotificationForIF, beginClassesNotificationForIF, or beginNotificationForIF method.

If the notification was registered by the Object class beginClassNotification, beginClassesNotification, or
beginNotification method, this property contains false and the featureNumber and typeNumber properties
contain zero (0).

requestedBy
Type: Process

The requestedBy property of the Notification class is set to the process that submitted the notification request.

requestTime
Type: TimeStamp

The read-only requestTime property of the Notification class is set to date and time of the notification request.

responseType
Type: Integer

The read-only responseType property of the Notification class is set to the responseType parameter of the
notification request.

The responseType parameter specifies the frequency with which an event notification is to be sent.

Encyclopaedia of Classes
(Volume 2)

Notification Class Chapter 1 439

EncycloSys2 - 2020.0.02

The NotificationResponses category global constants for the types of response that can be sent are listed in the
following table.

Global Constant Integer Value Sends a notification…

Response_Cancel 1 When the class receives a matching event and then cancels the
notification

Response_Continuous 0 Whenever the class receives a matching event

Response_Suspend 2 When the class receives a matching event and then suspends
notification until the user refreshes the local copy of the class

serialNumber
Type: Integer

The serialNumber read-only property of the Notification class is assigned internally by JADE.

typeNumber
Type: Integer

If the notification was registered by the Object class beginClassNotificationForIF,
beginClassesNotificationForIF, or beginNotificationForIF method, the read-only typeNumber property of the
Notification class contains the identifying number of the associated interface.

If the notification was registered by the Object class beginClassNotification, beginClassesNotification, or
beginNotification method, this property contains zero (0).

userTag
Type: Integer

The userTag read-only property of the Notification class is set to the eventTag parameter of the notification
request.

The eventTag parameter specifies an integer value (for example, an index into an array) that is returned with each
notification.

Notification Methods
The methods defined in the Notification class are summarized in the following table.

Method Description

subscriber Returns the object to which the notification is to be delivered

target Returns the object that is the target of the notification request

subscriber
Signature subscriber(): Object;

The subscriber method of the Notification class returns a reference to the object to which the notification is
delivered.

Encyclopaedia of Classes
(Volume 2)

Notification Class Chapter 1 440

EncycloSys2 - 2020.0.02

The following example shows the use of the subscriber method.

vars
notification : Notification;
notificationArray : NotificationArray;

begin
create notificationArray transient;
system.getNotes(notificationArray, true, 100);

foreach notification in notificationArray do
// access the notification entry properties
write notification.target.String;
// now check that the subscriber class is valid for this user
if app.isValidObject(notification.subscriber) then

write notification.subscriber.String;
endif;

endforeach;
epilog

notificationArray.purge;
delete notificationArray;

end;

target
Signature target(): Object;

The target method of the Notification class returns a reference to the object that is the target of a notification
request.

For an example of the use of the target method, see the subscriber method.

Encyclopaedia of Classes
(Volume 2)

NotificationArray Class Chapter 1 441

EncycloSys2 - 2020.0.02

NotificationArray Class
The NotificationArray class is the transient class that encapsulates behavior required to access Notification
objects in an array.

The notifications are referenced by their position in the collection.

The bracket ([]) subscript operators enable you to assign values to and receive values from a notification array.

Inherits From: ObjectArray

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

NotificationException Class Chapter 1 442

EncycloSys2 - 2020.0.02

NotificationException Class
The NotificationException class is the transient class that defines behavior for exceptions that occur as a result of
notification events when the subscriber cannot be found. For details about the method defined in the
NotificationException class, see "NotificationException Method", in the following subsection.

Inherits From: SystemException

Inherited By: (None)

NotificationException Method
The method defined in the NotificationException class is summarized in the following table.

Method Description

notificationTarget Returns the reference to the target for the notification whose subscriber was not found

notificationTarget
Signature notificationTarget(): Object;

The notificationTarget method of the NotificationException class returns a reference to the target for the
notification whose subscriber was not found.

The Exception class errorObject method returns a reference to this subscriber.

Note You should use this subscriber reference only to examine the object id (oid). Do not attempt to reference
the object itself, as it has just been determined that it could not be found.

The code fragment in the following example shows the use of the Object class getOidStringForObject method to
determine the oid of the object that was not found.

write getOidStringForObject(errorObject);

Encyclopaedia of Classes
(Volume 2)

NumberFormat Class Chapter 1 443

EncycloSys2 - 2020.0.02

NumberFormat Class
The NumberFormat class is used to store Windows locale numeric information.

You cannot modify system-created instances of the NumberFormat class (that is, instances created and
maintained by JADE to store locale information and user-defined formats) from your JADE code.

JADE automatically creates a transient instance of NumberFormat for each application that you can read by
using app.currentLocaleInfo.numericInfo. This instance contains numeric information for the current locale.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.
Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client.

For details about returning a string containing the receiver in the supplied number format, see the
userNumberFormat method in the Integer, Real, or Decimal primitive type.

NumberFormat instances are also used to store user-defined numeric formats that can be passed to the various
primitive type user format methods. You can maintain these formats only by using the appropriate Formats menu
command, accessed from the Format Browser.

For details about the constants, properties, and method defined in the NumberFormat class, see "NumberFormat
Class Constants", "NumberFormat Properties", and "NumberFormat Method", in the following subsections.

Inherits From: LocaleFormat

Inherited By: CurrencyFormat

NumberFormat Class Constants
The constants provided by the NumberFormat class are listed in the following table.

Constant Integer Value Example

NegNumBrackets 0 (10.25)

NegNumLeadingSign 1 -10.25

NegNumLeadingSignSpace 2 - 10.25 (note the space after -)

NegNumTrailingSign 3 10.25-

NegNumTrailingSpaceSign 4 10.25 - (note the space before -)

NumberFormat Properties
The properties defined in the NumberFormat class are summarized in the following table.

Property Description

decimalPlaces Contains the number of digits to the right of the decimal separator

decimalSeparator Contains the character used to separate the integer and fractional parts of numbers

groupings Contains the size for each group of digits to the left of the decimal

Encyclopaedia of Classes
(Volume 2)

NumberFormat Class Chapter 1 444

EncycloSys2 - 2020.0.02

Property Description

negativeFormat Contains the negative number format

negativeSign Contains the string used to represent the negative sign

positiveSign Contains the string used to represent the positive sign

showLeadingZeros Specifies if zero (0) is displayed in front of a number that is less than 1

thousandSeparator Contains the character used to separate groups of digits left of the decimal separator

decimalPlaces
Type: Integer

The decimalPlaces property of the NumberFormat class contains the number of digits to the right of the decimal
point in numbers.

decimalSeparator
Type: String[20]

The decimalSeparator property of the NumberFormat class contains the character used to separate the integer
part from the fractional part of a number.

groupings
Type: String[80]

The groupings property of the NumberFormat class contains the size for each group of digits to the left of the
decimal. An explicit size is specified for each group, separated by semicolons.

If the last value is zero (0), the preceding value is repeated; for example, to group numbers by three digits, 3;0 is
specified.

negativeFormat
Type: Integer

The negativeFormat property of the NumberFormat class contains the negative number format.

The NumberFormat class constants that represent the format for negative numbers are listed in the following
table.

NumberFormat Class Constant Integer Value Example

NegNumBrackets 0 (10.25)

NegNumLeadingSign 1 -10.25

NegNumLeadingSignSpace 2 - 10.25 (note the space after -)

NegNumTrailingSign 3 10.25-

NegNumTrailingSpaceSign 4 10.25 - (note the space before -)

Encyclopaedia of Classes
(Volume 2)

NumberFormat Class Chapter 1 445

EncycloSys2 - 2020.0.02

negativeSign
Type: String[20]

The negativeSign property of the NumberFormat class contains the string value for the negative sign; for
example, -.

positiveSign
Type: String[20]

The positiveSign property of the NumberFormat class contains the string value for the positive sign; for example,
+.

showLeadingZeros
Type: Boolean

The showLeadingZeros property of the NumberFormat class is set to true if a leading zero is to be displayed in
front of a number that is less than 1; for example, 0.7.

thousandSeparator
Type: String[20]

The thousandSeparator property of the NumberFormat class contains the character used to separate groups of
digits to the left of the decimal separator.

NumberFormat Method
The method defined in the NumberFormat class is summarized in the following table.

Property Description

defineNumberFormat Defines the characteristics of a number format

defineNumberFormat
Signature defineNumberFormat(numberOfDecimalPlaces: Integer;

decimalSep: String;
thousandSep: String;
negFormat: Integer;
showLeadingZero: Boolean) updating;

The defineNumberFormat method of the NumberFormat class enables you to dynamically define the
characteristics of a number format. Set the numberOfDecimalPlaces parameter to the number of decimal places
that you want displayed, in the range 0 through 9. A value of zero (0) is assumed if you specify a value less than 0.
Conversely, a value of 9 is assumed if you specify a value greater than 9.

The decimalSep and thousandSep parameters enable you to specify a string of up to three characters that is to
separate decimals from the rest of the number and to separate thousands, respectively. If the strings contain any
numeric characters, these numeric characters are removed. If the strings are longer than three characters, they
are truncated to three characters.

Encyclopaedia of Classes
(Volume 2)

NumberFormat Class Chapter 1 446

EncycloSys2 - 2020.0.02

If you do not specify one of the NumberFormat class constants listed in the following table,
NumberFormat.NegNumLeadingSign is assumed.

NumberFormat Class Constant Integer Value Example

NegNumBrackets 0 (10.25)

NegNumLeadingSign 1 -10.25

NegNumLeadingSignSpace 2 - 10.25 (note the space after -)

NegNumTrailingSign 3 10.25-

NegNumTrailingSpaceSign 4 10.25 - (note the space before -)

Set the showLeadingZero parameter to true if you want to display a leading zero (0) for numbers in the range 1
through -1. Alternatively, set the parameter to false if you do not want to display a leading zero. (For details about
returning a string containing the receiver in the supplied number format, see the userNumberFormat method in
the Integer, Real, or Decimal primitive type.)

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 447

EncycloSys2 - 2020.0.02

Object Class
The Object class is the base class (superclass) for all system-defined and user-defined classes. The Object class
defines default behavior for all other classes in the schema.

For details about the methods defined in the Object class, see "Object Methods", in the following subsection.
Refer also to "Global Constants Reference", in Appendix A of the JADE Encyclopaedia of Primitive Types, for a
reference to the JADE global constants.

Object Methods
The methods defined in the Object class are summarized in the following table.

Method Description

autoPartitionIndex Returns the partition index of the database file partition in which the
receiver is stored on creation

beginClassNotification Registers the receiver to be notified when a nominated event occurs on
instances of a class and its subclasses

beginClassNotificationForIF Registers the receiver mapped to the userNotification and sysNotification
methods of the theInterface parameter to be notified when a nominated
event occurs on instances of a class and its subclasses, rather than to
those of the subscriber

beginClassesNotification Registers the receiver to be notified when a nominated event occurs on
instances of a class and optionally its subclasses, without any additional
searches for subschema copies in the current schema

beginClassesNotificationForIF Registers the receiver mapped to the userNotification and sysNotification
methods of the theInterface parameter to be notified when a nominated
event occurs on instances of a class and optionally its subclasses, rather
than to those of the subscriber

beginNotification Registers the receiver to be notified when a nominated event occurs on a
specified object (or all objects) of a class or its subclasses

beginNotificationForIF Registers the receiver mapped to the userNotification and sysNotification
methods of the theInterface parameter to be notified when a nominated
event occurs on instances of an object, rather than to those of the
subscriber

beginTimer Arms a timer on the receiver, and registers the receiver for timer notification

beginTimerForIF Arms a timer for methods mapped to the timerEvent method of the
theInterface parameter, rather than to that of the subscriber

causeEvent Causes a user event

changeObjectVolatility Changes the volatility state of the specified persistent object

class Returns the class of the receiver

cloneSelf Creates a new instance of the same type as the receiver but does not
invoke constructors

cloneSelfAs Creates a new instance of the specified class, copying attributes defined in
a "common ancestor" class, but does not invoke constructors

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 448

EncycloSys2 - 2020.0.02

Method Description

copySelf Creates a new instance of the same type as the receiver, invoking
constructor methods if defined

copySelfAs Creates an instance of the specified class, invoking constructor methods if
defined, and copying attributes defined in a "common ancestor" class

creationTime Returns the date and time as a timestamp that the receiver was created

creationTimeUTC Returns the date and time at which the receiver was created as a
Coordinated Universal Time (UTC) timestamp value

deletePropertyValue Sets the value of the property specified by the name parameter to null

display Returns a string containing a description of the receiver

edition Returns the edition of the receiver as an integer value

endClassNotification Ends a notification registered using a beginClassNotification method for
the corresponding parameters

endClassNotificationForIF Ends a notification registered using a beginClassNotificationForIF method
for the corresponding parameters

endClassesNotification Ends a notification registered using a beginClassesNotification method for
the corresponding parameters

endClassesNotificationForIF Ends a notification registered using a beginClassesNotificationForIF
method for the corresponding parameters

endNotification Ends a notification registered using a beginNotification method for the
corresponding parameters

endNotificationForIF Ends a notification registered using a beginNotificationForIF method for
the corresponding parameters

endNotificationForSubscriber Terminates all notifications registered by a specified subscriber for the
corresponding parameters

endTimer Terminates a timer that was initiated by using the beginTimer method for
the corresponding parameters

endTimerForIF Terminates a timer that was initiated by using the beginTimerForIF method
for the corresponding parameters

exclusiveLock Attempts to acquire an exclusive lock on the specified object

getClassForObject Returns a reference to the class of the object identifier (oid) specified in the
obj parameter

getClassNumberForObject Returns the class number of the specified object

getInstanceIdForObject Returns the instance identifier of the specified object as a Decimal value

getInstanceIdForObject64 Returns the instance identifier of the specified object as an Integer64 value

getLockCallStack Returns the lock call stack for a specified locked object

getLockStatus Gets the status of the specified lock for the current process

getModifiedBy Returns a string containing the user name of the user who modified the
receiver

getName Returns a string containing the class of the receiver

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 449

EncycloSys2 - 2020.0.02

Method Description

getObjectStringForObject Returns a string representing the specified object as an oid-like string
based on class numbers followed by an optional lifetime indication

getObjectVolatility Returns the volatility state of the specified object

getOidString Returns the object id (oid) of the receiver in a string format

getOidStringForObject Returns the object id (oid) in a string format for the specified object

getOwnerForObject Returns the owner (parent) for the specified collection

getPropertyValue Returns the value of the property specified by the name parameter

getTimerStatus Returns the status of a specified timer if it is currently active

getTimerStatusForIF Returns the status of a specified timer that was initiated using the
beginTimerForIF method, if it is currently active

getUpdateTranID Returns the transaction identifier of the transaction that created or last
updated the receiver

hasMembers Returns true if the specified persistent, exclusive collection has any
members

inspect Opens an Inspector form for the receiver object

inspectModal Opens a modal Inspector form for the receiver object

invokeIOMethod Sends the specified target method containing a variable list of parameters
to the receiver, after switching to the specified targetContext execution
context

invokeMethod Sends the specified target method containing a variable list of parameters
to the receiver, after switching to the specified targetContext execution
context

isImportedObject Returns true if the specified object is an instance of an imported class

isKindOf Returns true if the receiver is the kind of the specified class

isLockedByMe Returns true if the executing process is the owner of the lock on the
specified object

isObjectFrozen Returns true if the volatility state of the specified object is frozen (that is, it is
not updated)

isObjectNonSharedTransient Returns true if the specified object is a non-shared transient instance

isObjectPersistent Returns true if the specified object is a persistent instance

isObjectSharedTransient Returns true if the specified object is a shared transient instance

isObjectStable Returns true if the volatility state of the specified object is stable (that is, it is
not updated frequently)

isObjectTransient Returns true if the specified object is a shared or a non-shared transient
instance

isObjectVolatile Returns true if the volatility state of the specified object is volatile (that is, it
is often updated)

isSharedTransient Returns true if the receiver is a shared transient object

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 450

EncycloSys2 - 2020.0.02

Method Description

isSystemObject Returns true if the receiver is an instance of a system class

isTransient Returns true if the receiver is a transient object

jadeReportWriterCheck Returns true when reimplemented in user subclasses for object instance
security of JADE Report Writer reports

jadeReportWriterDisplay Returns the text of the combo box entry for each object returned by the
Application class jadeReportWriterParamObjects method

latestEdition Returns the latest edition of the receiver

lock Attempts to acquires the specified type of lock for a specific object

makeObjectFrozen Changes the volatility state of the specified object to frozen

makeObjectStable Changes the volatility state of the specified object to stable

makeObjectVolatile Changes the volatility state of the specified object to volatile

moveToPartition Moves the receiver to the specified partition

reserveLock Attempts to acquire a reserve lock on the specified object

respondsTo Returns true if the receiver’s class or its superclasses implement the
specified JADE interface

resynch Marks the receiver as obsolete

resynchObject Marks the specified object as obsolete

sdeCauseEvent Causes an inter-system event notification in a Synchronized Database
Environment (SDE)

sdsCauseEvent Causes an inter-system event notification in a Synchronized Database
Service (SDS)

sendMsg Sends the specified message (a valid method) to the receiver and executes
the specified method or condition

sendMsgWithIOParams Sends the specified message (a valid method or condition) with a variable
parameter list to the receiver and executes the specified method or
condition

sendMsgWithParams Sends the specified message (a valid method or condition) with a variable
parameter list to the receiver and executes the specified method or
condition

sendTypeMsg Sends the specified message (a valid type method) to the receiver and
executes the specified method

sendTypeMsgWithIOParams Sends the specified message (a valid type method) with a variable
parameter list to the receiver and executes the specified method

sendTypeMsgWithParams Sends the specified message (a valid type method) with a variable
parameter list to the receiver and executes the specified method

setPartitionID Specifies the absolute partition ID in which to locate the receiver

setPartitionIndex Specifies the partition in which to locate the receiver

setPropertyValue Sets the property of the receiver to the specified value

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 451

EncycloSys2 - 2020.0.02

Method Description

sharedLock Attempts to acquire a shared lock on the specified object

sysNotification Called by the system when a subscribed system event occurs

timerEvent Invoked by the system when the timer period expires

tryGetPropertyValue Returns the value of the specified property, if it exists; otherwise returns
false

tryLock Attempts to acquire a lock of the specified type

unlock Removes the current lock from the specified object

updateLock Attempts to acquire an update lock on the specified object

updateObjectEdition Increments the edition of the specified object by one (1)

userNotification Called by the system when a subscribed user event occurs

version Returns the version of the object

autoPartitionIndex
Signature autoPartitionIndex(): Integer partitionMethod;

The autoPartitionIndex method of the Object class returns the partition index of the database file partition in
which an object is stored on creation. The method is automatically called when an instance of a partitioned class
is created.

A partition index value of zero (0) refers to the latest partition created, a partition index value of one (1) to the
second latest, and so on.

The autoPartitionIndex method returns the value zero, so objects are created by default in the latest partition.
However, you can reimplement the method in user classes to override the default behavior. For more details, see
"partitionMethod Option", in Chapter 1 of the JADE Developer’s Reference.

Note The autoPartitionIndex method cannot be used if the database file for that object is encrypted, as the
database cannot invoke the autoPartitionIndex method using an encrypted buffer. If this occurs, exception 3009
(File encrypted and partition unspecified) is raised.

If the file is encrypted, use the Object class setPartitionID or setPartitionIndex method to explicitly set the
partition in the created object.

beginClassNotification
Signature beginClassNotification(theClass: Class;

transients: Boolean;
eventType: Integer;
responseType: Integer;
eventTag: Integer);

The beginClassNotification method of the Object class registers the receiver to be notified when a nominated
event occurs on instances of a class and its subclasses.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 452

EncycloSys2 - 2020.0.02

The object that invokes the beginClassNotification method is referred to as the subscriber. An object that
subscribes to a class notification is notified when the nominated event occurs for any instance of the specified
class or its subclasses defined in the schema of the specified class. The class instances that are subscribed to are
referred to as notification targets.

For notifications on persistent instances, you can subscribe to the following types of event:

System events, which include object creation, deletion, or change. System events are notified automatically
by the system when the nominated persistent objects are committed (using the commitTransaction
instruction). Each of the target objects is automatically resynchronized in the client cache.

User events, which are specified by selecting an eventType parameter in the range User_Base_Event
through User_Max_Event. User events are notified when the causeEvent, sdeCauseEvent, or
sdsCauseEvent method of the Object class is invoked on a target instance.

For notifications on transient or shared transient instances, you can only subscribe to user events.

A process that uses the beginClassNotification method to subscribe to user event notifications for transient
instances will receive notifications for all shared transient instances and for those non-shared transient instances
that it has created (that is, the process will not receive notifications for non-shared transient instances that have
been created by other processes).

Non-GUI objects (that is, objects that are not instances of a Window subclass) respond to system notifications by
implementing the sysNotification method. GUI objects (instances of a Window subclass) respond to system
notifications by implementing their sysNotify event method.

If a form or control has an attached window, a requested user notification is directed to the userNotify event and a
requested system notification to the sysNotify event.

The subscription to a notification registered by the beginClassNotification method is terminated by the
endClassNotification method. You can also use the endNotificationForSubscriber method to terminate all
notifications for a specific subscriber.

Caution If the application will be run in JADE thin client mode, subscribe to notifications and timers with care.
When an event occurs, each registered subscriber is notified on the application server. In thin client mode, the first
notification or timer that is sent causes a further message to be sent to the presentation client to post a message
into the Windows message queue of the client. (This is necessary so that the subsequent execution of the
notification logic is synchronized with what is taking place on the presentation client.)

When that Windows message is processed by the presentation client, another message is sent to the application
server to initiate the processing of the first 10 queued notifications or timers for that client. If there are more than 10
notifications, these actions are repeated until all queued events are processed.

Notifications and timers could therefore have a considerable impact on network traffic.

For an example of the beginClassNotification method, see "Example of Beginning Notifications", under the
Object class beginNotification method.

The beginClassNotification method parameters, described in the following subsections, are summarized in the
following table.

Parameter Specifies …

theClass The class for which the notification is to be invoked

transients If the user notification is invoked for events occurring in transient instances

eventType The type of event for which the notification is requested

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 453

EncycloSys2 - 2020.0.02

Parameter Specifies …

responseType The frequency with which an event notification is sent

eventTag An integer value that is required for each notification

theClass
Use the theClass parameter of the beginClassNotification method to specify the class for which the notification is
to be invoked.

transients
Use the transients parameter of the beginClassNotification method to specify if the user notification is to be
invoked for events that occur to transient instances (true) or persistent instances (false) of the class.

Note You can subscribe to system notifications only for persistent objects; that is, the transients parameter must
be false.

eventType
Use the eventType parameter of the beginClassNotification method to specify the type of event for which the
notification is requested.

The global constants in the SystemEvents category for the types of event that can be subscribed to are listed in
the following table.

Global Constant Integer Value Description

Any_System_Event 0 Object has been created, deleted, or updated

Object_Create_Event 4 Object has been created

Object_Delete_Event 6 Object has been deleted

Object_Update_Event 3 Object has been updated

responseType
Use the responseType parameter of the beginClassNotification method to specify the frequency with which an
event notification is notified.

The valid values for the responseType parameter, represented by global constants in the NotificationResponses
category, are listed in the following table.

Global Constant Integer Value Sends a notification…

Response_Cancel 1 When an instance of the class receives a matching event and then
cancels the notification

Response_Continuous 0 Whenever an instance of the class receives a matching event

Response_Suspend 2 When an instance of the class receives a matching event and then
suspends notification until the user refreshes the local copy of the
instance of the class

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 454

EncycloSys2 - 2020.0.02

eventTag
Use the eventTag parameter of the beginClassNotification method to identify a specific notification when you
have multiple subscriptions for the same event type.

beginClassNotificationForIF
Signature beginClassNotificationForIF(theClass: Class;

transients: Boolean;
eventType: Integer;
responseType: Integer;
eventTag: Integer;
theInterface: JadeInterface);

The beginClassNotificationForIF method of the Object class is a variation of the beginClassNotification method.

The beginClassNotificationForIF method allows notification events to be sent to methods mapped to the
userNotification and sysNotification methods of the theInterface parameter when a nominated event occurs on
instances of a class and its subclasses, rather than to those of the subscriber.

The subscriber must be an instance of a Class that includes methods that map to (implement) the specified
sysNotification or userNotification method of the interface. The parameters specified in the method signatures
must match the standard userNotification or sysNotification method, as follows.

sysNotification(eventType: Integer; theObject: Object; eventTag: Integer);

userNotification(eventType: Integer; theObject: Object; eventTag: Integer;
userInfo: Any);

If the method signature does not match the standard userNotification or sysNotification method, an exception is
raised when the beginClassNotificationForIF method is executed. The request for a notification registered by the
beginClassNotificationForIF method is terminated by the endClassNotificationForIF method. You can also use
the endNotificationForSubscriber method to terminate all previous notifications for a specified subscriber.

The beginClassNotificationForIF method parameters are summarized in the following table.

Parameter Specifies…

theClass The interface implementation class for which the notification is to be invoked

transients If the user notification is invoked for events occurring in transient instances

eventType The type of event for which the notification is requested

responseType The frequency with which an event notification is sent

eventTag An integer value that is required for each notification

theInterface The interface implemented by the specified class and its subclasses

For details about the other parameters with the exception of the theInterface parameter described in the following
subsection, see the appropriate subsections of the beginClassNotification method.

theInterface
Use the theInterface parameter of the beginClassNotificationForIF class to specify the interface that defines the
appropriate userNotification or sysNotification method.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 455

EncycloSys2 - 2020.0.02

If the value of the eventType parameter is a system event, events are sent to the method that maps to the
sysNotification method of the interface. If this parameter does not specify a system event, events are sent to the
method that maps to the userNotification method of the interface.

The interface must have a defined userNotification or sysNotification method and the receiver class and its
subclasses must implement the corresponding method in the interface. (For details, see "Implementing an
Interface", in Chapter 14 of the JADE Development Environment User’s Guide.)

beginClassesNotification
Signature beginClassesNotification(theClass: Class;

includeSubclasses: Boolean;
transients: Boolean;
eventType: Integer;
responseType: Integer;
eventTag: Integer);

The beginClassesNotification method of the Object class registers the receiver to be notified when a nominated
event occurs on instances of a class and optionally its subclasses.

The object that invokes the beginClassesNotification method is referred to as the subscriber.

The beginClassesNotification method does not attempt to re-interpret the value of the theClass parameter, so
that the call does not look for a subschema copy class in the current schema with which to register this call and it
optionally allows only the class without any of its subclasses to be registered for the notification. For example, a
beginClassNotification(MemberKeyDictionary, false, Any_System_Event, Response_Continuous, 1) call
looks for a subschema copy class in the current schema to register, and a beginClassesNotification
(MemberKeyDictionary, false, false, Any_System_Event, Response_Continuous, 1) call registers the root
MemberKeyDictionary class in the RootSchema.

If you want to specify your MemberKeyDictionary subschema copy class and allow both the class and its
subclasses to be registered for the notification, call beginClassesNotification as follows.

beginClassesNotification(currentSchema.getClass('MemberKeyDictionary'),
true, false, Any_System_Event, Response_Continuous, 1);

An object that subscribes to a class notification is notified when the nominated event occurs for any instance of the
specified class or its subclasses (when the includeSubclasses parameter is set to true). The class instances that
are subscribed to are referred to as notification targets.

For notifications on persistent instances, you can subscribe to the following types of event:

System events, which include object creation, deletion, or change. System events are notified automatically
by the system when the nominated persistent objects are committed (using the commitTransaction
instruction). Each of the target objects is automatically resynchronized in the client cache.

User events, which are specified by selecting an eventType parameter in the range User_Base_Event
through User_Max_Event. User events are notified when the causeEvent, sdeCauseEvent, or
sdsCauseEvent method of the Object class is invoked on a target instance.

For notifications on transient instances, you can only subscribe to user events.

A process that uses the beginClassesNotification method to subscribe to user event notifications for transient
instances will receive notifications for all shared transient instances and for those non-shared transient instances
that it has created (that is, the process will not receive notifications for non-shared transient instances that have
been created by other processes).

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 456

EncycloSys2 - 2020.0.02

Non-GUI objects (that is, objects that are not instances of a Window subclass) respond to system notifications by
implementing the sysNotification method. GUI objects (instances of a Window subclass) respond to system
notifications by implementing their sysNotify event method. If a form or control has an attached window, a
requested user notification is directed to the userNotify event and a requested system notification to the
sysNotify event.

The subscription to a notification registered by the beginClassesNotification method is terminated by the
endClassesNotification method. You can also use the endNotificationForSubscriber method to terminate all
notifications for a specific subscriber.

Caution If the application will be run in JADE thin client mode, subscribe to notifications and timers with care.
When an event occurs, each registered subscriber is notified on the application server.

In thin client mode, the first notification or timer that is sent causes a further message to be sent to the presentation
client to post a message into the Windows message queue of the client. (This is necessary so that the subsequent
execution of the notification logic is synchronized with what is taking place on the presentation client.)

When that Windows message is processed by the presentation client, another message is sent to the application
server to initiate the processing of the first 10 queued notifications or timers for that client. If there are more than 10
notifications, these actions are repeated until all queued events are processed. Notifications and timers could
therefore have a considerable impact on network traffic.

The beginClassesNotification method parameters, described in the following subsections, are summarized in the
following table.

Parameter Specifies …

theClass The class for which the notification is to be invoked

includeSubclasses Whether subclasses are included in or excluded from the notification registration

transients If the user notification is invoked for events occurring in transient instances

eventType The type of event for which the notification is requested

responseType The frequency with which an event notification is sent

eventTag An integer value that is required for each notification

theClass
Use the theClass parameter of the beginClassesNotification method to specify the class for which the
notification is to be invoked.

Note This method does not attempt to re-interpret the value of the theClass parameter, so that the call does not
look for a subschema copy class in the current schema with which to register this call. Call the
beginClassNotification method if you want to look for a subschema copy class in the current schema or specify
the subschema copy class itself.

includeSubclasses
Use the includes parameter of the beginClassesNotification method to specify whether subclasses are to be
included in (when set to true) or excluded from (when set to false) the notification registration.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 457

EncycloSys2 - 2020.0.02

Note When registering a beginClassesNotification with the includeSubclasses parameter set to true, the only
subclasses that are included are those that exist at that time. If the user creates (subclasses) dynamic classes after
the registration, these classes do not receive notifications. This also applies if the dynamic classes exist but they
are then deleted and subsequently recreated.

The endClassesNotification method raises an exception if a dynamic subclass has been deleted after the call to
the beginClassesNotification method.

transients
Use the transients parameter of the beginClassesNotification method to specify if the user notification is to be
invoked for events that occur to transient instances (true) or persistent instances (false) of the class.

Note You can subscribe to system notifications only for persistent objects; that is, the transients parameter must
be false.

eventType
Use the eventType parameter of the beginClassesNotification method to specify the type of event for which the
notification is requested. The global constants in the SystemEvents category for the types of event that can be
subscribed to are listed in the following table.

Global Constant Integer Value Description

Any_System_Event 0 Object has been created, deleted, or updated

Object_Create_Event 4 Object has been created

Object_Delete_Event 6 Object has been deleted

Object_Update_Event 3 Object has been updated

responseType
Use the responseType parameter of the beginClassesNotification method to specify the frequency with which
an event notification is notified. The valid values for the responseType parameter, represented by global
constants in the NotificationResponses category, are listed in the following table.

Global Constant Integer Value Sends a notification…

Response_Cancel 1 When an instance of the class receives a matching event and then
cancels the notification

Response_Continuous 0 Whenever an instance of the class receives a matching event

Response_Suspend 2 When an instance of the class receives a matching event and then
suspends notification until the user refreshes the local copy of the
instance of the class

eventTag
Use the eventTag parameter of the beginClassesNotification method to identify a specific notification when you
have multiple subscriptions for the same event type.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 458

EncycloSys2 - 2020.0.02

beginClassesNotificationForIF
Signature beginClassesNotificationForIF(theClass: Class;

includeSubclasses: Boolean;
transients: Boolean;
eventType: Integer;
responseType: Integer;
eventTag: Integer;
theInterface: JadeInterface);

The beginClassesNotificationForIF method of the Object class is a variation of the beginClassesNotification
method.

The beginClassesNotificationForIF method allows notification events to be sent to methods mapped to the
userNotification and sysNotification methods of the theInterface parameter when a nominated event occurs on
instances of a class and optionally its subclasses, rather than to those of the subscriber.

The subscriber must be an instance of a Class that includes methods that map to (implement) the specified
sysNotification or userNotification method of the interface.

The parameters specified in the method signatures must match the standard userNotification or sysNotification
method, as follows.

sysNotification(eventType: Integer; theObject: Object; eventTag: Integer);

userNotification(eventType: Integer; theObject: Object; eventTag: Integer;
userInfo: Any);

If the method signature does not match the standard userNotification or sysNotification method, an exception is
raised when the beginClassesNotificationForIF method is executed.

The subscription to a notification registered by the beginClassesNotificationForIF method is terminated by the
endClassesNotificationForIF method. You can also use the endNotificationForSubscriber method to terminate
all notifications for a specific subscriber.

The beginClassesNotificationForIF method parameters are summarized in the following table.

Parameter Specifies …

theClass The class for which the notification is to be invoked

includeSubclasses Whether subclasses are included in or excluded from the notification registration

transients If the user notification is invoked for events occurring in transient instances

eventType The type of event for which the notification is requested

responseType The frequency with which an event notification is sent

eventTag An integer value that is required for each notification

theInterface The interface implemented by the specified class and optionally its subclasses

For details about the other parameters with the exception of the theInterface parameter described in the following
subsection, see the appropriate subsections of the beginClassesNotification method.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 459

EncycloSys2 - 2020.0.02

theInterface
Use the theInterface parameter of the beginClassesNotificationForIF class to specify the interface that defines
the appropriate userNotification or sysNotification method.

If the value of the eventType parameter is a system event, events are sent to the method that maps to the
sysNotification method of the interface. If this parameter does not specify a system event, events are sent to the
method that maps to the userNotification method of the interface.

The interface must have a defined userNotification or sysNotification method and the receiver class and
optionally its subclasses must implement the corresponding method in the interface. (For details, see
"Implementing an Interface", in Chapter 14 of the JADE Development Environment User’s Guide.)

beginNotification
Signature beginNotification(theObj: Object;

eventType: Integer;
responseType: Integer;
eventTag: Integer);

The beginNotification method of the Object class registers the receiver to be notified when a nominated event
occurs on a specified object.

The object that invokes the beginNotification method is referred to as the subscriber.

An object that subscribes to a notification is notified when the specified event occurs for the notification target. If a
form or control has an attached window, a requested user notification is directed to the userNotify method and a
requested system notification to the sysNotify method.

Non-GUI objects respond to system and user notifications by implementing the sysNotification and
userNotification methods, respectively. GUI objects (instances of a Window subclass) respond to system and
user notifications by implementing their sysNotify and userNotify event methods, respectively. For notification on
a persistent instance, you can subscribe to the following types of event:

System events, which include object creation, deletion, or change. System events are notified automatically
by the system when the nominated persistent objects are committed (using the commitTransaction
instruction).

Each of the target objects is automatically resynchronized in the client cache.

User events, which are specified by selecting an eventType parameter in the range User_Base_Event
through User_Max_Event. User events are notified when the causeEvent, sdeCauseEvent, or
sdsCauseEvent method of the Object class or the causeClassEvent method of the Class class is invoked
on a target instance.

For notifications on a transient or shared transient instance, you can subscribe to user events only.

The request for a notification registered by the beginNotification method is terminated by the endNotification
method. You can also use the endNotificationForSubscriber method to terminate all previous notifications for a
specified subscriber.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 460

EncycloSys2 - 2020.0.02

Caution If the application will be run in JADE thin client mode, subscribe to notifications and timers with care.
When an event occurs, each registered subscriber is notified on the application server.

In thin client mode, the first notification or timer that is sent causes a further message to be sent to the presentation
client to post a message into the Windows message queue of the client. (This is necessary so that the subsequent
execution of the notification logic is synchronized with what is taking place on the presentation client.) When that
Windows message is processed by the presentation client, another message is sent to the application server to
initiate the processing of the first 10 queued notifications or timers for that client.

If there are more than 10 notifications, these actions are repeated until all queued events are processed.
Notifications and timers could therefore have a considerable impact on network traffic.

Non-immediate events caused on transient objects are not discarded when a persistent transaction is aborted. For
example, if the receiver of a causeEvent is a shared transient instance, any notifications are held when the
transaction is aborted and delivered when the next transaction commits.

For an example of the beginNotification method, see "Example of Beginning Notifications", later in this topic.

The beginNotification method parameters, described in the following subsections, are summarized in the
following table.

Parameter Specifies …

theObj The object for which the notification is to be invoked

eventType The type of event for which the notification is requested

responseType The frequency with which an event notification is sent

eventTag An integer value used to identify a notification subscription that will be passed back to the
notification method

theObj
Use the theObj parameter of the beginNotification method to specify the object for which the notification is to be
invoked. If this object is transient, only user notifications can be received.

eventType
Use the eventType parameter of the beginNotification method to specify the type of event for which the
notification is requested.

The global constants in the SystemEvents category that can be subscribed to are listed in the following table.

Global Constant Integer Value Description

Any_System_Event 0 Object has been created, deleted, or updated

Object_Create_Event 4 Object has been created

Object_Delete_Event 6 Object has been deleted

Object_Update_Event 3 Object has been updated

responseType
Use the responseType parameter of the beginNotification method to specify the frequency with which the
subscribed event was notified.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 461

EncycloSys2 - 2020.0.02

The valid values for the responseType parameter, represented by global constants in the NotificationResponses
category, are listed in the following table.

Global Constant Integer Value Sends a notification…

Response_Cancel 1 When the object receives a matching event and then cancels the
notification

Response_Continuous 0 Whenever the object receives a matching event

Response_Suspend 2 When the object receives a matching event and then suspends
notification until the user refreshes the local copy of the object

eventTag
Use the eventTag parameter of the beginNotification method to specify an integer value passed to the notification
callback method when the event is notified.

This tag can be used to identify (or tag) each individual notification subscription.

Example of Beginning Notifications
The following example shows the use of the beginClassNotification method and the beginNotification method
when loading a form.

load() updating;
vars

a1 : A;
b1 : B;
c1, c2 : C;

begin
// Creates instances of classes A, B, and C which will be the target
// instances of the notifications.
beginTransaction;

create a1;
create b1;
create c1;
create c2;

commitTransaction;
// For each of these notifications, the false parameter specifies that
// the notification will only occur if the instance is persistent, the
// Response_Continuous parameter specifies that a notification will be
// sent whenever an event occurs and the final eventTag parameter is an
// integer value that is returned with each notification.
// Registers the receiver (in this case, the form) to be notified when a
// system event (create, update, or delete) occurs on an instance of
// class A. When the notification is received, the sysNotify event of
// the form will be executed.
beginClassNotification(A, false, Any_System_Event, Response_Continuous,

1);
// Registers the receiver to be notified when a user event with an
// eventType of 16 (User_Base_Event) occurs on an instance of class B.
// When the notification is received, the userNotify event of the form
// will be executed.
beginClassNotification(B, false, User_Base_Event, Response_Continuous,

2);

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 462

EncycloSys2 - 2020.0.02

// Registers the receiver to be notified when a system event occurs on
// the instance c1 (that is, when c1 is created, updated or deleted.
// When the notification is received, the sysNotify event of the form
// will be executed.
beginNotification(c1, Any_System_Event, Response_Continuous, 3);
// Registers the receiver to be notified when a user event with an
// eventType of 17 occurs on the instance c2. When the notification is
// received, the userNotify event of the form will be executed.
beginNotification(c2, 17, Response_Continuous, 4);

end;

beginNotificationForIF
Signature beginNotificationForIF(theObj: Object;

eventType: Integer;
responseType: Integer;
eventTag: Integer;
theInterface: JadeInterface);

The beginNotificationForIF method of the Object class is a variation of the beginNotification method. The
beginNotificationForIF method allows notification events to be sent to the userNotification and sysNotification
methods mapped to the theInterface parameter when a nominated event occurs on instances of an object, rather
than to those of the subscriber.

The subscriber must be an instance of a Class that includes methods that map to (implement) the specified
sysNotification or userNotification method of the interface.

The parameters specified in the method signatures must match the standard userNotification or sysNotification
method, as follows.

sysNotification(eventType: Integer; theObject: Object; eventTag: Integer);

userNotification(eventType: Integer; theObject: Object; eventTag: Integer;
userInfo: Any);

If the method signature does not match the standard userNotification or sysNotification method, an exception is
raised when the beginNotificationForIF method is executed.

The request for a notification registered by the beginNotificationForIF method is terminated by the
endNotificationForIF method. You can also use the endNotificationForSubscriber method to terminate all
previous notifications for a specified subscriber.

The beginNotificationForIF method parameters are summarized in the following table.

Parameter Specifies …

theObj The object for which the notification is to be invoked

eventType The type of event for which the notification is requested

responseType The frequency with which an event notification is sent

eventTag An integer value used to identify a notification subscription that will be passed back to the
notification method

theInterface The interface implemented by the specified object

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 463

EncycloSys2 - 2020.0.02

For details about the other parameters with the exception of the theInterface parameter described in the following
subsection, see the appropriate subsections of the beginNotification method.

theInterface
Use the theInterface parameter of the beginNotificationForIF method to specify the interface that defines the
appropriate userNotification or sysNotification method.

If the value of the eventType parameter is a system event, events are sent to the method that maps to the
sysNotification method of the interface. If this parameter does not specify a system event, events are sent to the
method that maps to the userNotification method of the interface.

The interface must have a defined userNotification or sysNotification method and the receiver class must
implement the corresponding method in the interface. (For details, see "Implementing an Interface", in Chapter 14
of the JADE Development Environment User’s Guide.)

beginTimer
Signature beginTimer(delay: Integer;

option: Integer;
eventTag: Integer);

The beginTimer method of the Object class arms a timer on the receiver and registers the receiver for timer
notification.

When the specified timer delay (or period) expires, the system calls the timerEvent method for the object that
registered the notification. If a negative value for is specified for the delay parameter, the minimum timer
granularity of one (1msec is used.

A specific object can register multiple timers of different durations. The eventTag parameter can then be used by
the timerEvent method to determine which timer has expired.

The parameters for the beginTimer method are listed in the following table.

Parameter Description

delay Integer value (in milliseconds) for the timer delay

option TimerDurations category global constant Timer_Continuous (the timerEvent occurs
continuously until it is disabled by the endTimer method) or Timer_OneShot (the timerEvent
occurs once only)

eventTag User-specified literal or constant that can be used to identify a specific timer event

Notes In JADE thin client mode, use of timers whose logic interacts with the presentation client side of the thin
client processing may cause a processing loop if the interval between timer calls is less than the time taken to
process each request. This could arise over a slower-speed line where the transmission time to the presentation
client becomes significant.

When you develop an application that could run in JADE thin client mode, use timers with care. When a timer
event occurs, it notifies the application server, which then echoes the event to all attached presentation clients;
that is, the application server sends the notification to each presentation client, which then sends a response to
the application server. This can have a considerable impact on network traffic.

Timers are deactivated when the process that armed them terminates. Similarly, notifications are unsubscribed
when the process that subscribed to them terminates. As timer events are not transported between nodes, a timer
armed in a server method will not invoke the timerEvent callback on the client node.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 464

EncycloSys2 - 2020.0.02

The following example shows the activation of a timer.

optionActivateTimer_click(menuItem: MenuItem input) updating;
begin

if self.timeInterval <> 0 then
if optionActivateTimer.caption = "Deactivate Timer" then

self.endTimer(0);
optionActivateTimer.caption := "Activate Timer";

else
beginTimer(self.timeInterval * 1000, Timer_Continuous, 0);
optionActivateTimer.caption := "Deactivate Timer";

endif;
endif;

end;

The following code fragment checks if the timer is active, and if so, stops the timer and restarts it with a new value.

if optionActivateTimer.caption = "Deactivate Timer" then
self.endTimer(0);
optionActivateTimer.caption := "Activate Timer";
if self.timeInterval <> 0 then

beginTimer(self.timeInterval * 1000, Timer_Continuous, 0);
optionActivateTimer.caption := "Deactivate Timer";

endif;
endif;

Use the getTimerStatus method to return the status of the timer specified in the eventTag parameter.

beginTimerForIF
Signature beginTimerForIF(delay: Integer;

option: Integer;
eventTag: Integer;
theInterface: JadeInterface);

The beginTimerForIF method of the Object class is a variation of the beginTimer method.

The beginTimerForIF method arms a timer on the receiver and registers the receiver for a timer notification.

When the specified timer delay (or period) expires, the system calls the timerEvent method mapped to the
interface that registered the notification, rather than to that of the subscriber.

The object registering the notification (that is, the subscriber) must be an instance of a Class that includes a
method that maps to the specified timerEvent method of the theInterface parameter value. The parameter
specified in the method signatures must match the standard timerEvent method, as follows.

timerEvent(eventTag: Integer);

The parameters for the beginTimerForIF method are listed in the following table.

Parameter Description

delay Integer value (in milliseconds) for the timer delay

option TimerDurations category global constant Timer_Continuous (the timerEvent occurs
continuously until it is disabled by the endTimerForIF method) or Timer_OneShot (the
timerEvent occurs once only)

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 465

EncycloSys2 - 2020.0.02

Parameter Description

eventTag User-specified literal or constant that can be used to identify a specific timer event

theInterface The interface implemented by the subscriber

Use the getTimerStatusForIF method to return the status of the interface timer specified in the eventTag
parameter.

The interface must have a defined timerEvent method and the receiver class must implement the corresponding
method in the interface. (For details, see "Implementing an Interface", in Chapter 14 of the JADE Development
Environment User’s Guide.)

causeEvent
Signature causeEvent(eventType: Integer;

immediate: Boolean;
userInfo: Any);

The causeEvent method of the Object class triggers a user event. Any objects that have registered a
beginNotification for that object or its class receive a corresponding event message.

A process that uses the causeEvent method to cause notifications for transient instances will cause system event
and user event notifications only for shared transient instances and for non-shared transient instances that it has
created (that is, the process will not cause notifications for non-shared transient instances that have been created
by other processes).

The parameters for the causeEvent method are listed in the following table.

Parameter Description

eventType Integer in the range User_Base_Event through User_Max_Event that represents the event
being caused.

immediate Boolean value specifying the timing of the event; false indicates that notifications occur at the
end of transaction and true indicates that the notification is sent immediately. If the client is not
within a begin/commit transaction cycle and this parameter is set to false, the notification waits
for the next commit on that client.

userInfo A value of any primitive type value (for example, a String or an Integer) or object reference that
is passed to the userNotify event handlers when the event is notified. Although you should not
use a transient object reference across nodes, you can use a shared transient object reference
between applications on the same node.

Notifications containing binary and string (Binary, String, StringUtf8) data of up to 48K bytes
can be sent across the network. For applications running within the server node, the limit for
notifications containing binary or string data is 2G bytes. Note, however, that this applies only
to single user and server applications. In multiuser applications, persistent notifications are
sent via the database server, even if the receiving process is on the same node as the sender.
In notification cause events, exception 1267 (Notification info object too big) is raised if the
binary or string userInfo data exceeds the applicable value.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 466

EncycloSys2 - 2020.0.02

The following table lists the UserEvents category global constants for notification events.

Global Constant Integer Value

User_Base_Event 16

User_Max_Event Max_Integer (#7FFFFFFF, equates to 2147483647)

You can define your own constants to represent event types in the range User_Base_Event through Max_
Integer.

In a Synchronized Database Environment (SDE), when the AuditCauseEvents parameter in the [SyncDbService]
section of the JADE initialization file is set to true, events caused on a primary database using Object class
:causeEvent method with a persistent target and the immediate parameter value of false outside of a database
transaction are not audited for replay on secondary databases because the events are not part of a transaction.

changeObjectVolatility
Signature changeObjectVolatility(object: Object;

volatility: Integer;
conditional: Boolean);

The changeObjectVolatility method of the Object class changes the volatility state of the persistent object
specified in the object parameter. (You can change the volatility state only of persistent objects. All transient
objects are considered volatile.) For details, see "Cache Concurrency", in Chapter 6 of the JADE Developer’s
Reference.

Use the volatility parameter to specify the volatility state that you require, represented by one of the following
global constants in the ObjectVolatility category.

Global Constant Integer Value Description

Volatility_Frozen #04 Object is frozen (that is, it is not updated)

Volatility_Stable #08 Object is stable (that is, it is updated infrequently)

Volatility_Volatile #00 Object is volatile (that is, it is updated often)

As object volatility state is conditional by default, a frozen object can be updated only by first changing its volatility
to Volatility_Stable or Volatility_Volatile.

Use the conditional parameter to specify whether the change is conditional or unconditional. Set the value of this
parameter to:

false if the change is unconditional; that is, the change takes place even if an attempt is made to change the
volatility of a frozen object that is being used by any other process.

true if the change is conditional; that is, the change takes place only if the object is not in use by another
process. In a multiuser system where production mode is set, it is not possible to determine whether an
object is in use by another process. In that case, an exception (1068 - Feature not available in this release) is
raised.

See the makeObjectStable or makeObjectVolatile method for an equivalent way to conditionally change the
volatility of an object.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 467

EncycloSys2 - 2020.0.02

class
Signature class(): Class;

The class method of the Object class returns a reference to the class of the receiver object.

Note If you want to return a reference to the class of a specified object identifier (oid) even if this object is no
longer valid, call the Object class getClassForObject method; for example, in exception handlers that may need
to deal with object references that are no longer valid.

cloneSelf
Signature cloneSelf(bTransient: Boolean): SelfType;

The cloneSelf method of the Object class creates a new instance of the same type as the receiver and copies the
attributes of the receiver (including the contents of primitive arrays).

This method does not invoke constructors.

Note References and MemoryAddress attributes are not copied and are initialized to null in the cloned object.

See also the Object class copySelf, and copySelfAs methods, which invoke constructors, and the cloneSelfAs
method.

cloneSelfAs
Signature cloneSelfAs(asClass: Class;

bTransient: Boolean): Object;

The cloneSelfAs method of the Object class creates a new instance of the class specified in the asClass
parameter and copies any attributes of the receiver (including the contents of primitive arrays) that are common to
both the receiver and target class definitions; that is, those attributes defined in a "common ancestor" class. This
method does not invoke constructors.

Note References and MemoryAddress attributes are not copied and are initialized to null in the cloned object.

See also the Object class copySelf and copySelfAs methods, which invoke constructors, and the cloneSelf
method.

copySelf
Signature copySelf(transient: Boolean): SelfType;

The copySelf method of the Object class creates a new instance of the same type as the receiver, invoking
constructor methods if defined, and copies the attributes of the receiver (including the contents of primitive arrays).

Note References and MemoryAddress attributes are not copied and are initialized to null in the copied object.

See also the Object class copySelfAs method and the cloneSelf and cloneSelfAs methods, which do not invoke
constructors.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 468

EncycloSys2 - 2020.0.02

copySelfAs
Signature copySelfAs(asClass: Class;

transient: Boolean): Object;

The copySelfAs method of the Object class creates a new instance of the class specified in the asClass
parameter, invoking constructor methods if defined, and copies any attributes of the receiver (including the
contents of primitive arrays) that are common to both the receiver and target class definitions; that is, those
attributes defined in a "common ancestor" class.

Note References and MemoryAddress attributes are not copied and are initialized to null in the copied object.

See also the Object class copySelf method and the cloneSelf and cloneSelfAs methods, which do not invoke
constructors.

creationTime
Signature creationTime(): TimeStamp;

The creationTime method of the Object class returns the date and time at which the receiver was created as a
timestamp. The object creation time is stored as a Coordinated Universal Time (UTC) value.

When it is accessed it is converted to a local time using the current time zone bias of the executing process.

Note The time will be out by one hour if daylight saving (DST) is in force and the object was created during a
standard time (STD), or the reverse.

creationTimeUTC
Signature creationTimeUTC(): TimeStamp;

The creationTimeUTC method of the Object class returns the date and time at which the receiver was created as
a Coordinated Universal Time (UTC) timestamp value.

Applies to Version: 2020.0.01 and higher

deletePropertyValue
Signature deletePropertyValue(name: String);

The deletePropertyValue method of the Object class sets the value of the property specified by the name
parameter to null if the property is a static property.

If the property is a dynamic property, the value of the specified dynamic property is removed from the cluster,
making the property un-instantiated for that object instance.

If the property name is invalid, an exception is raised.

display
Signature display(): String;

The display method of the Object class returns a string containing a description of the receiver. In this default
implementation of display, the description consists of the name of the class of the receiver.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 469

EncycloSys2 - 2020.0.02

A subclass can reimplement the display method to provide a more-informative description appropriate to that
class.

Note Most subclasses of the Object class in RootSchema reimplement the display method to return a
description of that class of object.

edition
Signature edition(): Integer;

The edition method of the Object class returns the edition of the receiver as an integer value. Each object has an
edition of 1 when it is created.

The edition is incremented each time that the object is updated in a specified transaction but only once for each
transaction, and is used for buffer (cache) synchronization.

For more details about object editions, see "Using Object Editions" under "Unlocking Objects", in Chapter 6 of the
JADE Developer’s Reference.

endClassNotification
Signature endClassNotification(theClass: Class;

transients: Boolean;
eventType: Integer);

The endClassNotification method of the Object class terminates a subscription registered by using the
beginClassNotification method for the corresponding parameters.

Note The eventType parameters must be the same as the eventType parameters specified in the
beginClassNotification method.

The endClassNotification method parameters, described in the following subsections, are summarized in the
following table.

Parameter Specifies …

theClass The class for which the end notification is to be invoked

transients If the user end notification is invoked for events occurring in transient instances

eventType The type of event for which the end notification is requested

theClass
Use the theClass parameter of the endClassNotification method to specify the class for which class notifications
of the specified type are to be ended.

transients
Use the transients parameter of the endClassNotification method to specify if the user end notification is to be
invoked for events that occur to transient instances (true) or persistent instances (false) of the class.

Note System notifications apply only to persistent objects.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 470

EncycloSys2 - 2020.0.02

eventType
Use the eventType parameter of the endClassNotification method to specify the type of event for which the
notification subscription is to be terminated.

The valid values for system event types, represented by global constants in the SystemEvents category, are
listed in the following table.

Global Constant Integer Value Description

Any_System_Event 0 Object has been created, deleted, or updated

Object_Create_Event 4 Object has been created

Object_Delete_Event 6 Object has been deleted

Object_Update_Event 3 Object has been updated

User events are in the range User_Base_Event through User_Max_Event.

endClassNotificationForIF
Signature endClassNotificationForIF(theClass: Class;

transients: Boolean;
eventType: Integer;
theInterface: JadeInterface);

The endClassNotificationForIF method of the Object class is a variation of the endClassNotification method.

The endClassNotificationForIF method terminates a notification to an interface method implemented by the
specified class and subclasses that was previously registered by using the beginClassNotificationForIF method
for the corresponding parameters.

Note The eventType parameters must be the same as the eventType parameters specified in the
beginClassNotificationForIF method.

The endClassNotificationForIF method parameters are summarized in the following table.

Parameter Specifies …

theClass The class for which the end notification is to be invoked

transients If the user end notification is invoked for events occurring in transient instances

eventType The type of event for which the end notification is requested

theInterface The interface implemented by the subscriber class and subclasses

With the exception of the theInterface parameter, details about the other parameters can be found in the
appropriate subsections of the endClassNotification method.

theInterface
Use the theInterface parameter of the endClassNotificationForIF method to specify the interface implemented by
the class specified in the theClass parameter and its subclasses.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 471

EncycloSys2 - 2020.0.02

The interface must have a defined userNotification or sysNotification method and the receiver class must
implement the corresponding method in the interface. (For details, see "Implementing an Interface", in Chapter 14
of the JADE Development Environment User’s Guide.)

endClassesNotification
Signature endClassesNotification(theClass: Class;

includeSubclasses: Boolean;
transients: Boolean;
eventType: Integer);

The endClassesNotification method of the Object class terminates a subscription registered by using the
beginClassesNotification method for the corresponding parameters.

Note The eventType parameters must be the same as the eventType parameters specified in the
beginClassesNotification method.

The endClassesNotification method parameters, described in the following subsections, are listed in the
following table.

Parameter Specifies …

theClass The class for which the end notification is to be invoked

includeSubclasses Whether subclasses are included in or excluded from the notification termination

transients If the user end notification is invoked for events occurring in transient instances

eventType The type of event for which the end notification is requested

theClass
Use the theClass parameter of the endClassesNotification method to specify the class for which class
notifications of the specified type are to be ended.

Note This method does not attempt to re-interpret the value of the theClass parameter, so that the call does not
look for a subschema copy class in the current schema whose notification subscription it is to terminate.

includeSubclasses
Use the includeSubclasses parameter of the endClassesNotification method to specify whether subclasses are
to be included in (when set to true) or excluded from (when set to false) the termination of the notification
subscription.

Note The endClassesNotification method raises an exception if a dynamic subclass has been deleted after the
call to the beginClassesNotification method when the includeSubclasses parameter is set to true.

transients
Use the transients parameter of the endClassesNotification method to specify if the user end notification is to be
invoked for events that occur to transient instances (true) or persistent instances (false) of the class.

Note System notifications apply only to persistent objects.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 472

EncycloSys2 - 2020.0.02

eventType
Use the eventType parameter of the endClassesNotification method to specify the type of event for which the
notification subscription is to be terminated.

The valid values for system event types, represented by global constants in the SystemEvents category, are
listed in the following table.

Global Constant Integer Value Description

Any_System_Event 0 Object has been created, deleted, or updated

Object_Create_Event 4 Object has been created

Object_Delete_Event 6 Object has been deleted

Object_Update_Event 3 Object has been updated

User events are in the range User_Base_Event through User_Max_Event.

endClassesNotificationForIF
Signature endClassesNotificationForIF(theClass: Class;

includeSubclasses: Boolean;
transients: Boolean;
eventType: Integer;
theInterface: JadeInterface);

The endClassesNotificationForIF method of the Object class is a variation of the endClassesNotification
method.

The endClassesNotificationForIF method terminates a notification to an interface method implemented by the
specified class and optionally subclasses that was previously registered by using the
beginClassesNotificationForIF method for the corresponding parameters.

Note The eventType parameters must be the same as the eventType parameters specified in the
beginClassesNotificationForIF method.

The endClassesNotificationForIF method parameters are summarized in the following table.

Parameter Specifies …

theClass The class for which the end notification is to be invoked

includeSubclasses Whether subclasses are included in or excluded from the notification termination

transients If the user end notification is invoked for events occurring in transient instances

eventType The type of event for which the end notification is requested

theInterface The interface implemented by the subscriber class and optionally subclasses

With the exception of the theInterface parameter, details about the other parameters can be found in the
appropriate subsections of the endClassesNotification method.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 473

EncycloSys2 - 2020.0.02

theInterface
Use the theInterface parameter of the endClassesNotificationForIF method to specify the interface implemented
by the class specified in the theClass parameter and optionally its subclasses.

The interface must have a defined userNotification or sysNotification method and the receiver class must
implement the corresponding method in the interface. (For details, see "Implementing an Interface", in Chapter 14
of the JADE Development Environment User’s Guide.)

endNotification
Signature endNotification(theObj: Object;

eventType: Integer);

The endNotification method of the Object class terminates a previous beginNotification method for the
corresponding parameters.

Note The eventType parameters must be the same as the eventType parameters specified in the
beginNotification method.

The endNotification method parameters, described in the following subsections, are summarized in the following
table.

Parameter Specifies …

theObj The notification target object for which the notifications are to be ended

eventType The type of event for which the notifications are to be ended

theObj
Use the theObj parameter of the endNotification method to specify the object for which the end notification
subscription is to be terminated.

eventType
The theObj and the eventType parameters of the endNotification method together identify the specific notification
that is to be terminated.

The global constants for the system event types, represented by global constants in the SystemEvents category,
are listed in the following table.

Global Constant Integer Value Description

Any_System_Event 0 Object has been created, deleted, or updated

Object_Create_Event 4 Object has been created

Object_Delete_Event 6 Object has been deleted

Object_Update_Event 3 Object has been updated

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 474

EncycloSys2 - 2020.0.02

endNotificationForIF
Signature endNotificationForIF(theObj: Object;

eventType: Integer
theInterface: JadeInterface);

The endNotificationForIF method of the Object class is a variation of the endNotification method. The
endNotificationForIF method terminates a notification to an interface method implemented by the specified object
instance previously registered by using the beginNotificationForIF method for the corresponding parameters.

Note The eventType parameters must be the same as the eventType parameters specified in the
beginNotificationForIF method.

The endNotificationForIF method parameters are summarized in the following table.

Parameter Specifies …

theObj The notification target object for which the notifications are to be ended

eventType The type of event for which the notifications are to be ended

theInterface The interface implemented by the subscriber object instance

With the exception of the theInterface parameter, details about the other parameters can be found in the
appropriate subsections of the endNotification method.

theInterface
Use the theInterface parameter of the endNotificationForIF method to specify the interface implemented by the
object instance specified in the theObj parameter.

The interface must have a defined userNotification or sysNotification method and the receiver object must
implement the corresponding method in the interface. (For details, see "Implementing an Interface", in Chapter 14
of the JADE Development Environment User’s Guide.)

endNotificationForSubscriber
Signature endNotificationForSubscriber(subscriber: Object);

The endNotificationForSubscriber method of the Object class terminates all previous:

beginNotification, beginClassNotification, and beginClassesNotification requests for the specified
subscriber

beginNotificationForIF, beginClassNotificationForIF, and beginClassesNotificationForIF requests for the
specified subscriber

The subscriber parameter specifies the subscriber whose registered notifications or implemented interface
notifications are to be terminated.

The following example (from the Erewhon Investments example schema supplied on the JADE release medium)
shows the use of the endNotificationForSubscriber method when clearing the contents of a list box and disabling
notifications for the objects that were in the list.

clear() updating;
begin

// End all notifications

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 475

EncycloSys2 - 2020.0.02

endNotificationForSubscriber(self);
// The list box is being cleared so clear our selected objects list
zSelectedObjects.clear;
if showUpdates and zCollectionOid <> null then

// Turn notifications back on for the collection itself
beginNotification(zCollectionOid.asOid.Collection, Any_System_Event,

Response_Continuous, NotifyCollectionUpdate);
endif;
inheritMethod;

end;

endTimer
Signature endTimer(eventTag: Integer);

The endTimer method of the Object class terminates a timer that was started and registered by using the
beginTimer method for the corresponding parameter. Use the eventTag parameter to distinguish between a
number of different timers. The following example shows the use of the endTimer method.

dblClick() updating;
begin

if self.timerInProgress then
self.endTimer(0);

else
self.beginTimer(2000, 0, 0);

endif;
self.timerInProgress := not self.timerInProgress;

end;

endTimerForIF
Signature endTimerForIF(eventTag: Integer;

theInterface: JadeInterface);

The endTimerForIF method of the Object class is a variation of the endTimer method.

The endTimerForIF method terminates a timer that was started and registered by using the beginTimerForIF
method for the corresponding parameters.

Use the eventTag parameter to distinguish between a number of different timers and the theInterface parameter
to specify the interface in which the timerEvent method implemented in the subscriber is defined.

exclusiveLock
Signature exclusiveLock(lockTarget: Object);

The exclusiveLock method of the Object class attempts to acquire an exclusive lock on the object specified in the
lockTarget parameter. If another process has a conflicting lock, the process waits until the lock is released. The
object is exclusively locked for the duration of the transaction.

For details about exclusive locks, see "Locking Objects", in Chapter 6 of the JADE Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 476

EncycloSys2 - 2020.0.02

getClassForObject
Signature getClassForObject(obj: Object): Class;

The getClassForObject method of the Object class returns a reference to the class of the object identifier (oid)
specified in the obj parameter, even if this object is no longer valid.

If the object specified in the obj parameter is valid, the getClassForObject method returns the same reference as
a call to the Object class class method (that is, obj.class).

Note This method is useful in exception handlers that may need to deal with object references that are no
longer valid.

getClassNumberForObject
Signature getClassNumberForObject(obj: Object): Integer;

The getClassNumberForObject method of the Object class returns the number of the class specified in the obj
parameter, even if this object is no longer valid.

getInstanceIdForObject
Signature getInstanceIdForObject(obj: Object): Decimal;

The getInstanceIdForObject method of the Object class returns the instance identifier of the object specified in
the obj parameter, even if this object is no longer valid.

Note The decimal value returned by this method avoids problems caused by negative numbers for large values.

getInstanceIdForObject64
Signature getInstanceIdForObject64(obj: Object): Integer64;

The getInstanceIdForObject64 method of the Object class returns the instance identifier of the object specified in
the obj parameter, even if this object is no longer valid.

Note If the instance identifier is larger than 2^63, the getInstanceIdForObject method, which returns a decimal,
must be used.

getLockCallStack
Signature getLockCallStack(target: Object;

callStack: ProcessStackArray input): Boolean;

The getLockCallStack method of the Object class returns the lock call stack for a locked object.

The target parameter specifies a currently locked object. The callStack parameter is populated with the call stack
of the process at the time the object was locked. If the object is not currently locked, an empty call stack is
returned.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 477

EncycloSys2 - 2020.0.02

Notes This method returns a lock call stack only when JADE has been set to record the current call stack for the
process that locked the object.

To dynamically set whether JADE records the lock call stack when a process locks an object, use the Process
class setSaveLockCallStack method.

To enable automatic recording of the lock call stack for all client processes, use the
DefaultProcessSaveLockCallStack parameter in the [JadeClient] section of the JADE initialization file. To
enable automatic recording of the lock call stack for all database server processes, use the
DefaultProcessSaveLockCallStack parameter in the [JadeServer] section of the JADE initialization file.

Applies to Version: 2016.0.01 and higher

getLockStatus
Signature getLockStatus(target: Object;

lockType: Integer output;
lockDuration: Integer output;
lockedBy: Process output);

The getLockStatus method of the Object class returns the lock type and the lock duration of the current process
locks for the object specified in the target parameter. The lockedBy parameter contains the current process.

This method returns only the lock status of an object locked by the current process.

getModifiedBy
Signature getModifiedBy(): String;

The getModifiedBy method of the Object class returns a string containing the user name of the user who modified
the receiver.

Note Not all entities have this information. Where this information is not available, a null value ("") is returned.

getName
Signature getName(): String;

The getName method of the Object class returns a string containing the class of the receiver. In this default
implementation of the getName method, the description consists of the name of the class of the receiver.

A subclass can reimplement the getName method to provide a more-informative description appropriate to that
class.

getObjectStringForObject
Signature getObjectStringForObject(obj: Object): String;

The getObjectStringForObject method of the Object class returns a string representing the object specified in the
obj parameter.

This method is the inverse of the String primitive type asObject method.

The returned string consists of the oid-like string based on class numbers, followed by an optional lifetime
indication.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 478

EncycloSys2 - 2020.0.02

The form of the oid-like string can be one of the following.

class-number.instId

class-number.instId.parent-class-number

class-number.instId.parent-class-number.subLevel.subId

The optional lifetime can be '(t)', to indicate a transient object, or '(s)', to indicate a shared transient object. If the
optional lifetime is absent, it indicates a persistent object.

The code fragments in the following examples show what is returned after each of the assignments to o.

// return persistent instance of class number 16401
o := '16401.1'.asObject;
// return '16401.1' for a persistent instance
write getObjectStringForObject(o);
// return transient instance of class number 16401
o := '16401.1 (t)'.asObject;
// return '16401.1 (t)' for a transient instance
write getObjectStringForObject(o);
// return shared transient instance of class number 16401
o := '16401.1 (s)'.asObject;
// return '16401.1 (s)' for a shared transient instance
write getObjectStringForObject(o);

For details about returning the object id (oid) in a string format for the specified object, see the Object class
getOidStringForObject method.

getObjectVolatility
Signature getObjectVolatility(object: Object): Integer;

The getObjectVolatility method of the Object class returns the volatility state of the persistent object specified in
the object parameter. For details, see "Cache Concurrency", in Chapter 6 of the JADE Developer’s Reference.

Use the getObjectVolatility method to determine the volatility state of a persistent object. (All transient objects are
considered volatile.)

Note The Schema Inspector displays class and object volatility by default, which enables you to check whether
objects and collections are set to stable or frozen without having to write code to determine the volatility state of an
object or collection.

This method returns the volatility state of the object, represented by one of the following global constants in the
ObjectVolatility category.

Global Constant Integer Value Description

Volatility_Frozen #04 Object is frozen (that is, it is not updated)

Volatility_Stable #08 Object is stable (that is, it is updated infrequently)

Volatility_Volatile #00 Object is volatile (that is, it is updated often)

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 479

EncycloSys2 - 2020.0.02

getOidString
Signature getOidString(): String;

The getOidString method of the Object class returns the object identifier (oid) of the receiver in a string format.

The formats of the object id for shared and exclusive references are listed in the following table.

Type of Reference Format Example

Shared class-id.instance-id "305.1208"

Exclusive class-id.instance-id.parent-class-id.sublevel.sub-id "66.101.305.2.1"

The following example shows the use of the getOidString method.

getInstanceId(): String;
vars

oid : String;
instId : String;
pos : Integer;

begin
oid := self.getOidString;
pos := oid.pos(".",1) + 1;
instId := oid.scanUntil(".", pos);
return instId;

end;

Tip When you already have the object, calling self.getOidStringForObject(self) is significantly faster than
calling the getOidString method.

getOidStringForObject
Signature getOidStringForObject(obj: Object): String;

The getOidStringForObject method of the Object class returns a string format of the object identifier (oid)
specified in the obj parameter.

This method is the inverse of the String primitive type asOid method.

The formats of the object id for shared and exclusive references are listed in the following table.

Type of Reference Format Example

Shared class-id.instance-id "305.1208"

Exclusive class-id.instance-id.parent-class-id.sublevel.sub-id "66.101.305.2.1"

For details about returning a string of a specified object as an oid-like string based on class numbers and a
following optional lifetime indication, see the Object class getObjectStringForObject method.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 480

EncycloSys2 - 2020.0.02

getOwnerForObject
Signature getOwnerForObject(object: Object): Object;

The getOwnerForObject method of the Object class returns a reference to the object that is the owner (parent) of
the collection specified by the object parameter.

This method returns null if the object parameter is not an exclusive collection.

getPropertyValue
Signature getPropertyValue(name: String): Any;

The getPropertyValue method of the Object class returns the value of the property specified in the name
parameter if the property is a static property.

If the property is a dynamic property that has been initialized with a value, this value is returned. If it has not been
initialized, the null value for the property type is returned.

If the name parameter does not correspond to a static or a dynamic property, an exception is raised.

The return result can be assigned to a variable of type Any or it can be converted to a specific primitive type or
class if the type is known. If the property name is invalid, an exception is raised.

getTimerStatus
Signature getTimerStatus(eventTag: Integer;

option: Integer output;
timeRemaining: Integer output): Boolean;

The getTimerStatus method of the Object class returns the status of a specified timer for the corresponding
parameters.

The eventTag parameter is the user-specified literal or constant value that was passed to the beginTimer method
to identify a specific timer event.

If the specified timer is active, this method returns true and updates the usage output parameter values listed in
the following table.

Parameter Description

option The value that was specified in the option parameter of the beginTimer method (that is,
the TimerDurations category Timer_Continuous or Timer_OneShot global constant)

timeRemaining Number of milliseconds remaining until the specified timer expires

If the specified timer is not active, this method returns false. As each timer registration is unique to the process that
armed the timer, the getTimerStatus method returns only the status of timers armed by the calling process.

Note More than one process can arm a timer on a persistent or a shared transient object with the same
eventTag parameter value, in which case each process has its own independent timer registered on the object.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 481

EncycloSys2 - 2020.0.02

getTimerStatusForIF
Signature getTimerStatusForIF(eventTag: Integer;

option: Integer output;
timeRemaining: Integer output;
interface: JadeInterface): Boolean;

The getTimerStatusForIF method of the Object class is a variation of the getTimerStatus method for the
corresponding parameters.

The getTimerStatusForIF method determines if a specific timer event started using the beginTimerForIF method
is currently active.

The timer is identified by the values of the eventTag and interface parameters.

The eventTag parameter is the user-specified literal or constant value that was passed to the beginTimerForIF
method to identify a specific timer event.

If the specified timer is active, this method returns true and updates the usage output parameter values listed in
the following table.

Parameter Description

option The value that was specified in the option parameter of the beginTimerForIF method (that
is, the TimerDurations category Timer_Continuous or Timer_OneShot global constant)

timeRemaining Number of milliseconds remaining until the specified timer expires

If the specified timer is not active, this method returns false. As each timer registration is unique to the process that
armed the timer, the getTimerStatusForIF method returns only the status of timers armed by the calling process.

Note More than one process can arm a timer on a persistent or a shared transient object with the same
eventTag parameter value, in which case each process has its own independent timer registered on the object.

getUpdateTranID
Signature getUpdateTranID(): Integer64;

The getUpdateTranID method of the Object class returns the transaction identifier (TranID) of the transaction the
created or last updated the receiver object. The update transaction identifier of an object corresponds to the value
returned by getTransactionId64 of the Process class for the transaction that originally created or updated the
object.

The value returned by the getUpdateTranID method is persisted with the object.

hasMembers
Signature hasMembers(coll: Collection): Boolean;

The hasMembers condition method of the Object class returns true if the collection specified in the coll
parameter has any members or it returns false if the collection is empty.

Note If the coll parameter specifies an exclusive collection, the method initially accesses the parent object of the
collection (without locking) and if the collection has not been populated or instantiated (using the Collection class
instantiate method), the method returns false without attempting to access or lock the collection.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 482

EncycloSys2 - 2020.0.02

inspect
Signature inspect();

The inspect method of the Object class opens an Inspector form for the receiver object. The Inspector form
enables you to view properties of an object.

An exception is raised if this method is invoked from a server method or a non-GUI application.

inspectModal
Signature inspectModal();

The inspectModal method of the Object class opens a modal JADE Inspector form for the receiver object so that
properties of the object can be viewed.

When additional forms are opened by double-clicking an object in a displayed Inspector form, the opened forms
are displayed as a child of the initial modal Inspector form. These forms always sit on top of the initial modal form,
and you can access all of the Inspector forms.

Closing the initial modal form also closes all of its inspector child forms.

An exception is raised if this method is invoked from a server method or a non-GUI application.

invokeIOMethod
Signature invokeIOMethod(targetContext: ApplicationContext;

targetMethod: Method;
paramList: ParamListType io): Any;

The invokeIOMethod method of the Object class sends the specified target method containing a variable list of
parameters to the receiver, after switching to the specified targetContext execution context.

The return type of the invokeIOMethod method is to allow for an optional return value from the method being
called. If the called method returns a value, the Any result must be cast to the appropriate type, to access that
result.

After the method has finished, the execution context switches back to the current context. For details about using
this method to call user methods from packages, see "Calling User Methods from Packages", in Chapter 8 of the
JADE Developer’s Reference.

The targetMethod parameter must be a valid method, which is executed when the invokeIOMethod method is
called.

Use the paramList parameter to specify a variable list of parameters of any type that are passed to the method or
condition specified in the targetMethod parameter when it is executed.

Note If the number or type of the actual parameters passed to a method by a parameter list does not correspond
exactly to the formal parameter list declaration, an exception or an unpredictable result may occur, as the compiler
is unable to perform any type checking on the values that are passed to a parameter list. However, the Method
class isCallCompatibleWith method enables you to validate the number and type of parameters.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also "Passing Variable Parameters to Methods" under "JADE Language
Syntax", in Chapter 1 of the JADE Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 483

EncycloSys2 - 2020.0.02

As the application context used by invokeIOMethod is transient, it can switch to a context only within the same
process. The mechanism is not designed to call a method running in another process in the node or in another
node. In addition, as the context is transient, any connection between a context and a method to be invoked must
be set up again if an application is stopped and then restarted.

If you want to save events to be called persistently so that methods would still be called if the application stops
and restarts (for example, in a scheduler application), you would have to re-supply a context when the application
restarts and events are loaded. The target method and object could be persistent but the context is not.

Although the callback mechanism is designed with packages in mind, you can also use it to allow a method to be
invoked from within the same context. If the context in the invokeIOMethod call is null, the current context (that is,
appContext) is used. This therefore enables you to invoke a specific saved method (for example,
myClass::myMethod) rather than calling the Object class sendMsg method, which allows you to provide only the
name of the method to which the message is sent. Within a package, the package writer may want to check that
the method supplied by the user of the package is appropriate.

The Method class isCallCompatibleWith method checks that the target method supplied by the package user
cannot be invoked only on the specified target object but that it has a signature that is compatible with that
expected by the package. The Method class isCallCompatibleWith method has the following signature.

isCallCompatibleWith(targetObject: Object;
exampleMethod: Method): Boolean;

The method in the following example shows an example of the invokeIOMethod when the timer fires and inspects
all events at the start of the queue and calls all those whose time has passed.

causeDueEvents();
vars

se : ScheduledEvent;
begin

foreach se in allScheduledEvents do
if se.whenToStart > app.actualTime.time then

return;
endif;
// Call users method, supplying expected start time as a parameter
if se.targetObject <> null and se.targetMethod <> null then

se.targetObject.invokeMethod(se.targetContext, se.targetMethod,
se.whenToStart);

se.myScheduler := null;
delete se;

endif;
endforeach;

end;

invokeMethod
Signature invokeMethod(targetContext: ApplicationContext;

targetMethod: Method;
paramList: ParamListType): Any;

The invokeMethod method of the Object class sends the specified target method containing a variable list of
parameters to the receiver, after switching to the specified targetContext execution context.

The return type of the invokeMethod method is to allow for an optional return value from the method being called.
If the called method returns a value, the Any result must be cast to the appropriate type, to access that result.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 484

EncycloSys2 - 2020.0.02

After the method has finished, the execution context switches back to the current context. For details about using
this method to call user methods from packages, see "Calling User Methods from Packages", in Chapter 8 of the
JADE Developer’s Reference.

The targetMethod parameter must be a valid method, which is executed when the invokeMethod method is
called. Use the paramList parameter to specify a variable list of parameters of any type that are passed to the
method or condition specified in the targetMethod parameter when it is executed.

Notes If the number or type of the actual parameters passed to a method by a parameter list does not
correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur, as
the compiler is unable to perform any type checking on the values that are passed to a parameter list. However,
the Method class isCallCompatibleWith method enables you to validate the number and type of parameters.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also "Passing Variable Parameters to Methods" under "JADE Language
Syntax", in Chapter 1 of the JADE Developer’s Reference.

Use the invokeIOMethod method if the method represented by the targetMethod parameter takes io or output
parameters.

As the application context used by invokeMethod is transient, it can switch to a context only within the same
process. The mechanism is not designed to call a method running in another process in the node or in another
node. In addition, as the context is transient, any connection between a context and a method to be invoked must
be set up again if an application is stopped and then restarted.

If you want to save events to be called persistently so that methods would still be called if the application stops
and restarts (for example, in a scheduler application), you would have to re-supply a context when the application
restarts and events are loaded. The target method and object could be persistent but the context is not.

Although the callback mechanism is designed with packages in mind, you can also use it to allow a method to be
invoked from within the same context. If the context in the invokeMethod call is null, the current context (that is,
appContext) is used. This therefore enables you to invoke a specific saved method (for example,
myClass::myMethod) rather than calling the Object class sendMsg method, which allows you to provide only the
name of the method to which the message is sent.

Within a package, the package writer may want to check that the method supplied by the user of the package is
appropriate.

The Method::isCallCompatibleWith method checks that the target method supplied by the package user cannot
be invoked only on the specified target object but that it has a signature that is compatible with that expected by
the package. The Method class isCallCompatibleWith method has the following signature.

isCallCompatibleWith(targetObject: Object;
exampleMethod: Method): Boolean;

The method in the following example shows an example of the invokeMethod when the timer fires and inspects
all events at the start of the queue and calls all those whose time has passed.

causeDueEvents();
vars

se : ScheduledEvent;
begin

foreach se in allScheduledEvents do
if se.whenToStart > app.actualTime.time then

return;
endif;
// Call users method, supplying expected start time as a parameter

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 485

EncycloSys2 - 2020.0.02

if se.targetObject <> null and se.targetMethod <> null then
se.targetObject.invokeMethod(se.targetContext, se.targetMethod,

se.whenToStart);
se.myScheduler := null;
delete se;

endif;
endforeach;

end;

isImportedObject
Signature isImportedObject(obj: Object): Boolean;

The isImportedObject method of the Object class returns true if the object specified in the obj parameter is an
instance of an imported class or it returns false if it is not an instance of an imported class.

isKindOf
Signature isKindOf(classObject: Class): Boolean;

The isKindOf condition method of the Object class returns true if the receiver is an instance of the class specified
in the classObject parameter or any of its subclasses, or it returns false if the receiver is not an instance.

Note An error 4 (Object not found) is not raised if the instance id of the receiver is invalid. In earlier releases the
hasInstance method of the Class class was implemented to allow the type of an invalid object to be determined.
This method is now defined only for upward compatibility. Similarly, error 1090 (Attempted access via null object
reference) is not raised if the receiver is null.

isLockedByMe
Signature isLockedByMe(target: Object): Boolean;

The isLockedByMe method of the Object class returns true if the current process has the target object locked.

isObjectFrozen
Signature isObjectFrozen(object: Object): Boolean;

The isObjectFrozen method of the Object class returns true if the volatility state of the object specified in the
object parameter is frozen (that is, cannot be updated).

A frozen object can be updated only by first changing its volatility to Volatility_Stable or Volatility_Volatile.

Note The Schema Inspector displays class and object volatility by default, which enables you to check whether
objects and collections are set to stable or frozen without having to write code to determine the volatility state of an
object or collection.

isObjectNonSharedTransient
Signature isObjectNonSharedTransient(obj: Object): Boolean;

The isObjectNonSharedTransient method of the Object class returns true if the object specified in the obj
parameter is a non-shared transient instance or it returns false if it is not, even if this object is no longer valid.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 486

EncycloSys2 - 2020.0.02

isObjectPersistent
Signature isObjectPersistent(obj: Object): Boolean;

The isObjectPersistent method of the Object class returns true if the object specified in the obj parameter is a
persistent instance or it returns false if it is not.

isObjectSharedTransient
Signature isObjectSharedTransient(obj: Object): Boolean;

The isObjectSharedTransient method of the Object class returns true if the object specified in the obj parameter
is a shared transient instance or it returns false if it is not.

isObjectStable
Signature isObjectStable(object: Object): Boolean;

The isObjectStable method of the Object class returns true if the volatility state of the object specified in the
object parameter is stable (that is, it is not updated frequently).

Note The Schema Inspector displays class and object volatility by default, which enables you to check whether
objects and collections are set to stable or frozen without having to write code to determine the volatility state of an
object or collection.

isObjectTransient
Signature isObjectTransient(obj: Object): Boolean;

The isObjectTransient method of the Object class returns true if the object specified in the obj parameter is a
shared or a non-shared transient instance, or it returns false if it is not.

isObjectVolatile
Signature isObjectVolatile(object: Object): Boolean;

The isObjectVolatile method of the Object class returns true if the volatility state of the object specified in the
object parameter is volatile (that is, it is often updated, and is locked and unlocked in the usual way).

Note The Schema Inspector displays class and object volatility by default, which enables you to check whether
objects and collections are set to stable or frozen without having to write code to determine the volatility state of an
object or collection.

isSharedTransient
Signature isSharedTransient(): Boolean;

The isSharedTransient method of the Object class returns true if the receiver is a shared transient object. This
method returns false if the receiver is a non-shared transient object or a persistent object.

isSystemObject
Signature isSystemObject(): Boolean;

The isSystemObject method of the Object class returns true if the receiver is an instance of a system class.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 487

EncycloSys2 - 2020.0.02

isTransient
Signature isTransient(): Boolean;

The isTransient method of the Object class returns true if the receiver is a transient object. This method returns
false if the receiver is a persistent object.

jadeReportWriterCheck
Signature jadeReportWriterCheck(userObject: Object): Boolean;

The jadeReportWriterCheck method of the Object class returns true by default.

To implement instance-based security for JADE Report Writer reports, reimplement this method in the appropriate
user classes to check property values of an object against the current user access, to determine if the user has
visibility to that object during the query phase of the JADE Report Writer process.

If a report references an object from the selected object, this method is called for the referenced object but the
result is ignored.

Use the userObject parameter to specify details of the current user for checking in your reimplementation of this
method. This enables you to use this object instance instead of checking for a transient instance of the app system
variable or an equivalent, which may not be the correct instance when the report query is run in a separate
process or on a server node.

This method returns true if the user has visibility or it returns false if the user does not have access to the object.

For more details about implementing security in JADE Report Writer reports, see "JadeReportWriterManager
Class", "JadeReportWriterSecurity Class", and the setSecurityObject method of the JadeReportWriterManager
class, earlier in this chapter.

jadeReportWriterDisplay
Signature jadeReportWriterDisplay(): String;

The jadeReportWriterDisplay method of the Object class returns the text of the combo box entry for each object
returned by the Application class jadeReportWriterParamObjects method. This method is called automatically
by the JADE Report Writer Designer application for each parameter object and it returns a null value ("") by
default.

Reimplement this method for each class for which a report parameter is defined.

latestEdition
Signature latestEdition(): Integer;

The latestEdition method of the Object class returns the most-recently committed edition of the receiver as an
integer value. For example, if you are using edition 4 of an object and the object has been updated twice by other
users or methods so that it now has an edition of 6, edition 6 is the edition that is returned with the latestEdition
method.

If the receiver of the latestEdition method is being updated by the same process, the updated edition is returned.
Other processes will instead have the most-recently committed edition returned.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 488

EncycloSys2 - 2020.0.02

Example of the Use of the latestEdition Method

When the CustomerMaint form for a customer is opened on a client node, the logic populates the data in the form
controls as required and then stores the current edition of the object for further reference so that the object is not
locked the entire time the client node has the CustomerMaint form open.

When the user clicks the update button, the logic can then compare the latest edition on the server against the
edition stored when the form was opened. If it does not match the edition at the time the CustomerMaint form was
populated, it can warn the user or take the appropriate action specified for the application.

lock
Signature lock(lockTarget: Object;

lockType: Integer;
lockDuration: Integer;
timeout: Integer);

The lock method of the Object class acquires the type of lock specified in the lockType parameter for the object
specified in the lockTarget parameter.

The duration and time of the lock are specified by the lockDuration and timeout parameters, respectively. (The
timeout parameter specifies the number of milliseconds for the timeout.)

The following table lists the lock type, lock duration, and timeout global constant values.

Global Constant Integer Value Category

Exclusive_Lock 3 Locks

Reserve_Lock 2 Locks

Share_Lock 1 Locks

Update_Lock 4 Locks

Persistent_Duration 2 LockDurations

Session_Duration 1 LockDurations

Transaction_Duration 0 LockDurations

LockTimeout_Immediate -1 LockTimeouts

LockTimeout_Infinite Max_Integer (#7FFFFFFF) LockTimeouts

LockTimeout_Process_Defined -2 (use the process-defined default) LockTimeouts

LockTimeout_Server_Defined 0 (use the server-defined default) LockTimeouts

The following example shows the use of the lock method.

createMe(newname, newadd1, newadd2, newadd3: String; newcash: Decimal)
updating;

begin
exclusiveLock(self);
on LockException do alreadyInUse(exception);
lock(self, Exclusive_Lock, Transaction_Duration, 100);
self.name := newname;
self.address1 := newadd1;
self.address2 := newadd2;
self.address3 := newadd3;

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 489

EncycloSys2 - 2020.0.02

if newcash = 0 then
self.cash := 100000;

else
self.cash := newcash;

endif;
self.myMarket := app.myMarket;

end;

makeObjectFrozen
Signature makeObjectFrozen(object: Object);

The makeObjectFrozen method of the Object class conditionally changes the volatility state of the persistent
object specified in the object parameter to frozen. Alternatively, you can call the changeObjectVolatility method
to change the volatility state of an object. For details, see "Cache Concurrency", in Chapter 6 of the JADE
Developer’s Reference.

A frozen object can be updated only by first changing its volatility to stable or to volatile (that is, by calling the
makeObjectStable or makeObjectVolatile method).

makeObjectStable
Signature makeObjectStable(object: Object);

The makeObjectStable method of the Object class changes the volatility state of the persistent object specified in
the object parameter to stable. Alternatively, you can call the changeObjectVolatility method to change the
volatility state of an object. For details, see "Cache Concurrency", in Chapter 6 of the JADE Developer’s
Reference.

A frozen object can be updated only by first changing its volatility to stable or to volatile (that is, by calling the
makeObjectStable or makeObjectVolatile method).

When attempting to change the volatility of a frozen object, an exception (1068 - Feature not available in this
release) is raised if the object is in use by another process. In a multiuser application where production mode is
set, it is not possible to determine whether an object is in use by another process. In that case, the exception is
always raised; that is, the makeObjectStable or makeObjectVolatile method always raises an exception in a
multiuser system with production mode set.

makeObjectVolatile
Signature makeObjectVolatile(object: Object);

The makeObjectVolatile method of the Object class changes the volatility state of the persistent object specified
in the object parameter to volatile. Alternatively, you can call the changeObjectVolatility method to change the
volatility state of an object. For details, see "Cache Concurrency", in Chapter 6 of the JADE Developer’s
Reference.

A frozen object can be updated only by first changing its volatility to stable or to volatile (that is, by calling the
makeObjectStable or makeObjectVolatile method).

When attempting to change the volatility of a frozen object, an exception (1068 - Feature not available in this
release) is raised if the object is in use by another process. In a multiuser application where production mode is
set, it is not possible to determine whether an object is in use by another process. In that case, the exception is
always raised; that is, the makeObjectStable or makeObjectVolatile method always raises an exception in a
multiuser system with production mode set.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 490

EncycloSys2 - 2020.0.02

moveToPartition
Signature moveToPartition(destPartitionID: Integer64) updating;

The moveToPartition method of the Object class moves the receiver and its subobjects to the partition with the
partition identifier specified by the destPartitionID parameter. The destination partition must be present, not
frozen, and version-compatible with the receiver. The subobjects moved with an object include exclusive
collections, JadeBytes properties, blob and slob properties.

Notes This method must be executed in transaction state.

Before the move is executed, the receiver and any exclusive collection properties are exclusively locked to
prevent any further changes until the transaction has committed or aborted.

Exclusive instances of JadeBytes are maintained in a UDR file that is peered with the data partition containing
the parent object. Moving JadeBytes objects with the singleFile property set to true requires a file system rename
operation if the partitions are located on the same physical device, otherwise the single file instance is moved to
the directory containing the destination partition.

An exception is raised if the specified partition identifier is out of range or the destination partition is frozen or
offline.

reserveLock
Signature reserveLock(lockTarget: Object);

The reserveLock method of the Object class attempts to acquire a reserve lock on the object specified in the
lockTarget parameter.

If the object already has a reserve lock or exclusive lock, the process waits until the lock is released for default
timeout. (For details, see "ServerTimeout" under "JADE Object Manager Server Section [JadeServer]", in the JADE
Initialization File Reference.)

A reserve lock enables you to lock an object that you intend to update, when you want to minimize the time that it
is locked with an exclusive lock. For more details, see "Locking Objects", in Chapter 6 of the JADE Developer’s
Reference.

respondsTo
Signature respondsTo(jadeInterface: JadeInterface): Boolean;

The respondsTo method of the Object class returns true if the receiver’s class or its superclasses implement the
JADE interface specified in the jadeInterface parameter.

resynch
Signature resynch();

The resynch method of the Object class marks the receiver objects as obsolete. This causes the latest edition of
the object to be fetched from the server the next time the object is required.

For details about resynchronizing an object that is already in local cache, see the resynchObject method. For
more details about object editions, see "Using Object Editions" under "Unlocking Objects", in Chapter 6 of the
JADE Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 491

EncycloSys2 - 2020.0.02

Note When automatic cache coherency is enabled (by setting the AutomaticCacheCoherency parameter in
the [JadeClient] section of the JADE initialization file to true), calling the Object class resynch method has no
effect.

With automatic cache coherency, an object updated on another node is automatically reloaded in cache, even
when it is the receiver of a method currently being executed.

resynchObject
Signature resynchObject(object: Object);

The resynchObject method of the Object class enables you to mark as obsolete the transient replica of the object
specified in the object parameter.

This causes the latest edition of the specified object to be fetched from the server the next time that object is
required.

Notes It is preferable to use another object that already exists in cache to resynchronize the target object (for
example, resynchObject(myObj); uses the current receiver of your method). When a resynchronization is
performed on an object that is currently the receiver of an executing method, the operation is performed after the
executing method has finished.

The object is not copied from the server if the obsolete buffer in your local cache on the client is the same edition
as that on the server, but the buffer is marked as no longer obsolete when you next reference the object.

When automatic cache coherency is enabled (by setting the AutomaticCacheCoherency parameter in the
[JadeClient] section of the JADE initialization file to true), calling the Object class resynchObject method has no
effect. With automatic cache coherency, an object updated on another node is automatically reloaded in cache,
even when it is the receiver of a method currently being executed.

See also the Object class edition and latestEdition methods, and "Using Object Editions" under "Unlocking
Objects", in Chapter 6 of the JADE Developer’s Reference.

sdeCauseEvent
Signature sdeCauseEvent(eventType: Integer;

immediate: Boolean;
userInfo: Any);

The sdeCauseEvent method of the Object class is used for inter-system event notification in a Synchronized
Database Environment (SDE).

Calling the sdeCauseEvent method on a secondary database system notifies subscribers of a user event on that
secondary system as well as on the primary database server.

This method combines the actions of the Object class causeEvent and sdsCauseEvent methods, in that
subscribers are notified of user events on the local system as well as on SDS secondary or primary systems,
where applicable. For example, when used by an application running in an SDS primary system, the
sdeCauseEvent method notifies subscribers of user events on the primary database as well as on all attached
secondary databases.

In contrast, the causeEvent method would notify subscribers of a user event only on the primary database system
and the sdsCauseEvent method only on the secondary database systems.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 492

EncycloSys2 - 2020.0.02

The parameters for the sdeCauseEvent method are listed in the following table.

Parameter Description

eventType Integer in the range User_Base_Event through User_Max_Event that represents the event
being caused.

immediate Boolean value specifying the timing of the event; false indicates that notifications occur at the
end of transaction and true indicates that the notification is sent immediately. If the client is not
within a begin/commit transaction cycle and this parameter is set to false, the notification waits
for the next commit on that client.

On a primary database, subscribers are notified only on the secondaries if the target object is
persistent, the value of the immediate parameter is false, and the process is currently in
transaction state. On a secondary database system, subscribers are notified on the primary
database system only if the target object is persistent. The value of the immediate parameter is
immaterial. However, subscribers are always notified immediately on the primary database
system, even when the value of the immediate parameter is false, to defer notification on the
secondary system.

userInfo A value of any primitive type value (for example, a String or an Integer) or persistent object
reference that is passed to the userNotification or userNotify event handlers when the event
is notified. (Notifications containing string and binary data of up to 48K bytes can be sent
across the network.)

The following table lists the UserEvents category global constants for notification events.

Global Constant Integer Value

User_Base_Event 16

User_Max_Event Max_Integer (#7FFFFFFF, equates to 2147483647)

You can define your own constants to represent event types in the range User_Base_Event through Max_
Integer.

The actions of the sdeCauseEvent method are summarized in the following table, which lists the contexts in
which the event is caused.

Database Role Transient
Target
Object

Persistent
Target Object,
Immediate

Persistent Target
Object, Deferred, in
Transaction State

Persistent Target Object,
Deferred, not in
Transaction State

Undefined Process only Local system Local system Local system

Primary Process only Primary system Primary system and
secondary

Primary system only
systems

Secondary Process only Primary system
and secondary
system

Secondary system and
immediately on the
primary system

Secondary system and
immediately on the primary
system

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 493

EncycloSys2 - 2020.0.02

sdsCauseEvent
Signature sdsCauseEvent(eventType: Integer;

immediate: Boolean;
userInfo: Any);

The sdsCauseEvent method of the Object class is used for inter-system event notification in a Synchronized
Database Service (SDS).

The role-dependent usage scenarios are as follows.

From a primary system, to cause persistent events audited by the primary database for replay by secondary
database servers. Calling this method on primary databases outside of transaction state raises an exception.

From a secondary system, to cause events that are notified to event subscribers on the primary system.

The behavior of the sdsCauseEvent method is database role-dependent. The three database role categories are
listed in the following table.

Role Action

Primary When invoked within an SDS primary system, the sdsCauseEvent method audits the event for
subsequent replay by SDS secondary databases. The event is not notified on the primary. The
value of the immediate parameter must be false.

Secondary When invoked within an SDS secondary system connected to a primary database server, the
sdsCauseEvent method triggers a corresponding event on the same receiver object in the
primary system. The user event is not notified on the secondary system. Events caused on a
secondary are assumed to be immediate, so the immediate parameter is therefore ignored.

None When invoked within a non-SDS-capable system, the method behavior is the same as the
Object class causeEvent method.

The parameters for the sdsCauseEvent method are listed in the following table.

Parameter Description

eventType Integer in the range User_Base_Event through User_Max_Event that represents the event
being caused.

immediate You must set this parameter to false when the method is invoked from a primary system in a
Synchronized Database Environment (SDE). An exception is raised if you call this method with
the immediate parameter set to true on an SDS primary or a non-SDS database.

userInfo A value of any primitive type value (for example, a String or an Integer) or persistent object
reference that is passed to the userNotification or userNotify event handlers when the event
is notified. (Notifications containing string and binary data of up to 48K bytes can be sent
across the network.)

The following table lists the UserEvents category global constants for notification events. (You can define your
own constants to represent event types in the range User_Base_Event through Max_Integer.)

Global Constant Integer Value

User_Base_Event 16

User_Max_Event Max_Integer (#7FFFFFFF, equates to 2147483647)

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 494

EncycloSys2 - 2020.0.02

The actions of the sdsCauseEvent method are summarized in the following table, which lists the contexts in
which the event is caused.

Database
Role

Transient
Target
Object

Persistent Target
Object, Immediate

Persistent Target Object,
Deferred, in Transaction State

Persistent Target
Object, Deferred, not
in Transaction State

Undefined Ignored Exception Local system Exception

Primary Ignored Exception Secondary system Exception

Secondary Ignored Primary system Immediately to primary system Immediately to primary
system

sendMsg
Signature sendMsg(message: String): Any;

The sendMsg method of the Object class sends the specified message (method or condition) to the receiver.

The return type of the sendMsg method is to allow for an optional return value from the method being called. If the
called method returns a value, the Any result must be cast to the appropriate type, to access that result.

The message parameter must be the name of a valid method or condition, which is executed when the sendMsg
method is called. See also the Object class sendMsgWithParams method.

The following code fragment is an example of the sendMsg method.

retCode:=self.sendMsg(meth).Integer;

sendMsgWithIOParams
Signature sendMsgWithIOParams(msg: String;

paramList: ParamListType io): Any;

The sendMsgWithIOParams method of the Object class sends the specified message (method or condition)
containing a variable list of parameters to the receiver.

The return type of the sendMsgWithIOParams method is to allow for an optional return value from the method
being called. If the called method returns a value, the Any result must be cast to the appropriate type, to access
that result.

The msg parameter must be the name of a valid method or condition, which is executed when the
sendMsgWithIOParams method is called.

Use the paramList parameter to pass one or more parameters to the method being called.

Note If the number or type of the actual parameters passed to a method or condition by a parameter list does not
correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur, as
the compiler is unable to perform any type checking on the values that are passed to a parameter list.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also:

"Passing Variable Parameters to Methods" under "JADE Language Syntax", in Chapter 1 of the
JADE Developer’s Reference

The Object class sendMsg method

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 495

EncycloSys2 - 2020.0.02

sendMsgWithParams
Signature sendMsgWithParams(msg: String;

paramList: ParamListType): Any;

The sendMsgWithParams method of the Object class sends the specified message (method or condition)
containing a variable list of parameters to the receiver.

The return type of the sendMsgWithParams method is to allow for an optional return value from the method being
called. If the called method returns a value, the Any result must be cast to the appropriate type, to access that
result.

The msg parameter must be the name of a valid method or condition, which is executed when the
sendMsgWithParams method is called.

Use the paramList parameter to pass one or more parameters to the method being called.

Note If the number or type of the actual parameters passed to a method or condition by a parameter list does not
correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur, as
the compiler is unable to perform any type checking on the values that are passed to a parameter list.

The following code fragment is an example of the sendMsgWithParams method.

retCode := self.sendMsgWithParams(meth, param1, param2).Integer;

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also:

"Passing Variable Parameters to Methods" under "JADE Language Syntax", in Chapter 1 of the JADE
Developer’s Reference

The Object class sendMsg method

sendTypeMsg
Signature sendTypeMsg(message: String): Any;

The sendTypeMsg method of the Object class sends the specified message (type method) to the receiver.

The return type of the sendTypeMsg method is to allow for an optional return value from the method being called.
If the called method returns a value, the Any result must be cast to the appropriate type, to access that result.

The message parameter must be the name of a valid type method, which is executed when the sendTypeMsg
method is called. See also the Object class sendTypeMsgWithParams method.

Applies to Version: 2016.0.01 and higher

sendTypeMsgWithIOParams
Signature sendTypeMsgWithIOParams(msg: String;

paramList: ParamListType io): Any;

The sendTypeMsgWithIOParams method of the Object class sends the specified message (type method)
containing a variable list of parameters to the receiver.

The return type of the sendTypeMsgWithIOParams method is to allow for an optional return value from the
method being called. If the called method returns a value, the Any result must be cast to the appropriate type, to
access that result.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 496

EncycloSys2 - 2020.0.02

The msg parameter must be the name of a valid type method, which is executed when the
sendTypeMsgWithIOParams method is called.

Use the paramList parameter to pass one or more parameters to the method being called.

Note If the number or type of the actual parameters passed to a method or condition by a parameter list does not
correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur, as
the compiler is unable to perform any type checking on the values that are passed to a parameter list.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also:

"Passing Variable Parameters to Methods" under "JADE Language Syntax", in Chapter 1 of the
JADE Developer’s Reference

The Object class sendTypeMsg method

Applies to Version: 2016.0.01 and higher

sendTypeMsgWithParams
Signature sendTypeMsgWithParams(msg: String;

paramList: ParamListType): Any;

The sendTypeMsgWithParams method of the Object class sends the specified message (type method)
containing a variable list of parameters to the receiver.

The return type of the sendTypeMsgWithParams method is to allow for an optional return value from the method
being called. If the called method returns a value, the Any result must be cast to the appropriate type, to access
that result.

The msg parameter must be the name of a valid type method, which is executed when the
sendTypeMsgWithParams method is called.

Use the paramList parameter to pass one or more parameters to the method being called.

Note If the number or type of the actual parameters passed to a method or condition by a parameter list does not
correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur, as
the compiler is unable to perform any type checking on the values that are passed to a parameter list.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also:

"Passing Variable Parameters to Methods" under "JADE Language Syntax", in Chapter 1 of the JADE
Developer’s Reference

The Object class sendTypeMsg method

Applies to Version: 2016.0.01 and higher

setPartitionID
Signature setPartitionID(partID: Integer);

The setPartitionID method of the Object class specifies the absolute partition in which to locate the receiver. It
must be called within the creating transaction.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 497

EncycloSys2 - 2020.0.02

The value of the partID parameter must be a value in the range 1 through the Max_Integer minus 15, the target
partition must be present, not frozen, and it must be version-compatible with the source object.

The value that is set is observed only when the transaction commits; that is, only the last value that was set is
used.

Notes If you are using window-relative index values, use the Object class setPartitionIndex method to specify
the create partition in which to locate the receiver.

The setPartitionID method overwrites an existing partition index value.

Exception 3146 is raised if the specified partition id or partition index is out of range. Exception 3187 is raised if
the object buffer is not being created; that is, it is already in a committed state.

setPartitionIndex
Signature setPartitionIndex(partIndex: Integer);

The setPartitionIndex method of the Object class specifies the partition in which to locate the receiver. It must be
called within the creating transaction.

The value of the partIndex parameter must be a value in the range 1 through the value of the DbFile class
setPartitionModulus method minus 1 and the target partition must be present, not frozen, and version-compatible
with the source object.

The value set is observed only when the transaction commits; that is, only the last value set is used.

A 3146 exception is raised if the specified partition identifier is out of range.

setPropertyValue
Signature setPropertyValue(name: String;

value: Any) updating;

The setPropertyValue method of the Object class sets the static or dynamic property specified in the name
parameter to the value specified in the value parameter.

If the property specified in the name parameter is invalid, an exception is raised.

Note You should not use the setPropertyValue method as a replacement for direct assignment to a property
when the property name is known at compile time, as it incurs additional overhead and prevents the compiler from
checking the type compatibility of the value being assigned.

You should use it only in special cases when property names are determined at run time.

sharedLock
Signature sharedLock(lockTarget: Object);

The sharedLock method of the Object class attempts to acquire a shared lock on the object specified in the
lockTarget parameter.

An object that is locked by a shared lock cannot be locked with an exclusive lock or updated by other processes,
but it can be locked by another shared lock or a reserve lock.

For more details, see "Locking Objects", in Chapter 6 of the JADE Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 498

EncycloSys2 - 2020.0.02

sysNotification
Signature sysNotification(eventType: Integer;

theObject: Object;
eventTag: Integer) updating;

The sysNotification method of the Object class is called automatically by the system when a subscribed event
occurs.

The sysNotification method is notified automatically by the system when the nominated object events are
committed for persistent object events. For example, if you registered a system notification on an object, specifying
a type of Object_Update_Event, you then receive a notification whenever that object is updated.

Use the sysNotification method to code actions that are required to be performed when a specified system event
occurs; for example:

sysNotification(eventType: Integer; theObject: Object; eventTag: Integer)
updating;

begin
if eventType = Object_Create_Event then // new fault

self.createGraph;
self.loadTable;

endif;
end;

The sysNotification method parameters, described in the following subsections, are summarized in the following
table.

Parameter Contains…

eventType The type of event received from the causeEvent or causeClassEvent method

theObject The object for which the notification is to be received

eventTag An integer value that is received with each notification

eventType
The eventType parameter of the sysNotification method contains the type of event that is being notified.

The types of system event that can be notified, represented by global constants in the SystemEvents category,
are listed in the following table.

Global Constant Integer Value Object has been ...

Object_Create_Event 4 Created

Object_Delete_Event 6 Deleted

Object_Update_Event 3 Updated

theObject
The theObject parameter of the sysNotification method contains the target object for which the event occurred.

Attempts to access properties or methods for the object of a notification of a delete event type (Object_Delete_
Event) raise an exception.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 499

EncycloSys2 - 2020.0.02

eventTag
The eventTag parameter of the sysNotification method contains the value used to subscribe to the notification
using the beginClassNotification, beginNotification, or beginClassesNotification method.

timerEvent
Signature timerEvent(eventTag: Integer) updating;

The timerEvent method of the Object class is called by the system when the timer period (armed by using the
beginTimer method) expires.

Use the eventTag parameter to identify a specific timer event when the receiver has multiple timers armed.

The eventTag value is registered with the beginTimer method.

Timers are deactivated when the process that armed them terminates. Similarly, notifications are unsubscribed
when the process that subscribed to them terminates. As timer events are not transported between nodes, a timer
armed in a server method will not invoke the timerEvent callback on the client node.

tryGetPropertyValue
Signature tryGetPropertyValue(name: String;

instantiated: Boolean output): Any;

The tryGetPropertyValue method of the Object class returns the value of the property specified in the name
parameter if the property is a static property. For a static property, the value of the instantiated property is always
true.

If the property is a dynamic property that has been assigned a value, that value is returned and the instantiated
parameter is set to true. If it has not been assigned a value or the value has been deleted, the null value for the
property type is returned and the instantiated parameter is set to false.

If the name parameter does not correspond to a static or a dynamic property, false is returned in the instantiated
parameter.

The return result can be assigned to a variable of type Any or it can be converted to a specific primitive type or
class if the type is known.

tryLock
Signature tryLock(lockTarget: Object;

lockType: Integer;
lockDuration: Integer;
timeout: Integer): Boolean;

The tryLock method of the Object class attempts to acquire a lock of the specified type and duration, waiting up to
the timeout period (in milliseconds) to obtain the lock on the object specified in the lockTarget parameter.

If the lock can be acquired, the method returns true. If the lock cannot be obtained, this method returns false and
no lock exception is raised.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 500

EncycloSys2 - 2020.0.02

The following table lists the lock type, lock duration, and timeout system global constant values.

Global Constant Integer Value Category

Exclusive_Lock 3 Locks

Reserve_Lock 2 Locks

Share_Lock 1 Locks

Update_Lock 4 Locks

Persistent_Duration 2 LockDurations

Session_Duration 1 LockDurations

Transaction_Duration 0 LockDurations

LockTimeout_Immediate -1 LockTimeouts

LockTimeout_Infinite Max_Integer (#7FFFFFFF) LockTimeouts

LockTimeout_Process_Defined -2 LockTimeouts

LockTimeout_Server_Defined 0 (use the server-defined default) LockTimeouts

The following example shows the use of the tryLock method.

lockException(lockException: LockException): Integer;
vars

result : Integer;
message : String;

begin
message := "Cannot get lock for " & lockException.lockTarget.String

& ". It is locked by user ";
result := app.msgBox(message & lockException.targetLockedBy.userCode &

". Retry?", "Lock Error", MsgBox_Question_Mark_Icon
+ MsgBox_Yes_No);

if result = MsgBox_Return_Yes then
app.mousePointer := Busy;
while not tryLock(lockException.lockTarget, lockException.lockType,

lockException.lockDuration,
LockTimeout_Server_Defined) do

app.mousePointer := Idle;
result := app.msgBox(message &

lockException.targetLockedBy.userCode &
". Retry?", "Lock Error", MsgBox_Question_Mark_Icon
+ MsgBox_Yes_No);

if result = MsgBox_Return_No then
return Ex_Abort_Action;

endif;
app.mousePointer := Busy;

endwhile;
return Ex_Resume_Next;

else
return Ex_Abort_Action;

endif;
epilog

app.mousePointer := Idle;
end;

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 501

EncycloSys2 - 2020.0.02

unlock
Signature unlock(unlockTarget: Object);

The unlock method of the Object class removes the current lock from the object specified in the unlockTarget
parameter.

Objects that are manually unlocked after a beginLoad instruction or beginTransaction instruction are not
unlocked until an endLoad, commitTransaction, or abortTransaction instruction is encountered. For more
details, see "Locking Objects", in Chapter 6 of the JADE Developer’s Reference.

updateLock
Signature updateLock(lockTarget: Object);

The updateLock method of the Object class attempts to acquire an update lock on the persistent object specified
in the lockTarget parameter. An update lock can be acquired on an object whilst other processes hold shared
locks on it. The purpose of the lock is to make updates to the object, although for the updates to be committed the
update lock must be upgraded to an exclusive lock.

Notes Use the useUpdateLocks method of the Process class to specify whether an update lock or an
exclusive lock is implicitly acquired when an object is first updated, as shown in the following code fragment.

process.useUpdateLocks(true);

The updateLock method can be used only within transaction state. If used outside transaction state, an exception
(1026 - Not in transaction state) is raised.

For details about update locks, see "Locking Objects", in Chapter 6 of the JADE Developer’s Reference.

updateObjectEdition
Signature updateObjectEdition(object: Object);

The updateObjectEdition method of the Object class increments the edition number of the object specified in the
object parameter by one (1).

You can use the updateObjectEdition method in an RPS environment to perform a null update operation on a
selected object in the primary system. Such a null update, where only the edition of the object changes, is audited
on the primary and applied to the relational target through RPS replication.

userNotification
Signature userNotification(eventType: Integer;

theObject: Object;
eventTag: Integer;
userInfo: Any) updating;

The userNotification user events are notified when the causeClassEvent method of the Class class is invoked
on a target instance for the beginNotification method or the causeEvent, sdeCauseEvent, or sdsCauseEvent
method of the Object class is invoked on a target instance for the beginClassNotification or
beginClassesNotification method.

Use the userNotification event to code the tasks that are required to be performed when a specified event occurs.

Encyclopaedia of Classes
(Volume 2)

Object Class Chapter 1 502

EncycloSys2 - 2020.0.02

The userNotification method parameters, described in the following subsections, are summarized in the following
table.

Parameter Contains…

eventType The type of event caused by the causeEvent, sdeCauseEvent, sdsCauseEvent, or
causeClassEvent method

theObject The target object for which the event occurred

eventTag An integer value that is called automatically by the system when a subscribed user event
occurs

userInfo A value of Any type that is received from the causeEvent, sdeCauseEvent, sdsCauseEvent,
or causeClassEvent method

eventType
The eventType parameter of the userNotification method contains the type of event being notified and
corresponds to the event type passed to the causeEvent, sdeCauseEvent, sdsCauseEvent, or
causeClassEvent method that caused the event. The UserEvents category global constants for the types of user
event that can be received are listed in the following table.

Global Constant Integer Value

User_Base_Event 16

User_Max_Event Max_Integer (#7FFFFFFF, equates to 2147483647)

theObject
The theObject parameter of the userNotification method contains the target object for the notification.

eventTag
The eventTag parameter of the userNotification method identifies the notification subscription (that is, matching
the beginNotification method for the notified event).

userInfo
The userInfo parameter of the userNotification method is a value of Any primitive type (that is, a String, Integer,
or Character) that was passed in the userInfo parameter for the causeEvent, sdeCauseEvent, sdsCauseEvent,
or causeClassEvent method.

Notifications containing binary and string (Binary, String, StringUtf8) data of up to 48K bytes can be sent across
the network. For applications running within the server node, the limit for notifications containing binary or string
data is 2G bytes. Note, however, that this applies only to single user and server applications. In multiuser
applications, persistent notifications are sent via the database server, even if the receiving process is on the same
node as the sender. In notification cause events, exception 1267 (Notification info object too big) is raised if the
binary of string userInfo data exceeds the applicable value.

version
Signature version(): Integer;

The version method of the Object class returns the object version of the receiver as an integer value.

Encyclopaedia of Classes
(Volume 2)

ObjectArray Class Chapter 1 503

EncycloSys2 - 2020.0.02

ObjectArray Class
The ObjectArray class is the superclass of all arrays that contain objects.

Object arrays inherit the methods defined in the Array class. For details about the method defined in the
ObjectArray class, see "ObjectArray Method", in the following section.

Inherits From: Array

Inherited By: The subclasses listed in the following table

ObjectArray Subclass Membership

ApplicationArray Application

ClassColl Class

ConstantColl Constant

DbFileArray DbFile

FileNodeArray FileNode

JadeDbFilePartitionArray JadeDbFilePartition

JadeDynamicObjectArray JadeDynamicObject

JadeInterfaceColl JadeInterface

JadePrintDataArray JadePrintData

JadeSkinsColl JadeSkin

JadeWebServiceUnknownHdrArray JadeWebServiceUnknownHeader

JadeXMLAttributeArray JadeXMLAttribute

JadeXMLElementArray JadeXMLElement

JadeXMLNodeArray JadeXMLNode

LockArray Lock

NotificationArray Notification

ProcessStackArray MethodCallDesc

RectangleArray Rectangle

SchemaColl Schema

SortActorArray SortActor

TypeColl Type

XamlItemObjectArray Object

XamlResultsDataGridItemArray XamlResultsDataGridItem

Encyclopaedia of Classes
(Volume 2)

ObjectArray Class Chapter 1 504

EncycloSys2 - 2020.0.02

ObjectArray Method
The method defined in the ObjectArray class is summarized in the following table.

Method Description

addAll Adds the contents of the collection to the object that invokes the method

addAll
Signature addAll(coll: Collection) updating;

The addAll method of the ObjectArray class adds the contents of the collection to the receiver.

Encyclopaedia of Classes
(Volume 2)

ObjectByObjectDict Class Chapter 1 505

EncycloSys2 - 2020.0.02

ObjectByObjectDict Class
The ObjectByObjectDict collection class is an external key dictionary with a single object reference key.

Duplicate keys are disallowed.

Inherits From: ExtKeyDictionary

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

ObjectLongNameDict Class Chapter 1 506

EncycloSys2 - 2020.0.02

ObjectLongNameDict Class
The ObjectLongNameDict class is an external key dictionary with a single string key of length 304.

Duplicate keys are disallowed.

Inherits From: ExtKeyDictionary

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

ObjMethodCallDesc Class Chapter 1 507

EncycloSys2 - 2020.0.02

ObjMethodCallDesc Class
The ObjMethodCallDesc class provides information at run time about a currently active method call for an object
method.

For details about the property and method defined in the ObjMethodCallDesc class, see "ObjMethodCallDesc
Property" and "ObjMethodCallDesc Method", in the following subsections. (For details about method calls made to
methods defined on primitive types, see the PrimMethodCallDesc class.)

Inherits From: MethodCallDesc

Inherited By: (None)

ObjMethodCallDesc Property
The property defined in the ObjMethodCallDesc class is summarized in the following table.

Method Contains a reference to the…

interfaceMethod Interface method that was used

interfaceMethod
Type: JadeInterfaceMethod

The interfaceMethod property of the ObjMethodCallDesc class contains a reference to the interface method that
was used. (The called method is an implementation of the interface method.)

Note This property is not yet implemented, as it is reserved for future use.

ObjMethodCallDesc Method
The method defined in the ObjMethodCallDesc class is summarized in the following table.

Method Description

getReceiver Returns the receiver object

getReceiver
Signature getReceiver(): Object;

The getReceiver method of the ObjMethodCallDesc class returns a reference to the method receiver.

Encyclopaedia of Classes
(Volume 2)

ObjectSet Class Chapter 1 508

EncycloSys2 - 2020.0.02

ObjectSet Class
The ObjectSet class is the superclass of sets containing objects.

Inherits From: Set

Inherited By: User-defined Set classes

Encyclopaedia of Classes
(Volume 2)

ODBCException Class Chapter 1 509

EncycloSys2 - 2020.0.02

ODBCException Class
The ODBCException class is the transient-only class that defines the behavior for exceptions that occur as a
result of ODBC communications.

All unexpected exceptions returned by the ODBC interface are reported with the error code of 8000. The
nativeError and state properties, together with the extendedErrorText property of the Exception class, are used
to describe the exception in more detail. Errors specific to the JADE query engine itself result in error codes in the
range 8001 through 8256.

For details about the properties and method defined in the ODBCException class, see "ODBCException
Properties" and "ODBCException Method", in the following subsections.

Inherits From: NormalException

Inherited By: (None)

ODBCException Properties
The properties defined in the ODBCException class are summarized in the following table.

Property Description

nativeError Contains the native data-source-specific error code

state Five-character ODBC-defined state variable

nativeError
Type: Integer

The nativeError property of the ODBCException class contains the native error code that is specific to the data
source.

For a description of the meaning of the native error, refer to your data source documentation.

state
Type: String[5]

The state property of the ODBCException class contains the five-character ODBC state code that is returned by
the ODBC driver. The first two characters indicate the class of the error. The next three characters indicate the
subclass of the error.

For a description of this state code, refer to your ODBC driver documentation or to the general errors provided in
Microsoft ODBC documentation.

ODBCException Method
The method defined in the ODBCException class is summarized in the following table.

Method Description

showDialog Displays the ODBC exception dialog

Encyclopaedia of Classes
(Volume 2)

ODBCException Class Chapter 1 510

EncycloSys2 - 2020.0.02

showDialog
Signature showDialog(): Boolean;

The showDialog method of the ODBCException class displays the ODBC exception dialog.

If the showDialog method returns true, the action is resumed. If this method returns false, the action is aborted.

Encyclopaedia of Classes
(Volume 2)

OleObject Class Chapter 1 511

EncycloSys2 - 2020.0.02

OleObject Class
The OleObject class is used to store the Object Linking and Editing (OLE) object images for the OleControl class.
The OleObject class can also be used to store programmatically controlled OLE images that are not attached to a
control.

Notes This class is not available on a server node.

Memory overheads are reduced by always compressing OleObject data when passing it to and from the
application server and presentation clients. This is transparent if you use the OleObject class copy, getData, and
setData methods to manipulate the binary image.

For details about the properties and methods defined in the OleObject class, see "OleObject Properties" and
"OleObject Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

OleObject Properties
The properties defined in the OleObject class are summarized in the following table.

Property Description

compressed Specifies whether stored OleObject data is compressed

fullName Contains the full name of the OLE object

oleData Contains the OLE object data

shortName Contains the short name of the OLE object

compressed
Type: Boolean

Availability: Read-only at any time

The compressed property of the OleObject class specifies whether stored data is compressed.

Whenever an OleObject object is stored, the data is compressed automatically and this property is set to true.

Use the OleObject class copy, getData, and setData methods to manipulate the binary image.

fullName
Type: String

Availability: Read or write at run time only

The fullName property of the OleObject class contains the full name of the OLE object. This name defaults to the
OLE class or file name used to create the object.

The fullName property allows the object to have an identifying description assigned to the control and OLE object.

Encyclopaedia of Classes
(Volume 2)

OleObject Class Chapter 1 512

EncycloSys2 - 2020.0.02

oleData
Type: OleArray

Availability: Read or write at run time only

The oleData property of the OleObject class contains a reference to the OLE object data. The oleData property
allows the object to have programmatically controlled OLE images stored for the control.

shortName
Type: String[100]

Availability: Read or write at run time only

The shortName property of the OleObject class contains the short name of the OLE object. The short name
defaults to the OLE class or short file name used to create the object.

The shortName property allows the object to have an identifying short description assigned to the control and
OLE object.

OleObject Methods
The methods defined in the OleObject class are summarized in the following table.

Method Description

copy Copies an existing OLE object image to another instance of the OleObject class

getData Returns an uncompressed OleControl COM object as a binary

isServerRegistered Tests if the server that is required to run the OLE object is a registered OLE Server

setData Stores the COM data into the object

copy
Signature copy(obj: OleObject) updating;

The copy method of the OleObject class copies an existing OLE object image to another instance of the
OleObject class. The copy method handles any combination of transient, permanent, system-defined, and non-
system-defined class objects. An exception is raised if this method is invoked from a server method.

The following example shows the copying of the contents of an OLE control (transient) to permanent storage.

vars
obj : OleObject;

begin
beginTransaction;
create obj;
obj.copy(self.aOleControl.oleObject); // Copy OLE control object

// to permanent object.
commitTransaction;
...

end;

Encyclopaedia of Classes
(Volume 2)

OleObject Class Chapter 1 513

EncycloSys2 - 2020.0.02

getData
Signature getData(): Binary;

The getData method of the OleObject class returns the uncompressed OleControl COM object as a binary.

isServerRegistered
Signature isServerRegistered(): Boolean;

The isServerRegistered method of the OleObject class tests if the server that is required to run the OLE object is
a registered OLE Server on the client.

An exception is raised if this method is invoked from a server method.

setData
Signature setData(bin: Binary) updating;

The setData method of the OleObject class stores the COM data into the object.

To cause an OleControl to load this COM data, call both the oleObject.setData method followed by the
loadFromDB methods for the OleControl object.

Note The setData method sets the OLE data only.

Use the copy method of the OleObject class to copy from one OLE object to another. The copy method copies the
data for the object as well as the full name and short names.

The code fragment in the following example shows the use of the setData method.

foreach obj in ReviewOLEObj.instances do
count := 1 + count;
if count = 1 then

oleReview2.oleObject.setData(obj.bin);
oleReview1.loadFromDB;

elseif count = 2 then
oleReview2.oleObject.setData(obj.bin);
oleReview2.loadFromDB;

elseif count = 3 then
oleReview2.oleObject.setData(obj.bin);
oleReview3.loadFromDB;

endif;
endforeach;

Encyclopaedia of Classes
(Volume 2)

PointArray Class Chapter 1 514

EncycloSys2 - 2020.0.02

PointArray Class
The PointArray class is an ordered collection of Point values in which the values are referenced by their position
in the collection.

Point arrays inherit the methods defined in the Array class.

The bracket ([]) subscript operators enable you to assign values to and receive values from a Point array.

Inherits From: Array

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

PrimMethodCallDesc Class Chapter 1 515

EncycloSys2 - 2020.0.02

PrimMethodCallDesc Class
The PrimMethodCallDesc class provides information at run time about a currently active primitive method call.

For details about the property and method defined in the PrimMethodCallDesc class, see "PrimMethodCallDesc
Property" and "PrimMethodCallDesc Method" in the following subsections. (For details about method calls made
to object methods, see the ObjMethodCallDesc class.)

Inherits From: MethodCallDesc

Inherited By: (None)

PrimMethodCallDesc Property
The property defined in the PrimMethodCallDesc class is summarized in the following table.

Property Description

primNo Contains the number of the primitive type of the receiver

primNo
Type: Integer

Availability: Read-only

The primNo property of the PrimMethodCallDesc class contains the number of the primitive type of the receiver.

PrimMethodCallDesc Method
The method defined in the PrimMethodCallDesc class is summarized in the following table.

Method Description

getReceiver Returns the receiver object

getReceiver
Signature getReceiver(): Object;

The getReceiver method of the PrimMethodCallDesc class returns null.

Encyclopaedia of Classes
(Volume 2)

PrimType Class Chapter 1 516

EncycloSys2 - 2020.0.02

PrimType Class
The PrimType class is the metaclass of all JADE primitive types. It inherits methods defined in the Type
superclass. All primitive types are themselves instances of the PrimType class.

For details about the method defined in the PrimType class, see "PrimType Method", in the following subsection.

Inherits From: Type

Inherited By: (None)

PrimType Method
The method defined in the PrimType class type is summarized in the following table.

Property Description

findProperty Returns null

findProperty
Signature findProperty(str: String): Property;

The findProperty method of the PrimType class returns null.

Note This method is defined to satisfy the abstract findProperty method in the Type class. As primitive types
cannot have properties, it always returns null.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 517

EncycloSys2 - 2020.0.02

Printer Class
The Printer class is a transient-only class that handles printing. A transient instance of the Printer class called
app.printer is automatically created at run time.

Printing is a GUI operation that is available using jade.exe only. (The printer is automatically created only when
the application is run from jade.exe; otherwise the value of app.printer is null.)

Notes Client-side facilities only are available. Print facilities cannot be invoked from a server method.

You can create additional transient instances of the Printer class if you want to output to multiple printers or create
multiple print tasks simultaneously.

If you are running JADE in thin client mode, the printing is performed on the presentation client using a printer
attached to the presentation client workstation. (For details about optimizing performance when previewing print
output in JADE thin client mode, see "Previewing Print Output", later in this section.)

The default printer is re-evaluated every time a new print task is initiated and JADE logic has not specifically set
the printer name required. If logic sets a specific printer name (even if is the default printer), that printer continues
to be used, regardless of any change to the default printer.

The following example shows the use of the setPrinter method to return to printing with the default printer.

vars
prnt : String;

begin
prnt := "";
app.printer.setPrinter(prnt);

end;

For details about the Printer class constants, the properties and methods defined in the Printer class, defining
report layouts, using the Print Progress dialog, free-format printing, and previewing print output, see the following
sections.

Defining Your JADE Report Layouts

Layering Print Output

Printer Class Constants

Printer Properties

Printer Methods

Using the Common Print Setup Dialog

Using the Print Progress Dialog

Examples of Printer Methods

Free-Format Printing

Previewing Print Output

Searching Previewed Output

Portable Printing

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 518

EncycloSys2 - 2020.0.02

Refer also to "Global Constants Reference", in Appendix A of the JADE Encyclopaedia of Primitive Types, for the
global constants defined in the Printer category and to "JadePrintData Class", which is the abstract superclass of
report output data classes that enable your print data to be stored or sent directly to a display device for
previewing. (Use the Printer class setReport method to capture this output for storage, manipulation, and printing
to meet your requirements.)

Tip When you use the create instruction to create an instance of a transient form class that is referenced by a
local variable, a GUI form is created. If you want to create a print form at run time that simulates the entire GUI
process, use the GUIClass class createPrintForm method. The createPrintForm method creates a form that will
not create an actual GUI form and will not apply a skin (which may change the size of the client area). See also
"Portable Printing", later in this section.

An exception is raised if a printing operation (for example, calling the setPrinter method to set the output printer)
is invoked from any of the following.

A serverExecution method.

A server application running under the jadrap.exe JADE Remote Access Program (because printing
requires the jade.exe program).

Inherits From: Object

Inherited By: (None)

Defining Your JADE Report Layouts
Define your report layouts in terms of frames on a standard JADE form. When you create a form and you specify
that the form is of type Printer, the JADE Painter uses the appropriate default properties for printing controls.

Each report frame represents a logical grouping of data to ensure that it is printed together; for example, a header,
a footer, a line on an invoice, and an outstanding balance on a statement. Printed frames can contain any
standard JADE control.

If you want to generate white space on a page, you can use logic like that shown in the following code fragment
rather than generating a blank frame.

if printer.getPrintPosition + whiteSpaceSize >=
printer.pageHeight - printer.footer.height then

printer.newPage;
else

printer.setPrintPosition(printer.getPrintPosition + whiteSpaceSize);
endif;

Use the formatOut property of the TextBox class or the Label class to specify the system-defined format of data in
text boxes or labels. The format options listed in the following table are available.

Option Action

=date Prints the current date as specified in Control Panel.

=direct Sends the text of the control formatted in the font of the control directly to the printer. This
provides you with the ability to send commands to the print driver; for example, the facsimile
(fax) number when printing to a fax device.

See the JadePrintDirect class for details about the transient class that holds output directives
that are sent directly to the printer.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 519

EncycloSys2 - 2020.0.02

Option Action

=formatdate Prints the date in the format supplied in the formatOut text box of the Properties dialog
Specific sheet in JADE Painter, as shown in the following example.

=formatdate dd/MM/yyy

=longdate Prints the current date in the long date format.

=page Prints the current page number.

=pagenofm Prints the current page number of the total number of pages in the document (for example, 2
of 8).

=shortdate Prints the current data in the short date format.

=time Prints the current time (in hh:mm:ss am / pm format).

=totalpages Prints the total number of pages in the document (for example, 8).

For details about placing print output directly on a printer page at any location on the page without using frames,
see "Free-Format Printing", later in this section.

Layering Print Output
You can layer print output; for example, when printing a background picture over which is drawn the report itself.
This allows multiple drawing and printing over the same area of the printer page, retaining the underlying print
image, where possible.

The background area of a control is drawn during an app.printer.print(frame) call if it is not transparent and the
following applies.

The backColor property of the control is not set to White

Visible sibling controls occupy the same position within their parents

The value of the backColor property of any of the parents of the control (up to and including the frame in the
print method) is not set to White

One of the parents of the control is not a Frame control

The caption property is set for the parent Frame control

This affects existing systems only if the following applies.

The draw methods of the Printer class are followed by executing the print method over the same area. (This
is intended to let the drawn image remain, where possible.)

The print method of the Printer class is followed by executing the setPrintPosition method and then the
print method over the same area. (This is intended to allow multiple output in the same space, where
possible.)

Tables with the value of the backColor property set to White show white table cells as transparent.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 520

EncycloSys2 - 2020.0.02

Printer Class Constants
The Printer class constants are listed in the following table.

Printer Class Constant Value Description

DrawFillStyle_Cross 6 Cross

DrawFillStyle_DiagonalCross 7 Diagonal cross

DrawFillStyle_DownDiagonal 5 Downward diagonal

DrawFillStyle_HorzLine 2 Horizontal line

DrawFillStyle_Solid 0 Solid (the default)

DrawFillStyle_Transparent 1 Transparent

DrawFillStyle_UpDiagonal 4 Upward diagonal

DrawFillStyle_VertLine 3 Vertical line

DrawGrid_Crosses 1 Small crosses drawn at the grid line intersection

DrawGrid_Dots 2 Dots drawn at the grid line intersections

DrawGrid_Lines 0 Horizontal and vertical grid lines

DrawStyle_Dash 1 Dash

DrawStyle_DashDot 3 Dash-dot

DrawStyle_DashDotDot 4 Dash-dot-dot

DrawStyle_Dot 2 Dot

DrawStyle_InsideSolid 6 Draws inside the bounding rectangle, taking the width of the
pen into account

DrawStyle_Solid 0 Solid (the default)

DrawStyle_Transparent 5 Transparent

DrawTextAlign_Center 2 Positions text so that it is centered

DrawTextAlign_Left 0 Text is output starting at the specified left position (the default)

DrawTextAlign_Right 1 Positions text so that it ends at the specified position

Duplex_Horizontal 3 Prints on both sides of the paper to read by flipping over like a
notepad (that is, the duplex Short Side setting)

Duplex_Simplex 1 Print is output to one side of the paper only (the default)

Duplex_Vertical 2 Prints on both sides of the paper to read by turning like a book
(that is, the duplex Long Side setting)

PrintedStatus_Aborted 3 The report printing was aborted

PrintedStatus_All 1 The entire report was printed

PrintedStatus_Cancelled 4 The report printing process was canceled, producing only
partial output

PrintedStatus_Not 0 No printing occurred

PrintedStatus_Partial 2 The user printed specific pages only in print preview

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 521

EncycloSys2 - 2020.0.02

Printer Properties
The properties defined in the Printer class are summarized in the following table.

Property Description

autoPaging Specifies whether the system is to control the incrementing of the page number
for each page

bottomOfPage Contains the margin at the bottom of the printed page of output

collate Specifies whether the print output is collated

copies Contains the number of copies to be printed

documentType Contains the printer form type

drawFillColor Contains the color used to fill in shapes drawn with the printer graphics methods

drawFillStyle Contains the pattern used to fill the shapes drawn using the printer graphics
methods

drawFontBold Used when constructing the font used for drawing text

drawFontItalic Used when constructing the font used for drawing text.

drawFontName Used when constructing the font used for drawing text

drawFontSize Used when constructing the font used for drawing text

drawFontStrikethru Used when constructing the font used for drawing text

drawFontUnderline Used when constructing the font used for drawing text

drawStyle Defines the line style for output from printer graphics methods

drawTextAlign Contains the alignment used when outputting text on the printer using the
drawTextAt and drawTextIn methods

drawTextCharRotation Specifies the angle in degrees between each characters base line and the x axis
of the device

drawTextRotation Specifies the angle in degrees between the base line of the text output and the x
axis of the page

drawWidth Contains the line width for output from printer graphics methods

duplex Contains the duplex setting for the print output

footerFrame Contains the frame that is printed automatically at the end of each page

headerFrame Contains the frame that is printed automatically at the beginning of each page

leftMargin Contains the left margin of the printed page of output

orientation Contains the orientation of your printed output

pageBorderWidth Specifies whether a border is to be printed around the page

pageNumber Contains the page number to be printed in a label or text box

paperSource Contains the paper source, or tray, for the print output

printPreview Specifies whether the printed output is to be directed to the preview file

printPreviewAllowPrint Specifies whether previewed output can be directed to the printer

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 522

EncycloSys2 - 2020.0.02

Property Description

printPreviewAllowSelect Specifies whether the Print Selected button is displayed during print preview

printPreviewReduce Specifies whether previewed output is reduced to display a full page on the
screen

retainCMDValues Specifies whether printer values are retained when the printer is closed

rightMargin Contains the right margin of the printed page of output

suppressDialog Specifies whether the system-supplied print progress dialog is to be displayed

title Contains the title to be displayed on the system-supplied print progress dialog

topOfPage Contains the margin at the top of the printed page of output

autoPaging
Type: Boolean

The autoPaging property of the Printer class specifies whether the system controls the incrementing of the page
number on the printing of each page. The default value is true.

bottomOfPage
Type: Integer

The bottomOfPage property of the Printer class contains the margin at the bottom of the printed page of output.
Specify the required value in millimeters. This property can be modified at any time. The default value is zero (0).

collate
Type: Boolean

The collate property of the Printer class specifies whether the print output is collated; that is, prints the copies in
proper binding order by separating copies into groups. The default value is false.

Notes This property cannot be modified after printing has begun.

This property applies only when the Printer class copies property is greater than 1 (the default) and the printer
device supports the collation of multiple copies.

For details about retaining the setting of this property when the printer is closed, see the Printer class
retainCMDValues property.

copies
Type: Integer

The copies property of the Printer class contains the number of copies to be printed. The default value is 1.

Notes This property cannot be modified after printing has begun.

Multiple copies are produced only if the printer device driver supports the printing of multiple copies.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 523

EncycloSys2 - 2020.0.02

For details about retaining the setting of this property when the printer is closed, see the Printer class
retainCMDValues property.

documentType
Type: Integer

The documentType property of the Printer class contains the printer form type; that is, the paper size. The default
value is Print_A4.

You can change the documentType property dynamically, to allow allocation of the paper type to be used on a
page-by-page basis.

Changing this property causes a newPage method to be executed before the documentType property is changed
if the print is not at the start of a new page. Changing the documentType property also causes the pageHeight
and pageWidth methods to return the appropriate values for the new paper type size.

Use the Printer class getDefaultDocumentType method to return the default document type that is set for the
physical printer.

Use the Printer class setCustomPaperSize method to dynamically set a custom printer paper size at run time,
using the specified width and height in units of a tenth of a millimeter (for example, call
app.printer.setCustomPaperSize(2100, 2970); to set the paper size equivalent to A4). If you call
printer.documentType to set Print_Custom_Paper, an exception is raised.

The Printer global constant category document (printer form) types are listed in the following table.

Global Constant Integer Value Description

Print_10X11 45 10 x 11 in

Print_10X14 16 10x14 inches

Print_11X17 17 11x17 inches

Print_15X11 46 15 x 11 in

Print_9X11 44 9 x 11 in

Print_A2 66 A2 420 x 594 mm

Print_A3 8 A3 297 x 420 mm

Print_A3_Extra 63 A3 Extra 322 x 445 mm

Print_A3_Extra_Transverse 68 A3 Extra Transverse

Print_A3_Transverse 67 A3 Transverse 297 x 420 mm

Print_A4 9 A4 210 x 297 mm

Print_A4Small 10 A4 Small 210 x 297 mm

Print_A4_Extra 53 A4 Extra 9.27 x 12.69 in

Print_A4_Plus 60 A4 Plus 210 x 330 mm

Print_A4_Transverse 55 A4 Transverse 210 x 297 mm

Print_A5 11 A5 148 x 210 mm

Print_A5_Extra 64 A5 Extra 174 x 235 mm

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 524

EncycloSys2 - 2020.0.02

Global Constant Integer Value Description

Print_A5_Transverse 61 A5 Transverse 148 x 210 mm

Print_A_Plus 57 SuperA - A4 227 x 356 mm

Print_B4 12 B4 250 x 354 mm

Print_B5 13 B5 182 x 257 mm

Print_B5_Extra 65 B5 (ISO) Extra 201 x 276 mm

Print_B5_Transverse 62 B5 (JIS) Transverse 182 x 257 mm

Print_B_Plus 58 SuperB - A3 305 x 487 mm

Print_CSheet 24 C size sheet

Print_Custom_Paper 256 Customized paper size

Print_DSheet 25 D size sheet

Print_ESheet 26 E size sheet

Print_Env_10 20 Envelope #10 4 1/8 x 9 1/2 inches

Print_Env_11 21 Envelope #11 4 1/2 x 10 3/8 inches

Print_Env_12 22 Envelope #12 4 3/4 x 11 inches

Print_Env_14 23 Envelope #14 5 x 11 1/2 inches

Print_Env_9 19 Envelope #9 3 7/8 x 8 7/8 inches

Print_Env_B4 33 Envelope B4 250 x 353 mm

Print_Env_B5 34 Envelope B5 176 x 250 mm

Print_Env_B6 35 Envelope B6 176 x 125 mm

Print_Env_C3 29 Envelope C3 324 x 458 mm

Print_Env_C4 30 Envelope C4 229 x 324 mm

Print_Env_C5 28 Envelope C5 162 x 229 mm

Print_Env_C6 31 Envelope C6 114 x 162 mm

Print_Env_C65 32 Envelope C65 114 x 229 mm

Print_Env_DL 27 Envelope DL 110 x 220 mm

Print_Env_Invite 47 Envelope Invite 220 x 220 mm

Print_Env_Italy 36 Envelope 110 x 230 mm

Print_Env_Monarch 37 Envelope Monarch 3.875 x 7.5 inches

Print_Env_Personal 38 6 3/4 Envelope 3 5/8 x 6 1/2 inches

Print_Executive 7 Executive 7 1/4 x 10 1/2 inches

Print_Fanfold_Lgl_German 41 German Legal Fanfold 8 1/2 x 13 inches

Print_Fanfold_Std_German 40 German Std Fanfold 8 1/2 x 12 inches

Print_Fanfold_US 39 US Std Fanfold 14 7/8 x 11 inches

Print_Folio 14 Folio 8 1/2 x 13 inches

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 525

EncycloSys2 - 2020.0.02

Global Constant Integer Value Description

Print_ISO_B4 42 B4 (ISO) 250 x 353 mm

Print_Japanese_PostCard 43 Japanese Postcard 100 x 148 mm

Print_LetterSmall 2 Letter Small 8 1/2 x 11 inches

Print_Ledger 4 Ledger 17 x 11 inches

Print_Legal 5 Legal 8 1/2 x 14 inches

Print_Legal_Extra 51 Legal Extra 9.275 x 15 in

Print_Letter 1 Letter 8 1/2 x 11 inches

Print_LetterSmall 2 Letter Small 8½ x 11 inches

Print_Letter_Extra 50 Letter Extra 9.275 x 12 in

Print_Letter_Extra_Transverse 56 Letter Extra Transverse 9.275 x 12 in

Print_Letter_Plus 59 Letter Plus 8.5 x 12.69 in

Print_Letter_Transverse 54 Letter Transverse 8.275 x 11 in

Print_Note 18 Note 8 1/2 x 11 inches

Print_Quarto 15 Quarto 215 x 275 mm

Print_Statement 6 Statement 5 1/2 x 8 1/2 inches

Print_Tabloid 3 Tabloid 11 x 17 inches

Print_Tabloid_Extra 52 Tabloid Extra 11.69 x 18 in

The code fragment in the following example shows the use of the documentType property.

// Specify the format of the pages to be printed. As these default
// to Print_Portrait and Print_A4, you only need to redefine them
// if you require a different format.
app.printer.orientation := app.printer.Print_Landscape;
app.printer.documentType := app.printer.Print_Letter;

For details about retaining the setting of this property when the printer is closed, see the Printer class
retainCMDValues property.

drawFillColor
Type: Integer

Availability: Read or write at run time only

The drawFillColor property of the Printer class contains the color used to fill shapes drawn with the printer
graphics methods. By default, the drawFillColor property is set to 0 (black).

JADE uses the RGB scheme for colors. The valid range for a normal RGB color is 0 through 16,777,215
(#FFFFFF). The high byte of a number in this range equals 0; the lower three bytes, from least to most significant
byte, determine the amount of red, green, and blue, respectively. The red, green, and blue components are each
represented by a number in the range 0 through 255 (#FF). If the high byte is not zero (0), JADE uses the system
colors, defined in the Control Panel of the user.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 526

EncycloSys2 - 2020.0.02

When the drawFillStyle property is set to DrawFillStyle_Transparent (1), the setting of the drawFillColor property
is ignored.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawFillStyle
Type: Integer

Availability: Read or write at run time only

The drawFillStyle property of the Printer class contains the pattern used to fill the shapes drawn with the printer
graphics methods.

When the drawFillStyle property is set to DrawFillStyle_Transparent (1), the drawFillColor property is ignored.

The settings of the drawFillStyle property are listed in the following table.

Printer Class Constant Value Description

DrawFillStyle_Cross 6 Cross

DrawFillStyle_DiagonalCross 7 Diagonal cross

DrawFillStyle_DownDiagonal 5 Downward diagonal

DrawFillStyle_HorzLine 2 Horizontal line

DrawFillStyle_Solid 0 Solid (the default)

DrawFillStyle_Transparent 1 Transparent

DrawFillStyle_UpDiagonal 4 Upward diagonal

DrawFillStyle_VertLine 3 Vertical line

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawFontBold
Type: Boolean

Availability: Read or write at run time only

The drawFontBold property of the Printer class, together with the drawFontItalic, drawFontStrikethru,
drawFontUnderline, drawFontName, drawFontSize, drawTextRotation, and drawTextCharRotation properties,
determines the font used for printer graphics text drawing methods. The font that is used defaults to the application
font defined by the fontName property of the Application class.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 527

EncycloSys2 - 2020.0.02

drawFontItalic
Type: Boolean

Availability: Read or write at run time only

The drawFontItalic property of the Printer class, together with the drawFontBold, drawFontName,
drawFontStrikethru, drawFontUnderline, drawFontSize, drawTextCharRotation, and drawTextRotation
properties, determines the font used for printer graphics text drawing methods. The font that is used defaults to the
application font defined by the fontName property of the Application class.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawFontName
Type: String

Availability: Read or write at run time only

The drawFontName property of the Printer class, together with the drawFontBold, drawFontItalic,
drawFontStrikethru, drawFontUnderline, drawFontSize, drawTextCharRotation, and drawTextRotation
properties, determines the font used for printer graphics text drawing methods. The font that is used defaults to the
application font defined by the fontName property of the Application class.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawFontSize
Type: Real

Availability: Read or write at run time only

The drawFontSize property of the Printer class, together with the drawFontBold, drawFontName,
drawFontStrikethru, drawFontUnderline, drawFontItalic, drawTextCharRotation, and drawTextRotation
properties, determines the font used for printer graphics text drawing methods.

The font used defaults to the application font defined by the fontName property of the Application class.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawFontStrikethru
Type: Boolean

Availability: Read or write at run time only

The drawFontStrikethru property of the Printer class, together with the drawFontBold, drawFontName,
drawFontItalic, drawFontSize, drawFontUnderline, drawTextCharRotation, and drawTextRotation properties,
determines the font used for printer graphics text drawing methods.

The font used defaults to the application font defined by the fontName property of the Application class.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 528

EncycloSys2 - 2020.0.02

drawFontUnderline
Type: Boolean

Availability: Read or write at run time only

The drawFontUnderline property of the Printer class, together with the drawFontBold, drawFontName,
drawFontSize, drawFontItalic, drawFontStrikethru, drawTextCharRotation, and drawTextRotation properties,
determines the font used for printer graphics text drawing methods.

The font used defaults to the application font defined by the fontName property of the Application class.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawStyle
Type: Integer

Availability: Read or write at run time only

The drawStyle property of the Printer class contains the line style for output from printer graphics methods. The
settings of the drawStyle property are listed in the following table.

Printer Class Constant Value Description

DrawStyle_Dash 1 Dash

DrawStyle_DashDot 3 Dash-dot

DrawStyle_DashDotDot 4 Dash-dot-dot

DrawStyle_Dot 2 Dot

DrawStyle_InsideSolid 6 Draws inside the bounding rectangle, taking the width of the pen into
account

DrawStyle_Solid 0 Solid (the default)

DrawStyle_Transparent 5 Transparent

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawTextAlign
Type: Integer

Availability: Read or write at run time only

The drawTextAlign property of the Printer class contains the alignment used when outputting text on the printer
using the drawTextAt and drawTextIn methods.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 529

EncycloSys2 - 2020.0.02

The settings of the drawTextAlign property are listed in the following table.

Printer Class Constant Value Description

DrawTextAlign_Center 2 The drawTextAt method positions the text so that it is centered
horizontally over the specified position. The drawTextIn method
positions the text so that it is centered within the specified rectangle.

DrawTextAlign_Left 0 Text is output starting at the specified left position (default).

DrawTextAlign_Right 1 The drawTextAt method positions the text so that it ends at the
specified position. The drawTextIn method positions the text so that it
ends at the right hand edge of the requested rectangle.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawTextCharRotation
Type: Real

Availability: Read or write at run time only

The drawTextCharRotation property of the Printer class specifies the angle, in degrees, between the base line
and the x-axis of the device of each character. For example, a value of 90 draws the characters so that they are
positioned on their side with their base parallel with the right hand edge of the page. The default value is 0
degrees.

This property, in conjunction with the drawTextRotation property, allows the output of non-horizontal left to right
text. Use this property only with the drawTextAt method, as the rotated text could be rotated outside the rectangle
defined by the drawTextIn method.

The drawTextCharRotation property, together with the drawFontBold, drawFontStrikethru, drawFontItalic,
drawFontName, drawFontSize, drawTextRotation, and drawFontUnderline properties, determines the font used
for printer graphics text drawing methods. The font used defaults to the application font defined by the fontName
property of the Application class.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawTextRotation
Type: Real

Availability: Read or write at run time only

The drawTextRotation property of the Printer class specifies the angle, in degrees, between the base line of the
text output and the x-axis of the page. For example, a value of 270 draws text upright down the page. The default
value is 0 degrees.

This property, in conjunction with the drawTextCharRotation property, allows the output of non-horizontal left to
right text. Use this property only with the drawTextAt method, as the rotated text could be rotated outside the
rectangle defined by the drawTextIn method.

The drawTextRotation property, together with the drawFontBold, drawFontStrikethru, drawFontItalic,
drawFontName, drawFontSize, drawTextCharRotation, and drawFontUnderline properties, determines the font
used for printer graphics text drawing methods. The font used defaults to the application font defined by the
fontName property of the Application class.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 530

EncycloSys2 - 2020.0.02

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawWidth
Type: Integer

Availability: Read or write at run time only

The drawWidth property of the Printer class contains the line width for output from printer graphics methods. To
increase the width of the line, increase the value of the drawWidth property.

Set the drawWidth property to a value in the range 1 through 32,767. This value represents the width of the line in
pixels. The default value is 1 pixel wide.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

duplex
Type: Integer

The duplex property of the Printer class contains the duplex value; that is, the number of sides on which the paper
is printed.

The default value is Duplex_Simplex; that is, printing is single-sided.

The duplex options provided by the Printer class are listed in the following table.

Printer Class Constant Integer Value Description

Duplex_Horizontal 3 Prints on both sides of the paper to read by flipping over like a
notepad (that is, the duplex Short Side setting

Duplex_Simplex 1 Print is output to one side of the paper only

Duplex_Vertical 2 Prints on both sides of the paper to read by turning like a book
(that is, the duplex Long Side setting)

The code fragment in the following example shows the use of the duplex property.

app.printer.duplex := app.printer.Duplex_Horizontal;

This property cannot be modified after printing has begun. For details about retaining the setting of this property
when the printer is closed, see the Printer class retainCMDValues property.

footerFrame
Type: Frame

The footerFrame property of the Printer class contains a reference to a frame that is printed automatically at the
end of each page. The footerFrame property is set by the setFooter method.

To return the current value of this property, call the Printer class getFooter method.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 531

EncycloSys2 - 2020.0.02

The code fragment in the following example shows the use of the footerFrame property.

if footerFrame <> null then
footerHgt := footerFrame.height.Integer;

endif;

The footer frame can be modified at any time. The default value is null.

headerFrame
Type: Frame

The headerFrame property of the Printer class contains a reference to a frame that is printed automatically at the
beginning of each page. The headerFrame property is set by the setHeader method.

To return the current value of this property, call the Printer class getHeader method.

The code fragment in the following example shows the use of the headerFrame property.

if headerFrame <> null then
headerHgt := headerFrame.height.Integer;

endif;

The header frame can be modified at any time, but the new frame value takes effect only at the start of a new page
of output. The default value is null.

leftMargin
Type: Integer

The leftMargin property of the Printer class contains the left margin of the printed page of output. Specify the
required value in millimeters; for example:

app.printer.leftMargin := 25;

The code fragment in the following example shows the use of the leftMargin property.

printForm.label6.caption := $S_Line & lineCount.String;
if not app.printer.frameFits(printForm.detail1) then

timeTaken := (app.clock - startTime).Time;
printForm.timeTaken1.caption := timeTaken.String;
printForm.timeTaken2.caption := timeTaken.String;
checkForHeaderSwap(printForm);
startTime := app.clock;
if cb_ChangeMargins.value then

leftMargin.text := (leftMargin.text.Integer + 5).String;
app.printer.leftMargin := leftMargin.text.Integer;
app.printer.rightMargin := rightMargin.text.Integer + 5;

endif;
endif;
result := app.printer.print(printForm.detail1);

This property can be modified at any time. The default value is 10.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 532

EncycloSys2 - 2020.0.02

orientation
Type: Integer

The orientation property of the Printer class contains the orientation of your printed output.

You can change the orientation property dynamically, to allow allocation of the page orientation to be used on a
page-by-page basis.

Changing this property causes a newPage method to be executed before the orientation property is changed if
the print is not at the start of a new page. Changing the orientation property also causes the pageHeight and
pageWidth methods to return the appropriate values for the new page size.

Set this property to one of the global constants provided by the Printer category listed in the following table.

Global Constant Integer Value Action

Print_Landscape 2 Landscape (horizontal page orientation)

Print_Portrait 1 Portrait (vertical page orientation)

The code fragment in the following example shows the use of the orientation property.

app.printer.orientation := Print_Landscape;

The default value is Print_Portrait (portrait orientation).

For details about retaining the setting of this property when the printer is closed, see the Printer class
retainCMDValues property.

pageBorderWidth
Type: Integer

The pageBorderWidth property of the Printer class contains the width of a border that is to be printed around the
page.

Set this property to a non-zero value (in pixels) to specify the width of the border that is to be printed; as shown in
the code fragments in the following examples.

if pageBorder.value then
if borderWidth.text.Integer > 0 then

app.printer.pageBorderWidth := borderWidth.text.Integer;
endif;

endif;

app.printer.pageBorderWidth := 2;

This property can be modified at any time, but the new value takes effect only at the start of the next page of
output. The default value is zero (0), specifying that no border is to be printed.

pageNumber
Type: Integer

The pageNumber property of the Printer class contains the page number to be printed in any label or text box
with the =page output format.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 533

EncycloSys2 - 2020.0.02

This property is incremented automatically with each new page that is printed, if the autoPaging property value is
true. The user can modify this property at any time.

The default value is 1.

paperSource
Type: Integer

The paperSource property of the Printer class contains the location in the printer of the paper tray that you want
to use for your printed output so that you can use different paper for a part of a document.

You can change the paperSource property dynamically, to allow allocation of the paper source to be used on a
page-by-page basis. Changing this property causes a newPage method to be issued if the print is not at the start
of a new page before the paperSource property is changed.

As this property is not supported by all printers, the value of this property is printer driver-specific; that is, different
printer models may support different paper sources. (For example, your printer driver may assign 256 to an upper
tray, 257 to a lower tray, and 4 to manual feed.) The default value of zero (0) indicates that all paper sources are
displayed in the common Print dialog.

For a printer with no paper sources defined, the paperSource property is ignored. This is the case for some PDF
printer drivers, for example.

The code fragment in the following example shows the use of the paperSource property to print output to the
manual feeder.

app.printer.paperSource := 4;

Use the Printer class getAllPaperSources method to access the valid paper sources of a printer and the
getDefaultPaperSource method to return the default paper source that is set for the printer.

For details about retaining the setting of this property when the printer is closed, see the Printer class
retainCMDValues property.

printPreview
Type: Boolean

The printPreview property of the Printer class specifies whether the printed output is to be directed to the preview
file. This property cannot be modified after printing has begun. The default value is false.

The following example shows the use of the printPreview property.

buttonPreview_click(btn: Button input) updating;
vars

report : ReportForm;
begin

// Creates an instance of the ReportForm transient form class, and
// references it by the report local variable. This variable can then
// access the controls on the form.
create report;
// Specifies that the output is to be directed to the preview file
// before being printed.
app.printer.printPreview := true;
// Specifies the format of the pages to be printed. As these are
// the default values, it is unnecessary to redefine them unless

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 534

EncycloSys2 - 2020.0.02

// a different format is required.
app.printer.orientation := Print_Portrait;
app.printer.documentType := Print_A4;
// Uses the print method to output frameDetail of the form to the print
// preview file twice. The close method then sends all buffered
// output to the preview file. The preview file becomes available
// for browsing at this point.
app.printer.print(report.frameDetail);
app.printer.print(report.frameDetail);
app.printer.close;

epilog
// Deletes the transient report form instance.
delete report;

end;

See also "Previewing Print Output", later in this section.

printPreviewAllowPrint
Type: Boolean

The printPreviewAllowPrint property of the Printer class specifies whether previewed output can be directed to
the printer. This property can be modified at any time. The default value is true.

The code fragment in the following example shows the use of the printPreviewAllowPrint property.

app.printer.printPreviewAllowPrint := not disallowPrint.value;

See also the printPreviewAllowSelect property and "Previewing Print Output", later in this section.

printPreviewAllowSelect
Type: Boolean

The printPreviewAllowSelect property of the Printer class specifies whether the Print Selected button is
displayed during print preview. This property can be modified at any time.

The default value is true.

By default, the Print Report and Print Selected buttons are displayed during print preview, allowing the user to
print the whole report and specific pages. When the printPreviewAllowPrint property is set to false, neither button
is displayed. When the printPreviewAllowPrint property is set to true and the printPreviewAllowSelect property
is set to false, only the Print Report button is displayed. See also "Previewing Print Output", later in this section.

printPreviewReduce
Type: Boolean

The printPreviewReduce property of the Printer class specifies whether previewed output is reduced to display a
full page of print output on the screen. Set this property to false at development time to display the output across
the width of the screen (or click the Expand button in the Preview window at run time).

This property can be modified at any time. The default value is true.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 535

EncycloSys2 - 2020.0.02

The code fragment in the following example shows the use of the printPreviewReduce property.

if expand.value then
app.printer.printPreviewReduce := false;

endif;

See also "Previewing Print Output", later in this section.

retainCMDValues
Type: Boolean

The retainCMDValues property of the Printer class specifies whether the following property values are retained
after the printer is closed.

collate

copies

documentType

duplex

orientation

paperSource

By default, all property values are re-initialized to the JADE default values when the printer is closed. The default
value for the retainCMDValues property is false. When you set it to true, the property values set when the
common print dialogs are used are retained. The values are retained regardless of how they were set (that is,
dynamically in your logic or by the CMDPrint class Print Setup dialog or Print dialog).

Note The JADE development environment sets this property true for the printing of any method or class so that
any values that you specify in the common Print Setup dialog are retained for subsequent print requests.

rightMargin
Type: Integer

The rightMargin property of the Printer class contains the right margin of the printed page of output. This property
can be modified at any time and it affects only the position of the page border.

Specify the required value in millimeters. The default value is 10.

The code fragments in the following examples show the use of the rightMargin property.

app.printer.rightMargin := 15;

app.printer.rightMargin := rightMargin.text.Integer + 5;

See also the pageBorderWidth property.

suppressDialog
Type: Boolean

The suppressDialog property of the Printer class specifies whether the system-supplied print progress dialog is
to be displayed.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 536

EncycloSys2 - 2020.0.02

This property can be modified at any time. The default value is false; that is, the print progress dialog is displayed.

title
Type: String

The title property of the Printer class contains the title to be displayed on the system-supplied print progress
dialog; for example:

app.printer.title := "Print Test - Line number " & lineCount.String;

If this property is empty, the application name is used. This property can be modified at any time.

topOfPage
Type: Integer

The topOfPage property of the Printer class contains the margin at the top of the printed page of output.

Specify the required value in millimeters, as shown in the following examples.

app.printer.topOfPage := 25;

app.printer.topOfPage := topOfPage.text.Integer;

This property can be modified at any time but it takes effect only at the start of the next page of output.

The default value is zero (0).

Printer Methods
The methods defined in the Printer class are summarized in the following table.

Method Description

abort Closes the printer or the preview file and discards all of the generated output

centreFrame Centers the frame on the page

close Sends all buffered output to the printer or the preview file

drawArc Draws an elliptical arc on the printer page

drawChord Draws a chord on the printer page (that is, an arc with the end points joined
and the interior filled)

drawEllipse Draws an ellipse on the printed page

drawFilledRectangle Draws a filled rectangle on the printed page

drawGrid Draws a grid

drawLine Draws a line on the printed page

drawPie Draws a pie-shaped wedge on the printed page

drawRectangle Draws the border of a rectangle on the printed page

drawRoundRectangle Draws a rectangle with rounded corners on the printed page

drawSolidRectangle Draws a rectangle filled with the same color as the border on the printed page

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 537

EncycloSys2 - 2020.0.02

Method Description

drawTextAt Draws a text string on the printer page

drawTextIn Draws a text string with a bounded rectangle on the printer page

drawTextSize Returns the size of the text on the print page, using the current drawFont
property values

drawTextSizeIn Returns the size of the text in a bounding rectangle on the print page, using
the current drawFont property values

frameFits Returns true if the selected frame can be fitted on the current printer page

getAllPaperSources Returns all valid paper sources for the current printer device

getAllPrinterPaperSources Returns the paper sources for the specified printer on the application server or
a presentation client

getAllPrinters Returns a string array of available printer names

getDefaultDocumentType Returns the default document type that is set for the physical printer

getDefaultPaperSource Returns the default paper source type (printer tray) set for the physical printer

getFooter Returns the current footer frame for the printer or null if a footer frame has not
been set

getHeader Returns the current header frame for the printer or null if a footer frame has not
been set

getPrintedStatus Returns the status of the print task after the printer is closed, to enable you to
determine if the report was printed during preview

getPrinterName Returns the name of the current printer device

getPrintPosition Returns the current pixel position to be used for the next print statement

getReport Returns the value of the report instance set by the app.printer.setReport
method call

isPrinterOpen Returns true if the printer is currently open

newPage Skips to the top of a new page

pageHeight Returns the height of the page

pageWidth Returns the width of the page

print Outputs the specified frame to the printer

printActive Prints the currently active form or control

printPage Prints the specified page of print output on the current printer

printReport Prints the specified report on the current printer if the printPreview property is
set to false

printUnformatted Bypasses the Windows Printer Control to print unformatted text

setCustomPaperSize Sets a custom printer paper size at run time

setFooter Sets the footer frame to a specified frame

setHeader Sets the header frame to a specified frame

setMargins Combines the settings of the margin properties

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 538

EncycloSys2 - 2020.0.02

Method Description

setPrinter Sets the output printer

setPrintFileName Writes the print output to a file

setPrintPosition Sets the next print position to be used

setReport Captures all JadeReport object JadePrintDirect and JadePrintPage entries
for storage, manipulation, or printing

useCustomPrinterSettings Combines standard printing properties (for example, copies, duplex, and so
on) with previously cached advanced settings from the common Print Setup
dialog

Printer class methods cannot be invoked from a server method.

abort
Signature abort() updating;

The abort method of the Printer class closes the printer or the print preview file and discards all of the generated
output.

An exception is raised if this method is invoked from a server method.

The code fragment in the following example shows the use of the abort method.

if abortPrint.value then
app.printer.abort;

else
app.printer.close;

endif;

centreFrame
Signature centreFrame(frame: Frame input) updating;

The centreFrame method of the Printer class centers the frame specified in the frame parameter in the center of
the horizontal axis of the page.

An exception is raised if this method is invoked from a server method.

The code fragment in the following example shows the use of the centreFrame method.

// Sets frame1 and frame3 of the form to be the header and footer frames.
// These frames are printed at the top and bottom of each page printed by
// the application.
app.printer.setHeader(frame1);
app.printer.setFooter(frame3);
app.printer.centreFrame(frame2);

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 539

EncycloSys2 - 2020.0.02

close
Signature close(): Integer updating;

The close method of the Printer class sends all buffered output to the printer or the preview file. (The preview file
becomes available for browsing at this point.) A Printer category global constant is returned, indicating the result
of this method (for example, Print_Successful).

An exception is raised if this method is invoked from a server method.

The code fragment in the following example shows the use of the close method.

app.printer.print(lett.heading);
printLetterText(app.printer, lett);
// The close method sends all buffered output to the preview file.
// The preview file becomes available for browsing at this point.
app.printer.close;
epilog

delete lett; // Deletes the transient form instance
end;

The destructor invokes the close method when you delete a printer object.

Note By default, all property values are re-initialized to the JADE default values when the printer is closed. For
details about retaining property values when the printer is closed, see the Printer class retainCMDValues
property.

drawArc
Signature drawArc(x1: Integer;

y1: integer;
x2: Integer;
y2: Integer;
startX: Integer;
startY: Integer;
endX: Integer;
endY: Integer;
color: Integer);

The drawArc method of the Printer class draws an elliptical arc on the printer page, by using a pen the width of
the drawWidth property value and the style of the drawStyle property. An exception is raised if this method is
invoked from a server method. The drawArc method parameters are listed in the following table.

Parameter Description

x1, y1, x2, y2 Rectangle bounding the ellipse of which the arc is a part

startX, startY Logical x and y (horizontal and vertical) coordinate of the point that defines the starting point
of the arc

endX, endY Logical x and y coordinate of the point that defines the end point of the arc

color Color of the pen used

All of the positional values are relative to the left and top margins, and need not lie within the page. The startX,
startY, endX, and endY parameter points do not need to lie exactly on the arc.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 540

EncycloSys2 - 2020.0.02

The starting point of the arc is the point at which a ray drawn from the center of the bounding rectangle through the
specified starting point intersects the ellipse. The end point of the arc is the point at which a ray drawn from the
center of the bounding rectangle through the specified end point intersects the ellipse. As an arc is not a closed
figure, it is not filled.

The width and height of a rectangle must each be in the range 2 units through 32,767 units.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawChord
Signature drawChord(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
startX: Integer;
startY: Integer;
endX: Integer;
endY: Integer;
color: Integer);

The drawChord method of the Printer class draws an elliptical arc on the printer page, by using a colored pen the
width of the drawWidth property and the style of the drawStyle property.

A line is drawn through the end points of the arc and the figure is filled by using the color and style of the
drawFillColor and drawFillStyle properties of the object.

An exception is raised if this method is invoked from a server method.

The drawChord method parameters are listed in the following table.

Parameter Description

x1, y1, x2, y2 Rectangle bounding the ellipse of which the arc is a part

startX, startY Logical x and y (horizontal and vertical) coordinate of the point that defines the starting point of
the chord

endX, endY Logical x and y coordinate of the point that defines the end point of the chord

color Color of the pen used

All of the positional values are relative to the left and top margins, and need not lie within the page. The startX,
startY, endX, and endY parameter points do not need to lie exactly on the chord. The width and height of a
rectangle must each be in the range 2 units through 32,767 units.

The starting point of the chord is the point at which a ray drawn from the center of the bounding rectangle through
the specified starting point intersects the ellipse. The end point of the chord is the point at which a ray drawn from
the center of the bounding rectangle through the specified end point intersects the ellipse.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 541

EncycloSys2 - 2020.0.02

drawEllipse
Signature drawEllipse(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
color: Integer);

The drawEllipse method of the Printer class draws an ellipse on the printer page, by using a colored pen the
width of the drawWidth property and the style of the drawStyle property.

The figure is filled by using the color and style of the drawFillColor and drawFillStyle properties. An exception is
raised if this method is invoked from a server method.

The drawEllipse method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top points of the rectangle bounding the ellipse

x2, y2 Right and bottom points of the rectangle bounding the ellipse

color Color of the pen used

All of the positional values are relative to the left and top margins, and need not lie within the page.

If the width or the height of the bounding rectangle is zero (0), the ellipse is not drawn.

As the figure drawn by this method extends up to but does not include the right and bottom coordinate, the height
of the figure is y2 through y1, and the width is x2 through x1.

The width and the height of a rectangle must be in the range 2 units through 32,767 units. To draw an unfilled
ellipse, set the drawFillStyle property to DrawFillStyle_Transparent (1).

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawFilledRectangle
Signature drawFilledRectangle(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
color: Integer);

The drawFilledRectangle method of the Printer class draws a rectangle on the printer page, by using a colored
pen the width of the drawWidth property and the style of the drawStyle property.

The figure is filled by using the color and style of the drawFillColor and drawFillStyle properties of the object.

An exception is raised if this method is invoked from a server method.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 542

EncycloSys2 - 2020.0.02

The drawFilledRectangle method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top points of the rectangle

x2, y2 Right and bottom points of the rectangle

color Color of the pen used

All of the positional values are relative to the left and top margins, and need not lie within the page. If the width or
the height of the rectangle is zero (0), the rectangle is not drawn.

As the figure drawn by this method extends up to but does not include the right and bottom coordinate, the height
of the figure is y2 through y1, and the width is x2 through x1. The width and the height of a rectangle must be in
the range 2 units through 32,767 units.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position. To draw an unfilled rectangle, use the drawRectangle
method or set the drawFillStyle property to DrawFillStyle_Transparent (1).

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawGrid
Signature drawGrid(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
style: Integer;
width: Integer;
height: Integer;
color: Integer) updating;

The drawGrid method of the Printer class draws a grid into the specified rectangle, by using the Printer class grid
style constants listed in the following table.

Printer Class Constant Value Description

DrawGrid_Crosses 1 Small crosses drawn at the grid line intersection

DrawGrid_Dots 2 Dots drawn at the grid line intersections

DrawGrid_Lines 0 Horizontal and vertical grid lines

The drawGrid method parameters are listed in the following table.

Parameter Description

x1, y1 Horizontal and vertical left and top points of the rectangle, respectively

x2, y2 Horizontal and vertical right and bottom points of the rectangle, respectively

style DrawGrid_Lines (0), DrawGrid_Crosses (1), or DrawGrid_Dots (2)

width Increment in pixels between each vertical grid line

height Increment in pixels between each horizontal grid line

color Color of the pen used to draw the grid

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 543

EncycloSys2 - 2020.0.02

Grid lines for the left and top edges of the rectangle are not drawn.

The grid lines are drawn by using the Printer::drawWidth and Printer::drawStyle properties. For the line style
drawWidth = 1, drawWindow = 0 (client area), and scaleMode=0 (pixels), the result is the same as if you wrote
the following code.

vars
x : Integer;
y : Integer;

begin
foreach x in self.width to self.clientWidth - 1 step 5 do

window.drawLine(x, 0, x, self.clientHeight, self.color);
endforeach;
foreach y in self.height to self.clientHeight - 1 step 5 do

window.drawLine(0, y, self.clientWidth, y, self.color);
endforeach;

end;

drawLine
Signature drawLine(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
color: Integer);

The drawLine method of the Printer class draws a line on the printer page, by using a colored pen the width of the
drawWidth property and the style of the drawStyle property.

An exception is raised if this method is invoked from a server method.

The drawLine method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top start points of the line, respectively

x2, y2 Right and bottom end points of the line, respectively

color Color of the pen used

All of the positional values are relative to the left and top margins, and need not lie within the page.

The line drawn by this method extends up to but does not include the end point.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 544

EncycloSys2 - 2020.0.02

drawPie
Signature drawPie(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
startX: Integer;
startY: Integer;
endX: Integer;
endY: Integer;
color: Integer);

The drawPie method of the Printer class draws a pie-shaped wedge on the printer page, by using a colored pen
the width of the drawWidth property and the style of the drawStyle property.

The wedge is an elliptical arc whose center and two end points are joined by lines. The figure is filled by using the
color and style of the drawFillColor and drawFillStyle properties.

An exception is raised if this method is invoked from a server method.

The drawPie method parameters are listed in the following table.

Parameter Description

x1, y1, x2, y2 Rectangle bounding the ellipse of which the pie is a part

startX, startY Logical x and y (horizontal and vertical) coordinate of the point that defines the
starting point of the arc

endX, endY Logical x and y coordinate of the point that defines the end point of the arc

color Color of the pen used

All of the positional values are relative to the left and top margins, and need not lie within the page. The startX,
startY, endX, and endY parameter points do not need to lie exactly on the arc. The starting point of the arc is the
point at which a ray drawn from the center of the bounding rectangle through the specified starting point intersects
the ellipse. The end point of the arc is the point at which a ray drawn from the center of the bounding rectangle
through the specified end point intersects the ellipse.

The figure drawn by this function extends up to but does not include the right and bottom coordinate, so that the
height of the figure is y2 through y1 and the width is x2 through x1. The width and height of a rectangle must each
be in the range 2 units through 32,767 units.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position. For details about placing output directly on a printer page at
any location without the use of frames and drawing rotated text and characters, see "Free-Format Printing", later in
this chapter.

drawRectangle
Signature drawRectangle(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
color: Integer);

The drawRectangle method of the Printer class draws the border of a rectangle on the printer page, by using a
colored pen the width of the drawWidth property and the style of the drawStyle property.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 545

EncycloSys2 - 2020.0.02

The inside of the rectangle is not filled. An exception is raised if this method is invoked from a server method.

If the width or the height of the rectangle is zero (0), the rectangle is not drawn. As the figure drawn by this function
extends up to but does not include the right and bottom coordinate, the height of the figure is y2 through y1 and
the width is x2 through x1. The figure drawn by this rectangle is equivalent to using the drawFilledRectangle
method with the drawFillStyle property set to DrawFillStyle_Transparent (1).

The drawRectangle method parameters are listed in the following table.

Parameter Description

x1, y1 Horizontal and vertical top points of the rectangle

x2, y2 Horizontal and vertical bottom points of the rectangle

color Color of the pen used

All of the positional values are relative to the left and top margins, and need not lie within the page.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawRoundRectangle
Signature drawRoundRectangle(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
xRoundSize: Integer;
yRoundSize: Integer;
color: Integer);

The drawRoundRectangle method of the Printer class draws a rectangle with rounded corners on the printer
page, by using a colored pen the width of the drawWidth property and the style of the drawStyle property. The
figure is filled by using the drawFillColor and drawFillStyle properties of the object.

An exception is raised if this method is invoked from a server method.

If the width or the height of the rectangle is zero (0), the rectangle is not drawn. As the figure drawn by this function
extends up to but does not include the right and bottom coordinate, the height of the figure is y2 through y1 and
the width is x2 through x1. The width and the height of a rectangle must be in the range 2 units through 32,767
units.

The drawRoundRectangle method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top points of the rectangle

x2, y2 Right and bottom points of the rectangle

xRoundSize Width of ellipse for rounded corners

yRoundSize Height of ellipse for rounded corners

color Color of the pen used

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 546

EncycloSys2 - 2020.0.02

All of the position values are relative to the left and top margins, and need not lie within the page.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawSolidRectangle
Signature drawSolidRectangle(x1: Integer;

y1: Integer;
x2: Integer;
y2: Integer;
color: Integer);

The drawSolidRectangle method of the Printer class draws a rectangle on the printer page, by using a colored
pen the width of the drawWidth property and the style of the drawStyle property. The figure is solidly filled, using
the same color as the border. The drawFillColor and drawFillStyle properties are ignored. An exception is raised
if this method is invoked from a server method.

The drawSolidRectangle method parameters are listed in the following table.

Parameter Description

x1, y1 Left and top points of the rectangle

x2, y2 Right and bottom points of the rectangle

color Color of the pen used

If the width or the height of the rectangle is zero (0), the function does not draw the rectangle. As the figure drawn
by this function extends up to but does not include the right and bottom coordinate, the height of the figure is y2
through y1 and the width is x2 through x1.

The figure drawn by this rectangle is equivalent to using the drawFilledRectangle method with the drawFillColor
property set to the appropriate color and the drawFillStyle property set to DrawFillStyle_Solid (0).

All of the position values are relative to the left and top margins, and need not lie within the page.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawTextAt
Signature drawTextAt(text: String;

x1: Integer;
y1: Integer;
color: Integer);

The drawTextAt method of the Printer class draws a text string on the printer page, using the current values of the
drawFont, drawTextRotation, drawTextCharRotation, and drawTextAlign properties. An exception is raised if
this method is invoked from a server method.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 547

EncycloSys2 - 2020.0.02

The drawTextAt method parameters are listed in the following table.

Parameter Description

text Text string that is to be drawn

x1, y1 Horizontal and vertical positions for the text

color Color of the text

The way in which the text is drawn is determined by the value of the drawTextAlign property, as listed in the
following table.

Printer Class Constant Value Description

DrawTextAlign_Center 2 Center-aligned (centered) around x1

DrawTextAlign_Left 0 Left-aligned from x1

DrawTextAlign_Right 1 Right-aligned at x1

The text is drawn in a single line, unless it has embedded carriage return characters within it. Each embedded
carriage return character forces a new line for the remaining text. All of the position values are relative to the left
and top margins, and need not lie within the page.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawTextIn
Signature drawTextIn(text: String;

x1: Real;
y1: Real;
x2: Real;
y2: Real;
color: Integer);

The drawTextIn method of the Printer class draws a text string on the printer page within a bounded rectangle,
using the current values of the drawFont, drawTextRotation, drawTextCharRotation, and drawTextAlign
properties. An exception is raised if this method is invoked from a server method.

The drawTextIn method parameters are listed in the following table.

Parameter Description

text Text string that is to be drawn

x1, y1 Left and top points of the bounding rectangle

x2, y2 Right and bottom points of the bounding rectangle

color Color of the text

The text is drawn into the bounding rectangle with word wrap.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 548

EncycloSys2 - 2020.0.02

The way in which the text is drawn is determined by the value of the drawTextAlign property, as listed in the
following table.

Window Class Constant Value Description

DrawTextAlign_Center 2 Center-aligned (centered)

DrawTextAlign_Left 0 Left-aligned

DrawTextAlign_Right 1 Right-aligned

Any embedded carriage return character within the text forces a new line for the remaining text.

The text always starts at the vertical point specified by the y1 parameter. All of the position values are relative to
the left and top margins, and need not lie within the page.

This method causes the header frame to be printed if the method is called at the start of a new page. The method
has no subsequent affect on the current print position.

This method is not normally suitable with non-zero values of the drawTextCharRotation and drawTextRotation
properties, as the rotation may cause some of the text to be outside the requested rectangle and therefore it may
not be totally visible.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

drawTextSize
Signature drawTextSize(str: String;

textHeight: Integer output): Integer;

The drawTextSize method of the Printer class returns the size of the text, using the current values of the
drawFont properties. An exception is raised if this method is invoked from a server method.

The text alignment and the text rotation properties (that is, drawTextAlign, drawTextCharRotation, and
drawTextRotation) are not used in determining this size.

The parameters for the drawTextSize method are listed in the following table.

Parameter Description

str Text string that is to be measured

textHeight Text height returned

The drawTextSize method returns the text width, which can be used in the drawTextAt method.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 549

EncycloSys2 - 2020.0.02

drawTextSizeIn
Signature drawTextSizeIn(str: String;

width: Integer;
textHeight: Integer output): Integer;

The drawTextSizeIn method of the Printer class returns the size of the text by using the current values of the
drawFont properties, setting a bounding rectangle equal to the width parameter, and applying word wrap. An
exception is raised if this method is invoked from a server method.

The text alignment and the text rotation properties (that is, drawTextAlign, drawTextCharRotation, and
drawTextRotation) are not used in determining this size.

The parameters for the drawTextSizeIn method are listed in the following table.

Parameter Description

str Text string that is to be measured

width Width of the rectangle (in pixels) for word wrap

textHeight Text height returned

The drawTextSizeIn method returns the text width, which you could then use in the drawTextIn method.

For details about placing output directly on a printer page at any location without the use of frames and drawing
rotated text and characters, see "Free-Format Printing", later in this chapter.

frameFits
Signature frameFits(fr: Frame): Boolean updating;

The frameFits method of the Printer class returns true if the frame specified in the frame parameter can be fitted
within the remaining height of the current printer page (the width is not checked), excluding the space taken by the
current footer. An exception is raised if this method is invoked from a server method.

The code fragments in the following examples show the use of the frameFits method.

if not app.printer.frameFits(printForm.detail1) then
timeTaken := (app.clock - startTime).Time;
printForm.timeTaken1.caption := timeTaken.String;
printForm.timeTaken2.caption := timeTaken.String;
checkForHeaderSwap(printForm);
startTime := app.clock;
if cb_ChangeMargins.value then

leftMargin.text := (leftMargin.text.Integer + 5).String;
app.printer.leftMargin := leftMargin.text.Integer;
app.printer.rightMargin := rightMargin.text.Integer + 5;

endif;
endif;

while app.printer.frameFits(printForm.fillerFrame) do
result := app.printer.print(printForm.fillerFrame);
if result <> 0 then

break outerWhile;
endif;

endwhile;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 550

EncycloSys2 - 2020.0.02

getAllPaperSources
Signature getAllPaperSources(ia: IntegerArray input;

sa: StringArray input): Integer updating;

The getAllPaperSources method of the Printer class populates integer and string arrays with the numbers and
names, respectively, of the paper sources available for the current printer.

The return value represents the number of paper sources for the current printer.

The following example shows the use of the getAllPaperSources method.

vars
ia : IntegerArray;
sa : StringArray;

begin
create sa transient;
create ia transient;
app.printer.getAllPaperSources(ia, sa);
write "Paper sources = " & app.printer.getAllPaperSources(ia,

sa).String; // Outputs Paper sources = 10
epilog

delete sa;
delete ia;

end;

For details about returning the valid paper sources for a specified printer device on the application server or a
presentation client, see the Printer class getAllPrinterPaperSources method.

getAllPrinterPaperSources
Signature getAllPrinterPaperSources(printerName: String;

ia: IntegerArray input;
sa: StringArray input): Integer updating;

The getAllPrinterPaperSources method of the Printer class populates integer and string arrays with the numbers
and names, respectively, of the paper sources available for the printer specified in the printerName parameter.
The return value represents the number of paper sources for the specified printer.

In JADE thin client mode, this method returns:

Paper sources for a specified printer local to the presentation client only, when executed on a presentation
client

Paper sources for a specified printer attached to that server, when called from a method executing on the
server node (which enables you to get the paper sources for an application server printer if you want to
schedule report tasks for a reporting presentation client that runs on the application server)

Note When the method is executed in a serverExecution method, it returns the list of paper sources for the
specified printer attached to the server node. When executed in an application server or standard client, the
method returns the list of paper sources for the specified printer attached to the client device.

This method has no impact on the Printer object that is used to call the method.

For details about returning the valid paper sources for the current printer device, see the Printer class
getAllPaperSources method.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 551

EncycloSys2 - 2020.0.02

getAllPrinters
Signature getAllPrinters(sa: Array input): Integer updating;

The getAllPrinters method of the Printer class fills an array with the names of the available printers. The return
value represents the number of printers in the array.

The array type passed to the method must be an array with a membership of String, to allow the array type to be a
HugeStringArray or a StringArray. If another array type with a membership other than String is passed to the
method, exception 1000 (Invalid parameter type) is raised.

In JADE thin client mode, this method returns:

Printers local to the presentation client only, when executed on a presentation client

Printers attached to that server, when called from a method executing on the server node (which enables you
to get a list of valid printers for the application server if you want to schedule report tasks for a reporting
presentation client that runs on the application server)

Note When the method is executed in a serverExecution method, it returns the list of printers attached to the
server node. When executed in an application server or standard client, the method returns the list of printers
visible to the client device.

The following example shows the use of the getAllPrinters method.

load() updating;
vars

sa : Array;
begin

// Creates an array and populates it with the currently
// available printers using the getAllPrinters method. The array
// is then displayed in a combo box, allowing the user to select
// a printer.
create sa transient;
app.printer.getAllPrinters(sa);
comboBox.listCollection(sa, false, 0);
... // do some more processing here

epilog
// Deletes the transient array object.
delete sa;

end;

getDefaultDocumentType
Signature getDefaultDocumentType(): Integer updating;

The getDefaultDocumentType method of the Printer class returns the document type that is set for the physical
printer.

This method opens the printer if it is not already open. The printer document default is that set by the user for the
specific physical printer. A user can set a default value for the documentType property for a printer by:

1. Opening the Windows Printers form (from the Start menu Printers command in the Settings submenu, for
example)

2. Right-clicking on the icon for the specific printer

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 552

EncycloSys2 - 2020.0.02

3. Selecting the Document Defaults or Printing Preferences command from the popup menu that is
displayed, depending on the version of the Windows operating system that is running

Note This method does not return the type of paper in the printer, but only the default type set by the user. For
most printers, the default documentType is A4.

The JADE default value for the documentType property is A4. The following code fragment sets the default
document type for users.

app.printer.documentType := app.printer.getDefaultDocumentType;

getDefaultPaperSource
Signature getDefaultPaperSource(): Integer updating;

The getDefaultPaperSource method of the Printer class returns the default paper source (printer tray) that is set
for the physical printer. This method opens the printer if it is not already open. The default printer paper source is
that set by the user for the specific physical printer.

A user can set a default value for the paperSource property for a printer by:

1. Opening the Windows Printers form (from the Start menu Printers command in the Settings submenu, for
example)

2. Right-clicking on the icon for the specific printer

3. Selecting the Document Defaults or Printing Preferences command from the popup menu that is
displayed, depending on the version of the Windows operating system that is running

Note This method does not return the paper source that is set for the printer itself, but only the default paper
source set by the user. For most printers, the default paperSource is Automatically Select.

The JADE default value for the paperSource property is Automatically Select. The following code fragment sets
the default paper source for users.

app.printer.paperSource := app.printer.getDefaultPaperSource;

getFooter
Signature getFooter(): Frame;

The getFooter method of the Printer class returns the current value of the footerFrame property for the printer or
null if a header frame has not been set.

getHeader
Signature getHeader(): Frame;

The getHeader method of the Printer class returns the current value of the headerFrame property for the printer
or null if a header frame has not been set.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 553

EncycloSys2 - 2020.0.02

getPrintedStatus
Signature getPrintedStatus(): Integer;

The getPrintedStatus method of the Printer class returns the status of the print task after the printer is closed, to
enable you to determine if the user printed the report during preview or if the user aborted or cancelled the print
task.

The values returned by this method are valid only after the printer has been closed. The printed status is cleared
the next time the printer is opened.

The following table lists the values that can be returned by the getPrintedStatus method.

Printer Class Constant Integer Value Description

PrintedStatus_Not 0 No printing occurred

PrintedStatus_All 1 The entire report was printed

PrintedStatus_Partial 2 The user printed specific pages only in print preview

PrintedStatus_Aborted 3 The report printing was aborted

PrintedStatus_Cancelled 4 The report printing process was canceled, producing only
partial output

getPrinterName
Signature getPrinterName(): String;

The getPrinterName method of the Printer class returns the name of the current printer; for example:

HP LaserJet 4Si/4Si MX PS

Exception 15021 (No default printer exists for this user) is raised, if you do not have a printer set up.

getPrintPosition
Signature getPrintPosition(): Integer;

The getPrintPosition method of the Printer class returns the current pixel position to be used for the next print
statement on a page. This position is initially set to zero (0) after an end-of-page condition. (The pixel position is
zero-relative to the top margin of the page.) An exception is raised if this method is invoked from a server method.

This method is not relevant for direct printing (that is, when the formatOut property option is set to =direct).

getReport
Signature getReport(): JadeReport;

The getReport method of the Printer class returns the value of the report instance set by the
app.printer.setReport(report) method call during the print production.

If the setReport method is not called, the getReport method returns null.

Note The reference to the report is cleared when the printer is closed and the getReport method then returns
null.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 554

EncycloSys2 - 2020.0.02

isPrinterOpen
Signature isPrinterOpen(): Boolean;

The isPrinterOpen method of the Printer class returns true if any output has been directed to the printer or to print
preview in the current application and the printer or print preview has not yet been closed; that is, an
app.printer.print was issued but no app.printer.close has yet been performed. An exception is raised if this
method is invoked from a server method.

The code fragment in the following example shows the use of the isPrinterOpen method.

if app.printer.isPrinterOpen = true then
if self.printoutWanted then

app.printer.close;
else

app.printer.abort;
endif;

endif;

newPage
Signature newPage(): Integer updating;

The newPage method of the Printer class skips to the top of a new page and it opens the printer if it is not already
open. This method has no effect if the print output is already positioned at the start of a page.

A Printer category global constant is returned, indicating the result of this method (for example, Print_
Successful).

An exception is raised if this method is invoked from a server method.

The code fragments in the following examples show the use of the newPage method.

// The variable lastKey contains the key of the last entry to be
// displayed on the table. This value is compared with the key of the
// last entry in the collection to determine whether the entire collection
// has been displayed. If not, the printer is told to start a new page
// and the table is cleared. The startPos variable is then set to the
// last entry to be displayed so that the next page displays only the
// entries which have not yet been displayed.
if lastKey < customerDict.last.key then

app.printer.newPage;
table1.clear;
table1.rows := 1;
self.setColumnHeadings;
self.startPos := lastKey;

endif;

if cb_NewPage.value then
if lineCount mod tb_Lines.text.Integer = 0 then

if cb_ChangeMargins.value then
leftMargin.text := (leftMargin.text.Integer + 5).String;
app.printer.leftMargin := leftMargin.text.Integer;
app.printer.rightMargin := rightMargin.text.Integer + 5;

endif;
app.printer.newPage;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 555

EncycloSys2 - 2020.0.02

endif;
endif;

pageHeight
Signature pageHeight(): Integer updating;

The pageHeight method of the Printer class returns the height of the page, in pixels. The page height that is
returned excludes the borders. An exception is raised if this method is invoked from a server method.

pageWidth
Signature pageWidth(): Integer updating;

The pageWidth method of the Printer class returns the width of the page, in pixels. The page width that is returned
excludes the borders. An exception is raised if this method is invoked from a server method.

print
Signature print(win: Frame input): Integer updating;

The print method of the Printer class outputs the frame specified in the win parameter to the printer. The space
used by the frame on the printed page is determined by the currently set height of the frame (that is, it can be
changed during printing) rather than the height of the frame that was painted during the form definition in the
JADE Painter.

An exception is raised if this method is invoked from a server method.

For details about calling the print method when printing a background picture over which is drawn the report itself,
see "Layering Print Output", earlier in this section.

Note Unpredictable results will occur if you mix print and printUnformatted method calls within the same print
task.

The Printer category global constants that can be returned by the print method are listed in the following table.

Return Value Global Constant Description

0 Print_Successful The print was successful

15001 Print_Invalid_Control You have attempted to print a control that is not a frame

15002 Print_NewPage_Failed When trying to print a new page, the printer may be off-
line or incorrectly configured

15003 Print_Printer_Not_Open You attempted to close a printer that is not currently open

15004 Print_TextOut_Error When trying to print a frame, the printer may be off-line or
incorrectly configured

15005 Print_Printer_Open_Failed When trying to print a frame, the printer may be off-line or
incorrectly configured

15006 Print_Header_Footer_Too_Large A header or footer frame has exceeded the page depth
(height)

15007 Print_Frame_Too_Large You attempted to print a frame that has a depth greater
than the page height

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 556

EncycloSys2 - 2020.0.02

Return Value Global Constant Description

15008 Print_Preview_Ignored You attempted to change the printPreview property after
printing has begun

15010 Print_Copies_Ignored You attempted to change the copies property after
printing has begun

15011 Print_Orientation_Invalid You have assigned a value other than Print_Portrait or
Print_Landscape to the orientation property

15013 Print_Currently_Open The specified printer is currently open (that is, the
application currently has the printer open)

15014 Print_Failed_To_Obtain_Printer The task failed to obtain the specified printer (that is, the
API call to obtain the available printers has failed)

15015 Print_Cancelled The Cancel button on the runtime Print progress dialog
was clicked

15016 Print_Stopped The Stop button on the runtime Print progress dialog was
clicked

15017 Print_Not_Available The specified printer does not match the available
printers

15021 Print_NoDefaults_Printer Your workstation has no default printer set up

15022 Print_PrintReport_Ignored Printing started, so change of print report ignored

15023 Print_Printer_Ignored You attempted to change the printer in use after printing
has begun or before any printing has occurred (the
printer must be closed before commencing new output on
a different printer)

15024 Print_Invalid_Position Attempt to set a print position that is outside the valid
range

15025 Print_Unformatted_failed Printing of unformatted text failed; that is, the
printUnformatted method request failed

15026 Print_PaperSource_Ignored Printing started, so change to the paperSource property
ignored

15027 Print_PaperSource_Invalid Value of the paperSource property is invalid

15028 Print_Duplex_Invalid Value of the duplex property is invalid

15029 Print_Duplex_Ignored Printing started, so change to the duplex property ignored

15030 Print_Collate_Ignored Printing started, so change to the collate property ignored

15031 Print_In_Preview Value of the printPreview property is true so printer
object cannot be reused

15032 Print_DocumentType_Invalid You changed printer.documentType to Print_Custom_
Paper instead of calling the
printer.setCustomPaperSize method

15033 Print_Metafile_Playback_Error Internal error occurred when attempting to play back a
print metafile

If a value of 15015 or 15016 is returned (that is, printing was canceled or stopped), the printer has been closed
and code is required in your method to logically end the print processing.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 557

EncycloSys2 - 2020.0.02

The following example shows the use of the print method.

buttonPrint_click(btn: Button input) updating;
vars

result : Integer;
report : ReportForm;

begin
// Creates ReportForm transient class instance and references it by the
// report local variable, which can be used to access the form controls.
create report;
// Specifies output is not directed to the preview file before printing.
app.printer.printPreview := false;
// Specifies the format of the pages to be printed. As these are
// default values, it is unnecessary to redefine them unless you
// require a different format.
app.printer.orientation := Print_Portrait;
app.printer.documentType := Print_A4;
// Uses the print method to output frame2 of the form to the print
// file twice. The return value is stored in the result local
// variable, and is checked to ensure that the print task has not
// been stopped or cancelled. The method returns if this is the case.
// The close method then sends all buffered output to the printer
// that prints the document.
result := app.printer.print(report.frame2);
if result = Print_Stopped or result = Print_Cancelled then

return;
endif;
result := app.printer.print(report.frame2);
if result = Print_Stopped or result = Print_Cancelled then

return;
endif;

epilog
app.printer.close;
delete report; // Deletes the transient form instance.

end;

printActive
Signature printActive(win: Window): Integer updating;

The printActive method of the Printer class prints the specified Form or Control, as shown in the following
example.

bPrint_click(button: Button);
vars

result : Integer;
begin

app.printer.setMargins(Print_Landscape, 25, 25, 25, 25);
result := app.printer.printActive(drawing);
app.printer.close;

end;

Use the win parameter to specify a form or control that is to be printed. This method returns Print_Successful (0) if
the active form or control printed successfully. An exception is raised if this method is invoked from a server
method.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 558

EncycloSys2 - 2020.0.02

Note Unpredictable results occur if you mix print and printUnformatted method calls within the same print task.

printPage
Signature printPage(page: JadePrintData) updating;

The printPage method of the Printer class prints the output specified in the page parameter on the current printer.
The JadePrintData object that is specified in the page parameter can be a JadePrintDirect or a JadePrintPage
object.

printReport
Signature printReport(report: JadeReport) updating;

The printReport method of the Printer class prints the report specified in the report parameter on the current
printer if the printPreview property is set to false. If the printPreview property is set to true, the specified report is
displayed in print preview mode on the display device of the node in which the method is executed.

printUnformatted
Signature printUnformatted(text: String): Integer updating;

The printUnformatted method of the Printer class takes unformatted print text and passes it to the printer,
bypassing the Windows Printers Control. This method enables you to output text to a dot matrix printer; for
example, using your specified page depth.

Use the text parameter to specify the unformatted text that is to be printed.

You must embed all control commands that you require in your parameter string; for example, top-of-page,
carriage return, line feed, and so on.

Notes Unpredictable results will occur if you mix print and printUnformatted method calls within the same print
task.

This method is compatible only with dot matrix, daisy wheel, or a printer that is capable of printing a single line or
single line feed. It does not work with LaserJet printers, which must print a page at a time. An exception is raised if
the method fails.

The following example shows the use of the printUnformatted method.

vars
text : String;
loop : Integer;
printer : String;

begin
// Set the printer to the IBM Proprinter
printer := 'IBM Proprinter XL';
app.printer.setPrinter(printer);
// Set page depth to 3 inches - don't bother setting up the documentType
text := #'1b 43 00 03';
app.printer.printUnformatted(text);
// Print 4 * 4 labels
loop := 1;
while loop < 50 do

loop := loop + 1;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 559

EncycloSys2 - 2020.0.02

text := CrLf & CrLf & CrLf;
app.printer.printUnformatted(text);
text := ' 100831.7 100831.8

100831.7 100831.8 ' & CrLf & CrLf;
app.printer.printUnformatted(text);
text := 'Sockburn Sockburn

Sockburn Sockburn' & CrLf & CrLf;
app.printer.printUnformatted(text);
text := '123456 123457

1234568 1234569 ' & CrLf & CrLf;
app.printer.printUnformatted(text);
// Skip to top of page (3inch page);
text := #"0C";
app.printer.printUnformatted(text);

endwhile;
app.printer.close;

end;

The Printer category global constant values that can be returned by the printUnformatted method are listed in
the following table.

Return Value Global Constant Description

0 Print_Successful The print was successful

15003 Print_Printer_Not_Open The printer is not open

15004 Print_TextOut_Error Text output to printer failed

15005 Print_Printer_Open_Failed Opening the printer failed (it may be off-line or
incorrectly configured)

15013 Print_Currently_Open The printer is currently open

15014 Print_Failed_To_Obtain_Printer The task failed to obtain the printer

15017 Print_Not_Available The printer does not match the available printers

15025 Print_Unformatted_failed Printing of unformatted text failed

An exception is raised if this method is invoked from a server method.

setCustomPaperSize
Signature setCustomPaperSize(width: Integer;

height: Integer) updating;

The setCustomPaperSize method of the Printer class dynamically set a custom printer paper size at run time.
Specify the values of the width and height parameters in units of a tenth of a millimeter; for example, calling
app.printer.setCustomPaperSize(2100, 2970); sets the paper size equivalent to Print_A4. The
setCustomPaperSize method sets the Printer class documentType to the Printer category Print_Custom_
Paper (256) global constant value and sets the paper size to the specified width and height.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 560

EncycloSys2 - 2020.0.02

Notes Changing the value of the printer.documentType property resets any customized paper size. Changing
printer.documentType to Print_Custom_Paper raises exception 15032 (you must call the setCustomPaperSize
method).

Calling the setCustomPaperSize method during printing causes a printer.newPage call before being applied if
printing is not currently at the start of a new page.

setFooter
Signature setFooter(fr: Frame) updating;

The setFooter method of the Printer class sets the footer frame to the frame specified in the fr parameter.

To clear the footer, call the setFooter method, passing null as the frame. The footer frame can be changed at any
time.

The following example shows the use of the setFooter method.

setupHeaderFooterOrientation(printForm: PrintForm);
begin

if portrait.value then
app.printer.orientation := Print_Portrait;

else
app.printer.orientation := Print_Landscape;

endif;
if header.value then

app.printer.setHeader(printForm.header);
else

app.printer.setHeader(null);
endif;
if footer.value then

app.printer.setFooter(printForm.footer);
else

app.printer.setFooter(null);
endif;

end;

setHeader
Signature setHeader(fr: Frame) updating;

The setHeader method of the Printer class sets the header frame to the frame specified in the fr parameter.

To clear the header, call the setHeader method, passing null as the frame. The header frame can be changed at
any time but it takes effect only at the start of the next page of output.

The following example shows the use of the setHeader method.

checkForHeaderSwap(printForm : PrintForm);
begin

if headerSwap.value then
if app.printer.pageNumber.isEven then

app.printer.setHeader(printForm.header2);
else

app.printer.setHeader(printForm.header);
endif;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 561

EncycloSys2 - 2020.0.02

endif;
if footerSwap.value then

if app.printer.pageNumber.isEven then
app.printer.setFooter(printForm.footer2);

else
app.printer.setFooter(printForm.footer);

endif;
endif;

end;

setMargins
Signature setMargins(orient: Integer;

top: Real;
bottom: Real;
left: Real;
right: Real): Integer updating;

The setMargins method of the Printer class combines the settings of the properties for:

Orientation

Top of page

Bottom of page

Left margin

Right margin

You can change the margins at any time, but the top and right margins take effect only at the start of the next page
of output.

An exception is raised if this method is invoked from a server method.

The following example shows the use of the setMargins method.

bPrint_click(button: Button);
vars

printer : Printer;
begin

create printer transient;
printer.setMargins(Print_Landscape, 25, 25, 25, 25);
if graphFolder.topSheet = bgFrame then

printer.printActive(bgFrame);
else

printer.printActive(lgFrame);
endif;

epilog
printer.close;
delete printer;

end;

The orient parameter is the first to be specified, with a value of Print_Portrait (1) or Print_Landscape (2). The
subsequent parameters for the setMargins method are specified in millimeters.

The setMargins method always returns zero (0).

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 562

EncycloSys2 - 2020.0.02

setPrinter
Signature setPrinter(name: String io): Integer updating;

The setPrinter method of the Printer class enables you to programmatically set the output printer, by specifying a
valid printer in the name parameter.

To reset the printer back to the default printer of the user, pass an empty string in the name parameter, and the
method updates the string with the name of the default printer. The current printer must be closed for this to be
valid; that is, you cannot pass a null value when the printer is active.

Note The setPrinter method causes the current printer to be closed and all printer properties to be re-initialized
(with the possible exception of those controlled by the retainCMDValues property). You should therefore call the
app.printer.setPrinter method before you set any other printer values.

The printer cannot be altered after printing has begun. The return values, represented by global constants in the
Printer category, are listed in the following table.

Return Value Global Constant Description

0 Print_Successful The print to the specified printer was successful.

15013 Print_Currently_Open The specified printer is currently open. (The application
currently has the printer open.) A resumable exception
is raised and the method returns this 15013 value.

15014 Print_Failed_To_Obtain_Printer The task failed to obtain the specified printer. (The API
call to obtain the available printers has failed.)

15017 Print_Not_Available The specified printer does not match the available
printers.

15023 Print_Printer_Ignored You attempted to change the printer in use after printing
has begun, before any printing has occurred (the
printer must be closed before commencing new output
on a different printer).

15032 Print_DocumentType_Invalid You changed printer.documentType to Print_
Custom_Paper instead of calling the
printer.setCustomPaperSize method.

The default printer is re-evaluated every time a new print task is initiated and JADE logic has not specifically set
the printer name required. If logic sets a specific printer name (even if is the default printer), that printer continues
to be used, regardless of any change to the default printer.

In JADE thin client mode, this method sets the local (presentation client) printer to the specified printer.

An exception is raised if this method is invoked from any of the following.

A serverExecution method.

A server application running under the jadrap.exe JADE Remote Access Program (because printing
requires the jade.exe program).

The following examples show the use of the setPrinter method.

comboBox_click(combobox: ComboBox input) updating;
vars

printer : String;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 563

EncycloSys2 - 2020.0.02

result : Integer;
begin

// Uses the setPrinter method to set the printer when the user
// selects one from the combo box.
printer := comboBox.listObject.String;
result := app.printer.setPrinter(printer);
if result = Print_Not_Available or result = Print_Currently_Open then

app.msgBox('Printer is not available', 'Error',
MsgBox_Exclamation_Mark_Icon);

return;
endif;

end;

buttonUnload_click(btn: Button input) updating;
vars

default : String;
begin

default := "";
app.printer.setPrinter(default);
self.unloadForm; // Unloads the form and resets to the default printer

end;

setPrintFileName
Signature setPrintFileName(name: String);

The setPrintFileName method of the Printer class requests the printer to write the print output to the file specified
in the name parameter in the current directory.

In JADE thin client mode, this method always writes the print output to a file on the presentation client. This
method is ignored if it is not called before the printer is opened.

Notes It is the responsibility of the printer driver to format and create the output file from the print commands that
are issued. Although this method may therefore not be supported by some printers, most postscript printers can
create print files. If using Postscript printing, your printer must support Postscript level 2 or greater.

The type of file suffix that you specify is dependent on the type of print file created by your printer driver. For
example, a printer driver may enable you to create a .prn print file.

The following example shows the use of the setPrintFileName method.

directTest();
vars

report : ReportForm;
begin

create report;
report.tb1.formatOut := '';
app.printer.setPrintFileName("TestFile.prn");

// app.printer.setPrintFileName("FILE:"); // displays a dialog
app.printer.print(report.directFrame);

epilog
app.printer.close;
delete report;

end;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 564

EncycloSys2 - 2020.0.02

If the name parameter is set to "FILE:", the Print To File dialog is displayed by the printer, enabling the user to
specify the output file name that they require. (The Output File Name text box in this dialog also enables you to
specify a valid existing path, if required; for example, d:\jade\MyFile.prn.)

setPrintPosition
Signature setPrintPosition(pos: Integer) updating;

The setPrintPosition method of the Printer class sets the next print position to be used. (The position is zero-
relative to the top margin of the page.)

This method enables logic to print a left panel, reset to a specified position, and then print a right panel, for
example.

The position specified in the pos parameter must be greater than or equal to zero (0) and less than the value
returned by the app.printer.pageHeight method. The print position can be anywhere on the page, including being
reset to line positions that have already been printed on.

If the value specified in the pos parameter is less than zero (0) or greater than or equal to the value returned by
the app.printer.pageHeight method, an error is returned.

An exception is raised if this method is invoked from a server method.

This method is not relevant for direct printing (that is, when the formatOut property option is set to =direct).

For details about calling the setPrintPosition method when printing a background picture over which is drawn the
report itself, see "Layering Print Output", earlier in this section.

setReport
Signature setReport(report: JadeReport) updating;

The setReport method of the Printer class captures all JadeReport object JadePrintDirect and JadePrintPage
objects for storage, manipulation, or printing.

You can call this method before any print output is created, to set the JadeReport transient object into which any
report output is stored.

If the printPreview property is not set to true, the print output is not sent to the defined printer and the JadeReport
object retains the print output after the printer is closed. If the printPreview property is set to true, the print preview
process occurs as normal and the JadeReport object retains the print output on completion.

The JadeReport data can be manipulated, stored, or printed to meet your requirements.

Note To store the printed output, a persistent copy of the report output must be made in the JadeReport,
JadePrintDirect, and JadePrintPage subclasses.

Delete the JadeReport object when the process has completed. The delete process also removes the
JadePrintData objects that it references.

When running in JADE thin client mode and your application calls the setReport method to indicate that user
logic subsequently stores or manipulates the report output, each page of output is transferred to the application
server. (For details about optimizing print preview performance, see "Previewing Print Output", later in this
section.)

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 565

EncycloSys2 - 2020.0.02

When you use the formatOut property =pagenofm or =totalpages option for formats of data in text boxes or labels
and the report is being stored in the database (that is, the report uses the Printer class setReport method), output
is retrieved from a temporary file and stored in the database only after the printer is closed. (This is most evident
when running in JADE thin client mode, as the printed output must be retrieved from the presentation client and
passed to the application server at the end of the report rather than page by page as the report is produced.) For
details, see the TextBox class or Label class formatOut property.

useCustomPrinterSettings
Signature useCustomPrinterSettings(): Integer;

The useCustomPrinterSettings method of the Printer class instructs the JADE printing engine to combine
standard printing properties (for example, copies, duplex, and so on) with advanced settings that were cached
from the most-recent occasion the common Print Setup dialog was opened. The return value of zero (0) indicates
that the method executed successfully.

For details about setting advanced properties, see "Using the Common Print Setup Dialog", in the following
section.

Using the Common Print Setup Dialog
The Windows Common Print Setup dialog enables you to set options for a print task. Some options are standard
and apply to most printers; for example, copies, duplex, orientation, and so on. You can set these properties in
your JADE code. These properties are combined with the default settings of the printer to carry out the printing
task in JADE.

Other advanced options are specific to the printer; for example, the number of pages per sheet and booklet
printing. You cannot set these advanced options in your JADE code. These options are normally set on an
advanced settings sheet on the Print Setup dialog. The useCustomPrinterSettings method instructs the JADE
printing engine to combine the standard JADE printing properties (copies, duplex, orientation, and so on) with
advanced settings that were cached from the most-recent occasion the common Print Setup dialog was opened.

The following example shows a common Print Setup dialog being displayed by setting the value of the printSetup
property to true. Before starting to print, the useCustomPrinterSettings method is called so that the advanced
settings from the Print Setup dialog are used instead of the default printer settings.

vars
dialog : CMDPrint;

begin
create dialog transient;
dialog.initializeWith := CMDPrint.InitializeWith_MostRecentSetup;
dialog.printSetup := true;
if dialog.open <> null then

return; // User clicked Cancel button or Windows error occurred
endif;
// To use the printer-specific options you set on the Print Setup dialog
app.printer.useCustomPrinterSettings();
// Printing instructions such as "app.printer.print" would follow
...

end;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 566

EncycloSys2 - 2020.0.02

Notes This method is available only when the value of the PrintDataType parameter in the [JadePrinting]
section of the JADE initialization file is set to GDI.

A JADE application can remember one set of advanced printer settings only. The set of properties can be different
for each application.

When the Print Setup dialog is displayed more than once, only the last set of settings are cached.

Each printer retains the advanced settings until the print task is complete; that is, until the close method is called.

Using the Print Progress Dialog
The system-supplied Print Progress dialog is displayed on the first execution of the print statement when the
suppressDialog property is set to the default value of false.

The current page number and the user-supplied title are displayed.

The Print Progress dialog contains two buttons, as follows.

The Cancel button cancels the print function and discards the output. Print_Cancelled is returned in
response to the print statement.

The Stop button terminates the printing but does not discard the output. Print_Stopped is returned in
response to the print statement.

Note Your method should contain code to logically end print processing if a Print_Cancelled or Print_Stopped
value is returned. (For details, see the Printer class print method.)

Examples of Printer Methods
The method shown in the following example prints a currently active form.

bPrint_click(btn: Button input);
vars

result : Integer;
begin

result := app.printer.printActive(self);
app.printer.close;

end;

The following method shows how Printer methods can be referenced.

vars
count, result : Integer;
rpf : RepPrintFaults;
today : Date;

begin
create rpf;
app.printer.setMargins(Print_Portrait, 10, 10, 10, 10);
app.printer.setHeader(rpf.heading);
app.printer.pageBorderWidth := 2;
app.printer.setFooter (rpf.footer);
rpf.theDate.text := today.String;
rpf.customer.text := listCust.text;
rpf.product.text := listProd.text;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 567

EncycloSys2 - 2020.0.02

rpf.employee.text := listEmp.text;
foreach count in 1 to listFaults.listCount do

rpf.detailLine.text := listFaults.itemText[count];
result := app.printer.print(rpf.detail);
if result = Print_Stopped or result = Print_Cancelled then

return;
endif;

endforeach;
epilog

app.printer.close;
delete rpf;

end;

For an example of a method that places output directly on to a printer page at a specified location on the page
without using frames, see "Free-Format Printing", in the following subsection.

Free-Format Printing
JADE enables you to place output directly on a printer page at any location on the page without the use of frames
and to draw rotated text and characters.

Although the getPrintPosition and setPrintPosition methods enable you to control the line position for your print
output, printing graphics and multiple panes across the page when using print frames is not straightforward. (For
details about using frames to define your report layouts, see "Defining Your JADE Report Layouts", earlier in this
chapter.)

You can use the free-format print facilities to dynamically construct a page of output, treating the output page as
whole canvas, or you can supplement the use of frames with these facilities.

Support for free-format printing:

Provides flexibility in constructing print output

Reduces complexity when constructing multiple-paned output

Removes the reliance on the paint events of controls to be able to draw graphics

Allows the output of non-horizontal left-to-right text

The Printer class graphics properties and methods, similar to those defined in the Window class, allow dynamic
text and graphics to be output to a window.

The Printer class properties that you can use for free-format printing are summarized in the following table.

Property Description

drawFillColor Contains the color used to fill in shapes drawn with the printer graphics methods

drawFillStyle Contains the pattern used to fill the shapes drawn using the printer graphics
methods

drawFontBold Used when constructing the font used for drawing text

drawFontItalic Used when constructing the font used for drawing text.

drawFontName Used when constructing the font used for drawing text

drawFontSize Used when constructing the font used for drawing text

drawFontStrikethru Used when constructing the font used for drawing text

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 568

EncycloSys2 - 2020.0.02

Property Description

drawFontUnderline Used when constructing the font used for drawing text

drawStyle Defines the line style for output from printer graphics methods

drawTextAlign Contains the alignment used when outputting text on the printer using the
drawTextAt and drawTextIn methods

drawTextCharRotation Specifies the angle in degrees between each characters base line and the x axis
of the device

drawTextRotation Specifies the angle in degrees between the base line of the text output and the x
axis of the page

drawWidth Contains the line width for output from printer graphics methods

The Printer class methods that you can use for free-format printing are summarized in the following table.

Method Description

drawArc Draws an elliptical arc on the printer page

drawChord Draws a chord on the printer page (that is, an arc with the end points joined and
the interior filled)

drawEllipse Draws an ellipse on the printed page

drawFilledRectangle Draws a filled rectangle on the printed page

drawLine Draws a line on the printed page

drawPie Draws a pie-shaped wedge on the printed page

drawRectangle Draws the border of a rectangle on the printed page

drawRoundRectangle Draws a rectangle with rounded corners on the printed page

drawSolidRectangle Draws a rectangle filled with the same color as the border on the printed page

drawTextAt Draws a text string on the printer page

drawTextIn Draws a text string with a bounded rectangle on the printer page

drawTextSize Returns the size of the text on the print page, using the current drawFont property
values

drawTextSizeIn Returns the size of the text in a bounding rectangle on the print page, using the
current drawFont property values

The method shown in the following example prints a calendar page for a specified month, by placing output
directly on to a printer page at a specified location on the page.

printCalendarMonth(printer: Printer input; prettyPicture: Frame input;
month: Integer; year: Integer) updating;

vars
x, y, xinc, yinc : Integer;
xstart, ystart, day, width : Integer;
date : Date;

begin
width := printer.pageWidth;
// print pretty picture
prettyPicture.left := (width - prettyPicture.width)/2 + 30;

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 569

EncycloSys2 - 2020.0.02

printer.setPrintPosition(40);
printer.drawFontName := "Arial"; // now print the month name
printer.drawFontSize := 30;
printer.drawTextAlign := printer.DrawTextAlign_Center;
ystart := printer.getPrintPosition() + 10;
date.setDate(1, month, year);
printer.drawTextAt(date.monthName, (width/2).Integer, ystart, Black);
// set next position after the month text
x := printer.drawTextSize(date.monthName, y);
ystart := ystart + y + 30;
yinc := ((printer.pageHeight - ystart - 50)/5).Integer;
xinc := ((width - 60)/ 7).Integer;
xstart := ((width - xinc * 7)/2).Integer + 30;
printer.drawFontSize := 12;
date.setDate(7, 11, 1999); // Sunday
// draw squares
foreach x in xstart to xstart + xinc*7 step xinc do

printer.drawLine(x, ystart - 20, x, ystart + yinc*5, Black);
if x < xstart + xinc * 7 then

printer.drawTextAt(date.dayName, (x + xinc/2).Integer,
ystart - 20, Black);

date := date + 1;
endif;

endforeach;
foreach y in ystart to ystart + yinc*7 step yinc do

printer.drawLine(xstart, y, xstart + xinc*7, y, Black);
endforeach;
date.setDate(1, month, year); // print day numbers
day := date.dayOfWeek mod 7; // day number
printer.drawTextAlign := Printer.DrawTextAlign_Left;
printer.drawFontSize := 14;
y := ystart;
while month = date.month do

printer.drawTextAt(date.day.String, xstart + day *
xinc + 6, y + 4, Black);

date := date + 1;
day := day + 1;
if day = 7 then

day := 0;
y := y + yinc;
if y >= ystart + yinc*5 then

y := ystart;
endif;

endif;
endwhile;
printer.newPage;
app.printer.close;

end;

Previewing Print Output
When the Print Preview option button is selected in the JADE development environment Print Options dialog or
the appropriate option is selected in a JADE runtime application, the first page of your report is displayed on the
workstation monitor when the OK button is clicked, instead of output to the printer.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 570

EncycloSys2 - 2020.0.02

Note When a skin was used to preview the printing of a form and the background color of the skin had a white
brush, the boundary of the printed output preview was not evident in earlier releases.

If the form or control is defined with a non-default background color, that color is therefore used to draw the
background, and the skin background definition is ignored so that the skin background is consistent, regardless of
whether it is defined with a brush or a color.

Print output is directed to the preview file when the Printer class printPreview property is set to true.

As the print preview shows what your output will look like on a specific printer, the printer must be known before
the preview is generated. (Paper sizes, printable regions, paper trays, and so on are not consistent across all
printers.)

The Print button on the print preview does not necessarily send the output to your default printer; it is sent to the
printer of the current print task (which defaults to your default printer).

The Title caption contains the current page that is being previewed and the total number of pages for your report;
for example:

Preview of page 3 of 8 page report

Tip When you click on an area of a page previewed in a reduced form, the page is expanded with the selected
area of the page centered on the workstation monitor. Click on an expanded page to reduce the previewed page.

You can page or scroll through the report, or you can select one of the buttons listed in the following table.

Button Action

Previous Page Displays the previous page of the report.

Next Page Displays the next page of the report.

First Page Displays the first page of the report.

Last Page Displays the last page of the report.

Specific Page Displays the Print Page Select dialog, to enable you to specify a valid number of the page
that you want to preview.

Expand (or
Reduce)

Zooms in to display the report across the width of the monitor. When the report is expanded,
the button is captioned Reduce, to enable expanded output to be reduced or zoomed out.

Print Report Directs the report to the default printer or the printer specified in the Print Setup dialog.

Print Selected Displays the Select Pages To Print dialog (for details, see "Using the Select Pages To Print
Dialog", in the following subsection).

Find Displays the Find Text dialog (for details, see "Searching Previewed Output", later in this
section).

Find Next Finds the next occurrence of the text specified in the Find Text dialog.

Cancel Cancels the print preview.

Buttons that are not valid are disabled. For example, if the report has only one page the Next Page, Previous
Page, First Page, Last Page, and Specific Page buttons are disabled. If the first page of a multiple page report is
displayed, the Previous Page button is disabled. For details about controlling the display of the Print Report and
Print Selected buttons during print preview, see the Printer class printPreviewAllowSelect property, earlier in
this section.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 571

EncycloSys2 - 2020.0.02

Note The preview output is held in transient objects on your workstation until you choose to print or cancel it.

When the presentation client requests a print preview, the pages of the printed report do not have to be transferred
to and from the application server. (This optimizes the performance of the print preview process when running
JADE thin client mode over a slow network.) However, if your application calls the Printer class setReport
method to indicate that user logic subsequently stores or manipulates the report output, each page of output is
transferred to the application server.

Using the Select Pages To Print Dialog
When print output is previewed, clicking the Print Selected button displays the Select Pages To Print dialog.

For details about previewing print output, see "Previewing Print Output", in the previous subsection. See also the
Printer class printPreviewAllowSelect property, for details about controlling the display of the Print Selected
button.

The Select Pages To Print dialog enables the user to select the printing of the current page, all pages, selected
pages, or a range of pages of a print document-previewed in the JADE development environment or in a JADE
application.

To specify print criteria

1. To print selected pages, perform one of the following actions.

Select the page or pages that you want to print in the Pages Available list box and then click the >
button to copy the selected pages to the Pages Selected list box. (Use the Ctrl or Shift key to make or
extend multiple selections.)

The selected pages are then displayed in the Pages Selected list box and are highlighted in the Pages
Available list box.

Specify the required page numbers in the Selected Pages text box and then click the Selected Pages
option button to confirm the selection. Specific page numbers or a range of pages can be specified,
separated by a comma; for example, 2,3, 8-10.

2. Select the All Pages option button to print all pages of the previewed document or the Current Page option
button to print only the page currently displayed in the preview window.

3. In the Copies text box, specify the number of copies of the selected pages that are required. (By default, one
copy only is printed.)

4. Click the OK button.

The selected pages are then output to the printer. Alternatively, click the Cancel button to abandon your
selections.

Searching Previewed Output
When print output is previewed, clicking the Find button displays the Find Text dialog. For details about
previewing print output, see "Previewing Print Output", in the previous subsection.

The Find Text dialog enables you to select the print output search criteria.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 572

EncycloSys2 - 2020.0.02

To specify search criteria

1. In the Find Text text box, specify the text that is to be located.

2. If you want the exact match by case (where uppercase or lowercase is significant), check the Case
Sensitive? check box. A search is then performed for text with the same capitalization as the text in the Find
Text text box. By default, searching is case-insensitive; that is, this check box is unchecked.

3. In the Starting page number text box, specify the page number on which to start the search if the search is to
start on a page other than the current page. (The search is always performed in a forwards direction.)

4. If you want the search restricted to the full word specified in the Find Text text box (for example, Adams will
not find Adamson), check the Whole words only? check box.

A search is then performed for full words that match your specified search criterion. As this check box is not
checked by default, the search will match on part of a word.

5. Click the Find button to initiate the search. Alternatively, click the Cancel button to abandon the search.

If the search finds an instance of the specified text, the page containing that text is displayed and positioned so
that the text is visible, with the first occurrence of the located text displayed in red.

If the search does not locate the specified text, the Print Preview Find message box advises you of this.

If text has been located, the Find Next button is enabled, so that you can locate the next occurrence of the
specified text. The Print Preview Find message box advises you when no more occurrences are located.

When searching for text on previewed print output, note the following points.

When a search has been initiated and has located an occurrence, the Find Next button remains enabled,
even after all occurrences have been processed.

Changing focus to another page of the previewed print output and then clicking the Find Next button restarts
the search from that page.

The text is searched in lines across the output. The next field to be considered is to the right of the current
line or the next field to the left at a greater vertical position.

This becomes important when searching for multiple words. A match of quick fox will succeed even if quick
and fox are on different parts of the same line or on different lines if fox is the next logical text field on from
quick.

Printed output may be constructed so that A1234 is actually made up of two fields: A and 1234, for example.
Using a part-word search of A1234 or A 1234 will both find the text in this example.

However, a whole-word search of A 1234 will only succeed because physically there are two separate
words. If a whole-word search fails unexpectedly, try a part-word search. A warning to this effect is displayed
on the failure message box for a whole-word search.

Portable Printing
JADE printing uses standard GUI objects and commands to generate the required output. You can save these
objects and commands in a file for later use; that is, you can "replay" the file to generate a print preview or you can
send the data to a printer.

Encyclopaedia of Classes
(Volume 2)

Printer Class Chapter 1 573

EncycloSys2 - 2020.0.02

JADE print data can be saved in the database in the following formats.

Scalable Vector Graphics (SVG), which is the default value on all operating systems

Note As the contents of ActiveXControl, JadeDotNetVisualComponent, JadeRichText, and OleControl
controls are displayed by the Windows Graphical Device Interface (GDI) calls, they cannot generate SVG
format files. When one of these controls is printed to an SVG meta file, a picture is therefore created from the
controls that are currently displayed and it is this picture that is stored in the SVG file, which may result in a
slightly lower-quality display. The resolution the generated image is specified by the
GeneratedImageResolution parameter in the [JadePrinting] section of the JADE initialization file. In addition,
if you perform a find operation from a print preview screen, JADE cannot search in these controls.

Windows Enhanced Meta Files (EMF)

Data can be sent to the printer in the following print data formats.

Windows Graphical Device Interface (GDI) commands, which is the default value.

Postscript (PS). If using Postscript printing, your printer must support Postscript level 2 or greater.

Windows can provide the GUI objects and commands, which can be replayed to provide a print preview and data
for printing. Although these GUI objects and commands are saved as an SVG file by default, you can force JADE
to use an EMF format for print data.

The choice of meta file format (EMF or SVG) and print data type (GDI or PS) are controlled by the PrintFileFormat
and PrintDataType parameters, respectively, in the [JadePrinting] section of the JADE initialization file.

Although output to a printer can be done using GDI or PS commands, the format of the meta file (that is, EMF or
SVG) determines whether you can use the Postscript data type for print output. Not all options are available under
all operating systems and executables. Valid combinations for the jade.exe executable are listed in the following
table.

Print File Format PS Data Format GDI Data Format

SVG Yes Yes

EMF No Yes

The format of the data sent to the printer depends on the format in which the command data has been saved and
the operating system and executable that is used. If the commands are saved as:

EMF, the output can be GDI format only

SVG, printer output can be GDI or PS

For more details, see "JADE Printing Section [JadePrinting]", in the JADE Initialization File Reference.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 574

EncycloSys2 - 2020.0.02

Process Class
An instance of the Process class is created for each sign-on to each application running in a JADE system. A
node can have several processes when running the JADE development environment.

For details about the class constants, properties, and methods defined in the Process class, see "Process Class
Constants", "Process Properties", and "Process Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

Process Class Constants
The constants provided by the Process class are listed in the following table.

Class Constant Integer Value Description

RPS_EXTRACT_FAILED_EVENT 202 Notification event that loading of RPS table data failed

RPS_EXTRACT_FINISHED_EVENT 203 Notification event that loading of RPS table data
finished successfully

SignOn_Usage_NoAudit 2 Signed on in NoAudit mode

SignOn_Usage_OdbcLogin 3 Signed on over a JADE ODBC driver

SignOn_Usage_ReadOnly 1 Signed on in ReadOnly mode

SignOn_Usage_Update 0 Signed on in Update mode

Process Properties
The properties defined in the Process class are summarized in the following table.

Property Description

adminInfo Contains information that can be used in tools that monitor the status of processes in
the system

node Contains a read-only reference to the node in which the process is executing

number Contains a read-only internal number that distinguishes the process from other
concurrent processes

persistentApp Contains a reference to the persistent application object that corresponds to the
process

schema Contains a reference to the persistent schema object that corresponds to the process

signOnTime Contains the date and time that the process started executing

signOnUserCode Contains the user code specified when signing on

status Not yet implemented (reserved for future use)

type Contains the type of the current process

userCode Contains the current user code

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 575

EncycloSys2 - 2020.0.02

Property Description

userExitCode Contains a value returned by your applications when the jade.exe program exits

userInfo Contains any additional information stored by the user

adminInfo
Type: String

Availability: Read and write

The adminInfo property of the Process class contains administration information that can be used in tools that
monitor the status of the processes in the system.

node
Type: Node

Availability: Read-only

The node property of the Process class contains a read-only reference to the node in which the process is
executing.

number
Type: Integer

Availability: Read-only

The number property of the Process class contains a read-only Integer value that is an internal number, relative
to the system, that distinguishes the process from other concurrent processes.

The value is zero (0) until the process has successfully passed the validation and initialization stages.

persistentApp
Type: Application

Availability: Read-only

The persistentApp property of the Process class contains a reference to the persistent application object that
corresponds to the process.

The name of the application instance is that specified in any of:

The app parameter in the JADE executable (jade.exe) command line

The Application class startApplication, startAppMethodWithString, startAppMethod, or
startApplicationWithParameter method

The jomSignOn Application Programming Interface (API) call

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 576

EncycloSys2 - 2020.0.02

schema
Type: Schema

Availability: Read-only

The schema property of the Process class contains a reference to the persistent schema object that corresponds
to the process.

The name of the schema instance is that specified in any of:

The schema parameter in the JADE executable (jade.exe) command line

The Application class startApplication, startAppMethodWithString, startAppMethod, or
startApplicationWithParameter method

The jomSignOn API call

signOnTime
Type: TimeStamp

Availability: Read-only

The signOnTime property of the Process class contains the date and time that the process started its execution.
The date and time is that of the node hosting the process for all processes apart from thin client processes, for
which the date and time is obtained from the thin client.

signOnUserCode
Type: String[30]

Availability: Read-only

The signOnUserCode property of the Process class contains the user code specified when signing on to the
application.

The following example shows the use of the signOnUserCode property.

load() updating;
begin

self.centreWindow;
self.caption := process.signOnUserCode;
connectionName.text := app.computerName;
sendIt.value := true;

end;

status
Type: Integer

Availability: Read-only

The status property of the Process class is not yet implemented. It is reserved for future use.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 577

EncycloSys2 - 2020.0.02

type
Type: ASCII character[1]

Availability: Read-only

The type property of the Process class contains the type of current process, as shown in the example in the
following code fragment.

if process.type = 5.Character then... // do some processing here

The process types are listed in the following table.

Value Description

0 Background process

1 JADE development (that is, JADE itself)

2 A non-development process

3 JADE Debugger

4 JADE Painter or JADE Translator utility

5 Shadow process (that is, a process replaying transactions on a secondary server)

6 A JADE utility application, such as JADE Monitor or the JADE Database Utility

As all processes running on the secondary server in an SDS environment share the same node object, you can
use the Process class type property to distinguish shadow (replaying) transactions on a secondary server from
reader processes.

userCode
Type: String[30]

Availability: Read-only

The userCode property of the Process class contains the current user code, which may differ from that specified
when signing on to the application.

Changes to the userCode property are audited in a journal record of type Jaa_Type_ChangeUser. Information
from this record can be retrieved by using the getChangeUserData method of the JadeAuditAccess class.

The following example shows the use of the userCode property.

vars
pd : ProcessDict;
proc : Process;
coy : Company;

begin
coy := Company.firstInstance;
self.lock(coy, 1, 1, 100);
create pd transient;
system.getObjectLockProcesses(coy, pd, 100);
foreach proc in pd do

write(proc.userCode);

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 578

EncycloSys2 - 2020.0.02

endforeach;
end;

userExitCode
Type: Integer

The userExitCode property of the Process class contains a value returned by your applications when the
jade.exe program exits. The default value is zero (0). For more details, see Appendix A, "Exit Values", in the
JADE Installation and Configuration Guide.

You can use this property, for example, to set a non-zero exit code that can then be checked in a batch file by
using the ERRORLEVEL keyword to check for appropriate userExitCode values, as shown in the following
example.

begin
beginTransaction;
process.userExitCode := 123;
commitTransaction;
terminate;

end;

The specified value is returned only if the JADE program would have normally returned zero (0); that is, if JADE
wants to return a non-zero exit value, the JADE value takes precedence over your value specified in this attribute.

Note As the userExitCode property applies to the jade exe node, any JADE application executing from that
same client environment can set this value. Cooperation between applications wanting to set this property may
therefore be required.

This property gets or sets the exit code for the running jade exe client. The property can be accessed only on the
running process. Accessing it on a non-jade exe client or a process other than the current process of the
application results in exception 1265 (Environmental object operation is out of scope for process).

If the client is running as a standard client, the method is equivalent to node.userExitCode for the current
processes node.

If the client is running as a presentation client, the exit code is retrieved or set on the jade.exe program of the
presentation client.

Note As the process object is persistent, you must be in transaction state to set the value.

Applies to Version: 2016.0.02 (Service Pack 1) and higher

userInfo
Type: String

The userInfo property of the Process class contains any additional information that the user needs to store for a
process. For example, you can display user data in the JADE Monitor Users window, if required, by executing the
following code.

beginTransaction;
process.userInfo := "specify-the-user-supplied-text-here";

commitTransaction;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 579

EncycloSys2 - 2020.0.02

The following examples show the use of the userInfo property.

startSvrApp4() updating;
vars

timestamp : TimeStamp;
begin

beginTransaction;
process.userInfo := app.name & ' ' & method.name;
commitTransaction;
beginTimer(30000, Timer_OneShot, Start_Exe);

end;

beginTransaction;
process.userInfo := 'Sort started at ' & ts.String;

commitTransaction;

Process Methods
The methods defined in the Process class are summarized in the following table.

Method Description

addLockCallStackFilter Restricts the saving of the lock call stack to instances of
the specified class or classes only

adjustObjectCachePriority Changes how long an object is to be retained in
persistent or transient object cache

allTransientInstances Populates the specified array with all non-shared
transient instances that have been created by the
receiver process and not yet deleted

allowTransientToPersistentInvs Enables a transient object to reference a persistent
object without its inverse being maintained

allowTransientToSharedTranInvs Enables a non-shared transient object to reference a
shared transient object without its inverse being
maintained

analyzeTransientFileUsage Returns a string containing a detailed analysis of the
transient database file

appServerPort Returns the TCP/IP communications port number of the
application server node

beginMethodProfiling Starts method profiling for the receiving process

changeUserCode Changes the current value of the userCode property

classAccessFrequenciesStatus Returns true if at least one process has enabled the
counting of accesses to classes

clearLockCallStackFilter Clears the list of classes for which saving lock call stack
information has been enabled for this process

compactTransientFile Defragments the transient database file for the
receiving process

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 580

EncycloSys2 - 2020.0.02

Method Description

countQueuedNotifications Returns the number of unprocessed notifications
queued for the calling process

createTransientMethod Creates an executable transient JADE method

currentStack Populates the process stack array with references to
method call descriptor objects

debug Displays information about your current process stack,
and enables you to inspect variables

deleteTransientMethod Deletes a transient JADE method

disableAllTransTraceCallbacks Disables all transaction trace callbacks for the receiver
process

enableClassAccessFrequencies Enables or disables the counting of accesses to
classes

enableTransTraceCallback Enables or disables a specified transaction trace
callback for the receiver process

endMethodProfiling Stops method profiling for the receiving process

executeIOScript Executes a JADE script passing parameters as io
(input-output) usage

executeScript Executes a JADE script

executeTransientIOMethod Executes a transient JADE method passing parameters
as io (input-output) usage

executeTransientMethod Executes a transient JADE method

extractRequestStatistics Extracts local or remote request statistics from
notifications sent in response to a
sendRequestStatistics method request

extractWebStatistics Extracts the performance statistics relating to Web
activity from a notification

finalizePackages Performs any terminate function common to all schema
applications that contain packages

getAllApps Populates an array with all applications that are active
in the process of the receiver

getBufferStatistics Returns cache-related information about a specified
object

getCallStackInfo Retrieves information about the call stack of the current
process

getCommandLine Returns a string containing the command line of the
receiving node object of the process

getComputerName Returns a string containing the computer name of the
receiving node object of the process

getDateTimeDelta Retrieves the values used to adjust initial date and time
local variable values used by the receiving process

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 581

EncycloSys2 - 2020.0.02

Method Description

getErrorText Returns the message text for a JADE-defined error
code

getExceptionHandlerStack Populates an array with transient objects representing
exception handlers armed by the current process

getIniFileName Returns a string containing the name and full path of
the JADE initialization file of the process

getJadeHomeDirectory Returns a string containing the JADE HOME directory

getJadeInstallDirectory Returns a string containing the directory in which the
JADE binaries are installed

getJadeWorkDirectory Returns a string containing the directory in which JADE
work files are created

getLastExtFunctionCallError Returns the error code set by the last external function
call made by the current process

getLockCallStackFilter Returns the list of classes for which saving lock call
stack information has been enabled for this process

getMethodCacheLimit Retrieves the method cache limit for the executing
process

getMethodCacheStatistics Retrieves information about the method cache of the
executing process and stores it in the passed-in
JadeDynamicObject instance

getMethodProfileInfo Retrieves method profiling information for the receiving
process

getOSDetails Returns comprehensive information about the
operating system and machine architecture of the
process of the receiver

getOSPlatform Returns the operating system of the process of the
receiver

getPersistentDeadlockPriority Retrieves the priority value to be used when dealing
with deadlocks involving persistent objects

getProcessApp Returns a reference to the main Application object of
the current process

getProfileString Retrieves a string from the specified section in the
initialization file of the process

getProgramDataDirectory Returns a string containing the program data directory

getRequestStatistics Retrieves node sampling values relating to the receiver
process

getRpcServerStatistics Retrieves node sampling statistics relating to RPC
activity between the database server node and the
receiver process

getSaveLockCallStack When an object is locked, returns true if the lock call
stack is being saved for a process

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 582

EncycloSys2 - 2020.0.02

Method Description

getSignOnUsage Returns the way in which a currently logged on user
signed on to JADE

getStringPoolLimit Retrieves the string pool limit for the executing process

getTempPath Returns a string containing the architecture-specific
version of the directory in which temporary files are
created on the process of the receiver object

getTimers Returns timer-related information from the receiving
process

getTrackedMethod Returns the tracked method that caused the specified
preamble or postamble method to be invoked

getTrackedMethodReceiver Returns the object used as the receiver for the method
being tracked

getTrackedMethodReturnValue Retrieves the return value of the method being tracked

getTrackedMethodStatus Returns a value representing the current status of the
tracked method

getTransactionId Returns the latest identifier from the most recent
transaction as a Decimal value

getTransactionId64 Returns the latest identifier from the most recent
transaction as an Integer64 value

getTransactionTraceCallbacks Returns the method and receiver for all currently
enabled transaction trace callbacks

getTransactionTraceObject Returns the transaction trace object associated with the
current process

getTransientDeadlockPriority Retrieves the priority value to be used when dealing
with deadlocks involving shared transient objects

getTransientFileLength Returns the physical size of the transient database file
in use by the executing process

getTransientFileName Returns the name of the transient database file in use
by the executing process

getUserDataDirectory Returns a string containing the user data directory

initializePackages Performs any initialization function common to all
schema applications that contain packages

isCommitting Returns true if the process is currently committing a
transaction

isInExceptionState Returns true if the epilog is being executed as a result
of an exception

isInImportedContext Returns true if the current (executing) process has
invoked the current method from a package

isInLoadState Returns true if the process is currently in load state

isInLockState Returns true if the process is currently in lock state

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 583

EncycloSys2 - 2020.0.02

Method Description

isInTransactionState Returns true if the process is currently in persistent
transaction state

isInTransientTransactionState Returns true if the process is currently in transient
transaction state

isRunningScript Returns true if the process is running a JadeScript or
Workspace method

isUserDataPump Returns true if the process is running as a user-defined
Datapump application

isUsingThinClient Returns true if the process is running in JADE thin
client mode

iteratorsExcludeOfflineObjects Specifies whether objects stored in offline partitions
should be excluded when collections are iterated with
an iterator or a foreach instruction

networkAddress Returns the IP address of the network interface
connection to the application server or database server

overrideDeferredInverseMaintenance Specifies whether a deferred execution strategy for all
automatically maintained collection properties for the
current process is in use

profileMethod Selects or deselects a method to be profiled for the
receiving process

profiler Returns the profiler for the receiving process

prohibitBeginTransaction Stops the current process entering transaction state

prohibitPersistentUpdates Enables the updating of persistent objects in the current
process to be prohibited

removeMethodProfileInfo Removes all method profiling information for the
receiving process

resumeTimers Resumes all timers suspended for a process

rpsSuppressTransactionDeletes Specifies that an object deletion on a primary system is
not replicated to a relational database

sendCallStackInfo Requests a process to send notifications containing
information about its call stack

sendMethodCacheStatistics Requests a target process (the receiver) to send a
notification containing statistics about the method
cache of the target process

sendRequestStatistics Requests a process to send a notification containing
local or remote request statistics

sendTransientFileAnalysis Requests a process to send notifications containing a
detailed analysis of the contents of the transient
database file

sendTransientFileInfo Requests a process to send a notification containing
the oid of the process, and the name and length of the
transient database file

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 584

EncycloSys2 - 2020.0.02

Method Description

sendWebStatistics Requests a process to send a notification containing
performance statistics for Web activity

setDateTimeDelta Sets the values used to adjust the initial values of the
Date, Time, and TimeStamp local variables

setDefaultLockTimeout Changes the default lock timeout period for the
receiving process

setMethodCacheLimit Programmatically sets the method cache limit for the
executing process

setObjectCachePriority Specifies how long an object is to be retained in
persistent or transient object cache

setPersistentDeadlockPriority Sets the priority value to be used when dealing with
deadlocks involving persistent objects

setProfileString Copies a string into the specified section of the JADE
initialization file of the process

setSaveLockCallStack Specifies whether the call stack is recorded when the
receiving process locks an object

setStringPoolLimit Programmatically sets the string pool limit for the
executing process

setTransientDeadlockPriority Sets the priority value to be used when dealing with
deadlocks involving shared transient objects

sleep Suspends execution of the thread of the receiver
process for a specified time

startMethodTracking Initiates method tracking for the receiver process

startTransactionTrace Initiates transaction tracing for transactions carried out
by the current process

stopMethodTracking Turns off method tracking for the receiver process

stopTransactionTrace Turns off transaction tracing for the receiver process

suspendTimers Suspends all timers registered by a process

transactionTraceStarted Returns true if transaction tracing is enabled for the
current process

transientPersistentInvsEnabled Returns the current state of the Boolean set by calls to
allowTransientToPersistentInvs on the process

transientSharedTranInvsEnabled Returns the current state of the Boolean set by calls to
allowTransientToSharedTranInvs on the process

truncateOnDecimalOverflow Specifies whether an exception is raised when a
decimal overflow occurs

useDeferredInverseMaintenance Enables or disables a deferred execution strategy for
all automatically maintained collection properties for
the current process

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 585

EncycloSys2 - 2020.0.02

Method Description

useUpdateLocks Update locks rather than Exclusive locks are implicitly
acquired when an object is updated

waitForMethods Suspends the process until one of the method contexts
completes or times out

addLockCallStackFilter
Signature addLockCallStackFilter(classList: ParamListType);

The addLockCallStackFilter method of the Process class enables you to define a filter to restrict the saving of
lock call stack information to instances of specific classes only. By default, the lock call stack is saved for all
objects that the process locks.

You can call this method for any running Process instance in the system.

The code fragment in the following example shows the use of the addLockCallStackFilter method.

process.addLockCallStackFilter(Customer, Account, SaleItem);

Applies to Version: 2016.0.01 and higher

adjustObjectCachePriority
Signature adjustObjectCachePriority(obj: Object;

delta: Integer): Boolean;

The adjustObjectCachePriority method of the Process class changes, through the delta parameter, how long an
object, specified by the obj parameter, is to be retained in object cache. If the object is in cache, true is returned to
indicate that the retention of the object in cache has been changed. If the object is not in cache or is being
updated by another process, false is returned.

The value of the delta parameter effectively changes the number of lives in cache of the object specified by the obj
parameter. The number of lives for an object in cache is one (1) through 255. A positive value for the delta
parameter increases the number of lives up to the upper limit of 255, and a negative value decreases the number
of lives to the lower limit of zero (0) lives, at which point the object is removed from cache.

When an object in cache is not used for the specified amount of time, it becomes a candidate to be removed from
cache. Its number of lives is examined. If it is equal to one (1), the object is removed from cache. If it is greater than
one (1), the number of lives is decremented and instead of being removed from cache, the object is treated as if it
had just been accessed. This results in it being retained longer in cache, instead of being removed. Conversely,
when the number of lives for an object is set to zero (0), it is removed from cache.

When an object is removed, its subobjects are also removed, including string large objects (slobs) and binary
large objects (blobs) but not exclusive collections, which must be removed separately.

The adjustObjectCachePriority method is a variation of the setObjectCachePriority method that enables you to
adjust the number of lives relative to the current value, rather than specify the exact number of lives.

The number of lives an object has applies only while the object is in cache. When an object is first loaded into
cache, it is assigned one life only. Lives are not recorded for objects that are not in cache.

You can use the adjustObjectCachePriority method with persistent and transient objects; that is, it applies to
persistent and transient object caches. With transient objects, a process can affect only shared transient objects
and its own non-shared transient objects.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 586

EncycloSys2 - 2020.0.02

A process must use its own Process instance as the method receiver. Using any other Process instance causes
a 1265 exception (Environmental object operation is out of scope for process) to be raised.

In the following method, an application decrements the number of lives each object in a collection; that is, reduces
the number of lives by one (1) on an individual basis.

foreach cust in root.allCusts do
totalSales := totalSales + cust.purchases;
process.adjustObjectCachePriority(cust, -1);

endforeach;

allowTransientToPersistentInvs
Signature allowTransientToPersistentInvs(allow: Boolean);

The allowTransientToPersistentInvs method of the Process class enables a transient object to reference a
persistent object without its inverse being maintained. Calling this method with the allow parameter set to true is
equivalent to enabling the Allow Transient to Persistent Reference check box on the extended Define
References dialog for all references until this method is called with the allow parameter set to false.

For more details, see "Defining an Inverse Reference Property", in Chapter 4 of the JADE Development
Environment User’s Guide.

The initial state of a process is to disallow such references (that is, as if this method had been called with a value
of false) and attempts to do so raise a 1215 exception (that is, Persistent objects cannot reference transient
objects).

Use the transientPersistentInvsEnabled method to return the current state of the process.

allowTransientToSharedTranInvs
Signature allowTransientToSharedTranInvs(allow: Boolean);

The allowTransientToSharedTranInvs method of the Process class enables a non-shared transient object to
reference a shared transient object without its inverse being maintained.

The initial state of a process is to disallow such references (that is, as if this method had been called with a value
of false) and attempts to do so raise a 1289 exception (that is, Shared transient objects cannot reference non-
shared transient objects).

Use the transientSharedTranInvsEnabled method to return the current state of the process.

allTransientInstances
Signature allTransientInstances(objArray: ObjectArray;

maxInsts: Integer);

The allTransientInstances method of the Process class populates the array specified in the objArray parameter
with all non-shared transient instances that have been created by the receiver process and not yet deleted. This
includes instances of internal classes such as NumberFormat and Printer but does not include shared transient
instances. Use this method to check for transient objects that have not been deleted when an application
terminates.

The maxInsts parameter specifies the maximum number of transient instances. A maxInsts parameter value of
zero (0) indicates that there is no maximum number of transient instances.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 587

EncycloSys2 - 2020.0.02

You can use the allTransientInstances method only a Process instance passed by the current process. If this
method is called with a foreign process as the receiver, an exception is raised (that is, a 1265 - Environmental
object is out of scope for process).

Notes Do not use the allTransientInstances method in serverExecution methods or in clientExecution
methods called from serverExecution methods. When executed from a serverExecution method, the only
instances included in the array will be transient objects that have been created or updated by the
serverExecution method.

If executed from a clientExecution method called from a serverExecution method, it will not include any transient
objects that were created in the serverExecution method and not yet accessed by the clientExecution methods.

The code fragment in the following example shows the use of the allTransientInstances method.

create objectArray transient;
process.allTransientInstances(objectArray, 0);
write 'Transient instances are -';
foreach object in objectArray do

write object.String;
endforeach;
delete objectArray;

analyzeTransientFileUsage
Signature analyzeTransientFileUsage(): String;

The analyzeTransientFileUsage method of the Process class returns a string containing a detailed analysis of
the transient database file, including counts of objects by class number plus other useful information. Each line of
the analysis is delimited by the line feed (Lf) character.

Tip An easy way to view this output is to use the writeString method of the File class to write the string returned
by the analyzeFileTransientUsage method to a file and then view it with WordPad or another text editor.

See also "Transient Database File Analysis", in Chapter 3 of the JADE Database Administration Guide.

appServerPort
Signature appServerPort(): Integer;

The appServerPort method of the Process class returns the TCP/IP communications port number of the
application server node on which the process is executing. This method does not return the port number of the
receiver of the method.

When running in single user mode or the application is not running in JADE thin client mode, the appServerPort
method returns zero (0).

beginMethodProfiling
Signature beginMethodProfiling(option: Integer);

The beginMethodProfiling method of the Process class starts method profiling for the receiving Process
instance, which can be any current process including processes running on other nodes.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 588

EncycloSys2 - 2020.0.02

The values for the option parameter and the corresponding range of methods to be profiled are listed in the
following table.

Value Profiles …

1 All called methods, whether nominated or not

2 Nominated methods and their nested method calls

3 Nominated methods only

Methods are nominated using the profileMethod method of the Process class.

The following actions occur if the beginMethodProfiling method is called when profiling is already in effect for the
target process.

1. Profiling information is reset

2. The profiling option is adjusted to match the option parameter

3. The list of nominated methods is retained

Notes One process can start method profiling on a target process, and a different process can clear or end the
profiling.

It is recommended that when investigating application performance, only one of the JADE Profiler, JADE Monitor,
or method profiling is used at any one time, as the results reported when any of these are combined is undefined.

Methods specified as serverExecution are not profiled, unless executed from server applications or in single user
mode.

changeUserCode
Signature changeUserCode(userCode: String);

The changeUserCode method of the Process class changes the current value of the userCode property. The
code fragment in the following example shows the use of the changeUserCode method.

process.changeUserCode("newUserCode");

Use the userCode parameter to specify the new value of the userCode property for the process.

classAccessFrequenciesStatus
Signature classAccessFrequenciesStatus(processList: ProcessDict input;

startTime: TimeStamp output): Boolean;

The classAccessFrequenciesStatus method of the Process class returns true if at least one process has
enabled the counting of accesses to classes by using the enableClassAccessFrequencies method.

The processList parameter is populated with the object identifiers (oids) of the processes that enabled the
counting of accesses to classes. The value of the startTime parameter is set to the time that the first process
enabled the counting of accesses.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 589

EncycloSys2 - 2020.0.02

clearLockCallStackFilter
Signature clearLockCallStackFilter();

The clearLockCallStackFilter method of the Process class clears the list of classes for which saving lock call
stack information has been enabled for this process; that is, it clears the filtering options set for this process by the
addLockCallStackFilter method of the Process class.

You can call this method for any running Process instance in the system.

Applies to Version: 2016.0.01 and higher

compactTransientFile
Signature compactTransientFile();

The compactTransientFile method of the Process class defragments the transient database file associated with
the current process.

countQueuedNotifications
Signature countQueuedNotifications(): Integer;

The countQueuedNotifications method of the Process class returns the number of unprocessed notifications
queued for the calling process.

You can call this method only on the process instance of the current process. An exception is raised if you call it
on an instance of another process.

createTransientMethod
Signature createTransientMethod(methodName: String;

schemaType: Type;
schema: Schema;
sourceCode: String;
isWorkspaceMethod: Boolean;
returnType: Type;
errorCode: Integer output;
errorPosition: Integer output;
errorLength: Integer output): JadeMethod;

The createTransientMethod method of the Process class creates and compiles a transient JADE method and
returns a JADE method that can be subsequently executed by using the Process class executeTransientMethod
or executeTransientIOMethod method.

The createTransientMethod method parameters are listed in the following table.

Parameter Description

methodName The name of the method to be created. For non-Workspace methods, this parameter
must match the method name specified in the signature in the source code.

schemaType The owner type, or owner root type, of the method (that is, the type of the method
receiver) and it is the type of the self system variable.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 590

EncycloSys2 - 2020.0.02

Parameter Description

schema The schema against which the method is to be compiled and which is searched
when resolving the names of classes referenced in the method.

sourceCode The method source code to be compiled.

isWorkspaceMethod Specifies whether the source code is in JADE Workspace format (that is, it has no
method signature). JADE Workspace format transient methods cannot update the
receiver directly.

returnType Specifies the type of the result value returned by Workspace methods. For non-
Workspace methods, this parameter is not used and the return type is specified in the
method signature in the source code.

errorCode The error code returned by the compiler. A value of zero (0) indicates that the method
compiled successfully.

errorPosition The position of the error in the source code. Note that the first character of the source
code has a position of zero (0).

errorLength The length in characters of the error in the source code.

If the method returns a null value, the error parameters return compiler information that indicates the cause of the
error. For an example of the use of the createTransientMethod method, see the Process class
executeTransientMethod method.

Use the Process class deleteTransientMethod method to delete the transient method.

currentStack
Signature currentStack(procStack: ProcessStackArray);

The currentStack method of the Process class populates the process stack array specified in the procStack
parameter with references to method call descriptor objects. The process stack array represents a snapshot of the
current execution history of the application thread of the current process. For more details, see "MethodCallDesc
Class".

An exception is raised if an attempt is made to call this method for a process other than the current process.

Note As this method creates transient instances of the MethodCallDesc class, it is the responsibility of the
method caller to purge the collection used by the method to delete these transient instances. The collection
should be purged before the deletion of the process stack array passed to the method in the procStack
parameter.

The following example shows an Exception method called from your exception handler.

getMethodCallers();
vars

callStack : ProcessStackArray;
methCallDesc : MethodCallDesc;

begin
create callStack;
// get the stack for the current process
process.currentStack(callStack);
// iterate through the process stack array and display each
// MethodCallDesc
foreach methCallDesc in callStack do

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 591

EncycloSys2 - 2020.0.02

write methCallDesc.display;
endforeach;

epilog
// before finishing, delete the transient MethodCallDesc
// objects created by the currentStack method
callStack.purge;
delete callStack;

end;

debug
Signature debug();

The debug method of the Process class displays a modal window containing your current stack and the source of
your current method, with the current line highlighted. Use this window to display the contents of variables, if
required.

An exception is raised if this method is invoked from a server method.

deleteTransientMethod
Signature deleteTransientMethod(meth: JadeMethod io);

The deleteTransientMethod method of the Process class deletes the transient method specified in the meth
parameter. This method must be used to delete a transient method that was created by using the Process class
createTransientMethod method.

For an example of the use of the deleteTransientMethod method, see the Process class
executeTransientMethod method.

disableAllTransTraceCallbacks
Signature disableAllTransTraceCallbacks();

The disableAllTransTraceCallbacks method of the Process class unregisters all transaction trace callbacks for
the receiver, which must be the current process.

If you want to unregister a specific callback, use the enableTransTraceCallback method specifying the method,
receiver, and passing the value of false to the enable parameter.

The following code fragment specifies that when a transaction for the current process commits, a method
AnyClass class commitCallback is no longer to be called for the receiver inst, which is of type AnyClass.

process.enableTransTraceCallback(AnyClass::commitCallback, inst, false);

The following code fragment specifies that when a transaction for the current process commits, no callbacks are to
be made.

process.disableAllTransTraceCallbacks();

enableClassAccessFrequencies
Signature enableClassAccessFrequencies(enable: Boolean): Boolean;

The enableClassAccessFrequencies method of the Process class enables or disables the counting of accesses
to classes depending on the value of the enable parameter. If the enable parameter is true, counting of accesses
is enabled.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 592

EncycloSys2 - 2020.0.02

The method receiver can be any current process, including the requesting process itself or a process executing on
another node.

The enableClassAccessFrequencies method returns true if the counting of accesses is already enabled for the
current process and false otherwise.

Enabling counting of accesses where it is already enabled for the current process is ignored. Similarly, disabling
counting of accesses where it is not enabled for the current process is ignored.

The getClassAccessFrequencies method of the System class returns access counts for the specified classes
provided counting of class accesses is enabled.

enableTransTraceCallback
Signature enableTransTraceCallback(callbackMethod: Method;

callbackReceiver: Object;
enable: Boolean);

The enableTransTraceCallback method of the Process class registers or unregisters a specified method and
receiver for callback just prior to a transaction for the receiving process being committed. The receiving Process
instance for the enableTransTraceCallback method must be the current process.

The callbackMethod parameter specifies the method to be invoked. The callbackReceiver parameter specifies
the object to be used as the receiver of the invoked method. If the enable parameter is set to true, the callback is
registered; if it is false, the callback is unregistered.

The callback method must have no parameters and no return type. It is invoked only if transaction tracing has
been activated for the process by calling the startTransactionTrace method.

The enableTransTraceCallback method can be called multiple times to register additional method callbacks
when a transaction commits. Calling the enableTransTraceCallback with a method and receiver combination that
has been previously registered is ignored.

Methods are invoked in reverse order of when they were registered; that is, the most recently registered are
invoked first.

Notes The invoked method should not attempt to commit the transaction. Doing so causes repeated invocations
of the method leading eventually to a kernel stack overflow.

Similarly, the invoked method should not abort the current transaction. Doing so raises an exception after the
method returns and an attempt to commit the transaction is made.

If an exception occurs within an invoked method and is not dealt with by an exception handler, the transaction is
not committed.

The following code fragment specifies that when a transaction for the current process commits, a method
AnyClass class commitCallback is to be called for the receiver inst, which is of type AnyClass.

process.enableTransTraceCallback(AnyClass::commitCallback, inst, true);

endMethodProfiling
Signature endMethodProfiling();

The endMethodProfiling method of the Process class stops method profiling for the target process used as the
method receiver.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 593

EncycloSys2 - 2020.0.02

The profiling information is retained until the removeMethodProfileInfo method is called or the target process
terminates.

The endMethodProfiling method has no effect if it is called when profiling is not in effect for the target process.

Note One process can start method profiling on a target process, and a different process can clear or end the
profiling.

executeIOScript
Signature executeIOScript(methodName: String;

schemaType: Type;
schema: Schema;
sourceCode: String;
isWorkspaceMethod: Boolean;
returnType: Type;
errorCode: Integer output;
errorPosition: Integer output;
errorLength: Integer output;
receiver: Any io;
params: ParamListType io): Any;

The executeIOScript method of the Process class executes a JADE script passing parameters as io (input-
output) and provides a wrapper method for calling the createTransientMethod, executeTransientIOMethod, and
deleteTransientMethod methods to compile and execute JADE method source code.

This method returns the result value returned by the executed method. The method is executed as part of the
current JADE process and any references to system variables (for example, app) reference those for the
application that is currently running.

The executeIOScript method parameters are listed in the following table.

Parameter Description

methodName The name of the method to be created. For non-Workspace methods, this parameter
must match the method name specified in the signature in the source code.

schemaType The owner type, or owner root type, of the method (that is, the type of the method
receiver) and it is the type of the self system variable.

schema The schema against which the method is to be compiled and which is searched
when resolving the names of classes referenced in the method.

sourceCode The method source code to be compiled.

isWorkspaceMethod Specifies whether the source code is in JADE Workspace format (that is, it has no
method signature). JADE Workspace format transient methods cannot update the
receiver directly.

returnType Specifies the type of the result value returned by Workspace methods. For non-
Workspace methods, this parameter is not used and the return type is specified in the
method signature in the source code.

errorCode The error code returned by the compiler. A value of zero (0) indicates that the method
was compiled successfully.

errorPosition The position of the error in the source code. Note that the first character of the source
code has a position of zero (0).

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 594

EncycloSys2 - 2020.0.02

Parameter Description

errorLength The length in characters of the error in the source code.

receiver The receiving object or primitive type, defined as an io parameter to allow it to be
updated by an updating method specified in the methodName parameter.

params Maps to a variable list of zero or more parameters of any type that are to be passed to
the method that is executed. This parameter is defined as io to allow the passing and
updating of parameters defined as io in the signature of the method specified in the
methodName parameter. (The ParamListType pseudo type can be used only as a
formal parameter in a method signature. You cannot define a local variable with a
type of ParamListType.)

For details about the ParamListType pseudo type specified in the last formal parameter (params), see
"ParamListType" under "Pseudo Types", in Chapter 1 of the JADE Developer’s Reference. See also "Passing
Variable Parameters to Methods" under "JADE Language Syntax", in Chapter 1 of the JADE Developer’s
Reference. If the source code does not compile successfully, the error parameters return compiler information that
indicates the cause of the error.

executeScript
Signature executeScript(methodName: String;

schemaType: Type;
schema: Schema;
sourceCode: String;
isWorkspaceMethod: Boolean;
returnType: Type;
errorCode: Integer output;
errorPosition: Integer output;
errorLength: Integer output;
receiver: Any;
params: ParamListType): Any;

The executeScript method of the Process class executes a JADE script and provides a wrapper method for
calling the createTransientMethod, executeTransientMethod, and deleteTransientMethod methods to compile
and execute JADE method source code.

This method returns the result value returned by the executed method.

The method is executed as part of the current JADE process and any references to system variables (for example,
app) reference those for the application that is currently running.

The executeScript method parameters are listed in the following table.

Parameter Description

methodName The name of the method to be created. For non-Workspace methods, this parameter
must match the method name specified in the signature in the source code.

schemaType The owner type, or owner root type, of the method (that is, the type of the method
receiver) and it is the type of the self system variable.

schema The schema against which the method is to be compiled and which is searched when
resolving the names of classes referenced in the method.

sourceCode The method source code to be compiled.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 595

EncycloSys2 - 2020.0.02

Parameter Description

isWorkspaceMethod Specifies whether the source code is in JADE Workspace format (that is, it has no
method signature). JADE Workspace format transient methods cannot update the
receiver directly.

returnType Specifies the type of the result value returned by Workspace methods. For non-
Workspace methods, this parameter is not used and the return type is specified in the
method signature in the source code.

errorCode The error code returned by the compiler. A value of zero (0) indicates that the method
was compiled successfully.

errorPosition The position of the error in the source code. Note that the first character of the source
code has a position of zero (0).

errorLength The length in characters of the error in the source code.

receiver The receiving object or primitive type.

params Maps to a variable list of zero or more parameters of any type that are to be passed to
the method that is executed. (The ParamListType pseudo type can be used only as a
formal parameter in a method signature. You cannot define a local variable with a
type of ParamListType.)

For details about the ParamListType pseudo type specified in the last formal parameter (params), see
"ParamListType" under "Pseudo Types", in Chapter 1 of the JADE Developer’s Reference. See also "Passing
Variable Parameters to Methods" under "JADE Language Syntax", in Chapter 1 of the JADE Developer’s
Reference.

If the source code does not compile successfully, the error parameters return compiler information that indicates
the cause of the error. The following example shows the use of the executeScript method to perform a calculation
entered by the user. (For example, an input of '2*3+1' would display the value '7'.)

vars
input, str : String;
err, pos, len : Integer;
result : Any;

begin
read input;
str := "return " & input & ";";
result := process.executeScript("calc", self.class, currentSchema,

str, true, Any, err, pos, len, self);
if err = 0 then

write result;
else

write "Compiler error " & err.String & " - " &
process.getErrorText(err);

endif;
end;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 596

EncycloSys2 - 2020.0.02

executeTransientIOMethod
Signature executeTransientIOMethod(meth: JadeMethod;

receiver: Any io;
params: ParamListType io): Any;

The executeTransientIOMethod method of the Process class executes the transient JADE method specified in
the meth parameter. This method returns the result value returned by the executed method. The method that is
executed must have been created by using the Process class createTransientMethod method.

The method is executed as part of the current JADE process and any references to system variables (for example,
app) reference those for the application that is currently running.

The executeTransientIOMethod method parameters are listed in the following table.

Parameter Description

meth The transient method to be executed.

receiver The receiving object or primitive type, defined as an io parameter to allow it to be updated by
an updating method specified in the meth parameter.

params Maps to a variable list of zero or more parameters of any type that are to be passed to the
method that is executed. This parameter is defined as io to allow the passing and updating of
parameters defined as io in the signature of the method specified in the meth parameter. (The
ParamListType pseudo type can be used only as a formal parameter in a method signature.
You cannot define a local variable with a type of ParamListType.)

For details about the ParamListType pseudo type specified in the last formal parameter (params), see
"ParamListType" under "Pseudo Types", in Chapter 1 of the JADE Developer’s Reference. See also "Passing
Variable Parameters to Methods" under "JADE Language Syntax", in Chapter 1 of the JADE Developer’s
Reference.

executeTransientMethod
Signature executeTransientMethod(meth: JadeMethod;

receiver: Any;
params: ParamListType): Any;

The executeTransientMethod method of the Process class executes the transient JADE method specified in the
meth parameter. This method returns the result value returned by the executed method. The method is executed
as part of the current JADE process and any references to system variables (for example, app) reference those for
the application that is currently running.

The method that is executed must have been created by using the Process class createTransientMethod
method.

The executeTransientMethod method parameters are listed in the following table.

Parameter Description

meth The transient method to be executed.

receiver The receiving object.

params Maps to a variable list of zero or more parameters of any type that are to be passed to the
method that is executed. (The ParamListType pseudo type can be used only as a formal
parameter in a method signature. You cannot define a local variable with a type of
ParamListType.)

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 597

EncycloSys2 - 2020.0.02

The following example shows the use of the createTransientMethod, executeTransientMethod, and
deleteTransientMethod methods to select objects according to dynamic selection criteria. For example, an input
of 'name[1] = "M"' would display customers whose names start with the letter M. The selection expression needs
to be compiled only once, and is more efficient than using the executeScript method where the compilation
overhead would occur for each customer.

vars
input, str : String;
meth : JadeMethod;
err, pos, len : Integer;
cust : Customer;

begin
read input;
str := "return " & input & ";";
meth := process.createTransientMethod("select", Customer,

currentSchema, str, true, Boolean, err, pos, len);
if meth <> null then

foreach cust in Company.firstInstance.allCustomers
where process.executeTransientMethod(meth, cust).Boolean do
write cust.name;

endforeach;
else

write "Compiler error " & err.String & " - " &
process.getErrorText(err);

endif;
epilog

if meth <> null then
process.deleteTransientMethod(meth);

endif;
end;

For details about the ParamListType pseudo type specified in the last formal parameter (params), see
"ParamListType" under "Pseudo Types", in Chapter 1 of the JADE Developer’s Reference. See also "Passing
Variable Parameters to Methods" under "JADE Language Syntax", in Chapter 1 of the JADE Developer’s
Reference.

extractRequestStatistics
Signature extractRequestStatistics(proc: Process output;

jdo: JadeDynamicObject input;
localOrRemote: Integer;
any: Any);

The extractRequestStatistics method of the Process class extracts request statistics from the userInfo part of
notifications sent in response to sendRequestStatistics method requests. The extracted statistics are inserted as
attributes in a JadeDynamicObject instance.

The parameters for the extractRequestStatistics method are listed in the following table.

Parameter Description

proc An output parameter that receives a reference to the Process instance to which the
statistics relate

jdo A JadeDynamicObject instance into which the statistics values are placed as attributes

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 598

EncycloSys2 - 2020.0.02

Parameter Description

localOrRemote To extract local request statistics (event type Process_Local_Stats_Event), set to one (1),
or to extract remote request statistics (event type Process_Remote_Stats_Event), set to
two (2)

any The userInfo part of the notification that was received

The calling process is responsible for creating the JadeDynamicObject instance that is used as the jdo
parameter. Any existing attributes that the instance has are cleared every time the method is called.

For a list and explanations about the properties that are returned by this method, see
"Process::getRequestStatistics Method, in Chapter 4 of the JADE Object Manager Guide.

If the any parameter is not recognized as containing encoded Web statistics values, a 1000 exception is raised
(Invalid parameter type), a 1002 exception is raised (Invalid parameter value), or a 1137 exception (An internal
data packet inconsistency was detected) is raised. This could happen if the any parameter is not the userInfo part
of a notification received in response to a sendRequestStatistics request.

The following examples show methods for a form to obtain and display information about local and remote
request statistics.

load() updating;
begin

//register to receive local and remote process request statistics
beginNotification(process, Process_Local_Stats_Event,

Response_Continuous, 0);
beginNotification(process, Process_Remote_Stats_Event,

Response_Continuous, 0);
end;

unload() updating;
begin

//register to receive local and remote process request statistics
beginNotification(process, Process_Local_Stats_Event,

Response_Continuous, 0);
beginNotification(process, Process_Remote_Stats_Event,

Response_Continuous, 0);
end;

userNotify(eventType: Integer; theObject: Object; eventTag: Integer;
userInfo: Any) updating;

begin
if eventType = Process_Local_Stats_Event then

displayRequestStats(1 /*local*/, userInfo);
return;

elseif eventType = Process_Remote_Stats_Event then
displayRequestStats(2 /*remote*/, userInfo);
return;

endif;
//...any other notification handling goes here...

end;

displayRequestStats(localOrRemote: Integer; any: Any);
vars

targetProcess: Process;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 599

EncycloSys2 - 2020.0.02

jdo : JadeDynamicObject;
begin

create jdo transient;
process.extractRequestStatistics(targetProcess, jdo,

localOrRemote, any);
if localOrRemote = 1 then

write "Local Request Statistics for " & targetProcess.String;
else

write "Remote Request Statistics for " & targetProcess.String;
endif;
write jdo.display;

epilog
delete jdo;

end;

askForLocalRequestStats(targetProc: Process);
begin

targetProc.sendRequestStatistics(1);
end;

askForRemoteRequestStats(targetProc: Process);
begin

targetProc.sendRequestStatistics(2);
end;

extractWebStatistics
Signature extractWebStatistics(proc: Process output;

jdo: JadeDynamicObject input;
any: Any);

The extractWebStatistics method of the Process class extracts Web performance statistics from the userInfo
part of notifications sent in response to sendWebStatistics method requests, defined in the Process class. The
extracted statistics are inserted as attributes in a JadeDynamicObject instance.

The parameters for the extractWebStatistics method are listed in the following table.

Parameter Description

proc An output parameter that receives a reference to the Process instance to which the statistics
relate

jdo A JadeDynamicObject instance into which the statistics values are placed as attributes

any The userInfo part of the notification that was received

The calling process is responsible for creating the JadeDynamicObject instance that is used as the jdo
parameter. Any existing attributes that the instance has are cleared every time the method is called. If the process
that sent the notification is not using Web services, no attributes are added to the JadeDynamicObject instance;
otherwise the attributes listed in the following table are added.

Attribute Type

maximumResponseTime Integer64 (milliseconds)

minimumResponseTime Integer64 (milliseconds)

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 600

EncycloSys2 - 2020.0.02

Attribute Type

totalRequests Integer64

totalResponseTime Integer64 (milliseconds)

rejectedRequests Integer64

If the any parameter is not recognized as containing encoded Web statistics values, a 1000 exception is raised
(Invalid parameter type), a 1002 exception is raised (Invalid parameter value), or a 1137 exception (An internal
data packet inconsistency was detected) is raised. This could happen if the any parameter is not the userInfo part
of a notification received in response to a sendWebStatistics request.

The following examples show methods for a form to obtain and display information about Web statistics.

load() updating;
begin

//register to receive Web statistics
beginNotification(process, Process_Web_Stats_Event,

Response_Continuous, 0);
end;

unload() updating;
begin

endNotification(process, Process_Web_Stats_Event);
end;

userNotify(eventType: Integer; theObject: Object; eventTag: Integer;
userInfo: Any) updating;

begin
if eventType = Process_Web_Stats_Event then

displayWebStats(userInfo);
return;

endif;
//...any other notification handling goes here...

end;

displayWebStats(any: Any);
vars

targetProcess: Process;
jdo : JadeDynamicObject;

begin
create jdo transient;
process.extractWebStatistics(targetProcess, jdo, any);
write "Web Statistics for " & targetProcess.String;
write jdo.display;

epilog
delete jdo;

end;

askForWebStats(targetProc: Process);
begin

targetProc.sendWebStatistics();
end;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 601

EncycloSys2 - 2020.0.02

finalizePackages
Signature finalizePackages() updating;

The finalizePackages event method of the Process class calls the Application object finalize event to perform
any terminate function common to all applications containing packages.

Normally these are executed automatically, if you run an application from the schema. However, they are not
executed when a JadeScript or a Workspace method is executed unless you call the finalizePackages event
method. (This maintains these interfaces in as light a weight as possible.)

See also the Process class initializePackages method.

getAllApps
Signature getAllApps(apps: ApplicationArray input);

The getAllApps method of the Process class populates an array with all applications that are active in the
process of the receiver. Use this method, for example, when you are working with imported packages to access all
active forms across the main process Application object and all package Application objects.

As the main process Application object is always added to the array first, apps[1] is always the application of the
main process when you call this method (when the apps parameter is empty before the call).

Notes The array membership is Application, so your calling method can deal only with the application member
objects at the RootSchema level. To access schema-specific Application subclass features, use a type guard or
indirect access (for example, an Object class getPropertyValue or sendMsg method call). For details about type
guards, see "Using Type Guards", in Chapter 1 of the JADE Developer’s Reference.

If you are using packages and you have two packages (for example, p1 and p2), the second package (p2) imports
the first package (p1), and a third schema imports both the p1 and p2 packages, there will be two instance of app
for the first package (p1); that is, one in the context of the importing schema and the other in the second p2
package.

getBufferStatistics
Signature getBufferStatistics(obj: Object;

jdo: JadeDynamicObject): Boolean;

The getBufferStatistics method of the Process class returns cache-related information about the object specified
by the obj parameter. The cache information is returned as attributes inserted into the JadeDynamicObject
instance specified by the jdo parameter.

The calling process is responsible for creating and deleting this instance. Any existing attributes in the
JadeDynamicObject instance are cleared when the getBufferStatistics method is called.

The method returns true if the object was in cache at the time of the call, and false if the object was not in cache. It
does not load an object into cache if it was not already present.

For details about the attributes inserted into the JadeDynamicObject instance, see "Process::getBufferStatistics
Method", in Chapter 4 of the JADE Object Manager Guide.

The getBufferStatistics method can be used with persistent and transient objects. With transient objects, a
process can examine only shared transient objects and its own non-shared transient objects.

A process can use only its own Process instance as the method receiver. Using any other Process instance
causes a 1265 exception (Environmental object operation is out of scope for process) to be raised.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 602

EncycloSys2 - 2020.0.02

The following example shows the use of the getBufferStatistics method.

showAnimalsInCache();
vars

root : Root;
animal : Animal;
jdo : JadeDynamicObject;

begin
create jdo transient;
root := Root.firstInstance;
foreach animal in root.allAnimals do

if process.getBufferStatistics(animal, jdo) then
write animal.String & " is loaded in cache";
write " Size (bytes) = " &

jdo.getAttributeValue("size").Integer.String;
write " Lives = " &

jdo.getAttributeValue("lives").Integer.String;
write " Cycles = " &

jdo.getAttributeValue("cycles").Integer.String;
write " Flag = " &

jdo.getAttributeValue("flag").Integer.String;
write " Operations = " &

jdo.getAttributeValue("operations").Integer64.String;
write " Age(node ticks) =" &

jdo.getAttributeValue("age").Integer64.String;
endif;

endforeach;
epilog

delete jdo;
end;

The output from the getBufferStatistics method shown in the previous example is as follows.

Animal/2096.11345 is loaded in cache
Size (bytes) = 191
Lives = 1
Cycles = 15
Flag = 1
Operations = 2
Age(node ticks)= 17525

Animal/2096.456 is loaded in cache
Size (bytes) = 191
Lives = 1
Cycles = 10
Flag = 1
Operations = 2
Age(node ticks)= 32016

Animal/2096.987 is loaded in cache
Size (bytes) = 191
Lives = 1
Cycles = 10
Flag = 1
Operations = 2
Age(node ticks)= 67374

Animal/2096.1000 is loaded in cache
Size (bytes) = 191

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 603

EncycloSys2 - 2020.0.02

Lives = 1
Cycles = 10
Flag = 1
Operations = 2
Age(node ticks)= 68384

getCallStackInfo
Signature getCallStackInfo(): String;

The getCallStackInfo method of the Process class retrieves information about the call stack of the executing
process. This method can be called only on the process instance of the current process. If you call it on an
instance for another process, an exception is raised.

The return value from the getCallStackInfo method contains environmental details in addition to the local and
remote call stacks. The location of execution for each method is signified at the end of the method line as (C) for
client node or (S) for server node or single user, followed by the source code line of each method.

The following example shows the output from the getCallStackInfo method.

Method call stack information retrieval for Process: {13} commenced
Environmental details:
Node: 4068 Process: 13
Current Schema: CallStackInfo Application: CallStackInfo
Method Call Stack:
<<Process/187.03>> Process::getCallStackInfo(66) (S)
++ Source line: return self._getCallStackInfo(true);
<<JadeScript/107.0 (s)>> JadeScript::testCallStackInfo(54) (S)
++ Source line: write process.getCallStackInfo;
Method call stack information retrieval for Process: {13} finished

Call stack entries copied to the clipboard are delimited by carriage return / line feed characters (CrLf).

getCommandLine
Signature getCommandLine(): String;

The getCommandLine method of the Process class returns a string containing the current command line of the
process of the receiver. A method on a specific process instance performs its action on the owning node (that is, a
process.node instance) if the process is not associated with a presentation client.

If the process has an associated presentation client, the action is performed on the presentation client. The
presentation client does not have to be the current presentation client or a presentation client attached to the
same application server.

Use the Node class getCommandLine method to obtain the file from the application server.

The following example shows the use of the getCommandLine method.

vars
cmdLine, myOption : String;
int : Integer;

begin
cmdLine := process.getCommandLine; // get command line
// look for my command line option ('myOption')
int := cmdLine.pos('myOption', 1);
if int <> 0 then

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 604

EncycloSys2 - 2020.0.02

int := cmdLine.pos('=', int) + 1; // look for '='
// skip any blanks after the '='
cmdLine.scanWhile(' ', int);
// return input up to next blank
myOption := cmdLine.scanUntil(' ', int);
write myOption;

endif;
end;

getComputerName
Signature getComputerName(): String;

The getComputerName method of the Process class returns a string containing the computer name of the
machine that owns the process (for example, "wilbur2a").

If the receiving process belongs to a presentation client, the getComputerName method returns the computer
name of the machine where the presentation client is running; otherwise, it returns the computer name of the
machine where the node owning the process is running.

getDateTimeDelta
Signature getDateTimeDelta(deltaDate: Integer output;

deltaTime: Integer output);

The getDateTimeDelta method of the Process class retrieves the values used to adjust initial date and time local
variable values used by the receiving process. (For details about setting the initial Date, Time, TimeStamp, and
TimeStampOffset local variables, see the setDateTimeDelta method.)

getExceptionHandlerStack
Signature getExceptionHandlerStack(oa: ObjectArray input);

The getExceptionHandlerStack method of the Process class populates a transient instance of the ObjectArray
class with transient instances of the ExceptionHandlerDesc class that represent the exception handlers armed by
the receiving process in the current node.

In the array, locally armed exception handlers precede globally armed exception handlers. Within this grouping,
the most recently armed exception handlers occur first.

The method displays only exception handlers the process has armed on the current node. For example, it does
not display global exception handlers armed in a serverExecution method, unless executed from a
serverExecution method.

The use of the getExceptionHandlerStack method is shown in the following code example. It is the responsibility
of the calling method to delete the transient instances of the ExceptionHandlerDesc class.

showArmedExceptionHandlers();
vars

oa: ObjectArray;
o: Object;

begin
create oa transient;
process.getExceptionHandlerStack(oa);
foreach o in oa do

write o.display;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 605

EncycloSys2 - 2020.0.02

endforeach;
epilog

oa.purge;
delete oa;

end;

getErrorText
Signature getErrorText(errorCode: Integer): String;

The getErrorText method of the Process class returns the message text for a JADE-defined error code.

getIniFileName
Signature getIniFileName(): String;

The getIniFileName method of the Process class returns the full path and file name of the JADE initialization file;
for example:

c:\jade\system\jade.ini

The name of the JADE initialization file is returned in the form that it was entered on the command line. If no
initialization file name was specified, JADE looks for an initialization file with the name jade.ini in the default
location and either finds the file or creates it. The name and full path of that default initialization file is returned with
forward slash characters (for example, c:/jade/system/jade.ini).

A method on a specific process instance performs its action on the owning node (that is, a process.node
instance) if the process is not associated with a presentation client. If the process has an associated presentation
client, the action is performed on the presentation client. The presentation client does not have to be the current
presentation client or a presentation client attached to the same application server.

Use the Application class getIniFileNameAppServer method or Node class getIniFileName method to obtain the
file from the application server.

Note If you create a shortcut that has the newcopy parameter set to false and you specify a different JADE
initialization file from the one with which the process was started, the active JADE initialization file is the one that
was specified when the process started up and not the one specified in the newcopy=false shortcut.

Calling the getIniFileName method in the new process enables you to get the name of the initialization file that
was used when the process started up.

getJadeInstallDirectory
Signature getJadeInstallDirectory(): String;

The getJadeInstallDirectory method of the Process class returns a string containing the JADE installation
directory, from which the JADE executable program is running; for example:

c:\jade\bin

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 606

EncycloSys2 - 2020.0.02

getJadeHomeDirectory
Signature getJadeHomeDirectory(): String;

The getJadeHomeDirectory method of the Process class returns a string containing the JADE HOME directory,
which is the parent directory of the JADE installation directory; for example:

c:\jade (if the installation directory was c:\jade\bin)

getJadeWorkDirectory
Signature getJadeWorkDirectory(): String;

The getJadeWorkDirectory method of the Process class returns a string containing the directory where work
files are created by JADE.

When you call the getJadeWorkDirectory method and the directory does not exist, JADE creates it based on the
value of the JadeWorkDirectory parameter in the [JadeEnvironment] section of the JADE initialization file.

By default, this directory is created at the same level as the JADE installation directory (that is, the directory in
which the jade.exe executable program is located) and is named temp. For example, if the JADE installation
directory is c:\jade\bin, the working directory would be c:\jade\temp.

The cache file for a thin client (which contains all forms and pictures sent by logic from the application server) is
stored in the work directory, unless another location is specified by the FormCacheFile parameter in the
[JadeThinClient] section. The thin client automatic download interlock file (thinlock.fil) is also created in the work
directory.

getLastExtFunctionCallError
Signature getLastExtFunctionCallError(): Integer;

The getLastExtFunctionCallError method of the Process class returns the value of the error code set by the last
external function call made by the current process.

This corresponds to the value returned by a call to the GetLastError Windows API.

getLockCallStackFilter
Signature getLockCallStackFilter(classList: ClassColl input);

The getLockCallStackFilter method of the Process class returns the list of classes for which saving lock call
stack information has been enabled for this process.

You can call this method for any running Process instance in the system.

Applies to Version: 2016.0.01 and higher

getMethodCacheLimit
Signature getMethodCacheLimit(): Integer64;

The getMethodCacheLimit method of the Process class retrieves the method cache limit for the executing
process

This method can be called only on the process instance of the current process. Exception 1265 (Environmental
object operation is out of scope for process) is raised if you call the method on an instance for another process.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 607

EncycloSys2 - 2020.0.02

Applies to Version: 2018.0.01 and higher

getMethodCacheStatistics
Signature getMethodCacheStatistics(jdo: JadeDynamicObject input);

The getMethodCacheStatistics method of the Process class retrieves information about the method cache of the
executing process and stores it in the dynamic object instance specified by the jdo parameter. The
JadeDynamicObject is updated to include properties that contain statistics about the method cache and string
pool of the executing process.

This method can be called only on the process instance of the current process. Exception 1265 (Environmental
object operation is out of scope for process) is raised if you call the method on an instance for another process.

To send a notification containing statistics about the method cache of the target process, call the
sendMethodCacheStatistics method.

The following table lists the properties added to the dynamic object instance.

Property Type Description

hasCacheManager Boolean true if the executing process has an associated cache
manager; otherwise false. This would be false when the
executing process is a background process. If the value is
false, none of the other properties are added to the dynamic
object.

processOid String Oid of the executing process.

singleMethodCache Boolean Determines if the executing process is using single or
multiple method cache structure. This reflects the value of
the MethodCache parameter in the [JadeInterpreter] section
of the JADE initialization file.

methodCacheLimit Integer64 Method cache limit for the executing process.

maximumCacheSize Integer64 Largest cache size hit since the start of process execution.

numberOfMethodsInCache Integer64 Current number of JADE methods in the method cache for
the executing process.

totalMethodsDiscarded Integer64 Total number of JADE methods discarded from the method
cache for the executing process since the start of process
execution.

totalMethodsExecuted Integer64 Total number of JADE methods executed on this process
since the start of process execution.

totalTimeLoadingMethods Integer64 Amount of time in milliseconds spent loading methods into
the method cache.

cacheOverruns Integer64 Number of cache overruns in the method cache since the
start of process execution.

stringPoolLimit Integer64 String pool size limit for the executing process.

maximumStringPoolSize Integer64 Largest string pool size hit since the start of process
execution.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 608

EncycloSys2 - 2020.0.02

Property Type Description

numberOfStringsInPool Integer64 Current number of strings in the string pool for the executing
process.

stringPoolOverruns Integer64 Number of string pool overruns since the start of process
execution.

cacheOverrunXXtoYYPercent Integer64 Number of cache overruns XX to YY percent over the
method cache limit.

cacheOverrun100PlusPercent Integer64 Number of cache overruns greater than 100 percent over the
method cache limit.

Applies to Version: 2018.0.01 and higher

getMethodProfileInfo
Signature getMethodProfileInfo(jdo: JadeDynamicObject input;

truncated: Boolean output);

The getMethodProfileInfo method of the Process class retrieves method profiling information for the process
specified as the method receiver.

The method receiver can be any current process, including the requesting process itself or a process executing on
another node.

The retrieved information is presented as a set of dynamic objects in the children collection of the dynamic object
instance specified by the jdo parameter; that is, the information is contained in the collection jdo.children.

The calling process is responsible for creating and deleting the JadeDynamicObject passed to the method. It is
also responsible for deleting the JadeDynamicObject instances inserted into the jdo.children collection (for
example, by purging the collection). If the JadeDynamicObject instance used as the jdo parameter is persistent,
the JadeDynamicObject instances added to the children collection are also persistent. Similarly, if the object is
transient, the child dynamic objects are also transient.

For details about the properties of the JadeDynamicObject instances in the children collection, see
"Process::getMethodProfileInfo Method", in Chapter 4 of the JADE Object Manager Guide.

Time spent in recursive method calls is correctly accounted for as time spent executing the method.

The truncated parameter indicates if the amount of method profile information to be retrieved exceeded an
internal buffer limit so was truncated. If the truncated parameter returns false, all method profiling information is
present in the JadeDynamicObject instance specified in the jdo parameter. If it returns true, some entries have
been truncated. When truncation occurs, entries with the lowest "total calls" amounts are omitted.

Notes Truncation occurs when the amount of profiling information to be returned exceeds 1,000 entries.

Truncation occurs only when method profiling information is retrieved for processes running on remote nodes.

The CPU time has a granularity of 10 or 15 milliseconds. This means that the CPU time figures for methods of
short duration are subject to inaccuracy due to the large granularity. However, the clock times have a much
smaller granularity and are therefore more accurate.

Note Clock times may fluctuate, depending on other activity on the same machine. The total clock times include
time spent waiting; for example, to wait for a Window event, to lock an object, or for a user response to a modal
form.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 609

EncycloSys2 - 2020.0.02

The children collection of the jdo parameter passed to getMethodProfileInfo is purged each time the method is
called.

When displaying method profiling results, you can use the qualifiedName method of the corresponding Method
instance to obtain the name of a profiled method, and the isKindOf method to determine if the method is an
external method or a JADE method.

The removeMethodProfileInfo method can be called to remove profiling information.

If you call the getMethodProfileInfo method on a target process that has terminated, an exception is raised.

The following example shows the use of the getMethodProfileInfo method.

tryProfiling();
vars

jdo : JadeDynamicObject;
child : JadeDynamicObject;
mth : Method;
calls : Integer64;
clockTime : Integer64;
mthType : String;
truncated : Boolean;

begin
create jdo transient;
process.profileMethod(JadeScript::updateAnAnimal, true);
process.beginMethodProfiling(2);
updateAnAnimal;
process.endMethodProfiling();
process.getMethodProfileInfo(jdo, truncated);
foreach child in jdo.children do

mth := child.getPropertyValue("method").Method;
calls := child.getPropertyValue("calls").Integer64;
clockTime := child.getPropertyValue("clockTimeInMethod").Integer64;
if mth.isKindOf(ExternalMethod) then

mthType := "EXTERNAL METHOD ";
elseif mth.isKindOf(JadeMethod) then

mthType := "JADE METHOD ";
else

mthType := "OTHER METHOD";
endif;
write mthType & " " & mth.qualifiedName & " Calls=" & calls.String

& " ClockTime=" & clockTime.String;
endforeach;
process.removeMethodProfileInfo();

epilog
jdo.children.purge;
delete jdo;

end;

The output from the getMethodProfileInfo method shown in the previous example is as follows.

EXTERNAL METHOD Type::getMethod Calls=8 ClockTime=84
EXTERNAL METHOD List::_values Calls=8 ClockTime=30
EXTERNAL METHOD Class::firstInstance Calls=1 ClockTime=570
JADE METHOD JadeScript::updateAnAnimal Calls=1 ClockTime=1793308
EXTERNAL METHOD Dictionary::getAtKey Calls=84 ClockTime=911
EXTERNAL METHOD Schema::getClassByNumber Calls=5 ClockTime=4512

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 610

EncycloSys2 - 2020.0.02

EXTERNAL METHOD ArrayBlock::_loadValues Calls=3 ClockTime=9
EXTERNAL METHOD Btree::_values Calls=143 ClockTime=463
EXTERNAL METHOD SetBlock::_loadValues Calls=5 ClockTime=10
EXTERNAL METHOD DbFile::path Calls=4 ClockTime=24
EXTERNAL METHOD DictBlock::_loadValues Calls=38 ClockTime=76
EXTERNAL METHOD DictBlock::_search Calls=100 ClockTime=187

getOSDetails
Signature getOSDetails(jdo: JadeDynamicObject input);

The getOSDetails method of the Process class populates a JadeDynamicObject object with information about
the operating system and architecture of the receiving process.

In JADE thin client mode, this method returns the operating system details of the presentation client. (To return the
operating system details of the application server workstation that is running the JADE logic, use the
getOSDetails method of the Node class.)

The method enables you to determine the various usages of JADE for a specific environment; for example, the
type of binaries required for thin client downloads (for example, x64-msoft-win64-ansi).

The properties that are returned in the dynamic object specified in the jdo parameter are listed in the following
table.

Property Type Description

version String Specific version of the operating system.

architecture Integer Internal byte ordering and alignment information relevant to
JADE release. It is used by the setByteOrderLocal and
setByteOrderRemote methods of the Character, Date,
Decimal, Integer, Integer64, Real, Time, and TimeStamp
primitive types.

The architecture can be one of the values listed in the following
table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte
ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal
byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte
ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal
byte ordering and alignment

Architecture_Gui Binary data passed in the byte
order of the GUI system
(currently Windows 32-bit
little-endian)

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 611

EncycloSys2 - 2020.0.02

Property Type Description

platformId Integer Operating system of the server node of the receiver object. The
operating system returned by this method can be one of the
values listed in the following table.

Node Class Constant Description

OSWindowsEnterprise Microsoft Windows 10,
Windows Server 2019,
Windows Server 2016, or
Windows Server 2012

OSWindowsHome Microsoft Windows 98 (not a
supported operating system)

OSWindowsMobile Microsoft Windows CE (not a
supported operating system)

buildArchitecture String Details about the platform and build type for which the binaries
where built (for example, x64-msoft-win64-ansi). Can be used
to determine the type of binaries required for thin client
downloads.

currentBuildArchitectureList String Complete list of current buildArchitecture strings, separated by
semicolons.

fullBuildArchitectureList String Complete list of past and current buildArchitecture strings,
separated by semicolons.

isBigEndian Boolean Indicates if CPU for the node is running big-endian (PowerPC
can switch from big-endian to little-endian, and the reverse).

characterSize Integer 1 for ANSI, 2 for Unicode.

addressWidth Integer 32 indicates 32-bit executing binaries, 64 indicates 64-bit
executing binaries.

osAddressWidth Integer 32 indicates a 32-bit operating system, 64 indicates a 64-bit
operating system.

osVersionEnum Integer Internal unique number representing the operating system and
hardware combination

osVersionString String Description of the operating system in a readable format.

The calling process is responsible for creating and deleting the JadeDynamicObject instance.

The following example shows the use of the getOSDetails method.

vars
jdoProcess : JadeDynamicObject;
str, str2 : String;
pos : Integer;

begin
create jdoProcess transient;
process.getOSDetails(jdoProcess);
str:=jdoProcess.getPropertyValue("currentBuildArchitectureList").String;
pos := 1;
while true do

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 612

EncycloSys2 - 2020.0.02

str2 := str.scanUntil(";", pos);
write str2;
if pos = null then

break;
endif;
pos := pos + 1;

endwhile;
epilog

delete jdoProcess;
end;

The output from the method shown in the previous example is as follows.

i686-msoft-win32-ansi
i686-msoft-win32-unicode
armv4i-msoft-wince50-unicode
i686-msoft-x86emu-unicode
x64-msoft-win64-ansi
x64-msoft-win64-unicode
armv4i-msoft-wm60-unicode

getOSPlatform
Signature getOSPlatform(version: String output;

architecture: Integer output): Integer;

The getOSPlatform method of the Process class returns an integer value that indicates the operating system of
the process of the receiver.

In JADE thin client mode, this method returns the operating platform of the presentation client. (To return the
operating system of the application server workstation that is running the JADE logic, use the getOSPlatform
method of the Node class.)

The operating system can be one of the values listed in the following table.

Node Class Constant Operating system is …

OSWindowsEnterprise Microsoft Windows 10, Windows Server 2019, Windows Server 2016, or
Windows Server 2012

OSWindowsHome Microsoft Windows 98 (not a supported operating system)

OSWindowsMobile Microsoft Windows CE (not a supported operating system)

The version parameter specifies the specific version of the operating system. The architecture parameter is a
unique number that indicates internal byte ordering and alignment information relevant to this release of JADE. It
is used by the Character, Date, Decimal, Integer, Integer64, Real, Time, and TimeStamp primitive type
setByteOrderLocal and setByteOrderRemote methods.

You can use the OSWindows constant of the Node class, which is a bit mask that enables you to identify a family
of operating systems, as shown in the following example.

vars
platform : Integer;
version : String;
architecture : Integer;

begin

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 613

EncycloSys2 - 2020.0.02

platform := process.getOSPlatform(version, architecture);
if platform.bitAnd(Node.OSWindows) <> 0 then

// operating system is Windows family (2012 or 2008)
if platform = Node.OSWindowsHome then

// version is an older version of Windows (unsupported)
return 'Windows (unsupported) ' & version;

endif;
if platform = Node.OSWindowsEnterprise then

// version is Windows 10, Windows Server 2019, Windows Server 2016,
// or Windows Server 2012
return 'Windows ' & version;

endif;
if platform = Node.OSWindowsMobile then

// version is Windows CE
return 'Windows CE (unsupported) ' & version;

endif;
endif;
return '* Unknown platform: ' & platform.String & ' version: ' &

version;
end;

getPersistentDeadlockPriority
Signature getPersistentDeadlockPriority(): Integer;

The getPersistentDeadlockPriority method of the Process class retrieves the priority value to be used when
dealing with deadlocks involving persistent objects.

This method can be called only on the process instance of the current process.

If you call it on an instance for another process, an exception is raised.

getProcessApp
Signature getProcessApp(): Application;

The getProcessApp method of the Process class returns a reference to the main Application object of the
current process. For example, to return the locale of the main application, call
process.getProcessApp.currentLocale.

When using packages, a single process can have multiple transient Application objects: one for the process itself
and one for each imported package.

If the process is not using any packages, this method returns the same reference as the app system variable.

If a process is using one or more imported packages, this method returns a reference to the Application object of
the process, regardless of the context from which this method was called. The difference in referencing the main
Application object when packages are involved is because the app system variable will be different while
executing within the package. The value returned by this method is the same as app when the running process
began execution, and before any possible changes, owing to context switches into packages.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 614

EncycloSys2 - 2020.0.02

getProfileString
Signature getProfileString(fileName: String;

section: String;
keyName: String;
default: String): String;

The getProfileString method of the Process class retrieves a string from the specified section in an initialization
file. (The setProfileString method copies the string into the specified section of an initialization file.)

A method on a specific process instance performs its action on the owning node (that is, a process.node
instance) if the process is not associated with a presentation client. If the process has an associated presentation
client, the action is performed on the presentation client. The presentation client does not have to be the current
presentation client or a presentation client attached to the same application server.

Use the Application class getProfileStringAppServer method or Node class getProfileString method to obtain
the file from the application server.

The parameters for the getProfileString method are listed in the following table.

Parameter Specifies the …

fileName Initialization file. If you set this parameter to windows, the win.ini file is used. If it does not
contain a full path to the file, Windows searches for the file in the Windows directory.

section Initialization file section containing the key (parameter) name.

keyName Name of the key (parameter) whose associated string is to be retrieved.

default Default value for the specified key if the key cannot be found in the initialization file.

You can return all initialization file sections or all parameters in a section, by using the JadeProfileString category
global constants listed in the following table.

Global Constant Specified in the… Returns all…

ProfileAllKeys keyName parameter Key (parameter) strings in the initialization file
section, separated by spaces

ProfileAllSections section parameter Initialization file sections, separated by spaces

You can use this method to retrieve a string from a two-level section name (prefixed with a unique identifier) within
a JADE initialization file shared by multiple programs on the same host. For details, see "Two-Level Section
Names" under "Format of the JADE Initialization File", in the JADE Initialization File Reference.

The following example shows the use of the getProfileString method to determine the server for the current JADE
initialization file.

vars
server : String;

begin
server := process.getProfileString(process.getIniFileName, "JadeClient",

"ServerName", null);
write "server name is " & server;

end;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 615

EncycloSys2 - 2020.0.02

getProgramDataDirectory
Signature getProgramDataDirectory(): String;

The getProgramDataDirectory method of the Process class returns a string containing the path of the program
data directory. The program data directory is used to share files among the users of the executables; for example,
the jommsg.log file or shared dictionary spelling files that are updated.

If JADE is not installed under the \Program Files directory, the path of the JADE HOME directory is returned.

If JADE is installed under the \Program Files directory, the value that is returned by the
getProgramDataDirectory method depends on the value of the ProgramDataDirectory parameter in the
[JadeEnvironment] section of the JADE initialization file. If the directory does not exist, JADE creates it.

The values of the ProgramDataDirectory parameter and the corresponding values returned by the
getProgramDataDirectory method are shown in the following table.

ProgramDataDirectory Value Return Value

<default> The path of the JADE HOME directory with the \Program Files portion
replaced with the programmatically obtained path of the common application
data directory. For example, a presentation client installed into \Program
Files\Jade Software\parsys returns \ProgramData\Jade Software\parsys.

<homedir> The path of the JADE HOME directory.

<programdata> The same as for <default>.

Directory name Directory name.

getRequestStatistics
Signature getRequestStatistics(dynObj: JadeDynamicObject input;

localOrRemote: Integer);

The getRequestStatistics method of the Process class retrieves node sampling values relating to the current
process that is executing the method. The values are returned as properties of a JadeDynamicObject object.

You can use this method to directly retrieve node sampling information; for example, if you want to calculate
resource usage over the duration of a transaction. The returned values include cumulative counters that are not
reset by the method calls. JADE applications that use this method therefore need to compare values from one call
to the next, to work out the value differences.

The cumulative values are held as 64-bit unsigned integer values, and are copied to the dynamic object as
Integer64 values. The maximum value before they wrap around to negative values is therefore 2^63 - 1
(approximately 8 Exabytes).

You should use the getRequestStatistics method only when node sampling is enabled. If node sampling is not
enabled, this method returns zero (0) for all values other than for process ticks.

If the localOrRemote parameter is set to 1, the statistics for all requests invoked on the local node are returned as
properties in the dynamic object specified in the dynObj parameter. If the localOrRemote parameter is set to 2,
the statistics for all requests from the local node to remote nodes are returned as properties in the specified
dynamic object.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 616

EncycloSys2 - 2020.0.02

For a list and explanations about the properties that are returned by this method, see
"Process::getMethodProfileInfo Method", in Chapter 4 of the JADE Object Manager Guide.

If the dynamic object passed to the method already contains properties but they do not match the properties to be
returned, the existing dynamic object properties are removed and replaced with the appropriate properties. This
method is most efficient when the properties match those to be returned.

You can call this method only with the current process as the receiver. An exception is raised if you attempt to call
this method for a different process.

getRpcServerStatistics
Signature getRpcServerStatistics(jdo: JadeDynamicObject input;

detailed: Boolean);

The getRpcServerStatistics method of the Process class retrieves Remote Procedure Call (RPC) statistics
relating to requests and replies sent to and from the database server node and the process specified by receiver
object. The method receiver can be any current process, including the requesting process itself or a process
executing on another node.

The values returned represent information about the connection between client node and database server node,
and requests and replies between the nodes for the specified process. The values are returned as Integer64
properties in the dynamic object specified by the jdo parameter.

The calling process is responsible for creating and deleting the JadeDynamicObject instance.

The detailed parameter specifies whether the values include individual totals for each request type.

For details about the attributes returned in the dynamic object, see "Process::getRpcServerStatistics Method", in
Chapter 4 of the JADE Object Manager Guide.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls.

If the dynamic object passed to the method already contains properties that do not match properties to be
returned, existing dynamic object properties are removed and replaced with appropriate properties. This method
is most efficient when properties match those to be returned.

The cumulative values are held as 64-bit unsigned integer values, and are copied to the dynamic object as
Integer64 values. The maximum value before they wrap around to negative values is therefore 2^63 - 1
(approximately 8 Exabytes).

The following example shows the use of the getRpcServerStatistics method.

showRpcProcessStats();
vars

jdo : JadeDynamicObject;
begin

create jdo transient;
process.getRpcServerStatistics(jdo, false);
write jdo.display;

epilog
delete jdo;

end;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 617

EncycloSys2 - 2020.0.02

The output from the getRpcServerStatistics method shown in the previous example is as follows.

---RPCServerStatistics(106)---
timeStarted = 27 April 2007, 12:32:07
connectionType = 1
lastInboundRequest = 27 April 2007, 14:43:25
requestsFromClients = 706
repliesToClients = 705
requestPacketsFromClients = 706
replyPacketsToClients = 705
requestBytesFromClients = 111258
replyBytesToClients = 164806
requestsToClients = 0
repliesFromClients = 0
requestPacketsToClients = 0
replyPacketsFromClients = 0
requestBytesToClients = 0
replyBytesFromClients = 0
notificationPacketsToClients = 0
notificationBytesToClients = 0

getSaveLockCallStack
Signature getSaveLockCallStack(): Boolean;

The getSaveLockCallStack method of the Process class returns true when an object is locked if the lock call
stack is being saved for a process; otherwise, it returns false.

Applies to Version: 2016.0.01 and higher

getSignOnUsage
Signature getSignOnUsage(): Integer;

The getSignOnUsage method of the Process class returns the way in which a currently logged on user signed on
to JADE (for example, call this method, for example, when standard security is handled by the JADE start-up form
of your application and you want to validate users who sign on to the JADE system from ODBC).

This method returns one of the Process class constants listed in the following table.

Class Constant Integer Value Signed on…

SignOn_Usage_NoAudit 2 In NoAudit mode

SignOn_Usage_OdbcLogin 3 As a JADE ODBC driver

SignOn_Usage_ReadOnly 1 In ReadOnly mode

SignOn_Usage_Update 0 In Update mode

When the current log-in is an ODBC log-in, the database mode is read-only.

getStringPoolLimit
Signature getStringPoolLimit(): Integer64;

The getStringPoolLimit method of the Process class retrieves the string pool limit for the executing process.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 618

EncycloSys2 - 2020.0.02

This method can be called only on the process instance of the current process. Exception 1265 (Environmental
object operation is out of scope for process) is raised if you call the method on an instance for another process.

Applies to Version: 2018.0.01 and higher

getTempPath
Signature getTempPath(): String;

The getTempPath method of the Process class returns a string containing the architecture-specific version of the
directory in which temporary files are created on the node of the receiver object. For example, this method returns
TEMP or TMP, as appropriate.

A method on a specific process instance performs its action on the owning node (that is, a process.node
instance) if the process is not associated with a presentation client. If the process has an associated presentation
client, the action is performed on the presentation client. The presentation client does not have to be the current
presentation client or a presentation client attached to the same application server.

Use the Node class getTempPath method to obtain the temporary directory from the app server.

For details about returning the value of a specified environment variable, see the Node class
getEnvironmentVariable method.

getTimers
Signature getTimers(jdoa: JadeDynamicObjectArray;

count: Integer output);

The getTimers method of the Process class populates a user-supplied JADE dynamic object with timer-related
information from the receiving process that is the method receiver.

The value of the count parameter is updated with the number of active timers. The values are returned as
properties in the dynamic object array specified by the jdoa parameter. For details about the properties returned in
the dynamic object array, see "Getting Timer Information", in Chapter 4 of the JADE Object Manager Guide.

The following example shows the use of the getTimers method and the resulting output.

vars
count : Integer;
jdoa : JadeDynamicObjectArray;
jdo : JadeDynamicObject;
str : String;
int : Integer;

begin
create jdoa transient;
process.getTimers(jdoa,count);
foreach jdo in jdoa do

str := '---' & jdo.getName & '(' & jdo.type.String & ')---';
foreach int in 1 to jdo.propertyCount do

str := str & CrLf & jdo.getPropertyName(int) & " = " &
jdo.getPropertyValueByIndex(int).String;

endforeach;
write str;

endforeach;
epilog

jdoa.purge;
delete jdoa;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 619

EncycloSys2 - 2020.0.02

end;

---CurrentTimers(117)---
receiver = Q/18536.1
eventTag = 1
delay = 20000
option = 1
fired = false
inCallBack = false
exceptionState = false
remainingTime = 11549
application = Test/18432.1
interfaceNumber = 0
serverExecution = false

getTrackedMethod
Signature getTrackedMethod(): Method;

The getTrackedMethod method of the Process class returns a reference to the Method instance of the tracked
method that caused the current method to be invoked. (The current method is a preamble method called before
the tracked method or a postamble method called after the tracked method.)

If the current method is not invoked as a result of method tracking, a null value is returned.

getTrackedMethodReceiver
Signature getTrackedMethodReceiver(): Object;

The getTrackedMethodReceiver method of the Process class returns a reference to the object that is used as
the receiver for the method being tracked.

If the current method is not invoked as a result of method tracking, a null value is returned.

getTrackedMethodReturnValue
Signature getTrackedMethodReturnValue(): Any;

The getTrackedMethodReturnValue method of the Process class retrieves the return value of the method being
tracked.

If the current method is not invoked as a result of a method returning execution or if the tracked method does not
have a return value, a null value is returned.

getTrackedMethodStatus
Signature getTrackedMethodStatus(): Integer;

The getTrackedMethodStatus method of the Process class returns a value representing the current status of the
tracked method. The values returned are listed in the following table.

Value Description

0 No current tracked method

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 620

EncycloSys2 - 2020.0.02

Value Description

1 The tracked method is about to be called

2 The tracked method has just returned normally

3 The tracked method has just exited abnormally

An abnormal exit can occur when an exception has been raised causing further execution of the method to be
abandoned (for example, when an exception handler returns Ex_Abort_Action).

getTransactionId
Signature getTransactionId(): Decimal;

The getTransactionId method of the Process class returns a value that represents the latest identifying number
from the most recent beginTransaction instruction executed in the current process as a Decimal value
(regardless of whether a commitTransaction or an abortTransaction instruction has been executed since the
latest beginTransaction instruction).

getTransactionId64
Signature getTransactionId64(): Integer64;

The getTransactionId64 method of the Process class returns a value that represents the latest identifying
number from the most recent beginTransaction instruction executed in the current process as an Integer64 value
(regardless of whether a commitTransaction or an abortTransaction instruction has been executed since the
latest beginTransaction instruction).

getTransactionTraceCallbacks
Signature getTransactionTraceCallbacks(callbacks: JadeDynamicObject io);

The getTransactionTraceCallbacks method of the Process class populates the children collection of the
JadeDynamicObject instance passed as a parameter with further JadeDynamicObject instances containing the
method and receiver for all currently enabled transaction trace callbacks; that is, those methods and receivers that
have been enabled using the enableTransTraceCallback method of the Process class.

Each child JadeDynamicObject instance contains the following references, which are of type Object, relating to
the callback method.

callbackReceiver, which is the receiver

callbackMethod, which is the instance of the Method class

The process is responsible for creating and deleting the JadeDynamicObject instance used as a parameter. The
instances in the children collection are automatically deleted when the parent object is deleted.

The JadeDynamicObject instance is cleared every time the getTransactionTraceCallbacks method is called.
This includes purging its children collection.

The following example shows the use of the getTransactionTraceCallbacks method.

vars
jdo : JadeDynamicObject;
jdoChild : JadeDynamicObject;
o1, o2 : Object;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 621

EncycloSys2 - 2020.0.02

begin
create jdo transient;
process.getTransactionTraceCallbacks(jdo);
foreach jdoChild in jdo.children do

o1 := jdoChild.getPropertyValue
(JadeTransactionTrace.CallbackReceiver).Object;

o2 := jdoChild.getPropertyValue
(JadeTransactionTrace.CallbackMethod).Object;

write "Receiver " & o1.String & ", Method " & o2.Method.name;
endforeach;

epilog
delete jdo;

end;

getTransactionTraceObject
Signature getTransactionTraceObject(): JadeTransactionTrace;

The getTransactionTraceObject method of the Process class returns a reference to the transient instance of the
JadeTransactionTrace class associated with the process. The object contains information gathered from the
latest transaction when transaction tracing was active.

getTransientDeadlockPriority
Signature getTransientDeadlockPriority(): Integer;

The getTransientDeadlockPriority method of the Process class retrieves the priority value to be used when
dealing with deadlocks involving shared transient objects. This method can be called only on the process
instance of the current process. If you call it on an instance for another process, an exception is raised.

getTransientFileLength
Signature getTransientFileLength(): Integer64;

The getTransientFileLength method of the Process class returns the physical size of the transient database file
in use by the executing process; that is, the current thread executing the current method.

See also "Transient Database File Analysis", in Chapter 3 of the JADE Database Administration Guide.

getTransientFileName
Signature getTransientFileName(): String;

The getTransientFileName method of the Process class returns the name of the transient database file in use by
the executing process; that is, the current thread executing the current method.

Tip To obtain the path for this file, use the getTransientDbPath method of the Application class.

See also "Transient Database File Analysis", in Chapter 3 of the JADE Database Administration Guide.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 622

EncycloSys2 - 2020.0.02

getUserDataDirectory
Signature getUserDataDirectory(): String;

The getUserDataDirectory method of the Process class returns a string containing the path of the user data
directory. The user data directory is used for files that are specific to each user of the JADE executables; for
example, if a presentation client installation occurs on a Windows machine running Citrix or Terminal Services
and all users run the same thin client binaries, any data created on the client file system should be stored under
this directory (that is, in separate directories for each user).

If JADE is not installed under the \Program Files directory, the location of the JADE HOME directory is returned.

If JADE is installed under the \Program Files directory, the value that is returned depends on the value of the
UserDataDirectory parameter in the [JadeEnvironment] section of the JADE initialization file. If the directory does
not exist, JADE creates it.

The values of the UserDataDirectory parameter and the corresponding values returned by the
getUserDataDirectory method are shown in the following table.

UserDataDirectory Value Return Value

<default> The path of the JADE HOME directory with the \Program Files portion replaced
with the programmatically obtained path for the specific user application private
data directory. For example, a presentation client installed into \Program
Files\Jade Software\parsys and executed by user wilbur returns
\Users\wilbur\AppData\Local\Jade Software\parsys.

<homedir> The path of the JADE HOME directory.

<userdata> The same as for <default>.

Directory name Directory name.

initializePackages
Signature initializePackages() updating;

The initializePackages method of the Process class calls the Application object initialize event to perform any
initialize function common to all applications containing packages before the application start-up form is invoked.

Normally, if you run an application from the schema, these are executed automatically. However, they are not
executed when a JadeScript or a Workspace method is executed unless you call the initializePackages event
method. (This maintains these interfaces in as light a weight as possible.) This also applies for a RootSchema
application running in a user schema if package initialization has been disabled. For details, see the
PackageInitializationDisabledApp<n> parameter in the [JadeServer] or [JadeClient] section of the JADE
initialization file.

If your schema contains packages and you run a JadeScript or a Workspace method and you do not call this
event, the imported packages application initialize event methods are not called and methods such as the
Process class getAllApps method can therefore not return information about packages.

See also the Process class finalizePackages method.

isCommitting
Signature isCommitting(): Boolean;

The isCommitting method of the Process class returns true if the receiver is currently committing a transaction.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 623

EncycloSys2 - 2020.0.02

isInExceptionState
Signature isInExceptionState(): Boolean;

The isInExceptionState method of the Process class returns true if the process is in exception state (that is, the
exception has occurred in the current transaction); for example, in the epilog code or in an exception handler.

Note The method receiver must be the current process.

The code fragment in the following example shows the use of the isInExceptionState method.

epilog
if process.isInExceptionState then

abort;
endif;

end;

isInImportedContext
Signature isInImportedContext(): Boolean;

The isInImportedContext method of the Process class returns true if the current (executing) process has invoked
the current method from a package (that is, a method in a imported package is being executed) or it returns false if
the current method is defined in the local schema branch of the main application (process).

Use this method to write conditional code based on whether a method is being executed by a process that imports
the package or by an application running from the schema that implements the package (for example, in situations
in which both exported classes and local applications share common code).

isInLoadState
Signature isInLoadState(): Boolean;

The isInLoadState method of the Process class returns true if the process is currently in load state; that is, it is
between a pair of beginLoad and endLoad instructions.

Note The method receiver must be the current process.

isInLockState
Signature isInLockState(): Boolean;

The isInLockState method of the Process class returns true if the process is currently in lock state; that is, it is
between a pair of beginLock and endLock instructions.

Note The method receiver must be the current process.

The following example shows the use of the isInLockState method.

unload() updating;
begin

beginTransaction;
delete global.a;

commitTransaction;
if process.isInLockState then

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 624

EncycloSys2 - 2020.0.02

endLock;
endif;

end;

isInTransactionState
Signature isInTransactionState(): Boolean;

The isInTransactionState method of the Process class returns true if the process is currently in persistent
transaction state.

Note The method receiver must be the current process.

The following example shows the use of the isInTransactionState method.

commitButton_click(btn: Button input) updating;
begin

if process.isInTransactionState then
commitTransaction;
sl1.caption := 'Not in transaction state';

endif;
end;

isInTransientTransactionState
Signature isInTransientTransactionState(): Boolean;

The isInTransientTransactionState method of the Process class returns true if the process is currently in
transient transaction state.

Note The method receiver must be the current process.

isRunningScript
Signature isRunningScript(): Boolean;

The isRunningScript method of the Process class returns true if the process is running a JadeScript method or
Workspace.

Note A network message is sent to the node on which the process is running. This overhead should be taken
into account when using the method.

isUserDataPump
Signature isUserDataPump(): Boolean;

The isUserDataPump method of the Process class returns true if the process is running as a user-defined
Datapump application on an RPS node.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 625

EncycloSys2 - 2020.0.02

isUsingThinClient
Signature isUsingThinClient(): Boolean;

The isUsingThinClient method of the Process class returns true if the process is running under the JADE thin
client mode.

iteratorsExcludeOfflineObjects
Signature iteratorsExcludeOfflineObjects(enable: Boolean): Boolean;

The iteratorsExcludeOfflineObjects method of the Process class when called with the value of the enable
parameter set to true, specifies that all iterators created by the calling process are to exclude objects stored in
offline partitions from the iteration and takes effect on the next call to the next or back method.

This affects explicit collection iterators and foreach iterations over object collections executed by the calling
process, including the Class::instances virtual collection.

The method returns the prior exclusion state, which user logic can restore, if required, when calls are nested.

networkAddress
Signature networkAddress(): String;

The networkAddress method of the Process class returns a string.

For a thin client process, the returned string contains the IP address of the presentation client (for example,
127.0.0.1 or ::1).

For non-thin client processes, the contents of the returned string depend on the type of transport used for the
connection to the database server.

When the transport is TCP/IP, the string contains the IP address used by the client for the connection to the
database server; for example, 127.0.0.1 or ::1.

When the transport is JadeLocal, the returned string is empty.

When the transport is HPSM, the returned string contains "procNNNN", where the NNNN value is the decimal
number of the process at the other end of the connection.

overrideDeferredInverseMaintenance
Signature overrideDeferredInverseMaintenance(disable: Boolean): Boolean, updating;

The overrideDeferredInverseMaintenance method of the Process class overrides the schema-defined
execution strategy for each property.

When called with the value of the disable parameter set to:

false, the behavior defined for each property in the schema is restored

true, disables the use of a deferred execution strategy, overriding the strategy defined in the schema for
each property

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 626

EncycloSys2 - 2020.0.02

Tip Deferred execution is specified at the property level in the schema because this is appropriate for standard
online processing. However, the overrideDeferredInverseMaintenance method enables you to disable the
schema-defined behavior for the duration of a batch or bulk load execution operation, to avoid the impact (for
example, of memory consumption) from a batch processing or bulk data load workload that is known to generate a
large number of collection updates.

Applies to Version: 2020.0.01 and higher

profileMethod
Signature profileMethod(m: Method;

b: Boolean);

The profileMethod method of the Process class selects or deselects a method to be profiled for the target process
used as the method receiver.

The target process can be any current process, including the requesting process itself or a process executing on
another node.

You would usually call this method before method profiling is started for the target process using the
beginMethodProfiling method with the option parameter set to two (2) or three (3), to indicate a subset of methods
are to be profiled.

The m parameter is a Method object reference, which can be a JADE method or an external method. The b
parameter indicates if the method is to be added to or removed from the list of nominated methods. If true, the
method is added. If false, the method is removed.

You can call the method when method profiling is already in effect for the target process. Changes to the list of
nominated methods take immediate effect.

Note It is recommended that when investigating application performance, only one of the JADE Profiler, JADE
Monitor, or method profiling is used at any one time, as the results reported when any of these are combined is
undefined.

The method has no effect if called to add a method that is already in the list of nominated methods. Similarly, it has
no effect if removing a method that is not in the nominated list.

The list of nominated methods is retained until the removeMethodProfileInfo method is called or the target
process terminates.

profiler
Signature profiler(): JadeProfiler;

The profiler method of the Process class returns a reference to the profiler for the receiving process. If no
instance of the JadeProfiler class exists, it is created. (You therefore do not have to create a profiler instance nor
delete it in an epilog at the end of your method.)

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 627

EncycloSys2 - 2020.0.02

prohibitBeginTransaction
Signature prohibitBeginTransaction(prohibited: Boolean): Boolean updating;

Set the prohibited parameter in the prohibitBeginTransaction method of the Process class to true if you do not
want the current process to be able to enter persistent transaction state. If transactions are prohibited (or allowed)
for a method executing on a client node and a serverExecution method is called, transactions will also be
prohibited (or allowed) on the server node. This also applies when method execution switches from the server to
the client.

To enable the process to enter transaction state, this method must be called with the prohibited parameter set to
false.

The prohibitBeginTransaction method returns true only if the current process was already prohibiting entry into
persistent transaction state.

Note You can call the prohibitBeginTransaction method only for the current process.

prohibitPersistentUpdates
Signature prohibitPersistentUpdates(prohibited: Boolean): Boolean updating;

Set the prohibited parameter in the prohibitPersistentUpdates method of the Process class to true if you do not
want persistent objects in the current process to be updated. When the updating of persistent objects is prohibited
in the current process, any attempt to do so raises a 1271 exception (that is, An attempt was made to perform an
operation that is prohibited in this context). If the updating of persistent objects is prohibited (or allowed) for a
method executing on a client node and a serverExecution method is called, the updating of persistent objects
will also be prohibited (or allowed) on the server node. This also applies when method execution switches from
the server to the client.

When the updating of persistent objects in the process of the receiver is prohibited, the following operations are
also prohibited.

Creating or deleting a persistent object

Cloning or copying to a persistent object

Executing the beginTransaction instruction

Executing the commitTransaction instruction

When the updating of persistent objects in the process is prohibited, setting the value of the prohibited parameter
to false removes the prohibition and allows persistent objects to once again be updated.

The abortTransaction instruction can still be executed, even if the prohibition is in place. Executing the
abortTransaction instruction removes the prohibition.

The prohibitPersistentUpdates method returns true only if the current process was already prohibiting the
updating of persistent objects.

Notes This method applies only to the current process.

The prohibitPersistentUpdates method is designed to prevent unexpected updates to persistent objects. It is not
intended to be a comprehensive security measure.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 628

EncycloSys2 - 2020.0.02

removeMethodProfileInfo
Signature removeMethodProfileInfo();

The removeMethodProfileInfo method of the Process class removes all method profiling information and any list
of nominated methods for the target process specified as the method receiver.

The target process can be any current process, including the requesting process itself or a process executing on
another node.

If method profiling is in effect for the target process, it is stopped before the profiling information is removed. If
method profiling is not active for the target process or there is no method profiling information, this method has no
effect.

resumeTimers
Signature resumeTimers();

The resumeTimers method of the Process class resumes all timers suspended for the receiver using the
suspendTimers method.

rpsSuppressTransactionDeletes
Signature rpsSuppressTransactionDeletes();

The rpsSuppressTransactionDeletes method of the Process class specifies on a primary system those
transactions for which deletions are not to be replicated to the relational database by an RPS Datapump
application on a secondary system. This allows selected operations on the primary system (for example,
housekeeping, and archiving tasks) to be performed without affecting relational database replicas.

The rpsSuppressTransactionDeletes method is called after executing the beginTransaction instruction and
before executing the commitTransaction instruction; it does not have to precede the first object deletion, as
shown in the following code fragment.

beginTransaction;
delete obj1;
process.rpsSuppressTransactionDeletes;
delete obj2;

commitTransaction; // Delete obj1 and obj2 not replicated in relational db

When the process exits transaction state, replication of deletes is no longer suppressed. An exception is raised if
the method is called outside transaction state.

sendCallStackInfo
Signature sendCallStackInfo();

The sendCallStackInfo method of the Process class requests a target process (the method receiver) to send one
or more notifications containing information regarding its call stack.

The target process can be any current process, including the requesting process itself or a process executing on
another node.

The information received is the same as that returned by the getCallStackInfo method of the Process class,
although that method can be used only for the current process instance.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 629

EncycloSys2 - 2020.0.02

The target process is activated temporarily or interrupted in order to retrieve the call stack information and send
the notifications, after which it resumes whatever it was doing.

Note The sendCallStackInfo method is asynchronous; that is, it does not wait until the information is received.
The information is received through notifications some time after the method is called.

The information in the notification relating to the call stack for the target process is shown in the following table.

Parameter Contains …

eventType Process_Call_Stack_Info_Event

target Process instance of the process that made the request

userInfo Call stack information stored within a string value

Register to receive notifications of events of type Process_Call_Stack_Info_Event (a global constant in the
JadeProcessEvents category) on the process making the request using the beginNotification method defined in
the Object class before executing the sendCallStackInfo method, as shown in the following code fragment.

self.beginNotification(process, Process_Call_Stack_Info_Event,
Response_Continuous, 0);

To test whether a notification contains call stack information, the userNotification method should test whether the
value of the eventType parameter is Process_Call_Stack_Info_Event.

If the size of the call stack information collected is greater than the maximum allowed for a notification, the
information is broken into parts and sent using multiple notifications. Each delivered notification records positional
information at the end of the string, in the format [<process oid>:<current notification>:<total number of
notifications>] (for example, [187.5:1:3]).

If the target process (the method receiver) is not a valid current process, an 1128 exception (The target process is
not valid) is raised.

sendMethodCacheStatistics
Signature sendMethodCacheStatistics() serverExecution;

The sendMethodCacheStatistics method of the Process class requests a target process (the receiver) to send a
notification containing statistics about the method cache of the target process.

The target process can be any current process, including the requesting process itself or a process executing on
another node.

To retrieve the method cache statistics information and send the notifications, the target process is activated
temporarily or interrupted, after which it resumes whatever it was doing.

Note The sendMethodCacheStatistics method is asynchronous; that is, it does not wait until the information is
received. The information is received through notifications sometime after the method is called.

The information in the notification relating to the method cache for the target process is shown in the following
table.

Parameter Contains …

eventType Process_Method_Cache_Stats_Event global constant

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 630

EncycloSys2 - 2020.0.02

Parameter Contains …

target Process instance of the process that made the request

userInfo Method cache statistics stored within a string value

The process making the request should register to receive type Process_Method_Cache_Stats_Event
notifications on its Process instance, using the beginNotification method defined in the Object class before
executing the sendMethodCacheStatistics method, as shown in the following code fragment.

self.beginNotification(process, Process_Method_Cache_Stats_Event,
Response_Continuous, 0);

To determine whether a notification contains method cache statistics, the userNotification method of its Process
instance should test whether the value of the eventType parameter is Process_Method_Cache_Stats_Event.

The following is an example of the userInfo output.

OID: 187.2
Process method cache type: Multiple (Separate per process)
Cache limit: 524288
Maximum cache size: 524288
Number of methods in cache: 105
Total methods discarded: 2560
Total methods executed: 190586
Total time loading methods into cache (ms): 2237
Cache overruns: 0
String pool limit: 5242880
Maximum string pool size: 173568
Number of Strings in string pool: 234
String pool overruns: 0
Number of cache overruns 0-10% over limit: 0
Number of cache overruns 10-20% over limit: 0
Number of cache overruns 20-30% over limit: 0
Number of cache overruns 30-40% over limit: 0
Number of cache overruns 40-50% over limit: 0
Number of cache overruns 50-60% over limit: 0
Number of cache overruns 60-70% over limit: 0
Number of cache overruns 70-80% over limit: 0
Number of cache overruns 80-90% over limit: 0
Number of cache overruns 90-100% over limit: 0
Number of cache overruns 100%+ over limit: 0
[187.2:1:1]

Applies to Version: 2018.0.01 and higher

sendRequestStatistics
Signature sendRequestStatistics(localOrRemote: Integer);

The sendRequestStatistics method of the Process class requests a target process to send a notification
containing local or remote request statistics.

The target process can be any current process, including the requesting process itself or a process executing on
another node.

The target object for the notification is the Process instance of the process making the request.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 631

EncycloSys2 - 2020.0.02

To request local statistics, which record information about requests made on the node on which the process is
running, set the value of the localOrRemote parameter to one (1). To request remote statistics, which record
information about requests made between the client node and the database server node, set the value of the
localOrRemote parameter to two (2).

Most of the request statistics are collected only when node sampling is active on the node. The values that are
reported independent of node sampling are the thin client statistics that are part of the local request statistics.

The target process is temporarily activated or interrupted to send the notification. After sending the notification, it
resumes whatever it was previously doing.

Note This method is asynchronous; that is, the sendRequestStatistics method does not wait until the statistics
have been received. The statistics are received as a notification some time after the sendRequestStatistics
method has been called.

The information in the notification relating to the request statistics is shown in the following table.

Parameter Contains …

eventType Process_Local_Stats_Event for local request statistics Process_Remote_Stats_Event for
remote request statistics

target Process instance of the process that made the request

userInfo Statistical values encoded within a Binary value

The process making the request should register to receive type Process_Local_Stats_Event (local request
statistics) or Process_Remote_Stats_Event (remote request statistics) notifications on its Process instance
using the beginNotification method defined in the Object class before executing the sendRequestStatistics
method, as shown in the following code fragment.

self.beginNotification(process, Process_Local_Stats_Event,
Response_Continuous, 0);

To test whether a notification contains local or remote request statistical information, the userNotification method
of its Process instance should test whether the value of the eventType parameter is Process_Local_Stats_
Event or Process_Remote_Stats_Event, which indicates a local or remote request statistics notification.

The userInfo parameter of the notification should then be passed as a parameter to the extractRequestStatistics
method, to extract the local and remote request statistics as attributes in a JadeDynamicObject instance.

If the target process (the method receiver) is not a valid current process, an 1128 exception (The target process is
not valid) is raised.

sendTransientFileAnalysis
Signature sendTransientFileAnalysis();

The sendTransientFileAnalysis method of the Process class requests a target process (the method receiver) to
send one or more notifications containing detailed analysis of its transient database file, including counts of
objects by class number plus other useful information.

The target process can be any current process, including the requesting process itself or a process executing on
another node.

The information received is the same as that returned by the analyzeTransientFileUsage method of the Process
class, although that method can be used only for the current process instance.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 632

EncycloSys2 - 2020.0.02

The target process is activated temporarily or interrupted in order to analyze the transient database file and send
the notifications, after which it resumes whatever it was doing.

Note The sendTransientFileAnalysis method is asynchronous; that is, it does not wait until the information is
received. The information is received through notifications some time after the method is called.

The information in the notification relating to analysis of the transient database file for the target process is shown
in the following table.

Parameter Contains …

eventType Process_TDB_Analysis_Event

target Process instance of the process that made the request

userInfo Detailed analysis of the transient database file for the process

Register to receive notifications of events of type Process_TDB_Analysis_Event (a global constant in the
JadeProcessEvents category) on the process making the request using the beginNotification method defined in
the Object class before executing the sendTransientFileAnalysis method, as shown in the following code
fragment.

self.beginNotification(process, Process_TDB_Analysis_Event,
Response_Continuous, 0);

To test whether a notification contains transient database file analysis, the userNotification method should test
whether the value of the eventType parameter is Process_TDB_Analysis_Event.

If the size of the analyzed data collected is greater than the maximum allowed for a notification, the information is
broken into parts and sent in a number of notifications.

Each delivered notification records positional information at the end of the string, in the format [<process
oid>:<current notification>:<total number of notifications>] (for example, [187.5:1:3]).

If the target process (the method receiver) is not a valid current process, an 1128 exception (The target process is
not valid) is raised.

sendTransientFileInfo
Signature sendTransientFileInfo();

The sendTransientFileInfo method of the Process class requests a target process (the method receiver) to send
a notification containing information regarding its transient database file.

The target process can be any current process, including the requesting process itself or a process executing on
another node.

The target process is activated temporarily or interrupted in order to retrieve the transient database file information
and send the notifications, after which it resumes whatever it was doing.

Note This sendTransientFileInfo method is asynchronous; that is, the method does not wait until the information
is received. The information is received as a notification some time after the method is called.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 633

EncycloSys2 - 2020.0.02

The information in the notification relating to analysis of the transient database file for the target process is shown
in the following table.

Parameter Contains…

eventType Process_TDB_Info_Event

target Process instance of the process that made the request

userInfo A colon delimited string containing the process oid, transient database file name, and the
transient database file length

Register to receive notifications of events of type Process_TDB_Info_Event (a global constant in the
JadeProcessEvents category) on the process making the request using the beginNotification method defined in
the Object class before executing the sendTransientFileInfo method, as shown in the following code fragment.

self.beginNotification(process, Process_TDB_Info_Event,
Response_Continuous, 0);

To test whether a notification contains transient database file information, the userNotification method should test
whether the value of the eventType parameter is Process_TDB_Info_Event.

If the target process (the method receiver) is not a valid current process, an 1128 exception (The target process is
not valid) is raised.

sendWebStatistics
Signature sendWebStatistics();

The sendWebStatistics method of the Process class requests a target process to send a notification containing
World Wide Web performance statistics.

The target process can be any current process, including the requesting process itself or a process executing on
another node.

The target object for the notification is the Process instance of the process making the request.

Only processes using Web services send meaningful data. Other processes send the notification, but it does not
contain any values.

The target process is temporarily activated or interrupted in order to send the notification. After sending the
notification, it resumes whatever it was previously doing.

Note This method is asynchronous; that is, the sendWebStatistics method does not wait until the statistics have
been received. The statistics are received as a notification some time after the sendWebStatistics method has
been called.

The information in the notification relating to the Web performance statistics is shown in the following table.

Parameter Contains…

eventType Process_Web_Stats_Event for Web statistics

target Process instance of the process that made the request

userInfo Statistical values encoded within a Binary value

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 634

EncycloSys2 - 2020.0.02

The process making the request should register to receive type Process_Web_Stats_Event (a global constant in
the JadeProcessEvents category) notifications on its Process instance using the beginNotification method
defined in the Object class before executing the sendWebStatistics method, as shown in the following code
fragment.

self.beginNotification(process, Process_Web_Stats_Event,
Response_Continuous, 0);

To test whether a notification contains Web statistics information, the userNotification method of its Process
instance should test whether the value of the eventType parameter is Process_Web_Stats_Event, which
indicates a Web statistics notification.

The userInfo parameter of the notification should be passed as a parameter to the extractWebStatistics method,
to extract the Web statistics as attributes in a JadeDynamicObject instance.

If the target process (the method receiver) is not a valid current process, an 1128 exception (The target process is
not valid) is raised.

setDateTimeDelta
Signature setDateTimeDelta(deltaDate: Integer;

deltaTime: Integer);

The setDateTimeDelta method of the Process class sets the values used to adjust initial values of the Date,
Time, TimeStamp, and TimeStampOffset local variables.

The value of deltaDate parameter specifies the number of days by which to adjust the initial value of any Date
local variable and the Date component of a TimeStamp and TimeStampOffset local variable.

The value of the deltaTime parameter the number of milliseconds by which to adjust the initial value of any Time
local variable and the Time component of a TimeStamp and TimeStampOffset local variable.

Calling the setDateTimeDelta method with parameter values of zero (0) causes all local variables to be initialized
with the current date and time. If you want to set the date or time to a value in the past, specify a negative value in
the appropriate parameter.

You can define an adjustment to the initial date or time value for local variables only for the current process.

For details about retrieving the values used to adjust the initial date and time used by the receiving process, see
the getDateTimeDelta method.

setDefaultLockTimeout
Signature setDefaultLockTimeout(timeout: Integer): Integer;

The setDefaultLockTimeout method of the Process class programmatically changes the default lock timeout
period for the receiving process.

The value of the timeout parameter can be an explicit number of milliseconds (for example, specify a value of
30000 for 30 seconds), or it can be one of the predefined global constants defined in the RootSchema
LockTimeouts category; that is, one of:

LockTimeout_Immediate

LockTimeout_Infinite

LockTimeout_Server_Defined

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 635

EncycloSys2 - 2020.0.02

When the setDefaultLockTimeout method is called, the parameter value is used for the timeout for all implicit
locks and locks obtained by the Object class exclusiveLock, sharedLock, reserveLock, and updateLock
methods.

This method returns the current process lock timeout (before the new value specified in the timeout parameter is
saved).

By default (that is, if you do not call this method), the default lock timeout for all processes is defined by the value
of the ServerTimeout parameter in the [JadeServer] section of the JADE initialization file.

Applies to Version: 2016.0.01 and higher

setMethodCacheLimit
Signature setMethodCacheLimit(limit: Integer64);

The setMethodCacheLimit method of the Process class programmatically sets the method cache limit for the
executing process. The limit parameter represents the number of bytes to which to set the method cache limit.

The limit value must be greater than the minimum allowed cache size (64K bytes); otherwise exception 1002
(Invalid parameter value) is raised.

This method can be called only on the process instance of the current process. Exception 1265 (Environmental
object operation is out of scope for process) is raised if you call the methods on an instance for another process.

Applies to Version: 2018.0.01 and higher

setObjectCachePriority
Signature setObjectCachePriority(obj: Object;

priority: Integer);

The setObjectCachePriority method of the Process class specifies, through the priority parameter, how long an
object, specified by the obj parameter, is to be retained in persistent or transient object cache. The greater the
value of the priority parameter, the longer an object remains in the object cache.

The priority parameter effectively gives an object a number of lives in cache. When an object in cache has not
been used for the specified length of time, it becomes a candidate to be removed from cache. Its number of lives is
examined. If equal to one (1), the object is removed from cache. If greater than one (1), the number of lives is
decremented and instead of being removed from cache, the object is treated as if it had just been accessed. This
results in it being retained longer in cache, instead of being removed.

Conversely, when the number of lives for an object is set to zero (0), it is removed from cache.

The range of values for the priority parameter is zero (0) through 255. A negative value is treated as (0), and a
value greater than 255 is treated as 255.

The number of lives an object has applies only while the object is in cache. When an object is first loaded into
cache, it is assigned one life only. Lives are not recorded for objects that are not in cache.

If the value of the priority parameter is greater than zero (0), the setObjectCachePriority method loads the object
into cache if it is not already present, before setting the number of lives. For values greater than one (1), this
results in an extension to the length of time the object is retained in cache.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 636

EncycloSys2 - 2020.0.02

If the value of the priority parameter is zero (0), the setObjectCachePriority method removes the object from
cache immediately, if it is currently in cache. If it is not in cache, the method has no effect. When an object is
removed, its subobjects are also removed, including string large objects (slobs) and binary large objects (blobs)
but not exclusive collections, which must be removed separately, as shown in the following example.

/* remove obj1 from cache as well as its slobs and blobs,
but not its // exclusive collections */

process.setObjectCachePriority(obj1, 0);
/* remove the exclusive collection obj2.allObj3s from cache
and any of its collection blocks */
process.setObjectCachePriority(obj2.allObj3s, 0);

Note An object is not removed from the cache if it is currently being updated by another process (that is, it
contains uncommitted updates).

You can use the setObjectCachePriority method with persistent and transient objects; that is, it applies to
persistent and transient object caches. With transient objects, a process can only affect shared transient objects
and its own non-shared transient objects.

A process must use its own Process instance as the method receiver. Using any other Process instance causes
a 1265 exception (Environmental object operation is out of scope for process) to be raised.

In the following code fragment, a report application iterates a collection and accesses objects in the collection
once only. The setObjectCachePriority method is used to remove each object from cache immediately after it
has been accessed.

foreach cust in root.allCusts do
totalSales := totalSales + cust.purchases;
process.setObjectCachePriority(cust, 0);

endforeach;

setPersistentDeadlockPriority
Signature setPersistentDeadlockPriority(priority: Integer);

The setPersistentDeadlockPriority method of the Process class sets the priority value to be used when dealing
with deadlocks involving persistent objects. Negative and positive values are allowed.

The default deadlock priority is zero (0).

In a deadlock situation, the process with the lower value is given the deadlock exception. This method can be
called only on the process instance of the current process. If you call it on an instance for another process, an
exception is raised.

See also the DoubleDeadlockException parameter in the [JadeServer] section of the JADE initialization file, in
your JADE Initialization File Reference.

setProfileString
Signature setProfileString(fileName: String;

section: String;
keyName: String;
string: String): Boolean;

The setProfileString method of the Process class copies a parameter (key name) string into the specified section
of the initialization file of the process.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 637

EncycloSys2 - 2020.0.02

A method on a specific process instance performs its action on the owning node (that is, a process.node
instance) if the process is not associated with a presentation client. If the process has an associated presentation
client, the action is performed on the presentation client. The presentation client does not have to be the current
presentation client or a presentation client attached to the same application server.

Use the Application class setProfileStringAppServer method or Node class setProfileString method to set the
string on the application server.

This method returns true if it succeeds in storing the specified string. Conversely, if the value of the section or
keyName parameter is null ("") or empty, this method returns false, to indicate that the JADE initialization file has
not been updated. Use the respective ProfileRemoveSection or ProfileRemoveKey global constant in the
JadeProfileString category to delete a section or key, rather than passing a null or empty string in the appropriate
parameter of this method.

To retrieve a stored string, use the getProfileString method.

The parameters for the setProfileString method are listed in the following table.

Parameter Description

fileName Specifies the initialization file. If you set this parameter to windows, the win.ini file is used. If
this parameter does not contain a full path to the file, Windows searches for the file in the
Windows directory.

section Specifies the initialization file section containing the key (parameter) name.

keyName Specifies the name of the key (parameter) whose associated string is to be stored.

string Specifies the string that is to be written to the file.

You can use this method to copy a string to a two-level section name (prefixed with a unique identifier) within a
JADE initialization file shared by multiple programs on the host. For details, see "Two-Level Section Names"
under "Format of the JADE Initialization File", in the JADE Initialization File Reference. However, you cannot use
this method to update JADE initialization file parameter values specified on the command line. Attempts to do so
return a value of false and the parameter values are unchanged.

The following example shows the use of this method to remove an entire [mySection] section and the WindowPos
parameter in the [InternalAS.JadeAppServer] section from the JADE initialization file.

begin
process.setProfileString(process.getIniFileName, "mySection",

ProfileRemoveSection, "");
// If the user has moved the window, reset it to the default values
process.setProfileString(process.getIniFileName, "JadeAppServer",

"WindowPos", ProfileRemoveKey);
end;

setSaveLockCallStack
Signature setSaveLockCallStack(saveLockCallStack: Boolean): Boolean;

The setSaveLockCallStack method of the Process class specifies whether JADE saves the current call stack
information when a process locks an object.

If the value of the saveLockCallStack parameter is true, the call stack is saved when the receiving process locks
an object. A parameter value of false stops saving this information. The method returns true if the call stack was
being saved before calling this method; otherwise it returns false.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 638

EncycloSys2 - 2020.0.02

Calling this method overrides the value of the DefaultProcessSaveLockCallStack parameter in the [JadeClient]
section and the value of the DefaultProcessSaveLockCallStack parameter in the [JadeServer] section of the
initialization file.

Applies to Version: 2016.0.01 and higher

setStringPoolLimit
Signature setStringPoolLimit(limit: Integer64);

The setStringPoolLimit method of the Process class programmatically sets the string pool limit for the executing
process. The limit parameter represents the number of bytes to which to set the string pool limit.

The limit value must be greater than the minimum allowed string pool size (64K bytes); otherwise exception 1002
(Invalid parameter value) is raised.

This method can be called only on the process instance of the current process. Exception 1265 (Environmental
object operation is out of scope for process) is raised if you call the methods on an instance for another process.

Applies to Version: 2018.0.01 and higher

setTransientDeadlockPriority
Signature setTransientDeadlockPriority(priority: Integer);

The setTransientDeadlockPriority method of the Process class sets the priority value to be used when dealing
with deadlocks involving shared transient objects. Negative and positive values are allowed. The default deadlock
priority is zero (0).

In a deadlock situation, the process with the lower value is given the deadlock exception.

This method can be called only on the process instance of the current process. If you call it on an instance for
another process, an exception is raised.

See also the DoubleDeadlockException parameter in the [JadeServer] section of the JADE initialization file, in
the JADE Initialization File Reference.

sleep
Signature sleep(sleepTime: Integer);

The sleep method of the Process class suspends the execution of the thread of the receiver process for the
specified time interval.

The following example shows the use of the sleep method.

defaultInitialize() updating;
vars

ini : String;
bin : String;
size : Integer;

begin
size := system.nodes.size;
ini := app.getIniFileName;
bin := app.getJadeInstallDir;
app.createExternalProcess(bin & '\jade.exe path = ' & app.dbPath &

' app = PrintTest schema = PrintTest', false);

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 639

EncycloSys2 - 2020.0.02

while size = system.nodes.size do
process.sleep(2000);

endwhile;
end;

Use the sleepTime parameter to specify the time (in milliseconds) that the thread is to be suspended. A value of
zero (0) causes the thread to relinquish the remainder of its time slice to any other thread of equal priority that is
ready to run in the system. If there are no other threads that are ready to run, the receiver process continues
execution immediately.

Note Unlike the Application class doWindowEvents method, the sleep method does not allow Window events
to be processed while the thread is suspended.

startMethodTracking
Signature startMethodTracking(targetMethod: Method;

preambleMethod: Method;
postambleMethod: Method;
receiver: Object);

The startMethodTracking method of the Process class initiates method tracking for the receiving process by
automatically invoking a specified method just before the specified target method is called and invoking another
method just after the target method has returned from execution.

The receiving Process instance can be any current process including the current process. The parameters of the
startMethodTracking method are listed in the following table.

Parameter Description

targetMethod Method to be tracked

preambleMethod Method to be invoked just before calling the target method

postambleMethod Method to be invoked just after returning from executing the target method (that is, after
any epilog code in the target method has been executed)

receiver Receiver for the preamble and postamble methods

The preambleMethod and postambleMethod methods must have the following signature:

method(paramList: ParamListType);

When invoked, the paramList parameter contains a list of parameters matching those of the method being
tracked.

The following methods cannot be tracked.

getAndValidateUser in the Global class or a reimplementation in a subclass

isUserValid in the Global class or a reimplementation in a subclass

Method tracking is not currently supported for serverExecution methods.

Note To avoid repeated calls and kernel stack overflow exceptions, the tracking method should not track itself or
any of the methods it calls.

For more details about method tracking, see Chapter 17, "Tracking Methods", in the JADE Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 640

EncycloSys2 - 2020.0.02

startTransactionTrace
Signature startTransactionTrace();

The startTransactionTrace method of the Process class initiates transaction tracing for transactions carried out
by the receiving Process instance, which must be the current process. A transient instance of the
JadeTransactionTrace class is created for the process, if one did not already exist, to store transaction
information.

Transaction tracing can be started regardless of the current transaction state. If started while a transaction is
active, only objects updated, created, and deleted after tracing is initiated are recorded. If the
startTransactionTrace method is called when transaction tracing is already active, an exception is raised.

Existing trace information in the current transaction trace object is removed if the startTransactionTrace method
is called when not in transaction state, or when the information does not relate to the current transaction. Stopping
and starting transaction tracing within a transaction does not remove tracing information.

stopMethodTracking
Signature stopMethodTracking(targetMethod: Method);

The stopMethodTracking method of the Process class turns off method tracking of the method specified in the
targetMethod parameter by the receiving process, which can be any process including the current process. The
instruction is ignored if the method specified by the targetMethod parameter is not being tracked.

For more details about method tracking, see Chapter 17, "Tracking Methods", in the JADE Developer’s Reference.

stopTransactionTrace
Signature stopTransactionTrace();

The stopTransactionTrace method of the Process class turns off transaction tracing for the receiving Process
instance, which must be the current process.

Transaction tracing can be stopped regardless of the current transaction state. You can stop and start transaction
tracing multiple times within a transaction.

Calling the stopTransactionTrace method does not remove trace information from the current transaction trace
object. The information is cleared automatically when tracing is next started outside of transaction state or within a
subsequent transaction. The information can also be cleared by calling the clear for the JadeTransactionTrace
object.

If the stopTransactionTrace method is called when transaction tracing is not active, an exception is raised.

suspendTimers
Signature suspendTimers();

The suspendTimers method of the Process class suspends all timers registered for the receiver. Use the
resumeTimers method of the Process class to resume suspended timers.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 641

EncycloSys2 - 2020.0.02

transactionTraceStarted
Signature transactionTraceStarted(): Boolean;

The transactionTraceStarted method of the Process class enables an application to determine whether
transaction tracing is currently enabled. The receiving Process instance must be the current process.

If transaction tracing has been started by calling the startTransactionTrace method of the Process class and not
yet stopped by calling the startTransactionTrace method, true is returned. If transaction tracing has not been
started or has been stopped and not yet restarted, false is returned.

transientPersistentInvsEnabled
Signature transientPersistentInvsEnabled(): Boolean;

The transientPersistentInvsEnabled method of the Process class returns the current state of the Boolean value
set by calls to allowTransientToPersistentInvs on the process.

transientSharedTranInvsEnabled
Signature transientSharedTranInvsEnabled(): Boolean;

The transientSharedTranInvsEnabled method of the Process class returns the current state of the Boolean
value set by calls to allowTransientToSharedTranInvs on the process.

truncateOnDecimalOverflow
Signature truncateOnDecimalOverflow(bool: Boolean);

The truncateOnDecimalOverflow method of the Process class specifies whether an exception is raised when a
decimal overflow occurs.

When you set the bool parameter to true and an exception overflow occurs, the exception that is raised (exception
4043) is continuable.

The following example shows the use of the truncateOnDecimalOverflow method.

vars
d : Decimal[4,2];

begin
on Exception do e0(exception);
process.truncateOnDecimalOverflow(true);
d := 123.456;
write d;
d := -123.456;
write d;

end;

The following example shows the use of the extendedErrorText property in an exception handler that deals with
decimal truncation

e0(e: Exception): Integer;
begin

// exception 4043 is a 'continuable' decimal overflow
if e.errorCode = 4043 then

write e.extendedErrorText;

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 642

EncycloSys2 - 2020.0.02

// continuing here will result in the value being truncated
return Ex_Continue;

endif;
return Ex_Resume_Next;

end;

This method results in the output of the two write instructions in the first of these examples being 123.456, 23.46, -
123.456, and 23.46, respectively.

Note It is the integral part that is truncated. The fractional part is rounded.

If an exception handler continues this exception, the decimal number is truncated and execution continues; for
example, 123.456 is truncated to 23.46 when assigned to a decimal 4,2 (the integral digits are truncated and the
fractional digits are rounded). The Exception class extendedErrorText property contains the value of the decimal
before it is truncated.

useDeferredInverseMaintenance
Signature useDeferredInverseMaintenance(enable: Boolean): Boolean, updating;

The useDeferredInverseMaintenance method of the Process class specifies whether a deferred execution
strategy for all automatically maintained collection properties for the current process is in use, overriding the
schema-defined execution strategy for each property.

When called with the value of the enable parameter set to:

true, enables the use of a deferred execution strategy for all automatically maintained collection properties
for the current process, overriding the execution strategy of each property

false, restores the behavior defined for each property in the schema and returns the value of the prior
enabled state

Tip Use this method when evaluating, testing, and benchmarking the impact of using a deferred execution
strategy before you permanently apply a deferred execution strategy in the schema.

Applies to Version: 2020.0.01 and higher

useUpdateLocks
Signature useUpdateLocks(b: Boolean);

The useUpdateLocks method of the Process class automatically enables update locks on objects. Set the value
of the b parameter to true if you want the automatic lock applied when an object is first updated to be an update
lock rather than an exclusive lock. Set the parameter to false if you want to disable the use of the update lock.

Note If you do not enable update locks, it is still possible to apply an update lock explicitly to an object by using
the updateLock method of the Object class or the lock method specifying Update_Lock for the lockType
parameter.

Encyclopaedia of Classes
(Volume 2)

Process Class Chapter 1 643

EncycloSys2 - 2020.0.02

waitForMethods
Signature waitForMethods(methodContextList: ParamListType): JadeMethodContext;

The waitForMethods method of the Process class suspends the process until one of the method contexts
specified by the methodContextList parameter completes or times out. The waitForMethods method returns a
reference to the method context that completes or times out. If all method contexts have completed or timed out,
the waitForMethods method returns a null value.

The methodContextList parameter value consists of one or more references to instances of the
JadeMethodContext or ObjectArray class. An ObjectArray instance must contain JadeMethodContext
references only. The combined context list must not have more than 64 active entries.

For more details, see Chapter 16, "Using Asynchronous Method Calls", in the JADE Developer’s Reference.

Encyclopaedia of Classes
(Volume 2)

ProcessDict Class Chapter 1 644

EncycloSys2 - 2020.0.02

ProcessDict Class
The ProcessDict class is the persistent class that encapsulates the behavior required to access process objects
in a dictionary.

The key of the ProcessDict class is the user code of the user. The user code strings are sorted in binary order.

Inherits From: MemberKeyDictionary

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

ProcessStackArray Class Chapter 1 645

EncycloSys2 - 2020.0.02

ProcessStackArray Class
The ProcessStackArray class is the transient class that encapsulates behavior required to access method calls
in the process stack array.

The process stack array is populated with references to method call descriptor objects by the currentStack
method of the Process class and represents a snapshot of the current execution history of the application thread
of the current process.

The bracket ([]) subscript operators enable you to assign values to and receive values from a process stack array.

Inherits From: ObjectArray

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

RealArray Class Chapter 1 646

EncycloSys2 - 2020.0.02

RealArray Class
The RealArray class is an ordered collection of Real values in which the values are referenced by their position
in the collection.

Real arrays inherit the methods defined in the Array class.

The bracket ([]) subscript operators enable you to assign values to and receive values from a Real array.

Inherits From: Array

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

Rectangle Class Chapter 1 647

EncycloSys2 - 2020.0.02

Rectangle Class
The Rectangle class encapsulates the behavior required to store the dimensions of a rectangle.

For details about the properties and methods defined in the Rectangle class, see "Rectangle Properties" and
"Rectangle Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

Rectangle Properties
The properties defined in the Rectangle class are summarized in the following table.

Property Description

bottom Contains the bottom coordinate of the rectangle

left Contains the left coordinate of the rectangle

right Contains the right coordinate of the rectangle

top Contains the top coordinate of the rectangle

Use the Rectangle class display method if you want to return a string containing these coordinate values.

bottom
Type: Real

The bottom property of the Rectangle class contains the bottom coordinate of the rectangle, in units.

left
Type: Real

The left property of the Rectangle class contains the left coordinate of the rectangle, in units.

right
Type: Real

The right property of the Rectangle class contains the right coordinate of the rectangle, in units.

top
Type: Real

The top property of the Rectangle class contains the top coordinate of the rectangle, in units.

Encyclopaedia of Classes
(Volume 2)

Rectangle Class Chapter 1 648

EncycloSys2 - 2020.0.02

Rectangle Methods
The methods defined in the Rectangle class are summarized in the following table.

Method Description

copy Copies the coordinates of the specified rectangle

display Returns a string containing the left, top, right, and bottom coordinates of the rectangle

isEmpty Specifies if the rectangle is empty

set Sets the coordinates of the rectangle

copy
Signature copy(rect: Rectangle) updating;

The copy method of the Rectangle class copies the coordinates of the rectangle specified in the rect parameter
to self.

display
Signature display(): String;

The display method of the Rectangle class returns a string containing the left, top, right, and bottom coordinates
of the rectangle, respectively.

isEmpty
Signature isEmpty(): Boolean;

The isEmpty method of the Rectangle class returns true if the width or height of the rectangle is zero (0).

set
Signature set(lft: Real;

tp: Real;
rght: Real;
bttm: Real) updating;

The set method of the Rectangle class sets the values of the receiver to the coordinates specified in the
parameters listed in the following table.

Parameter Description

lft Left point of the rectangle

tp Top point of the rectangle

rght Right point of the rectangle

bttm Bottom point of the rectangle

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 649

EncycloSys2 - 2020.0.02

RelationalView Class
The RelationalView class represents an RPS mapping or an ODBC relational view. For details about RPS
mappings, see Chapter 2, "Relational Population Service (RPS) Support", in the JADE Synchronized Database
Service (SDS) Administration Guide. For details about relational views, see Chapter 9, "Defining ODBC Inquiry
Relational Views and Ad Hoc Indexes", in the JADE Development Environment User’s Guide.

For details about the constants, properties, and methods defined in the RelationalView class, see "RelationalView
Class Constants", "RelationalView Properties", and "RelationalView Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

RelationalView Class Constants
The constants provided by the RelationalView class are listed in the following table.

Class Constant Integer Value

DatabaseType_RelationalView 0

DatabaseType_RpsNodeUseDefault 0

DatabaseType_SqlServer2000 1

DatabaseType_SqlServer2005 2

DatabaseType_SqlServer2008 3

ExceptionLogging_Default 0

ExceptionLogging_Invalid 2

ExceptionLogging_RPSTable 1

Exception_Alternate 1

Exception_Halt 0

ExtractOrderClassInstances 1

ExtractOrderDefault 0

ExtractOrderSelectedFirst 2

Load_ClientExecute 1

Load_ServerExecute 0

RpsScript_SelectedTables 2

RpsScript_UserAndJadeTables 1

RpsScript_UserTablesOnly 0

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 650

EncycloSys2 - 2020.0.02

RelationalView Properties
The properties defined in the RelationalView class are summarized in the following table.

Property Description

creator Contains the user name of the process that created the RPS mapping or
relational view

name Contains the name of the RPS mapping or relational view

rpsDatabaseName Contains the default name of the RDBMS database

rpsDatabaseType Contains the type of the RDBMS database

rpsDefaultConnectionString Contains the default RDBMS connection string

rpsDefaultPassword Contains the default RDBMS log-in password

rpsDefaultUserName Contains the default RDBMS log-in user name

rpsExceptionCreate Specifies what happens when an exception is raised during an RDBMS
create

rpsExceptionDelete Specifies what happens when an exception is raised during an RDBMS
delete

rpsExceptionUpdate Specifies what happens when an exception is raised during an RDBMS
update

rpsLoggingOptions Specifies the logging option for the RDBMS database

rpsShowMethods Specifies whether column mapping methods were displayed when the
mapping was defined

rpsShowVirtualProperties Specifies whether virtual properties are displayed when the mapping was
defined

rpsTopSchemaName Specifies the highest-level superschema for the RPS mapping

rpsUseOidClassInstMap Specifies whether oids are mapped to two columns: class number and
instance identifier

schema Contains a reference to the schema in which the RPS mapping or relational
view is defined

timeCreated Contains the timestamp of the creation of the relational view or RPS mapping

creator
Type: String[30]

The creator property of the RelationalView class contains the name of the user who created the RPS mapping or
relational view.

name
Type: String[100]

The name property of the RelationalView class contains the name of the RPS mapping or relational view.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 651

EncycloSys2 - 2020.0.02

rpsDatabaseName
Type: String[128]

The rpsDatabaseName property of the RelationalView class contains the default name of the RDBMS database.

rpsDatabaseType
Type: Integer

The rpsDatabaseType property of the RelationalView class contains the intended use of the relational view; that
is, whether it is used by the JADE ODBC driver for third-party relation access to the JADE database or whether it is
used by the JADE RPS to replicate data in an RDBMS database.

The rpsDatabaseType property values are described in the following table:

RelationalView Class Constant Value Description

DatabaseType_RelationalView 0 Not an RPS mapping. Used to access a JADE
database using the ODBC driver.

DatabaseType_RpsNodeUseDefault 0 Uses the default RPS node.

DatabaseType_SqlServer2000 1 RPS mapping used to replicate data to a SQL Server
2000 database.

DatabaseType_SqlServer2005 2 RPS mapping used to replicate data to a SQL Server
2005 database.

DatabaseType_SqlServer2008 3 RPS mapping used to replicate data to a SQL Server
2008 or later database.

rpsDefaultConnectionString
Type: String

The rpsDefaultConnectionString property of the RelationalView class contains the default RDBMS connection
string. The connection string can be specified or overridden on the RPS node.

An example of the connection string for an RPS node to connect to an RDBMS is as follows:

DSN=SqlServerODBC; Database=MyDatabase

rpsDefaultPassword
Type: String[128]

The rpsDefaultPassword property of the RelationalView class contains the default RDBMS log-in password.

rpsDefaultUserName
Type: String[30]

The rpsDefaultUserName property of the RelationalView class contains the default RDBMS log-in user name.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 652

EncycloSys2 - 2020.0.02

rpsExceptionCreate
Type: Integer

The rpsExceptionCreate property of the RelationalView class contains a value that indicates what happens
when an exception is raised during an RDBMS create operation.

The values for the rpsExceptionCreate property are listed in the following table.

RelationalView Class Constant Value Description

Exception_Halt 0 Create operation is aborted. Database tracking is stopped.

Exception_Alternate 1 Create operation is attempted as an update. Database
tracking is not stopped.

rpsExceptionDelete
Type: Integer

The rpsExceptionDelete property of the RelationalView class contains a value that indicates what happens when
an exception is raised during an RDBMS delete operation.

The values for the rpsExceptionDelete property are listed in the following table.

RelationalView Class Constant Value Description

Exception_Halt 0 Delete operation is aborted. Database tracking is
stopped.

Exception_Alternate 1 Delete operation errors are ignored. Database tracking is
not stopped.

rpsExceptionUpdate
Type: Integer

The rpsExceptionUpdate property of the RelationalView class contains a value that indicates what happens
when an exception is raised during an RDBMS update operation.

The values for the rpsExceptionUpdate property are listed in the following table.

RelationalView Class Constant Value Description

Exception_Halt 0 Update operation is aborted. Database tracking is
stopped.

Exception_Alternate 1 Update operation attempted as an insert. Database
tracking is not stopped.

rpsLoggingOptions
Type: Integer

The rpsLoggingOptions property of the RelationalView class contains a value that indicates whether exception
information for create, update, and delete statements is recorded in a table in the relational database in addition to
being recorded in the jommsg.log file.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 653

EncycloSys2 - 2020.0.02

The values for the rpsLoggingOptions property are listed in the following table.

RelationalView Class Constant Value Description

ExceptionLogging_Default 0 Exception information recorded in jommsg.log file.

ExceptionLogging_RPSTable 1 Exception information recorded in jommsg.log file and in a
table in the RDBMS.

rpsShowMethods
Type: Boolean

The read-only rpsShowMethods property of the RelationalView class contains true if the mapping was defined
with an option set to display column mapping methods in the RPS wizard.

rpsShowVirtualProperties
Type: Integer

The read-only rpsShowVirtualProperties property of the RelationalView class contains a value that indicates
whether virtual properties are displayed for selection in the RPS wizard.

The values for the rpsShowVirtualProperties property are listed in the following table.

Value Description

0 No virtual properties are shown

1 Only condition-safe virtual properties are shown

2 All virtual properties are shown

rpsTopSchemaName
Type: String

The read-only rpsTopSchemaName property of the RelationalView class contains the highest-level
superschema whose objects are available for selection in the RPS wizard.

rpsUseOidClassInstMap
Type: Boolean

The read-only rpsUseOidClassInstMap property of the RelationalView class specifies whether oids are mapped
to two integer columns: class number and instance identifier.

schema
Type: Schema

The schema property of the RelationalView class contains a reference to the schema in which the RPS mapping
or relational view is defined.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 654

EncycloSys2 - 2020.0.02

timeCreated
Type: TimeStamp

The timeCreated property of the RelationalView class contains the timestamp of the creation of the RPS mapping
or relational view.

If you make changes to the RPS mapping or relational view, the value of the timeCreated property is updated.

RelationalView Methods
The methods defined in the RelationalView class are summarized in the following table.

Method Description

addUserAttribute Adds a specified user-defined attribute to the specified user-defined
table

addUserTable Adds a user-defined entity or a real JADE class type with soft attributes

changeColumnName Changes the name of a column in a relational view table

columnExists Returns true if the specified column exists

createExcludedJcfFile Creates a command file to exclude tables and columns that are
currently excluded

excludeTableColumnName Excludes the specified column in the specified table

excludeTableName Excludes the specified table

extractData Extracts a specified table or all tables, using specified parameter values

extractDataAll Extracts all tables using specified parameter values

extractDataUsingIniFileOptions Extracts a specified table or all tables using values stored in the
[JadeRps] section of the JADE initialization file

generateRpsTableCreationScript Generates a script that creates the tables for an RPS mapping

getColumnFeature Returns the feature (method or property) associated with a table column

getExcludedTableColumnNames Adds the names of excluded columns in the specified table to the
specified array

getExcludedTableNames Adds the names of excluded tables to the specified array

getRpsMappedClasses Adds classes that are involved in the RPS mapping to the specified set

getTableColumnNames Adds the names of non-excluded columns for the specified table to the
specified array

getTableNames Adds the names of non-excluded tables to the specified array

isODBCRelationalView Returns true if the receiver is being used as an ODBC relational view

isRpsMapping Returns true if the receiver is being used as an RPS mapping

removeColumn Removes the specified column from the specified table

removeTable Removes the specified table

tableExists Returns true if the specified table exists

versionRpsMapping Versions the RPS mapping and returns the latest version

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 655

EncycloSys2 - 2020.0.02

addUserAttribute
Signature addUserAttribute(entityDesc: JadeRelationalEntityIF;

attrDesc: JadeRelationalAttributeIF);

The addUserAttribute method of the RelationalView class adds a user-defined (soft) attribute to the user-defined
(soft) table specified in the entityDesc parameter, if it exists in the relational view.

Note This method does not apply to RPS mappings.

The name returned by the entityDesc.getSQLName method is called to obtain the table name. If a table by that
name is not found or if the table is not a user-defined table, an exception is raised.

The value of the entityDesc parameter specifies an implementation of the JadeRelationalAttributeIF interface
that correctly describes the attribute being added.

Calls to this method can raise the following exceptions.

JErr_Table_Not_Found : Relational Table not found.

JErr_Attribute_Name_Conflict : Attribute name null or already used as column in the selected table.

JErr_SQL_Type_Not_Mapped : JADE Type specified does not have a supported SQL type mapping.

String_Too_Long : Attribute name exceeds maximum of 80 characters.

JErr_Invalid_For_RpsMapping : May only be called for ODBC Relational Views.

JErr_No_Jade_Type : No JADE Type defined for this attribute. entityDesc.getJadeType() returned null.

JErr_Not_Soft_Table : The table exists in the View, but it is not a user defined table.

addUserTable
Signature addUserTable(entityDesc: JadeRelationalEntityIF;

includeRealProperties: Boolean;
includeMethods: Boolean);

The addUserTable method of the RelationalView class adds a user-defined (soft) entity or a real JADE class type
with soft attributes to the receiver (that is, to the relational view). The entityDesc parameter specifies an
implementation of the JadeRelationalEntityIF interface that correctly describes the entity being added.

Note This method does not apply to RPS mappings.

If the value of the includeRealProperties parameter is true and entityDesc.getJadeClass returns a valid class,
the properties of this class that can be mapped to valid SQL types are mapped to columns in the table. If the value
of the includeMethods parameter is true and entityDesc.getJadeClass returns a valid class, the methods of this
class that are not updating, have no parameters, and return a value that can be mapped to a valid SQL types are
mapped to columns in the table.

Calls to this method can raise the following exceptions.

JErr_Table_Name_Conflict : Table name already used.

String_Too_Long : Table name exceeds maximum of 80 characters.

JErr_Invalid_For_RpsMapping : May only be called for ODBC Relational Views.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 656

EncycloSys2 - 2020.0.02

changeColumnName
Signature changeColumnName(tableName: String;

oldColumnName: String;
newColumnName: String);

The changeColumnName method of the RelationalView class changes the name of the column specified by the
value of the oldColumnName parameter in the table specified by the tableName parameter to the value specified
by the newColumnName parameter.

Note This method does not apply to RPS mappings.

Calls to this method can raise the following exceptions.

JErr_Attribute_Name_Conflict : Attribute name null or already used as column in the selected table.

JErr_Invalid_For_RpsMapping : May only be called for ODBC Relational Views.

JErr_Table_Not_Found : Relational Table not found.

JErr_Column_Not_Found : Column not found in Relational Table.

JErr_ColumnName_Cannot_Change : column name cannot be changed (for example, oid or index)

columnExists
Signature columnExists(tableName: String;

columnName: String): Boolean;

The columnExists method of the RelationalView class returns true if the column specified in the columnName
parameter exists in the table specified in the tableName parameter; otherwise it returns false. This method returns
false if the specified table does not exist.

Note This method applies to RPS mappings and ODBC relational views.

createExcludedJcfFile
Signature createExcludedJcfFile(file: File): Boolean;

The createExcludedJcfFile method of the RelationalView class creates a JADE command file to exclude all
tables and columns currently excluded in the RPS mapping.

Note This method does not apply to ODBC relational views.

The file represented by the file parameter must be initialized for output to a valid file name before the
createExcludedJcfFile method is called. The method returns true if the command file is created successfully.

When the RPS mapping is loaded, which happens during a normal schema load, the exclusions must be
reapplied. To do this, load the file created by the createExcludedJcfFile method using the batch Schema Load
utility (jadloadb). For details, see "Site-Specific RPS Mapping Customization", in Chapter 2 of the JADE
Synchronized Database Service (SDS) Administration Guide.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 657

EncycloSys2 - 2020.0.02

excludeTableColumnName
Signature excludeTableColumnName(tableName: String;

columnName: String): Boolean updating;

The excludeTableColumnName method of the RelationalView class excludes the column specified by the
columnName parameter in the table specified by the tableName parameter from the RPS mapping.

This method returns true if the column is successfully excluded.

Note This method applies to RPS mappings and ODBC relational views.

The method returns false if any of the following applies.

The table specified by the tableName parameter is not found in the RPS mapping

The column specified by the columnName parameter is not found in the RPS mapping

The column specified by the columnName parameter is a primary key

The RPS mapping has not been versioned

The RPS mapping is not the latest version

excludeTableName
Signature excludeTableName(tableName: String): Boolean updating;

The excludeTableName method of the RelationalView class excludes the table specified by the tableName
parameter from the RPS mapping. The method returns true if the table is successfully excluded.

Note This method applies to RPS mappings and ODBC relational views.

The method returns false if any of the following applies.

The table specified by the tableName parameter is not found in the RPS mapping

The RPS mapping has not been versioned

The RPS mapping is not the latest version

extractData
Signature extractData(tableName: String;

executionLocation: Integer;
scriptFilePath: String;
dataFilesPath: String;
rdbDataFilesPath: String;
rdbName: String;
extractHistoricalTables: Boolean;
serverName: String;
extractWorkers: Integer): Process;

The extractData method of the RelationalView class starts the RPS Datapump application on the server node to
extract data for the table specified by the tableName parameter or for all tables on an SDS secondary or RPS
node.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 658

EncycloSys2 - 2020.0.02

Notes This method does not apply to ODBC relational views.

You can execute this method on an SDS secondary or an RPS node, but not on the primary node. Running an
RPS extract on an SDS node causes tracking to be stopped during the extract.

The extractData method parameters are listed in the following table.

Parameter Specifies the …

tableName The name of the table for which data is extracted. If null or an empty string, data for
all tables is extracted.

executionLocation The location used for loading the extracted data. Allowed values can be specified
using the Load_ServerExecute (0) and Load_ClientExecute (1) RelationalView
class constants.

scriptFilePath The output directory for the script files.

dataFilesPath The output directory for the data files.

rdbDataFilesPath The path of the data files directory from the perspective of the RDBMS database.

rdbname The name of the RDBMS database.

extractHistoricalTables If historical table data is to be extracted.

serverName The name of the RDBMS server.

extractWorkers The number of extract worker processes to run.

The method returns the process of the application that extracts the table data. You can register to receive
notifications for events occurring for the process that carries out the data extraction in the following table.

Process Class Constant Value

RPS_EXTRACT_FAILED_EVENT 202

RPS_EXTRACT_FINISHED_EVENT 203

extractDataAll
Signature extractDataAll(executionLocation: Integer;

scriptFilePath: String;
dataFilesPath: String;
rdbDataFilesPath: String;
rdbName: String;
extractHistoricalTables: Boolean;
serverName: String;
extractWorkers: Integer;
extractOrder: Integer;
extractFirst: String;
userDataPumpSchema: String;
userDataPumpApp: String): Process;

The extractDataAll method of the RelationalView class starts the user-defined RPS Datapump application
specified by the userDataPumpApp and userDataPumpSchema parameters on the server node to extract data
for all tables on an SDS secondary or RPS node.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 659

EncycloSys2 - 2020.0.02

Notes This method does not apply to ODBC relational views.

You can execute this method on an SDS secondary or an RPS node, but not on the primary node. Running an
RPS extract on an SDS node causes tracking to be stopped during the extract.

The extractDataAll method parameters are listed in the following table.

Parameter Specifies the …

executionLocation The location that will be used for loading the extracted data. Allowed values can
be specified using the Load_ServerExecute (0) and Load_ClientExecute (1)
RelationalView class constants.

scriptFilePath The output directory for the script files.

dataFilesPath The output directory for the data files.

rdbDataFilesPath The path of the data files directory from the perspective of the RDBMS database.

rdbname The name of the RDBMS database.

extractHistoricalTables If historical table data is to be extracted.

serverName The name of the RDBMS server.

extractWorkers The number of extract worker processes to run.

extractOrder The order in which the tables are to be extracted; possible values specified by the
RelationalView class constants listed in the following table.

Class Constant Value Order of Output Tables

ExtractOrderDefault 0 - No order specified

ExtractOrderClassInstances 1 - Number of instances of the class from
highest to lowest. Note that determining the
number of instances may delay the start of
extractions.

ExtractOrderSelectedFirst 2 - As specified in the extractFirst parameter,
then in default order.

extractFirst The names of the tables to be extracted first, if any, delimited by semicolons.

userDataPumpSchema The name of the schema for the user-defined Datapump application. If null, the
default Datapump application is used.

userDataPumpApp The name of the user-defined data pump application. If executed on the primary,
the user-defined data pump may not be used. The user-defined data pump may be
used in an RPS or SDS node. The value of the user-defined Datapump
application (or <default>) is written out to the DataPumpApplication parameter in
the [JadeRps] section of the JADE initialization file.

The method returns the process of the application that extracts the table data. You can register to receive
notifications for events occurring for the process that carries out the data extraction in the following table.

Process Class Constant Value

RPS_EXTRACT_FAILED_EVENT 202

RPS_EXTRACT_FINISHED_EVENT 203

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 660

EncycloSys2 - 2020.0.02

Calls to this method can raise the following exception.

JErr_RpsExtractRequestError : Error in parameters. See extended error text for details.

extractDataUsingIniFileOptions
Signature extractDataUsingIniFileOptions(tableName: String): Process;

The extractDataUsingIniFileOptions method of the RelationalView class starts the RPS Datapump application
on the server node to extract data for the table specified by the tableName parameter or for all tables if the value
of the tableName parameter is an empty string.

Notes This method does not apply to ODBC relational views.

You can execute this method on an SDS secondary or an RPS node, but not on the primary node. Running an
RPS extract on an SDS node causes tracking to be stopped during the extract.

The method uses applicable settings from parameters in the [JadeRps] section of the JADE initialization file.

This method returns the process of the application that extracts the table data. You can register to receive
notifications for events occurring for the process that carries out the data extraction in the following table.

Process Class Constant Value

RPS_EXTRACT_FAILED_EVENT 202

RPS_EXTRACT_FINISHED_EVENT 203

generateRpsTableCreationScript
Signature generateRpsTableCreationScript(relDataBaseName: String;

scriptFile: File;
tablesOption: Integer;
selectedTableNames: HugeStringArray);

The generateRpsTableCreationScript method of the RelationalView class enables you to programmatically
generate a script that creates the tables for an RPS mapping.

The method parameters are listed in the following table.

Parameter Description

relDataBaseName Name of the relational database

scriptFile Script file that was set up by the caller

tablesOption One of the RelationalView class RpsScript_UserTablesOnly (0),
RpsScript_UserAndJadeTables (1), or RpsScript_SelectedTables (2)
constant values

selectedTableNames List of tables to output if the value of the tablesOption parameter is set to
RpsScript_SelectedTables; otherwise null

The SQL script to create the tables is output using the scriptFile parameter. The caller must insure that the file can
be created when called. The SQL script must always be created as an ANSI file for use with SQL Server.

Doing the initial write will do an implicit open if it is not open already.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 661

EncycloSys2 - 2020.0.02

Note As the file represented by the scriptFile parameter could be open before the
generateRpsTableCreationScript method is called, the file is not closed when the method returns.

You can explicitly close the file using the close method of the File class.

The tablesOption parameter controls what tables are created in the SQL script, by specifying one of the following
RelationalView class constants.

RpsScript_SelectedTables, which generates a creation script for the user table names specified in the
selectedTableNames parameter

RpsScript_UserAndJadeTables, which generates a creation script for all user tables and all JADE RPS
tables (that is, JADE_TRANSACTIONS, JADE_CONTROL_INFO, and JADE_EXCEPTION_LOG)

RpsScript_UserTablesOnly, which generates a creation script for all user tables in the RPS mapping

getColumnFeature
Signature getColumnFeature(tableName: String;

columnName: String): Feature;

The getColumnFeature method of the RelationalView class returns the feature (that is, method or property)
associated with a column specified by the columnName parameter in the table specified by the tableName
parameter.

Note This method applies to RPS mappings and ODBC relational views.

Calls to this method can raise the following exceptions.

JErr_Table_Not_Found : Relational Table not found.

JErr_Column_Not_Found : Column not found in Relational Table.

getExcludedTableColumnNames
Signature getExcludedTableColumnNames(tableName: String;

columnNames: HugeStringArray input);

The getExcludedTableColumnNames method of the RelationalView class returns the names of columns in the
table specified by the tableName parameter in the RPS mapping that have been specifically excluded in the array
specified by the columnNames parameter.

The tableName array is not cleared before names are added.

Note This method does not apply to ODBC relational views.

If the table specified by the tableName parameter is not found in the RPS mapping, the columnNames array is
empty.

getExcludedTableNames
Signature getExcludedTableNames(tableNames: HugeStringArray input);

The getExcludedTableNames method of the RelationalView class returns the names of tables in the RPS
mapping that have been specifically excluded in the array specified by the tableNames parameter.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 662

EncycloSys2 - 2020.0.02

Note This method does not apply to ODBC relational views.

The tableNames array is not cleared before names are added.

getRpsMappedClasses
Signature getRpsMappedClasses(rpsMappedClasses: ClassSet input);

The getRpsMappedClasses method of the RelationalView class adds classes that are involved in the RPS
mapping (that is, the receiver) to the input rpsMappedClasses parameter.

Note This method does not apply to ODBC relational views.

The rpsMappedClasses collection is not cleared before classes are added.

getTableColumnNames
Signature getTableColumnNames(tableName: String;

columnNames: HugeStringArray input);

The getTableColumnNames method of the RelationalView class returns the names of the columns in the table
specified by the tableName parameter in the array specified by the columnNames parameter.

Note This method applies to RPS mappings and ODBC relational views.

The columnNames array is not cleared before names are added.

The names of columns in the RPS mapping that have been specifically excluded are not added to the
columnNames array. If the table specified by the tableName parameter is not found in the relational view or RPS
mapping or if it has been specifically excluded, the columnNames array is empty.

getTableNames
Signature getTableNames(tableNames: HugeStringArray input);

The getTableNames method of the RelationalView class returns the names of the tables in the relational view or
RPS mapping in the array specified by the tableNames parameter.

The tableNames array is not cleared before names are added.

Note This method applies to RPS mappings and ODBC relational views.

The names of tables in the RPS mapping that have been specifically excluded are not added to the tableNames
array.

isODBCRelationalView
Signature isODBCRelationalView(): Boolean;

The isODBCRelationalView method of the RelationalView class returns true if the receiver is being used as an
ODBC relational view and false if it is being used as an RPS mapping.

Note This method applies to RPS mappings and ODBC relational views.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 663

EncycloSys2 - 2020.0.02

isRpsMapping
Signature isRpsMapping(): Boolean;

The isRpsMapping method of the RelationalView class returns true if the receiver is being used as an RPS
mapping and false if it is being used as an ODBC relational view.

Note This method applies to RPS mappings and ODBC relational views.

removeColumn
Signature removeColumn(tableName: String;

columnName: String) final, updating;

The removeColumn method of the RelationalView class removes the column specified by the columnName
parameter in the table specified by the tableName parameter.

Note This method applies to RPS mappings and ODBC relational views.

Calls to this method can raise the following exceptions.

JErr_Table_Not_Found : Relational Table not found.

JErr_Column_Not_Found : Column not found in Relational Table.

removeTable
Signature removeTable(tableName: String) final, updating;

The removeTable method of the RelationalView class removes the table specified in the tableName parameter.

Note This method applies to RPS mappings and ODBC relational views.

Calls to this method can raise the following exception.

JErr_Table_Not_Found : Relational Table not found.

tableExists
Signature tableExists(tableName: String): Boolean;

The tableExists method of the RelationalView class returns true if the table specified in the tableName
parameter exists; otherwise it returns false.

Note This method applies to RPS mappings and ODBC relational views.

versionRpsMapping
Signature versionRpsMapping(): RelationalView updating;

The versionRpsMapping method of the RelationalView class versions the RPS mapping if it is not already
versioned, and returns the latest version of the RPS mapping.

Note This method does not apply to ODBC relational views.

Encyclopaedia of Classes
(Volume 2)

RelationalView Class Chapter 1 664

EncycloSys2 - 2020.0.02

This method must be called before any changes are made to the RPS mapping using the excludeTableName
method or the excludeTableColumnName method.

All changes must be made to the latest version of the RPS mapping.

Encyclopaedia of Classes
(Volume 2)

RootSchemaSession Class Chapter 1 665

EncycloSys2 - 2020.0.02

RootSchemaSession Class
The RootSchemaSession class is the transient class that provides a superclass for Web session classes in
subschemas.

For details about the properties defined in the RootSchemaSession class, see "RootSchemaSession Properties",
in the following subsection.

Inherits From: WebSession

Inherited By: (None)

RootSchemaSession Properties
The properties defined in the RootSchemaSession class are summarized in the following table.

Property Description

allowHiddenControlEvents Specifies whether hidden controls can invoke event methods

userSecurityLevel Contains the numeric security level for the current user in the Web session

allowHiddenControlEvents
Type: Boolean

Default Value: False

The allowHiddenControlEvents property of the RootSchemaSession class is a protected property that specifies
whether hidden controls on Web pages can invoke event methods.

Set this property to true if you want to invoke event methods for hidden controls on Web pages.

userSecurityLevel
Type: Integer

Availability: Read or write at run time

The userSecurityLevel property of the RootSchemaSession class contains the security level for the current user
in the Web session. The default value is the user security level of the application (that is, the value of
Application::userSecurityLevel).

It is your responsibility to assign a value to this property. The userSecurityLevel property is used in conjunction
with the securityLevelEnabled and securityLevelVisible properties for Window classes.

When a form is loaded, the following rules determine the state of controls and menu items on the Web form.

If securityLevelEnabled > currentSession.userSecurityLevel for a Web control or menu item, it is
automatically disabled, regardless of the value of the Application class enabled property.

If securityLevelVisible > currentSession.userSecurityLevel for a control or menu item, its visible property
is set to false.

If securityLevelVisible > currentSession.userSecurityLevel for a Web form when the Application class
show or showModal method is called, the following message is displayed.

Requested form form-name is not valid

Encyclopaedia of Classes
(Volume 2)

RootSchemaSession Class Chapter 1 666

EncycloSys2 - 2020.0.02

You can subsequently override the values of the control or menu item enabled and visible properties.

You should set the userSecurityLevel property during the initialize method or getAndValidateUser process
before the creation of a Web form, as the setting of this property is actioned when forms and controls are created.

Changing the value of app.userSecurityLevel or the RootSchemaSession class userSecurityLevel method
does not change the behavior of Web forms that have already been loaded.

Changing the value of the Window class securityLevelEnabled property of a Web form, control, or menu item
causes a re-evaluation of its enabled status, based on the above rules. Changing the value of the Window class
securityLevelVisible property of a Web form, control, or menu item causes a re-evaluation of its visible status,
based on the above rules.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 667

EncycloSys2 - 2020.0.02

Schema Class
The Schema class represents the object model for a specific application domain. Instances of the Schema class
contain the classes and primitive types that define the object model. For more details, see Chapter 1, "JADE
Concepts and Terminology", in the JADE Development Environment User’s Guide.

For details about the constants, properties, and methods defined in the Schema class, see "Schema Constants",
"Schema Properties", and "Schema Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

Schema Class Constants
The constants provided by the Schema class are listed in the following table.

Constant Integer Value Description

FormsMngmt_Default FormsMngmt_Multi_Multi Default value

FormsMngmt_Multi_Multi 0 Multiple form definition and multiple translation

FormsMngmt_Single_Multi 2 Single form definition and multiple translations

FormsMngmt_Single_Single 1 Single form definition and single translation

Schema Properties
The properties defined in the Schema class are summarized in the following table.

Property Description

externalDatabases Contains a list of all external databases by name

formsManagement Contains the style of forms management

jomVersion Contains a string of the JADE Object Manager version

name Contains a string of the schema name

needsReorg Specifies if any class in the schema requires a reorganization

patchVersion Contains the patch version number

superschema Contains a reference to the superschema (parent) of the schema

text Contains a string of the schema descriptive text

All properties are read-only.

externalDatabases
Type: ExternalDatabaseByNameDict

The read-only externalDatabases property of the Schema class contains a reference to the names of all external
databases in the schema.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 668

EncycloSys2 - 2020.0.02

formsManagement
Type: Byte

The read-only formsManagement property of the Schema class contains the style of forms management used by
the schema and its subschemas. For more details, see "Forms Translation Styles", in Chapter 11 of the JADE
Development Environment User’s Guide.

jomVersion
Type: String[9]

The read-only jomVersion property of the Schema class contains the JADE Object Manager version as a string.

Note This property is set only for the RootSchema, and it contains the version of the internal JADE Object
Manager format.

name
Type: String[100]

The read-only name property of the Schema class contains the schema name as a string.

The code fragment in the following example shows the use of the name property.

if global.appCount = 0 then
beginTransaction;
global.appCount := 1;
commitTransaction;
app.startApplication(currentSchema.name, app.name);

endif;

needsReorg
Type: Boolean

The read-only needsReorg property of the Schema class contains true if any class in the schema requires
reorganization.

patchVersion
Type: Integer

The read-only patchVersion property of the Schema class contains the change patch version as an integer.

superschema
Type: Schema

The read-only superschema property of the Schema class contains a reference to the superschema (parent) of
the schema.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 669

EncycloSys2 - 2020.0.02

relationalViews
The read-only relationalViews property of the Schema class contains a reference to the names of all relational
views in the schema.

rpsDatabases
The read-only rpsDatabases property of the Schema class contains a reference to the names of all RPS
mappings in the schema.

text
Type: String

The read-only text property of the Schema class contains the schema descriptive text as a string.

Schema Methods
The methods defined in the Schema class are summarized in the following table.

Method Description

addCompileTranslatableString Adds a translatable string to all base locales of the receiving schema

addUserCollectionSubclass Creates a user collection class in the receiving schema

addUserSubclass Creates a user class in the receiving schema

allClasses Returns all classes in the schema and its superschemas

allDatabases Returns all databases in the schema and its superschemas

allJadeInterfaces Returns all interfaces defined the receiver and its superschemas

allLibraries Adds all libraries in the schema to the library collection

allPrimitives Returns all primitive types in the schema and its superschemas

allSubschemas Recursively adds all subschemas in the schema to the schema
collection

buildFormData Checks that the form build data for every form in the schema and
subschemas is up-to-date

constantNames Returns a concatenated string of all constants in the schema

createWebServiceApplication Creates a definition for a Web service provider application

deleteUserSubclass Deletes a user class in the receiving schema

extractControlIdsCSV Creates a CSV file containing generated Windows control id for controls
in all schemas

extractControlIdsCSVforSchema Creates a CSV file containing generated Windows control id for controls
in the current schema

findClassInBranch Returns the type of the specified class

findClassInSubschema Returns the specified class

findFormForLocale Returns the specified form for the specified locale

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 670

EncycloSys2 - 2020.0.02

Method Description

findFormForLocaleInAllSchemas Returns the specified form for the specified locale from all schemas

findFormForLocaleInSupers Returns the specified form for the specified locale from superschemas

findGlobalConstantInBranch Returns the specified global constant instance

findMeForm Returns the specified form from the base locale

findName Returns the type of the specified class or primitive type

findProperty Returns the property of the specified name

findType Returns the type of the specified integer

generateWSDL Creates a WSDL file for an existing JADE Web service provider
application

getAllBaseLocales Returns all base (non-clone) locales in the schema

getAllClasses Returns a reference to all classes in the current schema and its
superschemas

getAllFormTranslations Returns all form translations of the specified form

getAllInheritedLocales Gets all locales inherited by the current schema

getAllLocales Gets all locales in the current schema and superschemas

getAllLocalLocales Gets all locales defined in the current schema

getAllRpsMappings Returns an array of all RPS mappings defined in the current schema

getAllSystemLocales Adds an instance of the LocaleNameInfo class for each locale known to
the operating system to the specified object array

getAppliedPatches Returns information about the patches applied to system schemas in the
JADE database

getBaseLocalesLocal Populates the specified collection with the base locales defined in the
receiving schema

getCategory Returns the specified global constant category from the receiver and
superschemas

getClass Gets the specified class

getClassByNumber Returns the class specified by number

getConstant Returns the specified constant

getConstantCategory Returns the specified global constant category from the receiver

getControlClasses Adds all subclasses of the Control class to the specified class collection

getCurrentLocaleId Returns the current locale identifier (LCID) of the application process
when enhanced locale support is enabled; otherwise it returns the
identifier of the current locale

getDefaultLocale Returns a reference to the default locale for the schema

getExternalDatabase Returns a reference to the shared transient instance of the external
database

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 671

EncycloSys2 - 2020.0.02

Method Description

getFormatAnywhereInPath Returns the specified locale format from any locale in the current
version of a schema in the schema path

getFormatAnywhereInPathLatest Returns the specified locale format from any locale in the latest version
of a schema in the schema path

getFormatAnywhereInSubs Returns the specified locale format from any locale in the current
version of the receiver or its subschemas

getFormatAnywhereInSubsLatest Returns the specified locale format from any locale in the latest version
of the receiver or its subschemas

getFunction Returns the specified function

getGlobalClass Returns the Global class object for the schema

getGlobalConstant Returns the specified global constant

getHtmlDocumentSource Returns the HTML source of the specified HTML document

getImportedClass Returns a reference to a class imported as part of an imported package

getImportedJadeInterface Returns a reference to an interface imported as part of an imported
package

getInheritedFormats Gets a collection of all formats inherited from superschemas

getInheritedXlatableStrings Gets a collection of all translatable strings defined for the specified
locale

getJadeInterface Returns a reference to the specified interface

getLibrary Gets the library with the specified name

getLocalClass Returns the specified class from the current schema

getLocale Returns the specified locale from the current schema and all of its
subschemas

getLocaleCurrencyInfo Gets the currency formatting information for the specified locale

getLocaleDateInfo Gets the date formatting information for the specified locale

getLocaleFullInfo Gets the full formatting information for the specified locale

getLocaleInSubschemas Returns the specified locale from subschemas

getLocaleLocal Returns the specified locale from the current schema

getLocaleNameInfo Gets the name formatting information for the specified locale

getLocaleNumericInfo Gets the numeric formatting information for the specified locale

getLocaleTimeInfo Gets the time formatting information for the specified locale

getLocalFormats Adds all user-defined formats of the receiver to the specified array

getLocalLocaleInSubschemas Returns the specified locale from subschemas

getLocalPrimitive Returns the specified primitive type from the current schema

getName Returns the name of the receiver schema as a string

getOidForObject Returns the object identifier (oid) of the specified object

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 672

EncycloSys2 - 2020.0.02

Method Description

getPrimitive Returns the primitive type with the specified name

getRelationalView Returns the relational view in this schema with the specified name

getRpsMapping Returns the RPS mapping in this schema with the specified name

getSchema Returns the receiver or a subschema of the receiver with the specified
name

getSubschema Returns a subschema with the specified name

getSubschemas Adds all subschemas of the receiving schema to the schema name
dictionary

getUserAppliedPatches Returns information about the patches applied to user schemas in the
JADE database

getUserFormat Returns the user format with the specified name

getWebServiceConsumerNames Populates a string array with the names of Web Service consumers in
the receiving schema

globalException Returns the number of the specified global exception

importWSDL Creates a Web service consumer by importing a specified WSDL file

isLocalLocale Returns true if the specified locale is local to the current schema

loadHTMLDocuments Processes all HTML document files in the specified folder

makeLocaleNameFromId Returns a string of the name of the specified locale

nonGUIGlobalExceptionHandler Logs exception details to the application exception log file, aborts any
transaction, and then returns Ex_Abort_Action

regenerateRelationalView Dynamically rebuilds the specified relational view, deleting an existing
relational view, if applicable, or creating the relational view if it does not
exist

removeWebConsumer Removes a Web service consumer with the specified name

resetUserAppliedPatches Resets information about patches applied to the specified user schema
to null

reorgInProgress Returns true if a reorganization is currently "actively" in progress

reorgIsWaitingForTransition Returns true if a reorganization is in dual-update mode and waiting for
the transition

setHtmlDocumentSource Sets the HTML source for the specified HTML document

withAllSubschemas Adds the current schema to the collection of its subschemas

withAllSuperschemas Adds the current schema to the collection of its superschemas and
returns the superschema collection

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 673

EncycloSys2 - 2020.0.02

addCompileTranslatableString
Signature addCompileTranslatableString(source: String;

errorCode: Integer output;
errorOffset: Integer output;
errorLength: Integer output): Boolean;

The addCompileTranslatableString method of the Schema class compiles and adds a translatable string to all
base locales of the receiving schema. If the compilation fails, the method returns true, the translatable string is not
added, the current transaction is aborted, and the errorCode parameter contains the error number.

The addCompileTranslatableString method parameters are listed in the following table.

Parameter Description

source The text to be displayed for the translatable string.

errorCode The error code returned by the compiler. A value of zero (0) indicates that the translatable
string compiled successfully.

errorOffset The position of the error in the translatable string. Note that the first character of the
translatable string has a position of zero (0).

errorLength The length in characters of the error in the translatable string.

addUserCollectionSubclass
Signature addUserCollectionSubclass(superclass : CollClass input;

className : String;
mapFileName: String): JadeUserCollClass updating;

The addUserCollectionSubclass method of the Schema class creates and returns a user collection class in the
receiving schema with a name specified by the className parameter. The naming rules for user collection
classes are the same as for classes added in the Class Browser. The new class is a subclass of the class
specified by the superclass parameter, which must be Array, ExtKeyDictionary, MemberKeyDictionary, Set, or
a subclass of these collection classes.

The mapFileName parameter must be the name of an existing map file in the receiving schema.

For more details about user classes, see "Adding User Classes at Run Time", in Chapter 21 of the JADE
Developer's Reference.

addUserSubclass
Signature addUserSubclass(superclass : Class input;

className : String;
mapFileName: String): JadeUserClass updating;

The addUserSubclass method of the Schema class creates and returns a user class in the receiving schema
with a name specified by the className parameter. The naming rules for user classes are the same as for
classes added in the Class Browser. The new class is a subclass of the class specified by the superclass
parameter, which must be a class defined in the receiving schema or a superschema.

The mapFileName parameter must be the name of an existing map file in the receiving schema.

For more details about user classes, see "Adding User Classes at Run Time", in Chapter 21 of the JADE
Developer's Reference.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 674

EncycloSys2 - 2020.0.02

allClasses
Signature allClasses(): ClassColl;

The allClasses method of the Schema class returns a reference to all classes in the schema and its
superschemas.

allDatabases
Signature allDatabases(): DatabaseNDict;

The allDatabases method of the Schema class returns a reference to all databases in the receiver.

allJadeInterfaces
Signature allJadeInterfaces(): JadeInterfaceColl;

The implementsInterface method of the Schema class returns a reference to all interfaces in the schema and its
superschemas.

allLibraries
Signature allLibraries(libs: ObjectArray input);

The allLibraries method of the Schema class adds all libraries in the schema to the array specified in the libs
parameter.

Note The object array is not cleared before instances are added.

allPrimitives
Signature allPrimitives(): TypeColl;

The allPrimitives method of the Schema class returns a reference to all primitive types in the schema and its
superschemas.

allSubschemas
Signature allSubschemas(subs: SchemaColl input);

The allSubschemas method of the Schema class recursively adds all subschemas of the receiving schema to the
collection specified in the subs parameter. The collection is not cleared before instances are added.

As this method is recursive, all schemas below the receiving schema (both direct and indirect descendants) are
returned.

buildFormData
Signature buildFormData() updating;

The buildFormData method of the Schema class examines the form build data for every form in the receiver and
all of its subschemas. If the data is not up-to-date, it is constructed. This method enters transaction state if the
process is not already in that state. Similarly, a commitTransaction instruction is called at the end of the method if
the process was not initially in transaction state.

An exception is raised if the schema is currently versioned.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 675

EncycloSys2 - 2020.0.02

The following code fragment runs the buildFormData method for the current schema and its subschemas.

currentSchema.buildFormData;

Form build data is normally constructed when a form is saved in the JADE Painter. If that data is not up-to-date at
run time, the form build construction occurs the first time a form is created from logic. In some situations, form build
data can become invalid; for example, after upgrading to a new JADE version when new features have been
added and following a schema and forms definition file load that involved a reorganization.

Note Run the buildFormData method before turning on the system production mode flag; otherwise any form
where the form build data is not up-to-date must perform this step every time a form is created because the data
cannot be stored persistently. This would be more expensive than creating the form from its build data and it also
results in more network traffic being generated in thin client mode.

constantNames
Signature constantNames(): String;

The constantNames method of the Schema class returns the names of all constants in the schema and
concatenates them into a string. Each constant name is separated by a space.

createWebServiceApplication
Signature createWebServiceApplication(applicationName: String;

applicationType: String;
applicationVersion: String;
localeName: String;
initializeMethodName: String;
finalizeMethodName: String;
connectionName: String;
numberOfCopies: Integer;
sessionTimeout: Integer;
minimumResponseTime: Integer;
disableMessages: Boolean;
urlScheme: String;
urlMachineName: String;
urlVirtualDirectory: String;
urlSupportLibrary: String;
exposureNames: String);

The createWebServiceApplication method of the Schema class creates a definition for a Web service provider
application.

The createWebServiceApplication method parameters are listed in the following table.

Parameter Description

applicationName The name of the application to be created. The name must not conflict with the
name of an exposure list.

Note If an application with this name already exists, the application is updated
with the new values.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 676

EncycloSys2 - 2020.0.02

Parameter Description

applicationType Valid values for this parameter are GUI and NON-GUI. When the value is GUI, the
Web application monitor is displayed at application startup. The monitor is not
displayed when the value is NON-GUI.

applicationVersion The application version number. The value of this parameter can be null (""). The
version number cannot exceed 30 characters.

localeName The name of the locale. The value of this parameter can be null (""). If a locale is
specified, it must be one of the locales defined for the schema.

initializeMethodName The method to be invoked when the application starts. The value of this
parameter can be null (""). The format is:

method-name or class-name::method-name

If a method name only is specified, the method had to exist on the Application
subclass (or one of its superclasses) for the schema. If a class name and method
name are specified, the class has to be the Application class or one of it
subclasses that exist in this schema or one of its superschemas and the method
has to exist on the class. In addition, the method cannot have parameters or a
return type.

finalizeMethodName The method to be invoked when the application terminates. The value of this
parameter can be null (""). The format is:

method-name or class-name::method-name

If a method name only is entered, the method had to exist on the Application
subclass (or one of its superclasses) for the schema. If a class name and method
name are specified, the class has to be the Application class or one of it
subclasses that exist in this schema or one of its superschemas and the method
has to exist on the class. In addition, the method cannot have parameters or a
return type.

connectionName The named pipe name or a TCP/IP connection. The value of this parameter can
be null (""). For a TCP/IP connection, the format is machine name or ip-
address:port-number.

Note This value is used only if the URL scheme is http

numberOfCopies The number of copies of the application to be started in the node. This parameter
must have a value of one (1) or greater.

sessionTimeout The session timeout in minutes. The value of this parameter can be null (""). A
value of zero (0) means that there is no session timeout.

minimumResponseTime The minimum response time in seconds for the Web service to respond. The
value of this parameter can be null (""). A value of zero (0) means that there is no
minimum response time.

disableMessages Set this parameter to true to disable messages from appearing when the Web
application monitor is running. The default value is false.

urlScheme Valid values for this parameter are tcp or http. The value of this parameter can
be null ("").

urlMachineName When using the tcp protocol the format is machine-name:port-number. The value
of this parameter can be null ("").

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 677

EncycloSys2 - 2020.0.02

Parameter Description

urlVirtualDirectory The name of a virtual directory on the target Web server. The value of this
parameter can be null ("").

urlSupportLibrary jadehttp.dll must be entered if the target Web server is IIS. The value of this
parameter can be null ("").

exposureNames A list of exposures that the Web service can use with each exposure name
separated from the next by a space. The exposures must already exist and must
not require regeneration. You must specify at least one exposure name.

If the validation or update fails, an exception is raised. The extendedErrorText property contains details of the
exception.

The following example shows the use of the createWebServiceApplication method.

currentSchema.createWebServiceApplication("CustomerServicesApp", "NON-GUI",
"", "5129", "initialiseWebService","CustomerGlobal::finaliseWebService",
"localhost:54000", 1, 10, 0, true, "http", "localhost", "jade",
"jadehttp.dll","ErewhonCustomer PrivateCustomer");

You can override some parameters at run time by runtime configuration settings. For details, see "Configuring
Web Applications", in Chapter 3 of the JADE Web Application Guide.

deleteUserSubclass
Signature deleteUserSubclass(superclass: Class;

className : String);

The deleteUserSubclass method of the Schema class deletes the user class with the specified name and
superclass in the receiving schema. The class cannot be deleted if instances of the class exist or if the class is
being used by another process.

For more details about user classes, see "Adding User Classes at Run Time", in Chapter 21 of the JADE
Developer's Reference.

extractControlIdsCSV
Signature extractControlIdsCSV();

The extractControlIdsCSV method of the Schema class creates a comma-separated values (CSV) file containing
the generated Windows control id for each JADE control.

The control ids are used by testing tools to identify required elements on a form. The identifier (id) for a control on
a form created in the JADE Painter is retained for the lifetime of the form (unless the control is deleted and re-
added using the JADE Painter).

There is an entry for each control on every form in the schema (the receiver) and in its subschemas, in the
following format.

schema_name, form_name, control_name, control_id

The method displays the common file open dialog, enabling you to specify the name and directory of the CSV file
to be created. The default name is controlIds.csv.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 678

EncycloSys2 - 2020.0.02

The source for the extractControlIdsCSV method is provided, should you want to vary the calling approach.

vars
file : File;
cmd : CMDFileSave;
subs : SchemaNDict;
scm : Schema;

begin
create cmd;
cmd.fileName := "controlIds.csv";
if cmd.open = 0 then

create file transient;
file.openOutput(cmd.fileName);
create subs transient;
subs.add(currentSchema);
while subs.size() > 0 do

scm := subs.first;
scm.extractControlIdsCSVforSchema(file);
subs.remove(scm);
scm.getSubschemas(subs);

endwhile;
file.close;

endif;
epilog

delete cmd;
delete file;
delete subs;

end;

extractControlIdsCSVforSchema
Signature extractControlIdsCSVforSchema(file: File) updating;

The extractControlIdsCSVforSchema method of the Schema class writes a comma-separated value (CSV) entry
containing the generated Windows control id for each JADE control into the file specified by the file parameter.

The control ids are used by testing tools to identify required elements on a form. The id for a control on a form
created in the JADE Painter is retained for the lifetime of the form (unless the control is deleted and re-added
using the JADE Painter).

There is an entry for each control on every form in the schema (the receiver) but not in its subschemas, in the
following format.

schema_name, form_name, control_name, control_id

The following example shows the use of the extractControlIdsCSVforSchema method.

vars
file : File;

begin
create file;
file.fileName := "C:\controlIds.csv";
rootSchema.extractControlIdsCSVforSchema(file);

epilog
delete file;

end;

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 679

EncycloSys2 - 2020.0.02

findClassInBranch
Signature findClassInBranch(clsName: String): Type;

The findClassInBranch method of the Schema class returns a reference to the type of the class specified in the
clsName parameter.

findClassInSubschema
Signature findClassInSubschema(clsName: String): Class;

The findClassInSubschema method of the Schema class returns a reference to the class specified in the
clsName parameter.

findFormForLocale
Signature findFormForLocale(formName: String;

lcid: Integer): Form;

The findFormForLocale method of the Schema class returns a reference to the instance of the form specified in
the formName parameter for the locale specified in the lcid parameter from the current schema and all of its
subschemas.

findFormForLocaleInAllSchemas
Signature findFormForLocaleInAllSchemas(formName: String;

lcid: Integer): Form;

The findFormForLocaleInAllSchemas method of the Schema class returns a reference to the instance of the
form specified in the formName parameter for the locale specified in the lcid parameter from all schemas, starting
from the Root Schema.

findFormForLocaleInSupers
Signature findFormForLocaleInSupers(formName: String;

lcid: Integer): Form;

The findFormForLocaleInSupers method of the Schema class returns a reference to the instance of the form
specified in the formName parameter for the locale specified in the lcid parameter from the current schema and
all of its superschemas.

findGlobalConstantInBranch
Signature findGlobalConstantInBranch(conName: String): Constant;

The findGlobalConstantInBranch method of the Schema class returns a reference to the instance of the global
constant specified in the conName parameter.

findMeForm
Signature findMeForm(formName: String): Form updating;

The findMeForm method of the Schema class returns a reference to the form specified in the formName
parameter from the base locale.

An exception is raised if this method is invoked from a server method.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 680

EncycloSys2 - 2020.0.02

findName
Signature findName(str: String): Type;

The findName method of the Schema class returns a reference to the type of the class or primitive type specified
in the str parameter.

findProperty
Signature findProperty(str: String): Property;

The findProperty method of the Schema class returns a reference to the property specified in the str parameter.

findType
Signature findType(aNumber: Integer): Type;

The findType method of the Schema class returns a reference to the primitive type that corresponds to the
number specified in the aNumber parameter.

generateWSDL
Signature generateWSDL(applicationName: String;

exposureName: String;
fileName: String;
urlScheme: String;
urlMachineName: String;
urlVirtualDirectory: String;
urlSupportLibrary: String) updating;

The generateWSDL method of the Schema class creates a WSDL file for an existing JADE Web service provider
application.

The generateWSDL method parameters are listed in the following table.

Parameter Description

applicationName The name of an existing Web service application.

exposureName The name of an existing Web service exposure definition.

fileName The name of the WSDL file to be created, which must be a valid file name.

urlScheme The Web service protocol; http by default and tcp for direct Web services.

urlMachineName The machine name or Internet Protocol (IP) address to which the Web service requests
should be directed.

urlVirtualDirectory The virtual directory where the support library resides (as defined in IIS or Apache).

urlSupportLibrary The support library (jadehttp) for communication with IIS or Apache.

If the validation or update fails, an exception is raised. The extendedErrorText property contains details of the
exception.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 681

EncycloSys2 - 2020.0.02

The following example shows the use of the generateWSDL method.

currentSchema.generateWSDL("CustomerServicesApp","ErewhonCustomer",
"d:\wsdls\erewhoncustomer.wsdl", "http",
"localhost", "jade", "jadehttp.dll");

getAllBaseLocales
Signature getAllBaseLocales(returnColl: ObjectArray input);

The getAllBaseLocales method of the Schema class adds all base (non-clone) locales in the current schema to
the array specified in the returnColl parameter.

The object array is not cleared before instances are added.

getAllClasses
Signature getAllClasses(includeSystemClasses: Boolean): ClassColl;

The getAllClasses method of the Schema class returns a collection containing a reference to all classes in the
current schema and its superschemas.

Set the includeSystemClasses parameter to true to specify that references to system classes are included in the
returned collection.

getAllFormTranslations
Signature getAllFormTranslations(form: Form;

formList: FormOrdList input);

The getAllFormTranslations method of the Schema class gets a collection of all translations of the form specified
in the form parameter from the collection specified in the formList parameter, excluding the specified form itself.

getAllInheritedLocales
Signature getAllInheritedLocales(returnColl: ObjectArray input);

The getAllInheritedLocales method of the Schema class adds all locales inherited by the current schema to the
array specified in the returnColl parameter. The object array is not cleared before instances are added.

getAllLocales
Signature getAllLocales(returnColl: ObjectArray input);

The getAllLocales method of the Schema class adds all locales in the current schema and superschemas to the
array specified in the returnColl parameter. The object array is not cleared before instances are added.

getAllLocalLocales
Signature getAllLocalLocales(returnColl: ObjectArray input);

The getAllLocalLocales method of the Schema class adds only those locales defined in the current schema to
the array specified in the returnColl parameter. The object array is not cleared before instances are added.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 682

EncycloSys2 - 2020.0.02

getAllSystemLocales
Signature getAllSystemLocales(oa: ObjectArray);

The getAllSystemLocales method of the Schema class adds an instance of the LocaleNameInfo class for each
locale supported by the operating system to the object array specified in the oa parameter.

The object array is not cleared before instances are added; that is, it is the responsibility of the caller to delete the
LocaleNameInfo objects.

getAllRpsMappings
Signature getAllRpsMappings(returnColl: ObjectArray input);

The getAllRpsMappings method of the Schema class adds all RPS mappings that are instances of the
RelationalView class defined in the current schema to the array specified in the returnColl parameter.

The object array is not cleared before instances are added.

getAppliedPatches
Signature getAppliedPatches(): String;

The getAppliedPatches method of the Schema class returns a string containing all patches applied by a schema
load to system schemas in your database. (See also the getUserAppliedPatches method.)

The format of the string returned by this method is schema-name Patches: followed by one or more lines in the
following format.

file-type,file-name,jade-version,timestamp[,file-version-tag]

In the format of the returned string:

schema-name is the name of the system schema to which the patch was applied

file-type is Schema or DDB (or .DDX, depending on the value of the Use DDX style (xml format) as Default
instead of DDB check box on the Schema sheet of the Preferences dialog)

file-name is the full (absolute) path name of the file that was loaded

jade-version is the JADE version number (for example, 7.1.03)

timestamp is the date and time of the file load

file-version-tag is the optional version tag value obtained from the JadeFiletypeVersiontag line in the
patchset file (for example, JadeFiletypeVersiontag SCM "7.1.03.024.001";).

This is repeated for each patch that was applied.

Note All commas in the file-name and file-version-tag are replaced by underscore characters.

An example of a string returned by this method is as follows.

RootSchema Patches:
Schema,C:\Jade7103test\bin\hotfix#42.scm,7.1.03,2014/12/20 11:06:22,7.1.03.024.001
Schema,C:\Jade7103test\bin\hotfix#42.scm,7.1.03,2014/12/20 11:06:30,7.1.03.025.001
Schema,C:\Jade7103test\bin\hotfix#42.scm,7.1.03,2014/12/20 11:06:31,7.1.03.043.001
Schema,C:\Jade7103test\bin\hotfix#42.scm,7.1.03,2014/12/20 11:06:32,7.1.03.051.001

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 683

EncycloSys2 - 2020.0.02

Schema,C:\Jade7103test\bin\hotfix#42.scm,7.1.03,2014/12/20 11:06:34,7.1.03.061.001
Schema,C:\Jade7103test\bin\hotfix76.scm,7.1.03,2015/02/23 09:47:22,7.1.03.082.001
Schema,C:\Jade7103test\bin\hotfix76.scm,7.1.03,2015/02/23 09:47:25,7.1.03.083.001
Schema,C:\Jade7103test\bin\hotfix76.scm,7.1.03,2015/02/23 09:47:25,7.1.03.089.001
JadeSchema Patches:
Schema,C:\Jade7103test\bin\hotfix#42.scm,7.1.03,2014/12/20 11:06:17,7.1.03.032.001
Schema,C:\Jade7103test\bin\hotfix#42.scm,7.1.03,2014/12/20 11:06:34,7.1.03.052.001
Schema,C:\Jade7103test\bin\hotfix#42.scm,7.1.03,2014/12/20 11:06:37,7.1.03.061.001
Schema,C:\Transfer\hotfix#42.scm,7.1.03,2014/12/21 10:24:43,7.1.03.061.002
Schema,C:\Jade7103test\bin\hotfix76.scm,7.1.03,2015/02/23 09:47:21,7.1.03.069.001

getBaseLocalesLocal
Signature getBaseLocalesLocal(returnColl: ObjectArray input);

The getBaseLocalesLocal method of the Schema class populates the collection specified by the returnColl
parameter with the base locales defined in the receiving schema.

getCategory
Signature getCategory(catName: String): ConstantCategory;

The getCategory method of the Schema class returns a reference to the global constant category specified in the
catName parameter.

The search for the specified category is performed in the receiver and all of its superschemas.

getClass
Signature getClass(name: String): Class;

The getClass method of the Schema class returns a reference to the class specified in the name parameter.

getClassByNumber
Signature getClassByNumber(classNo: Integer): Class;

The getClassByNumber method of the Schema class returns a reference to the class specified by the class
number in the classNo parameter.

getConstant
Signature getConstant(name: String): GlobalConstant;

The getConstant method of the Schema class returns a reference to the global constant specified in the name
parameter.

getConstantCategory
Signature getConstantCategory(name: String): ConstantCategory;

The getConstantCategory method of the Schema class returns a reference to the global constant category
specified in the name parameter from the receiver. (Use the getCategory method if you also want superschemas
of the receiver to be searched for the specified global constant category.)

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 684

EncycloSys2 - 2020.0.02

getControlClasses
Signature getControlClasses(clsNDict: ClassColl input): ClassColl;

The getControlClasses method of the Schema class returns a reference to all subclasses of the Control class for
the schema.

This method appends the Control subclasses to the collection specified in the clsNDict parameter and returns the
full collection. The collection is not cleared before instances are added.

getCurrentLocaleId
Signature getCurrentLocaleId(): Integer;

The getCurrentLocaleId method of the Schema class returns the current locale identifier (LCID) of the application
process when enhanced locale support is enabled; otherwise it returns the identifier of the current locale.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true and this method is called after the Application class setJadeLocale method, the
returned value is the new value returned in the setJadeLocale method requestedLcid parameter. In addition,
when enhanced locale support is enabled, the JadeLocaleIdNumbers category LCID_SessionWithOverrides
global constant enables you to retrieve information from the session locale without having to save the initial locale
for the call.

Note The current localeID value that is returned may be different from the number property in the Application
class currentLocale property, if the setJadeLocale method has been called with a locale not found in the
schema.

getDefaultLocale
Signature getDefaultLocale(): Locale;

The getDefaultLocale method of the Schema class returns a reference to the default locale for the schema used
as the receiver.

getExternalDatabase
Signature getExternalDatabase(dbName: String): ExternalDatabase;

The getExternalDatabase method of the Schema class returns a reference to the shared transient instance of the
external database specified in the dbName parameter or it returns null if there is no active external database with
the specified name.

getFormatAnywhereInPath
Signature getFormatAnywhereInPath(formatName: String): LocaleFormat;

The getFormatAnywhereInPath method of the Schema class returns a reference to the locale format specified in
the formatName parameter for the current version of schemas in the schema path; that is, the receiver, its
superschemas, and subschemas.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 685

EncycloSys2 - 2020.0.02

getFormatAnywhereInPathLatest
Signature getFormatAnywhereInPathLatest(formatName: String): LocaleFormat;

The getFormatAnywhereInPathLatest method of the Schema class returns a reference to the locale format
specified in the formatName parameter for the latest version of schemas in the schema path; that is, the receiver,
its superschemas, and subschemas.

getFormatAnywhereInSubs
Signature getFormatAnywhereInSubs(formatName: String): LocaleFormat;

The getFormatAnywhereInSubs method of the Schema class returns a reference to the locale format specified in
the formatName parameter from any locale in the current version of the receiver or any of its subschemas.

getFormatAnywhereInSubsLatest
Signature getFormatAnywhereInSubsLatest(formatName: String): LocaleFormat;

The getFormatAnywhereInSubsLatest method of the Schema class returns a reference to the locale format
specified in the formatName parameter from any locale in the latest version of the receiver or any of its
subschemas.

getFunction
Signature getFunction(name: String): Function;

The getFunction method of the Schema class returns a reference to the function specified in the name parameter.

getGlobalClass
Signature getGlobalClass(): Class;

The getGlobalClass method of the Schema class returns a reference to the Global class object for the schema.

getGlobalConstant
Signature getGlobalConstant(constName: String): GlobalConstant;

The getGlobalConstant method of the Schema class returns a reference to the global constant specified in the
constName parameter.

getHtmlDocumentSource
Signature getHtmlDocumentSource(htmlDocumentName: String): String;

The getHtmlDocumentSource method of the Schema class returns the HTML source of the HTML document
specified in the htmlDocumentName parameter.

This method returns null ("") if an HTML document with the specified name does not exist.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 686

EncycloSys2 - 2020.0.02

getImportedClass
Signature getImportedClass(clsName: String): JadeImportedClass;

The getImportedClass method of the Schema class returns a reference to a class imported as part of an imported
package.

The imported class object has a reference to the exported class that was exported as part of the exported
package. Finally, the exported class object has a reference to the original instance of the Class class, as shown in
the following code example.

vars
impClass : JadeImportedClass;
expClass : JadeExportedClass;
origClass : Class;

begin
impClass := currentSchema.getImportedClass("Diary");
expClass := impClass.exportedClass;
origClass := expClass.originalClass;
// Processing of the original Class instance for the Diary class

end;

getImportedJadeinterface
Signature getImportedJadeInterface(infName: String): JadeImportedInterface;

The getImportedJadeInterface method of the Schema class returns a reference to an interface imported as part
of an imported package.

The imported interface object has a reference to the exported interface that was exported as part of the exported
package. Finally, the exported interface object has a reference to the original instance of the JadeInterface class,
as shown in the following code example.

vars
impInterface : JadeImportedInterface;
expInterface : JadeExportedInterface;
origInterface : JadeInterface;

begin
impInterface := currentSchema.getImportedJadeInterface("MeetingIF");
expInterface := impInterface.exportedInterface;
origInterface := expInterface.originalInterface;
// Processing of the original instance for the MeetingIF interface

end;

getInheritedFormats
Signature getInheritedFormats(returnColl: ObjectArray input);

The getInheritedFormats method of the Schema class adds all formats inherited from superschemas of the
current schema to the array specified in the returnColl parameter.

The object array is not cleared before instances are added.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 687

EncycloSys2 - 2020.0.02

getInheritedXlatableStrings
Signature getInheritedXlatableStrings(locName: String;

returnColl: ObjectArray input);

The getInheritedXlatableStrings method of the Schema class adds all translatable strings from all superschemas
of the current schema defined for the locale specified in the locName parameter to the array specified in the
returnColl parameter.

The object array is not cleared before instances are added.

getJadeInterface
Signature getJadeInterface(name: String): JadeInterface;

The getJadeInterface method of the Schema class returns a reference to the interface specified in the name
parameter.

getLibrary
Signature getLibrary(name: String): Library;

The getLibrary method of the Schema class returns a reference to the library with the name that is specified in the
name parameter string.

getLocalClass
Signature getLocalClass(className: String): Class;

The getLocalClass method of the Schema class returns a reference to the class specified in the className
parameter from the current schema.

getLocale
Signature getLocale(localeName: String): Locale;

The getLocale method of the Schema class returns a reference to the locale (either local or inherited) specified in
the localeName parameter from the current schema and all of its subschemas.

getLocaleCurrencyInfo
Signature getLocaleCurrencyInfo(lcid: Integer;

info: CurrencyFormat input);

The getLocaleCurrencyInfo method of the Schema class gets the currency formatting information from the
CurrencyFormat class for the locale specified in the lcid parameter.

Set the value of the lcid parameter to zero (0) if you want to return information for the current locale.

Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 688

EncycloSys2 - 2020.0.02

When the EnhancedLocaleSupport parameter on the database node is set to true, this method returns the
currency information with regional overrides suppressed, unless the lcid parameter is set to zero (0) when the
current thread locale is the session locale or the lcid parameter is set to the JadeLocaleIdNumbers category
LCID_SessionWithOverrides global constant (which enables you to easily code calls for information about the
session locale without having to change the current locale).

Regardless of the value of the EnhancedLocaleSupport parameter, if you set the lcid parameter to zero (0), the
information is returned for the current thread locale.

getLocaleDateInfo
Signature getLocaleDateInfo(lcid: Integer;

info: DateFormat input);

The getLocaleDateInfo method of the Schema class gets the date formatting information from the DateFormat
class for the locale specified in the lcid parameter.

Set the value of the lcid parameter to zero (0) if you want to return information for the current locale.

Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client. For example, if the locale of your application server is set to English (United Kingdom), which has a default
short date format of dd/mm/yyyy, and it has been overridden with a short date format of yyyy-mm-dd, this is
returned in the default dd/mm/yyyy format.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

When the EnhancedLocaleSupport parameter on the database node is set to true, this method returns the date
information with regional overrides suppressed, unless the lcid parameter is set to zero (0) when the current
thread locale is the session locale or the lcid parameter is set to the JadeLocaleIdNumbers category LCID_
SessionWithOverrides global constant (which enables you to easily code calls for information about the session
locale without having to change the current locale).

Regardless of the value of the EnhancedLocaleSupport parameter, if you set the lcid parameter to zero (0), the
information is returned for the current thread locale.

getLocaleFullInfo
Signature getLocaleFullInfo(lcid: Integer;

info: LocaleFullInfo input);

The getLocaleFullInfo method of the Schema class gets the full formatting information from the LocaleFullInfo
class for the locale specified in the lcid parameter.

Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

When you set the EnhancedLocaleSupport parameter on the database node to true, the getLocaleFullInfo
method returns full locale information with regional overrides suppressed, unless the lcid parameter is set to zero
(0) when the current thread locale is the session locale or the lcid parameter is set to the JadeLocaleIdNumbers
category LCID_SessionWithOverrides global constant (which enables you to easily code calls for information
about the session locale without having to change the current locale).

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 689

EncycloSys2 - 2020.0.02

Regardless of the value of the EnhancedLocaleSupport parameter, if you set the lcid parameter to zero (0), the
information is returned for the current thread locale.

getLocaleInSubschemas
Signature getLocaleInSubschemas(localeName: String): Locale;

The getLocaleInSubschemas method of the Schema class returns a reference to the local or inherited locale
specified in the localeName parameter from the subschemas of the current schema.

getLocaleLocal
Signature getLocaleLocal(localeName: String): Locale;

The getLocaleLocal method of the Schema class returns a reference to the locale specified in the localeName
parameter from the current schema.

Note This method returns both base and clone locales.

getLocaleNameInfo
Signature getLocaleNameInfo(lcid: Integer;

info: LocaleNameInfo input);

The getLocaleNameInfo method of the Schema class gets the name formatting information from the
LocaleNameInfo class for the locale specified in the lcid parameter. Set the value of the lcid parameter to zero (0)
if you want to return information for the current locale.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeLocaleIdNumbers category LCID_SessionWithOverrides global
constant enables you to retrieve information from the session locale without having to save the initial locale for the
call.

When the EnhancedLocaleSupport parameter on the database node is set to true, this method returns the locale
name information with regional overrides suppressed, unless the lcid parameter is set to zero (0) when the current
thread locale is the session locale or the lcid parameter is set to the JadeLocaleIdNumbers category LCID_
SessionWithOverrides global constant (which enables you to easily code calls for information about the session
locale without having to change the current locale).

Regardless of the value of the EnhancedLocaleSupport parameter, if you set the lcid parameter to zero (0), the
information is returned for the current thread locale.

getLocaleNumericInfo
Signature getLocaleNumericInfo(lcid: Integer;

info: NumberFormat input);

The getLocaleNumericInfo method of the Schema class gets the numeric formatting information from the
NumberFormat class for the locale specified in the lcid parameter. Set the value of the lcid parameter to zero (0)
if you want to return information for the current locale.

Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 690

EncycloSys2 - 2020.0.02

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

When the EnhancedLocaleSupport parameter on the database node is set to true, this method returns the
numeric formatting information with regional overrides suppressed, unless the lcid parameter is set to zero (0)
when the current thread locale is the session locale or the lcid parameter is set to the JadeLocaleIdNumbers
category LCID_SessionWithOverrides global constant (which enables you to easily code calls for information
about the session locale without having to change the current locale).

Regardless of the value of the EnhancedLocaleSupport parameter, if you set the lcid parameter to zero (0), the
information is returned for the current thread locale.

getLocaleTimeInfo
Signature getLocaleTimeInfo(lcid: Integer;

info: TimeFormat input);

The getLocaleTimeInfo method of the Schema class gets the time formatting information from the TimeFormat
class for the locale specified in the lcid parameter. Set the value of the lcid parameter to zero (0) if you want to
return information for the current locale.

Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

When the EnhancedLocaleSupport parameter on the database node is set to true, this method returns the time
information with regional overrides suppressed, unless the lcid parameter is set to zero (0) when the current
thread locale is the session locale or the lcid parameter is set to the JadeLocaleIdNumbers category LCID_
SessionWithOverrides global constant (which enables you to easily code calls for information about the session
locale without having to change the current locale).

Regardless of the value of the EnhancedLocaleSupport parameter, if you set the lcid parameter to zero (0), the
information is returned for the current thread locale.

getLocalFormats
Signature getLocalFormats(returnColl: ObjectArray input);

The getLocalFormats method of the Schema class adds all of the user-defined formats for the receiving schema
(that is, the schema that is the receiver of the method) to the array specified in the returnColl parameter.

The object array is not cleared before instances are added.

getLocalLocaleInSubschemas
Signature getLocalLocaleInSubschemas(localeName: String): Locale;

The getLocalLocaleInSubschemas method of the Schema class returns a reference to the locale specified in the
localeName parameter from the subschemas of the current schema.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 691

EncycloSys2 - 2020.0.02

getLocalPrimitive
Signature getLocalPrimitive(primName: String): PrimType;

The getLocalPrimitive method of the Schema class returns a reference to the primitive type specified in the
primName parameter from the current schema.

getName
Signature getName(): String;

The getName method of the Schema class returns the name of the receiver schema as a string.

getOidForObject
Signature getOidForObject(obj: Any): String;

The getOidForObject method of the Schema class returns the object identifier (oid) of the object specified in the
obj parameter. If the obj parameter is not an object reference, an exception is raised.

This method can be called for object references obtained by the getPropertyValue method of the Object class
when the class of the object is not visible in the current schema.

getPrimitive
Signature getPrimitive(name: String): PrimType;

The getPrimitive method of the Schema class returns a reference to the primitive type with the name specified in
the name parameter.

getRelationalView
Signature getRelationalView(name: String): RelationalView;

The getRelationalView method of the Schema class returns a reference to the relational view in the current
schema with the name specified in the name parameter.

getRpsMapping
Signature getRpsMapping(name: String): RelationalView;

The getRpsMapping method of the Schema class returns a reference that is an instance of the RelationalView
class, to the RPS mapping in the current schema with the name specified in the name parameter.

getSchema
Signature getSchema(name: String): Schema;

The getSchema method of the Schema class returns a schema with the name specified in the name parameter.

The schema can be any user-defined schema or system schema; for example, the RootSchema or
JadeReportWriterSchema.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 692

EncycloSys2 - 2020.0.02

getSubschema
Signature getSubschema(name: String): Schema;

The getSubschema method of the Schema class returns a reference to a user-defined subschema with the name
specified in the name parameter.

getSubschemas
Signature getSubschemas(subs: SchemaNDict input);

The getSubschemas method of the Schema class adds all subschemas of the receiving schema to the dictionary
specified in the subs parameter.

As this method is not recursive, only the immediate (that is, the direct descendant) subschemas of the receiver are
returned.

getUserAppliedPatches
Signature getUserAppliedPatches(): String;

The getUserAppliedPatches method of the Schema class returns a string containing all patches applied to user
schemas in your database. (See also the getAppliedPatches method, which returns a string of the patches
applied to system schemas.)

The format of the string returned by this method is schema-name Patches: followed by one or more lines in the
following format.

file-type,file-name,jade-version,timestamp[,file-version-tag]

In the format of the returned string:

schema-name is the name of the user schema to which the patch was applied

file-type is Schema or DDB (or .DDX, depending on the value of the Use DDX style (xml format) as Default
instead of DDB check box on the Schema sheet of the Preferences dialog)

file-name is the full (absolute) path name of the file that was loaded

jade-version is the JADE version number (for example, 7.1.03)

timestamp is the date and time of the file load

file-version-tag is the optional version tag value obtained from the JadeFiletypeVersiontag line in the
patchset file (for example, JadeFiletypeVersiontag SCM "7.1.03.024.001";).

This is repeated for each patch that was applied.

Note All commas in the file-name and file-version-tag are replaced by underscore characters.

You can call the getUserAppliedPatches method at any time to determine the files (for example, hot fixes) that
have been loaded into user schemas in your JADE database. Alternatively, call the resetUserAppliedPatches
method to reset the information about patches applied to a specified user schema to null ("").

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 693

EncycloSys2 - 2020.0.02

getUserFormat
Signature getUserFormat(name: String): LocaleFormat;

The getUserFormat method of the Schema class returns a reference to the user format with the name specified in
the name parameter.

getWebServiceConsumerNames
Signature getWebServiceConsumerNames(names: JadeIdentifierArray input);

The getWebServiceConsumerNames method of the Schema class populates the array specified by the names
parameter with the names of Web Service consumers defined in the receiving schema.

globalException
Signature globalException(exception: Exception): Integer;

The globalException method of the Schema class is the default global exception handler for GUI applications
and passes control to the defaultHandler method on the exception instance; that is, it calls
exception.defaultHandler.

Note Do not call this method directly, as it is automatically armed by JADE for GUI processes.

See also "Handling Exceptions", in Chapter 3 of the JADE Developer’s Reference and the Schema class
nonGUIGlobalExceptionHandler and Exception class defaultHandler methods.

importWSDL
Signature importWSDL(wsdlFileName: String;

consumerName: String;
generateAsynchronousMethods: Boolean;
useNewPrimitiveTypes: Boolean;
superclassName: String;
classNamePrefix: String;
methodNamePrefix: String;
propertyNamePrefix: String;
renameFileName: String): String;

The importWSDL method of the Schema class creates a Web service consumer by importing a specified WSDL
file.

This method returns an empty string if it executes successfully or an error message if it fails.

The importWSDL method parameters are listed in the following table.

Parameter Description

wsdlFileName The name of the WSDL file on which to base the Web service consumer.
The name can be a URL if the WSDL is available on the Web.

consumerName The name of the Web service consumer, which must begin with an
uppercase letter.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 694

EncycloSys2 - 2020.0.02

Parameter Description

generateAsynchronousMethods true if methods for consuming the Web service asynchronously are
generated in addition to the methods for synchronous execution, and
false otherwise.

useNewPrimitiveTypes true if methods generated from the WSDL use the primitive types
Integer64, Byte, and TimeStampInterval where appropriate, and false
otherwise.

superclassName The name of the superclass of the classes created for the Web service
consumer. If an empty string is specified, the superclass is Object.

classNamePrefix The prefix for the classes created for the Web service consumer. If an
empty string is specified, the class names do not have a prefix.

methodNamePrefix The prefix for the methods created for the Web service consumer. If an
empty string is specified, the method names do not have a prefix.

propertyNamePrefix The prefix for the properties created for the Web service consumer. If an
empty string is specified, the property names do not have a prefix.

renameFileName Reserved for future use. (This parameter will enable generated JADE
classes to be renamed.)

You can import a JADE or external WSDL file that is in Document/Literal Bare or Document/Literal Wrapped
SOAP message style format.

isLocalLocale
Signature isLocalLocale(l: Locale): Boolean;

The isLocalLocale method of the Schema class returns true if the locale specified in the l parameter is local to
the current schema.

loadHTMLDocuments
Signature loadHTMLDocuments(pathName: String;

reload: Boolean): String;

The loadHTMLDocuments method of the Schema class processes all files in the folder specified in the
pathName parameter, to enable you to load or reload multiple HTML documents.

The names of the HTML documents are obtained from the file names, excluding the extension and the path. For
example, if the file name is c:\documents\header.htm, the document name is Header (with an uppercase first
character). If this results in the name being longer than 100 characters, it is truncated to 100 characters.

If a document already exists in the schema and the reload parameter is set to true, the document is updated. If a
document does not exist in the schema, the document is created and updated. An exception is raised if the
pathName parameter contains a null value or the specified directory cannot be located.

Note As no validation is done to determine if the file is a valid HTML file, it is your responsibility to ensure that
the files in the specified folder are valid HTML documents.

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 695

EncycloSys2 - 2020.0.02

makeLocaleNameFromId
Signature makeLocaleNameFromId(lcid: Integer): String;

The makeLocaleNameFromId method of the Schema class returns the name of the locale specified in the lcid
parameter. Set the value of the lcid parameter to zero (0) if you want to return information for the current locale.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
not defined or it is set to false, inconsistent results could be returned to the application server when running in
JADE thin client mode and there are regional overrides, as all overrides on the application server are suppressed.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file on
the database node is set to true, the JadeLocaleIdNumbers category LCID_SessionWithOverrides global
constant enables you to retrieve information from the session locale without having to save the initial locale for the
call.

nonGUIGlobalExceptionHandler
Signature nonGUIGlobalExceptionHandler(e: Exception): Integer;

The nonGUIGlobalExceptionHandler method of the Schema class is the default global exception handler for
non-GUI applications.

This method logs exception details from non-GUI application to the exception log file of the current application (for
example, MyApp.log), aborts any persistent or transient transaction, and then returns Ex_Abort_Action.

Note Do not call this method directly, as it is automatically armed by JADE for non-GUI processes.

See also "Handling Exceptions", in Chapter 3 of the JADE Developer’s Reference and the Schema class
globalException method and Exception class defaultHandler method.

regenerateRelationalView
Signature regenerateRelationalView(viewName: String;

excludedClasses: ClassColl;
rootClass: Class);

The regenerateRelationalView method of the Schema class builds the relational view specified in the viewName
parameter. Call this method in your application logic to dynamically build a relational view at run time after
changes to the schema, instead of using the Relational Views Wizard.

Use the excludedClasses parameter to specify the collection of classes that you want excluded from the
relational view and the rootClass parameter to specify the root class of the view. If the view does not exist, a new
view is created. If a view of the specified name already exists, it is deleted and replaced with the new view.

The following example shows the use of the regenerateRelationalView method.

makeNewView();
vars

clsColl : ClassColl;
begin

create clsColl transient;
Object.allSubclassesUpToSchema(rootSchema, clsColl);
currentSchema.regenerateRelationalView("MyView", clsColl, Company);
delete clsColl;

end;

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 696

EncycloSys2 - 2020.0.02

The method in this example creates or regenerates a relational view identical to that generated by using the
Relational View Wizard (assuming there is a Company class) and accepting all default values in the wizard steps
summarized in the following table, unless specified in the following list.

Step Comment

Naming Your Relational View MyView name is specified

Specifying Relational View Options Include Super Schema Classes check box is checked

Selecting Classes and User-Defined Tables
for Your Relational View

Setting the Root Class Company class is selected as the root class

Setting the Default Included Object Features

Setting the Visibility of Protected Features Include All option is selected

Setting the Visibility of Derived Tables

Refining the Visibility of Class Features

Building Your Relational View The Finish button is clicked, to generate the relational view

For details about creating a relational view and the steps provided by the Relational View Wizard, see "Adding a
Relational View", in Chapter 9 of the JADE Development Environment User’s Guide.

removeWebConsumer
Signature removeWebConsumer(consumerName: String): String;

The removeWebConsumer method of the Schema class removes the Web service consumer with the name
specified in the consumerName parameter. The removeWebConsumer method returns an empty string if it
executes successfully or it returns an error message if it fails.

reorgInProgress
Signature reorgInProgress(): Boolean;

The reorgInProgress method of the Schema class returns true if a reorganization is currently "actively" in
progress; otherwise it returns false (that is, the reorganization is in dual-update mode and waiting for the
transition).

Applies to Version: 2016.0.03 (Service Pack 2) and higher

reorgIsWaitingForTransition
Signature reorgIsWaitingForTransition(): Boolean;

The reorgIsWaitingForTransition method of the Schema class returns true if a reorganization is in dual-update
mode and waiting for the transition; otherwise it returns false.

Applies to Version: 2016.0.03 (Service Pack 2) and higher

Encyclopaedia of Classes
(Volume 2)

Schema Class Chapter 1 697

EncycloSys2 - 2020.0.02

resetUserAppliedPatches
Signature resetUserAppliedPatches(schemaName: String): Boolean updating;

The resetUserAppliedPatches method of the Schema class resets the information about all patches applied to
user schema specified in the schemaName parameter to null ("").

This method returns true if the reset operation was successful or it returns false if the operation fails (that is, a
schema that matches the value specified in the schemaName parameter does not exist).

See also the getUserAppliedPatches method, which returns information about the patches applied to all user
schemas in the JADE database.

setHtmlDocumentSource
Signature setHtmlDocumentSource(htmlDocumentName: String;

documentSource: String): String;

The setHtmlDocumentSource method of the Schema class sets the HTML source to the value specified in the
documentSource parameter for the HTML document specified in the htmlDocumentName parameter.

This method returns null ("") if the update action was successful or it returns an error message if the HTML
document specified in the htmlDocumentName parameter does not exist, if there are errors in the structure of the
source, or if the JadeHTMLClass class of the document is in use.

Tip If your application uses the same schema but with different HTML source, you can store the HTML in
another object before loading a schema and then replacing it following the schema load process. This method
enables you to set the HTML source to the required value following a schema load.

Call the getHtmlDocumentSource method to obtain the HTML source of a specified HTML document.

withAllSubschemas
Signature withAllSubschemas(subs: SchemaColl input);

The withAllSubschemas method of the Schema class adds the current schema and all of its subschemas to the
collection specified in the subs parameter. The collection is not cleared before instances are added.

withAllSuperschemas
Signature withAllSuperschemas(): SchemaColl;

The withAllSuperschemas method of the Schema class returns a reference to a collection of the current schema
and all of its superschemas.

Encyclopaedia of Classes
(Volume 2)

SchemaEntity Class Chapter 1 698

EncycloSys2 - 2020.0.02

SchemaEntity Class
The SchemaEntity class is the superclass of a number of classes that participate in the definition of a schema.

For details about the constants, properties, and methods defined in the SchemaEntity class, see "SchemaEntity
Class Constants", "SchemaEntity Properties", and "SchemaEntity Method", in the following subsections.

Inherits From: Object

Inherited By: Database, DbFile, DbServer, Feature, Library, Locale, Type

SchemaEntity Class Constants
The constants provided by the SchemaEntity class are listed in the following table.

Constant Integer Value Description

Access_Protected #'2' Protected access

Access_Public #'0' Public access

Access_ReadOnly #'1' Read-only access

SubAccess_Public #'0' Public subschema access

SubAccess_SubschemaHidden #'3' No subschema access

SchemaEntity Properties
The properties defined in the SchemaEntity class are summarized in the following table.

Property Description

abstract Specifies whether the schema entity is abstract

access Contains the type of access to the schema entity

helpKeyword Contains text used to access the help file while the schema entity is selected

name Contains the name of the schema entity

number Contains the unique number of the schema entity

subAccess Contains the level of accessibility of the schema entity from a subschema

text Contains the descriptive text for a schema entity

abstract
Type: Boolean

The read-only abstract property of the SchemaEntity class specifies whether the entity is abstract.

Abstract classes factor out behavior that is common to a number of classes; for example, the Btree and the
Dictionary collection classes. Abstract classes can have abstract methods defined for them. (Abstract methods
are those that have no logic associated with them but must be implemented in the subclasses of the abstract
class.)

Encyclopaedia of Classes
(Volume 2)

SchemaEntity Class Chapter 1 699

EncycloSys2 - 2020.0.02

access
Type: Character[1]

The read-only access property of the SchemaEntity class contains the type of access to the schema entity. The
access for an entity is specified in the Class Definition, Define Attribute, Jade Method Definition, External Method
Definition, or Add Condition dialog when the entity is defined.

The types of access are listed in the following table.

Class Constant Value Description Applies to…

Access_Protected #'2' Protected access Classes, methods, and properties

Access_Public #'0' Public access Classes, methods, and properties

Access_ReadOnly #'1' Read-only access Properties only

name
Type: String[100]

The read-only name property of the SchemaEntity class contains the name of the schema entity. The code
fragment in the following example shows the use of the name property.

foreach obj in coll do
if not (obj = self or obj = caller) then

count.bump;
found := true;
if count = 1 then

write 'Class - ' & cls.name;
endif;
write ' Transient - ' & obj.String;

endif;
endforeach;

number
Type: Integer

The read-only number property of the SchemaEntity class contains the unique number of the schema entity.

subAccess
Type: Character[1]

The read-only subAccess property of the SchemaEntity class contains the level of accessibility of the schema
entity from a subschema. The types of access are listed in the following table.

Class Constant Value Description

SubAccess_Public #'0' Public subschema access

SubAccess_SubschemaHidden #'3' No subschema access

For details about the subschemaHidden option, see "subschemaHidden Option" under "Controlling the User of
Elements in Other Schemas", in Chapter 1 of the JADE Development Environment User’s Guide.

Encyclopaedia of Classes
(Volume 2)

SchemaEntity Class Chapter 1 700

EncycloSys2 - 2020.0.02

text
Type: String

The read-only text property of the SchemaEntity class contains the descriptive text of the receiver that was
entered in the text editor window (accessed by using the Text command from the Classes or Schema menu) for
the receiver, if applicable. For example, the text can be a description of the object, the date created or amended,
and by whom.

SchemaEntity Methods
The methods defined in the SchemaEntity class are summarized in the following table.

Method Description

getName Returns the name of the receiver schema as a string

getPatchNumber Returns the patch version number of the receiver

getName
Signature getName(): String;

The getName method of the SchemaEntity class returns the name of the receiver schema entity as a string.

getPatchNumber
Signature getPatchNumber(): Integer;

The getPatchNumber method of the SchemaEntity class returns the patch version number of the receiver.

This method returns zero (0) if there is no open patch number.

Encyclopaedia of Classes
(Volume 2)

SchemaEntityNumberDict Class Chapter 1 701

EncycloSys2 - 2020.0.02

SchemaEntityNumberDict Class
The SchemaEntityNumberDict class is used to store references to instances of subclasses of the SchemaEntity
class.

The key of the SchemaEntityNumberDict class is the number property of the SchemaEntity class.

Inherits From: MemberKeyDictionary

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

Script Class Chapter 1 702

EncycloSys2 - 2020.0.02

Script Class
The Script class is the superclass of a number of classes that represent schema entities that have source code,
which must be compiled successfully for the entity to function correctly. The most obvious example of a schema
entity that has source code is a method. However, there are many other entities such as translatable strings and
global constants with source code definitions.

For details about the properties and methods defined in the Script class, see "Script Properties" and "Script
Methods", in the following subsections.

Inherits From: Feature

Inherited By: Constant, Routine

Script Properties
The properties defined in the Script class are summarized in the following table.

Property Contains the …

compiledOK Value false

errorCode Compiler error code of the most recent compilation

errorLength Length of the token found in error in the most recent compilation

errorPosition Offset position of the token found in error in the most recent compilation

status Compilation status of the receiver

warningCount Number of warnings generated during the most recent compile

compiledOK
Type: Boolean

The compiledOK property of the Script class always has the value false.

Use the inError and notCompiled methods to determine whether a method is in error or has not been compiled.

errorCode
Type: Integer

The public errorCode property of the Script class contains the compiler error code of the most-recent attempt to
compile the source code.

The value of the errorCode property is zero (0) if no attempt to compile the source code is made or the source
code has been compiled successfully.

In the following example, a JADE method fails to compile because a semicolon (;) is required before the token
end in the final line. The resulting value of the errorCode property is 7052.

test();
vars
begin

write "Hello World"
end;

Encyclopaedia of Classes
(Volume 2)

Script Class Chapter 1 703

EncycloSys2 - 2020.0.02

errorLength
Type: Integer

The public errorLength property of the Script class contains the length of the token found to be in error in most-
recent attempt to compile the source code. The value of the errorLength property is zero (0) if no attempt to
compile the source code is made or the source code has been compiled successfully.

In the following example, a JADE method fails to compile because a semicolon (;) is required before the token
end in the final line. The resulting value of the errorLength property is 3 (the length of the token in error).

test();
vars
begin

write "Hello World"
end;

errorPosition
Type: Integer

The public errorPosition property of the Script class contains the offset position within the code of the token found
to be in error in most-recent attempt to compile the source code. Note that the first character in the source has a
position of zero (0).

The value of the errorPosition property is zero (0) if no attempt to compile the source code is made or the source
code has been compiled successfully.

In the following example, a JADE method fails to compile because a semicolon (;) is required before the token
end in the final line. The resulting value of the errorPosition property is 44 (the offset position of the token in
error).

test();
vars
begin

write "Hello World"
end;

status
Type: Integer

The status property of the Script class contains an integer that indicates the compilation status of the receiver.

A value of zero (0) for the status property indicates that no attempt to compile the script object has been made
since the source was changed, or that an unsuccessful attempt to compile the source code was made.

A value of 1 for the status property indicates that the script object has been successfully compiled.

warningCount
Type: Integer

The warningCount property of the Script class contains the number of warnings generated during the most recent
compilation.

Encyclopaedia of Classes
(Volume 2)

Script Class Chapter 1 704

EncycloSys2 - 2020.0.02

Script Methods
The methods defined in the Script class are summarized in the following table.

Method Description

getSource Returns the source code for the receiver

inError Returns true if the most recent attempt to compile the receiver failed

notCompiled Returns true if the receiver has not been compiled after the most recent source code
change

getSource
Signature getSource(): String;

The getSource method of the Script class returns the source code for the receiver.

inError
Signature inError(): Boolean;

The inError method of the Script class returns true if the most-recent attempt to compile the receiver failed, and
false otherwise.

notCompiled
Signature notCompiled(): Boolean;

The notCompiled method of the Script class returns true if no attempt to compile the receiver has been made
since the source code was changed; otherwise it returns false.

Encyclopaedia of Classes
(Volume 2)

Set Class Chapter 1 705

EncycloSys2 - 2020.0.02

Set Class
The Set class encapsulates the behavior of a set collection. A set is an unordered collection of objects. An object
cannot be referenced in a set more than once. For details about the methods defined in the Set class, see "Set
Methods", in the following subsection.

The Set class also inherits the getStatistics method from the Collection class, which analyzes the collection and
returns structural statistics.

Inherits From: Btree

Inherited By: ObjectSet

Set Methods
The methods defined in the Set class are summarized in the following table.

Method Description

add Adds a specified object to a set

copy Copies entries from the receiver to a compatible collection

createIterator Creates an iterator for the set

getStatistics Analyzes the collection and returns structural statistics

includes Returns true if the specified object is contained in the set

indexNear Returns an approximate index of an object in a collection

indexNear64 Returns an approximate index of an object in a collection as an Integer64 value

remove Removes a specified object from a set

tryAdd Attempts to add the specified value to the set

tryAddDeferred Executes a deferred attempt to add a value to the set

tryRemove Attempts to remove the specified value from the set

tryRemoveDeferred Executes a deferred attempt to remove the specified value from the set

add
Signature add(value: MemberType);

The add method of the Set class adds the object specified in the value parameter to a set; for example:

displayHierarchy() updating;
vars

es : EmployeeSet;
emp : Employee;
count, level : Integer;

begin
listOrg.clear;
create es transient;
foreach emp in app.myCompany.allEmployees do

if emp.myManager = null then
es.add(emp);

Encyclopaedia of Classes
(Volume 2)

Set Class Chapter 1 706

EncycloSys2 - 2020.0.02

endif;
endforeach;
if es.size = 0 then

listOrg.addItem ("No root for chart");
else

foreach emp in es do
displayEmployees(emp, 1);

endforeach;
endif;
count := 1;
while count < listOrg.listCount do

listOrg.itemExpanded [count] := true;
count := count + 1;

endwhile;
end;

foreach emp in app.myCompany.allEmployees do
if emp.myManager = null then

empSet.add(emp);
endif;

endforeach;

If the set already contains the object, an exception is raised.

copy
Signature copy(toColl: Collection input);

The copy method of the Set class copies entries from the receiver collection to a compatible collection passed as
the toColl parameter. In this case, compatible means that the memberships of the receiver and destination
collections are type-compatible.

Note Entries copied from the receiver collection are added to entries that already exist in the collection to which
you copy them.

The following example of the copy method returns all regions for the company.

getAllRegions(regionSet: RegionSet input);
vars
 country : Country;
begin
 // For each country in the company, copy the country's regions into the set
 foreach country in allCountries do
 country.allRegions.copy(regionSet);
 endforeach;
end;

The following example of the copy method returns a snapshot of all sales for the company.

getAllSales(saleSet: SaleSet input);
begin
 // If the company has some sales, copy them into the supplied set
 if not allSalesByItem.isEmpty then

allSalesByItem.copy(saleSet);
endif;

end;

Encyclopaedia of Classes
(Volume 2)

Set Class Chapter 1 707

EncycloSys2 - 2020.0.02

createIterator
Signature createIterator(): Iterator;

The createIterator method creates an iterator for the Set class.

Use an iterator associated with the set to remember the current position in the set. For details about iterators, see
the Iterator class.

getStatistics
Signature getStatistics(statistics: JadeDynamicObject input);

The getStatistics method of the Collection class analyzes the collection and returns structural statistics in the
attributes of a JadeDynamicObject, representing collection statistics.

The attributes of a collection statistics dynamic object are defined and interpreted as follows.

Attribute Description

blockSize Entries per block

keyLength Size of the key in bytes

entrySize Size of each Set entry in bytes

size Number of entries that is, the size of the Set itself)

blockCount Total number of blocks in the set

height Number of levels in the set

minEntries Minimum number of entries found in any block

maxEntries Maximum number of entries found in any block

avgEntries Average number of entries in collection blocks

loadFactor Actual average percent loading of collection blocks (entries for each block)

To compute the block size in bytes, multiply the blockSize attribute by the entrySize attribute. The maximum
collection block size for a collection is 256K bytes (that is, the value defined by the MaximumCollectionBlockSize
global constant in the SystemLimits category).

The JadeDynamicObjectNames category global constants for collection statistics are listed in the following table,
where the name of the dynamic object represents the collection type of the receiver.

Global Constant String Value

JStats_ArrayName "JStatsArray"

JStats_DictionaryName "JStatsDictionary"

JStats_JadeBytesName "JStatsJadeBytes"

JStats_SetName "JStatsName"

Encyclopaedia of Classes
(Volume 2)

Set Class Chapter 1 708

EncycloSys2 - 2020.0.02

The JadeDynamicObjectTypes category global constants for collection statistics are listed in the following table,
where the type of the dynamic object represents the collection type of the receiver.

Global Constant Integer Value

JStats_ArrayType 101

JStats_DictionaryType 102

JStats_JadeBytesType 104

JStats_SetType 103

The following example shows the use of the getStatistics method.

vars
jdo : JadeDynamicObject;

begin
create jdo;
node.processes.getStatistics(jdo);
write jdo.display;

epilog
delete jdo;

end;

For details about the behavior of and tuning collections, see Chapter 4 of your JADE Developer’s Reference.

includes
Signature includes(value: MemberType): Boolean;

The includes method of the Set class returns true if the object specified in the value parameter is contained in the
set; for example:

isEmployee(emp: Employee): Boolean;
// returns true if an emp is below self in the organization hierarchy
vars

child : Employee;
bool : Boolean;

begin
if myEmployees.size <> 0 then

if myEmployees.includes(emp) then
bool := true;

else
foreach child in myEmployees do

if child.isEmployee(emp) = true then
bool := true;
break;

endif;
endforeach;

endif;
endif;
bool := false;
return bool;

end;

if not goodCustomers.includes(cust) then

Encyclopaedia of Classes
(Volume 2)

Set Class Chapter 1 709

EncycloSys2 - 2020.0.02

goodCustomers.add(cust);
endif;

indexNear
Signature indexNear(value: MemberType): Integer;

The indexNear method of the Set class returns an approximate index for the entry specified in the value
parameter if it exists in the collection or it returns zero (0) if it does not exist. (See also the Iterator class
startNearIndex method.)

If the specified value occurs more than once in the collection, the approximate index of the first occurrence is
returned.

Notes This method calculates and returns an approximate index. This incurs less processing overhead than
using the indexOf method.

Use the indexNear64 method instead of the indexNear method, if the number of entries in the set could exceed
the maximum integer value of 2,147,483,647.

indexNear64
Signature indexNear64(value: MemberType): Integer64;

The indexNear64 method of the Set class returns an approximate index for the entry specified in the value
parameter if it exists in the collection as an Integer64 value or it returns zero (0) if it does not exist. (See also the
Iterator class startNearIndex method.)

If the specified value occurs more than once in the collection, the approximate index of the first occurrence is
returned.

Note This method calculates and returns an approximate index. This incurs less processing overhead than
using the indexOf64 method.

remove
Signature remove(value: MemberType) updating;

The remove method of the Set class removes the object specified in the value parameter from a set; for example:

goodCustomers.remove(cust);

If the set does not contain the specified object, an exception is raised.

tryAdd
Signature tryAdd(value: MemberType): Boolean, lockReceiver, updating;

The tryAdd method of the Set class attempts to add the value specified in the value parameter to the set
collection if it is not already present. It returns true if the value was successfully added; otherwise it returns false.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

Set Class Chapter 1 710

EncycloSys2 - 2020.0.02

tryAddDeferred
Signature tryAddDeferred(value: MemberType): Boolean, receiverByReference, updating;

The tryAddDeferred method of the Set class attempts to add the value specified by the value parameter to the set
if it is not already present.

Applies to Version: 2020.0.01 and higher

tryRemove
Signature tryRemove(value: MemberType): Boolean, lockReceiver, updating;

The tryRemove method of the Set class attempts to remove the value specified in the value parameter from the
set collection if it is present. It returns true if the value was successfully removed; otherwise it returns false.

Applies to Version: 2020.0.01 and higher

tryRemoveDeferred
Signature tryRemoveDeferred(value: MemberType): Boolean, receiverByReference,

updating;

The tryRemoveDeferred method of the Set class attempts to remove the value specified in the value parameter
from the set if it is present.

This method returns true if the value was removed; otherwise it returns false.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

SetMergeIterator Class Chapter 1 711

EncycloSys2 - 2020.0.02

SetMergeIterator Class
The SetMergeIterator class encapsulates the behavior required to sequentially access objects from a merged
view of two or more set instances. Set instances need not have the same membership.

When iterating multiple sets, the merged iterator returns objects in a sequence based on their object identifier
(oid) value.

To iterate a single collection, the iterator is created and associated with the collection by using the createIterator
method on the collection object. To iterate a merged view of more than one collection, first create the iterator and
then use the addCollection method for each set to be attached to the iterator, as shown in the following example.

vars
iter : SetMergeIterator;
set1, set2 : CustomerSet;
cust : Customer;

begin
// Assign set1 and set2
create iter transient;
iter.addCollection(set1);
iter.addCollection(set2);
while iter.next(cust) do

write cust.name;
endwhile;

end;

For details about the property and methods defined in the SetMergeIterator class, see "SetMergeIterator
Property" and "SetMergeIterator Methods", in the following subsections.

Inherits From: Iterator

Inherited By: (None)

Applies to Version: 2016.0.01 and higher

SetMergeIterator Property
The property defined in the SetMergeIterator class is summarized in the following table.

Property Description

ignoreDuplicates Skips duplicate entries in the merged iterator view

ignoreDuplicates
Type: Boolean

Default Value: True

The ignoreDuplicates property of the SetMergeIterator class specifies whether duplicate entries in the merged
view should be skipped when iterating using the next and back methods.

Duplicate entries can occur in the merged view when an object is included in more than one of the attached sets.

Encyclopaedia of Classes
(Volume 2)

SetMergeIterator Class Chapter 1 712

EncycloSys2 - 2020.0.02

SetMergeIterator Methods
The methods defined in the SetMergeIterator class are summarized in the following table.

Method Description

addCollection Adds the specified set to the merged iterator view

back Accesses entries in reverse order in the merged iterator view

current Returns the last value iterated by the back or next method

getCollectionAt Returns the set at the specified index in the collection of sets making up the merged
iterator view

getCollectionCount Returns the number of sets

getCurrentCollection Returns the set containing the last value iterated by the back or next method

isValid Returns true if the receiver is a valid iterator

next Accesses successive entries in the merged iterator view

removeCollection Removes the specified set from the merged iterator view

reset Initializes the iterator

startAtObject Sets the starting position of the iterator at the position of the specified object

addCollection
Signature addCollection(set: Set);

The addCollection method of the SetMergeIterator class adds the set specified by the value of the set parameter
to the merged iterator view.

The parameter value must be a Set type. The Set instance being added does not need to have the same
membership type as existing sets associated with the iterator.

An exception is raised if you attempt to add a set that is already attached to the iterator and therefore part of the
merged iterator view.

back
Signature back(value: Any output): Boolean;

The back method of the SetMergeIterator class accesses entries in reverse order one at a time in the sets
comprising the merged iterator view. This method returns true when a prior entry is found, and the entry is
assigned to the value parameter. It returns false when a prior entry is not found because the iterator is positioned
before the first entry in the merged view, and the value parameter becomes a null reference.

When the back method is used with an iterator where that iterator has been passed to a method as a method
parameter, the iterator must be defined as a usage input; that is, the iterator cannot be modified by the called
method.

The following example shows the use of the back method.

getReversedPosition(pObj: Object; pIter: SetMergeIterator input): Integer;
vars

pos : Integer;
obj : Object;

Encyclopaedia of Classes
(Volume 2)

SetMergeIterator Class Chapter 1 713

EncycloSys2 - 2020.0.02

begin
while pIter.back(obj) do

pos := pos - 1;
if obj = pObj then

return pos;
endif;

endwhile;
return 0;

end;

current
Signature current(value: Any output): Boolean;

The current method of the SetMergeIterator class returns the last value iterated by using the back or next
method. This method returns true if the iterator is positioned on an entry in the merged view, or it returns false if
the iterator is reset or it is positioned beyond the start or end of the merged view. The value parameter receives
the entry of the current iterator position in the merged view.

getCollectionAt
Signature getCollectionAt(index: Integer): Set;

The getCollectionAt method of the SetMergeIterator class returns the set at the index position specified by the
index parameter in the array of collections attached to the iterator.

getCollectionCount
Signature getCollectionCount(): Integer;

The getCollectionCount method of the SetMergeIterator class returns the number of sets that have been
attached to the iterator by using the addCollection method.

getCurrentCollection
Signature getCurrentCollection(): Set;

The getCurrentCollection method of the SetMergeIterator class returns the set containing the last value iterated
by using the back or next method.

isValid
Signature isValid(): Boolean;

The isValid method of the SetMergeIterator class returns true if the receiver is a valid iterator for all of the sets in
the merged view.

next
Signature next(value: Any output): Boolean;

The next method of the SetMergeIterator class accesses successive entries in the sets comprising the merged
iterator view. This method returns true when a next entry is found, and the entry is assigned to the value
parameter. It returns false when a next entry is not found because the iterator is positioned after the last entry in
the merged view, and the value parameter becomes a null reference.

Encyclopaedia of Classes
(Volume 2)

SetMergeIterator Class Chapter 1 714

EncycloSys2 - 2020.0.02

When the next method is used with an iterator where that iterator has been passed to a method as a method
parameter, the iterator must be defined as a usage input; that is, the iterator cannot be modified by the called
method.

The following example shows the use of the next method.

getPosition(pObj: Object; pIter: SetMergeIterator input): Integer;
vars

pos : Integer;
obj : Object;

begin
while pIter.next(obj) do

pos := pos + 1;
if obj = pObj then

return pos;
endif;

endwhile;
return 0;

end;

removeCollection
Signature removeCollection(set: Set)

The removeCollection method of the SetMergeIterator class removes the set specified by the set parameter
from the array of sets associated with the iterator.

An exception is raised if you attempt to remove a set that is not attached to the iterator and therefore is not part of
the merged iterator view.

reset
Signature reset() updating;

The reset method of the SetMergeIterator class restarts an iteration. After executing this method, the following
next method would start from the first entry in the merged view; that is, it would apply to all sets. Similarly, the back
method would start from the last entry in the merged view.

startAtObject
Signature startAtObject(object: Object) updating;

The startAtObject method of the SetMergeIterator class sets the starting position of the iterator for the merged
view at the position of the object specified in the object parameter.

An exception is raised if this object is not compatible with the membership of the collection being iterated.

Encyclopaedia of Classes
(Volume 2)

SortActor Class Chapter 1 715

EncycloSys2 - 2020.0.02

SortActor Class
The SortActor class contains properties that enable you to specify the precedence of records in the File class.
The following example shows the use of sort actors.

buttonSortFile1_click(btn: Button input) updating;
vars

sortActor : SortActorArray;
sort1, sort2, sort3 : SortActor;

begin
// Creates transient instances of SortActor and SortActorArray classes.
create sortActor transient;
create sort1 transient;
create sort2 transient;
create sort3 transient;
// Sets the recordSize property of the file to 0, indicating the sorted
// file has variable records. The records will be delimited by the
// standard carriage return and line feed endOfLine characters.
self.file1.recordSize := 0;
self.file1.endOfLine := #"0D" & #"0A";
// Sets the endOfField property to a comma, indicating the file has
// variable fields within each record that will be delimited by a comma.
self.file1.endOfField := ",";
// Sets the first SortActor instance to sort using the string from the
// 13th character of the first field through to the end of the field.
// The sort will be done in ascending order.
sort1.fieldNo := 1;
sort1.startPosition := 13;
sort1.ascending := true;
// Sets the second SortActor instance to sort the duplicates from the
// first sort using the string from the 14th character of the second
// field through to the end of the field. The sort will be numeric and
// will be done in descending order.
sort2.fieldNo := 2;
sort2.startPosition := 14;
sort2.ascending := false;
sort2.sortType := SortActor.SortType_Integer;
// Sets the third SortActor instance to sort the duplicates from the
// first and second sorts using the string from the 16th character of
// the third field through to the end of the field. The sort will be
// done in ascending order.
sort3.fieldNo := 3;
sort3.startPosition := 16;
sort3.ascending := true;
// Adds SortActor instances to the SortActorArray for use in the sort.
sortActor.add(sort1);
sortActor.add(sort2);
sortActor.add(sort3);
// Uses the File class extractSort method to sort the file and write
// the output to the text box.
self.file1.extractSort(sortActor, outputFile1);
textBox3.text := outputFile1.readString(400);
self.resetOutputFile1;
self.file1.close;

Encyclopaedia of Classes
(Volume 2)

SortActor Class Chapter 1 716

EncycloSys2 - 2020.0.02

epilog // Delete the transient instances.
delete sortActor;
delete sort1;
delete sort2;
delete sort3;

end;

The SortActorArray class contains the sort actors used to sort an external file.

For details about the class constants and properties defined in the SortActor class, see "SortActor Class
Constants" and "SortActor Properties", in the following subsection. For more sort actor examples, see "Example of
Sorted Fixed Fields or Records" and "Example of Sorted Variable Fields or Records" under the File class
extractSort method, earlier in this chapter.

Inherits From: Object

Inherited By: (None)

SortActor Class Constants
The constants provided by the SortActor class for use in the sortType property are listed in the following table.

Constant Integer Value Constant Integer Value

SortType_Binary 3 SortType_Decimal 2

SortType_Integer 1 SortType_String 0

SortActor Properties
The properties defined in the SortActor class are summarized in the following table.

Property Description

ascending Specifies whether records or fields in a file are sorted in ascending order

fieldNo Contains the field number in a file that is to be compared

length Contains the length from the offset of the field or record in a file that is to be compared

numeric Specifies whether records or fields in a file are to be compared numerically

random Specifies whether records or fields in a file are to be sorted according to a random order

sortType Specifies the sort type of the records or fields in a file

startPosition Contains the current position in the record or field in a file for comparison

ascending
Type: Boolean

The ascending property of the SortActor class specifies whether the records or fields in a file are sorted in
ascending order.

If the value of this property is set to false, a descending sort is performed.

Encyclopaedia of Classes
(Volume 2)

SortActor Class Chapter 1 717

EncycloSys2 - 2020.0.02

The default values for the ascending property are listed in the following table.

Variable Records,
Variable Fields

Variable Records,
Fixed Fields

Fixed Records,
Variable Fields

Fixed Records,
Fixed Fields

true true true true

fieldNo
Type: Integer

The fieldNo property of the SortActor class contains the field number in a file that is to be compared.

The default values for the fieldNo property are listed in the following table.

Variable Records,
Variable Fields

Variable Records,
Fixed Fields

Fixed Records,
Variable Fields

Fixed Records,
Fixed Fields

1 1 1 1

The code fragment in the following example sets the SortActor instance to sort the file randomly.

sort1.fieldNo := 1;
sort1.random := true;

length
Type: Integer

The length property of the SortActor class contains the length from the start position of the field or record in a file
that is to be compared.

Note In fixed-length files, any carriage return (CR) or line feed (LF) character is included in the length of the field
or record. When sorting fixed-length records, the entire length of the file must be divisible by the record size (that
is, the value contained in the File class recordSize property), with no remainder.

The default values for the length property are listed in the following table.

Variable Records,
Variable Fields

Variable Records,
Fixed Fields

Fixed Records,
Variable Fields

Fixed Records,
Fixed Fields

To end of field To end of record To end of field To end of record

When sorting fixed-length records, the entire length of the file must be divisible by the value contained in the File
class recordSize property, with no remainder.

numeric
Type: Boolean

The numeric property of the SortActor class specifies whether the records or fields in a file are to be compared
numerically.

Note From JADE release 6.0, the numeric property has been replaced by the sortType property. If you set the
numeric property to true, the sortType property is set to SortType_Integer (1).

Encyclopaedia of Classes
(Volume 2)

SortActor Class Chapter 1 718

EncycloSys2 - 2020.0.02

If the value of this property is set to false (the default), records or fields are compared alphanumerically.

The default values for the numeric property are listed in the following table.

Variable Records,
Variable Fields

Variable Records,
Fixed Fields

Fixed Records,
Variable Fields

Fixed Records,
Fixed Fields

false false false false

random
Type: Boolean

The random property of the SortActor class specifies whether the records or fields in a file are to be sorted in a
random order.

Tip Use this property, for example, to randomly sort a file for testing purposes.

The default values for the random property are listed in the following table.

Variable Records,
Variable Fields

Variable Records,
Fixed Fields

Fixed Records,
Variable Fields

Fixed Records,
Fixed Fields

false false false false

The code fragment in the following example shows the use of the random property to set the SortActor instance
to sort the file randomly.

sort1.fieldNo := 1;
sort1.startPosition := 1;
sort1.length := 4;
sort1.random := true;

sortType
Type: Integer

The sortType property of the SortActor class specifies the sort type of the records or fields in a file.

The SortActor class constants for this property are summarized in the following table.

Constant Value Description

SortType_Binary 3 Sort based on bit values.

SortType_Decimal 2 Sort as a JADE decimal (up to 23 characters of optional sign, decimal
point, and digits).

SortType_Integer 1 Sort as an integer. (Equivalent to numeric = true.)

SortType_String 0 (default) Sort as a string, based on locale. (Equivalent to numeric = false.)

If the value of this property is set to the default SortType_String (0) value, records or fields are compared
alphanumerically.

Encyclopaedia of Classes
(Volume 2)

SortActor Class Chapter 1 719

EncycloSys2 - 2020.0.02

Note From JADE release 6.0, the sortType property replaces the numeric property. If you set the numeric
property to true, the sortType property is set to SortType_Integer (1).

The default values for the sortType property are listed in the following table.

Variable Records,
Variable Fields

Variable Records,
Fixed Fields

Fixed Records,
Variable Fields

Fixed Records,
Fixed Fields

SortType_String SortType_String SortType_String SortType_String

startPosition
Type: Integer

The startPosition property of the SortActor class contains the start position from the beginning of the record or
field in a file that is to be compared.

Note In fixed-length files, any carriage return (CR) or line feed (LF) character is included in the length of the field
or record.

The default values for the startPosition property are listed in the following table.

Variable Records,
Variable Fields

Variable Records,
Fixed Fields

Fixed Records,
Variable Fields

Fixed Records,
Fixed Fields

1 1 1 1

Encyclopaedia of Classes
(Volume 2)

SortActorArray Class Chapter 1 720

EncycloSys2 - 2020.0.02

SortActorArray Class
The SortActorArray class contains SortActor objects and has properties that enable you to specify the
precedence of records in an external file.

For details about the properties defined in the SortActorArray class, see "SortActorArray Properties", in the
following subsection. For sort actor array examples, see "Example of Sorted Fixed Fields or Records" and
"Example of Sorted Variable Fields or Records" under the File class extractSort method, earlier in this chapter.

Inherits From: ObjectArray

Inherited By: (None)

SortActorArray Properties
The properties defined in the SortActorArray class are summarized in the following table.

Property Contains the …

kway Maximum number of sort files that are merged in a single pass

lcid Locale over which non-numeric fields and records are sorted

maxMem Maximum percentage of physical memory that the sorting method can use to sort the external
file

kway
Type: Integer

The kway property of the SortActorArray class contains the maximum number of sort files that are merged in a
single pass.

lcid
Type: Integer

The lcid property of the SortActorArray class contains the locale over which non-numeric fields and records are
sorted.

The default value of 768 specifies an invalid locale identifier. If the default lcid value is passed to the extractSort
method of the File class, the default system locale is used for sorting.

maxMem
Type: Integer

The maxMem property of the SortActorArray class contains the maximum percentage of physical memory that
the sorting method can use to sort the external file.

The specified value represents a percentage and has a valid range of 1 through 50. The default value of 10 is
used if an invalid value is specified.

Encyclopaedia of Classes
(Volume 2)

Sound Class Chapter 1 721

EncycloSys2 - 2020.0.02

Sound Class
The Sound class is the abstract subclass of the MultiMediaType class that contains the properties and methods
for the sound multimedia type. The internal speaker or sound card is initiated when the Sound object invokes the
play method.

As you cannot create an instance of an abstract class, define your own Sound subclass with the appropriate user
data file mapping and then create the instance of your new subclass that you require. You can create persistent
subclass instances.

Notes Sound files are recorded and edited by using the Windows sound recorder. This standard Windows utility
is normally installed in the Accessories program folder. You can also purchase libraries of sound files from third-
party vendors.

Sound files can be played on a workstation only if a compatible sound card is installed.

For details about the properties and methods defined in the Sound class, see "Sound Properties" and "Sound
Methods", in the following subsections.

Inherits From: MultiMediaType

Inherited By: (None)

Sound Properties
The properties defined in the Sound class are summarized in the following table.

Property Description

data Contains the sound binary data

format Contains the format of the sound data

name Contains a string of the sound name

data
Type: Binary

Availability: Public

The data property of the Sound class contains the sound binary data.

format
Type: Binary

Availability: Public

The format property of the Sound class contains the format of the sound data.

Encyclopaedia of Classes
(Volume 2)

Sound Class Chapter 1 722

EncycloSys2 - 2020.0.02

name
Type: String[29]

Availability: Public

The name property of the Sound class contains the sound name.

Sound Methods
The methods defined in the Sound class are summarized in the following table.

Method Description

isPlayable Specifies if a sound device is capable of playing the sound stream in the object

loadFromFile Loads the specified .wav file

play Plays the .wav file associated with the receiver Sound object

isPlayable
Signature isPlayable(): Boolean;

The isPlayable method of the Sound class returns true if a sound device capable of playing the sound stream
contained in the receiver is configured and available. In JADE thin client mode, the isPlayable method always
executes on the presentation client. An exception is raised if this method is invoked from a server method.

The device must have the capabilities required to play back the sound stream specified in the format property.

loadFromFile
Signature loadFromFile(fileName: String);

The loadFromFile method of the Sound class loads the .wav file specified in the fileName parameter string and
updates the format and binary data for the Sound object. In JADE thin client mode, this method by default attempts
to load the specified file from the presentation client.

The code fragment in the following example shows the use of the loadFromFile method.

beginTransaction;
create sound;
sound.loadFromFile("c:\jade\pics\heat.wav");
sound.play;

commitTransaction;

An exception is raised if this method is invoked from a server method. (For details about the processing of this
method when the application is running in JADE thin client mode, see the MultiMediaType class
usePresentationFileSystem property, earlier in this chapter.)

play
Signature play();

The play method of the Sound class plays the sound stream contained in the receiver Sound object. In JADE thin
client mode, this method always executes on the presentation client.

Encyclopaedia of Classes
(Volume 2)

Sound Class Chapter 1 723

EncycloSys2 - 2020.0.02

This method transfers the sound wave image from the receiver object to memory and creates a thread to play the
sound asynchronously, allowing control to be returned to the application as soon as the sound has started
playing. If the sound cannot be played, a message is logged in your JADE log file.

An exception is raised if this method is invoked from a server method.

See also the Application class playSound method, which plays the specified .wav file and returns when the
sound file has been played, or the playSoundAsync method, which starts playing the specified .wav file and
returns immediately.

Encyclopaedia of Classes
(Volume 2)

StringArray Class Chapter 1 724

EncycloSys2 - 2020.0.02

StringArray Class
The StringArray class is an ordered collection of String values with a length less than or equal to 15,999
characters. However, you can subclass the StringArray class and specify a different length for the strings in the
array.

The values are referenced by their position in the collection.

The bracket ([]) subscript operators enable you to assign values to and receive values from a String array.

Inherits From: Array

Inherited By: JadeIdentifierArray

Encyclopaedia of Classes
(Volume 2)

StringUtf8Array Class Chapter 1 725

EncycloSys2 - 2020.0.02

StringUtf8Array Class
The StringUtf8Array class is an ordered collection of StringUtf8 values with a length less than or equal to 8,000
UTF8 characters. However, you can subclass the StringUtf8Array class and specify a different length for the
UTF8 strings in the array.

The values are referenced by their position in the collection.

StringUtf8 arrays inherit the methods defined in the Array class.

The bracket ([]) subscript operators enable you to assign values to and receive values from a StringUtf8 array.

Inherits From: Array

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 726

EncycloSys2 - 2020.0.02

System Class
The System class defines the behavior of the JADE system. There is one instance only of the System class for
each JADE environment (installation).

For details about the properties and methods defined in the System class, see "System Properties" and "System
Methods", in the following subsections.

Inherits From: Object

Inherited By: (None)

System Properties
The properties defined in the System class are summarized in the following table.

Property Contains…

name The name of the system that is assigned internally by JADE

nodes All of the nodes currently attached to the system

name
Type: String[100]

The read-only name property of the System class contains an internally assigned name for the executing system.

nodes
Type: NodeDict

The read-only nodes property of the System class contains a reference to all of the nodes currently attached to
the system.

Caution Lock environmental object collections with extreme caution, as this can cause hold-ups when
processes sign off and on and when nodes initiate and terminate; for example, you should never use the foreach
instruction to iterate through an environmental object collection. Instead, create a transient clone of the collection
to iterate through.

The code fragment in the following example shows the use of the nodes property.

while size = system.nodes.size do
process.sleep(2000);

endwhile;

System Methods
The methods defined in the System class are summarized in the following table.

Method Description

activateDeltaDatabase Activate or deactivate delta database mode

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 727

EncycloSys2 - 2020.0.02

Method Description

beginIndividualRequestsLogging Starts sampling the individual remote requests of all processes in the
node

beginLockContentionStats Starts recording lock contentions for persistent objects

beginObjectTracking Starts recording in a file all reads and writes of persistent objects to the
database

beginSample Opens a new sampling context for each of the nodes in the sample
definition group and begins the accumulation of sampling statistics for
those nodes

beginSampleGroupDefinition Opens a new remote sampling context for a group of nodes

clearLockContentionStats Removes all existing lock contention data and restarts recording of lock
contentions

createSystemSequenceNumber Initializes a named system sequence number to a specified value

disableRemoteSampling Disables sampling of statistics on the specified node

dumpCharacterEntityTable Lists the supported character entity names and values

enableRemoteSampling Enables sampling of statistics on the specified node

endIndividualRequestsLogging Terminates the sampling of individual requests of all processes in
enabled nodes

endLockContentionStats Stops recording lock contentions and removes all lock contention data

endObjectTracking Ends recording in a file all reads and writes of persistent objects to the
database

endSample Terminates sampling of statistics on all currently enabled nodes and
releases the file

endSampleGroupDefinition Terminates the sampling context identified in the samplingHandle
parameter for the group of nodes

findCharacterEntityByName Locates the Unicode code point for a character entity

findCharacterEntityByNumber Locates the character entity for a Unicode code point

forceOffUser Forces (signs) a user off a process

getAllUsers Returns an array of all users in all nodes in the system

getClassAccessFrequencies Returns access counts for specified classes

getDatabaseRole Returns the database role of the server node on which the JADE system
is running

getDatabaseStats Returns statistics relating to persistent database activity

getDatabaseSubrole Returns the subrole of the server node on which the JADE system is
running

getDbDiskCacheStats Returns statistics relating to the persistent database disk cache

getDeltaDatabaseStatus Returns the delta database status

getEnvironmentServerIdentity Returns the environment and server identities

getLockContentionInfo Retrieves lock contention information for the specified object

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 728

EncycloSys2 - 2020.0.02

Method Description

getLockContentionStats Retrieves lock contention information

getLocks Fills an array with a specified number of instances of current locks in the
system

getMostAccessedClasses Returns access counts for the classes that have been most frequently
accessed

getNotes Fills an array with a specified number of instances of current notification
requests in the system

getObjectLockProcesses Populates the processes parameter with all processes that have locks
on the specified object

getObjectPartitionID Returns the identifier of the partition in which the specified object is
located

getQueuedLocks Fills an array with the specified number of instances of lock requests in
the system that are waiting for a locked object

getRequestStats Returns system statistics relating to requests carried out by the
database server node

getRpcServerStatistics Retrieves RPC statistics relating to activity between the database server
node and all client nodes

getStatistics Loads the specified Integer values with system statistics

getStatistics64 Loads the specified Integer64 values with system statistics

getSystemSequenceNumberNext Increments a specified system sequence number and returns the new
value

getTimeInTransactionState Returns the number of milliseconds a process is in transaction state

interruptUser Causes a conditional interruption of the specified process

isDatabaseEncryptionEnabled Specifies whether database encryption is enabled

isDbArchival Specifies whether database archival recovery is enabled for the JADE
system

isRemoteSamplingEnabled Specifies whether remote statistics sampling is enabled for the specified
node

isValidProcess Returns true if the process represents a signed-on application

logObjectCaches Specifies the object cache statistics for nodes enabled for sampling

logRequestStatistics Specifies the request statistics that are logged for all processes in
enabled nodes

logUserCommand Invokes the NodeSampleUserCommandCallBack entry point in the
user library

processDumpAllNodes Invokes process dumps of the database server node and all nodes
attached to it

queryLockContentionStats Retrieves information about the current recording of lock contentions

removeNode Forces (signs) off all users on the node from the system

sdsAuditEnableSecondaryApps When invoked on an SDS primary, restarts applications and enables
sign-on on an SDS secondary

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 729

EncycloSys2 - 2020.0.02

Method Description

verifyDbEncryptionMasterKey Specifies whether the database encryption master key is present and
correct

activateDeltaDatabase
Signature activateDeltaDatabase(activate: Boolean;

timeout: Integer): Boolean;

The activateDeltaDatabase method of the System class is used to perform one of the following actions.

Create a delta database and activate delta mode.

Deactivate delta mode and delete the delta database.

Use the activate parameter to specify whether the delta database is being activated (true) or deactivated (false).

Note The DeltaDatabaseCapable parameter in the [JadeServer] section of the JADE initialization file on the
database server node must be set to true for an activation request to succeed.

Use the timeout parameter to specify a maximum number of seconds to allow for deactivation to take place. A
default timeout of 60 seconds is used if the specified value is zero (0). The timeout parameter is ignored when the
activate parameter is set to true.

You cannot deactivate the delta database until all current processes apart from JADE tools (for example, the JADE
Monitor and the SDS Administration application) and the process making the request are idle. The deactivation
attempt is abandoned if this does not happen within the time specified in the timeout parameter, the delta
database remains activated, and system exception 1163 is raised.

The return value indicates the delta database status prior to the method call. If the delta database is active at the
time of the call, true is returned, or if it was inactive, false is returned.

The following code fragment is an example of activating a delta database.

system.activateDeltaDatabase(true, 0);

The following code fragment is an example of deactivating a delta database.

//Deactivate the Delta Database. Allow up to 2 minutes for deactivation.
system.activateDeltaDatabase(false, 120);

The following system exceptions can be raised from an activateDeltaDatabase method call.

1162 - The system is not delta database capable

This exception is raised if the database server node is not specified to be delta database-capable.

1163 - Could not change delta database mode because not all processes are idle

This exception is raised and the deactivation attempt is abandoned if a deactivation request cannot be
completed because not all applications have become idle within the time specified in the timeout parameter.

1165 - A delta database transition request is already in progress

This exception is raised if a deactivation or activation request is currently in progress.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 730

EncycloSys2 - 2020.0.02

beginIndividualRequestsLogging
Signature beginIndividualRequestsLogging(samplingHandle: Integer;

localRequests: Boolean;
remoteRequests: Boolean;
persistentCacheBuffers: Boolean;
transientCacheBuffers: Boolean;
remoteTransientCacheBuffers: Boolean;
userNumber: Integer;
userText: String);

The beginIndividualRequestsLogging method of the System class starts sampling individual requests or cache
activities, or both, of all processes in each of the remote nodes in the sample definition group and invokes the
NodeSampleIndividualRequestCallBack or the NodeSampleObjectBufferCallBack entry point, or both of these
entry points, in the user library specified in the libraryName parameter of the beginSample method.

The NodeSampleIntervalCallBack entry point is invoked once only before these entry points, with the eventType
parameter in the entry point set to 1.

The beginIndividualRequestsLogging method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the
beginSampleGroupDefinition method when sampling started

localRequests Logs individual requests to the database of the node

remoteRequests Logs individual requests to remote nodes

persistentCacheBuffers Logs activities in the persistent object cache

transientCacheBuffers Logs activities in the transient object cache

remoteTransientCacheBuffers Logs activities in the remote transient object cache

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

To enable the sampling of the statistics that you require, set the appropriate Boolean parameters to true.

The following code fragment shows an example of the beginIndividualRequestsLogging method and its
parameters.

system.beginIndividualRequestsLogging(samplingHandle, false, true, false,
false, false, 4, "Start logging of remote requests");

The JADE sampling libraries produce the following record types.

Begin process record (type 6)

BeginInterval record (type 11), containing your specified user number and text to the output file immediately,
followed by one IndividualRequest record for each of the subsequent remote requests or one cache buffer
activity record for each of the subsequent buffer cache activities, or both

Individual local request records (record type 14)

Individual remote request records (record type 10)

Cache buffer activity records (record type 2)

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 731

EncycloSys2 - 2020.0.02

For more details, see Chapter 4 of the JADE Object Manager Guide.

beginLockContentionStats
Signature beginLockContentionStats(tableSize: Integer);

The beginLockContentionStats method of the System class starts recording lock contentions for persistent
objects. A lock contention occurs when an attempt to lock a persistent object is queued because the object is
already locked.

After recording has been initiated, you can retrieve lock contention information using the getLockContentionStats
method of the System class. The endLockContentionStats method of the System class is used to stop the
recording of lock contentions.

The value of the tableSize parameter determines the maximum number of individual contended objects that can
be recorded. When the first contention for an object is noted, the object is added to the table of contentions,
provided the maximum table size has not been reached. If the table has reached the maximum size, contentions
for objects not found in the table are grouped together in a single entry identified by a null object identifier; that is,
the class number and instance number are both set to zero (0).

As a guideline, the size of each entry is approximately 40 bytes, so 25,000 entries would consume approximately
1M byte of memory.

Only one process at a time can control the recording of lock contentions. If a process executes the
beginLockContentionStats method when recording of lock contentions has already been initiated by another
process, an 1131 exception (Another process is currently in control of lock contention statistics) is raised.
However, processes other than the one that initiated lock contention recording can retrieve lock contention
information, but you should be aware that the information may be cleared or become unavailable at any time.

If the process that started to record lock contentions terminates without having called the
endLockContentionStats method to stop lock contention recording, the lock contention recording is automatically
ended.

beginObjectTracking
Signature beginObjectTracking(fileName: String);

The beginObjectTracking method of the System class starts recording, in a file (on the database server node)
specified by the fileName parameter, every persistent object read operation from the database or write operation
to the database. The information recorded distinguishes between read operations to get an object and read
operations to lock an object. For write operations, it also distinguishes between write operations to create an
object, write operations to delete an object, and write operations to update an object.

Note This does not necessarily record every time an application uses an object, because if the object resides in
the persistent object cache, it may not have to be fetched from the database.

Object tracking is terminated by using the endObjectTracking method defined in the System class.

The file is a standard text file. The first line is a header record and the last line is a trailer record. The lines in
between represent individual object accesses. In each line, fields are separated by spaces.

The format of the three types of records is similar to that used for node sampling files. The format of the header
record is shown in the following table.

For details, see "System::beginObjectTracking Method", in Chapter 4 of the JADE Object Manager Guide.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 732

EncycloSys2 - 2020.0.02

Only one object tracking session can be active at a time. If the beginObjectTracking method is called when object
tracking is already active, an 1138 exception (Object tracking is already active) is raised.

Caution Use this method with caution. When object tracking is active, the tracking file can fill very rapidly.
Object tracking should therefore be used in relatively short bursts.

beginSample
Signature beginSample(samplingHandle: Integer;

libraryName: String;
initializationParameter: String);

The beginSample method of the System class opens a new sampling context for each of the nodes in the sample
definition group, begins the accumulation of sampling statistics for those nodes, and invokes the following entry
points.

NodeSampleInfoCallBack, passing it the initializationParameter string and setting the eventType
parameter in the user library entry point to 1.

NodeSampleNodeInfoCallBack, passing it information about the local node and setting the eventType
parameter in the user library entry point to 1.

NodeSampleProcessInfoCallBack, invoked every time a process begins and once for every existing
process at the time sampling begins.

The samplingHandle parameter identifies the context that is sampled. (This is the identifier of the sampling
context, returned by the beginSampleGroupDefinition method when sampling started.)

When this method is called in your application, request statistics are stored in transient memory for every process
in the nodes in the group until they are passed to the corresponding entry point in the user library specified in the
libraryName parameter.

If you are using the filesmpl or tcpsmpl JADE sampling library, you can set the initializationParameter parameter
to "<null>" or to "" so that sample values will not be output. For filesmpl, the values will not be written to a file. For
tcpsmpl, the values will not be sent to a TCP/IP connection. Use this option in situations where node sampling
needs to be enabled for the Process class getRequestStatistics method but no file or TCP/IP output is wanted.
For more details, see "Direct Node Sampling", in Chapter 4 of the JADE Object Manager Guide.

The JADE-supplied library writes a begin process record (type 6) to the statistics file.

beginSampleGroupDefinition
Signature beginSampleGroupDefinition(): Integer;

The beginSampleGroupDefinition method of the System class opens a new remote sampling context for a group
of nodes. The nodes are included in the sampling context by using the System class enableRemoteSampling
method.

The beginSampleGroupDefinition method returns the sampling handle number used to identify the sampling
context that is opened. All subsequent methods use this sampling context handle as the first parameter, and they
are initially executed by the server node and sent to each of the nodes in the definition group by means of internal
notifications.

Any error condition at the individual node level is written to the JADE Object Manager message log file for that
node.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 733

EncycloSys2 - 2020.0.02

The following example shows the use of the beginSampleGroupDefinition method.

testManualSamplingFullInterval();
vars

cust : Customer;
samplingHandle : Integer;

begin
samplingHandle := system.beginSampleGroupDefinition;
system.beginSample("filesmpl", "c:\temp\fullInterval%p, txt");
system.logObjectCaches(samplingHandle, true, true, false, false,

false, false, 111, "cachesSampling");
system.beginIndividualRequestsLogging(samplingHandle, false, true, true,

true, false, 557, "fullInterval");
foreach cust in Customer.instances do

write cust.name;
endforeach;
system.endIndividualRequestsLogging(samplingHandle, 557,

"fullInterval");
system.endSample(samplingHandle);
system.endSampleGroupDefinition(samplingHandle);

end;

For more details, see Chapter 4 of the JADE Object Manager Guide.

clearLockContentionStats
Signature clearLockContentionStats();

The clearLockContentionStats method of the System class removes all existing lock contention data and
restarts recording of lock contentions. A lock contention occurs when an attempt to lock a persistent object is
queued or rejected because the object is already locked.

The lock contention table is cleared, but retains the same maximum size. Use this method for recording lock
contention activity over set periods without having to end and begin lock contention recording multiple times.

Only the process that started lock contention recording can use this method. If any other process attempts to use
this method, an exception is raised.

If lock contention recording is not active when this method is called, it has no effect.

createSystemSequenceNumber
Signature createSystemSequenceNumber(name: String;

initialValue: Integer64);

The createSystemSequenceNumber method of the System class creates a system sequence number with the
name specified by the value of the name parameter and a current value specified by the initialValue parameter. If
a system sequence number with the specified name already exists, the current value is not changed and no error
is reported. All access to the system sequence number table is single-threaded and is independent of process
transaction state.

If the value of the name parameter is null, it contains embedded null characters, or is longer than 60 characters, a
1454 (The SystemSequenceNumber name is invalid) exception is raised.

If the value of the initialValue parameter is less than zero (0), a 1455 (The SystemSequenceNumber initial value
cannot be negative) exception is raised. There is no restriction on the number of system sequence numbers you
can create.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 734

EncycloSys2 - 2020.0.02

Ensure that the initial value passed to the createSystemSequenceNumber method does not cause the
getSystemSequenceNumberNext method to return an already used number. If the
getSystemSequenceNumberNext method returns zero (0), determine the highest number that has been
assigned to an object stored in the database and call the createSystemSequenceNumber method passing that
value.

The following method returns the next available customer number, where the customer number is used as a key in
an exclusive MemberKeyDictionary collection owned by a Company object.

getNextCustomerNumber(): Integer64;
constants

SSN_CustomerNumber: String = "MySchema::CustomerNumber";
vars

nextNumber: Integer64;
coy: Company;
cust: Customer;

begin
nextNumber := system.getSystemSequenceNumberNext(SSN_CustomerNumber);
if nextNumber = 0 then

coy := Company.firstInstance();
if coy <> null then

cust := coy.allCustomersByNumber.last();
if cust <> null then

nextNumber := cust.number
endif;

endif;
system.createSystemSequenceNumber(SSN_CustomerNumber, nextNumber);
nextNumber := system.getSystemSequenceNumberNext(SSN_CustomerNumber);

endif;
return nextNumber;

end;

disableRemoteSampling
Signature disableRemoteSampling(samplingHandle: Integer;

n: Node);

The disableRemoteSampling method of the System class disables the sampling of statistics on the node
specified in the n parameter.

This method takes the specified node out of the sample definition group of the context identified by the
samplingHandle parameter. (The sampling handle is the identifier of the sampling context, returned by the
beginSampleGroupDefinition method when sampling started.)

The sampling for the context identified in the samplingHandle parameter is started by using the beginSample
method. For more details, see Chapter 4 of the JADE Object Manager Guide.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 735

EncycloSys2 - 2020.0.02

dumpCharacterEntityTable
Signature dumpCharacterEntityTable(): String;

The dumpCharacterEntityTable method of the System class returns a string that displays a table showing the
name, code point, and description of each supported character entity. Part of the output is shown in the following
lines.

nbsp 160 no-break space = non-breaking space
iexcl 161 inverted exclamation mark
cent 162 cent sign
...

For details about the use of character entities in UTF8 strings, see "StringUtf8 Type", in Chapter 1 of the JADE
Encyclopaedia of Primitive Types.

enableRemoteSampling
Signature enableRemoteSampling(samplingHandle: Integer;

n: Node);

The enableRemoteSampling method of the System class enables the sampling of statistics on the node
specified in the n parameter.

This method includes the node in the sampling group of the context identified in the samplingHandle parameter.
(The sampling handle is the identifier of the sampling context, returned by the beginSampleGroupDefinition
method when sampling started.)

Use the System class disableRemoteSampling method to disable the sampling of statistics on the specified
node (that is, take the specified node out of the sample definition group of the context identified in the
samplingHandle parameter).

For more details, see Chapter 4 of the JADE Object Manager Guide.

endIndividualRequestsLogging
Signature endIndividualRequestsLogging(samplingHandle: Integer;

userNumber: Integer;
userText: String);

The endIndividualRequestsLogging method of the System class terminates the sampling of individual requests
or cache activities started by the beginIndividualRequestsLogging method of the System class for each of the
nodes in the sample definition group and invokes the NodeSamplIntervalCallBack entry point with the
eventType parameter of the entry point set to 2.

The endIndividualRequestsLogging method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the beginSampleGroupDefinition method
when sampling started

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 736

EncycloSys2 - 2020.0.02

The following code fragment shows an example of the endIndividualRequestsLogging method and its
parameters.

system.endIndividualRequestsLogging(samplingHandle, 4, "End logging of
remote requests");

The JADE-supplied library writes an endInterval record (type 12) containing your specified user number and text
to the output file. For more details, see Chapter 4 of the JADE Object Manager Guide.

endLockContentionStats
Signature endLockContentionStats();

The endLockContentionStats method of the System class stops recording lock contentions for persistent objects
and removes all lock contention data.

Only the process that started lock contention recording can use this method. If any other process attempts to use
this method, an 1131 exception (Another process is currently in control of lock contention statistics) is raised.

If the process that started the recording of lock contentions terminates without having called
endLockContentionStats to stop lock contention recording, the lock contention recording is automatically ended.

endObjectTracking
Signature endObjectTracking();

The endObjectTracking method of the System class ends recording persistent object read operations from the
database or write operations to the database.

An object tracking session is started using the beginObjectTracking method defined in the System class. If the
endObjectTracking method is called when object tracking is not active, an 1139 exception (Object tracking is not
active) is raised.

endSample
Signature endSample(samplingHandle: Integer);

The endSample method of the System class terminates the sampling of statistics on each of the nodes in the
sample definition group for the context identified by the samplingHandle parameter and invokes the following
entry points.

NodeSampleNodeInfoCallBack, passing it information about the local node and setting the eventType
parameter in the user library entry point to 2.

NodeSampleInfoCallBack, which your user library should consider the last call for the node sampling
context.

The JADE-supplied library closes and releases the current sampling file, which you can then analyze.

You can produce multiple files during a node lifetime, by using the System class beginSample and endSample
methods, but you cannot sample statistics simultaneously on the same node.

For more details, see Chapter 4 of the JADE Object Manager Guide. (See also the System class
beginSampleGroupDefinition method, for details about the sampling handle.)

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 737

EncycloSys2 - 2020.0.02

endSampleGroupDefinition
Signature endSampleGroupDefinition(samplingHandle: Integer);

The endSampleGroupDefinition method of the System class terminates the sampling context identified in the
samplingHandle parameter for the group of nodes.

For more details, see Chapter 4 of the JADE Object Manager Guide. See also the System class
beginSampleGroupDefinition method, for details about the sampling handle.

findCharacterEntityByName
Signature findCharacterEntityByName(name: String;

number: Integer output;
description: String output): Boolean;

The findCharacterEntityByName method of the System class returns true if the name parameter corresponds to
a supported character entity name, and false otherwise.

If true is returned, the Unicode code point and a description for the character entity are returned in the output
parameters number and description, respectively.

The following code fragment shows an example of the findCharacterEntityByName method and its parameters.

vars
cp : Integer;
desc : String;

begin
write system.findCharacterEntityByName("euro",cp,desc); // "true"
write cp; // 8364
write desc; // "euro sign"

findCharacterEntityByNumber
Signature findCharacterEntityByNumber(number: Integer;

name: String output;
description: String output): Boolean;

The findCharacterEntityByNumber method of the System class returns true if the number parameter
corresponds to a supported character entity name, and false otherwise.

If this method returns true, the character entity name and description are returned in the output parameters name
and description, respectively.

The following code fragment shows an example of the findCharacterEntityByNumber method and its
parameters.

vars
ent : String;
desc : String;

begin
write system.findCharacterEntityByNumber(174,ent,desc); // "true"
write ent; // "reg"
write desc; // "registered sign = registered trade mark sign"

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 738

EncycloSys2 - 2020.0.02

forceOffUser
Signature forceOffUser(node: Node;

process: Process) serverExecution;

The forceOffUser method of the System class requests the system object to force a sign-off operation for a
specified process. The parameters of the forceOffUser method are listed in the following table.

Parameter Description

node Specifies the node to which the process belongs

process Specifies the process that is to be forced off

The following example shows the use of the forceOffUser method:

vars
 allNodes: NodeDict;
allProcesses: ProcessDict;
nod: Node;
proc: Process;

begin
allNodes := system.nodes.cloneSelf(true);
foreach nod in allNodes do

allProcesses := nod.processes.cloneSelf(true);
foreach proc in allProcesses do

if process.signOnUserCode = "John" then
system.forceOffUser(nod, proc);
return;

endif;
endforeach;
delete allProcesses;

endforeach;
return;

epilog
delete allNodes;
delete allProcesses;

end;

getAllUsers
Signature getAllUsers(): StringArray;

The getAllUsers method of the System class returns a reference to an array of all users on all nodes in the
system.

getClassAccessFrequencies
Signature getClassAccessFrequencies(clsNumArray: IntegerArray;

freqArray: Integer64Array input);

The getClassAccessFrequencies method of the System class returns access counts for specified classes. The
class numbers of these classes are added to the array specified by the clsNumArray parameter before the
method is called. The access counts for classes are held on the database server node, and are incremented every
time an instance of that class or one of its subobjects is written to the database or fetched from the database. Only
persistent object accesses are counted.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 739

EncycloSys2 - 2020.0.02

Notes If the enableClassAccessFrequencies method of the Process class has not been called to enable the
counting of accesses to classes an exception is raised.

The access counts do not directly indicate how many times applications have used objects. If an object resides in
the persistent object cache, it may not have to be fetched from the database when used. The access counts reflect
database activity, rather than application activity.

The access counts are returned as Integer64 values in the freqArray parameter, which is an instance of the
Integer64Array class, passed to this method. Each entry in the freqArray array contains information relating to
the class number specified by the entry with the same index in the clsNumArray array. If a class number is
invalid, the corresponding access count is set to zero (0). The freqArray array is cleared every time the method is
called.

The calling process is responsible for creating and deleting the two arrays used with this method.

The access counts are cumulative values, which do not get reset during the lifetime of the database server node,
are held as 64-bit unsigned integer values, and are added to the freqArray array object as Integer64 values. The
maximum value before they wrap around to negative values is therefore 2^63 - 1 (approximately 8 Exabytes).

When dealing with classes, retrieve the class number by using the number property of the Class class and find
the class with a specific number by using the getClassByNumber method of the Schema class.

The following example shows the use of the getClassAccessFrequencies method.

showClassAccessFrequencies();
vars

clsNumArray : IntegerArray;
freqArray : Integer64Array;
i : Integer;
cls : Class;

begin
create clsNumArray transient;
create freqArray transient;
foreach i in 2048 to 10000 do //check user classes

clsNumArray.add(i);
endforeach;
system.getClassAccessFrequencies(clsNumArray,freqArray);
foreach i in 1 to clsNumArray.size do

if freqArray[i] > 0 then
cls := currentSchema.getClassByNumber(clsNumArray[i]);
write "Schema " & cls.schema.name & " Class " & cls.name &

" accesses= " & freqArray[i].String;
endif;

endforeach;
epilog

delete clsNumArray;
delete freqArray;

end;

The output from the getClassAccessFrequencies method shown in the previous example is as follows.

Schema CompilerSchemaImport Class GCompilerSchemaImport accesses= 1
Schema CompilerSchema Class C1 accesses= 6
Schema CompilerSchema Class GCompilerSchema accesses= 1
Schema CompilerSchemaSub Class GCompilerSchemaSub accesses= 1
Schema CompilerSchema Class C2 accesses= 4

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 740

EncycloSys2 - 2020.0.02

Schema CompilerSchema Class C1Dict accesses= 2
Schema CompilerSchema Class C2Dict accesses= 4
Schema Martini Class GMartini accesses= 1
Schema Martini Class Root accesses= 1
Schema Martini Class SportsTeam accesses= 4
Schema CompilerVersioningTests Class GCompilerVersioningTests accesses= 1
Schema CompilerVersioningTests Class TestInfo accesses= 25

getDatabaseRole
Signature getDatabaseRole(): Integer;

The getDatabaseRole method of the System class returns an integer value that represents the database role of
the server node on which the JADE system is running.

Note The System class getDatabaseRole method is an alias for the JadeDatabaseAdmin class
sdsGetDatabaseRole method and it enables you to obtain the current database role for the JADE system in
which it is executing without having to create and then delete an instance of the JadeDatabaseAdmin class.

The returned value is one of the SDSDatabaseRoles category global constants listed in the following table.

Global Constant Integer Value

SDS_RolePrimary 1

SDS_RoleSecondary 2

SDS_RoleUndefined (returned when the method is invoked on a non-SDS-capable or
non-RPS-capable system)

0

getDatabaseStats
Signature getDatabaseStats(jdo: JadeDynamicObject input);

The getDatabaseStats method of the System class returns statistics relating to persistent database activity. The
values are returned as Integer64 properties in the dynamic object specified by the jdo parameter.

The returned values are cumulative Integer64 values representing counts of actions (fetching objects, updating
objects, opening files, and so on) that do not get reset during the lifetime of the database server node. JADE
applications that use the getDatabaseStats method defined in the System class therefore need to compare
values from one call to the next, to work out the value differences.

The calling process is responsible for creating and deleting the JadeDynamicObject instance.

For details about the properties returned in the dynamic object, see "System::getDatabaseStats Method", in
Chapter 4 of the JADE Object Manager Guide.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls.

If the dynamic object passed to the method already contains properties that do not match the properties to be
returned, the existing dynamic object properties are removed and replaced with the appropriate properties. This
method is most efficient when the properties match those to be returned.

The cumulative values are held as 64-bit unsigned integer values, and are copied to the dynamic object as
Integer64 values. The maximum value before they wrap around to negative values is therefore 2^63 - 1
(approximately 8 Exabytes).

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 741

EncycloSys2 - 2020.0.02

The following example shows the use of the getDatabaseStats method.

tryDbStats();
vars

jdo : JadeDynamicObject;
begin

create jdo transient;
system.getDatabaseStats(jdo);
write jdo.display;

epilog
delete jdo;

end;

The output from the getDatabaseStats method shown in the previous example is as follows.

---DatabaseStatistics(207)---
fileOpens = 30
fileCloses = 10
committedTrans = 13
abortedTrans = 0
checkPoints = 1
lastCheckPointDate = 14 May 2012
lastCheckPointTime = 15:40:39
lastCheckPointDuration = 1
maxCheckPointDuration = 1
avgCheckPointDuration = 1
editionGets = 190
objectGets = 17216
objectCreates = 23
objectUpdates = 34
objectDeletes = 0
dirtyReads = 0
osmReads = 0
priorEditionReads = 0
absentCollGets = 0
overflowDeleteGets = 0

getDatabaseSubrole
Signature getDatabaseSubrole(): Integer;

The getDatabaseSubrole method of the System class returns an integer value that represents the database
subrole of the server node on which the JADE system is running.

Note The System class getDatabaseSubrole method is an alias for the JadeDatabaseAdmin class
sdsGetDatabaseSubrole method and it enables you to obtain the current database subrole for the JADE system
in which it is executing without having to create and then delete an instance of the JadeDatabaseAdmin class.

The returned value is one of the SDSDatabaseRoles category global constants listed in the following table.

Global Constant Integer Value

SDS_RoleUndefined (returned when the method is invoked on a non-SDS-capable or
non-RPS-capable system)

0

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 742

EncycloSys2 - 2020.0.02

Global Constant Integer Value

SDS_SubroleNative 1

SDS_SubroleRelational 2

getDbDiskCacheStats
Signature getDbDiskCacheStats(jdo: JadeDynamicObject input);

The getDbDiskCacheStats method of the System class returns statistics relating to the persistent database
cache. The values are returned as Integer64 properties in the dynamic object specified by the jdo parameter. For
details about the properties returned in the dynamic object, see "System::getDbDiskCacheStats Method", in
Chapter 4 of the JADE Object Manager Guide. For further explanation of these values, refer to the JADE Monitor
knowledge base.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls.

If the dynamic object passed to the method already contains properties that do not match the properties to be
returned, the existing dynamic object properties are removed and replaced with the appropriate properties. This
method is most efficient when the properties match those to be returned.

The cumulative values are held as 64-bit unsigned integer values, and are copied to the dynamic object as
Integer64 values. The maximum value before they wrap around to negative values is therefore 2^63 - 1
(approximately 8 Exabytes).

The following example shows the use of the getDbDiskCacheStats method.

showDbDiskCacheStats();
vars

jdo : JadeDynamicObject;
begin

create jdo transient;
system.getDbDiskCacheStats(jdo);
write jdo.display;

epilog
delete jdo;

end;

The output from the showDbDiskCacheStats method shown in the previous example is as follows.

---DatabaseDiskCacheStatistics(210)---
cacheMisses = 21
gets = 8162
puts = 331
blockReads = 8
getsWithFetch = 0
putsWithFetch = 0
blocksFetched = 1258
blockReadsMultiple = 333
bufferReassigns = 0
bufferSteals = 0
maxHashCollisions = 0
maxConcFlushIos = 15
blockWrites = 4
blockWritesMultiple = 111

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 743

EncycloSys2 - 2020.0.02

getDeltaDatabaseStatus
Signature getDeltaDatabaseStatus(): Integer;

The getDeltaDatabaseStatus method of the System class returns the delta database status represented by an
Integer value listed in the following table.

Integer Value Description

0 The server node is not specified to be delta database-capable

1 Inactive

2 Active

3 Being activated (this value is not currently used)

4 Being deactivated

getEnvironmentServerIdentity
Signature getEnvironmentServerIdentity(): String;

The getEnvironmentServerIdentity method of the System class returns the environment and server identities; for
example:

24389438-15d7-e011-82f0-5ae520524153/24389438-15d7-e011-82f0-5ae520524153

getLockContentionInfo
Signature getLockContentionInfo(obj: Object;

lci: LockContentionInfo input;
startTime: TimeStamp output);

The getLockContentionInfo method of the System class returns lock contention information for a single object
specified by the obj parameter.

A lock contention occurs when an attempt to lock a persistent object is queued or rejected because the object is
already locked. The information is copied into attributes of the LockContentionInfo instance specified by the lci
parameter.

The calling process is responsible for creating and deleting the LockContentionInfo instance.

The startTime parameter is an output parameter that receives the date and time at which lock contention
recording was started or restarted.

For details about the information available in LockContentionInfo instances, see "LockContentionInfo Class", in
Chapter 4 of the JADE Object Manager Guide.

If there have been no lock contentions for the specified object, the values of the totalContentions, maxWaitTime,
and totalWaitTime attributes are set to zero (0).

If this method is called when lock contentions are not being recorded, the startTime parameter and information in
the LockContentionInfo instance are set to zero (0) values. The beginLockContentionStats and
endLockContentionStats methods are used to control recording of lock contentions.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 744

EncycloSys2 - 2020.0.02

getLockContentionStats
Signature getLockContentionStats(oa: ObjectArray input;

maxEntries: Integer;
minContentions: Integer;
startTime: TimeStamp output);

The getLockContentionStats method of the System class retrieves lock contention information.

A lock contention occurs when an attempt to lock a persistent object is queued or rejected because the object is
already locked. The information includes the number of lock contentions for individual objects, and the average
and maximum times spent waiting to acquire a lock on each individual object.

Information is returned in transient instances of the LockContentionInfo class, added to the transient ObjectArray
instance specified by the oa parameter.

The value of the maxEntries parameter specifies the maximum number of entries to be returned. Returned entries
are added to the array in no particular order. When the maxEntries limit is reached, no more entries are added.

The value of the minContentions parameter specifies the minimum number of contentions for entries to be
returned. Only entries with contention counts greater than or equal to the specified minimum are returned.

The startTime parameter is an output parameter that is set to the time when the lock contention recording was
started or restarted. This enables you to calculate the number of contentions per second.

The calling method is responsible for creating and deleting the transient ObjectArray instance and for deleting
LockContentionInfo instances in the array (for example, by using the purge method on the ObjectArray instance
before deleting it).

When the method is called, any existing LockContentionInfo instances in the array are not removed. New
LockContentionInfo instances are added to the end of the array.

If lock contentions are not being recorded when this method is called, no entries are added to the ObjectArray
instance. You can use the queryLockContentionStats method of the System class to determine if lock
contentions are currently being recorded.

For details about the information available in LockContentionInfo instances, see "LockContentionInfo Class", in
Chapter 4 of the JADE Object Manager Guide.

Note A LockContentionInfo instance with a null object reference for the target value indicates that it holds
combined information for all contentions that occurred on objects that could not be included in the table because
the maximum table size had been reached.

getLocks
Signature getLocks(locks: LockArray input;

maxEntries: Integer);

The getLocks method of the System class populates the array specified in the locks parameter with transient
instances of the current persistent object locks held by all the processes in the system.

The parameters of the getLocks method are listed in the following table.

Parameter Specifies the …

locks Locks array that is to be populated with the lock instances

maxEntries Maximum number of lock instances that are to be included in the array

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 745

EncycloSys2 - 2020.0.02

The following example shows the use of the getLocks method:

vars
lock : Lock;
lockArray : LockArray;

begin
create lockArray transient;
system.getLocks(lockArray, 40);

foreach lock in lockArray do //access the lock entry properties
write lock.requestedBy.String;
write lock.target.String;

endforeach;
epilog

lockArray.purge;
delete lockArray;

end;

getMostAccessedClasses
Signature getMostAccessedClasses(clsNumArray: IntegerArray input;

freqArray: Integer64Array input;
maxWanted: Integer);

The getMostAccessedClasses method of the System class returns access counts for the classes that have been
most frequently accessed since the database server node was initialized.

The access counts for classes are held on the database server node and are incremented every time an instance
of that class or one of its subobjects is written to the database or fetched from the database. Only persistent object
accesses are counted.

Note The access counts do not indicate how many times applications have used objects. If an object resides in
the persistent object cache, it may not have to be fetched from the database when used. The access counts reflect
database activity, rather than application activity.

The information is returned in a pair of arrays. The clsNumArray array contains a set of class numbers, and the
freqArray array contains a matching set of access counts. Each entry in the freqArray array corresponds to the
entry with the same index in the clsNumArray array.

The entries in the array are sorted in descending order of access count; that is, the class with the highest access
count is the first array member, the class with the second highest access count is second, and so on.

The maxWanted parameter specifies the maximum number of entries to be placed in the arrays.

The calling process is responsible for creating and deleting the clsNumArray array and the freqArray array.

When the getMostAccessedClasses method is called, the arrays passed as parameters are cleared of all
entries.

The access counts are cumulative values, which do not get reset during the lifetime of the database server node,
are held as 64-bit unsigned integer values and added to the freqArray array object as Integer64 values. The
maximum value before they wrap around to negative values is therefore 2^63 - 1 (approximately 8 Exabytes).

When dealing with classes, the class that has a particular number can be found using the getClassByNumber
method of the Schema class.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 746

EncycloSys2 - 2020.0.02

The following example shows the use of the getMostAccessedClasses method.

showMostAccessedClasses();
vars

clsNumArray: IntegerArray;
freqArray: Integer64Array;
ix : Integer;
cls : Class;

begin
create clsNumArray transient;
create freqArray transient;
system.getMostAccessedClasses(clsNumArray, freqArray, 1000);
foreach ix in 1 to clsNumArray.size do

if clsNumArray[ix] > 2047 then //only show user classes
cls := currentSchema.getClassByNumber(clsNumArray[ix]);
write "Schema " & cls.schema.name & " Class " & cls.name

& " Accesses=" & freqArray[ix].String;
endif;

endforeach;
epilog

delete clsNumArray;
delete freqArray;

end;

The output from the getMostAccessedClasses method shown in the previous example is as follows.

Schema CompilerVersioningTests Class TestInfo Accesses=25
Schema CompilerSchema Class C1 Accesses=6
Schema CompilerSchema Class C2 Accesses=4
Schema CompilerSchema Class C2Dict Accesses=4
Schema Martini Class SportsTeam Accesses=4
Schema CompilerSchema Class C1Dict Accesses=2
Schema CompilerSchemaImport Class GCompilerSchemaImport Accesses=1
Schema CompilerSchema Class GCompilerSchema Accesses=1
Schema CompilerSchemaSub Class GCompilerSchemaSub Accesses=1
Schema Martini Class GMartini Accesses=1
Schema Martini Class Root Accesses=1
Schema CompilerVersioningTests Class GCompilerVersioningTests Accesses=1

getNotes
Signature getNotes(notes: NotificationArray input;

transients: Boolean;
maxEntries: Integer);

The getNotes method of the System class populates the array specified in the notes parameter with transient
instances of the current notification requests by all the processes in the system.

The parameters of the getNotes method are listed in the following table.

Parameter Specifies…

notes The notifications array that is to be populated with the notification instances.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 747

EncycloSys2 - 2020.0.02

Parameter Specifies…

transients Whether the notifications to be reported correspond to target transient objects corresponding
to this node (true) or to target persistent objects corresponding to all the nodes in the system
(false).

maxEntries The maximum number of notification instances to include in the array.

Note As this method creates transient instances of the Notification class, it is the responsibility of the method
caller to purge the collection used by the method to delete these transient instances. The collection should be
purged before the deletion of the notification array passed to the method in the notes parameter.

The following examples show the use of the getNotes method.

vars
note : Notification;
notificationArray : NotificationArray;

begin
create notificationArray transient;
system.getNotes(notificationArray, true, 100);

foreach note in notificationArray do
//access the notification entry properties
write note.target.String;
// now check subscriber class is valid for the user
if app.isValidObject(note.subscriber) then

write note.subscriber.String;
endif;

endforeach;
epilog

notificationArray.purge;
delete notificationArray;

end;

vars
notificationArray : NotificationArray;

begin
create notificationArray transient;
system.getNotes(notificationArray, true, 32000);
write notificationArray.size.String & ' transient notifications';
notificationArray.clear;
system.getNotes(notificationArray, false, 32000);
write notificationArray.size.String & ' persistent notifications';

epilog
notificationArray.purge;
delete notificationArray;

end;

getObjectLockProcesses
Signature getObjectLockProcesses(locktarget: Object;

processes: ProcessDict input;
maxEntries: Integer);

The getObjectLockProcesses method of the System class populates the dictionary specified in the processes
parameter with all processes that have locks on the object referenced by the locktarget parameter.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 748

EncycloSys2 - 2020.0.02

The parameters of the getObjectLockProcesses method are listed in the following table.

Parameter Description

locktarget Specifies the object whose locks are to be obtained.

processes Specifies the process dictionary that is to be populated with processes that have locks on the
object referenced by the locktarget parameter.

maxEntries Specifies the maximum number of object lock process instances to include in the dictionary.

The following example shows the use of the getObjectLockProcesses method.

vars
proc : Process;
processDict : ProcessDict;
s : String;

begin
app.sharedLock(global);
create processDict transient;
system.getObjectLockProcesses(global, processDict, 10);
foreach proc in processDict do

write proc;
endforeach;

epilog
delete processDict;

end;

getObjectPartitionID
Signature getObjectPartitionID(object: Object): Integer64;

The getObjectPartitionID method of the System class returns the identifier of the database file partition in which
the object specified in the object parameter is located. (See also the moveToPartition method of the Object
class.)

getQueuedLocks
Signature getQueuedLocks(locks: LockArray input;

maxEntries: Integer);

The getQueuedLocks method of the System class is similar to the getObjectLockProcesses and getLocks
methods, but it includes only the lock requests that are waiting for objects to be unlocked by the processes that
currently have them locked.

The value of the maxEntries parameter specifies the maximum number of entries to be inserted into the array
specified by the locks parameter. Entries are inserted in no particular order.

The following example shows the use of the getQueuedLocks method.

vars
lock : Lock;
lockArray : LockArray;

begin
create lockArray transient;
system.getQueuedLocks(lockArray, 40);
foreach lock in lockArray do //access the lock entry properties

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 749

EncycloSys2 - 2020.0.02

write lock.requestedBy.String;
write lock.elapsedTime.String;
write lock.waitTime.String;

endforeach;
epilog

lockArray.purge;
delete lockArray;

end;

Lock objects returned in the locks parameter can have lock entries in the array that have the Lock class
lockedBy property set to null if the lock request is still waiting to be processed in the lock queue.

When this occurs, the process that caused the lock request to be queued has already released it but because of
high activity on the executing node, the lock request has not been retried.

getRequestStats
Signature getRequestStats(jdo: JadeDynamicObject input);

The getRequestStats method of the System class returns system statistics relating to requests carried out by the
database server node. The values are returned as Integer64 properties in the dynamic object specified by the jdo
parameter.

The system statistics are held on the database server node. For details about the properties returned in the
dynamic object, see "System Request Statistics Method" in Chapter 4 of the JADE Object Manager Guide.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls.

If the dynamic object passed to the method already contains properties that do not match the properties to be
returned, the existing dynamic object properties are removed and replaced with the appropriate properties. This
method is most efficient when the properties match those to be returned.

The cumulative values are held as 64-bit unsigned integer values, and are copied to the dynamic object as
Integer64 values. The maximum value before they wrap around to negative values is therefore 2^63 - 1
(approximately 8 Exabytes).

The following example shows the use of the getRequestStats method.

showSystemRequestStats();
vars

jdo : JadeDynamicObject;
begin

create jdo transient;
system.getRequestStats(jdo);
write jdo.display;

epilog
delete jdo;

end;

The output from the getRequestStats method shown in the previous example is as follows.

---SystemStatistics(105)---
committedTransactions = 114
abortedTransactions = 0
getObjects = 41561
queuedLocks = 0

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 750

EncycloSys2 - 2020.0.02

createObjects = 433
deleteObjects = 160
updateObjects = 703
lockObjects = 22444
unlockObjects = 12310
beginNotifications = 686
endNotifications = 33
deliveredNotifications = 169
serverMethodExecutions = 0
totalLockQueueWaitTime = 0
causeEvents = 70

getRpcServerStatistics
Signature getRpcServerStatistics(jdo: JadeDynamicObject input

detailed: Boolean);

The getRpcServerStatistics method of the System class RPC statistics relating to activity between the database
server node and all client nodes. The values returned represent information about the connection between client
nodes and the database server, and totals for requests received and replies sent. The values are returned as
Integer64 properties in the dynamic object specified by the jdo parameter.

The calling process is responsible for creating and deleting the JadeDynamicObject instance.

The detailed parameter specifies whether the values returned should be combined for all requests, or individual
totals for each request type.

For details about the attributes returned in the dynamic object properties, see "System::getRpcServerStatistics
Method", in Chapter 4 of the JADE Object Manager Guide.

The calling process is responsible for creating and deleting the JadeDynamicObject instance. Properties are
added to the object when the method is first called. The object can then be used in subsequent calls.

If the dynamic object passed to the method already contains properties that do not match the properties to be
returned, the existing dynamic object properties are removed and replaced with the appropriate properties. This
method is most efficient when the properties match those to be returned.

The cumulative values are held as 64-bit unsigned integer values, and are copied to the dynamic object as
Integer64 values. The maximum value before they wrap around to negative values is therefore 2^63 - 1
(approximately 8 Exabytes).

The following example shows the use of the getRpcServerStatistics method.

showRpcServerStats();
vars

jdo : JadeDynamicObject;
begin

create jdo transient;
system.getRpcServerStatistics(jdo, false);
write jdo.display;

epilog
delete jdo;

end;

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 751

EncycloSys2 - 2020.0.02

The output from the getRpcServerStatistics method shown in the previous example is as follows.

---RPCServerStatistics(106)---
timeStarted = 27 April 2007, 12:31:14
connectionType = 0
lastInboundRequest = 27 April 2007, 14:31:32
requestsFromClients = 22551
repliesToClients = 22550
requestPacketsFromClients = 22551
replyPacketsToClients = 22550
requestBytesFromClients = 3475340
replyBytesToClients = 9598785
requestsToClients = 31
repliesFromClients = 31
requestPacketsToClients = 31
replyPacketsFromClients = 31
requestBytesToClients = 35313
replyBytesFromClients = 16665
notificationPacketsToClients = 0
notificationBytesToClients = 0

getStatistics
Signature getStatistics(committedTransactions: Integer output;

abortedTransactions: Integer output;
getObjects: Integer output;
queuedLocks: Integer output;
createObjects: Integer output;
deleteObjects: Integer output;
updateObjects: Integer output;
lockObjects: Integer output;
unlockObjects: Integer output;
beginNotifications: Integer output;
endNotifications: Integer output;
deliveredNotifications: Integer output;
serverMethodExecutions: Integer output);

The getStatistics method of the System class loads the values of all the specified parameters with the
corresponding system statistics.

Note This method raises exception 1406 if any of the statistic values exceed Max_Integer (this can happen if
your JADE system has been up for a long time; that is, the actual number of operations exceeds Max_Integer).

The parameters for the getStatistics method are listed in the following table.

Parameter Obtains the number of…

committedTransactions Committed transactions

abortedTransactions Aborted transactions

getObjects getObject operations performed

queuedLocks queuedLock operations performed

createObjects createObject operations performed

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 752

EncycloSys2 - 2020.0.02

Parameter Obtains the number of…

deleteObjects deleteObject operations performed

updateObjects updateObject operations performed

lockObjects lockObject operations performed

unlockObjects unlockObject operations performed

beginNotifications beginNotification operations performed

endNotifications endNotification operations performed

deliveredNotifications Notifications that were sent

serverMethodExecutions Methods executed in the server node operations

The following example shows the use of the getStatistics method.

vars
committedTransactions : Integer;
abortedTransactions : Integer;
getObjects : Integer;
queuedLocks : Integer;
createObjects : Integer;
deleteObjects : Integer;
updateObjects : Integer;
lockObjects : Integer;
unlockObjects : Integer;
beginNotifications : Integer;
endNotifications : Integer;
deliveredNotifications : Integer;
serverMethodExecutions : Integer;

begin
system.getStatistics(committedTransactions,

abortedTransactions,
getObjects,
queuedLocks,
createObjects,
deleteObjects,
updateObjects,
lockObjects,
unlockObjects,
beginNotifications,
endNotifications,
deliveredNotifications,
serverMethodExecutions);

end;

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 753

EncycloSys2 - 2020.0.02

getStatistics64
Signature getStatistics64(committedTransactions: Integer64 output;

abortedTransactions: Integer64 output;
getObjects: Integer64 output;
queuedLocks: Integer64 output;
createObjects: Integer64 output;
deleteObjects: Integer64 output;
updateObjects: Integer64 output;
lockObjects: Integer64 output;
unlockObjects: Integer64 output;
beginNotifications: Integer64 output;
endNotifications: Integer64 output;
deliveredNotifications: Integer64 output;
serverMethodExecutions: Integer64 output);

The getStatistics64 method of the System class loads the values of all the specified parameters with the
corresponding system statistics.

The parameters for the getStatistics64 method are listed in the following table.

Parameter Obtains the number of…

committedTransactions Committed transactions

abortedTransactions Aborted transactions

getObjects getObject operations performed

queuedLocks queuedLock operations performed

createObjects createObject operations performed

deleteObjects deleteObject operations performed

updateObjects updateObject operations performed

lockObjects lockObject operations performed

unlockObjects unlockObject operations performed

beginNotifications beginNotification operations performed

endNotifications endNotification operations performed

deliveredNotifications Notifications that were sent

serverMethodExecutions Methods executed in the server node operations

The following example shows the use of the getStatistics method.

vars
committedTransactions : Integer64;
abortedTransactions : Integer64;
getObjects : Integer64;
queuedLocks : Integer64;
createObjects : Integer64;
deleteObjects : Integer64;
updateObjects : Integer64;
lockObjects : Integer64;
unlockObjects : Integer64;

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 754

EncycloSys2 - 2020.0.02

beginNotifications : Integer64;
endNotifications : Integer64;
deliveredNotifications : Integer64;
serverMethodExecutions : Integer64;

begin
system.getStatistics64(committedTransactions,

abortedTransactions,
getObjects,
queuedLocks,
createObjects,
deleteObjects,
updateObjects,
lockObjects,
unlockObjects,
beginNotifications,
endNotifications,
deliveredNotifications,
serverMethodExecutions);

end;

getSystemSequenceNumberNext
Signature getSystemSequenceNumberNext(name: String): Integer64;

The getSystemSequenceNumberNext method of the System class increments the current value of the system-
sequence-number specified by the name parameter and returns the new value. The range of numbers returned is
1 through Max_Integer64, unless the system sequence number has not been created when the method returns
zero (0).

Note The sequence number should be initialized on system startup, by using the
createSystemSequenceNumber method.

If the method returns Max_Integer64 for the specified system sequence number, all subsequent calls for that
system sequence number raise a 1456 (The SystemSequenceNumber has reached the maximum value (Max_
Integer64)) exception. All access to the system sequence number table is single-threaded and is independent of
process transaction state.

Ensure that the initial value passed to the createSystemSequenceNumber method does not cause the
getSystemSequenceNumberNext method to return an already used number.

If the getSystemSequenceNumberNext method returns zero (0), determine the highest number that has been
assigned to an object stored in the database and call the createSystemSequenceNumber method passing that
value.

If an object obtains a sequence number but the object is not persisted because the transaction is aborted, there
will be a gap in the stored number sequence.

The following method returns the next available customer number, where the customer number is used as a key in
an exclusive MemberKeyDictionary collection owned by a Company object.

getNextCustomerNumber(): Integer64;
constants

SSN_CustomerNumber :String = "MySchema::CustomerNumber";
vars

nextNumber : Integer64;
coy : Company;

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 755

EncycloSys2 - 2020.0.02

cust : Customer;
begin

nextNumber := system.getSystemSequenceNumberNext(SSN_CustomerNumber);
if nextNumber = 0 then

coy := Company.firstInstance();
if coy <> null then

cust := coy.allCustomersByNumber.last();
if cust <> null then

nextNumber := cust.number
endif;

endif;
system.createSystemSequenceNumber(SSN_CustomerNumber, nextNumber);
nextNumber := system.getSystemSequenceNumberNext(SSN_CustomerNumber);

endif;
return nextNumber;

end;

getTimeInTransactionState
Signature getTimeInTransactionState(p: Process): Integer;

The getTimeInTransactionState method of the System class returns the number of milliseconds that a process is
in transaction state.

Note This method applies only to persistent transactions.

interruptUser
Signature interruptUser(node: Node;

process: Process) serverExecution;

The interruptUser method of the System class causes a conditional interruption of a specified process. The
parameters for the interruptUser method are listed in the following table.

Parameter Specifies the…

node Node to which the process belongs

process Process that is to be interrupted

The target process, when interrupted, receives a continuable user interrupted execution-type exception.

The following example shows the use of the interruptUser method.

vars
allNodes: NodeDict;
allProcesses: ProcessDict;
nod: Node;
proc: Process;

begin
allNodes := system.nodes.cloneSelf(true);
foreach nod in allNodes do

allProcesses := nod.processes.cloneSelf(true);
foreach proc in allProcesses do

if process.signOnUserCode = "Wilbur" then

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 756

EncycloSys2 - 2020.0.02

system.interruptUser(nod, process);
return;

endif;
endforeach;
delete allProcesses;

endforeach;
return;

epilog
delete allNodes;
delete allProcesses;

end;

The following example shows the handling of a conditional interrupt in an exception handler.

vars
begin

if exObj.continuable then
if allowInterrupt then

return Ex_Abort_Action;
endif;
return Ex_Continue;

endif;
end;

isDatabaseEncryptionEnabled
Signature isDatabaseEncryptionEnabled(): Boolean;

The isDatabaseEncryptionEnabled method of the System class returns true if the database encryption is
enabled; otherwise it returns false.

isDbArchival
Signature isDbArchival(): Boolean;

The isDbArchival method of the System class returns true if database archival recovery is enabled for the server
node on which the JADE system is running.

isRemoteSamplingEnabled
Signature isRemoteSamplingEnabled(samplingHandle: Integer;

n: Node): Boolean;

The isRemoteSamplingEnabled method of the System class returns true if the node specified in the n parameter
is included in the sample definition group identified in the samplingHandle parameter.

The sampling for the context identified in the samplingHandle parameter is started by using the beginSample
method. For details, see Chapter 4 of the JADE Object Manager Guide. See also the System class
beginSampleGroupDefinition method, for details about the sampling handle.

isValidProcess
Signature isValidProcess(process: Process): Boolean;

The isValidProcess method of the System class returns true if the process specified by the process parameter
represents a signed-on application.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 757

EncycloSys2 - 2020.0.02

A Process instance without a corresponding signed-on application can exist under certain circumstances; for
example, if an error occurs during process sign off that prevents the Process instance from being deleted. This
method can be used to identify these zombie Process instances.

When a zombie process is encountered in a monitor operation, the instance is deleted; for example, an interrupt
or force off user, call stack request, and so on.

logObjectCaches
Signature logObjectCaches(samplingHandle: Integer;

persistentCacheStats: Boolean;
persistentCacheBuffers: Boolean;
transientCacheStats: Boolean;
transientCacheBuffers: Boolean;
remoteTransientCacheStats: Boolean;
remoteTransientCacheBuffers: Boolean;
userNumber: Integer;
userText: String);

The logObjectCaches method of the System class specifies the object cache statistics that are logged by
invoking the NodeSampleCacheInfoCallBack or the NodeSampleObjectBuffer entry point, or both of these entry
points, in the user library for each of the nodes in the sample definition group.

The JADE-supplied library logs the statistics to the file specified in the initializationParameter parameter of the
System class beginSample method and writes the following statistics to your output file on each node in the
group.

Cache header record (type 1) for cache statistics

Cache buffer records (type 2) for individual object buffers

The logObjectCaches method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the
beginSampleGroupDefinition method when sampling started

persistentCacheStats Logs statistics of the persistent objects cache

persistentCacheBuffers Logs statistics of the persistent object cache buffers

transientCacheStats Logs statistics of the transient objects cache

transientCacheBuffers Logs statistics of the transient object cache buffers

remoteTransientCacheStats Logs statistics of the remote transient objects cache

remoteTransientCacheBuffers Logs activities in the remote transient object cache buffers

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

To enable the logging of the cache statistics that you require, set the appropriate Boolean cache parameters to
true. The following code fragment shows an example of the logObjectCaches method and its parameters.

system.logObjectCaches(samplingHandle, true, true, false, false, false,
false, 50, "After the load data operation");

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 758

EncycloSys2 - 2020.0.02

All buffers containing non-shared transient objects are listed when node sampling snapshots are requested. For
details, see "Statistics File Format", in Chapter 4 of the JADE Object Manager Guide.

logRequestStatistics
Signature logRequestStatistics(samplingHandle: Integer;

local: Boolean;
remote: Boolean;
userNumber: Integer;
userText: String);

The logRequestStatistics method of the System class specifies the request statistics that are logged for all
processes in each of the nodes in the sample definition group, by invoking the
NodeSampleRequestStatisticsCallBack entry point in the user library.

The JADE-supplied library automatically writes the following statistics.

Local request statistics record (type 8)

Remote request statistics record (type 9)

The logRequestStatistics method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the beginSampleGroupDefinition method
when sampling started

local Logs statistics of all requests invoked on the local node

remote Logs statistics of all requests from the local node to remote nodes

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

To enable the logging of the request statistics that you require, set the appropriate Boolean cache parameters to
true.

The user number and text values specified in the userNumber and userText parameters are written in the
corresponding records.

The following code fragment shows an example of the logRequestStatistics method and its parameters.

system.logRequestStatistics(samplingHandle, true, true, 23, "Before
method m1");

For details, see "Statistics File Format", in Chapter 4 of the JADE Object Manager Guide.

logUserCommand
Signature logUserCommand(samplingHandle: Integer;

command: String;
userNumber: Integer;
userText: String);

The logUserCommand method of the System class causes the invocation of the
NodeSampleUserCommandCallBack entry point in the user library for each of the nodes in the sample definition
group, passing the command parameter to it.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 759

EncycloSys2 - 2020.0.02

The logUserCommand method parameters are listed in the following table.

Parameter Description

samplingHandle Identifies the sampling context returned by the beginSampleGroupDefinition method
when sampling started

command Action specific to your user library (for example, the JADE-supplied library uses this
command for filtering)

userNumber Identifies the sample in the corresponding user library invocations

userText In conjunction with the userNumber parameter, identifies the sample

The JADE supplied library automatically writes the user command (type 13).

For details, see "JADE Sampling Libraries" and "Statistics File Format", in Chapter 4 of the JADE Object Manager
Guide.

processDumpAllNodes
Signature processDumpAllNodes();

The processDumpAllNodes method of the System class invokes a near-simultaneous process dump of all
nodes attached to a database server and the database server node itself.

queryLockContentionStats
Signature queryLockContentionStats(active: Boolean output;

startingProc: Process output;
maxEntries: Integer output;
startTime: TimeStamp output);

The queryLockContentionStats method of the System class retrieves information about the current recording of
lock contentions.

A lock contention occurs when an attempt to lock a persistent object is queued or rejected because the object is
already locked. For details about the information returned in the output parameters, see
"System::queryLockContentionStats Method", in Chapter 4 of the JADE Object Manager Guide.

Note The recording of lock contentions is under the control of the process that initiated the recording; that is,
only that process can stop or restart recording of lock contentions. Although any process can use the
queryLockContentionStats method, it should be assume that recording can stop or restart at any time, if it is not
the process that started the recording.

removeNode
Signature removeNode(node: Node) serverExecution;

The removeNode method of the System class requests the system object to force a sign-off operation of all users
on the node specified in the node parameter.

Encyclopaedia of Classes
(Volume 2)

System Class Chapter 1 760

EncycloSys2 - 2020.0.02

sdsAuditEnableSecondaryApps
Signature sdsAuditEnableSecondaryApps();

The sdsAuditEnableSecondaryApps method of the System class is intended for execution on a JADE
Synchronized Database Service (SDS) primary system. It writes an audit record into the journal that, when
replayed on the secondary, starts server applications and enables user sign-on.

It is typically used after a number of schema loads that have changed class definitions but have not required the
schema to be versioned. In such cases, applications are stopped on the secondary system to prevent outdated
class definitions being used.

Where there is no transition phase to identify the end of the sequence of schema loads, that point can be identified
by executing the sdsAuditEnableSecondaryApps method on the primary system.

verifyDbEncryptionMasterKey
Signature verifyDbEncryptionMasterKey(): Boolean;

The verifyDbEncryptionMasterKey method of the System class specifies whether the database encryption
master key is present and correct; otherwise it returns false.

Encyclopaedia of Classes
(Volume 2)

SystemException Class Chapter 1 761

EncycloSys2 - 2020.0.02

SystemException Class
The SystemException class is the superclass of all exceptions relating to errors detected by the JADE kernel.

Inherits From: NormalException

Inherited By: DeadlockException, IntegrityViolation, LockException, NotificationException

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 762

EncycloSys2 - 2020.0.02

TcpIpConnection Class
The TcpIpConnection class implements the interface defined by the Connection class specifically for the
Transmission Control Protocol / Internet Protocol (TCP/IP) API. The TcpIpConnection class supports both
synchronous and asynchronous operations. Asynchronous methods have a receiver object and a message
(method name) specified as parameters. When the method completes, the specified (callback) method of the
object is called. The callback method must match the signature required by the calling asynchronous method.

Only one synchronous operation can be performed at one time. Only one synchronous or asynchronous read
operation can be performed at one time on a connection. Many asynchronous write operations can be performed
at the same time on one connection.

Notes As you can create a TcpIpConnection object as a shared transient object, you can pass it to another
JADE process on the same JADE node, if required. Shared transient TCP/IP connection objects enable you to
create a communicator application that passes on messages to worker threads and to share connections between
processes so that a new connection can be passed on to a worker application. Ensure that you are in shared
transient transaction state before you create or delete a TcpIpConnection object, by setting the port property or
the Connection class name property.

The Connection class name property for a TcpIpConnection object may be set to a valid IP address.

For details about the constants, properties, and methods defined in the TcpIpConnection class, see
"TcpIpConnection Constants", "TcpIpConnection Properties", and "TcpIpConnection Methods", in the following
subsections.

Inherits From: Connection

Inherited By: JadeInternetTCPIPConnection

TcpIpConnection Class Constants
The constants provided by the TcpIpConnection class are listed in the following table.

Constant Integer Value Constant Integer Value

ProtocolFamilyTcpIPAny -1 ProtocolFamilyTcpIPv4 0

ProtocolFamilyTcpIPv6 1

TcpIpConnection Properties
The properties defined in the TcpIpConnection class are summarized in the following table.

Property Description

authenticationLibrary Contains the name of the library that contains the authentication method

cryptLibrary Contains the name of the library that contains the encryption and decryption
methods

decryptMethod Contains the name of the decryption method in the encryption and decryption
library

encryptMethod Contains the name of the encryption method in the encryption and decryption
library

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 763

EncycloSys2 - 2020.0.02

Property Description

genAuthChallengeMethod Contains the name of the method used to generate the authentication
challenge

genAuthResponseMethod Contains the name of the method used to generate the response from the
authentication challenge

localInterface Contains the interface name or IP address of a local network interface

localIpAddress Contains the local IP address

localPort Contains the local service port

networkProxy Contains a reference to the object identifier (oid) of the proxy in the
TcpIpConnection class object

port Contains the target service port or listen port

protocolFamily Contains the protocol used by the connection

remoteIpAddress Contains the remote host IP address

remoteName Contains the remote host name

remotePort Contains the port number used on the remote node

resolveRemoteName Specifies whether the remote host name is to be located

usePresentationClient Specifies whether the connection is opened on the thin client or application
server

sslContext Causes the core network facilities to use SSL instead of TCP/IP when a
connection is active

userObject Contains an object to associate with any TCP/IP connection

verifyAuthResponseMethod Contains the name of the method used to verify the response to the
authentication challenge

authenticationLibrary
Type: String

The authenticationLibrary property of the TcpIpConnection class contains the name of the library that contains
the genAuthChallengeMethod, genAuthResponseMethod, and verifyAuthResponseMethod authentication
methods.

The code fragment in the following example shows the use of the authenticationLibrary property.

authConf := AuthConf.firstInstance;
if authConf <> null then

self.tcp.authenticationLibrary := authConf.authLib;
self.tcp.genAuthChallengeMethod := authConf.challengeMethod;
self.tcp.genAuthResponseMethod := authConf.responseMethod;
self.tcp.verifyAuthResponseMethod := authConf.verifyMethod;

endif;

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 764

EncycloSys2 - 2020.0.02

cryptLibrary
Type: String[128]

The cryptLibrary property of the TcpIpConnection class contains the name of the library that contains the
encryptMethod and decryptMethod methods.

The code fragment in the following example shows the use of the cryptLibrary property.

cryptConf := CryptConf.firstInstance;
if cryptConf <> null then

self.tcp.cryptLibrary := cryptConf.cryptLib;
self.tcp.encryptMethod := cryptConf.encryptMethod;
self.tcp.decryptMethod := cryptConf.decryptMethod;

endif;

decryptMethod
Type: String

The decryptMethod property of the TcpIpConnection class contains the name of the decryption method in the
encryption and decryption library that is executed after a successful readBinary or readBinaryAsynch operation.

The following example sets the decryption method for the connection and checks to make sure TCP is in
connected state (2). If it is, and binary data is received through the connection, it displays the data in the text box.
The parameter of 50 specifies that the data must be no more than 50 bytes long.

buttonReceive_click(btn: Button input) updating;
begin

self.tcp.decryptMethod := "okDecrypt";
if self.tcp.state = Connection.Connected then

textBox1.text := self.tcp.readBinary(50).String;
endif;

end;

encryptMethod
Type: String

The encryptMethod property of the TcpIpConnection class contains the name of the encryption method in the
encryption and decryption library that is executed after a successful writeBinary or writeBinaryAsynch
operation.

The code fragment in the following example shows the use of the encryptMethod property.

if cryptConf <> null then
self.tcp.cryptLibrary := cryptConf.cryptLib;
self.tcp.encryptMethod := cryptConf.encryptMethod;
self.tcp.decryptMethod := cryptConf.decryptMethod;

endif;

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 765

EncycloSys2 - 2020.0.02

genAuthChallengeMethod
Type: String

The genAuthChallengeMethod property of the TcpIpConnection class contains the name of the method in the
authentication library that is used to generate the authentication challenge.

If this property contains the name of a generate authentication challenge method, the specified method is
executed after a successful listen or listenAsynch operation.

The following example shows the setting of the authentication challenge and verification methods for a
connection.

buttonListen_click(btn: Button input) updating;
begin

self.tcp.genAuthChallengeMethod := "okGenAuthChallenge";
self.tcp.verifyAuthResponseMethod := "okVerifyAuthResponse";
// Sets the TCP to listen on the current port. If a connection
// is made, sets the status bar to read 'connected' and fills the
// text boxes with the IP address and name information.
self.tcp.listen;
if self.tcp.state = Connection.Connected then

statusLine1.caption := "Connected";
textBox3.text := self.tcp.localIpAddress;
textBox2.text := self.tcp.remoteIpAddress;
textBox4.text := self.tcp.name;

endif;
end;

genAuthResponseMethod
Type: String

The genAuthResponseMethod property of the TcpIpConnection class contains the name of the method in the
authentication library used to generate the response from the authentication challenge.

If this property contains the name of a generate authentication response method, the specified method is executed
after a successful open or openAsynch operation.

The following example of the genAuthResponseMethod property sets the authentication response method for the
connection.

buttonOpen_click(btn: Button input) updating;
begin

self.tcp.genAuthResponseMethod := "okGenAuthResponse";
// Attempts to connect to the current port. If an application is
// listening on the port, a connection is made and the status bar
// is set to read 'connected'.
self.tcp.open;
if self.tcp.state = Connection.Connected then

statusLine1.caption := "Connected";
textBox2.text := self.tcp.localIpAddress;
textBox3.text := self.tcp.remoteIpAddress;
textBox4.text := self.tcp.remoteName;

endif;
end;

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 766

EncycloSys2 - 2020.0.02

localInterface
Type: String[128]

The localInterface property of the TcpIpConnection class contains the local interface name or IP address of a
local network interface.

Note Use this property only if you want to receive new connections from a specific local interface. By default,
JADE receives connections on all local interfaces. For example, to allow an administrator to ensure connections
from clients connect on the fastest interface or to allow easier security when used in conjunction with a firewall or
router access list, specify the local interface name or IP address if you want to select a specific network adapter in
a server node that has more than one network adapter installed.

localIpAddress
Type: String

The read-only localIpAddress property of the TcpIpConnection class contains the local IP address after the
successful establishment of a TCP/IP connection.

The code fragment in the following example shows the use of the localIpAddress property.

if self.tcp.state = Connection.Connected then
statusLine1.caption := "Connected";
textBox3.text := self.tcp.localIpAddress;
textBox2.text := self.tcp.remoteIpAddress;
textBox4.text := self.tcp.name;

endif;

localPort
Type: Integer

The localPort property of the TcpIpConnection class contains the local service port when using the open or
openAsynch method.

Note Use the property only if you want to connect through a specific local port. The default value of zero (0)
indicates that JADE connects through any available local port.

networkProxy
Type: JadeTcpIpProxy

The networkProxy property of the TcpIpConnection class contains a reference to a JadeTcpIpProxy object
identifier of the proxy in the TcpIpConnection class object.

If this reference contains a non-null value, the JadeTcpIpProxy class connect method is executed, which
connects to a proxy server, asking it to in turn connect to the destination address and port. You can reimplement
the JadeTcpIpProxy class connect method. If the networkProxy property value is null, the TcpIpConnection
class open or openAsynch method is executed.

Network proxies are supported only for the TcpIpConnection class open or openAsynch method.

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 767

EncycloSys2 - 2020.0.02

port
Type: Integer

The port property of the TcpIpConnection class contains the target service port when using the open or
openAsynch method or it defines the listen port when using the listen or listenAsynch method.

The code fragment in the following example shows the use of the port property.

// Creates a normal TCP/IP connection, sets the name to the current
// computer name, and sets the listen port to 7895.
create tcp;
self.tcp.name := app.computerName;
self.tcp.port := 7895;

protocolFamily
Type: Integer

The protocolFamily property of the TcpIpConnection class contains the protocol used by the connection.

The protocolFamily property values are listed in the following table.

Class Constant Integer Value Description

ProtocolFamilyTcpIPv4 0 TCP/IP version 4 protocol

ProtocolFamilyTcpIPv6 1 TCP/IP version 6 protocol

ProtocolFamilyTcpIPAny -1 TCP/IP version 4 or version 6 protocol

If you do not change your code, your existing code runs using TCP/IP version 4 only.

Note The JadeTcpIpProxy class currently works only with the TCP/IP version 4 protocol.

remoteIpAddress
Type: String

The read-only remoteIpAddress property of the TcpIpConnection class contains the remote host IP address after
a successful open, openAsynch, listen, or listenAsynch method.

The code fragment in the following example shows the use of the remoteIpAddress property.

self.tcp.listenContinuousAsynch(conlog, "updateListenContinuousCalls");
if self.tcp.state = Connection.Connected then

statusLine1.caption := "Connected";
textBox2.text := self.tcp2.remoteIpAddress;
textBox3.text := self.tcp2.remotePort.String;
textBox4.text := self.tcp2.localIpAddress;
textBox5.text := self.tcp2.name;

endif;

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 768

EncycloSys2 - 2020.0.02

remoteName
Type: String

The read-only remoteName property of the TcpIpConnection class contains the remote host name of the remote
node in the local HOSTS file or the Domain Name Service (DNS) node after a successful open, openAsynch,
listen, or listenAsynch method.

If the name of the remote host cannot be determined, the remoteName property is zero-length.

The code fragment in the following example shows the use of the remoteName property.

if self.tcp.state = Connection.Connected then
statusLine1.caption := "Connected";
textBox2.text := self.tcp.localIpAddress;
textBox3.text := self.tcp.remoteIpAddress;
textBox4.text := self.tcp.remoteName;
textBox5.text := self.tcp.remotePort.String;

endif;

remotePort
Type: Integer

The read-only remotePort property of the TcpIpConnection class contains the port number used on the remote
node after a successful open, openAsynch, listen, or listenAsynch method call.

resolveRemoteName
Type: Boolean

The resolveRemoteName property of the TcpIpConnection class specifies whether the remote host name must
be resolved from the IP address after a successful listen or listenAsynch method.

If this property is set to false (the default value), the remoteName property contains a zero-length string.

usePresentationClient
Type: Integer

The usePresentationClient property of the TcpIpConnection class specifies whether the connection is opened
on the presentation client or application server.

By default, the connection is opened on the application server; that is, this value is set to false. To open the
connection on the presentation client, set this property to true.

Note This property is ignored when the application is running from a standard client.

sslContext
Type: JadeSSLContext

The sslContext property of the TcpIpConnection class causes the core network facilities to use the SSL instead
of TCP/IP protocol when a connection is active.

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 769

EncycloSys2 - 2020.0.02

Note Asynchronous connection operations are executed on another thread. If this asynchronous worker thread
needs to access JADE objects (for example, the TcpIpConnection, JadeSSLContext, and JadeX509Certificate
objects), these objects need to be shared transient or persistent objects.

The following example shows the use of the sslContext property to open an outgoing SSL connection.

vars
tcpip : TcpIpConnection;
sslContext : JadeSSLContext;
x509 : JadeX509Certificate;

begin
create x509 transient;
x509.readCertificateDataFromFile("c:\Certificates\client.pem");
x509.readPrivateKeyDataFromFile("c:\Certificates\client.key",

"myPassword");
create sslContext transient;
sslContext.methodType := JadeSSLContext.MethodTLSv1_2;
sslContext.caFile := "c:\Certificates\serverCAcerts.pem";
sslContext.x509 := x509;
create tcpip transient;
tcpip.name := "mySSLNode";
tcpip.port := 8097;
tcpip.sslContext := sslContext;
tcpip.open;
// ... send and receive some data
tcpip.close;

epilog
delete x509;
delete sslContext;
delete tcpip;

end;

See also the JadeSSLContext and JadeX509Certificate classes, earlier in this chapter.

userObject
Type: Object

The userObject property of the TcpIpConnection class contains a reference to an object that you can associate
with any TCP/IP connection.

The default value is null.

verifyAuthResponseMethod
Type: String

The verifyAuthResponseMethod property of the TcpIpConnection class contains the name of the method in the
authentication library used to verify the authentication response received after sending the authentication
challenge.

If this property contains the name of a verify authentication response method, the specified method is executed
after a successful generation of the authentication challenge and the successful receipt of the remote
authentication response.

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 770

EncycloSys2 - 2020.0.02

The code fragment in the following example shows the use of the verifyAuthResponseMethod property to set the
authentication challenge and verification methods.

self.tcp.genAuthChallengeMethod := "okGenAuthChallenge";
self.tcp.verifyAuthResponseMethod := "okVerifyAuthResponse";

TcpIpConnection Methods
The methods defined in the TcpIpConnection class are summarized in the following table.

Method Description

close Closes a connection to a remote application and returns when the connection is
closed

closeAsynch Closes a connection to a remote application and returns immediately

getMaxMessageSize Returns the maximum message size that can be sent or received at one time

listen Waits for a remote application to connect to its port and returns when the
connection is established

listenAsynch Waits for a remote application to connect to its port and returns immediately

listenContinuous Waits for a remote application to connect to its port and returns the new
connection on a new instance of the TcpIpConnection class while the original
instance is still available for listening on subsequent calls

listenContinuousAsynch Waits for remote applications to connect to its port and returns immediately

open Establishes a connection to a remote application and returns when the
connection is established

openAsynch Establishes a connection to a remote application and returns immediately

readBinary Reads binary data from the connection and returns when the specified number of
bytes has been read or when a block of data is received

readBinaryAsynch Reads binary data from the connection and returns immediately

readUntil Reads data from the connection and returns when the specified delimiter is found
in the data stream

readUntilAsynch Reads data from the connection until the specified delimiter is found in the data
stream and returns immediately

writeBinary Writes binary data to the connection and returns when the operation is complete

writeBinaryAsynch Writes binary data to the connection and returns immediately

close
Signature close();

The close method of the TcpIpConnection class closes a connection to a remote application and returns when
the connection is closed. This method can be called when the connection is in any state. The following example
shows the use of the close method to unload the form and close the connection if TCP/IP has been left in
connection state.

buttonUnload_click(btn: Button input) updating;
begin

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 771

EncycloSys2 - 2020.0.02

// If a connection is present, closes the connection
if self.tcp.state = Connection.Connected then

self.tcp.close;
endif;
self.unloadForm;

end;

closeAsynch
Signature closeAsynch(receiver: Object;

msg: String);

The closeAsynch method of the TcpIpConnection class closes a connection to a remote application and returns
immediately. When the connection is closed, the object specified in the receiver parameter is sent the name of
the callback method specified in the msg parameter.

The closeAsynch method can be called when the connection is in any state.

Note On asynchronous calls, the state may not change immediately, and it may remain Connected (2) for a
short period until JADE has rescheduled the request.

When the closeAsynch method completes, the user-written callback method specified in the msg parameter is
called. The callback method must match the signature required by the calling closeAsynch method, as follows.

Signature closeCallback(tcp: TcpIpConnection);

The following example shows the use of the closeAsynch method to set the variable conlog to reference a
ConnectionLog object, create the object, and initialize its properties if no such object exists.

closeAsynch_click(btn: Button input) updating;
vars

conlog : ConnectionLog;
begin

// Closes the current connection and returns immediately. When
// the connection is closed, the ConnectionLog object referenced
// by conlog is called and told to run the method updateCloseCalls.
self.tcp.closeAsynch(conlog, "updateCloseCalls");
statusLine1.caption := "Disconnected";
textBox2.text := "";
textBox3.text := "";
textBox4.text := "";

end;

getMaxMessageSize
Signature getMaxMessageSize(): Integer;

The getMaxMessageSize method of the TcpIpConnection class returns the maximum message size that can be
sent or received at one time.

The result of this method is not defined until the connection has been opened. A value of zero (0) indicates that
there is no upper limit to the allowable message size.

Note As this feature is not supported for the TCP/IP protocol, a value of zero (0) is always returned for a TCP/IP
connection.

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 772

EncycloSys2 - 2020.0.02

listen
Signature listen();

The listen method of the TcpIpConnection class waits for a remote application to connect to its port and returns
when a connection attempt has been made.

The value of the Connection class state property changes to Connecting (1) when listening is in progress and to
Connected (2) when the connection is open.

The code fragment in the following example shows the use of the listen method. This code sets the TCP/IP
connection to listen to the current port. If a connection is made, it sets the status bar to read Connected and fills the
text boxes with the IP address and name information.

self.tcp.port := 7895;
self.tcp.listen;
if self.tcp.state = Connection.Connected then

statusLine1.caption := "Connected";
textBox3.text := self.tcp.localIpAddress;
textBox2.text := self.tcp.remoteIpAddress;
textBox4.text := self.tcp.name;

endif;
...

See also the Connection class timeout property.

listenAsynch
Signature listenAsynch(receiver: Object;

msg: String);

The listenAsynch method of the TcpIpConnection class waits for a remote application to connect to its port and
returns immediately.

When a connection attempt has been made by a remote application, the object specified in the receiver
parameter is sent the message specified in the msg parameter.

The listenAsynch method can be called only when the value of the Connection class state property is
Disconnected (0).

When this method is called, the value of the state property changes to Connecting (1). See also the Connection
class timeout property.

Note On asynchronous calls, the state may not change immediately and it may remain Disconnected (0) for a
short period until JADE has rescheduled the request.

The following example of the listenAsynch method sets the authentication challenge and verification methods for
the connection.

listenAsynch_click(btn: Button input) updating;
vars

conlog : ConnectionLog;
begin

self.tcp.genAuthChallengeMethod := "okGenAuthChallenge";
self.tcp.verifyAuthResponseMethod := "okVerifyAuthResponse";
// Sets the conlog variable to reference a ConnectionLog object.
// If none exists, the object is created and its properties

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 773

EncycloSys2 - 2020.0.02

// are initialized.
conlog := ConnectionLog.firstInstance;
if conlog = null then

beginTransaction;
create conlog;
conlog.numberOfListenCalls := 0;
conlog.numberOfOpenCalls := 0;
conlog.numberOfCloseCalls := 0;
conlog.numberOfBinaryReads := 0;
conlog.numberOfBinaryWrites := 0;

commitTransaction;
endif;
// Sets the tcp to listen on the current port and returns
// immediately. If a connection is made, the ConnectionLog object
// referenced by conlog is called and told to run the updateListenCalls
// method.
self.tcp.port := 7895;
self.tcp.listenAsynch(conlog, "updateListenCalls");

end;

The user-written callback method specified in the msg parameter is called when the listenAsynch method
receives a connection request. The callback method must match the signature required by the listenAsynch
method, as follows.

Signature listenCallback(tcp: TcpIpConnection);

The following method is an example of a ConnectionLog class callback method for the listenAsynch method,
which updates the number of method invocations recorded for this method.

updateListenCalls(tcp: TcpIpConnection) updating;
begin

beginTransaction;
self.numberOfListenCalls := self.numberOfListenCalls + 1;
commitTransaction;

end;

listenContinuous
Signature listenContinuous(): TcpIpConnection;

The listenContinuous method of the TcpIpConnection class waits for a remote application to connect to its port
and returns a reference to the new connection on a new instance of the TcpIpConnection class while the original
instance is still available for listening on subsequent calls.

The value of the Connection class state property changes to Connecting (1) when listening is in progress. See
also the Connection class timeout property. The newly created instance of the TcpIpConnection class has its
state property set to Connected (2) after the successful connection. The following example of the
listenContinuous method sets the authentication challenge and verification methods for the connection.

listenContinuous_click(btn: Button input) updating;
begin

self.tcp.genAuthChallengeMethod := "okGenAuthChallenge";
self.tcp.verifyAuthResponseMethod := "okVerifyAuthResponse";
/* Sets the TCP to listen on the current port. When a connection is
made, a new instance of TcpIpConnection is returned and referenced
by TCP. The original instance remains available for listening on

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 774

EncycloSys2 - 2020.0.02

subsequent calls while the new instance maintains the newly made
connection. When this connection is made, the status bar is set to
read 'connected', and the text boxes filled with the IP address
and name information. */

self.tcp.port := 7895;
self.tcp := tcp.listenContinuous;
if self.tcp.state = Connection.Connected then

statusLine1.caption := "Connected";
textBox3.text := self.tcp2.localIpAddress;
textBox2.text := self.tcp2.remoteIpAddress;
textBox4.text := self.tcp2.name;

endif;
end;

listenContinuousAsynch
Signature listenContinuousAsynch(receiver: Object;

msg: String);

The listenContinuousAsynch method of the TcpIpConnection class waits for remote applications to connect to its
port and returns immediately.

When a connection attempt has been made by a remote application, the object specified in the receiver
parameter is sent the message specified in the msg parameter.

The listenContinuousAsynch method can be called only when the value of the Connection class state is
Disconnected (0).

When this method is called, the value of the state property changes to Connecting (1). See also the Connection
class timeout property.

Note On asynchronous calls, the state may not change immediately and it may remain Disconnected (0) for a
short period until JADE has rescheduled the request.

The following example of the listenContinuousAsynch method sets the authentication challenge and verification
methods for the connection.

listenContAsynch_click(btn: Button input) updating;
vars

conlog : ConnectionLog;
begin

self.tcp.genAuthChallengeMethod := "okGenAuthChallenge";
self.tcp.verifyAuthResponseMethod := "okVerifyAuthResponse";
/* Sets the TCP to listen on the current port. When a connection is
made, a new instance of TcpIpConnection is created. The original
instance remains available for listening on subsequent calls while the
new instance maintains the newly made connection. When this connection
is made, the ConnectionLog object referenced by conlog is called and
told to run the updateListenContinuousCalls method. The new
TcpIpConnection instance is passed to this method as a parameter. */
self.tcp.port := 7895;
self.tcp.listenContinuousAsynch(conlog, "updateListenContinuousCalls");
if self.tcp.state = Connection.Connected then

statusLine1.caption := "Connected";
textBox3.text := self.tcp2.localIpAddress;
textBox2.text := self.tcp2.remoteIpAddress;

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 775

EncycloSys2 - 2020.0.02

textBox4.text := self.tcp2.name;
endif;

end;

The user-written callback method specified in the msg parameter is called when the listenContinuousAsynch
method receives a connection request.

The callback method must match the signature required by the listenContinuousAsynch method, as follows.

Signature listenContinuousCallback(tcp: TcpIpConnection;
newTcp: TcpIpConnection);

The following method is an example of ConnectionLog class callback method for the listenContinuousAsynch
method, which updates the number of method invocations recorded for this method.

updateListenContinuousCalls(tcp: TcpIpConnection;
newTcp: TcpIpConnection) updating;

begin
beginTransaction;
self.numberOfListenContinuousCalls := self.numberOfListenContinuousCalls

+ 1;
commitTransaction;
self.newTcp.readBinaryAsynch(1024, newTcp, "readCallback");

end;

The listenContinuousAsynch method continues accepting new connection requests until the listener
TcpIpConnection class instance is closed.

The listenContinuousCallback method is called for every successful connection request.

open
Signature open();

The open method of the TcpIpConnection class establishes a connection to a remote application and returns
when the connection is established.

Use the name property of the Connection class to define the name or the IP address of the TCP/IP target host
used when opening a TCP/IP connection using the open or openAsynch method. The name property, if not an IP
address, must be specified in the local HOSTS file or be defined on the Domain Name Service (DNS) node before
executing the open or openAsynch method.

Use the port property to define the target service port when using the open or openAsynch method or to define
the listen port when using the listen or listenAsynch method.

The open method can be called only when the value of the Connection class state property is Disconnected (0).

The value of the Connection class state property changes to Connected (2) when the connection is open.

The code fragment in the following example shows the use of the open method.

if bOpen.value = true then
self.tcp.open;

elseif bListen.value = true then
statusLine1.caption := "Listening";
self.tcp.listen;

else

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 776

EncycloSys2 - 2020.0.02

self.tcp.close;
endif;

openAsynch
Signature openAsynch(receiver: Object;

msg: String);

The openAsynch method of the TcpIpConnection class establishes a connection to a remote application and
returns immediately. When the connection is established, the object specified in the receiver parameter is sent
the message specified in the msg parameter.

Use the name property of the Connection class to define the name or the IP address of the TCP/IP target host
used when opening a TCP/IP connection using the open or openAsynch method. The name property, if not an IP
address, must be specified in the local HOSTS file or be defined on the Domain Name Service (DNS) node before
executing the open or openAsynch method.

Use the port property to define the target service port when using the open or openAsynch method or to define
the listen port when using the listen or listenAsynch method.

The openAsynch method can be called only when the value of the Connection class state property is
Disconnected (0). When this method is called, the value of the state property changes to Connecting (1).

Note On asynchronous calls, the state may not change immediately and it may remain Disconnected (0) for a
short period until JADE has rescheduled the request.

The following example of the openAsynch method sets the authentication response for the connection.

buttonOpenAsynch_click(btn: Button input) updating;
vars

conlog : ConnectionLog;
begin

self.tcp.genAuthResponseMethod := "okGenAuthResponse";
// Attempts to connect to the current port and returns immediately.
// If a connection is made, the ConnectionLog object referenced by
// conlog is called and told to run the updateOpenCalls method.
self.tcp.openAsynch(conlog, "updateOpenCalls");

end;

When the openAsynch method establishes a connection, the user-written callback method specified in the msg
parameter is called. The callback method must match the signature required by the calling openAsynch method,
as follows.

Signature openCallback(tcp: TcpIpConnection);

The following method is an example of ConnectionLog class callback method for the openAsynch method, which
updates the number of method invocations recorded for this method.

updateOpenCalls(tcp: TcpIpConnection) updating;
begin

beginTransaction;
self.numberOfOpenCalls := self.numberOfOpenCalls + 1;
commitTransaction;
self.tcp.readBinaryAsynch(1024, tcp, "readCallback");

end;

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 777

EncycloSys2 - 2020.0.02

readBinary
Signature readBinary(length: Integer): Binary;

The readBinary method of the TcpIpConnection class reads binary data from the connection and returns when
the number of bytes of data specified in the length parameter have been read or when a block of data is received,
depending on the setting of the Connection class fillReadBuffer property.

This method can be called only when the value of the Connection class state property is Connected (2). See also
the Connection class timeout property.

Only one synchronous or asynchronous read operation can be performed at one time on a connection.

Note When executing the readBinary notification method, ensure that all received data has been handled,
copied, or stored before issuing another readBinaryAsynch method.

If the readBinary notification method executes another readBinaryAsynch method, it overwrites the data that
was previously received if data is readily available on the connection.

The following example of the readBinary method sets the decryption method for the connection.

buttonReceive_click(btn: Button input) updating;
begin

self.tcp.decryptMethod := "okDecrypt";
// Checks to make sure TCP is in connected state (2). If it is
// and binary data is received through the connection, displays
// the data in the text box. The parameter of 50 specifies that
// the data must be no more than 50 bytes long.
if self.tcp.state = Connection.Connected then

textBox1.text := self.tcp.readBinary(50).String;
endif;

end;

See also the readBinaryAsynch method.

readBinaryAsynch
Signature readBinaryAsynch(length: Integer;

receiver: Object;
msg: String);

The readBinaryAsynch method of the TcpIpConnection class reads binary data from the connection and returns
immediately. When the bytes of data specified in the length parameter have been read or when a block of data is
received, depending on the setting of the Connection class fillReadBuffer property, the object specified in the
receiver parameter is sent the message specified in the msg parameter.

Only one synchronous or asynchronous read operation can be performed at one time on a connection.

The readBinaryAsynch method can be called only when the value of the Connection class state property is
Connected (2). See also the Connection class timeout property.

When the bytes of data specified in the length parameter have been read or when a block of data is received, the
user-written callback method specified in the msg parameter is called. The value of the length parameter must be
greater than zero (0).

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 778

EncycloSys2 - 2020.0.02

The following example of the readBinaryAsynch method sets the decryption method for the connection.

receiveAsynch_click(btn: Button input) updating;
vars

conlog : ConnectionLog;
begin

self.tcp.decryptMethod := "okDecrypt";
// Sets the conlog variable to reference a ConnectionLog object.
// If none exists, it is created and its properties initialized.
if self.tcp.state = Connection.Connected then
// Reads binary data from the connection and returns immediately.
// When the data is read, the ConnectionLog object referenced by
// conlog is called and told to run the updateBinaryReads method.
// It is passed a parameter containing the binary data that was
// read from the connection.

self.tcp.readBinaryAsynch(50, conlog, "updateBinaryReads");
endif;

end;

The callback method must match the signature required by the calling readBinaryAsynch method, as follows.

Signature readBinaryCallback(tcp: TcpIpConnection;
buffer: Binary);

The following method is an example of ConnectionLog class callback method for the readBinaryAsynch method,
which updates the number of method invocations recorded for this method.

updateBinaryReads(tcp: TcpIpConnection;
buffer: Binary) updating;

begin
beginTransaction;
self.obj.data := buffer;
commitTransaction;
self.tcp.readBinaryAsynch(1024, self.tcp, "readCallback");

end;

readUntil
Signature readUntil(delimiter: Binary;

maxLength: Integer): Binary;

The readUntil method of the TcpIpConnection class reads binary data from the connection and returns when the
delimiter specified in the delimiter parameter is found in the data stream. Use this method if you use delimiters as
an end-of-message mechanism as part of your communications protocol so that you do not have to read a
character at a time and scan or handle your own data buffering.

You can use the maxLength parameter to specify a maximum read size if the specified delimiter cannot be found.
(A value of zero (0) indicates that there is no maximum read size.)

This method can be called only when the value of the Connection class state property is Connected (2). See also
the Connection class timeout property.

Only one synchronous or asynchronous read operation can be performed at one time on a connection.

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 779

EncycloSys2 - 2020.0.02

Notes The delimiter is not included in the returned data.

A String value typecast to a Binary value and specified as a delimiter in a Unicode JADE system contains
Unicode characters in the Binary value.

readUntilAsynch
Signature readUntilAsynch(delimiter: Binary;

maxLength: Integer;
receiver: Object;
msg: String);

The readUntilAsynch method of the TcpIpConnection class reads binary data from the connection, and returns
immediately. Use this method if you use delimiters as an end-of-message mechanism as part of your
communications protocol so that you do not have to read a character at a time and scan or handle your own data
buffering.

When the delimiter specified in the delimiter parameter has been read, the object specified in the receiver
parameter is sent the message specified in the msg parameter.

You can use the maxLength parameter to specify a maximum read size if the specified delimiter cannot be found.
A value of zero (0) indicates that there is no maximum read size.

A String value typecast to a Binary value and specified as a delimiter in a Unicode JADE system contains
Unicode characters in the Binary value.

When executing the readUntilAsynch notification method, ensure that all received data has been handled,
copied, or stored before issuing another readUntilAsynch method. If the readUntilAsynch notification method
executes another readUntilAsynch method, it overwrites the data that was previously received if data is readily
available on the connection.

Only one synchronous or asynchronous read operation can be performed at one time on a connection.

The readUntilAsynch method can be called only when the value of the Connection class state property is
Connected (2). See also the Connection class timeout property. When the delimiter specified in the delimiter
parameter has been read, the user-written callback method specified in the msg parameter is called. The callback
method must match the signature required by the calling readUntilAsynch method, as follows.

Signature readUntilNotify(tcp: TcpIpConnection;
bin: Binary);

writeBinary
Signature writeBinary(buffer: Binary);

The writeBinary method of the TcpIpConnection class writes binary data to the connection and returns when the
operation is complete.

The writeBinary method can be called only when the value of the Connection class state property is Connected
(2). See also the Connection class timeout property.

Messages are sent in the order that the connection object receives them.

The following example of the writeBinary method sets the encryptMethod property for the connection.

buttonSend_click(btn: Button input) updating;
begin

Encyclopaedia of Classes
(Volume 2)

TcpIpConnection Class Chapter 1 780

EncycloSys2 - 2020.0.02

self.tcp.encryptMethod := "okEncrypt";
// Checks to make sure TCP is in connection state 2 (connected).
// If it is, binary data from the text box is written to the connection.
if self.tcp.state = Connection.Connected then

self.tcp.writeBinary(textBox1.text.Binary);
endif;

end;

writeBinaryAsynch
Signature writeBinaryAsynch(buffer: Binary;

receiver: Object;
msg: String);

The writeBinaryAsynch method of the TcpIpConnection class writes binary data to the connection and returns
immediately.

When the operation is complete, the object specified in the receiver parameter is sent the name of the callback
method specified in the msg parameter.

User-written methods specified in the msg parameter are sent in the order that they are received by the
connection object.

Multiple asynchronous write operations can be performed against one connection simultaneously.

The writeBinaryAsynch method can be called only when the value of the Connection class state property is
Connected (2). See also the Connection class timeout property.

When the write operation has been completed, the user-written callback method specified in the msg parameter is
called.

The following example shows the use of the writeBinaryAsynch method to set the encryptMethod property for
the connection.

buttonSendAsynch_click(btn: Button input) updating;
vars

conlog : ConnectionLog;
begin

tcp.encryptMethod := "okEncrypt";
// Outputs the binary data from the text box to the connection
// and returns immediately. When the data is written, the
// ConnectionLog object referenced by conlog is called and
// told to run the updateBinaryWrites method.
tcp.writeBinaryAsynch(textBox1.text.Binary,c,"updateBinaryWrites");

endif;
end;

The callback method must match the signature required by the calling writeBinaryAsynch method, as follows.

Signature writeBinaryCallback(tcp: TcpIpConnection);

The following method is an example of a ConnectionLog class callback method for the writeBinaryAsynch
method, which updates the number of method invocations recorded for this method.

updateBinaryWrites(tcp: TcpIpConnection) updating;
begin

tcp.readBinaryAsynch(1024, tcp, "readCallback");
end;

Encyclopaedia of Classes
(Volume 2)

TimeArray Class Chapter 1 781

EncycloSys2 - 2020.0.02

TimeArray Class
The TimeArray class is an ordered collection of Time values in which the values are referenced by their position
in the collection.

Time arrays inherit the methods defined in the Array class.

The bracket ([]) subscript operators enable you to assign values to and receive values from a Time array.

Inherits From: Array

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

TimeFormat Class Chapter 1 782

EncycloSys2 - 2020.0.02

TimeFormat Class
The TimeFormat class is used to store Windows locale time information.

You cannot modify system-created instances of the TimeFormat class (that is, instances created and maintained
by JADE to store locale information and user-defined formats) from your JADE code.

JADE automatically creates a transient instance of TimeFormat for each application, which you can read by using
app.currentLocaleInfo.timeInfo. This instance contains time information for the current locale.

TimeFormat instances are also used to store user-defined time formats that can be passed to the various primitive
type user format methods. You can maintain these formats only by using the appropriate Formats menu command,
accessed from the Format Browser.

For details about returning a string containing the receiver in the supplied time format, see the Time primitive type
userFormat method and for details about the properties and method defined in the TimeFormat class, see
"TimeFormat Properties" and "TimeFormat Method", in the following subsections.

Inherits From: LocaleFormat

Inherited By: (None)

TimeFormat Properties
The properties defined in the TimeFormat class are summarized in the following table.

Property Description

amText Contains the text for the morning time marker

ampmIsSuffix Specifies whether the time marker is displayed before or after the time string

format Contains the time formatting string

is12HourFormat Specifies whether the 12-hour or 24-hour time format is used

pmText Contains the text for the afternoon time marker

separator Contains the string value used to separate hours, minutes, and seconds

showLeadingZeros Specifies whether a leading zero is displayed in time fields less than ten

showSeconds Specifies whether seconds are displayed in the time format

amText
Type: String[100]

The amText property of the TimeFormat class contains the text for the pre-noon time marker in the time format; for
example, "AM".

ampmIsSuffix
Type: Boolean

The ampmIsSuffix property of the TimeFormat class is set to true if the time marker string (AM or PM designator)
follows the time string; for example, "9:15 AM".

This property is set to false if the time marker precedes the time string; for example, "AM 9:15".

Encyclopaedia of Classes
(Volume 2)

TimeFormat Class Chapter 1 783

EncycloSys2 - 2020.0.02

format
Type: String[127]

The format property of the TimeFormat class contains the time formatting string. (For details, see the Time
primitive type format method, in Chapter 1 of the JADE Encyclopaedia of Primitive Types.)

is12HourFormat
Type: Boolean

The is12HourFormat property of the TimeFormat class is set to true if a 12-hour time format is used; for example,
1:15:43 PM.

This property is set to false if a 24-hour time format is used; for example, 13:15:43.

pmText
Type: String[100]

The pmText property of the TimeFormat class contains the text for the post-noon time marker in the time format;
for example, "PM".

separator
Type: String[10]

The separator property of the TimeFormat class contains the character used to separate hours, minutes, and
seconds; for example, "/".

showLeadingZeros
Type: Boolean

The showLeadingZeros property of the TimeFormat class is set to true if a leading zero is displayed in time fields
less than 10; for example, 08:45.

showSeconds
Type: Boolean

The showSeconds property of the TimeFormat class is set to true if seconds are displayed in the time format; for
example, 8:45:39 AM.

TimeFormat Method
The method defined in the TimeFormat class is summarized in the following table.

Property Description

defineTimeFormat Defines the characteristics of a time format

Encyclopaedia of Classes
(Volume 2)

TimeFormat Class Chapter 1 784

EncycloSys2 - 2020.0.02

defineTimeFormat
Signature defineTimeFormat(showAs12HourClock: Boolean;

showLeadingZero: Boolean;
showAmPmSuffix: Boolean;
textAm: String;
textPm: String;
hourMinSecSeparator: String;
showSecs: Boolean) updating;

The defineTimeFormat method of the TimeFormat class enables you to dynamically define the characteristics of
a time format. (For details about returning a string containing the receiver in the supplied time format, see the Time
primitive type userFormat method.)

Set the showAs12HourClock parameter to true if you want to display a 12-hour time. Alternatively, set this
parameter to false if you want to display a 24-hour time.

Set the showLeadingZero parameter to true if you want to display a leading zero (0) for hours less than 10.
Alternatively, set this parameter to false if you do not want to display a leading zero.

Set the showAmPmSuffix parameter to true if you want to display a time marker (for example, am or pm) after the
time in 12-hour format. Alternatively, set this parameter to false if you do not want to display a time marker after the
time (for example, when the time format is specified as 24-hour format).

The textAm and textPm parameters enable you to specify a string of up to 30 characters that is to be displayed
for times before midday and after midday, respectively. If the strings are longer than 30 characters, they are
truncated to 30 characters.

Use the hourMinSecSeparator parameter to specify a string of up to 10 characters that contains the text to be
displayed between the hours and seconds. If the string contains any of the d, M, y, g, h, H, m, s, or t characters,
these characters are removed. If the string is longer than 10 characters, it is truncated to 10 characters.

Set the showSecs parameter to true if you want to display a seconds. Alternatively, set this parameter to false if
you do not want to display seconds.

Encyclopaedia of Classes
(Volume 2)

TimeStampArray Class Chapter 1 785

EncycloSys2 - 2020.0.02

TimeStampArray Class
The TimeStampArray class is an ordered collection of TimeStamp values in which the values are referenced by
their position in the collection.

TimeStamp arrays inherit the methods defined in the Array class.

The bracket ([]) subscript operators enable you to assign values to and receive values from a TimeStamp array.

Inherits From: Array

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

TimeStampIntervalArray Class Chapter 1 786

EncycloSys2 - 2020.0.02

TimeStampIntervalArray Class
The TimeStampIntervalArray class is an ordered collection of TimeStampInterval values in which the values
are referenced by their position in the collection.

TimeStampInterval arrays inherit the methods defined in the Array class.

The bracket ([]) subscript operators enable you to assign values to and receive values from a TimeStampInterval
array.

Inherits From: Array

Inherited By: (None)

Encyclopaedia of Classes
(Volume 2)

TranslatableString Class Chapter 1 787

EncycloSys2 - 2020.0.02

TranslatableString Class
The TranslatableString class is a named text entity that enables different text string values to be displayed in an
application depending on the locale of the client machine. Instead of hard coding a string literal value in your
method source or for the caption of a label, you can define and use a translatable string.

When you define a translatable string with a specified name, separate translatable strings are created for each
declared locale.

Each locale-specific translatable string can contain a different text string. For example, you can add a translatable
with the name Hello and provide the following text string values for the France and New Zealand versions of the
Hello translatable string.

Hello = "Bonjour" // for locale 1036 (French - France)
Hello = "Gidday" // for locale 5129 (English - New Zealand)

In the JADE Editor and the JADE Painter, a translatable string is always prepended with a dollar sign ($), as
shown in the following write instruction.

write $Hello;

At runtime, the output from the write instruction would depend on the locale of the client machine. In France,
"Bonjour" would be output and in New Zealand "Gidday" would be output.

Translatable strings can be used in method source code and in the JADE Painter; for example, you could use a
translatable string for the caption on a Label control. For details, see "Translating Control Properties", in Chapter 5
of the JADE Development Environment User’s Guide.

For details about working with translatable strings, see "Adding a New Translatable String", "Updating an Existing
Translatable String", "Extract Translatable Strings Method Example", and "Load Translatable Strings Method
Example", in Chapter 11 of the JADE Development Environment User’s Guide.

The Locale class provides the getTranslatableStringLocal, getTranslatableStrings, and
getTranslatableStringsByNum methods for retrieving translatable strings defined for a locale.

For details about the properties and method defined in the TranslatableString class, see "TranslatableString
Properties" and "TranslatableString Method", in the following subsections.

Inherits From: Constant

Inherited By: (None)

TranslatableString Properties
The properties defined in the TranslatableString class are summarized in the following table.

Property Contains a reference to the …

formBuildDataRefs Set of forms that contain the translatable string

locale Locale of the translatable string

Encyclopaedia of Classes
(Volume 2)

TranslatableString Class Chapter 1 788

EncycloSys2 - 2020.0.02

The TranslatableString class inherits the properties summarized in the following table from the Constant
superclass, which is an undocumented metaschema class.

Property Contains…

constantRefs A reference to a set of translatable strings that use (reference) the translatable string

constantUsages A reference to a collection of embedded usages of the translatable string

formBuildDataRefs
Type: FormSet

The read-only formBuildDataRefs property of the TranslatableString class contains a reference to the set of
forms that contain the translatable string.

The control properties that can utilize translatable strings are listed in the following table.

Property Control Type in which the Property Value Can be Translated

bubbleHelp Window

caption Button, CheckBox, JadeDockBase, Form, Frame, GroupBox, JadeMask, Label, MenuItem,
OptionButton, Sheet, StatusLine

helpKeyword MenuItem, Window

mask JadeEditMask

text JadeEditMask, TextBox

For more details, see "Translating Control Properties", in Chapter 5 of the JADE Development Environment User’s
Guide.

locale
Type: Locale

The read-only locale property of the TranslatableString class contains a reference to the locale to which the
translatable string belongs.

TranslatableString Method
The method defined in the TranslatableString class is summarized in the following table.

Method Description

updateCompile Updates the existing translatable string

Encyclopaedia of Classes
(Volume 2)

TranslatableString Class Chapter 1 789

EncycloSys2 - 2020.0.02

updateCompile
Signature updateCompile(source: String;

errorCode: Integer output;
errorOffset: Integer output;
errorLength: Integer output): Boolean updating;

The updateCompile method of the TranslatableString class compiles and updates the existing translatable
string. If the compilation fails, the method returns true, the translatable string is not updated and the current
transaction is aborted.

The updateCompile method parameters are listed in the following table.

Parameter Description

source The new source for the translatable string.

errorCode The error code returned by the compiler. A value of zero (0) indicates that the translatable
string compiled successfully.

errorOffset The position of the error in the translatable string. Note that the first character of the
translatable string has a position of zero (0).

errorLength The length in characters of the error in the translatable string.

Note To add and compile a new translatable string to all base locales of the receiving schema, use the
addCompileTranslatableString method of the Schema class.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 790

EncycloSys2 - 2020.0.02

Type Class
The Type class is the abstract superclass of all class, primitive type, and JADE interface metaclasses.

For details about the properties and methods defined in the Type class, see "Type Properties" and "Type
Methods", in the following subsections.

Inherits From: SchemaEntity

Inherited By: Class, JadeInterface, PrimType

Type Properties
The properties defined in the Type class are summarized in the following table.

Property Contains the …

consts Dictionary of constants in the type

methods Dictionary of methods in the type

schema Schema in which the class or primitive type is defined

superschemaType Type of the superschema class

consts
Type: ConstantNDict

Availability: Protected

The consts property of the Type class contains a reference to the dictionary of constants in the type.

methods
Type: MethodNDict

Availability: Protected

The methods property of the Type class contains a reference to the dictionary of methods in the type.

schema
Type: Schema

Availability: Read-only

The schema property of the Type class contains a reference to the schema in which the class, primitive type, or
interface is defined.

superschemaType
Type: Type

Availability: Read-only

The superschemaType property of the Type class contains a reference to the type of the superschema.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 791

EncycloSys2 - 2020.0.02

Type Methods
The methods defined in the Type class are summarized in the following table.

Method Description

allMethods Populates a method set with all methods of the receiver

findConstant Returns the specified constant from the current schema

findConstantInSuperschema Returns the specified constant from the superschema

findProperty Returns the specified property

getConstant Returns the constant with the specified name from the receiver class

getConstants Populates the ConstantNDict class specified in the dict parameter with all
constants on the receiver class

getConstantsInSchema Adds the constants in the specified schema to the specified dictionary

getMethod Returns the method with the specified name from the receiver class

getMethods Adds the methods to the specified dictionary

getName Returns a string containing the name of the class or primitive type

getProperty Returns the property with the specified name

inheritsFrom Returns true if the class inherits methods and properties from the specified
class

instancesExist Returns true if instances exist of the class or its subclasses

invokeIOTypeMethod Sends the specified target type method containing a variable list of
parameters to the receiver type instance, after switching to the specified
target context execution context

invokeTypeMethod Sends the specified target type method containing a variable list of
parameters to the receiver type instance, after switching to the specified
target context execution context

sendTypeMsg Sends the specified message (a valid type method) to the receiver type
instance

sendTypeMsgWithIOParams Sends the specified message (a valid type method) to the receiver type
instance

sendTypeMsgWithParams Sends the specified message (a valid type method) to the receiver type
instance

allMethods
Signature allMethods(methSet: MethodSet io);

The allMethods method of the Type class populates the method set specified in the methSet parameter with a
reference to all methods in the receiver.

findConstant
Signature findConstant(str: String): Constant;

The findConstant method of the Type class returns a reference to the constant specified in the str parameter.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 792

EncycloSys2 - 2020.0.02

findConstantInSuperschema
Signature findConstantInSuperschema(constantName: String): Constant;

The findConstantInSuperschema method of the Type class returns a reference to the constant specified in the
constantName parameter from the superschema.

findProperty
Signature findProperty(str: String): Property;

The findProperty method of the Type class returns a reference to the property specified in the str parameter in
the type of the receiver or a super-type.

getConstant
Signature getConstant(name: String): Constant;

The getConstant method of the Type class returns a reference to the constant specified in the name parameter
from the receiver class.

getConstants
Signature getConstants(constDict: ConstantNDict input);

The getConstants method of the Type class populates the ConstantNDict class specified in the constDict
parameter with all constants on the receiver class.

The dictionary is not cleared before instances are added.

The following example shows the use of the getConstants method.

vars
dict : ConstantNDict;
con : Constant;

begin
create dict transient;
getConstants(dict);
foreach con in dict do

... // do some processing here
endforeach;

epilog
delete dict;

end;

getConstantsInSchema
Signature getConstantsInSchema(topSchema: Schema;

constDict: ConstantNDict input);

The getConstantsInSchema method of the Type class adds references to the constants in the schema specified
in the topSchema parameter to the constants dictionary specified in the constDict parameter.

The dictionary is not cleared before instances are added.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 793

EncycloSys2 - 2020.0.02

getMethod
Signature getMethod(name: String): Method;

The getMethod method of the Type class returns a reference to the method specified in the name parameter from
the receiver class; for example:

meth := Fault.getMethod("getDaysOpen");

getMethods
Signature getMethods(meths: MethodNDict input);

The getMethods method of the Type class adds references to the methods in the type to the methods dictionary
specified in the meths parameter.

The dictionary is not cleared before instances are added.

getName
Signature getName(): String;

The getName method of the Type class returns a string containing the name of the class or primitive type.

getProperty
Signature getProperty(propName: String): Property;

The getProperty method of the Type class returns a reference to the property specified in the propName
parameter.

Use the findProperty method if you want to find the property in the type of the receiver or any of its supertypes.

inheritsFrom
Signature inheritsFrom(type: Type): Boolean;

The inheritsFrom method of the Type class returns true if the receiver inherits methods and properties from the
type specified in the type parameter; for example:

if cls.inheritsFrom(MyNewDialog) then
if form.borderStyle = BorderStyle_Sizable then

write form.name;
endif;

endif;

A type always inherits from itself.

instancesExist
Signature instancesExist(): Boolean;

The instancesExist method of the Type class returns true if instances exist of the class or its subclasses.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 794

EncycloSys2 - 2020.0.02

invokeIOTypeMethod
Signature invokeIOTypeMethod(targetContext: ApplicationContext;

targetTypeMethod: Method;
paramList: ParamListType io): Any;

The invokeIOTypeMethod method of the Type class sends the type method specified in the targetTypeMethod
parameter containing a variable list of parameters specified in the paramList parameter to the receiver type
instance, after switching to the execution context of the specified targetContext parameter value.

The return type of the invokeIOTypeMethod method allows for an optional return value from the method being
called. If the called method returns a value, the Any primitive type result must be cast to the appropriate type, to
access that result.

After the method has finished, the execution context switches back to the current context. For details about using
this method to call user methods from packages, see "Calling User Methods from Packages", in Chapter 8 of the
JADE Developer’s Reference.

The targetTypeMethod parameter must be a valid type method, which is executed when the
invokeIOTypeMethod method is called. Use the paramList parameter to specify a variable list of parameters of
any type that are passed to the type method specified in the targetTypeMethod parameter when it is executed.

Notes If the number or type of the actual parameters passed to a method by a parameter list does not
correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur, as
the compiler is unable to perform any type-checking on the values that are passed to a parameter list. However,
the Method class isCallCompatibleWith method enables you to validate the number and type of parameters.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also "Passing Variable Parameters to Methods" under "JADE Language
Syntax", in Chapter 1 of the JADE Developer’s Reference.

The invokeTypeMethod method can be used if the method represented by the targetTypeMethod parameter
takes no io or output parameters.

As the application context used by the invokeIOTypeMethod method is transient, it can switch to a context only
within the same process. The mechanism is not designed to call a method running in another process in the node
or in another node. In addition, as the context is transient, any connection between a context and a method to be
invoked must be set up again if an application is stopped and then restarted.

If you want to save events to be called persistently so that methods would still be called if the application stops
and restarts (for example, in a scheduler application), you would have to re-supply a context when the application
restarts and events are loaded. The target method and object could be persistent, but the context is not.

Although the callback mechanism is designed with packages in mind, you can also use it to allow a method to be
invoked from within the same context. If the context in the invokeIOTypeMethod call is null, the current context
(that is, appContext) is used. This therefore enables you to invoke a specific saved type method (for example,
MyClass::myTypeMethod) rather than calling the Type class sendTypeMsg method, which allows you to provide
only the name of the type method to which the message is sent.

Within a package, the package writer may want to check that the method supplied by the user of the package is
appropriate.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 795

EncycloSys2 - 2020.0.02

The Method class isCallCompatibleWith method checks that the target method supplied by the package user
cannot be invoked only on the specified target object but that it has a signature that is compatible with that
expected by the package. The Method class isCallCompatibleWith method has the following signature.

isCallCompatibleWith(targetObject: Object;
exampleMethod: Method): Boolean;

The following is an example of the invokeIOTypeMethod being called from a method in a package exporting
schema, invoking a type method using the provided context, type, method, and parameters provided from the
importing schema.

callUserTypeMethod(userEvent: ScheduledEvent);
begin

if userEvent.targetContext <> null and userEvent.targetType <> null and
userEvent.targetMethod <> null then

userEvent.invokeIOTypeMethod(userEvent.targetContext, userEvent.targetType,
userEvent.targetTypeMethod, userEvent.methodIOParams);

userEvent.myScheduler := null;
delete userEvent;

endif;
end;

Applies to Version: 2020.0.01 and higher

invokeTypeMethod
Signature invokeTypeMethod(targetContext: ApplicationContext;

targetTypeMethod: Method;
paramList: ParamListType): Any;

The invokeTypeMethod method of the Type class sends the type method specified in the targetTypeMethod
parameter containing a variable list of parameters specified in the paramList parameter to the receiver type
instance, after switching to the execution context of the specified targetContext parameter value.

The return type of the invokeTypeMethod method allows for an optional return value from the method being
called. If the called method returns a value, the Any result must be cast to the appropriate type, to access that
result.

After the method has finished, the execution context switches back to the current context. For details about using
this method to call user methods from packages, see "Calling User Methods from Packages", in Chapter 8 of the
JADE Developer’s Reference.

The targetTypeMethod parameter must be a valid type method, which is executed when the invokeTypeMethod
method is called. Use the paramList parameter to specify a variable list of parameters of any type that are passed
to the type method specified in the targetTypeMethod parameter when it is executed.

Notes If the number or type of the actual parameters passed to a method by a parameter list does not
correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur, as
the compiler is unable to perform any type-checking on the values that are passed to a parameter list. However,
the Method class isCallCompatibleWith method enables you to validate the number and type of parameters.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also "Passing Variable Parameters to Methods" under "JADE Language
Syntax", in Chapter 1 of the JADE Developer’s Reference.

The invokeIOTypeMethod method can be used if the method represented by the targetTypeMethod parameter
takes io or output parameters.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 796

EncycloSys2 - 2020.0.02

As the application context used by invokeTypeMethod is transient, it can switch to a context only within the same
process. The mechanism is not designed to call a method running in another process in the node or in another
node. In addition, as the context is transient, any connection between a context and a method to be invoked must
be set up again if an application is stopped and then restarted.

If you want to save events to be called persistently so that methods would still be called if the application stops
and restarts (for example, in a scheduler application), you would have to re-supply a context when the application
restarts and events are loaded. The target method and object could be persistent, but the context is not.

Although the callback mechanism is designed with packages in mind, you can also use it to allow a method to be
invoked from within the same context. If the context in the invokeTypeMethod call is null, the current context (that
is, appContext) is used. This therefore enables you to invoke a specific saved type method (for example,
MyClass::myTypeMethod) rather than calling the Type class sendTypeMsg method, which allows you to provide
only the name of the type method to which the message is sent.

Within a package, the package writer may want to check that the method supplied by the user of the package is
appropriate.

The Method class isCallCompatibleWith method checks that the target method supplied by the package user
cannot be invoked only on the specified target object but that it has a signature that is compatible with that
expected by the package. The Method class isCallCompatibleWith method has the following signature.

isCallCompatibleWith(targetObject: Object;
exampleMethod: Method): Boolean;

The following is an example of the invokeTypeMethod method being called from a method in a package
exporting schema, invoking a type method using the provided context, type, method, and parameters provided
from the importing schema.

callUserTypeMethod(userEvent: ScheduledEvent);
begin

if userEvent.targetContext <> null and userEvent.targetType <> null and
userEvent.targetMethod <> null then

userEvent.invokeTypeMethod(userEvent.targetContext, userEvent.targetType,
userEvent.targetTypeMethod, userEvent.methodParams);

userEvent.myScheduler := null;
delete userEvent;

endif;
end;

Applies to Version: 2020.0.01 and higher

sendTypeMsg
Signature sendTypeMsg(message: String): Any;

The sendTypeMsg method of the Type class sends the sends the specified message (type method) to the
receiver type instance. This allows type methods to be called on their defined type without requiring an instance of
the type, which differs from the Object class sendTypeMsg method that sends the specified message (type
method) to the receiver, requiring a valid instance.

The return type of the sendTypeMsg method allows for an optional return value from the method being called. If
the called method returns a value, the Any primitive type result must be cast to the appropriate type, to access that
result.

The message parameter value must be the name of a valid type method, which is executed when the
sendTypeMsg method is called.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 797

EncycloSys2 - 2020.0.02

The following code fragment is an example of the sendTypeMsg method.

value := AClass.sendTypeMsg(methodName).Integer;

See also the Type class sendTypeMsgWithParams and sendTypeMsgWithIOParams methods.

Applies to Version: 2020.0.01 and higher

sendTypeMsgWithIOParams
Signature sendTypeMsgWithIOParams(message: String;

paramList: ParamListType io): Any;

The sendTypeMsgWithIOParams method of the Type class sends the specified message (type method) to the
receiver type instance. This allows type methods to be called on their defined type without requiring an instance of
the type, which differs from the Object class sendTypeMsgWithIOParams method that sends the specified
message (type method) to the receiver, requiring a valid instance.

The message parameter must be the name of a valid type method, which is executed when the
sendTypeMsgWithIOParams method is called.

Use the paramList parameter to pass one or more parameters to the method being called.

Notes If the number or type of the actual parameters passed to a method or condition by a parameter list does
not correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur,
as the compiler is unable to perform any type checking on the values that are passed to a parameter list.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also "Passing Variable Parameters to Methods" under "JADE Language
Syntax", in Chapter 1 of the JADE Developer’s Reference.

The sendTypeMsgWithParams method can be used if the type method represented by the message parameter
takes no io or output parameters.

The return type of this method allows for an optional return value from the method being called. If the called
method returns a value, the Any primitive type result must be cast to the appropriate type, to access that result.

See also the Type class sendTypeMsg and sendTypeMsgWithParams methods.

Applies to Version: 2020.0.01 and higher

sendTypeMsgWithParams
Signature sendTypeMsgWithParams(message: String;

paramList: ParamListType io): Any;

The sendTypeMsgWithParams method of the Type class sends the specified message (type method) to the
receiver type instance. This allows type methods to be called on their defined type without requiring an instance of
the type, which differs from the Object class sendTypeMsgWithParams method that sends the specified message
(type method) to the receiver, requiring a valid instance.

The message parameter must be the name of a valid type method, which is executed when the
sendTypeMsgWithIOParams method is called.

Use the paramList parameter to pass one or more parameters to the method being called.

Encyclopaedia of Classes
(Volume 2)

Type Class Chapter 1 798

EncycloSys2 - 2020.0.02

Notes If the number or type of the actual parameters passed to a method or condition by a parameter list does
not correspond exactly to the formal parameter list declaration, an exception or an unpredictable result can occur,
as the compiler is unable to perform any type checking on the values that are passed to a parameter list.

For details about the ParamListType pseudo type, see "ParamListType" under "Pseudo Types", in Chapter 1 of
the JADE Developer’s Reference. See also "Passing Variable Parameters to Methods" under "JADE Language
Syntax", in Chapter 1 of the JADE Developer’s Reference.

The sendTypeMsgWithIOParams method can be used if the type method represented by the message parameter
takes io or output parameters.

The return type of this method allows for an optional return value from the method being called. If the called
method returns a value, the Any primitive type result must be cast to the appropriate type, to access that result.

The following code fragment is an example of the sendTypeMsgWithParams method.

value := AClass.sendTypeMsgWithParams(methodName, param1, param2).Integer;

See also the Type class sendTypeMsg and sendTypeMsgWithIOParams methods.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of Classes
(Volume 2)

UserInterfaceException Class Chapter 1 799

EncycloSys2 - 2020.0.02

UserInterfaceException Class
The UserInterfaceException class is the transient class that defines behavior for exceptions relating to the
handling of windows.

Inherits From: NormalException

Inherited By: ActiveXInvokeException, JadeDotNetInvokeException

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 800

EncycloSys2 - 2020.0.02

WebSession Class
The WebSession class maintains all Internet session information. Each JADE application maintains its own copy
of the WebSession object.

Note The term Web server refers to Microsoft Internet Information Server (IIS) or Apache HyperText Transfer
Protocol (HTTP) Server.

An exception is raised if you use transient transactions in the create event of a WebSession subclass.

For details about the constant, properties, and methods defined in the WebSession class, see "WebSession Class
Constant", "WebSession Properties", and "WebSession Methods", in the following subsections.

Inherits From: Object

Inherited By: RootSchemaSession

WebSession Class Constant
The constant provided by the WebSession class is listed in the following table.

Constant Integer Value

WebSession_System_Timer_Event 18041999

For details, see the timerEvent method.

WebSession Properties
The properties defined in the WebSession class are summarized in the following table.

Property Descriptions

lastAccessTime Contains the timestamp of the last access of the JADE schema in the session

sessionId Contains the unique random number identifier of the session

startTime Contains the timestamp of the time that the session was started

usePageSequencing Specifies whether the forms generated for Web-enabled applications have a hidden
sequence number field

lastAccessTime
Type: TimeStamp

The lastAccessTime property of the WebSession class contains the timestamp of the last access of the JADE
schema in the Web session.

The lastAccessTime property is used to determine the disconnect status. The Web session is terminated if there
is no activity for the session for a specified time.

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 801

EncycloSys2 - 2020.0.02

sessionId
Type: Integer

The sessionId property of the WebSession class contains the unique random number identifier of the Web
session. This identifier is encrypted and stored as a hexadecimal string in a hidden field.

The sessionId property and the creation timestamp of the Web page are embedded as hidden text fields in every
Web page sent to the client.

startTime
Type: TimeStamp

The startTime property of the WebSession class contains the timestamp of the time that the Web session was
started.

usePageSequencing
Type: Boolean

The usePageSequencing property of the WebSession class specifies whether the forms that are generated for
JADE Forms or HTML Documents Web-enabled applications have a hidden field with a sequence number that is
incremented with each request.

When a response is received from a browser, the sequence number is compared to the one stored in the Web
session. If the incoming number is less than the number on the Web session, an exception is raised (11091
Submitted HTML form is out of sequence).

To enforce correct sequencing of HTML pages, set the page_sequencing or html_page_sequencing element in
the XML application configuration file to true, or add the following line to the create method of the WebSession
subclass.

usePageSequencing := true;

WebSession Methods
The methods defined in the WebSession class are summarized in the following table.

Method Description

browserType Returns a string containing the type of Web browser.

createVirtualDirectoryFile Passes image files created by a JADE application to the jadehttp library or
JADE mod_jadehttp module.

deleteVirtualDirectoryFile Deletes specified files from the virtual directory used by the jadehttp library.

getCurrentLocale Returns the locale based on information returned from the browser.

getHttpParam Returns the value associated with the specified HTTP parameter.

getHttpString Returns the HTTP string that is returned from the Web browser.

getServerVariable Returns the HyperText Transfer Protocol (HTTP) header information for your
Web request from the Web server (that is, Microsoft IIS Server or Apache
HTTP Server).

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 802

EncycloSys2 - 2020.0.02

Method Description

getSessionForm Keeps track of all open instances of the specified form for the current
session.

getWebSessionCount Returns the total number of active Web sessions for all nodes connected to
the server.

isVDFilePresent Returns whether the requested file is present on the Web server side of the
firewall when using the JADE Web interface via the jadehttp library file or
the JADE mod_jadehttp module.

processRequest Executed when a request is received from the Web.

removeSession Removes the current Web session.

removeSessionWithMessage Removes the current Web session and sends the specified message.

reply Executed when all processing is complete and the JADE system is ready to
send a response back to the Web browser.

setCurrentLocale Switches locales from the locale of the requesting Web browser or default
locale.

timerEvent Invoked by the Web session when the session times out.

browserType
Signature browserType(): String;

The browserType method of the WebSession class returns a string containing the type of Web browser; that is,
Netscape or Internet-Explorer.

An exception is raised if this method is invoked from a server method.

createVirtualDirectoryFile
Signature createVirtualDirectoryFile(fileName: String;

fileContents: Binary;
retain: Boolean): Integer;

The createVirtualDirectoryFile method of the WebSession class, which passes image files created by a JADE
application to the jadehttp library or the mod_jadehttp module, can be reimplemented in your user session class.

The jadehttp library or mod_jadehttp module creates the specified file in the directory (the virtual directory visible
to Web browsers) in which the library is running. (See also the WebSession class isVDFilePresent method.)

The createVirtualDirectoryFile method parameters are listed in the following table.

Parameter Description

fileName Name of the file to be created in the virtual directory

fileContents Binary holding the file contents

retain Creates read-only files when set to true or standard files when set to false

This method returns zero (0) if the method successfully formats a request to the jadehttp library or mod_jadehttp
module, or it returns the non-zero Windows error code indicating the failure to create the file.

The image files must be passed before the final reply to the Web request is returned.

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 803

EncycloSys2 - 2020.0.02

This process is transparent if your application is using the standard JADE-generated Internet facility. However, if
your application logic does additional file generation of its own, you must call this method.

You can specify whether files created in the virtual directory are deleted automatically and how this happens by
setting the PurgeDirectoryRule parameter in the [application-name] section of the jadehttp.ini file or the
PurgeDirectoryRule configuration directive in the JADE mod_jadehttp. If this parameter or directive is not set,
files of type .jpg, .png, or .gif that are more than 12 hours old are removed. For details, see "Internal Housekeeping
of the Virtual Directory", in Chapter 2 of the JADE Installation and Configuration Guide.

Notes If your applications are not using the standard JADE-generated Internet facility, you need to set the JADE
initialization file Firewall parameter in the [Jadehttp Files] section to true and call the createVirtualDirectoryFile
method only if you require firewall separation. (For details, see "Configuring JadeHttp for Remote Connections", in
Chapter 2 of the JADE Installation and Configuration Guide.) If you do not require firewall separation, JADE
creates image files directly into the virtual directory and bypasses the jadehttp library or mod_jadehttp module.

The file cleanup process that is started when the JADE initialization file Firewall parameter is set to true deletes
only files that are not read-only and which are of type .jpg .png, or .gif. You should therefore make all other files in
this directory that you want to retain read-only, by setting the retain parameter to true.

deleteVirtualDirectoryFile
Signature deleteVirtualDirectoryFile(filename: String;

deleteIfReadOnly: Boolean): Integer;

The deleteVirtualDirectoryFile method of the WebSession class enables you to delete files that are in the
directory specified by the VirtualDirectory parameter in the jadehttp.ini file.

The deleteVirtualDirectoryFile method parameters are listed in the following table.

Parameter Description

filename Name of the file to be deleted from the virtual directory

deleteIfReadOnly Deletes files marked as read-only when set to true

This method returns zero (0) if the file deletion is successful or it returns a non-zero error code if the deletion fails.

You can specify whether files created in the virtual directory are deleted automatically and how this happens by
setting the PurgeDirectoryRule parameter in the [application-name] section of the jadehttp.ini file or the
PurgeDirectoryRule configuration directive in the JADE mod_jadehttp. If this parameter or directive is not set,
files of type .jpg, .png, or .gif that are more than 12 hours old are removed. For details, see "Internal Housekeeping
of the Virtual Directory", in Chapter 2 of the JADE Installation and Configuration Guide.

getCurrentLocale
Signature getCurrentLocale(): Locale;

The getCurrentLocale method of the WebSession class returns the locale of the session object.

The locale is set from information returned by the browser when the session object is created. If the locale of the
browser is not defined in the JADE system, then the default locale of the current schema is used. You can override
the locale programmatically using the setCurrentLocale method.

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 804

EncycloSys2 - 2020.0.02

getHttpParam
Signature getHttpParam(paramName: String): String;

The getHttpParam method of the WebSession class, which returns the value associated with the HyperText
Transfer Protocol (HTTP) parameter specified in the paramName parameter, can be reimplemented in your user
session class.

The HTTP string that is returned from the Web browser generally constitutes name-value pairs. The name-value
pairs are separated by an ampersand character (&) and within this, the name and value are separated by an
equals symbol (=).

Use this method to get the value portion of a name-value pair, as shown in the following example.

getUserName(): String;
vars

userName: String;
begin

//look for a field name called userName
userName := currentSession.getHttpParam('userName');
return userName;

end;

Note The paramName parameter is case-sensitive.

Using the http://www.jadeworld.com/jadehttp.dll?TestApp&myparam=KiaOra HTTP string, the code fragment in
the following example shows the use of the getHttpParam method to return the specified value.

str := currentSession.getHttpParam("myparam");
write str; // Outputs "KiaOra"

If the specified parameter does not exist, a null string ("") is returned.

getHttpString
Signature getHttpString(): String;

The getHttpString method of the WebSession class, which returns a string containing the HyperText Transfer
Protocol (HTTP) string returned from the Web browser, can be reimplemented in your user session class.

getServerVariable
Signature getServerVariable(var: String): String;

The getServerVariable method of the WebSession class returns the HTTP header information for your World
Wide Web request from your Web server.

As the var parameter depends on the Web server version and can change, refer to your Web server
documentation for details.

The code fragment in the following example returns the IP address of the current Web session.

currentSession.getServerVariable('REMOTE_ADDR');

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 805

EncycloSys2 - 2020.0.02

Common server environment variables, documented in the IIS documentation under the ServerVariables
function, include those listed in the following table.

Variable Returns…

HTTP_ACCEPT_LANGUAGE A string describing the language to use for displaying content

HTTP_USER_AGENT A string describing the browser that sent the request

HTTPS ON (or on) if the request came in through a secure channel (SSL) or it returns
OFF (or off) if the request is for a non-secure channel

REMOTE_ADDR IP address of the remote host making the request

SERVER_NAME Host name, DNS alias, or IP address of the server as it would appear in self-
referencing URLs

SERVER_PORT Port number to which the request was sent

URL Base portion of the URL

An exception is raised if this method is invoked from a server method.

You can implement your own getServerVariable method (equivalent to this method in the WebSession class) if
you are using a JadeInternetTCPIPConnection instance to communicate with the jadehttp library (that is,
jadehttp.dll) when your application does not use WebSession functionality.

A name that is longer than 100 characters retrieved by the getServerVariable method call is truncated to 100
characters. This name is used to determine the method to invoke when using non-wrapped document literal
format messages. When the name does not meet the JADE method naming requirements, the method invocation
is likely to fail and a SOAP fault to be returned to the Web service consumer.

The following method returns the value of the Internet Server Application Programming Interface (ISAPI) variable
(specified by the var parameter) associated with an Internet message that is received.

getServerVariable(var: String): String;
// The request for the ISAPI variable var is built in the bin variable
// The JadeInternetTCPIPConnection instance must exist and be connected
constants

NULL: Character = #00.Character;
vars

bin: Binary;
connection: JadeInternetTCPIPConnection;

begin
if connection <> null and connection.state = Connection.Connected then

 if IsUnicodeSystem then
 bin := ("GSV" & NULL & var.trimBlanks() & NULL).asANSI(0);

 else
 bin := ("GSV" & NULL & var.trimBlanks() & NULL).Binary;
 endif;

connection.writeBinary(bin);
bin := connection.readBinary(0);

endif;
if IsUnicodeSystem then

return bin.ansiToUnicode.trimBlanks;
else

return bin.String.trimBlanks;
endif;

end;

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 806

EncycloSys2 - 2020.0.02

Caution You can call this method only during the processing of a received Internet message and before the
reply is sent. Accessing the method at any other time causes the process to wait indefinitely for the connection
read or causes the message exchange process with the jadehttp library to be out of step.

getSessionForm
Signature getSessionForm(formName: String): Form;

The getSessionForm method of the WebSession class returns a transient instance of the form specified in the
formName parameter, to enable you to keep track of all open form instances for the current session in a Web-
enabled application that uses JADE forms (that is, a Web-enabled application that does not use HTML
documents).

If there are multiple instances of the specified form, the first instance is returned. If there are no open forms for the
specified value, a null value is returned.

getWebSessionCount
Signature getWebSessionCount(): Integer;

The getWebSessionCount method of the WebSession class, which returns the total number of active Web
sessions for all nodes connected to the JADE server, can be reimplemented in your user session class.

This method returns zero (0) if there are no current active Web sessions.

isVDFilePresent
Signature isVDFilePresent(fileName: String): Boolean;

The isVDFilePresent method of the WebSession class returns whether the file specified in the fileName
parameter is present on the Web server side of the firewall when using the JADE HTML (Web) thin client interface
via the jadehttp library or mod_jadehttp module. The method returns true if the specified file exists or it returns
false if it does not exist.

This method sends a message to the jadehttp library or mod_jadehttp module to perform this action. If the
specified file name does not have a directory part, the current virtual directory defined in the VirtualDirectory
parameter in the jadehttp.ini file for the application is used for Microsoft Internet Information Server; the
PhysicalDirectory defined indirectly through the httpd.conf file is used for Apache HTTP server.

The file specified in the fileName parameter of the isVDFilePresent method is used if the file name has a
directory part.

See also the WebSession class createVirtualDirectoryFile method.

processRequest
Signature processRequest(httpString: String;

queryString: String) updating;

The processRequest method of the WebSession class, which is executed when a request is received from the
Web, can be reimplemented in your user session class. The appropriate form is then updated with the information
received from the incoming string and a reply is sent back to the Web browser after all processing is complete.

The httpString parameter is the string returned from a Web browser request as a result of a POST action on a
Web page. When there is no POST action, the string that is returned is the same as the value returned by the
queryString parameter.

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 807

EncycloSys2 - 2020.0.02

The queryString parameter is the string returned as a result of the selection of a hyperlink or the entry of a
Uniform Resource Locator (URL) on the address line of the Web browser.

You can reimplement this method in your applications. The following example shows the use of this method to
extract information from the string to perform some prior processing.

processRequest(httpString, queryString: String) updating;
vars

userName: String;
begin

//look for a field name called userName
userName := currentSession.getHttpParam('userName');
if userName <> null then

// do some processing
endif;
//now call the default implementation
inheritMethod(httpString, queryString);

end;

Notes If the JADE implementation of this method is not called (by using the inheritMethod instruction), it is your
responsibility to do any processing that is necessary and to send a reply back to the browser. For more details,
see the WebSession class reply method.

JADE expects the incoming httpString parameter value to be in a certain format. If the string that is passed to the
inheritMethod call violates this assumption, the results may be unpredictable; that is, an exception may be raised
or information may be lost or updated incorrectly.

removeSession
Signature removeSession();

The removeSession method of the WebSession class removes the current Web session. You can call this
method in your code so that your application programmatically removes the current Web session, instead of using
the Web Monitor utility to remove the current session.

If you want to send a specific message when the Web session is removed, use the WebSession class
removeSessionWithMessage method.

removeSessionWithMessage
Signature removeSessionWithMessage(message: String) updating;

The removeSessionWithMessage method of the WebSession class, which removes the current Web session
and sends the message specified in the message parameter, can be reimplemented in your user session class.

You can call this method in your code so that your application programmatically removes the current Web session
and sends a specific message, instead of using the default message to send back to the browser.

Tip To remove a Web session without sending a response back to the browser when the Web session is ended
after a response has been sent, call this method with a null ("") string in the message parameter.

An attempt by a user to reconnect to the session is then treated as a new session.

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 808

EncycloSys2 - 2020.0.02

reply
Signature reply(html: String) updating;

The reply method of the WebSession class, which is executed when all processing is complete and the JADE
system is ready to send a response back to the Web browser, can be reimplemented in your user session class.
The html parameter specifies the response that is to be sent back to the Web browser.

You can reimplement this method in your applications; for example, if you want to manipulate the string before
sending a reply back to the Web browser. The following example shows the use of this method to keep a count of
the replies that are sent to the Web browser.

reply(html: String) updating;
begin

//count is a property in the Global class of the user-defined schema
beginTransaction;

global.count := global.count + 1;
commitTransaction;
//now call the default implementation
inheritMethod(html);

end;

Notes If the JADE implementation of this method is not called (by using the inheritMethod instruction), it is your
responsibility to send a response back to the Web browser.

If you modify the html parameter value, it is your responsibility to ensure that the information is displayed as you
expect.

You can use the MinMessageSize parameter in the [application-name] section of the jadehttp.ini file or the
MinMessageSize directive in the Apache mod_jadehttp.so library to specify the minimum size allowed for a Web
message received from JADE when using the reply method to send HTML string Web requests back to the client
node. The minimum value is 1 byte, the maximum value 1024 bytes, and the default value 10 bytes. This value is
read the first time the specified application is accessed after jadehttp.dll has been loaded by Internet Information
Server (IIS) or it is read once, when the Apache Web server starts.

setCurrentLocale
Signature setCurrentLocale(loc: Locale) updating;

The setCurrentLocale method of the WebSession class dynamically sets the current locale to the locale that is
specified in the loc parameter. Call this method to ensure that hyperlinks in Web applications respond as
expected for Web forms displayed for a translated locale.

By default, JADE determines the locale from the Web browser that is making the request.

If there is a form defined for the locale that is making the request, the HTML for that form is generated. If no form is
defined, the default locale is used.

Note If you want to select the translation of all forms in the application from the schema default locale,
regardless of the current locale of the application, set the FormsUseDefaultSchemaLocale parameter in the
[Jade] section of the JADE initialization file to true.

Encyclopaedia of Classes
(Volume 2)

WebSession Class Chapter 1 809

EncycloSys2 - 2020.0.02

timerEvent
Signature timerEvent(eventTag: Integer) updating;

The timerEvent method of the WebSession class, which you can reimplement in your user Web session
subclasses, is called when the session times out.

Use the eventTag parameter to specify the WebSession class WebSession_System_Timer_Event constant; for
example, your methods could contain your application-specific processing code and then the following.

inheritMethod(WebSession_System_Timer_Event);

Note For Web session timeouts to work, you must call the inheritMethod instruction.

Encyclopaedia of Classes
(Volume 2)

WebSocketException Class Chapter 1 810

EncycloSys2 - 2020.0.02

WebSocketException Class
The WebSocketException class is the transient class that defines behavior for exceptions that occur as a result of
the WebSocket protocol.

For details about handling WebSocket exceptions, see error message 31600 in "Error Messages and System
Messages", in the JADEMsgs.pdf file.

Inherits From: NormalException

Inherited By: (None)

Applies to Version: 2018.0.01 and higher

	Contents
	Before You Begin
	Who Should Read this Encyclopaedia
	What’s Included in this Encyclopaedia
	Related Documentation
	Conventions

	Chapter 1 System Classes
	JadeSkinApplication Class
	JadeSkinApplication Properties
	myFormSkins
	myControlSkins

	JadeSkinApplication Method
	updateSkinTimeStamp

	JadeSkinArea Class
	JadeSkinArea Class Constants
	JadeSkinArea Properties
	backColor
	imgBorderBottomLeft
	imgBorderBottomRight
	imgBorderBottomStrip
	imgBorderLeftStrip
	imgBorderRightStrip
	imgBorderTopLeft
	imgBorderTopRight
	imgBorderTopStrip
	imgInner
	innerIsBrush

	JadeSkinCategory Class
	JadeSkinControl Class and Subclasses
	JadeSkinControl Class Constants
	JadeSkinControl Properties
	applyCondition
	borderStyle
	focusBackColor
	focusForeColor
	fontBold
	fontItalic
	fontName
	fontSize
	fontStrikethru
	fontUnderline
	foreColor
	foreColorDisabled

	JadeSkinBaseControl Class
	JadeSkinBrowseButtons Class
	JadeSkinBrowseButtons Properties
	myFirstButton
	myLastButton
	myNextButton
	myPriorButton

	JadeSkinButton Class
	JadeSkinButton Properties
	createRegionFromMask
	myButtonDisabled
	myButtonDown
	myButtonFocus
	myButtonFocusDown
	myButtonRollOver
	myButtonRollUnder
	myButtonUp

	JadeSkinCheckBox Class
	JadeSkinCheckBox Properties
	myFalseImage
	myTrueImage

	JadeSkinComboBox Class
	JadeSkinComboBox Properties
	buttonRightOffset
	imgComboButtonDownRollOver
	myComboButton
	myListBoxSkin
	mySimpleComboTextBoxSkin

	JadeSkinFolder Class
	JadeSkinFolder Properties
	myTabsButton
	myTabScrollLeftButton
	myTabScrollRightButton
	tabActiveColor
	tabHeight
	tabInactiveColor
	tabScrollButtonBackColor

	JadeSkinFrame Class
	JadeSkinGroupBox Class
	JadeSkinGroupBox Class Constants
	JadeSkinGroupBox Properties
	captionPosition
	captionPositionLeftOffset
	captionPositionTopOffset
	myLabelSkin

	JadeSkinHScroll Class
	JadeSkinHScroll Properties
	myLeftButton
	myRightButton

	JadeSkinJadeDockBar Class
	JadeSkinJadeDockBase Class
	JadeSkinJadeDockBase Properties
	myHorizontalGripBar
	myHorizontalResizeBar
	myVerticalGripBar
	myVerticalResizeBar

	JadeSkinJadeDockContainer Class
	JadeSkinJadeEditMask Class
	JadeSkinJadeMask Class
	JadeSkinJadeMask Property
	myButtonSkin

	JadeSkinJadeRichText Class
	JadeSkinLabel Class
	JadeSkinListBox Class
	JadeSkinListBox Properties
	alternatingRowBackColor
	alternatingRowBackColorCount
	imgPictureClosed
	imgPictureLeaf
	imgPictureMinus
	imgPictureOpen
	imgPicturePlus
	selectionColor
	selectionColorText

	JadeSkinOleControl Class
	JadeSkinOptionButton Class
	JadeSkinOptionButton Properties
	myFalseImage
	myTrueImage

	JadeSkinPicture Class
	JadeSkinProgressBar Class
	JadeSkinProgressBar Property
	myProgressImage

	JadeSkinScrollBar Class
	JadeSkinScrollBar Properties
	imgHighLightBrush
	myThumbTrack
	myThumbTrackDisabled
	myThumbTrackDown
	myThumbTrackRollOver

	JadeSkinSheet Class
	JadeSkinSheet Property
	myTabButton

	JadeSkinStatusLine Class
	JadeSkinTable Class
	JadeSkinTable Properties
	alternatingRowBackColor
	alternatingRowBackColorCount
	fixed3D
	fixedColumnsBackColor
	fixedColumnsForeColor
	fixedRowColorHasPrecedence
	fixedRowsBackColor
	fixedRowsForeColor
	myCheckBoxSkin
	selectionColor
	selectionColorText
	tabActiveColor
	tabInactiveColor

	JadeSkinTextBox Class
	JadeSkinTextBox Properties
	hintBackColor
	hintForeColor

	JadeSkinVScroll Class
	JadeSkinVScroll Properties
	myBottomButton
	myTopButton

	JadeSkinEntity Class
	JadeSkinEntity Class Constant
	JadeSkinEntity Properties
	description
	myOwners
	mySkinRoot
	name

	JadeSkinForm Class
	JadeSkinForm Properties
	captionActiveForeColor
	captionFontBold
	captionFontItalic
	captionFontName
	captionFontSize
	captionInactiveForeColor
	captionLeft
	captionTop
	centerCaption
	drawMenuSelectionFlat
	imgInactiveBorderBottomLeft
	imgInactiveBorderBottomRight
	imgInactiveBorderBottomStrip
	imgInactiveBorderLeftStrip
	imgInactiveBorderRightStrip
	imgInactiveBorderTopLeft
	imgInactiveBorderTopRight
	imgInactiveBorderTopStrip
	imgMenuLeft
	imgMenuRight
	imgMenuStrip
	menuBackColor
	menuBackColorSelected
	menuFontBold
	menuFontItalic
	menuFontName
	menuFontSize
	menuForeColor
	menuForeColorDisabled
	menuForeColorSelected
	menuLeftPosition
	menuTopPosition
	myChildMinimizeBtn
	myChildRestoreBtn
	myChildTerminateBtn
	myMaximizeBtn
	myMaximizedBtn
	myMenuSkin
	myMinimizeBtn
	myTerminateBtn
	showMenuLineAlways
	transparentColorForButtons
	useMenuLineSkinForMenus

	JadeSkinMenu Class
	JadeSkinMenu Properties
	backColorSelected
	borderStyle
	drawMenuSelectionFlat
	fontBold
	fontItalic
	fontName
	fontSize
	foreColor
	foreColorDisabled
	foreColorSelected
	imgCheckMark
	imgRightArrow
	imgSeparator
	lineHeight
	pixelsAfterCheckMark
	pixelsAfterPicture
	pixelsBeforeAccelerator
	pixelsBeforeCheckMark
	pixelsBeforeRightArrow

	JadeSkinRoot Class
	JadeSkinRoot Properties
	allApplicationSkins
	allControlSkins
	allFormSkins
	allMenuSkins
	allSimpleButtonSkins
	allSkinCategories
	allSkinEntities
	allWindowStateImages

	JadeSkinSimpleButton Class
	JadeSkinSimpleButton Properties
	imgDisabled
	imgDown
	imgRollOver
	imgUp

	JadeSkinWindow Class
	JadeSkinWindow Properties
	myHorizontalScrollBarSkin
	myImageMask
	mySkinCategory
	myVerticalScrollBarSkin

	JadeSkinWindowStateImage Class
	JadeSkinWindowStateImage Properties
	foreColor
	isImageMask

	JadeSOAPException Class
	JadeSSLContext Class
	JadeSSLContext Class Constants
	JadeSSLContext Properties
	caFile
	caPath
	cipherList
	methodType
	verifyDepth
	verifyRemoteCertificate
	x509

	JadeSSLContext Methods
	getActiveCipher
	getPeerCertificate

	JadeSystemAnnotation Class
	JadeTableCell Class
	JadeTableCell Properties
	column
	comboIndex
	hyperLink
	mergeCells
	picture
	row
	sheet
	text

	JadeTableCell Methods
	delete
	getCellWidth
	positionLeft
	positionTop
	setPictureDescription

	JadeTableColumn Class
	JadeTableColumn Properties
	column
	maxColumnWidth
	sheet
	sortAsc
	sortCased
	sortOrder
	sortType
	visible
	width
	widthPercent

	JadeTableColumn Methods
	delete
	findObject
	findString
	restoreAutoSize

	JadeTableElement Class
	JadeTableElement Properties
	alignment
	backColor
	cellControl
	comboList
	decimals
	editMask
	enabled
	fontBold
	fontItalic
	fontName
	fontSize
	fontStrikethru
	fontUnderline
	foreColor
	gridBottom
	gridRight
	inputType
	itemObject
	marginBottom
	marginLeft
	marginRight
	marginTop
	maxLength
	partialTextIndication
	selected
	wordWrap

	JadeTableRow Class
	JadeTableRow Properties
	height
	row
	sheet
	visible

	JadeTableRow Methods
	delete
	findObject
	findString
	restoreAutoSize

	JadeTableSheet Class
	JadeTableSheet Properties
	alternatingRowBackColor
	alternatingRowBackColorCount
	caption
	column
	columns
	currentRowImage
	displaySorting
	extendedColumn
	fixed3D
	fixedColumns
	fixedRows
	gridColor
	gridLines
	leftColumn
	myTable
	pixelHorzScrollIncrement
	pixelVertScrollIncrement
	row
	rows
	scrollBars
	scrollHorzPos
	scrollMode
	scrollVertPos
	sheet
	showCurrentRowImage
	showPartialTextBubbleHelp
	tabInitialPosition
	tabOffEnds
	topRow
	visible
	widthPercentStyle

	JadeTableSheet Methods
	accessCell
	accessColumn
	accessRow
	addItem
	addItemAt
	clear
	delete
	findColumnObject
	findObject
	findRowObject
	findString
	getCollection
	getCellFromPosition
	insertColumn
	moveColumn
	moveRow
	positionCollection
	refreshEntries
	removeItem
	resort
	restoreAutoSize
	selectedCount
	selectedNext
	setCollectionObject

	JadeTcpIpProxy Class
	Proxy Communication Code Examples
	Considerations when Implementing JadeTcpIpProxy Class Features
	JadeTcpIpProxy Class Constants
	JadeTcpIpProxy Properties
	browserType
	domain
	host
	password
	port
	proxyType
	userName

	JadeTcpIpProxy Method
	connect

	JadeTestCase Class
	JadeTestCase Methods
	assert
	assertEquals
	assertEqualsMsg
	assertFalse
	assertFalseMsg
	assertNotNull
	assertNotNullMsg
	assertNull
	assertNullMsg
	assertTrue
	assertTrueMsg
	expectedException
	info

	JadeTestListenerIF Interface
	JadeTestListenerIF Interface Callback Method Signatures
	finish
	message
	methodSuccess
	start
	testFailure
	testSkipped
	testSuccess

	JadeTestRunner Class
	JadeTestRunner Class Methods
	runTests
	setDebugOnAssert
	setDebugOnException
	setDebugOnUnexpectedException
	setLogCallStack
	setTestListener

	JadeTimeZone Class
	JadeTimeZone Properties
	currentDaylightBias
	currentUtcBias
	daylightSaving
	daylightTimeName
	displayName
	historicalTimeZones
	ianaName
	standardTimeName

	JadeTimeZone Methods
	convertTimeByTimeZone
	convertTimeFromUtc
	convertTimeToUtc
	createTimeZoneByLocationWindows
	createTimeZoneByName
	Mapping IANA Database and Windows Registry Time Zones

	createTimeZoneByNameWindows
	getDaylightBias
	getDaylightSavingName
	getDaylightTransition
	getStandardTransition
	getWindowsTimeZoneNameByLocation
	getUtcBias
	isDaylightSaving
	retrieveHistoricalTimeZone

	JadeTimeZoneByYearDict Class
	JadeTransactionTrace Class
	JadeTransactionTrace Class Constants
	JadeTransactionTrace Properties
	myProcess
	startTime
	status
	stopTime
	tranId

	JadeTransactionTrace Methods
	clear
	getEntry
	getEntryCount

	JadeUserCollClass Class
	JadeUserCollClass Methods
	addExternalKey
	addMemberKey
	clearKeys
	endKeys
	setLength
	setMembership

	Using JadeUserCollClass Collections

	JadeWebService Class
	JadeWebService Class Constants
	JadeWebService Methods
	isNilItem
	setAnyPropType
	setError

	JadeWebServiceConsumer Class
	JadeWebServiceConsumer Class Constants
	JadeWebServiceConsumer Properties
	characterConversionException
	handleCharConversionException
	logStatistics
	password
	proxyHostName
	proxyPassword
	proxyUsername
	soapHeaders
	soapRequest
	soapResponse
	timeout
	unknownHeaders
	userName
	workerApp

	JadeWebServiceConsumer Methods
	addHttpHeader
	getEndpointURL
	getHttpHeader
	getHttpHeaderClient
	getHttpHeaderServer
	getLastStatistics
	getTimeouts
	invoke
	invokeAsync
	invokeAsyncWithVerb
	invokeWithVerb
	processReply
	reset
	sendRequest
	setEndpointURL
	setTimeouts

	JadeWebServiceProvider Class
	JadeWebServiceProvider Properties
	deleteTransientReturnType
	incomingMessage
	rawXML
	unknownHeaders

	JadeWebServiceProvider Methods
	createVirtualDirectoryFile
	deleteVirtualDirectoryFile
	getLastStatistics
	getServerVariable
	initialize
	isVDFilePresent
	processMessage
	processRequest
	processRequestPostHeaders
	reply

	JadeWebServiceSoapHeader Class
	JadeWebServiceSoapHeader Properties
	actor
	didUnderstand
	mustUnderstand

	JadeWebServiceUnknownHeader Class
	JadeWebServiceUnknownHeader Properties
	headerXML
	webService

	JadeWebSocket Class
	JadeWebSocket Property
	id

	JadeWebSocket Methods
	onClose
	onMsg
	onOpen
	send
	sendText

	JadeWebSocketServer Class
	JadeWebSocketServer Methods
	getWebSocket
	run
	stop

	JadeX509Certificate Class
	JadeX509Certificate Properties
	endDate
	issuer
	purpose
	startDate
	subject

	JadeX509Certificate Methods
	readCertificateDataFromFile
	readPrivateKeyDataFromFile

	JadeXMLAttribute Class
	JadeXMLAttribute Properties
	element
	localName
	name
	namespaceURI
	value

	JadeXMLAttribute Method
	namespacePrefix

	JadeXMLCDATA Class
	JadeXMLCharacterData Class
	JadeXMLCharacterData Property
	data

	JadeXMLComment Class
	JadeXMLDocument Class
	JadeXMLDocument Properties
	docType
	endOfLine
	indentString
	keepWhitespace
	outputDeclaration
	rootElement

	JadeXMLDocument Methods
	addComment
	addCommentObject
	addDocumentType
	addDocumentTypeObject
	addElement
	addElementNS
	addElementObject
	addElementObjectNS
	addProcessingInstruction
	addProcessingInstructionObject
	findElementByNameNS
	findElementByTagName
	findElementsByNameNS
	findElementsByTagName
	getElementByTagName
	getElementByTagNameNS
	getElementsByTagName
	getElementsByTagNameNS
	parseFile
	parseString
	writeToFile

	JadeXMLDocumentParser Class
	JadeXMLDocumentParser Methods
	comment
	parseDocumentFile
	parseDocumentString
	processingInstruction
	setClassMapping
	startCDATA

	JadeXMLDocumentType Class
	JadeXMLDocumentType Properties
	internalSubset
	name
	publicId
	systemId

	JadeXMLElement Class
	JadeXMLElement Properties
	attributes
	localName
	namespaceURI
	tagName
	textData

	JadeXMLElement Methods
	addAttribute
	addAttributeNS
	addAttributeObject
	addAttributeObjectNS
	addCDATA
	addCDATAObject
	addComment
	addCommentObject
	addElement
	addElementNS
	addElementObject
	addElementObjectNS
	addProcessingInstruction
	addProcessingInstructionObject
	addText
	addTextObject
	findAllElementsByNameNS
	findAllElementsByTagName
	getAllElementsByTagName
	getAllElementsByTagNameNS
	getAttributeByName
	getAttributeByNameNS
	getElementByTagName
	getElementByTagNameNS
	getElementsByTagName
	getElementsByTagNameNS
	namespacePrefix
	parentElement
	setText
	text

	JadeXMLException Class
	JadeXMLException Class Constants
	JadeXMLException Properties
	columnNumber
	fileName
	lineNumber

	JadeXMLNode Class
	JadeXMLNode Properties
	childNodes
	document
	parentNode

	JadeXMLNode Methods
	copyAfter
	copyAsChildOf
	copyBefore
	descendsFrom
	moveAfter
	moveAsChildOf
	moveBefore
	remove
	writeToString

	JadeXMLParser Class
	JadeXMLParser Methods
	characters
	columnNumber
	comment
	endCDATA
	endDTD
	endElement
	fileName
	getAttribute
	getAttributeValueByName
	getAttributeValueByNameNS
	lineNumber
	parseFile
	parseString
	processingInstruction
	startCDATA
	startDTD
	startElement

	JadeXMLProcessingInstruction Class
	JadeXMLProcessingInstruction Properties
	data
	target

	JadeXMLText Class
	List Class
	List Methods
	clear
	copy
	purge

	Locale Class
	Locale Class Constants
	Locale Properties
	cloneOf
	clones
	forms
	languageId
	schema
	translatableStrings

	Locale Methods
	getAllTranslatableStrings
	getForms
	getStringValue
	getTranslatableStringLocal
	getTranslatableStrings
	getTranslatableStringsByNum
	hasClones
	isClone
	makeLocaleName

	LocaleFormat Class
	LocaleFormat Property
	schema

	LocaleFullInfo Class
	LocaleFullInfo Class Constants
	LocaleFullInfo Properties
	currencyInfo
	dateInfo
	defaultCodePage
	defaultCountryCode
	defaultLanguageId
	listSeparator
	measurementSystem
	nativeDigits
	numericInfo
	timeInfo

	LocaleNameInfo Class
	LocaleNameInfo Properties
	abbreviatedCountryName
	abbreviatedLangName
	countryCode
	englishCountryName
	englishLangName
	languageId
	localeId
	localizedCountryName
	localizedLangName
	nativeCountryName
	nativeLangName

	Lock Class
	Lock Class Constants
	Lock Properties
	duration
	elapsedTime
	kind
	lockedBy
	requestedBy
	requestTime
	type
	waitTime

	Lock Method
	target

	LockArray Class
	LockContentionInfo Class
	LockContentionInfo Properties
	maxWaitTime
	totalContentions
	totalWaitTime

	LockContentionInfo Method
	target

	Example of Displaying Lock Contention Information

	LockException Class
	LockException Properties
	lockDuration
	lockTimeout
	lockType
	retryCount
	targetLockedBy

	LockException Methods
	lockTarget
	retryLock
	showDialog

	MemberKeyDictionary Class
	MemberKeyDictionary Methods
	add
	includes
	indexNear
	indexNear64
	purge
	remove
	tryAdd
	tryAddDeferred
	tryRemove
	tryRemoveDeferred
	tryRemoveKeyEntry

	MenuItem Class
	Adding User-defined Event Methods to a Menu Item
	MenuItem Class Constants
	MenuItem Properties
	allChildren
	caption
	checked
	children
	description
	disableReason
	enabled
	form
	helpContextId
	helpKeyword
	index
	name
	picture
	securityLevelEnabled
	securityLevelVisible
	userObject
	visible
	webFileName

	MenuItem Methods
	getLevel
	getMenuItem
	loadMenu
	loadSubMenu
	setEventMapping
	setEventMappingEx
	setShortCutKey

	MenuItem Events
	click
	select

	MergeIterator Class
	MergeIterator Property
	ignoreDuplicates

	MergeIterator Methods
	addCollection
	back
	current
	getCollectionAt
	getCollectionCount
	getCurrentCollection
	getCurrentKey
	getCurrentKeys
	isValid
	next
	removeCollection
	reset
	startAtObject
	startKeyGeq
	startKeyGtr
	startKeyLeq
	startKeyLss

	MethodCallDesc Class
	MethodCallDesc Properties
	invocationMode
	method
	position

	MethodCallDesc Methods
	getName
	getReceiver
	logSelf

	MultiMediaType Class
	MultiMediaType Property
	usePresentationFileSystem

	NamedPipe Class
	NamedPipe Property
	serverName

	NamedPipe Methods
	close
	closeAsynch
	getMaxMessageSize
	listen
	listenAsynch
	open
	openAsynch
	readBinary
	readBinaryAsynch
	writeBinary
	writeBinaryAsynch

	Node Class
	Node Class Constants
	Node Properties
	accessPatterns
	name
	osID
	processes
	system
	userExitCode

	Node Methods
	beginIndividualRequestsLogging
	beginSample
	clearMethodCache
	createExternalProcess
	downloadCount
	endIndividualRequestsLogging
	endSample
	getAppServerGroupName
	getCacheSizes
	getCacheSizes64
	getCharacterSize
	getCommandLine
	getComputerName
	getDefaultLCID
	getEnvironmentVariable
	getExecuteFlagValue
	getIniFileName
	getJadeInstallDirectory
	getJadeHomeDirectory
	getJadeWorkDirectory
	getLCIDFromCharacterSet
	getLineDelimiter
	getLocks
	getMutexCounts
	getNotes
	getObjectCaches
	getOSDetails
	getOSPlatform
	getProfileString
	getProgramDataDirectory
	getQueuedLocks
	getRequestStats
	getRpcServerStatistics
	getTempPath
	getUserDataDirectory
	isApplicationServer
	isCacheCoherencyEnabled
	isReadOnlySchema
	isReadOnlySystemSchema
	isServerNode
	isService
	logObjectCaches
	logRequestStatistics
	logUserCommand
	networkAddress
	nodeRole
	nodeType
	osProcessId
	processDump
	setCacheSizes
	setCacheSizes64
	setExecuteFlagValue
	setProfileString
	wbemListClasses
	wbemListInstanceNames
	wbemQueryQualifiers
	wbemRetrieveData

	NormalException Class
	Notification Class
	Notification Properties
	elapsedTime
	eventType
	featureNumber
	isInterface
	requestedBy
	requestTime
	responseType
	serialNumber
	typeNumber
	userTag

	Notification Methods
	subscriber
	target

	NotificationArray Class
	NotificationException Class
	NotificationException Method
	notificationTarget

	NumberFormat Class
	NumberFormat Class Constants
	NumberFormat Properties
	decimalPlaces
	decimalSeparator
	groupings
	negativeFormat
	negativeSign
	positiveSign
	showLeadingZeros
	thousandSeparator

	NumberFormat Method
	defineNumberFormat

	Object Class
	Object Methods
	autoPartitionIndex
	beginClassNotification
	theClass
	transients
	eventType
	responseType
	eventTag

	beginClassNotificationForIF
	theInterface

	beginClassesNotification
	theClass
	includeSubclasses
	transients
	eventType
	responseType
	eventTag

	beginClassesNotificationForIF
	theInterface

	beginNotification
	theObj
	eventType
	responseType
	eventTag
	Example of Beginning Notifications

	beginNotificationForIF
	theInterface

	beginTimer
	beginTimerForIF
	causeEvent
	changeObjectVolatility
	class
	cloneSelf
	cloneSelfAs
	copySelf
	copySelfAs
	creationTime
	creationTimeUTC
	deletePropertyValue
	display
	edition
	endClassNotification
	theClass
	transients
	eventType

	endClassNotificationForIF
	theInterface

	endClassesNotification
	theClass
	includeSubclasses
	transients
	eventType

	endClassesNotificationForIF
	theInterface

	endNotification
	theObj
	eventType

	endNotificationForIF
	theInterface

	endNotificationForSubscriber
	endTimer
	endTimerForIF
	exclusiveLock
	getClassForObject
	getClassNumberForObject
	getInstanceIdForObject
	getInstanceIdForObject64
	getLockCallStack
	getLockStatus
	getModifiedBy
	getName
	getObjectStringForObject
	getObjectVolatility
	getOidString
	getOidStringForObject
	getOwnerForObject
	getPropertyValue
	getTimerStatus
	getTimerStatusForIF
	getUpdateTranID
	hasMembers
	inspect
	inspectModal
	invokeIOMethod
	invokeMethod
	isImportedObject
	isKindOf
	isLockedByMe
	isObjectFrozen
	isObjectNonSharedTransient
	isObjectPersistent
	isObjectSharedTransient
	isObjectStable
	isObjectTransient
	isObjectVolatile
	isSharedTransient
	isSystemObject
	isTransient
	jadeReportWriterCheck
	jadeReportWriterDisplay
	latestEdition
	lock
	makeObjectFrozen
	makeObjectStable
	makeObjectVolatile
	moveToPartition
	reserveLock
	respondsTo
	resynch
	resynchObject
	sdeCauseEvent
	sdsCauseEvent
	sendMsg
	sendMsgWithIOParams
	sendMsgWithParams
	sendTypeMsg
	sendTypeMsgWithIOParams
	sendTypeMsgWithParams
	setPartitionID
	setPartitionIndex
	setPropertyValue
	sharedLock
	sysNotification
	eventType
	theObject
	eventTag

	timerEvent
	tryGetPropertyValue
	tryLock
	unlock
	updateLock
	updateObjectEdition
	userNotification
	eventType
	theObject
	eventTag
	userInfo

	version

	ObjectArray Class
	ObjectArray Method
	addAll

	ObjectByObjectDict Class
	ObjectLongNameDict Class
	ObjMethodCallDesc Class
	ObjMethodCallDesc Property
	interfaceMethod

	ObjMethodCallDesc Method
	getReceiver

	ObjectSet Class
	ODBCException Class
	ODBCException Properties
	nativeError
	state

	ODBCException Method
	showDialog

	OleObject Class
	OleObject Properties
	compressed
	fullName
	oleData
	shortName

	OleObject Methods
	copy
	getData
	isServerRegistered
	setData

	PointArray Class
	PrimMethodCallDesc Class
	PrimMethodCallDesc Property
	primNo

	PrimMethodCallDesc Method
	getReceiver

	PrimType Class
	PrimType Method
	findProperty

	Printer Class
	Defining Your JADE Report Layouts
	Layering Print Output

	Printer Class Constants
	Printer Properties
	autoPaging
	bottomOfPage
	collate
	copies
	documentType
	drawFillColor
	drawFillStyle
	drawFontBold
	drawFontItalic
	drawFontName
	drawFontSize
	drawFontStrikethru
	drawFontUnderline
	drawStyle
	drawTextAlign
	drawTextCharRotation
	drawTextRotation
	drawWidth
	duplex
	footerFrame
	headerFrame
	leftMargin
	orientation
	pageBorderWidth
	pageNumber
	paperSource
	printPreview
	printPreviewAllowPrint
	printPreviewAllowSelect
	printPreviewReduce
	retainCMDValues
	rightMargin
	suppressDialog
	title
	topOfPage

	Printer Methods
	abort
	centreFrame
	close
	drawArc
	drawChord
	drawEllipse
	drawFilledRectangle
	drawGrid
	drawLine
	drawPie
	drawRectangle
	drawRoundRectangle
	drawSolidRectangle
	drawTextAt
	drawTextIn
	drawTextSize
	drawTextSizeIn
	frameFits
	getAllPaperSources
	getAllPrinterPaperSources
	getAllPrinters
	getDefaultDocumentType
	getDefaultPaperSource
	getFooter
	getHeader
	getPrintedStatus
	getPrinterName
	getPrintPosition
	getReport
	isPrinterOpen
	newPage
	pageHeight
	pageWidth
	print
	printActive
	printPage
	printReport
	printUnformatted
	setCustomPaperSize
	setFooter
	setHeader
	setMargins
	setPrinter
	setPrintFileName
	setPrintPosition
	setReport
	useCustomPrinterSettings

	Using the Common Print Setup Dialog
	Using the Print Progress Dialog
	Examples of Printer Methods
	Free-Format Printing
	Previewing Print Output
	Using the Select Pages To Print Dialog
	Searching Previewed Output

	Portable Printing

	Process Class
	Process Class Constants
	Process Properties
	adminInfo
	node
	number
	persistentApp
	schema
	signOnTime
	signOnUserCode
	status
	type
	userCode
	userExitCode
	userInfo

	Process Methods
	addLockCallStackFilter
	adjustObjectCachePriority
	allowTransientToPersistentInvs
	allowTransientToSharedTranInvs
	allTransientInstances
	analyzeTransientFileUsage
	appServerPort
	beginMethodProfiling
	changeUserCode
	classAccessFrequenciesStatus
	clearLockCallStackFilter
	compactTransientFile
	countQueuedNotifications
	createTransientMethod
	currentStack
	debug
	deleteTransientMethod
	disableAllTransTraceCallbacks
	enableClassAccessFrequencies
	enableTransTraceCallback
	endMethodProfiling
	executeIOScript
	executeScript
	executeTransientIOMethod
	executeTransientMethod
	extractRequestStatistics
	extractWebStatistics
	finalizePackages
	getAllApps
	getBufferStatistics
	getCallStackInfo
	getCommandLine
	getComputerName
	getDateTimeDelta
	getExceptionHandlerStack
	getErrorText
	getIniFileName
	getJadeInstallDirectory
	getJadeHomeDirectory
	getJadeWorkDirectory
	getLastExtFunctionCallError
	getLockCallStackFilter
	getMethodCacheLimit
	getMethodCacheStatistics
	getMethodProfileInfo
	getOSDetails
	getOSPlatform
	getPersistentDeadlockPriority
	getProcessApp
	getProfileString
	getProgramDataDirectory
	getRequestStatistics
	getRpcServerStatistics
	getSaveLockCallStack
	getSignOnUsage
	getStringPoolLimit
	getTempPath
	getTimers
	getTrackedMethod
	getTrackedMethodReceiver
	getTrackedMethodReturnValue
	getTrackedMethodStatus
	getTransactionId
	getTransactionId64
	getTransactionTraceCallbacks
	getTransactionTraceObject
	getTransientDeadlockPriority
	getTransientFileLength
	getTransientFileName
	getUserDataDirectory
	initializePackages
	isCommitting
	isInExceptionState
	isInImportedContext
	isInLoadState
	isInLockState
	isInTransactionState
	isInTransientTransactionState
	isRunningScript
	isUserDataPump
	isUsingThinClient
	iteratorsExcludeOfflineObjects
	networkAddress
	overrideDeferredInverseMaintenance
	profileMethod
	profiler
	prohibitBeginTransaction
	prohibitPersistentUpdates
	removeMethodProfileInfo
	resumeTimers
	rpsSuppressTransactionDeletes
	sendCallStackInfo
	sendMethodCacheStatistics
	sendRequestStatistics
	sendTransientFileAnalysis
	sendTransientFileInfo
	sendWebStatistics
	setDateTimeDelta
	setDefaultLockTimeout
	setMethodCacheLimit
	setObjectCachePriority
	setPersistentDeadlockPriority
	setProfileString
	setSaveLockCallStack
	setStringPoolLimit
	setTransientDeadlockPriority
	sleep
	startMethodTracking
	startTransactionTrace
	stopMethodTracking
	stopTransactionTrace
	suspendTimers
	transactionTraceStarted
	transientPersistentInvsEnabled
	transientSharedTranInvsEnabled
	truncateOnDecimalOverflow
	useDeferredInverseMaintenance
	useUpdateLocks
	waitForMethods

	ProcessDict Class
	ProcessStackArray Class
	RealArray Class
	Rectangle Class
	Rectangle Properties
	bottom
	left
	right
	top

	Rectangle Methods
	copy
	display
	isEmpty
	set

	RelationalView Class
	RelationalView Class Constants
	RelationalView Properties
	creator
	name
	rpsDatabaseName
	rpsDatabaseType
	rpsDefaultConnectionString
	rpsDefaultPassword
	rpsDefaultUserName
	rpsExceptionCreate
	rpsExceptionDelete
	rpsExceptionUpdate
	rpsLoggingOptions
	rpsShowMethods
	rpsShowVirtualProperties
	rpsTopSchemaName
	rpsUseOidClassInstMap
	schema
	timeCreated

	RelationalView Methods
	addUserAttribute
	addUserTable
	changeColumnName
	columnExists
	createExcludedJcfFile
	excludeTableColumnName
	excludeTableName
	extractData
	extractDataAll
	extractDataUsingIniFileOptions
	generateRpsTableCreationScript
	getColumnFeature
	getExcludedTableColumnNames
	getExcludedTableNames
	getRpsMappedClasses
	getTableColumnNames
	getTableNames
	isODBCRelationalView
	isRpsMapping
	removeColumn
	removeTable
	tableExists
	versionRpsMapping

	RootSchemaSession Class
	RootSchemaSession Properties
	allowHiddenControlEvents
	userSecurityLevel

	Schema Class
	Schema Class Constants
	Schema Properties
	externalDatabases
	formsManagement
	jomVersion
	name
	needsReorg
	patchVersion
	superschema
	relationalViews
	rpsDatabases
	text

	Schema Methods
	addCompileTranslatableString
	addUserCollectionSubclass
	addUserSubclass
	allClasses
	allDatabases
	allJadeInterfaces
	allLibraries
	allPrimitives
	allSubschemas
	buildFormData
	constantNames
	createWebServiceApplication
	deleteUserSubclass
	extractControlIdsCSV
	extractControlIdsCSVforSchema
	findClassInBranch
	findClassInSubschema
	findFormForLocale
	findFormForLocaleInAllSchemas
	findFormForLocaleInSupers
	findGlobalConstantInBranch
	findMeForm
	findName
	findProperty
	findType
	generateWSDL
	getAllBaseLocales
	getAllClasses
	getAllFormTranslations
	getAllInheritedLocales
	getAllLocales
	getAllLocalLocales
	getAllSystemLocales
	getAllRpsMappings
	getAppliedPatches
	getBaseLocalesLocal
	getCategory
	getClass
	getClassByNumber
	getConstant
	getConstantCategory
	getControlClasses
	getCurrentLocaleId
	getDefaultLocale
	getExternalDatabase
	getFormatAnywhereInPath
	getFormatAnywhereInPathLatest
	getFormatAnywhereInSubs
	getFormatAnywhereInSubsLatest
	getFunction
	getGlobalClass
	getGlobalConstant
	getHtmlDocumentSource
	getImportedClass
	getImportedJadeinterface
	getInheritedFormats
	getInheritedXlatableStrings
	getJadeInterface
	getLibrary
	getLocalClass
	getLocale
	getLocaleCurrencyInfo
	getLocaleDateInfo
	getLocaleFullInfo
	getLocaleInSubschemas
	getLocaleLocal
	getLocaleNameInfo
	getLocaleNumericInfo
	getLocaleTimeInfo
	getLocalFormats
	getLocalLocaleInSubschemas
	getLocalPrimitive
	getName
	getOidForObject
	getPrimitive
	getRelationalView
	getRpsMapping
	getSchema
	getSubschema
	getSubschemas
	getUserAppliedPatches
	getUserFormat
	getWebServiceConsumerNames
	globalException
	importWSDL
	isLocalLocale
	loadHTMLDocuments
	makeLocaleNameFromId
	nonGUIGlobalExceptionHandler
	regenerateRelationalView
	removeWebConsumer
	reorgInProgress
	reorgIsWaitingForTransition
	resetUserAppliedPatches
	setHtmlDocumentSource
	withAllSubschemas
	withAllSuperschemas

	SchemaEntity Class
	SchemaEntity Class Constants
	SchemaEntity Properties
	abstract
	access
	name
	number
	subAccess
	text

	SchemaEntity Methods
	getName
	getPatchNumber

	SchemaEntityNumberDict Class
	Script Class
	Script Properties
	compiledOK
	errorCode
	errorLength
	errorPosition
	status
	warningCount

	Script Methods
	getSource
	inError
	notCompiled

	Set Class
	Set Methods
	add
	copy
	createIterator
	getStatistics
	includes
	indexNear
	indexNear64
	remove
	tryAdd
	tryAddDeferred
	tryRemove
	tryRemoveDeferred

	SetMergeIterator Class
	SetMergeIterator Property
	ignoreDuplicates

	SetMergeIterator Methods
	addCollection
	back
	current
	getCollectionAt
	getCollectionCount
	getCurrentCollection
	isValid
	next
	removeCollection
	reset
	startAtObject

	SortActor Class
	SortActor Class Constants
	SortActor Properties
	ascending
	fieldNo
	length
	numeric
	random
	sortType
	startPosition

	SortActorArray Class
	SortActorArray Properties
	kway
	lcid
	maxMem

	Sound Class
	Sound Properties
	data
	format
	name

	Sound Methods
	isPlayable
	loadFromFile
	play

	StringArray Class
	StringUtf8Array Class
	System Class
	System Properties
	name
	nodes

	System Methods
	activateDeltaDatabase
	beginIndividualRequestsLogging
	beginLockContentionStats
	beginObjectTracking
	beginSample
	beginSampleGroupDefinition
	clearLockContentionStats
	createSystemSequenceNumber
	disableRemoteSampling
	dumpCharacterEntityTable
	enableRemoteSampling
	endIndividualRequestsLogging
	endLockContentionStats
	endObjectTracking
	endSample
	endSampleGroupDefinition
	findCharacterEntityByName
	findCharacterEntityByNumber
	forceOffUser
	getAllUsers
	getClassAccessFrequencies
	getDatabaseRole
	getDatabaseStats
	getDatabaseSubrole
	getDbDiskCacheStats
	getDeltaDatabaseStatus
	getEnvironmentServerIdentity
	getLockContentionInfo
	getLockContentionStats
	getLocks
	getMostAccessedClasses
	getNotes
	getObjectLockProcesses
	getObjectPartitionID
	getQueuedLocks
	getRequestStats
	getRpcServerStatistics
	getStatistics
	getStatistics64
	getSystemSequenceNumberNext
	getTimeInTransactionState
	interruptUser
	isDatabaseEncryptionEnabled
	isDbArchival
	isRemoteSamplingEnabled
	isValidProcess
	logObjectCaches
	logRequestStatistics
	logUserCommand
	processDumpAllNodes
	queryLockContentionStats
	removeNode
	sdsAuditEnableSecondaryApps
	verifyDbEncryptionMasterKey

	SystemException Class
	TcpIpConnection Class
	TcpIpConnection Class Constants
	TcpIpConnection Properties
	authenticationLibrary
	cryptLibrary
	decryptMethod
	encryptMethod
	genAuthChallengeMethod
	genAuthResponseMethod
	localInterface
	localIpAddress
	localPort
	networkProxy
	port
	protocolFamily
	remoteIpAddress
	remoteName
	remotePort
	resolveRemoteName
	usePresentationClient
	sslContext
	userObject
	verifyAuthResponseMethod

	TcpIpConnection Methods
	close
	closeAsynch
	getMaxMessageSize
	listen
	listenAsynch
	listenContinuous
	listenContinuousAsynch
	open
	openAsynch
	readBinary
	readBinaryAsynch
	readUntil
	readUntilAsynch
	writeBinary
	writeBinaryAsynch

	TimeArray Class
	TimeFormat Class
	TimeFormat Properties
	amText
	ampmIsSuffix
	format
	is12HourFormat
	pmText
	separator
	showLeadingZeros
	showSeconds

	TimeFormat Method
	defineTimeFormat

	TimeStampArray Class
	TimeStampIntervalArray Class
	TranslatableString Class
	TranslatableString Properties
	formBuildDataRefs
	locale

	TranslatableString Method
	updateCompile

	Type Class
	Type Properties
	consts
	methods
	schema
	superschemaType

	Type Methods
	allMethods
	findConstant
	findConstantInSuperschema
	findProperty
	getConstant
	getConstants
	getConstantsInSchema
	getMethod
	getMethods
	getName
	getProperty
	inheritsFrom
	instancesExist
	invokeIOTypeMethod
	invokeTypeMethod
	sendTypeMsg
	sendTypeMsgWithIOParams
	sendTypeMsgWithParams

	UserInterfaceException Class
	WebSession Class
	WebSession Class Constant
	WebSession Properties
	lastAccessTime
	sessionId
	startTime
	usePageSequencing

	WebSession Methods
	browserType
	createVirtualDirectoryFile
	deleteVirtualDirectoryFile
	getCurrentLocale
	getHttpParam
	getHttpString
	getServerVariable
	getSessionForm
	getWebSessionCount
	isVDFilePresent
	processRequest
	removeSession
	removeSessionWithMessage
	reply
	setCurrentLocale
	timerEvent

	WebSocketException Class

