
Copyright©2021 Jade Software Corporation Limited. All rights reserved.

Encyclopaedia of Primitive Types
 V E R S I O N 2020.0.02

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information
or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations
of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright © 2021 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the JADEReadme.txt file.

EncycloPrim - 2020.0.02

Contents

Contents iii

Before You Begin xi
Who Should Read this Encyclopaedia xi
What's Included in this Encyclopaedia xi
Related Documentation xi
Conventions xii

Chapter 1 Primitive Types 13
Overview 14
Any Type 15

Any Methods 15
asString 16
display 16
getName 16
getType 16
isIntegral 17
isIntegral64 17
isKindOf 17
isNumericType 18
isTextType 18

Binary Type 19
Binary Constants 19
Binary Methods 20

ansiToString 21
ansiToUnicode 21
asDecimal 21
asGuidString 22
base64Encode 22
base64EncodeNoCrLf 23
bufferAddress 23
bufferMemoryAddress 24
compressToBinary 25
convertPicture 26
convertToFile 26
copyImage 27
display 27
fromANSIToString 27
fromANSIToStringUtf8 28
length 28
maxLength 28
pictureSize 28
pictureType 28
posBinary 29
posByte 29
uncompressToBinary 29
uncompressToString 29
uncompressToStringUtf8 30
unicodeToAnsi 30
unicodeToString 30
unpackCString 31
uuidAsString 31

Boolean Type 32
Boolean Method 32

display 33
Byte Type 34

Using Byte Types in Assignments 34
Byte Methods 35

EncycloPrim - 2020.0.02

bitAnd 36
bitNot 36
bitOr 37
bitXor 37
display 37
isEven 38
isOdd 38
max 38
min 38
numberFormat 38
padLeadingWith 39
parseCurrencyWithCurrentLocale 39
parseCurrencyWithFmtAndLcid 40
parseNumberWithCurrentLocale 40
parseNumberWithFmtAndLcid 41
userCurrencyFormat 41
userCurrencyFormatAndLcid 42
userNumberFormat 42
userNumberFormatAndLcid 43

Character Type 44
Character Methods 44

compareEql 45
compareGeneric 46
compareGeq 47
compareGtr 48
compareLeq 49
compareLss 50
compareNeq 51
display 51
isAlpha 52
isDelimiter 52
isHex 53
isLower 53
isNumeric 53
isPrintable 54
isUpper 54
makeString 54
setByteOrderLocal 54
setByteOrderRemote 55
toHex 55
toLower 56
toUpper 56

Date Type 57
Historical Note about the Date Type 58
Date Primitive Type Examples 58
Date Methods 59

day 60
dayName 61
dayNameWithLcid 61
dayOfWeek 61
dayOfYear 62
daysInMonth 62
display 62
format 62
isFormatable 64
isLeapYear 64
isValid 64
lastOccurrenceOfDayInMonth 64
longFormat 65
month 65
monthName 66

Encyclopaedia of
Primitive Types

Contents iv

EncycloPrim - 2020.0.02

monthNameWithLcid 66
nthOccurrenceOfDayInMonth 67
parseForCurrentLocale 67
parseLongWithCurrentLocale 68
parseLongWithFmtAndLcid 68
parseLongWithPicAndLcid 69
parseShortWithCurrentLocale 70
parseShortWithFmtAndLcid 71
parseShortWithPicAndLcid 71
setByteOrderLocal 73
setByteOrderRemote 73
setDate 74
setDateYearAbsolute 74
shortDayNameWithLcid 75
shortFormat 75
shortMonthNameWithLcid 75
subtract 76
userFormat 76
userLongFormatAndLcid 77
userLongFormatPicAndLcid 77
userShortFormatAndLcid 77
userShortFormatPicAndLcid 78
year 78

Decimal Type 79
Decimal Methods 79

abs 80
asBinary 80
asDecimal 81
currencyFormat 81
display 82
getDeclaredPrecision 82
getDeclaredScaleFactor 82
numberFormat 82
parseCurrencyWithCurrentLocale 83
parseCurrencyWithFmtAndLcid 83
parseNumberWithCurrentLocale 84
parseNumberWithFmtAndLcid 84
rounded 85
rounded64 86
roundedTo 86
setByteOrderLocal 86
setByteOrderRemote 87
truncated 87
truncated64 87
truncatedTo 88
userCurrencyFormat 88
userCurrencyFormatAndLcid 89
userNumberFormat 89
userNumberFormatAndLcid 89

Integer Type 91
Integer Methods 92

abs 93
bitAnd 93
bitNot 93
bitOr 94
bitXor 94
display 95
isEven 95
isOdd 95
max 95
min 96

Encyclopaedia of
Primitive Types

Contents v

EncycloPrim - 2020.0.02

numberFormat 96
padLeadingWith 96
parseCurrencyWithCurrentLocale 97
parseCurrencyWithFmtAndLcid 97
parseNumberWithCurrentLocale 98
parseNumberWithFmtAndLcid 98
setByteOrderLocal 99
setByteOrderRemote 100
userCurrencyFormat 100
userCurrencyFormatAndLcid 101
userNumberFormat 101
userNumberFormatAndLcid 101

Integer64 Type 102
Integer64 Methods 102

abs 103
bitAnd 103
bitNot 104
bitOr 104
bitXor 105
display 105
isEven 105
isOdd 105
max 105
min 105
numberFormat 106
padLeadingWith 106
parseCurrencyWithCurrentLocale 107
parseCurrencyWithFmtAndLcid 107
parseNumberWithCurrentLocale 108
parseNumberWithFmtAndLcid 108
setByteOrderLocal 109
setByteOrderRemote 109
userCurrencyFormat 110
userCurrencyFormatAndLcid 110
userNumberFormat 111
userNumberFormatAndLcid 111

MemoryAddress Type 112
MemoryAddress Methods 112

adjust 112
asBinary32 113
asBinary64 113
display 113
isValid 113

Point Type 114
Point Methods 114

display 114
set 114
setX 114
setY 115
x 115
y 115

Real Type 116
Real Constants 116
Real Methods 116

abs 118
arccos 118
arcsin 118
arctan 118
arcTan2 119
cos 119
currencyFormat 119

Encyclopaedia of
Primitive Types

Contents vi

EncycloPrim - 2020.0.02

display 120
exp 120
getFloatingPointClassification 120
infinity 120
isInfinity 121
isNaN 121
log 121
log10 121
max 121
min 122
nan 122
numberFormat 122
parseCurrencyWithCurrentLocale 123
parseCurrencyWithFmtAndLcid 123
parseNumberWithCurrentLocale 124
parseNumberWithFmtAndLcid 124
rounded 125
rounded64 125
roundedTo 126
roundedUp 126
roundedUp64 126
setByteOrderLocal 127
setByteOrderRemote 127
setFloatingPointClassification 128
sin 128
sqrt 129
tan 129
truncated 129
truncated64 129
truncatedTo 130
userCurrencyFormat 130
userCurrencyFormatAndLcid 130
userNumberFormat 131
userNumberFormatAndLcid 131

String Type 132
String Methods 133

asANSI 135
asDate 135
asGuid 136
asObject 136
asOid 136
asStringUtf8 137
asUuid 137
base64Decode 137
bufferAddress 138
bufferMemoryAddress 139
compareEql 139
compareGeneric 140
compareGeq 141
compareGtr 142
compareLeq 143
compareLss 144
compareNeq 145
compressToBinary 146
display 146
fillString 147
firstCharToLower 147
firstCharToUpper 147
getHugeTokens 148
getNextToken 148
getTokens 149

Encyclopaedia of
Primitive Types

Contents vii

EncycloPrim - 2020.0.02

isByte 149
isDecimal 149
isInteger 150
isInteger64 150
isReal 150
length 151
makeString 151
makeXMLCData 151
maxLength 152
padBlanks 152
padLeadingZeros 152
plainTextToStringUtf8 153
pos 153
replace__ 154
replaceChar 154
replaceFrom__ 155
reverse 155
reversePos 155
reversePosIndex 156
scanUntil 156
scanWhile 157
toLower 158
toUpper 158
trimBlanks 158
trimLeft 159
trimRight 159

StringUtf8 Type 160
StringUtf8 Methods 161

asANSI 163
asDate 163
asPlainText 164
asString 164
bufferMemoryAddress 164
byteOffsetFromCharacterIndex 165
characterIndexFromByteOffset 165
compareEql 166
compareGeneric 166
compareGeq 167
compareGtr 168
compareLeq 168
compareLss 169
compareNeq 170
compressToBinary 171
display 171
firstCharToLower 171
firstCharToUpper 172
isValid 172
length 172
maxLength 172
padBlanks 173
padLeadingZeros 173
pos 173
posUsingByteOffset 174
replaceChar 174
reverse 175
reversePos 175
reversePosIndex 175
scanUntil 176
scanWhile 176
size 177
substringAtByteOffset 177

Encyclopaedia of
Primitive Types

Contents viii

EncycloPrim - 2020.0.02

toLower 178
toUpper 178
trimBlanks 179
trimLeft 179
trimRight 179

Time Type 180
Time Methods 181

currentLocaleFormat 181
display 182
format 182
hour 183
isValid 183
milliSecond 183
minute 184
parseWithCurrentLocale 184
parseWithFmtAndLcid 184
parseWithPicAndLcid 185
second 186
setByteOrderLocal 186
setByteOrderRemote 187
setTime 187
setTimeStrict 188
subtract 188
userFormat 188
userFormatAndLcid 189
userFormatPicAndLcid 189

TimeStamp Type 191
TimeStamp Constant 191
TimeStamp Methods 192

date 192
display 193
getSecondsFromUnixEpoch 193
isValid 193
literalFormat 193
localToUTCTime 194
localToUTCTimeUsingBias 194
setByteOrderLocal 194
setByteOrderRemote 195
setDate 195
setFromUnixEpoch 195
setTime 196
time 196
utcToLocalTime 196
utcToLocalTimeUsingBias 196

TimeStampInterval Type 198
TimeStampInterval Methods 199

display 199
getMilliseconds 199
isValid 199
set 199

TimeStampOffset Type 200
TimeStampOffset Methods 200

asLocalTimeStamp 201
asUTCTimeStamp 201
display 201
getUTCBias 201
isValid 201
setFromLocalTimeStamp 201

Encyclopaedia of
Primitive Types

Contents ix

EncycloPrim - 2020.0.02

Appendix A Global Constants Reference 203
ApplicationStatus Category 204
CharacterConstants Category 204
ColorConstants Category 205
Environment Category 205
Exceptions Category 205
ExecutionLocation Category 206
JadeDbFileVolatility Category 206
JadeDynamicObjectNames Category 206
JadeDynamicObjectTypes Category 207
JadeErrorCodesDatabase Category 207
JadeErrorCodesIDE Category 208
JadeErrorCodesRPS Category 208
JadeErrorCodesSDS Category 209
JadeErrorCodesWebService Category 209
JadeLocaleIdNumbers Category 210
JadeOdbc Category 212
JadeProcessEvents Category 212
JadeProfileString Category 213
KeyCharacterCodes Category 213
LockDurations Category 215
LockTimeouts Category 215
Locks Category 216
MessageBox Category 216
MessageBoxCustom Category 217
NotificationResponses Category 218
ObjectVolatility Category 218
PossibleTransientLeaks Category 219
Printer Category 219
RPSTransitionHaltCode Category 222
SDSConnectionState Category 223
SDSDatabaseRoles Category 223
SDSEventTypes Category 223
SDSReorgState Category 224
SDSSecondaryState Category 224
SDSStopTrackingCodes Category 225
SDSTakeoverState Category 225
SDSTransactionStates Category 226
SQL Category 226
Sounds Category 228
SystemEvents Category 228
SystemLimits Category 228
TimerDurations Category 229
UUIDVariants Category 229
UnusedParameterReport Category 229
UserEvents Category 229

Encyclopaedia of
Primitive Types

Contents x

EncycloPrim - 2020.0.02

Before You Begin

The JADE Encyclopaedia of Primitive Types is intended as a major source of information when you are
developing or maintaining JADE applications.

Who Should Read this Encyclopaedia
The main audience for the JADE Encyclopaedia of Primitive Types is expected to be developers of JADE
application software products.

What's Included in this Encyclopaedia
The JADE Encyclopaedia of Primitive Types has one chapter and one appendix.

Chapter 1 Gives a reference to primitive types and the methods that they provide

Appendix A Gives a reference to global constants

Related Documentation
Other documents that are referred to in this encyclopaedia, or that may be helpful, are listed in the following table,
with an indication of the JADE operation or tasks to which they relate.

Title Related to…

JADE Database Administration Guide Administering JADE databases

JADE Development Environment
Administration Guide

Administering JADE development environments

JADE Development Environment User’s
Guide

Using the JADE development environment

JADE Developer’s Reference Developing or maintaining JADE applications

JADE Encyclopaedia of Classes System classes (Volumes 1 and 2), Window classes (Volume 3)

JADE Installation and Configuration Guide Installing and configuring JADE

JADE Initialization File Reference Maintaining JADE initialization file parameter values

JADE Object Manager Guide JADE Object Manager administration

JADE Report Writer User’s Guide Using the JADE Report Writer to develop and run reports

JADE Synchronized Database Service
(SDS) Administration Guide

Administering JADE Synchronized Database Services (SDS),
including Relational Population Services (RPS)

JADE Thin Client Guide Administering JADE thin client environments

EncycloPrim - 2020.0.02

Conventions
The JADE Encyclopaedia of Primitive Types uses consistent typographic conventions throughout.

Convention Description

Arrow bullet () Step-by-step procedures. You can complete procedural instructions by using either the
mouse or the keyboard.

Bold Items that must be typed exactly as shown. For example, if instructed to type foreach,
type all the bold characters exactly as they are printed.

File, class, primitive type, method, and property names, menu commands, and dialog
controls are also shown in bold type, as well as literal values stored, tested for, and
sent by JADE instructions.

Italic Parameter values or placeholders for information that must be provided; for example, if
instructed to enter class-name, type the actual name of the class instead of the word or
words shown in italic type.

Italic type also signals a new term. An explanation accompanies the italicized type.

Document titles and status and error messages are also shown in italic type.

Blue text Enables you to click anywhere on the cross-reference text (the cursor symbol changes
from an open hand to a hand with the index finger extended) to take you straight to that
topic. For example, click on the "isKindOf" cross-reference to display that topic.

Bracket symbols ([]) Indicate optional items.

Vertical bar (|) Separates alternative items.

Monospaced font Syntax, code examples, and error and status message text.

ALL CAPITALS Directory names, commands, and acronyms.

Small font Keyboard shortcut keys.

Key combinations and key sequences appear as follows.

Convention Description

Key1+Key2 Press and hold down the first key and then press the second key. For example, "press
Shift+F2" means to press and hold down the Shift key and press the F2 key. Then
release both keys.

Key1,Key2 Press and release the first key, then press and release the second key. For example,
"press Alt+F,X" means to hold down the Alt key, press the F key, and then release both
keys before pressing and releasing the X key.

Encyclopaedia of
Primitive Types

Before You Begin xii

EncycloPrim - 2020.0.02

Chapter 1 Primitive Types

This chapter covers the following topics.

Overview

Any Type

Binary Type

Boolean Type

Byte Type

Character Type

Date Type

Decimal Type

Integer Type

Integer64 Type

MemoryAddress Type

Point Type

Real Type

String Type

StringUtf8 Type

Time Type

TimeStamp Type

TimeStampInterval Type

TimeStampOffset Type

Encyclopaedia of
Primitive Types

Overview Chapter 1 14

EncycloPrim - 2020.0.02

Overview
The type of a method or property determines the range of values that the method or property can take and its
interface (or protocol). A type can be a primitive type, a class, or a JADE interface.

The primitive types are summarized in the following table.

Primitive Type Description

Any Represents any object reference or primitive value

Binary Represents binary data

Boolean Contains Boolean value true or false

Byte A single byte unsigned value (8 bits)

Character Any single ANSI or Unicode character

Date Julian day number

Decimal Number with specific decimal format

Integer Signed 32-bit integer (whole number)

Integer64 Signed 64-bit integer (whole number)

MemoryAddress Represents a memory address

Point Represents x and y coordinates of a point

Real Floating point number

String Sequence of characters

StringUtf8 String encoded in the UTF-8 format

Time Time since midnight (in milliseconds)

TimeStamp Date and time that includes combined date and time values

TimeStampInterval Represents the difference between two timestamp values

Primitive types have a defined null value, which can be tested for by using the null language identifier; for
example:

if d = null then

You can associate methods with primitive types, but you cannot associate properties with primitive types.

Properties that are defined as primitive types represent a value. They do not represent a reference to an object.

With the exception of the Any primitive type, which can represent any object reference or primitive value, the value
of the property is stored in the parent object record when you define a property that is a primitive type. (A property
that is an object contains a reference to the object.)

Notes A temporary value is created if the return value of a primitive type method is passed to an updating
primitive method. On completion of the updating method, this temporary value is discarded.

You cannot specify the clientExecution and serverExecution method options on primitive type methods.
Methods defined on primitive types are always executed in the node of the calling method.

Encyclopaedia of
Primitive Types

Any Type Chapter 1 15

EncycloPrim - 2020.0.02

Any Type
A variable of type Any can contain an object reference or any primitive value.

Note The Any primitive type can be used only for local variables, parameters, and return types. You cannot
define a property of type Any.

To determine the type of the value associated with a variable of type Any

Use the isKindOf method.

The Any primitive type is useful when a:

Method can return either an object reference or primitive value

Parameter in a method can be either an object reference or a primitive value

Variable can receive either an object reference or a primitive value

The following example shows the use of the Any primitive type.

userNotification(eventType: Integer; userInfo: Any);
vars

file : DbFile;
begin

if eventType = 19 then
file := userInfo.DbFile;
...

endif;
end;

For details about the methods defined in the Any primitive type, see "Any Methods", in the following subsection.

For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the JADE
Developer’s Reference.

Any Methods
The methods defined in the Any primitive type are summarized in the following table.

Method Returns …

asString A string representing the value of a primitive type or the object id of an object reference

display The string "Any"

getName A string representing the value of a primitive type or the name of the receiver class if it is
an object reference

getType The type of the value that is assigned to the receiver

isIntegral true if the receiver can be type-converted to an Integer primitive type without any loss of
data

isIntegral64 true if the receiver can be type-converted to an Integer64 primitive type without any loss
of data

Encyclopaedia of
Primitive Types

Any Type Chapter 1 16

EncycloPrim - 2020.0.02

Method Returns …

isKindOf true if the type of the receiver is of the type specified by the type parameter

isNumericType true if the type of the value assigned to the receiver is a Decimal, Integer, Integer64, or
Real primitive type

isTextType true if the type of the value assigned to the receiver is a Character, String, or StringUtf8
primitive type

asString
Signature asString(): String;

The asString method of the Any primitive type returns:

A string representing the value of the primitive type, if the receiver is a primitive type

A string containing the object identifier (oid) of the object reference, if the receiver is an object reference

A null string, if the receiver is null

display
Signature display(): String;

The display method of the Any primitive type returns the string "Any".

getName
Signature getName(): String;

The getName method of the Any primitive type returns:

A string containing the class name of the object reference, if the receiver is an object reference

A string representing the value of a primitive type, if the receiver is a primitive type

A null string, if the receiver is null

getType
Signature getType(): Type;

The getType method of the Any primitive type returns the type of the value assigned to the receiver.

If no value or a null object is assigned to the receiver, the method returns null.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of
Primitive Types

Any Type Chapter 1 17

EncycloPrim - 2020.0.02

isIntegral
Signature isIntegral(): Boolean;

The isIntegral method of the Any primitive type returns true if any of the following conditions is true for type of the
value and the value of the receiver; otherwise the method returns false.

The type is an Integer

The type is an Integer64 and the value can fit in an Integer

The type is a Decimal, the value is a whole number, and the value can fit in an Integer

The type is a Real, the value is a whole number, and the value can fit in an Integer

If the isIntegral method returns true, the receiver can be type-converted to an Integer primitive type without any
loss of data.

Applies to Version: 2020.0.01 and higher

isIntegral64
Signature isIntegral64(): Boolean;

The isIntegral64 method of the Any primitive type returns true if any of the following conditions is true for type of
the value and the value of the receiver; otherwise the method returns false.

The type is an Integer64

The type is an Integer

The type is a Decimal and the value is a whole number

The type is a Real and the value is a whole number

If the isIntegral64 method returns true, the receiver can be type-converted to an Integer64 primitive type without
any loss of data.

Applies to Version: 2020.0.01 and higher

isKindOf
Signature isKindOf(type: Type): Boolean;

The isKindOf method of the Any primitive type returns the Boolean value of true if the type of the Any variable is
of the type specified by the type parameter. If the variable is a different type to that specified by the type
parameter, the isKindOf method returns false.

The code fragment in the following example shows the use of the isKindOf method.

if not any.isKindOf(Object) then
if any.isKindOf(Any) then

return "not a valid reference";
else

return any.String;
endif;

endif;

Encyclopaedia of
Primitive Types

Any Type Chapter 1 18

EncycloPrim - 2020.0.02

For example, any.isKindOf(Integer) returns true if the any variable contains an Integer, and any.isKindOf
(Customer) returns true if the any variable contains a reference to an instance of the Customer class or one of its
subclasses.

The following example shows the use of the isKindOf method.

vars
date : Date;

begin
date := fault.openDate;
if fault.isKindOf(GenuineFault) then

opFault.value := true;
elseif ... then

...
endif;

end;

isNumericType
Signature isNumericType(): Boolean;

The isNumericType method of the Any primitive type returns true if the type of the value assigned to the receiver
is one of the following primitive types; otherwise the method returns false.

Decimal

Integer

Integer64

Real

If the isNumericType method returns true, the receiver can be type-converted to a Real primitive type without any
loss of data.

Applies to Version: 2020.0.01 and higher

isTextType
Signature isTextType(): Boolean;

The isTextType method of the Any primitive type returns true if the type of the value assigned to the receiver is
one of the following primitive types; otherwise the method returns false.

Character

String

StringUtf8

In ANSI builds of JADE, if the isTextType method returns true, the receiver can be type-converted to a StringUtf8
primitive type without any loss of data.

In Unicode builds of JADE, if the isTextType method returns true, the receiver can be type-converted to a String
primitive type without any loss of data.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 19

EncycloPrim - 2020.0.02

Binary Type
Use the Binary primitive type to define Binary variables and attributes.

When you specify a length less than or equal to 540 for a Binary attribute, it is embedded. Space is allocated
within instances of the class to store a binary value with a length less than or equal to the specified length.

When you specify a length greater than 540 or you select the Maximum Length check box (which corresponds to
2,147,483,647 bytes) for a Binary attribute, it is not embedded. It is stored in a separate variable-length object, a
Binary Large Object (blob), which can store a binary value with a length less than or equal to the specified length.
The amount of storage required for a blob is determined by the binary value.

Binary variables can be bounded or unbounded, as shown in the following code fragment.

vars
bin1 : Binary[100]; // Bounded - bin1 can store a binary value with a

// length less than or equal to 100 bytes
bin2 : Binary; // Unbounded - bin2 can store a binary value with a

// length less than or equal to 2,147,483,647 bytes

To specify a substring bin[m:n] of a Binary value bin, use two integers separated by a colon (:) character. The first
integer is the start position and the second integer (following the colon (:) character) is the length of the binary
substring or end, to indicate the end of the binary string. The first byte is at position 1.

A variable of type Byte can be used to reference a single byte in a binary value, in effect treating the binary value
as an array of bytes, as shown in the following code fragment.

vars
bin : Binary;
byte : Byte;

begin
bin := app.loadPicture("C:\Jade\bin\jade.bmp");
byte := bin[716]; // 716th byte of the binary data in bin

For details about the constants and methods defined in the Binary primitive type, see "Binary Constants" and
"Binary Methods", in the following subsections. For details about converting primitive types, see "Converting
Primitive Types", in Chapter 1 of the JADE Developer’s Reference.

Binary Constants
The Binary primitive type provides the constants listed in the following table, for use with the compressToBinary
methods in the Binary, String, and StringUtf8 primitive types.

Constant Integer Value Description

Compression_ZLib 1402 String and binary compression to binary using ZLIB level 5
(256*5 + 122)

Compression_ZLibFast 378 String and binary compression to binary using ZLIB level 1
(256*1 + 122)

Compression_ZLibSmall 2426 String and binary compression to binary using ZLIB level 9
(256*9 + 122)

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 20

EncycloPrim - 2020.0.02

Binary Methods
The methods defined in the Binary primitive type are summarized in the following table.

Method Returns …

ansiToString The string equivalent of the binary interpreted as ANSI characters

ansiToUnicode The Unicode string equivalent of the binary interpreted as ANSI characters

asDecimal The Decimal representation of the receiver

asGuidString A visual representation of the Globally Unique Identifier (GUID) binary receiver
as a string of printable characters

base64Encode An ASCII string consisting of lines with fewer than 76 characters resulting from
encoding the receiver in Base64

base64EncodeNoCrLf An ASCII string resulting from encoding the receiver in Base64 without carriage-
return and line-feed characters

bufferAddress The value of the pointer to the internal buffer as an integer

bufferMemoryAddress The value of the pointer to the internal buffer as a memory address

compressToBinary A compressed binary representation of the receiver

convertPicture A copy of the receiver converted to the requested picture type

convertToFile A copy of the receiver converted to the requested picture type in a file

copyImage A new image created from the specified part of an existing binary image of the
receiver

display A string containing a hexadecimal dump of the receiver

fromANSIToString A String containing the receiver converted using the code page for the specified
locale

fromANSIToStringUtf8 A UTF8 String containing the receiver converted using the code page for the
specified locale

length The actual length of a binary variable

maxLength The declared maximum length of a binary variable

pictureSize The type of image contained in the binary and the width and height of the image

pictureType The type of picture image

posBinary The position of a specified binary string in the receiver

posByte The position of a specified byte in the receiver

uncompressToBinary A binary value representing the receiver after it has been uncompressed

uncompressToString An string value representing the receiver after it has been uncompressed

uncompressToStringUtf8 A UTF8 string value representing the receiver after it has been uncompressed

unicodeToAnsi The ANSI string equivalent of the binary interpreted as Unicode characters

unicodeToString The string equivalent of the binary interpreted as Unicode characters

unpackCString A string extracted from the binary, starting at a specified position within the
binary and terminated by the next occurring null character

uuidAsString A string formatted as a Universally Unique Identifier (UUID)

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 21

EncycloPrim - 2020.0.02

ansiToString
Signature ansiToString(): String;

The ansiToString method of the Binary primitive type interprets the binary as ANSI characters and returns a copy
converted to a string.

When invoked from an ANSI application, an ANSI string is returned. When invoked from a Unicode application,
the binary is converted from ANSI to Unicode, and a Unicode string is returned.

The code fragment in the following example shows the use of the ansiToString method.

str := bin.ansiToString;

Note When converting from ANSI to Unicode, conversion stops at the first null character. If the binary contains
embedded nulls, the string returned from the ANSI to Unicode conversion therefore represents only that part of the
binary up to the first null character.

ansiToUnicode
Signature ansiToUnicode(): String;

The ansiToUnicode method of the Binary primitive type interprets the binary as ANSI characters and returns a
copy converted to a Unicode string. This method can be invoked only from a Unicode application.

If this method is invoked from an ANSI application, the following exception is raised.

1000 Invalid parameter type

Note Conversion of the binary stops at the first null character. If the binary contains embedded nulls, the string
returned from the conversion therefore represents only that part of the binary up to the first null character.

asDecimal
Signature asDecimal(): Decimal;

The asDecimal method of the Binary primitive type returns the decimal value for a Binary value that was
obtained by a call to the asBinary method of the Decimal primitive type.

The following example shows the use of the asDecimal method.

vars
bin : Binary;
dec : Decimal;

begin
dec := 123.456.Decimal;
bin := dec.asBinary;
write bin.asDecimal; // Outputs 123.456

end;

Use the asDecimal method in preference to type casting; for example:

bin := dec.asBinary; // This is preferable to "bin := dec.Binary;"

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 22

EncycloPrim - 2020.0.02

asGuidString
Signature asGuidString(): String;

The asGuidString method of the Binary primitive type returns a visual representation of the Globally Unique
Identifier (GUID) binary receiver as a string of printable characters, in the following format.

"{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}"

Binary class identifiers are used in ActiveX control and automation libraries, for example, and they take less space
than a visual string representation. This method raises an exception if the receiver is not a valid GUID; that is, it is
not a binary of length 16.

See also the String primitive type asGuid method.

base64Encode
Signature base64Encode(): String;

The base64Encode method of the Binary primitive type returns an ASCII string resulting from the encoding of the
receiver using the Base64 encoding technique defined in RFC 1521.

Base64 encoding enables 8-bit data to be converted, so that it can be transmitted over a protocol that supports 7-
bit characters only. Base64 encoding also provides enhanced privacy when the source data is standard ASCII
text, as the message is no longer in clear text when it is transmitted.

The output string is represented in lines not exceeding 76 characters that are terminated with carriage return and
line feed (Cr and Lf) characters.

Use the base64Decode method on the String primitive type to decode a Base64-encoded string.

The following example shows the use of the base64Encode method.

vars
bin: Binary;
file: File;

begin
create file;
file.fileName := "d:\temp\harry.jpg";
file.kind := File.Kind_Binary;
file.open;
bin := file.readBinary(file.fileLength);
write 'original length = ' & bin.length.String;
write 'base64Encode length = ' & bin.base64Encode().length.String;
write 'base64EncodeNoCrLf length = ' &

bin.base64EncodeNoCrLf().length.String;
write 'base64Decode length = ' &

bin.base64Encode().base64Decode().length.String;
write 'base64Decode length (from NoCrLf) = ' &

bin.base64EncodeNoCrLf().base64Decode.length.String;
file.close;

epilog
delete file;

end;

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 23

EncycloPrim - 2020.0.02

Note The length of an encoded string is about a third longer, even if the string is encoded with carriage-return
and line-feed (Cr and Lf) characters.

base64EncodeNoCrLf
Signature base64EncodeNoCrLf(): String;

The base64EncodeNoCrLf method of the Binary primitive type returns an ASCII string resulting from the
encoding of the receiver using the Base64 encoding technique defined in RFC 1521.

Base64 encoding enables 8-bit data to be converted, so that it can be transmitted over a protocol that supports 7-
bit characters only. Base64 encoding also provides enhanced privacy when the source data is standard ASCII
text, as the message is no longer in clear text when it is transmitted.

Unlike the base64Encode method, the output is not broken up into lines; that is, it does not contain carriage-return
and line-feed (Cr and Lf) characters.

Use the base64Decode method on the String primitive type to decode a Base64-encoded string.

The following example shows the use of the base64EncodeCrLf method.

vars
bin: Binary;
file: File;

begin
create file;
file.fileName := "d:\temp\harry.jpg";
file.kind := File.Kind_Binary;
file.open;
bin := file.readBinary(file.fileLength);
write 'original length = ' & bin.length.String;
write 'base64Encode length = ' & bin.base64Encode().length.String;
write 'base64EncodeNoCrLf length = ' &

bin.base64EncodeNoCrLf().length.String;
write 'base64Decode length = ' &

bin.base64Encode().base64Decode().length.String;
write 'base64Decode length (from NoCrLf) = ' &

bin.base64EncodeNoCrLf().base64Decode.length.String;
file.close;

epilog
delete file;

end;

Note The length of an encoded string is about a third longer, even if the string is encoded with carriage-return
and line-feed (Cr and Lf) characters.

bufferAddress
Signature bufferAddress(): Integer;

The bufferAddress method of the Binary primitive type returns an integer containing the value of the pointer to
the internal buffer that contains the binary. This value may be required when a JADE Binary primitive type value is
being mapped to a structured record type for a call to an external function.

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 24

EncycloPrim - 2020.0.02

Call the bufferAddress method to determine the address of the buffer when an external function requires a data
structure to contain a pointer to a second structure.

Caution Do not use this method to pass the address of a binary to an external function that will be executed by
a presentation client. If an external function is called from an application server method and executed by a
different process (the presentation client), the memory address is not valid and will almost certainly result in a
jade.exe (thin client) fault in the called function.

The method in the following example shows the use of the bufferAddress method to initialize the Windows
SECURITY_DESCRIPTOR and SECURITY_ATTRIBUTES structures.

constants
// Current security descriptor revision value
SECURITY_DESCRIPTOR_REVISION = 1;

vars
result : Boolean;
securityDescriptor : Binary[20];
securityAttributes : Binary[9];

begin
... // Call the Windows API to initialize the security descriptor
result := call initializeSecurityDescriptor(securityDescriptor,

SECURITY_DESCRIPTOR_REVISION);
// Return Windows error if unable to initialize security descriptor
if not result then

return call getLastError;
endif;
// The first field (DWORD) in the security attributes structure is the
// size (in bytes) of the structure
securityAttributes[1:4] := securityAttributes.length.Binary;
// The second field (LPVOID) points to the security descriptor
// Set the value to the actual address of the buffer
securityAttributes[5:4] := securityDescriptor.bufferAddress.Binary;
...

end;

bufferMemoryAddress
Signature bufferMemoryAddress(): MemoryAddress;

The bufferMemoryAddress method of the Binary primitive type returns a memory address containing the value
of the pointer to the internal buffer that contains the binary. This value may be required when a JADE Binary
primitive type value is being mapped to a structured record type for a call to an external function.

Call the bufferMemoryAddress method to determine the address of the buffer when an external function requires
a data structure to contain a pointer to a second structure.

Caution Do not use this method to pass the address of a binary to an external function that will be executed by
a presentation client. If an external function is called from an application server method and executed by a
different process (the presentation client), the memory address is not valid and will almost certainly result in a
jade.exe (thin client) fault in the called function.

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 25

EncycloPrim - 2020.0.02

The method in the following example shows the use of the bufferMemoryAddress method to initialize the
Windows SECURITY_DESCRIPTOR and SECURITY_ATTRIBUTES structures.

constants
// Current security descriptor revision value
SECURITY_DESCRIPTOR_REVISION = 1;

vars
result : Boolean;
securityDescriptor : Binary[20];
securityAttributes : Binary[9];

begin
... // Call the Windows API to initialize the security descriptor
result := call initializeSecurityDescriptor(securityDescriptor,

SECURITY_DESCRIPTOR_REVISION);
// Return Windows error if unable to initialize security descriptor
if not result then

return call getLastError;
endif;
// The first field (DWORD) in the security attributes structure is the
// size (in bytes) of the structure
securityAttributes[1:4] := securityAttributes.length.Binary;
// The second field (LPVOID) points to the security descriptor
// Set the value to the actual address of the buffer
securityAttributes[5:4] :=

securityDescriptor.bufferMemoryAddress.asBinary32;
end;

compressToBinary
Signature compressToBinary(typeAndOption: Integer): Binary;

The compressToBinary method of the Binary primitive type returns a compressed binary representation of the
binary of the receiver using the ZLIB compression value specified by the typeAndOption parameter, which can be
one of the Binary primitive type constants listed in the following table.

Constant Integer Value Description

Compression_ZLib 1402 String and binary compression to binary using ZLIB level 5
(256*5 + 122)

Compression_ZLibFast 378 String and binary compression to binary using ZLIB level 1
(256*1 + 122)

Compression_ZLibSmall 2426 String and binary compression to binary using ZLIB level 9
(256*9 + 122)

Note This method adds the type byte to the front of the compressed binary. This type byte is ignored when the
value is used in a JADE system but if the data is to be passed to an external library, it is your responsibility to
remove the type byte, if necessary.

You cannot concatenate the results of multiple compressToBinary method calls.

You must use the Binary primitive type uncompressToBinary method to uncompress a binary value from this
binary representation.

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 26

EncycloPrim - 2020.0.02

convertPicture
Signature convertPicture(type: Integer): Binary;

The convertPicture method of the Binary primitive type returns a copy of a binary picture image converted to the
picture type specified in the type parameter. The types of images that can be converted (by using the Window
class PictureType_Bitmap, PictureType_Jpeg, PictureType_Jpeg2000, PictureType_Png, or PictureType_Tiff
constant) are as follows.

Bitmap (.bmp)

Tag Image File Format (.tif)

Joint Photographic Experts Group (.jpg)

JPG 2000 (.jp2)

Portable Network Graphics (.png)

A 14015 (File does not contain an image type that can be handled) exception is raised if the receiver does not
contain valid image data.

Notes Converting to a .tif image type file results in a tiff packbits type image. Converting to a .jpg image results
in loss of quality in the picture, as Joint Photographic Experts Group (JPEG) uses a lossy compression algorithm.

As the Portable Network Graphics image uses a lossless compression algorithm, it provides clarity and retains
definition for images, but the files may be larger than JPEG files.

An exception is raised if this method is invoked from a server method.

You cannot convert images to GIF picture files.

See also the convertToFile method of the Binary primitive type.

convertToFile
Signature convertToFile(filename: String;

type: Integer);

The convertToFile method of the Binary primitive type saves a copy of a binary picture image converted to the
picture type specified in the type parameter, in the file specified in the filename parameter. If the filename
parameter is null (""), the common File Save dialog is invoked, requesting the file name that is to be used to store
the converted image.

The types of images that can be converted are as follows.

Bitmap (.bmp)

Tag Image File Format (.tif)

Joint Photographic Experts Group (.jpg)

JPG 2000 (.jp2)

Portable Network Graphics (.png)

Use the PictureType_Bitmap, PictureType_Jpeg, PictureType_Jpeg2000, PictureType_Png, or PictureType_
Tiff constant of the Window class to specify the picture type.

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 27

EncycloPrim - 2020.0.02

A 14015 (File does not contain an image type that can be handled) exception is raised if the receiver does not
contain valid image data.

Notes Converting to a .tif image type file results in a tiff packbits type image. Converting to a .jpg image results
in loss of quality in the picture, as Joint Photographic Experts Group (JPEG) uses a lossy compression algorithm.

As the Portable Network Graphics image uses a lossless compression algorithm, it provides clarity and retains
definition for images, but the files may be larger than JPEG files.

An exception is raised if this method is invoked from a server method.

You cannot convert images to GIF picture files.

See also the convertPicture method of the Binary primitive type.

copyImage
Signature copyImage(left: Integer;

top: Integer;
width: Integer;
height: Integer): Binary;

The copyImage method of the Binary primitive type returns a new binary image created from the rectangular
subset (specified in the left, top, width, and height parameters) of the binary image of the receiver.

The created image has the same:

Type as the original image from which it is created (that is, a .bmp, .tiff, .gif, .png, or .jpeg image).

Bit and color depth as the original image (for example, 23-bit, 8-bit, and so on). If the image is 32-bit, the
alpha channel (transparency) information is preserved for each pixel description that is copied.

The copyImage method raises an exception if the:

Binary is not a valid BMP, TIFF< GIF, PNG, or JPEG image

Method is called from a server method (which requires jade.exe to perform the image copy)

Application is not a GUI application

Rectangle specified is not a subset of the total image rectangle

Applies to Version: 2016.0.03 (Service Pack 2) and higher

display
Signature display(): String;

The display method of the Binary primitive type returns a string containing a hexadecimal dump of the receiver.

fromANSIToString
Signature fromANSIToString(lcid: Integer): String;

The fromANSIToString method of the Binary primitive type converts the receiver to a string using the code page
for the locale specified by the lcid parameter and returns the resulting string.

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 28

EncycloPrim - 2020.0.02

Some code pages (for example, the one used in the People’s Republic of China locale) contain multi-byte
characters as well as single-byte characters.

fromANSIToStringUtf8
Signature fromANSIToStringUtf8(lcid: Integer): StringUtf8;

The fromANSIToStringUtf8 method of the Binary primitive type converts the receiver to a UTF8 string using the
code page for the locale specified by the lcid parameter and returns the resulting string.

Some code pages (for example, the one used in the People’s Republic of China locale) contain multi-byte
characters as well as single-byte characters.

length
Signature length(): Integer;

The length method of the Binary primitive type returns the actual length of the value that has been assigned to an
embedded Binary property; for example, if you declared a Binary property with length of 30 but the value stored is
of length 20, the length method returns 20.

maxLength
Signature maxLength(): Integer;

The maxLength method of the Binary primitive type returns the declared maximum length of a binary variable. If
the binary variable maximum length has not been declared, the value of the Max_UnboundedLength global
constant in the SystemLimits category is returned.

pictureSize
Signature pictureSize(width: Integer output;

height: Integer output): Integer;

The pictureSize method of the Binary primitive type returns the type of picture image of the receiver and the width
and height of the image. If the binary is not a valid image, zero (0) is returned for the type, width, and height of the
image.

Note If the image contains multiple icon or cursor definitions, the pictureSize method returns the size of the
largest of the images.

pictureType
Signature pictureType(): Integer;

The pictureType method of the Binary primitive type returns the type of picture image. The return values are listed
in the following table.

Integer Picture Type Integer Picture Type

0 Not a valid picture 5 Cursor

1 Bitmap 6 Tag Image File Format (.tif)

2 Not used 7 Joint Photographic Experts Group (.jpg)

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 29

EncycloPrim - 2020.0.02

Integer Picture Type Integer Picture Type

3 Icon 8 Portable Network Graphics (.png)

4 Metafile 9 Graphics Interchange Format (.gif)

You can use the PictureType_Bitmap, PictureType_Icon, PictureType_MetaFile, PictureType_Cursor,
PictureType_Tiff, PictureType_Jpeg, PictureType_Png, or PictureType_Gif constant of the Window class,
respectively, to specify the picture type.

An exception is raised if this method is invoked from a server method.

posBinary
Signature posBinary(binary: Binary;

start: Integer): Integer;

The posBinary method of the Binary primitive type returns an integer containing the position in the receiver of the
binary string specified in the binary parameter.

The start parameter must be greater than zero (0) and less than or equal to the length of the receiver.

Note This method is preferred to the deprecated Binary primitive type pos method.

posByte
Signature posByte(b: Byte;

start: Integer): Integer;

The posByte method of the Binary primitive type returns an integer containing the position in the receiver of the
byte specified in the b parameter.

The start parameter must be greater than zero (0) and less than or equal to the length of the receiver.

Note This method is preferred to the deprecated Binary primitive type pos method.

uncompressToBinary
Signature uncompressToBinary(): Binary;

The uncompressToBinary method of the Binary primitive type returns the uncompressed binary representation
of the receiver.

This method uses the ZLIB compression routine specified in the typeAndOption parameter of the Binary primitive
type compressToBinary method that was used to produce the compressed Binary value.

uncompressToString
Signature uncompressToString(): String;

The uncompressToString method of the Binary primitive type returns the uncompressed string representation of
the receiver.

This method uses the ZLIB compression routine specified in the typeAndOption parameter of the String primitive
type compressToBinary method that was used to produce the compressed Binary value.

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 30

EncycloPrim - 2020.0.02

uncompressToStringUtf8
Signature uncompressToStringUtf8(): StringUtf8;

The uncompressToStringUtf8 method of the Binary primitive type returns the uncompressed UTF8 string
representation of the receiver.

This method uses the ZLIB compression routine specified in the typeAndOption parameter of the StringUtf8
primitive type compressToBinary method that was used to produce the compressed Binary value.

unicodeToAnsi
Signature unicodeToAnsi(): String;

The unicodeToAnsi method of the Binary primitive type interprets the binary as Unicode characters and returns a
copy converted to an ANSI string.

This method can be invoked only from an ANSI application.

The code fragment in the following example shows the use of the unicodeToAnsi method.

if fileIsUnicode then
str := bin.unicodeToString;

else
str := bin.ansiToString;

endif;
if str.length >= 3 and str[1:3] = "---" then

rc := true;
endif;

If this method is invoked from a Unicode application, a 1068 - Feature not available in this release exception is
raised.

Note Conversion of the binary stops at the first null character. If the binary contains embedded nulls, the string
returned from the conversion therefore represents only that part of the binary up to the first null character.

unicodeToString
Signature unicodeToString(): String;

The unicodeToString method of the Binary primitive type interprets the binary as Unicode characters and returns
a copy converted to a string.

The code fragment in the following example shows the use of the unicodeToString method.

if fileIsUnicode then
binLen := bin[start : lenLen].unicodeToString.Integer;

else
binLen := bin[start : lenLen].ansiToString.Integer;

endif;

When invoked from a Unicode application, a Unicode string is returned. When invoked from an ANSI application,
the copy is converted from Unicode to ANSI, and an ANSI string is returned.

Encyclopaedia of
Primitive Types

Binary Type Chapter 1 31

EncycloPrim - 2020.0.02

Note When converting from Unicode to ANSI, conversion stops at the first null character. If the binary contains
embedded nulls, the string returned from the Unicode to ANSI conversion therefore represents only that part of the
binary up to the first null character.

unpackCString
Signature unpackCString(start: Integer): String;

The unpackCString method of the Binary primitive type returns a string extracted from the binary, starting at the
position specified by the start parameter and including all characters up to (but not including) the first null
character.

The code fragment in the following example shows the use of the unpackCString method.

str := msg.unpackCString(1);

If the null character is not found, the string consists of all characters from the specified start position up to the end
of the binary.

Note Unpacking of the string stops at the first null character. If the C string contains embedded nulls, the
returned string therefore represents only that part of the C string up to the first null character.

As the input is assumed to be a binary value of ANSI characters, the returned string is converted to Unicode
characters when this method is used in a Unicode JADE system.

uuidAsString
Signature uuidAsString(): String;

The uuidAsString method of the Binary primitive type returns a string formatted as a Universally Unique Identifier
(UUID) from the receiver.

To be a valid UUID when calling this method, the binary should be 16 bytes. If it is less than 16 bytes, the value
will be internally padded with zero bytes on the end, to make it 16 bytes long before the conversion is performed. If
it is longer than 16 bytes, exception 1091 (Binary too long) is raised.

The generateUuid method of the Application class is used to generate a UUID, which has the Binary type.

The code fragment in the following example shows the use of the uuidAsString method.

write self.uuid.uuidAsString;

Encyclopaedia of
Primitive Types

Boolean Type Chapter 1 32

EncycloPrim - 2020.0.02

Boolean Type
A Boolean primitive type value is one of the logical truth-values represented by the standard JADE identifiers true
and false.

JADE provides standard operators that take Boolean values as operands, and produce a Boolean result. These
operators include the logical:

and

not (negation)

or (inclusive)

Boolean values can also be produced by applying relational operators to operands of other types. JADE provides
the standard relational operators listed in the following table.

Operator Description

= Equal to

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

A relational operation consists of two operands separated by a relational operator. If the relation is satisfied, it has
the value true. If the relation is not satisfied, it has the value false. The result of a relational operation is therefore
a Boolean value.

The following example shows the use of the Boolean primitive type.

isMarried(): Boolean;
begin

return spouse <> null;
end;

For details about the method defined in the Boolean primitive type, see "Boolean Method", in the following
subsection. For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the
JADE Developer’s Reference.

Boolean Method
The method defined in the Boolean primitive type is summarized in the following table.

Method Returns …

display A string representing the value of the receiver

Encyclopaedia of
Primitive Types

Boolean Type Chapter 1 33

EncycloPrim - 2020.0.02

display
Signature display(): String;

The display method of the Boolean primitive type returns a string containing "true" or "false", depending on the
value of the receiver.

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 34

EncycloPrim - 2020.0.02

Byte Type
A Byte primitive type value stores an unsigned integer value in the range 0 through 255.

JADE defines a number of arithmetic operations that take Integer operands and return Integer results, as listed in
the following table. A Byte value can be used in place of an Integer value as an operand because of the implicit
type conversion that takes place before the expression is evaluated. The result of an arithmetic operation
involving Byte values is an Integer.

Operator Description

+ Add

- Subtract

* Multiply

div Integer division (division with truncation; for example, 7 div 3 = 2)

^ Exponentiation (for example, i ^ 3 is i cubed)

mod Modulus (remainder after integer division)

These are binary (or dyadic) infix operators; that is, they are used with operands on both sides of the operator (for
example, a+b). However, the + operator and - operator are also used as unary (or monadic) prefix operators, as
listed in the following table.

Unary Prefix Operator Description

+a Sign identify

-a Sign inversion

Using Byte Types in Assignments
An exception is raised when you attempt to compile an assignment of a numeric value (Decimal, Integer,
Integer64, or Real) to a Byte variable without an explicit type cast, as shown in the following example.

vars
byt : Byte;
int : Integer;

begin
byt := 123; // Not allowed to assign to a literal value
int := 123;
byt := int; // Not allowed to assign to an Integer,

// or other numeric type
byt := 123.Byte; // Allowed with the explicit type caste
byt := int.Byte; // Allowed with the explicit type caste

end;

A runtime exception is raised if the value assigned to a Byte variable is less than 0 or greater than 255, as shown
in the following example.

vars
byt : Byte;

begin

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 35

EncycloPrim - 2020.0.02

byt = (-64).Byte; // Exception raised at run time
end;

A Byte value can be assigned to a variable of any of the numeric types (Integer, Integer64, Real, Decimal)
without an explicit type caste.

For details about the methods defined in the Byte primitive type, see "Byte Methods", in the following subsection.
For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the JADE
Developer’s Reference.

Byte Methods
The methods defined in the Byte primitive type are summarized in the following table.

Method Description

bitAnd Returns a Byte value representing the receiver bits ANDed with the
argument

bitNot Returns a Byte value whose bit values are the inverse of the bit values
of the receiver

bitOr Returns a Byte value representing the receiver bits ORed with the
argument

bitXor Returns a Byte value representing the receiver bits XORed with the
argument

display Returns a string representing the value of the receiver

isEven Returns true if the receiver represents an even number; otherwise
false

isOdd Returns true if the receiver represents an odd number; otherwise false

max Returns the larger value of the receiver and a specified Byte

min Returns the lesser value of the receiver and a specified Byte

numberFormat Returns a string in the number format of the current locale

padLeadingWith Returns the receiver as a string padded to the specified length with a
leading character

parseCurrencyWithCurrentLocale Sets the receiver to the result of parsing a string representing a
currency value for the current locale

parseCurrencyWithFmtAndLcid Sets the receiver to the result of parsing a string representing a
currency value for the specified format and the specified locale

parseNumberWithCurrentLocale Sets the receiver to the result of parsing a string representing a number
for the current locale

parseNumberWithFmtAndLcid Sets the receiver to the result of parsing a string representing a number
for the specified format and the specified locale

userCurrencyFormat Returns the receiver as a string in the specified currency format for the
current locale

userCurrencyFormatAndLcid Returns the receiver as a string in the specified currency format for the
specified locale

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 36

EncycloPrim - 2020.0.02

Method Description

userNumberFormat Returns the receiver as a string in the specified number format for the
current locale

userNumberFormatAndLcid Returns the receiver as a string in the specified number format for the
specified locale

bitAnd
Signature bitAnd(op: Byte): Byte;

The bitAnd method of the Byte primitive type compares each bit in the receiver with the corresponding bit
specified in the op parameter and returns a Byte value representing the receiver bits ANDed with the argument.

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

Both bits are 1 1

One or both bits are not 1 0

The following example shows the use of the bitAnd method.

keyDown(keyCode: Integer io; shift: Integer) updating;
constants

Shift = 1.Byte;
Cntrl = 2.Byte;
Alt = 4.Byte;

vars
byt : Byte;

begin
byt := shift.Byte;
if byt.bitAnd(Shift) <> 0 then write "Shift key is down"; endif;
if byt.bitAnd(Cntrl) <> 0 then write "Control key is down"; endif;
if byt.bitAnd(Alt) <> 0 then write "Alt key is down"; endif;

end;

bitNot
Signature bitNot(): Byte;

The bitNot method of the Byte primitive type returns a Byte value whose bit values are the inverse of the bit
values of the receiver. The generated return values are listed in the following table.

Bits in Receiver Corresponding Bit in Return Value

Bit is not 1 1

Bit is 1 0

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 37

EncycloPrim - 2020.0.02

bitOr
Signature bitOr(op: Byte): Byte;

The bitOr method of the Byte primitive type compares each bit in the receiver with the corresponding bit specified
in the op parameter, and returns a Byte value representing the receiver bits ORed with the argument.

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

One or both bits are 1 1

Neither bit is 1 0

The code fragment in the following example shows the use of the bitOr method.

constants
BitFlagNone = 0.Byte;
BitFlag1 = 1.Byte;

vars
byt : Byte;

begin
byt := BitFlagNone;
// set bit flag 1
byt := byt.bitOr(BitFlag1);
// test that bit flag 1 is set
if byt.bitAnd(BitFlag1) <> 0 then

write "flag 1 is set";
endif;

end;

bitXor
Signature bitXor(op: Byte): Byte;

The bitXor method of the Byte primitive type compares each bit in the receiver with the corresponding bit
specified in the op parameter, and returns a Byte value representing the receiver bits XORed with the argument.

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

The bits are complementary 1

The bits are not complementary 0

display
Signature display(): String;

The display method of the Byte primitive type returns a string that represents the integral value of the receiver.

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 38

EncycloPrim - 2020.0.02

isEven
Signature isEven(): Boolean;

The isEven method of the Byte primitive type returns true if the receiver represents an even number; otherwise, it
returns false.

isOdd
Signature isOdd(): Boolean;

The isOdd method of the Byte primitive type returns true if the receiver represents an odd number; otherwise, it
returns false.

max
Signature max(byte: Byte): Byte;

The max method of the Byte primitive type returns the larger value of the receiver and the value of the byte
parameter. If the value of the receiver is greater than the value of the byte parameter, the value of the receiver is
returned. If the value of the receiver is less than or equal to the value of the byte parameter, the value of byte is
returned.

min
Signature min(byte: Byte): Byte;

The min method of the Byte primitive type returns the lesser value of the receiver and the value of the byte
parameter. If the value of the receiver is less than the value of the byte parameter, the value of the receiver is
returned. If the value of the receiver is greater than or equal to the value of the byte parameter, the value of byte is
returned.

numberFormat
Signature numberFormat(): String;

The numberFormat method of the Byte primitive type returns a string in the numeric format defined for the current
locale, which specifies the thousands separator, sign character, and decimal point character; for example, 129.00.
The following example shows the use of the numberFormat method.

vars
str : String;
byt : Byte;

begin
byt := 167.Byte;
write byt; // Outputs 167
str := byt.numberFormat;
write str; // Outputs 167.00

end;

You can use the defineNumberFormat method of the NumberFormat class if you want to create your own
transient format objects and define a numeric format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 39

EncycloPrim - 2020.0.02

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

padLeadingWith
Signature padLeadingWith(char: Character;

max: Integer): String;

The padLeadingWith method of the Byte primitive type returns a string of the length specified in the max
parameter, consisting of the receiving string padded with the leading character specified in the char parameter.

If the string is equal to or longer than the value specified in the max parameter, it is not truncated but the whole
string is returned.

The following example shows the use of the padLeadingWith method.

constants
PAD_CHARACTER = 'x';

vars
byt : Byte;
str : String;

begin
byt := 123.Byte;
str := byt.padLeadingWith('w', 15) & ' 678 Sesame St.';
write str; // Outputs wwwwwwwwwwww123 678 Sesame St.
str := byt.padLeadingWith('a', 2);
write str; // Outputs 123
str := byt.padLeadingWith(PAD_CHARACTER, 10);
write str; // Outputs xxxxxxx123

end;

parseCurrencyWithCurrentLocale
Signature parseCurrencyWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseCurrencyWithCurrentLocale method of the Byte primitive type parses the string specified in the
source parameter to ensure that it matches the Byte format of the current locale for currency sequence, currency
position, sign sequence, sign position, thousands separator, decimal point sequence, and character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

This is equivalent to calling the parseCurrencyWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 40

EncycloPrim - 2020.0.02

parseCurrencyWithFmtAndLcid
Signature parseCurrencyWithFmtAndLcid(source: String;

fmt: CurrencyFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseCurrencyWithFmtAndLcid method of the Byte primitive type parses the string specified in the source
parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for currency sequence, currency position, sign sequence, sign position, thousands separator, decimal
point sequence, and character set.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

The currency character sequence is optional but if it is included in the source, it must be correctly positioned.

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

A space included in the sign and currency character sequence is optional.

If native digits are allowed and the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

The value of the source parameter text can include a decimal point and decimal digits, but they must all be zero
(0) so that rounding or truncation is not required to store the value in a Byte variable; for example:

"100", "100.", "100.0", "100.00", and "100.000" are accepted as valid and equal.

"100.01" and "100.99" are rejected, as the value cannot be stored accurately in a Byte primitive type.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithCurrentLocale
Signature parseNumberWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseNumberWithCurrentLocale method of the Byte primitive parses the string specified in the source
parameter to ensure that it matches the Byte format of the current locale for sign sequence, sign position,
thousands separator, decimal point sequence, and character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 41

EncycloPrim - 2020.0.02

This is equivalent to calling the parseNumberWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithFmtAndLcid
Signature parseNumberWithFmtAndLcid(source: String;

fmt: NumberFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseNumberWithFmtAndLcid method of the Byte primitive type parses the string specified in the source
parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for sign sequence, sign position, thousands separator, decimal point sequence, and character set.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

The sign character sequence is optional but if it is included in the source, it must be correctly positioned. A space
included in the sign sequence is optional.

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

The value of the source parameter text can include a decimal point and decimal digits, but they must all be zero
so that rounding or truncation is not required to store the value in a Byte variable; for example:

"100", "100.", "100.0", "100.00", and "100.000" are accepted as valid and equal.

"100.01" and "100.99" are rejected, as the value cannot be stored accurately in a Byte primitive type.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userCurrencyFormat
Signature userCurrencyFormat(fmt: CurrencyFormat): String;

The userCurrencyFormat method of the Byte primitive type returns a string containing the receiver in the
currency format specified in the fmt parameter.

To define your currency formats, use the Schema menu Format command from the Schema Browser.

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 42

EncycloPrim - 2020.0.02

Notes When you use a format in a JADE method, prefix your user currency format name with a dollar sign ($);
for example, userCurrencyFormat($MyCurrency).

You can use the defineCurrencyFormat method of the CurrencyFormat class if you want to create your own
transient format objects and define a currency format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userCurrencyFormatAndLcid
Signature userCurrencyFormatAndLcid(fmt: CurrencyFormat;

lcid: Integer): String;

The userCurrencyFormatAndLcid method of the Byte primitive type returns a string containing the receiver in
the currency format and locale specified in the fmt parameter and lcid parameter, respectively.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userNumberFormat
Signature userNumberFormat(fmt: NumberFormat): String;

The userNumberFormat method of the Byte primitive type returns a string containing the receiver in the number
format specified in the fmt parameter.

To define your numeric formats, use the Schema menu Format command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user number format name with a dollar sign ($); for
example, userNumberFormat($MyNumber).

You can use the defineNumberFormat method from the NumberFormat class if you want to create your own
transient format objects and define a numeric format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Byte Type Chapter 1 43

EncycloPrim - 2020.0.02

userNumberFormatAndLcid
Signature userNumberFormat(fmt: NumberFormat;

lcid: Integer): String;

The userNumberFormatAndLcid method of the Byte primitive type returns a string containing the receiver in the
number format and locale specified in the fmt parameter and lcid parameter, respectively.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Character Type Chapter 1 44

EncycloPrim - 2020.0.02

Character Type
Use the Character primitive type to define a variable as a single ANSI or Unicode character. The following
example shows the use of the Character primitive type.

testCharacter();
vars

charValue : Character;
begin

charValue := "M"; // Defines the variable value
write charValue; // Outputs a value of M
write charValue.isLower; // Outputs a value of false
write charValue.isAlpha; // Outputs a value of true
write charValue.toLower; // Outputs a value of m

end;

For details about the methods defined in the Character primitive type, see "Character Methods", in the following
subsection. For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the
JADE Developer’s Reference.

Character Methods
The methods defined in the Character primitive type are summarized in the following table.

Method Returns …

compareEql true if the receiver is equal to a specified character

compareGeneric An integer showing whether the receiver is greater than, equal to, or less than a
specified character

compareGeq true if the receiver is greater than or equal to a specified character

compareGtr true if the receiver is greater than a specified character

compareLeq true if the receiver is less than or equal to a specified character

compareLss true if the receiver is less than the value of a specified character

compareNeq true if the receiver is not equal to a specified character

display A string containing the receiver

isAlpha true if the receiver represents a letter for the current language setting

isDelimiter true if the receiver is not alphanumeric

isHex true if the receiver represents a hexadecimal character

isLower true if the receiver represents a lowercase letter

isNumeric true if the receiver represents a numeric digit

isPrintable true if the receiver is a character that can be printed

isUpper true if the receiver represents an uppercase letter

makeString A string of the specified length filled with the value of the receiver

setByteOrderLocal A character that has the bytes ordered as required by the local node

Encyclopaedia of
Primitive Types

Character Type Chapter 1 45

EncycloPrim - 2020.0.02

Method Returns …

setByteOrderRemote A character that has the bytes ordered as required by the specified remote node

toHex A string containing the hexadecimal value of the receiver

toLower The lowercase equivalent of the receiving character

toUpper The uppercase equivalent of the receiving character

compareEql
Signature compareEql(rhs: Character;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareEql method of the Character primitive type returns true if the receiver is equal to the value of the rhs
parameter; otherwise it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareEql(lhs, true, false, null);

recv.toLower = lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareEql method.

write "A".compareEql("a", true, false, null); // Outputs true
write "A".compareEql("a", false, false, null); // Outputs false

Encyclopaedia of
Primitive Types

Character Type Chapter 1 46

EncycloPrim - 2020.0.02

compareGeneric
Signature compareGeneric(rhs: Character;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Integer;

The compareGeneric method of the Character primitive type compares the receiver with the value of the rhs
parameter and returns one of the following values.

Value Returned if the receiver is …

Negative integer Less than the right-hand side value represented by the rhs parameter

Zero (0) Equal to the right-hand side value represented by the rhs parameter

Positive integer Greater than the right-hand side value represented by the rhs parameter

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operators (<, <=, =, >=, >, <>), documented in Chapter 1 of the JADE
Developer’s Reference, use a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareGeneric(lhs, true, false, null);

(recv.toLower>lhs.toLower).Integer - (recv.toLower<lhs.toLower).Integer;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareGeneric method.

vars
locale : Locale;

begin
write "a".compareGeneric("c", false, false, null); // Outputs -1
write "b".compareGeneric("b", false, false, null); // Outputs 0
write "c".compareGeneric("a", false, false, null); // Outputs 1

Encyclopaedia of
Primitive Types

Character Type Chapter 1 47

EncycloPrim - 2020.0.02

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "à".compareGeneric("z", false, false, null); // Outputs 1
write "à".compareGeneric("z", false, true, locale); // Outputs -1

compareGeq
Signature compareGeq(rhs: Character;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareGeq method of the Character primitive type returns true if the receiver is greater than or equal to the
value of the rhs parameter; otherwise it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (>=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareGeq(lhs, true, false, null);

recv.toLower >= lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareGeq method.

vars
locale : Locale;

begin
write "a".compareGeq("c", false, false, null); // Outputs false
write "b".compareGeq("b", false, false, null); // Outputs true
write "c".compareGeq("a", false, false, null); // Outputs true

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");

Encyclopaedia of
Primitive Types

Character Type Chapter 1 48

EncycloPrim - 2020.0.02

write "à".compareGeq("z", false, false, null); // Outputs true
write "à".compareGeq("z", false, true, locale); // Outputs false

compareGtr
Signature compareGtr(rhs: Character;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareGtr method of the Character primitive type returns true if the receiver is greater than the value of the
rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (>), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareGtr(lhs, true, false, null);

recv.toLower > lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareGtr method.

vars
locale : Locale;

begin
write "a".compareGtr("c", false, false, null); // Outputs false
write "b".compareGtr("b", false, false, null); // Outputs false
write "c".compareGtr("a", false, false, null); // Outputs true

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "à".compareGtr("z", false, false, null); // Outputs true
write "à".compareGtr("z", false, true, locale); // Outputs false

Encyclopaedia of
Primitive Types

Character Type Chapter 1 49

EncycloPrim - 2020.0.02

compareLeq
Signature compareLeq(rhs: Character;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareLeq method of the Character primitive type returns true if the receiver is less than or equal to the
value of the rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareLeq(lhs, true, false, null);

recv.toLower <= lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareLeq method.

vars
locale : Locale;

begin
write "a".compareLeq("c", false, false, null); // Outputs true
write "b".compareLeq("b", false, false, null); // Outputs true
write "c".compareLeq("a", false, false, null); // Outputs false

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "à".compareLeq("z", false, false, null); // Outputs false
write "à".compareLeq("z", false, true, locale); // Outputs true

Encyclopaedia of
Primitive Types

Character Type Chapter 1 50

EncycloPrim - 2020.0.02

compareLss
Signature compareLss(rhs: Character;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareLss method of the Character primitive type returns true if the receiver is less than the value of the
rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareLss(lhs, true, false, null);

recv.toLower < lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareLss method.

vars
locale : Locale;

begin
write "a".compareLss("c", false, false, null); // Outputs true
write "b".compareLss("b", false, false, null); // Outputs false
write "c".compareLss("a", false, false, null); // Outputs false

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "à".compareLss("z", false, false, null); // Outputs false
write "à".compareLss("z", false, true, locale); // Outputs true

Encyclopaedia of
Primitive Types

Character Type Chapter 1 51

EncycloPrim - 2020.0.02

compareNeq
Signature compareNeq(rhs: Character;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareNeq method of the Character primitive type returns true if the receiver is not equal to the value of
the rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<>), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareNeq(lhs, true, false, null);

recv.toLower <> lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareNeq method.

write "A".compareNeq("a", true, false, null); // Outputs false
write "A".compareNeq("a", false, false, null); // Outputs true

display
Signature display(): String;

If the receiver is a printable character, the display method of the Character primitive type returns a string
containing the receiving character if it is a printable character for the current language setting.

If the receiver is not a printable character, the display method returns a string containing the hexadecimal value of
the receiving character, enclosed in single quotation marks ('') and preceded by a number sign (#).

Encyclopaedia of
Primitive Types

Character Type Chapter 1 52

EncycloPrim - 2020.0.02

The following example shows the use of the display method.

vars
char1, char2, char3 : Character;

begin
char1 := "q";
char2 := #'13';
char3 := #'41';
write char1.display; // Outputs q
write char2.display; // Outputs #'13'
write char3.display; // Outputs A

end;

isAlpha
Signature isAlpha(): Boolean;

The isAlpha method of the Character primitive type returns true if the receiver represents a letter for the current
language setting; otherwise, it returns false.

The code fragment in the following example shows the use of the isAlpha method.

//strip leading non-alpha characters
count := 1;
alphaFound := false;
while count <= str.length do

if str[count].Character.isAlpha then
if newStr.length > 0 then

newStr := newStr & str[count].toUpper;
else

newStr := str[count].toUpper;
endif;
count := count + 1;
alphaFound := true;
break;

endif;
count := count + 1;

endwhile;
if alphaFound = false and newStr.length = 0 then

return "";
endif;

isDelimiter
Signature isDelimiter(): Boolean;

The isDelimiter method of the Character primitive type returns true if the receiver is not alphanumeric; otherwise,
it returns false.

The code fragment in the following example shows the use of the isDelimiter method.

// find delimiter
count := int;
while count < self.length do

charValue := self[count];
if charValue.isDelimiter and charValue <> '_' then

Encyclopaedia of
Primitive Types

Character Type Chapter 1 53

EncycloPrim - 2020.0.02

break;
else

count := count + 1;
endif;

endwhile;

isHex
Signature isHex(): Boolean;

The isHex method of the Character primitive type returns true if the receiver represents a hexadecimal character;
that is, 0 through 9, a through f, or A through F.

isLower
Signature isLower(): Boolean;

The isLower method of the Character primitive type returns true if the receiver represents a lowercase letter for
the current language setting.

The code fragment in the following example shows the use of the isLower method.

if count <= str.length and str[count].Character.isLower then
str[count] := str[count].Character.toUpper;

endif;

isNumeric
Signature isNumeric(): Boolean;

The isNumeric method of the Character primitive type returns true if the receiver represents a numeric digit for
the current language setting.

The code fragment in the following example shows the use of the isNumeric method.

if prodTitle.text.length = 0 then
// Build default caption from name by inserting a space before each
// uppercase character; for example, "3NeonHuedChocolateCoveredGumDrops"
// becomes "3 Neon Hued Chocolate Covered Gum Drops"
str := prodName.text;
prodTitle.text[1] := str[1];
count := 2;
while count <= str.length do

if str[count].isUpper or (str[count].isNumeric and not
str[count-1].isNumeric) then

prodTitle.text := prodTitle.text & " ";
endif;
prodTitle.text := prodTitle.text & str[i];
count := count + 1;

endwhile;
endif;

Encyclopaedia of
Primitive Types

Character Type Chapter 1 54

EncycloPrim - 2020.0.02

isPrintable
Signature isPrintable(): Boolean;

The isPrintable method of the Character primitive type returns true if the receiver is a character that can be
printed; otherwise, it returns false.

Character values in the range #20 through #7E can always be printed. Whether a character greater than #7F can
be printed depends on the current locale, and character set (ANSI or Unicode).

isUpper
Signature isUpper(): Boolean;

The isUpper method of the Character primitive type returns true if the receiver represents an uppercase letter for
the current language setting.

The code fragment in the following example shows the use of the isUpper method.

// Check the first character is an uppercase letter
if not theName[1].Character.isUpper then

app.beep;
statusLine.caption := "Error - The name must begin with an uppercase

letter";
stringName.setFocus;
return;

endif;

makeString
Signature makeString(length: Integer): String;

The makeString method of the Character primitive type returns a string of the length specified in the length
parameter filled with the value of the receiver.

If the receiver is null, the returned string is filled with spaces. If the value of the length parameter is less than or
equal to zero (0), an empty string is returned.

The following example shows the use of the makeString method.

vars
charValue : Character;

begin
charValue := "*";
write charValue.makeString(10); // Outputs **********
charValue := " ";
write charValue.makeString(10); // Outputs (ten spaces)

end;

setByteOrderLocal
Signature setByteOrderLocal(architecture: Integer): Character;

The setByteOrderLocal method of the Character primitive type returns a character that has the bytes ordered as
required by the local node.

Encyclopaedia of
Primitive Types

Character Type Chapter 1 55

EncycloPrim - 2020.0.02

The bytes of the receiver are assumed to be ordered as indicated by the architecture parameter. The
architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

setByteOrderRemote
Signature setByteOrderRemote(architecture: Integer): Character;

The setByteOrderRemote method of the Character primitive type returns a character that has the bytes ordered
as required by the remote node indicated by the architecture parameter.

The bytes of the receiver are assumed to be ordered as required by the local node.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently
Windows 32-bit little-endian)

toHex
Signature toHex(): String;

The toHex method of the Character primitive type returns a string containing the hexadecimal value of the
receiving character.

The following example shows the use of the toHex method.

vars
charValue : Character;

begin

Encyclopaedia of
Primitive Types

Character Type Chapter 1 56

EncycloPrim - 2020.0.02

charValue := "q";
write charValue.toHex; // Outputs 71

end;

toLower
Signature toLower(): Character;

The toLower method of the Character primitive type returns the lowercase equivalent of the receiving character.
Any character that is not an uppercase character is left unchanged.

The following example shows the use of the toLower method.

vars
charValue : Character;

begin
charValue := "A";
write charValue.toLower; // Outputs a

end;

toUpper
Signature toUpper(): Character;

The toUpper method of the Character primitive type returns the uppercase equivalent of the receiving character.
Any character that is not a lowercase character is left unchanged.

The following example shows the use of the toUpper method.

vars
charValue : Character;

begin
charValue := "r";
write charValue.toUpper; // Outputs R

end;

Encyclopaedia of
Primitive Types

Date Type Chapter 1 57

EncycloPrim - 2020.0.02

Date Type
A Date variable represents a specific day since the start of the Julian period. The Date primitive type defines the
protocol for comparing and manipulating dates.

In JADE thin client mode, local variables of type Date are always initialized to the date relative to the presentation
client.

Dates are generally obtained from user input in a Gregorian Calendar format, and converted to the internal (Julian
day) format for internal storage and computation. Strictly speaking, the valid range for Julian day numbers is 0
through 2914726, which are the limits of the current Julian Period (7980 Julian years in length). This supports a
valid date range from 24 November -4713 through 23 February 3268, Gregorian. However, JADE does not
adhere to this limit, and allows day numbers to extend beyond this range.

When the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file is
set to true, the Windows Control Panel setting is used to convert a two-digit year into a four-digit year for a
two-digit edit mask year of yy using the current century; for example, 99 by default becomes 1999 rather than
2099.

JADE handles any calendar available within Microsoft Windows, including the conversion and display of
non-Gregorian calendar dates, based on the locale and calendar set for the current user.

Notes JADE prevents the use of the day 0 as a valid date, since the Julian day 0 is considered to be null. The
maximum Julian day number is not imposed as the maximum date permitted by JADE.

write (1).Date // displays 25 November -4713 (one day higher than Day zero)

write (0).Date // displays null (but internally represents 24 November -4713)

The variable contains the current date as a Julian day number. (For details, see "Historical Note about the Date
Type", in the following subsection.)

When used as a Dictionary key, the valid range for a Date key is (0).Date through (Max_Integer).Date.

If you declare a Date primitive type local variable in your method that is referenced within the code of the method,
it is initialized with the current date each time the method that declares the variable is invoked. If such a local
variable is declared but is not referenced in the code, its value is not initialized. Object attributes of type Date are
initialized to null.

As Date primitive types are ordinal values (Julian day numbers), the forms of date arithmetic expressions listed in
the following table are valid.

Expression Expression Type

date-expression + integer-expression (date)

date-expression - integer-expression (date)

date-expression - date-expression (integer)

The following assignment shows the calculation of a date 134 days later than a specified date:

date2 := date1+134;

You can use the JadeEditMask class getTextAsDate and setTextFromDate methods to handle locale formatting
for date fields.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 58

EncycloPrim - 2020.0.02

For details about the methods defined in the Date primitive type, see "Date Methods", and for examples of the use
of this primitive type, see "Date Primitive Type Examples", later in this section. For details about converting
primitive types, see "Converting Primitive Types", in Chapter 1 of the JADE Developer’s Reference.

Historical Note about the Date Type
The first official Gregorian calendar day occurred on the date of its inception on 15 October 1582 (Gregorian). This
reform was later adopted by most western cultures at different times. We can still identify particular days before 15
October 1582 (Gregorian) using dates in the Gregorian calendar, simply by projecting the Gregorian dating
system back beyond the time of its implementation. A calendar obtained by extension earlier in time than its
invention or implementation is called the proleptic version of the calendar, and we therefore obtain the Proleptic
Gregorian Calendar.

The Proleptic Gregorian Calendar has a year 0, and there are no years Before Christ (BC). The year before 1
Anno Domini (AD) is 0, and the year before that is -1.

The Julian day number of the Date primitive type is the number of elapsed days since the start of the Julian
period, as defined by Joseph Scaliger. The start of the Julian period, established by Scaliger, is 1 January 4713
Before Common Era Proleptic Julian (BCE). The Julian period is the universal cycle (or period) used in
chronology, especially for astronomical calculations involving large time intervals.

Date Primitive Type Examples
You can create a primitive method in type Date to return a string containing the short date in dd-MM-yyyy format,
as follows.

testShortDate1(): String;
begin

return day.String & "-" & month.String & "-" & year.String;
end;

In this example, the day, month, and year values are methods of the Date primitive type. However, the following
example shows a more-direct method of returning the date in a short format; that is, the format method enables
you to format dates to meet your requirements.

testShortDate2(): String;
vars

date : Date;
begin

return date.format("dd-MM-yyyy");
end;

Notes The month is denoted by uppercase letters (that is, MM) to differentiate it from minutes (that is, mm).

You can use the defineLongDateFormat or defineShortDateFormat method of the DateFormat class if you want
to create your own transient format objects and define a long or short date format that dynamically overrides the
appropriate format for the locale at run time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If an attempt is made to format an invalid date, "*invalid*" is returned.

The following example shows the use of the Date primitive type.

daysToXmas(): Integer; // valid only before xmas day in a specified year
vars

xmasday, today : Date;
begin

Encyclopaedia of
Primitive Types

Date Type Chapter 1 59

EncycloPrim - 2020.0.02

xmasday.setDate(25, 12, today.year);
return xmasday - today;

end;

Date Methods
The methods defined in the Date primitive type are summarized in the following table.

Method Description

day Returns the day of the month as an integer

dayName Returns the name of the day of the week as a string

dayNameWithLcid Returns the name of the day of the week as a string for the specified locale

dayOfWeek Returns an integer value for the day of the week

dayOfYear Returns an integer value for the day of the year

daysInMonth Returns an integer value of the days in the month of the date of the receiver

display Returns the date as a string

format Returns the date as a string in the specified format

isFormatable Returns true if the date falls within the valid conversion range for the
execution platform

isLeapYear Returns true if the year is a leap year

isValid Returns true if the date is valid

lastOccurrenceOfDayInMonth Returns the date identical to the receiver except that the day is modified to
the last occurrence that matches the specified day of the week

longFormat Returns the date as a string in the long date format

month Returns the month as an integer

monthName Returns the name of the month

monthNameWithLcid Returns the name of the month for the specified locale

nthOccurrenceOfDayInMonth Returns the date identical to the receiver except the day is modified to
match the specified nth occurrence (for example, 1st or 2nd) that matches
the specified day of the week

parseForCurrentLocale Sets the receiver to the result of parsing a string representing a date for the
current locale

parseLongWithCurrentLocale Sets the receiver to the result of parsing a string representing a date in the
long date format for the current locale

parseLongWithFmtAndLcid Sets the receiver to the result of parsing a string representing a date for the
specified long date format and the specified locale

parseLongWithPicAndLcid Sets the receiver to the result of parsing a string representing a date for the
specified long date picture and the specified locale

parseShortWithCurrentLocale Sets the receiver to the result of parsing a string representing a date in the
short date format for the current locale

Encyclopaedia of
Primitive Types

Date Type Chapter 1 60

EncycloPrim - 2020.0.02

Method Description

parseShortWithFmtAndLcid Sets the receiver to the result of parsing a string representing a date for the
specified short date format and the specified locale

parseShortWithPicAndLcid Sets the receiver to the result of parsing a string representing a date for the
specified short date picture and the specified locale

setByteOrderLocal Returns a date that has the bytes ordered as required by the local node

setByteOrderRemote Returns a date that has the bytes ordered as required by the specified
remote node

setDate Sets the receiver to a specified date

setDateYearAbsolute Sets the receiver to a specific absolute date

shortDayNameWithLcid Returns the short name of the week day for the specified locale

shortFormat Returns the date in the short date format

shortMonthNameWithLcid Returns the short name of the month for the specified locale

subtract Returns the interval between the receiver and the specified date

userFormat Returns the date as a string in the specified date format

userLongFormatAndLcid Returns the date as a string in the specified long date format for the
specified locale

userLongFormatPicAndLcid Returns the date as a string formatted in the specified long date picture for
the specified locale

userShortFormatAndLcid Returns the date as a string in the specified short date format for the
specified locale

userShortFormatPicAndLcid Returns the date as a string formatted in the specified short date picture for
the specified locale

year Returns the year as in integer

day
Signature day(): Integer;

The day method of the Date primitive type returns the day of the month (represented by the date value of the
receiver) as an integer; for example, 21.

The following code fragment shows the use of the day method.

while day.day <= Calendar.DaysOfWeek do
column := day.dayOfWeek;
text := day.dayName[1:Calendar.DayNameLength];
day := day + 1;

endwhile;
display := date.day.String & "/" & date.month.String & "/" & date.year.String[3:2];

Encyclopaedia of
Primitive Types

Date Type Chapter 1 61

EncycloPrim - 2020.0.02

dayName
Signature dayName(): String;

The dayName method is defined by the current locale of the user. The dayName method of the Date primitive
type returns the name of the day of the week (represented by the date value of the receiver) as a string; for
example, Tuesday.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

For an example of the use of the dayName method, see the Date primitive type day method.

dayNameWithLcid
Signature dayNameWithLcid(lcid: Integer): String;

The dayNameWithLcid method of the Date primitive type returns a string containing the full name of the week day
from the locale specified in the lcid parameter for the receiver date.

If the value of the lcid parameter is zero (0), the day name is obtained from the current locale. If the date is null or
invalid, an exception is raised.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

dayOfWeek
Signature dayOfWeek(): Integer;

The dayOfWeek method of the Date primitive type returns an integer value for the day of the week (for the date
value of the receiver).

For an example of the use of the dayOfWeek method, see the Date primitive type day method.

The week day values are those listed in the following table.

Integer Value Day

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

7 Sunday

Encyclopaedia of
Primitive Types

Date Type Chapter 1 62

EncycloPrim - 2020.0.02

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

dayOfYear
Signature dayOfYear(): Integer;

The dayOfYear method of the Date primitive type returns an integer value for the day of the year (for the date
value of the receiver); for example, 274.

The following example shows the use of the dayOfYear method.

vars
date : Date;

begin
date := "01 January 2000".Date;
write date.dayOfYear.String; // Outputs 1
date := "10 March 2000".Date;
write date.dayOfYear.String; // Outputs 70

end;

daysInMonth
Signature daysInMonth(): Integer;

The daysInMonth method of the Date primitive type returns the number of days in the month of the date value of
the receiver (accounting for leap years).

Applies to Version: 2020.0.01 and higher

display
Signature display(): String;

The display method of the Date primitive type returns the receiver as a string.

format
Signature format(picture: String): String;

The format method of the Date primitive type returns the receiver as a string formatted in the date format specified
in the picture parameter.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 63

EncycloPrim - 2020.0.02

Notes If the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE initialization file
is set to its default value of false, the format method returns *invalid* for dates outside the range 1 January 1601
through 31 December 30827.

If EnhancedLocaleSupport is set to true, the format method can format dates in the range 1 January 100 to
31 December 30827 correctly.

If EnhancedLocaleSupport is set to false, inconsistent results could be returned to the application server when
running in JADE thin client mode and there are locale overrides, as all overrides on the application server are
suppressed if enhanced locale support is not enabled. Formatting of locale data is done on the application server,
based on the locale of the corresponding presentation client.

The following examples show the use of the format method.

vars
date : Date;

begin
write "The date today is " & date.format("dd.MM.yyyy");

end;

if cd.lastPlayed = null then
form.lastPlayed.caption := "Never";

else
form.lastPlayed.caption := cd.lastPlayed.format("dd-MMM-yy");

endif;

The picture parameter is the string value of the required format. The month is denoted by uppercase letters (that
is, MM) to differentiate it from minutes (that is, mm).

Use the string picture elements listed in the following table to construct date format picture strings. Separate each
element with a space or separator character.

Picture Description Output Format

d Day of month as digits, with no leading zero 9

dd Day of month as digits, with a leading zero 09

ddd Day of week as an abbreviation as specified in the locale definition, usually
three letters

Mon

dddd Day of week as the full name Wednesday

M Month as digits, with no leading zero 6

MM Month as digits, with leading zero 08

MMM Month as an abbreviation as specified in the locale definition, usually three
letters

Mar

MMMM Month as the full name September

y Year, represented by only the last digit if less than 10, else yy 6

yy Year, represented by only the last two digits 97

yyy Year, represented by all significant digits 1998

Encyclopaedia of
Primitive Types

Date Type Chapter 1 64

EncycloPrim - 2020.0.02

For example, to return a date string of Wed Aug 04 99, use the following picture string as your picture parameter
for the format method of the Date primitive type.

ddd MMM dd yy

Note The locale information for each country is supplied embedded with the operating system. For example, the
MMM format of an English locale returns the month as a three-letter abbreviation (for example, Apr) and the ddd
format as a three-letter abbreviation (for example, Mon). The MMM format of a French locale can vary from three
letters to four letters and a character (for example, mai, mars, or janv.) and the ddd format always returns three
letters and a character (for example, lun.).

isFormatable
Signature isFormatable(): Boolean;

The isFormatable method of the Date primitive type returns true for dates that can be formatted correctly by using
the shortFormat and longFormat methods of the Date primitive type; otherwise it returns false.

The formatting methods in JADE depend on the operating system date conversion routines, which result in the
isFormatable method returning true for dates in the range 1 January 1601 through 31 December 30827.

isLeapYear
Signature isLeapYear(): Boolean;

The isLeapYear method of the Date primitive type returns true if the year of the locale and calendar that is set for
the current user is a leap year.

isValid
Signature isValid(): Boolean;

The isValid method of the Date primitive type returns true if the receiver is a valid date. This method returns false
if the date is invalid.

This method also returns false for dates outside the valid internal representation range of 24th November -4713
through 31st December 1465072 Gregorian.

The code fragment in the following example shows the use of the isValid method.

if (day.String & "/" & month.String & "/" & year.String).Date.isValid then
calendar.date.setDate(day, month, year);

else
calendar.date.setDate(1, month, year);

endif;

lastOccurrenceOfDayInMonth
Signature lastOccurrenceOfDayInMonth(dayOfWeek: Integer): Date;

The lastOccurrenceOfDayInMonth method of the Date primitive type returns the date identical to the receiver
except that the day is modified to the last occurrence that matches the day specified in the dayOfWeek parameter.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 65

EncycloPrim - 2020.0.02

The Integer values and the days that they represent are listed in the following table.

Integer Value Corresponding Day

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

7 Sunday

Applies to Version: 2020.0.01 and higher

longFormat
Signature longFormat(): String;

The longFormat method of the Date primitive type is defined by the current locale of the user.

The longFormat method returns the receiver as a string formatted in the long date format defined for the current
locale of the user; for example, Wednesday, 04 08, 99 or Wed, August 4, 1999.

Notes You can use the defineLongDateFormat method of the DateFormat class if you want to create your own
transient format objects and define a long date format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

The longFormat method returns "*invalid*" for dates before 1601 or after 30827.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

month
Signature month(): Integer;

The month method of the Date primitive type returns the month (represented by the date value of the receiver) as
an integer; for example, 08.

The code fragment in the following example shows the use of the month method.

if date <> null then
if date.month <> value.month or date.year <> value.year then

monthTable.showDays(value);
endif;

endif;

Encyclopaedia of
Primitive Types

Date Type Chapter 1 66

EncycloPrim - 2020.0.02

monthName
Signature monthName(): String;

The monthName method of the Date primitive type returns the name of the month (for the date value of the
receiver) as a string.

The following example shows the use of the monthName method.

date(set: Boolean; value: Date io) mapping, updating;
begin

if set and isTransient and date <> value then
if date <> null then

if date.month <> value.month or date.year <> value.year then
monthTable.showDays(value);

endif;
endif;
monthTable.selectDay(value);
monthLabel.caption := value.monthName;
yearLabel.caption := value.year.String;
date := value;
if changeType = ChangeType_None then

changeType := ChangeType_Script;
endif;
click(self);
changeType := ChangeType_None;

endif;
end;

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

monthNameWithLcid
Signature monthNameWithLcid(lcid: Integer): String;

The monthNameWithLcid method of the Date primitive type returns a string containing the full name of the month
from the locale specified in the lcid parameter for the receiver date.

If the value of the lcid parameter is zero (0), the month name is obtained from the current locale. If the date is null
or invalid, an exception is raised.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 67

EncycloPrim - 2020.0.02

nthOccurrenceOfDayInMonth
Signature nthOccurrenceOfDayInMonth(dayOfWeek: Integer;

occurrence: Integer): Date;

The nthOccurrenceOfDayInMonth method of the Date primitive type returns the date identical to that of the
receiver except the day is modified to match the nth occurrence (that is, the first, second, third, fourth, or fifth) of the
day of the week that matches the specified dayOfWeek parameter.

The Integer values of the dayOfWeek parameter are listed in the following table.

Integer Value Corresponding Day

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

7 Sunday

This method returns a null date if the nth day of the week does not exist (for example, there is no fifth Saturday in
January 2020).

Applies to Version: 2020.0.01 and higher

parseForCurrentLocale
Signature parseForCurrentLocale(inputDateString: String): Boolean updating;

The parseForCurrentLocale method of the Date primitive type assigns a date to the receiver based on the string
specified in the inputDateString parameter. The string is assumed to be formatted using the conventions of your
current locale. (Define the date convention for your locale by using the Date sheet of the Regional Settings
Properties dialog, accessed from the Regional Settings icon in the Control Panel.)

This method returns true if the string represents a valid date; otherwise it returns false. This method handles
strings in long or short date format, as shown in the following examples.

27 August 2011

Monday, 27 August 2011

2010-10-29

08/27/2010

27 Aug 99

20 noiembrie 1999 // the current locale is set to Romanian, for example

Encyclopaedia of
Primitive Types

Date Type Chapter 1 68

EncycloPrim - 2020.0.02

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. By default, formatting of locale data
is done on the application server, based on the locale of the corresponding presentation client.

Non-English day and month names are handled; that is, locales that have short names with more than three
characters or names with non-alphanumeric characters (for example, French and Thai).

parseLongWithCurrentLocale
Signature parseLongWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseLongWithCurrentLocale method of the Date primitive type parses the string specified in the source
parameter to ensure that it matches the long date format of the current locale in terms of element (day, month,
year) order and separators and if valid, assigns the value to the receiver.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid date value (the isValid method of the Date primitive type
will return false).

This is equivalent to calling the parseLongWithFmtAndLcid method, passing null in the fmt parameter and zero
(0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseLongWithFmtAndLcid
Signature parseLongWithFmtAndLcid(source: String;

fmt: DateFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseLongWithFmtAndLcid method of the Date primitive type parses the string specified in the source
parameter to ensure that it matches the long date format specified in the fmt parameter in terms of element (day,
month, year) order and separator.

Text such as day and month names must match the appropriate values for the locale specified in the lcid
parameter. If the source string contains a valid date, it is assigned to the receiver; otherwise the invalid date value
is assigned to the receiver (the isValid method of the Date primitive type will return false).

If the value of the fmt parameter is null, the long date format of the locale specified in the lcid parameter is used. If
the value of the lcid parameter is zero (0), the long date format of the current locale is used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid date value.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 69

EncycloPrim - 2020.0.02

This method is the same as the parseLongWithPicAndLcid method except that the picture string is taken from the
DateFormat class longFormat property. For more details and examples of valid date matches, see the
parseLongWithPicAndLcid method.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseLongWithPicAndLcid
Signature parseLongWithPicAndLcid(source: String;

pic: String;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseLongWithPicAndLcid method of the Date primitive type parses the string specified in the source
parameter to ensure that it matches the long date picture string specified in the pic parameter in terms of element
(day, month, year) order and separators.

Text such as day and month names must match the appropriate values for the locale specified in the lcid
parameter. If the source string contains a valid date, it is assigned to the receiver; otherwise the invalid date value
is assigned to the receiver (the isValid method of the Date primitive type will return false).

If the value of the pic parameter is null, the long date format picture of the locale specified in the lcid parameter is
used. If the value of the lcid parameter is zero (0), the long date format picture of the current locale is used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid date value.

The picture element is defined in the picture parameter of the Date primitive type format method.

The following table shows examples of valid matches between source text and format in the English (NZ) locale.

Date Value (Specified by the source Parameter) Format (Specified by the pic Parameter)

Thursday, 1/July/2010 dddd, d/MMMM/yyyy

1/July/2010 d/MMMM/yyyy

1/7/2010 d/M/yyyy

1 July 2010, Thursday d MMMM yyyy, dddd

1/7/2010, Thu d/M/yyyy, ddd

1/Jul/2001 d/MMM/yyyy

1 Jul 2001 d MMM yyyy

Day and month names are matched with the locale table entries using a locale-driven case-insensitive
comparison. Abbreviated names are considered to be valid matches for full name specifiers.

Note The date is assumed to be localized Gregorian. Other calendars such as Hebrew Lunar are not supported.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 70

EncycloPrim - 2020.0.02

If the first character of the source is a digit, the characters in the long date format picture up to but not including the
first day number, month, or year specifier are considered optional. The source can include a month number,
where a month name specifier occurs. Leading zeros for day and month numbers are optional when day number,
month, and year have intervening separators.

Provided the source text includes values for each of day number, month, and year and the source text ends with
the last element, any trailing text in the format picture (for example, separators and day name) is considered
optional.

If the year designator is "yy", exactly two digits must be present for the year number. The two-digit value is
upgraded to a four-digit value using the CAL_ITWODIGITYEARMAX setting, which you can set and modify in the
Regional settings of the Windows Control Panel. Its default value is 2029, which gives the following conversions.

00…29 becomes 2000…2029

30…99 becomes 1930…1999

All other year designators require that exactly four digits must be specified for the year number and its value must
be in the range zero (0) through 30,000. Negative values (implying the Gregorian BC era) are not supported. If the
locale is Thai, the year is assumed to include the Thai year offset (that is, 543), which is subtracted from the date
assigned to the receiver.

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

All characters in the picture string other than the format specifiers (d, M, y, and g) must be matched exactly in the
source string. For example, if the format picture string includes some characters before the first specifier, the
source must include those exact characters before the first day digit.

Note Single quote characters (') can be used to enclose literal characters, including the format specifier
characters. A pair of single quotes occurring in single quoted text is treated as one character. For example, to
display the date as "May '93", the format string is "MMMM ''''yy". The first and last single quotation marks are the
enclosing quotation marks. The second and third single quotation marks are the escape sequence, to allow the
single quotation mark to be displayed before the century.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseShortWithCurrentLocale
Signature parseShortWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseShortWithCurrentLocale method of the Date primitive type parses the string specified in the source
parameter to ensure that it matches the short date format of the current locale in terms of element (day, month,
year) order and separators and if valid, assigns the value to the receiver.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid date value (the isValid method of the Date primitive type
will return false).

Encyclopaedia of
Primitive Types

Date Type Chapter 1 71

EncycloPrim - 2020.0.02

This is equivalent to calling the parseShortWithFmtAndLcid method, passing null in the fmt parameter and zero
(0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseShortWithFmtAndLcid
Signature parseShortWithFmtAndLcid(source: String;

fmt: DateFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseShortWithFmtAndLcid method of the Date primitive type parses the string specified in the source
parameter to ensure that it matches the short date format specified in the fmt parameter in terms of element (day,
month, year) order and separators.

Text such as day and month names must match the appropriate values for the locale specified in the lcid
parameter. If the source string contains a valid date, it is assigned to the receiver; otherwise the invalid date value
is assigned to the receiver (the isValid method of the Date primitive type will return false).

If the value of the fmt parameter is null, the short date format of the locale specified in the lcid parameter is used. If
the value of the lcid parameter is zero (0), the short date format of the current locale is used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid date value.

This method is the same as the parseShortWithPicAndLcid method except that the picture string is taken from the
DateFormat class shortFormat property. For more details and examples of valid date matches, see the
parseShortWithPicAndLcid method.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseShortWithPicAndLcid
Signature parseShortWithPicAndLcid(source: String;

pic: String;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseShortWithPicAndLcid method of the Date primitive type parses the string specified in the source
parameter to ensure that it matches the short date picture string specified in the pic parameter in terms of element
(day, month, year) order and separators.

Text such as day and month names must match the appropriate values for the locale specified in the lcid
parameter. If the source string contains a valid date, it is assigned to the receiver; otherwise the invalid date value
is assigned to the receiver (the isValid method of the Date primitive type will return false).

Encyclopaedia of
Primitive Types

Date Type Chapter 1 72

EncycloPrim - 2020.0.02

If the value of the pic parameter is null, the short date format picture of the locale specified in the lcid parameter is
used. If the value of the lcid parameter is zero (0), the short date format picture of the current locale is used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid date value. The picture element is defined in the picture
parameter of the Date primitive type format method.

The following are examples of valid matches between source text and format in the English (NZ) locale.

Date Value (Specified by the source Parameter) Format (Specified by the pic Parameter)

01072001 ddMMyyyy

1/Jul/2010 d/MMM/yyyy

1/7/2010 d/M/yyyy

1 Jul 2001 d MMM yyyy

1/07/2001 d/MM/yyyy

Day and month names are matched with the locale table entries using a locale-driven case-insensitive
comparison. Abbreviated names are considered to be valid matches for full name specifiers.

Note The date is assumed to be localized Gregorian. Other calendars such as Hebrew Lunar are not supported.

If the first character of the source is a digit, the characters in the short date format picture up to but not including the
first day number, month, or year specifier are considered optional. The source can include a month number,
where a month name specifier occurs. Leading zeros for day and month numbers are optional when day number,
month, and year have intervening separators.

Provided the source text includes values for each of day number, month, and year and the source text ends with
the last element, any trailing text in the format picture (for example, separators and day name) is considered
optional.

If the year designator is "yy", exactly two digits must be present for the year number. The two-digit value is
upgraded to a four-digit value using the CAL_ITWODIGITYEARMAX setting, which you can set and modify in the
Regional settings of the Windows Control Panel. Its default value is 2029, which gives the following conversions.

00…29 becomes 2000…2029

30…99 becomes 1930…1999

All other year designators require that exactly four digits must be specified for the year number and its value must
be in the range zero (0) through 30,000. Negative values (implying the Gregorian BC era) are not supported. If the
locale is Thai, the year is assumed to include the Thai year offset (that is, 543), which is subtracted from the date
assigned to the receiver.

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

All characters in the picture string other than the format specifiers (d, M, y, and g) must be matched exactly in the
source string. For example, if the format picture string includes some characters before the first specifier, the
source must include those exact characters before the first day digit.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 73

EncycloPrim - 2020.0.02

Note Single quote characters (') can be used to enclose literal characters, including the format specifier
characters. A pair of single quotes occurring in single quoted text is treated as one character. For example, to
display the date as "May '93", the format string is "MMM ''''yy". The first and last single quotation marks are the
enclosing quotation marks. The second and third single quotation marks are the escape sequence, to allow the
single quotation mark to be displayed before the century.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

setByteOrderLocal
Signature setByteOrderLocal(architecture: Integer): Date;

The setByteOrderLocal method of the Date primitive type returns a date that has the bytes ordered as required
by the local node. The bytes of the receiver are assumed to be ordered as indicated by the architecture
parameter.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

setByteOrderRemote
Signature setByteOrderRemote(architecture: Integer): Date;

The setByteOrderRemote method of the Date primitive type returns a date that has the bytes ordered as required
by the remote node indicated by the architecture parameter.

The bytes of the receiver are assumed to be ordered as required by the local node.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Encyclopaedia of
Primitive Types

Date Type Chapter 1 74

EncycloPrim - 2020.0.02

Node Class Constant Description

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

setDate
Signature setDate(day: Integer;

month: Integer;
year: Integer) updating;

The setDate method of the Date primitive type sets the receiver to a specific date, as shown in the following
example.

testDateSet();
vars

date : Date;
begin

date.setDate(31, 08, 1);
write date; // Outputs 31 August 2001

end;

The parameters are the integer values for day, month, and year.

Note When you specify a value for the year parameter in the range 0 through 99, the year is assumed to be in
the current century. If you want an absolute date in this range, use the Date::setDateYearAbsolute method.

setDateYearAbsolute
Signature setDateYearAbsolute(day: Integer;

month: Integer;
year: Integer) updating;

The setDateYearAbsolute method of the Date primitive type sets the receiver to a specific absolute date. Use this
method to specify a date in any year.

The integer values that you define in the day, month, and year variables are initialized when your method is
invoked.

The following example shows the use of the setDateYearAbsolute method.

testAbsoluteDateSet();
vars

date : Date;
begin

date.setDateYearAbsolute(31, 08, 1);
write date; // Outputs 31 August 0001

end;

See also the Date::setDate method.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 75

EncycloPrim - 2020.0.02

shortDayNameWithLcid
Signature shortDayNameWithLcid(lcid: Integer): String;

The shortDayNameWithLcid method of the Date primitive type returns a string containing the short name of the
week day from the locale specified in the lcid parameter for the receiver date.

If the value of the lcid parameter is zero (0), the short day name is obtained from the current locale. If the date is
null or invalid, an exception is raised.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

shortFormat
Signature shortFormat(): String;

The shortFormat method of the Date primitive type returns the receiver as a string formatted in the short date
format. The following example shows the use of the shortFormat method.

testDateShort();
vars

date : Date;
begin

write "The date is " & date.shortFormat;
end;

The output from this example depends on the short format defined for the current locale; for example, it may write
The date is 31/8/99.

Notes You can use the defineShortDateFormat method of the DateFormat class if you want to create your own
transient format objects and define a short date format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

The shortFormat method returns "*invalid*" for dates before 1601 or after 30827.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled.

Formatting of locale data is done on the application server, based on the locale of the corresponding presentation
client. For example, if the locale of your application server is set to English (United Kingdom), which has a default
short date format of dd/MM/yyyy, and it has been overridden with a short date format of yyyy-MM-dd, this is
returned in the default dd/MM/yyyy format.

shortMonthNameWithLcid
Signature shortMonthNameWithLcid(lcid: Integer): String;

The shortMonthNameWithLcid method of the Date primitive type returns a string containing the short name of the
month from the locale specified in the lcid parameter for the receiver date.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 76

EncycloPrim - 2020.0.02

If the value of the lcid parameter is zero (0), the short month name is obtained from the current locale. If the date is
null or invalid, an exception is raised.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

subtract
Signature subtract(date: Date): TimeStampInterval;

The subtract method of the Date primitive type returns the interval between the receiver and the date parameter
as a TimeStampInterval value.

The following example shows the use of the subtract method.

vars
today, tomorrow : Date;

begin
tomorrow := today + 1;
write tomorrow.subtract(today); // Outputs "1:00:00:00.000"

end;

Caution The TimeStampInterval value that is returned does not take daylight saving into account.

userFormat
Signature userFormat(fmt: DateFormat): String;

The userFormat method of the Date primitive type returns a string containing the receiver in the supplied date
format.

To define your date formats, use the Schema menu Format command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user date format name with a dollar sign ($); for
example, userFormat($MyDate).

You can use the defineLongDateFormat or defineShortDateFormat method of the DateFormat class if you want
to create your own transient format objects and define a long or short date format that dynamically overrides the
appropriate format for the locale at run time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

In the Windows Environment, the userFormat method returns "*invalid*" for dates before 1601 or after 30827.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 77

EncycloPrim - 2020.0.02

userLongFormatAndLcid
Signature userLongFormatAndLcid(fmt: DateFormat;

lcid: Integer): String;

The userLongFormatAndLcid method of the Date primitive type returns a string containing the receiver in the
long date format specified for the fmt parameter using the locale specified in the lcid parameter.

If the value of the fmt parameter is null, the long date format of the locale specified in the lcid parameter is
returned. If the value of the lcid parameter is zero (0), the long date format of the current locale is returned.

This method is the same as the userLongFormatPicAndLcid method except that the picture string is taken from
the DateFormat class longFormat property. For more details and examples of valid date matches, see the
userLongFormatPicAndLcid method.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userLongFormatPicAndLcid
Signature userLongFormatPicAndLcid(pic: String;

lcid: Integer): String;

The userLongFormatPicAndLcid method of the Date primitive type returns a string containing the receiver in the
long date format picture specified for the pic parameter using the locale specified in the lcid parameter. For
examples of pic values, see the parseLongWithPicAndLcid method.

If the value of the pic parameter is null, the long date format picture of the locale specified in the lcid parameter is
returned. If the value of the lcid parameter is zero (0), the long date format picture of the current locale is returned.
If the locale is Thai, the year is assumed to include the Thai year offset (that is, 543), which is added to the year
included in the returned string.

Note The output text string is a localized Gregorian version of the receiver date. Other calendars such as
Hebrew Lunar are not supported.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userShortFormatAndLcid
Signature userShortFormatAndLcid(fmt: DateFormat;

lcid: Integer): String;

The userShortFormatAndLcid method of the Date primitive type returns a string containing the receiver in the
short date format specified for the fmt parameter of the locale specified in the lcid parameter.

If the value of the fmt parameter is null, the short date format of the locale specified in the lcid parameter is
returned. If the value of the lcid parameter is zero (0), the short date format of the current locale is returned.

Encyclopaedia of
Primitive Types

Date Type Chapter 1 78

EncycloPrim - 2020.0.02

This method is the same as the userShortFormatPicAndLcid method except that the picture string is taken from
the DateFormat class shortFormat property. For more details and examples of valid date matches, see the
userShortFormatPicAndLcid method.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userShortFormatPicAndLcid
Signature userShortFormatPicAndLcid(pic: String;

lcid: Integer): String;

The userShortFormatPicAndLcid method of the Date primitive type returns a string containing the receiver in the
short date format picture specified for the pic parameter of the locale specified in the lcid parameter. For examples
of pic values, see the parseShortWithPicAndLcid method.

If the value of the pic parameter is null, the short date format picture of the locale specified in the lcid parameter is
returned. If the value of the lcid parameter is zero (0), the short date format picture of the current locale is returned.

Notes The output text string is a localized Gregorian version of the receiver date. Other calendars such as
Hebrew Lunar are not supported.

If the locale is Thai, the Thai year offset (that is, 543) is added to the year included in the returned string.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

year
Signature year(): Integer;

The year method of the Date primitive type returns the year (for the date value of the receiver) as an integer; for
example, 1999.

The following example shows the use of the year method.

if text <> "" then
calendar.changeType := calendar.ChangeType_Day;
calendar.date.setDate(text.Integer, calendar.date.month,

calendar.date.year);
endif;

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 79

EncycloPrim - 2020.0.02

Decimal Type
Use the Decimal primitive type to define a variable with a fixed-precision and decimal point; for example, a
monetary value such as a bank balance.

Note You must specify a decimal descriptor for the integer length of the decimal variable; for example, code d :
Decimal [4]; to specify a length of 4. You can optionally specify the number of decimal places for the decimal
variable; for example, code d : Decimal [4,3]; to specify that the variable is to be to three decimal places. (If the
number of decimal places is not specified, it is assumed to be zero.)

The value of the integer length must be in the range 1 through 23. The number of decimal places must be equal to
or less than the length value of the decimal descriptor.

As the decimal value for zero (0) has no fixed precision or scale factor, you can assign this value to any Decimal
value. When this value is output (for example, by a write instruction), the scale factor of the property or variable
defines the number of decimal places that are displayed. Null decimal values are initialized with a value of zero
(0).

When performing decimal arithmetic, only the final assignment result is rounded. For example:

vars
a : Decimal[12,4];
b, tot : Decimal[12,2];

begin
a := 4.9350;
b := a;
tot := tot + a + a;
write b; // outputs 4.94, being the final assignment result
write tot; // outputs 9.87

end;

Any intermediate result keeps as much precision as possible, to minimize the overall rounding loss. To force the
rounding or truncation of intermediate results, use the roundedTo or truncatedTo method, respectively. You can
use the JadeEditMask class and TextBox class getTextAsDecimal and setTextFromDecimal methods to
handle locale formatting for numeric fields.

For details about the methods defined in the Decimal primitive type, see "Decimal Methods", in the following
subsection. For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the
JADE Developer’s Reference.

Decimal Methods
The methods defined in the Decimal primitive type are summarized in the following table.

Method Description

abs Returns the absolute value of the receiver

asBinary Returns the Binary representation of the receiver

asDecimal Returns the receiver as a Decimal with the specified precision and
decimal places

currencyFormat Returns the receiver as a string in the currency format of the current
locale

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 80

EncycloPrim - 2020.0.02

Method Description

display Returns a string containing the receiver

getDeclaredPrecision Returns the declared precision (length) of a Decimal variable

getDeclaredScaleFactor Returns the declared number of decimal places of a Decimal variable

numberFormat Returns the receiver as a string in the numeric format of the current
locale

parseCurrencyWithCurrentLocale Sets the receiver to the result of parsing a string representing a
currency value for the current locale

parseCurrencyWithFmtAndLcid Sets the receiver to the result of parsing a string representing a
currency value for the specified format and the specified locale

parseNumberWithCurrentLocale Sets the receiver to the result of parsing a string representing a number
for the current locale

parseNumberWithFmtAndLcid Sets the receiver to the result of parsing a string representing a number
for the specified format and the specified locale

rounded Returns an integer containing the rounded value of the receiver

rounded64 Returns a 64-bit integer containing the rounded value of the receiver

roundedTo Returns the receiver rounded to the specified number of decimal places

setByteOrderLocal Returns a Decimal that has the bytes ordered as required by the local
node

setByteOrderRemote Returns a Decimal that has the bytes ordered as required by the
specified remote node

truncated Returns an integer containing the truncated value of the receiver

truncated64 Returns a 64-bit integer containing the truncated value of the receiver

truncatedTo Returns the receiver truncated to the specified number of decimal
places

userCurrencyFormat Returns the receiver as a string in the specified currency format

userCurrencyFormatAndLcid Returns the receiver as a string in the specified currency format for the
current locale

userNumberFormat Returns the receiver as a string in the specified number format

userNumberFormatAndLcid Returns the receiver as a string in the specified number format for the
specified locale

abs
Signature abs(): Decimal;

The abs method of the Decimal primitive type returns a decimal containing the absolute value of the receiver.

asBinary
Signature asBinary(): Binary;

The asBinary method of the Decimal primitive type returns the Binary representation of the receiver.

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 81

EncycloPrim - 2020.0.02

In situations where the compatibility with earlier releases is required, you should use this method in preference to
casting the Decimal value to a Binary value (that is, Decimal.Binary).

Casting a Decimal value to a Binary returns the binary representation of the internal representation of the
decimal. This depends on the implementation, which is subject to change.

dec := bin.asDecimal; // Prefer this to "dec := bin.Decimal;"

To convert the resulting binary value back to a decimal value, use the asDecimal method of the Binary primitive
type.

asDecimal
Signature asDecimal(precision: Integer;

decimalPlaces: Integer): Decimal;

The asDecimal method of the Decimal primitive type returns the receiver as a Decimal with the length and scale
factor specified by the values of the precision and decimalPlaces parameters, respectively.

You can use this method to convert a Decimal value returned by a method to a format with the specified precision
and decimal places. If you reduce the number of decimal places, rounding occurs. If the receiver value overflows
the specified precision, an exception is raised.

currencyFormat
Signature currencyFormat(): String;

The currencyFormat method of the Decimal primitive type returns a string containing the receiver in the currency
format defined for the current locale; for example, $123.22 or -123.22$. This can include currency symbols,
thousands separators, sign characters, and decimal point characters.

The following examples show the use of the currencyFormat method.

// calculate average cost of transactions
tblPortfolio.column := 2;
tblPortfolio.text := portfolio.averageCost.Decimal.currencyFormat;
testDecimal();
vars

decimalValue : Decimal [12,4]; // Define the Decimal variable
begin

decimalValue := 1234.56; // Defines the variable value
write decimalValue; // Outputs 1234.5600
write decimalValue.currencyFormat; // Outputs $1,234.56
decimalValue := -123456; // Defines the variable value
write decimalValue; // Outputs -123456.0000
write decimalValue.currencyFormat; // Outputs ($123,456.00)

end;

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 82

EncycloPrim - 2020.0.02

display
Signature display(): String;

The display method of the Decimal primitive type returns a string containing the receiver.

getDeclaredPrecision
Signature getDeclaredPrecision(): Integer;

The getDeclaredPrecision method of the Decimal primitive type returns the declared length of the receiver; that
is, the first value within the brackets ([]) defined for the Decimal variable.

getDeclaredScaleFactor
Signature getDeclaredScaleFactor(): Integer;

The getDeclaredScaleFactor method of the Decimal primitive type returns the declared scale factor, or number
of decimal places, of the receiver.

This method returns the optional second value within the brackets ([]) defined for the Decimal variable. (The first
value is the precision, or length, of the Decimal variable.)

If the scale factor was not declared, this method returns zero (0).

numberFormat
Signature numberFormat(): String;

The numberFormat method of the Decimal primitive type returns a string containing the receiver in the numeric
format defined for the current locale; for example, 07456.357 or 7,456.38. This can include thousands separators,
sign characters, and decimal point characters.

The following example shows the use of the numberFormat method.

testDecimal();
vars

decimalValue : Decimal [12,4]; // Define the Decimal variable
begin

decimalValue := 1234.56; // Defines the variable value
write decimalValue; // Outputs 1234.5600
write decimalValue.numberFormat; // Outputs 1,234.56
decimalValue := -123456; // Defines the variable value
write decimalValue; // Outputs -123456.0000
write decimalValue.numberFormat; // Outputs -123,456.00

end;

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 83

EncycloPrim - 2020.0.02

parseCurrencyWithCurrentLocale
Signature parseCurrencyWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseCurrencyWithCurrentLocale method of the Decimal primitive type parses the string specified in the
source parameter to ensure that it matches the Decimal format of the current locale for currency character
sequence, currency position, sign sequence, sign position, thousands separator, decimal point sequence, and
character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

This is equivalent to calling the parseCurrencyWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseCurrencyWithFmtAndLcid
Signature parseCurrencyWithFmtAndLcid(source: String;

fmt: CurrencyFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseCurrencyWithFmtAndLcid method of the Decimal primitive type parses the string specified in the
source parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for currency character sequence, currency position, sign character sequence, sign position, thousands
separator, decimal point sequence, and character set.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

The currency character sequence is optional but if it is included in the source, it must be correctly positioned as
defined by the NumberFormat class negativeFormat property and the CurrencyFormat class positiveFormat
property.

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

A space included in the sign and currency character sequence is optional.

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 84

EncycloPrim - 2020.0.02

The decimal descriptor of the receiver adds restrictions to the permitted value in the source parameter string; for
example, a descriptor of [8,2] allows the value to have up to eight significant digits, with at most two significant
digits following the decimal point and six preceding it. Leading zeros before the decimal point and trailing zeros
after the decimal point are ignored. The following values are valid.

"123456.78"

"1"

"00000001.2300"

".01"

All significant digits in the source parameter string must be able to be stored in the receiver so that they are all
shown if the receiver is converted back to a string.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithCurrentLocale
Signature parseNumberWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseNumberWithCurrentLocale method of the Decimal primitive type parses the string specified in the
source parameter to ensure that it matches the Decimal format of the current locale for sign character sequence,
sign position, thousands separator, decimal point sequence, and character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

This is equivalent to calling the parseNumberWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithFmtAndLcid
Signature parseNumberWithFmtAndLcid(source: String;

fmt: NumberFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseNumberWithFmtAndLcid method of the Decimal primitive type parses the string specified in the
source parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for sign character sequence, sign position, thousands separator, decimal point sequence, and
character set.

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 85

EncycloPrim - 2020.0.02

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid value.

The negative sign sequence is optional but if it is included in the source, it must be correctly positioned. A space
included in the sign sequence is optional. There is no positive sign sequence.

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

The decimal descriptor of the receiver adds restrictions to the permitted value in the source parameter string; for
example, a descriptor of [8,2] allows the value to have up to eight significant digits, with at most two significant
digits following the decimal point and six preceding it. Leading zeros before the decimal point and trailing zeros
after the decimal point are ignored.

The following values are valid.

"123456.78"

"1"

"00000001.2300"

".01"

All significant digits in the source parameter string must be able to be stored in the receiver so that they are all
shown if the receiver is converted back to a string.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

rounded
Signature rounded(): Integer;

The rounded method of the Decimal primitive type returns an integer containing the rounded value of the
receiver.

The following code fragment shows the use of the rounded method.

write (6.4).Decimal.rounded; // outputs 6 [0,1,2,3,4 are rounded down]
write (6.5).Decimal.rounded; // outputs 7 [5,6,7,8,9 are rounded up]

write (-6.4).Decimal.rounded; // outputs -6 [0,1,2,3,4 are rounded up]
write (-6.5).Decimal.rounded; // outputs -7 [5,6,7,8,9 are rounded down]

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 86

EncycloPrim - 2020.0.02

rounded64
Signature rounded64(): Integer64;

The rounded64 method of the Decimal primitive type returns a signed 64-bit integer containing the rounded value
of the receiver.

The following code fragment shows the use of the rounded64 method.

write (6.4).Decimal.rounded64; // outputs 6 [0,1,2,3,4 are rounded down]
write (6.5).Decimal.rounded64; // outputs 7 [5,6,7,8,9 are rounded up]

write (-6.4).Decimal.rounded64; // outputs -6 [0,1,2,3,4 are rounded up]
write (-6.5).Decimal.rounded64; // outputs -7 [5,6,7,8,9 are rounded down]

roundedTo
Signature roundedTo(decimalPlaces: Integer): Decimal;

The roundedTo method of the Decimal primitive type returns the receiver rounded to the number of decimal
places specified in the decimalPlaces parameter.

The following code fragment shows the use of the roundedTo method.

write (3.64).Decimal.roundedTo(1); // outputs 3.6 [0,1,2,3,4 are rounded down]
write (3.65).Decimal.roundedTo(1); // outputs 3.7 [5,6,7,8,9 are rounded up]

write (-3.64).Decimal.roundedTo(1); // outputs -3.6 [0,1,2,3,4 are rounded up]
write (-3.65).Decimal.roundedTo(1); // outputs -3.7 [5,6,7,8,9 are rounded down]

setByteOrderLocal
Signature setByteOrderLocal(architecture: Integer): Decimal;

The setByteOrderLocal method of the Decimal primitive type returns a decimal that has the bytes ordered as
required by the local node. The bytes of the receiver are assumed to be ordered as indicated by the architecture
parameter.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 87

EncycloPrim - 2020.0.02

setByteOrderRemote
Signature setByteOrderRemote(architecture: Integer): Decimal;

The setByteOrderRemote method of the Decimal primitive type returns a decimal that has the bytes ordered as
required by the remote node indicated by the architecture parameter.

The bytes of the receiver are assumed to be ordered as required by the local node.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

truncated
Signature truncated(): Integer;

The truncated method of the Decimal primitive type returns an integer containing the truncated value of the
receiver.

Caution As the truncated method returns an integer value, an integer overflow situation occurs when the
returned integer value is greater than the value of the global constant Max_Integer, which is the limit for the
Integer type. To safeguard against this when truncating a large decimal value, use the Decimal type truncatedTo
method with a parameter of 0 decimal places. Alternatively use the Decimal type truncated64 method.

The following example shows the use of the truncated method.

testDecimal();
vars

decimalValue : Decimal [12,4];
begin

decimalValue := 340.5678; // Defines the variable value
decimalValue := (decimalValue / 20).truncated;
write decimalValue; // Outputs 17.0000

end;

truncated64
Signature truncated64(): Integer64;

The truncated64 method of the Decimal primitive type returns a signed 64-bit integer containing the truncated
value of the receiver.

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 88

EncycloPrim - 2020.0.02

The following example shows the use of the truncated method.

testDecimal();
vars

decimalValue : Decimal [12,4];
begin

decimalValue := 340.5678; // Defines the variable value
decimalValue := (decimalValue / 20).truncated64;
write decimalValue; // Outputs 17.0000

end;

truncatedTo
Signature truncatedTo(decimalPlaces: Integer): Decimal;

The truncatedTo method of the Decimal primitive type returns the receiver truncated to the number of decimal
places specified in the decimalPlaces parameter.

The following example shows the use of the truncatedTo method.

testDecimal();
vars

decimalValue : Decimal [12,4];
begin

decimalValue := 340.56789; // Defines the variable value
decimalValue := (decimalValue/20).truncatedTo(2);
write decimalValue; // Outputs 17.02

end;

userCurrencyFormat
Signature userCurrencyFormat(fmt: CurrencyFormat): String;

The userCurrencyFormat method of the Decimal primitive type returns a string containing the receiver in the
currency format specified in the fmt parameter.

To define your currency formats, use the Schema menu Format command from the Schema Browser.

The code fragment in the following example shows the use of the userCurrencyFormat method.

lblBank.caption := app.crntInvestor.cash.userCurrencyFormat($DollarsCents);
lblWorth.caption := (totalWorth).userCurrencyFormat($DollarsCents);

Notes When you use a format in a JADE method, prefix your user currency format name with a dollar sign ($);
for example, userCurrencyFormat($MyCurrency).

You can use the defineCurrencyFormat method of the CurrencyFormat class if you want to create your own
transient format objects and define a currency format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 89

EncycloPrim - 2020.0.02

userCurrencyFormatAndLcid
Signature userCurrencyFormatAndLcid(fmt: CurrencyFormat;

lcid: Integer): String;

The userCurrencyFormatAndLcid method of the Decimal primitive type returns a string containing the receiver
in the currency format and locale specified in the fmt parameter and lcid parameter, respectively. If the value of
the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the value of the lcid
parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userNumberFormat
Signature userNumberFormat(fmt: NumberFormat): String;

The userNumberFormat method of the Decimal primitive type returns a string containing the receiver in the
number format specified in the fmt parameter. To define your numeric formats, use the Schema menu Format
command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user number format name with a dollar sign ($); for
example, userNumberFormat($MyNumber).

You can use the defineNumberFormat method of the NumberFormat class if you want to create your own
transient format objects and define a numeric format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

The code fragment in the following example shows the use of the userNumberFormat method.

if totalWorth = 0 then
tblPortfolio.text := "0.00";

else
tblPortfolio.text := (portfolio.myCompany.currentPrice *

portfolio.shares.Decimal * Percent
/ totalWorth).Decimal.userNumberFormat($Percent);

endif;

userNumberFormatAndLcid
Signature userNumberFormatAndLcid(fmt: NumberFormat;

lcid: Integer): String;

The userNumberFormatAndLcid method of the Decimal primitive type returns a string containing the receiver in
the number format and locale specified in the fmt parameter and lcid parameter, respectively.

Encyclopaedia of
Primitive Types

Decimal Type Chapter 1 90

EncycloPrim - 2020.0.02

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 91

EncycloPrim - 2020.0.02

Integer Type
The Integer primitive type represents the set of positive and negative whole numbers in the range -2,147,483,648
through 2,147,483,647. Any value of the Integer primitive type is therefore a whole number.

JADE defines a number of arithmetic operations that take integer operators and return integer results, as listed in
the following table.

Operand Description

+ Add

- Subtract

* Multiply

div Integer division (division with truncation; for example, 7 div 3 = 2)

^ Exponentiation (for example, i ^ 3 is i cubed)

mod Modulus (remainder after integer division)

These are binary (or dyadic) infix operators; that is, they are used with two operands written on each side of the
operator (for example, a+b). However, the + operator and - operator can also be used as unary (or monadic) prefix
operators, as listed in the following table

Unary Prefix Operator Description

+a Sign identify

-a Sign inversion

The div operator (integer division) performs division with truncation; for example, 7 div 3 = 2.

An integer variable can contain any whole number in the range -2,147,483,648 through 2,147,483,647.

The following table lists valid operations for the Integer primitive type.

Expression Expression Type

integer-expression + date-expression (date)

integer-expression + time-expression (time)

You can use the JadeEditMask class and TextBox class getTextAsInteger and setTextFromInteger methods to
handle locale formatting for numeric fields.

For details about the methods defined in the Integer primitive type, see "Integer Methods", in the following
subsection. For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the
JADE Developer’s Reference.

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 92

EncycloPrim - 2020.0.02

Integer Methods
The methods defined in the Integer primitive type are summarized in the following table.

Method Description

abs Returns the absolute value of the receiver

bitAnd Returns an integer representing the receiver bits ANDed with the
argument

bitNot Returns an integer whose bit values are the inverse of the bit values of
the receiver

bitOr Returns an integer representing the receiver bits ORed with the
argument

bitXor Returns an integer representing the receiver bits XORed with the
argument

display Returns the receiver as a string

isEven Returns true if the receiver represents an even number; otherwise
false

isOdd Returns true if the receiver represents an odd number; otherwise false

max Returns the larger value of the receiver and a specified Integer

min Returns the lesser value of the receiver and a specified Integer

numberFormat Returns a string in the number format of the current locale

padLeadingWith Returns a copy of the receiver padded to the specified length with a
leading character

parseCurrencyWithCurrentLocale Sets the receiver to the result of parsing a string representing a
currency value for the current locale

parseCurrencyWithFmtAndLcid Sets the receiver to the result of parsing a string representing a
currency value for the specified format and the specified locale

parseNumberWithCurrentLocale Sets the receiver to the result of parsing a string representing a number
for the current locale

parseNumberWithFmtAndLcid Sets the receiver to the result of parsing a string representing a number
for the specified format and the specified locale

setByteOrderLocal Returns an integer that has the bytes ordered as required by the local
node

setByteOrderRemote Returns an integer that has the bytes ordered as required by a
specified remote node

userCurrencyFormat Returns the receiver as a string in the specified currency format

userCurrencyFormatAndLcid Returns the receiver as a string in the specified currency format for the
specified locale

userNumberFormat Returns the receiver as a string in the specified number format

userNumberFormatAndLcid Returns the receiver as a string in the specified number format for the
specified locale

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 93

EncycloPrim - 2020.0.02

abs
Signature abs(): Integer;

The abs method of the Integer primitive type returns an integer containing the absolute value of the receiver.

bitAnd
Signature bitAnd(op: Integer): Integer;

The bitAnd method of the Integer primitive type compares each bit in the receiver with the corresponding bit in the
op parameter, and returns an integer representing the receiver bits ANDed with the argument.

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

Both bits are 1 1

One or both bits are not 1 0

The following example shows the use of the bitAnd method.

vars
platform : Integer;
version : String;
architecture : Integer;

begin
platform := node.getOSPlatform(version, architecture);
if platform.bitAnd(Node.OSWindows) <> 0 then

// operating system is Windows family (10, 8, 7, or 2008
if platform = Node.OSWindowsHome then

// version is an older version of Windows (unsupported)
return 'Windows (unsupported) ' & version;

endif;
if platform = Node.OSWindowsEnterprise then

// version is Windows 10, Windows Server 2019,
// Windows Server 2016, or Windows Server 2012
return 'Windows ' & version;

endif;
if platform = Node.OSWindowsMobile then

// version is Windows CE
return 'Windows CE (unsupported) ' & version;

endif;
endif;
return '* Unknown platform: ' & platform.String & ' version: ' &

version;
end;

bitNot
Signature bitNot(): Integer;

The bitNot method of the Integer primitive type returns an integer whose bit values are the inverse of the bit
values of the receiver.

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 94

EncycloPrim - 2020.0.02

The generated return values are listed in the following table.

Bits in Receiver Corresponding Bit in Return Value

Bit is not 1 1

Bit is 1 0

bitOr
Signature bitOr(op: Integer): Integer;

The bitOr method of the Integer primitive type compares each bit in the receiver with the corresponding bit in the
op parameter, and returns an integer representing the receiver bits ORed with the argument.

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

One or both bits are 1 1

Neither bit is 1 0

The code fragment in the following example shows the use of the bitOr method.

constants
BitFlagNone = #00;
BitFlag1 = #01;

vars
int : Integer;

begin
int := BitFlagNone;
// set bit flag 1
int := int.bitOr(BitFlag1);
// test that bit flag 1 is set
if int.bitAnd(BitFlag1) <> 0 then

write "flag 1 is set";
endif;

end;

bitXor
Signature bitXor(op: Integer): Integer;

The bitXor method of the Integer primitive type compares each bit in the receiver with the corresponding bit
specified in the op parameter, and returns an integer representing the receiver bits XORed with the argument.

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

The bits are complementary 1

The bits are not complementary 0

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 95

EncycloPrim - 2020.0.02

display
Signature display(): String;

The display method of the Integer primitive type returns a string containing the receiver.

isEven
Signature isEven(): Boolean;

The isEven method of the Integer primitive type returns true if the receiver represents an even number or it
returns false if it does not.

The following example shows the use of the isEven method.

setColor(prod: Product) updating;
begin

if prod.isNew then
listProducts.itemForeColor[listProducts.newIndex] := Red;

else
listProducts.itemForeColor[listProducts.newIndex] := Gray;

endif;
if listProducts.newIndex.isEven then

listProducts.itemBackColor[listProducts.newIndex] := LightYellow;
endif;

end;

isOdd
Signature isOdd(): Boolean;

The isOdd method of the Integer primitive type returns true if the receiver represents an odd number; otherwise, it
returns false.

The code fragment in the following example shows the use of the isOdd method.

if sides.isOdd then
selectedRectangle.left := (maxWidth - defaultWidth - defaultSpacing) / 2 + 10;
selectedRectangle.top := (sides - 1) * (defaultHeight + defaultSpacing)

/ 2 + 10;
else

selectedRectangle.left := maxWidth / 2 + 10;
selectedRectangle.top := maxHeight / 2 - defaultHeight - defaultSpacing + 10;

endif;

max
Signature max(int: Integer): Integer;

The max method of the Integer primitive type returns the larger value of the receiver and the int parameter.

If the value of the receiver is greater than the value of the int parameter, the value of the receiver is returned. If the
value of the receiver is less than or equal to the value of the int parameter, the value of int is returned.

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 96

EncycloPrim - 2020.0.02

min
Signature min(int: Integer): Integer;

The min method of the Integer primitive type returns the lesser value of the receiver and the int parameter.

If the value of the receiver is less than the value of the int parameter, the value of the receiver is returned. If the
value of the receiver is greater than or equal to the value of the int parameter, the value of int is returned.

numberFormat
Signature numberFormat(): String;

The numberFormat method of the Integer primitive type returns a string in the number format defined for the
current locale; for example, -7456.000 or 7,456. This can include thousands separators, sign characters, and
decimal point characters.

The following example shows the use of the numberFormat method.

testInteger();
vars

str : String;
int : Integer;

begin
int := -01234567890;
write int; // Outputs -1234567890
str := int.numberFormat;
write str; // Outputs -1,234,567,890.00

end;

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

padLeadingWith
Signature padLeadingWith(char: Character;

max: Integer): String;

The padLeadingWith method of the Integer primitive type returns a string of the length specified in the max
parameter, consisting of the receiving string padded with the leading character specified in the char parameter. If
the string is equal to or longer than the value specified in the max parameter, it is not truncated but the whole
string is returned.

The following example shows the use of the padLeadingWith method.

constants
PAD_CHARACTER = 'x';

vars
int : Integer;
str : String;

begin
int := -012345;
str := int.padLeadingWith('w', 15) & ' 678 Sesame St.';

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 97

EncycloPrim - 2020.0.02

write str; // Outputs wwwwwwwww-12345 678 Sesame St.
str := int.padLeadingWith('a', 2);
write str; // Outputs -12345
str := int.padLeadingWith(PAD_CHARACTER, 10);
write str; // Outputs xxxx-12345

end;

parseCurrencyWithCurrentLocale
Signature parseCurrencyWithCurrentLocale(source: String;

errOffset: Integer output)
: Integer updating;

The parseCurrencyWithCurrentLocale method of the Integer primitive type parses the string specified in the
source parameter to ensure that it matches the Integer format of the current locale for currency character
sequence, currency position, sign sequence, sign position, thousands separator, decimal point sequence, and
character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

This is equivalent to calling the parseCurrencyWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseCurrencyWithFmtAndLcid
Signature parseCurrencyWithFmtAndLcid(source: String;

fmt: CurrencyFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseCurrencyWithFmtAndLcid method of the Integer primitive type parses the string specified in the
source parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for currency character sequence, currency position, sign sequence, sign position, thousands separator,
decimal point sequence, and character set.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid value.

The currency character sequence is optional but if it is included in the source, it must be correctly positioned as
defined by the NumberFormat class negativeFormat property and the CurrencyFormat class positiveFormat
property.

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 98

EncycloPrim - 2020.0.02

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

A space included in the sign and currency character sequence is optional.

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

The value of the source parameter text can include a decimal point and decimal digits, but they must all be zero
so that rounding or truncation is not required to store the value in the Integer variable; for example:

"100", "100.", "100.0", "100.00", and "100.000" are accepted as valid and equal.

"100.01" and "100.99" are rejected, as the value cannot be stored accurately in an Integer primitive type.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithCurrentLocale
Signature parseNumberWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseNumberWithCurrentLocale method of the Integer primitive type parses the string specified in the
source parameter to ensure that it matches the Integer format of the current locale for sign character sequence,
sign position, thousands separator, decimal point sequence, and character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid value.

This is equivalent to calling the parseNumberWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithFmtAndLcid
Signature parseNumberWithFmtAndLcid(source: String;

fmt: NumberFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseNumberWithFmtAndLcid method of the Integer primitive type parses the string specified in the source
parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for sign character sequence, sign position, thousands separator, decimal point sequence, and
character set.

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 99

EncycloPrim - 2020.0.02

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid value.

The negative sign character sequence is optional but if it is included in the source, it must be correctly positioned.
A space included in the sign sequence is optional. There is no positive sign sequence.

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

The value of the source parameter text can include a decimal point and decimal digits, but they must all be zero
so that rounding or truncation is not required to store the value in the Integer variable; for example:

"100", "100.", "100.0", "100.00", and "100.000" are accepted as valid and equal.

"100.01" and "100.99" are rejected, as the value cannot be stored accurately in an Integer primitive type.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

setByteOrderLocal
Signature setByteOrderLocal(architecture: Integer): Integer;

The setByteOrderLocal method of the Integer primitive type returns an integer that has the bytes ordered as
required by the local node. The bytes of the receiver are assumed to be ordered as indicated by the architecture
parameter.

The architecture parameter indicates internal byte ordering and alignment information relevant to the hardware
platform of this release of JADE and is returned by the getOSPlatform method of the Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

No constant; that is, zero (0) Reorders the bytes from network byte order (a standard for passing binary
integers across a TCP/IP connection).

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 100

EncycloPrim - 2020.0.02

setByteOrderRemote
Signature setByteOrderRemote(architecture: Integer): Integer;

The setByteOrderRemote method of the Integer primitive type returns an integer that has the bytes ordered as
required by the remote node indicated by the architecture parameter. The bytes of the receiver are assumed to
be ordered as required by the local node.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

No constant; that is, zero (0) Reorders the bytes from network byte order (a standard for passing binary
integers across a TCP/IP connection)

userCurrencyFormat
Signature userCurrencyFormat(fmt: CurrencyFormat): String;

The userCurrencyFormat method of the Integer primitive type returns a string containing the receiver in the
supplied currency format.

To define your currency formats, use the Schema menu Format command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user currency format name with a dollar sign ($);
for example, userCurrencyFormat($MyCurrency).

You can use the defineCurrencyFormat method of the CurrencyFormat class if you want to create your own
transient format objects and define a currency format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Integer Type Chapter 1 101

EncycloPrim - 2020.0.02

userCurrencyFormatAndLcid
Signature userCurrencyFormatAndLcid(fmt: CurrencyFormat;

lcid: Integer): String;

The userCurrencyFormatAndLcid method of the Integer primitive type returns a string containing the receiver in
the currency format and locale specified in the fmt parameter and lcid parameter, respectively.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userNumberFormat
Signature userNumberFormat(fmt: NumberFormat): String;

The userNumberFormat method of the Integer primitive type returns a string containing the receiver in the
supplied number format.

To define your numeric formats, use the Schema menu Format command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user number format name with a dollar sign ($); for
example, userNumberFormat($MyNumber).

You can use the defineNumberFormat method from the NumberFormat class if you want to create your own
transient format objects and define a numeric format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userNumberFormatAndLcid
Signature userNumberFormatAndLcid(fmt: NumberFormat;

lcid: Integer): String;

The userNumberFormatAndLcid method of the Integer primitive type returns a string containing the receiver in
the number format and locale specified in the fmt parameter and lcid parameter, respectively.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 102

EncycloPrim - 2020.0.02

Integer64 Type
The Integer64 primitive type represents the set of positive and negative whole numbers in the range -
9,223,372,036,854,775,807 through 9,223,372,036,854,775,807. Any value of the Integer64 primitive type is
therefore a whole number.

JADE defines a number of arithmetic operations that take Integer64 operators and return Integer64 results, as
listed in the following table.

Operator Description

+ Add

- Subtract

* Multiply

div Integer division (division with truncation; for example, 7 div 3 = 2)

^ Exponentiation (for example, i ^ 3 is i cubed)

mod Modulus (remainder after integer division)

These are binary (or dyadic) infix operators; that is, they are used with operands on both sides of the operator (for
example, a+b). However, the + operator and - operator can also be used as unary (or monadic) prefix operators,
as listed in the following table.

Unary Prefix Operator Description

+a Sign identify

-a Sign inversion

The div operator (integer division) performs division with truncation; for example, 7 div 3 = 2.

For details about the methods defined in the Integer64 primitive type, see "Integer64 Methods", in the following
subsection. For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the
JADE Developer’s Reference.

Integer64 Methods
The methods defined in the Integer64 primitive type are summarized in the following table.

Method Description

abs Returns the absolute value of the receiver

bitAnd Returns an integer representing the receiver bits ANDed with the
argument

bitNot Returns an integer whose bit values are the inverse of the bit values of
the receiver

bitOr Returns an integer representing the receiver bits ORed with the
argument

bitXor Returns an integer representing the receiver bits XORed with the
argument

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 103

EncycloPrim - 2020.0.02

Method Description

display Returns the receiver as a string

isEven Returns true if the receiver represents an even number; otherwise
false

isOdd Returns true if the receiver represents an odd number; otherwise false

max Returns the larger value of the receiver and a specified Integer64

min Returns the lesser value of the receiver and a specified Integer64

numberFormat Returns a string in the number format of the current locale

padLeadingWith Returns a copy of the receiver padded to the specified length with a
leading character

parseCurrencyWithCurrentLocale Sets the receiver to the result of parsing a string representing a
currency value for the current locale

parseCurrencyWithFmtAndLcid Sets the receiver to the result of parsing a string representing a
currency value for the specified format and the specified locale

parseNumberWithCurrentLocale Sets the receiver to the result of parsing a string representing a number
for the current locale

parseNumberWithFmtAndLcid Sets the receiver to the result of parsing a string representing a number
for the specified format and the specified locale

setByteOrderLocal Returns an integer that has the bytes ordered as required by the local
node

setByteOrderRemote Returns an integer that has the bytes ordered as required by a
specified remote node

userCurrencyFormat Returns the receiver as a string in the specified currency format

userCurrencyFormatAndLcid Returns the receiver as a string in the specified currency format for the
specified locale

userNumberFormat Returns the receiver as a string in the specified number format

userNumberFormatAndLcid Returns the receiver as a string in the specified number format for the
specified locale

abs
Signature abs(): Integer64;

The abs method of the Integer64 primitive type returns an integer containing the absolute value of the receiver.

bitAnd
Signature bitAnd(op: Integer64): Integer64;

The bitAnd method of the Integer64 primitive type compares each bit in the receiver with the corresponding bit in
the op parameter, and returns an integer representing the receiver bits ANDed with the argument.

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 104

EncycloPrim - 2020.0.02

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

Both bits are 1 1

One or both bits are not 1 0

bitNot
Signature bitNot(): Integer64;

The bitNot method of the Integer64 primitive type returns an integer whose bit values are the inverse of the bit
values of the receiver.

The generated return values are listed in the following table.

Bits in Receiver Corresponding Bit in Return Value

Bit is not 1 1

Bit is 1 0

bitOr
Signature bitOr(op: Integer64): Integer64;

The bitOr method of the Integer64 primitive type compares each bit in the receiver with the corresponding bit in
the op parameter, and returns an integer representing the receiver bits ORed with the argument.

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

One or both bits are 1 1

Neither bit is 1 0

The code fragment in the following example shows the use of the bitOr method.

constants
BitFlagNone = #00;
BitFlag1 = #01;

vars
int : Integer64;

begin
int := BitFlagNone;
// set bit flag 1
int := int.bitOr(BitFlag1);
// test that bit flag 1 is set
if int.bitAnd(BitFlag1) <> 0 then

write "flag 1 is set";
endif;

end;

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 105

EncycloPrim - 2020.0.02

bitXor
Signature bitXor(op: Integer64): Integer64;

The bitXor method of the Integer64 primitive type compares each bit in the receiver with the corresponding bit
specified in the op parameter, and returns an integer representing the receiver bits XORed with the argument.

The generated return values are listed in the following table.

Bits in Receiver and Operand Corresponding Bit in Return Value

The bits are complementary 1

The bits are not complementary 0

display
Signature display(): String;

The display method of the Integer64 primitive type returns a string containing the receiver.

isEven
Signature isEven(): Boolean;

The isEven method of the Integer64 primitive type returns true if the receiver represents an even number or it
returns false if it does not.

isOdd
Signature isOdd(): Boolean;

The isOdd method of the Integer64 primitive type returns true if the receiver represents an odd number;
otherwise, it returns false.

max
Signature max(int: Integer64): Integer64;

The max method of the Integer64 primitive type returns the larger value of the receiver and the int parameter. If
the value of the receiver is greater than the value of the int parameter, the value of the receiver is returned. If the
value of the receiver is less than or equal to the value of the int parameter, the value of int is returned.

min
Signature min(int: Integer64): Integer64;

The min method of the Integer64 primitive type returns the lesser value of the receiver and the int parameter. If the
value of the receiver is less than the value of the int parameter, the value of the receiver is returned. If the value of
the receiver is greater than or equal to the value of the int parameter, the value of int is returned.

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 106

EncycloPrim - 2020.0.02

numberFormat
Signature numberFormat(): String;

The numberFormat method of the Integer64 primitive type returns a string in the number format defined for the
current locale; for example, -7456.000 or 7,456. This can include thousands separators, sign characters, and
decimal point characters.

The following example shows the use of the numberFormat method.

testInteger();
vars

str : String;
int : Integer64;

begin
int := -01234567890;
write int; // Outputs -1234567890
str := int.numberFormat;
write str; // Outputs -1,234,567,890.00

end;

You can use the defineNumberFormat method of the NumberFormat class if you want to create your own
transient format objects and define a numeric format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

padLeadingWith
Signature padLeadingWith(char: Character;

max: Integer64): String;

The padLeadingWith method of the Integer64 primitive type returns a string of the length specified in the max
parameter, consisting of the receiving string padded with the leading character specified in the char parameter. If
the string is equal to or longer than the value specified in the max parameter, it is not truncated but the whole
string is returned.

The following example shows the use of the padLeadingWith method.

constants
PAD_CHARACTER = 'x';

vars
int : Integer64;
str : String;

begin
int := -012345;
str := int.padLeadingWith('w', 15) & ' 678 Sesame St.';
write str; // Outputs wwwwwwwww-12345 678 Sesame St.
str :int.padLeadingWith('a', 2);
write str; // Outputs -12345
str := int.padLeadingWith(PAD_CHARACTER, 10);

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 107

EncycloPrim - 2020.0.02

write str; // Outputs xxxx-12345
end;

parseCurrencyWithCurrentLocale
Signature parseCurrencyWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseCurrencyWithCurrentLocale method of the Integer64 primitive type parses the string specified in the
source parameter to ensure that it matches the Integer64 format of the current locale for currency character
sequence, currency position, sign sequence, sign position, thousands separator, decimal point sequence, and
character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

This is equivalent to calling the parseCurrencyWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseCurrencyWithFmtAndLcid
Signature parseCurrencyWithFmtAndLcid(source: String;

fmt: CurrencyFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseCurrencyWithFmtAndLcid method of the Integer64 primitive type parses the string specified in the
source parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for currency character sequence, currency position, sign sequence, sign position, thousands separator,
decimal point sequence, and character set.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid value.

The currency sequence is optional but if it is included in the source, it must be correctly positioned as defined by
the NumberFormat class negativeFormat property and the CurrencyFormat class positiveFormat property.

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

A space included in the sign and currency character sequence is optional.

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 108

EncycloPrim - 2020.0.02

The value of the source parameter text can include a decimal point and decimal digits, but they must all be zero
so that rounding or truncation is not required to store the value in the Integer64 variable; for example:

"100", "100.", "100.0", "100.00", and "100.000" are accepted as valid and equal.

"100.01" and "100.99" are rejected, as the value cannot be stored accurately in an Integer64 primitive type.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithCurrentLocale
Signature parseNumberWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseNumberWithCurrentLocale method of the Integer64 primitive type parses the string specified in the
source parameter to ensure that it matches the Integer64 format of the current locale for sign sequence, sign
position, thousands separator, decimal point sequence, and character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter.

This is equivalent to calling the parseNumberWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithFmtAndLcid
Signature parseNumberWithFmtAndLcid(source: String;

fmt: NumberFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseNumberWithFmtAndLcid method of the Integer64 primitive type parses the string specified in the
source parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for sign character sequence, sign position, thousands separator, decimal point sequence, and
character set. If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are
used. If the value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid value.

The negative sign sequence is optional but if it is included in the source, it must be correctly positioned. A space
included in the sign sequence is optional. There is no positive sign sequence.

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 109

EncycloPrim - 2020.0.02

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

The value of the source parameter text can include a decimal point and decimal digits, but they must all be zero
so that rounding or truncation is not required to store the value in the Integer64 variable; for example:

"100", "100.", "100.0", "100.00", and "100.000" are accepted as valid and equal.

"100.01" and "100.99" are rejected, as the value cannot be stored accurately in an Integer64 primitive type.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

setByteOrderLocal
Signature setByteOrderLocal(architecture: Integer64): Integer64;

The setByteOrderLocal method of the Integer64 primitive type returns an integer that has the bytes ordered as
required by the local node. The bytes of the receiver are assumed to be ordered as indicated by the architecture
parameter.

The architecture parameter indicates internal byte ordering and alignment information relevant to the hardware
platform of this release of JADE and is returned by the getOSPlatform method of the Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

setByteOrderRemote
Signature setByteOrderRemote(architecture: Integer64): Integer64;

The setByteOrderRemote method of the Integer64 primitive type returns an integer that has the bytes ordered as
required by the remote node indicated by the architecture parameter. The bytes of the receiver are assumed to
be ordered as required by the local node.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 110

EncycloPrim - 2020.0.02

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

No constant; that is, zero (0) Reorders the bytes from network byte order (a standard for passing binary
integers across a TCP/IP connection)

userCurrencyFormat
Signature userCurrencyFormat(fmt: CurrencyFormat): String;

The userCurrencyFormat method of the Integer64 primitive type returns a string containing the receiver in the
supplied currency format. To define your currency formats, use the Schema menu Format command from the
Schema Browser.

Notes When you use a format in a JADE method, prefix your user currency format name with a dollar sign ($);
for example, userCurrencyFormat($MyCurrency).

You can use the defineCurrencyFormat method of the CurrencyFormat class if you want to create your own
transient format objects and define a currency format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userCurrencyFormatAndLcid
Signature userCurrencyFormatAndLcid(fmt: NumberFormat;

lcid: Integer): String;

The userCurrencyFormatAndLcid method of the Integer64 primitive type returns a string containing the receiver
in the currency format and locale specified in the fmt parameter and lcid parameter, respectively.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Integer64 Type Chapter 1 111

EncycloPrim - 2020.0.02

userNumberFormat
Signature userNumberFormat(fmt: NumberFormat): String;

The userNumberFormat method of the Integer64 primitive type returns a string containing the receiver in the
supplied number format.

To define your numeric formats, use the Schema menu Format command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user number format name with a dollar sign ($); for
example, userNumberFormat($MyNumber).

You can use the defineNumberFormat method from the NumberFormat class if you want to create your own
transient format objects and define a numeric format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userNumberFormatAndLcid
Signature userNumberFormatAndLcid(fmt: NumberFormat;

lcid: Integer): String;

The userNumberFormatAndLcid method of the Integer64 primitive type returns a string containing the receiver
in the number format and locale specified in the fmt parameter and lcid parameter, respectively.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

MemoryAddress Type Chapter 1 112

EncycloPrim - 2020.0.02

MemoryAddress Type
A variable of type MemoryAddress is used to represent a memory address; that is, a void* pointer as used in C.
The primary purpose for this primitive type is to interface with external C and C++ dynamic libraries being used as
a parameter or a return type.

When an object with a MemoryAddress value is passed between nodes, it passes the value of the memory
address. However, the memory address only has meaning for the node on which it was assigned a non-null
value.

The following semantic rules apply to MemoryAddress values.

A MemoryAddress variable can be assigned a null value but not the value zero (0).

A MemoryAddress value can be compared to the null value or to another MemoryAddress value for
equality or inequality.

A MemoryAddress value can be assigned to another MemoryAddress variable.

A MemoryAddress value cannot be changed by using an arithmetic operation.

Note Unlike other primitive types, a corresponding subclass of Array for MemoryAddress values does not exist
in the RootSchema. If you require such an array, subclass the Array class in your user schema, selecting
MemoryAddress as the membership.

For details about the methods defined in the MemoryAddress primitive type, see "MemoryAddress Methods", in
the following subsection. For details about converting primitive types, see "Converting Primitive Types", in Chapter
1 of the JADE Developer’s Reference.

MemoryAddress Methods
The methods defined in the MemoryAddress primitive type are summarized in the following table.

Method Returns …

adjust A changed memory address value

asBinary32 The value of the internal pointer as a 32-bit (4 byte) binary

asBinary64 The value of the internal pointer as a 64-bit (8 byte) binary

display A string containing the receiver

isValid true if the memory address is valid

adjust
Signature adjust(offset: Integer64): MemoryAddress;

The adjust method of the MemoryAddress primitive type adjusts the value of the receiver using the offset
parameter and returns a new MemoryAddress value. If the MemoryAddress is not valid on the current node
when this method is called, a 1443 (MemoryAddress is not valid for current Node) exception is raised.

The following code steps through a block of memory identified by iPtr in 1024 Byte blocks.

vars
iBytesLeft: Integer;

Encyclopaedia of
Primitive Types

MemoryAddress Type Chapter 1 113

EncycloPrim - 2020.0.02

iBytesCopy: Integer;
iPtr: MemoryAddress;

begin
...
while iBytesLeft > 0 do

iBytesToCopy := iBytesLeft.min(1024);
iPtr := iPtr.adjust(iBytesToCopy);
iBytesLeft := iBytesLeft - iBytesToCopy;

endwhile;
...

end;

Applies to Version: 7.1.05 (Service Pack 4) and higher

asBinary32
Signature asBinary32(): Binary;

The asBinary32 method of the MemoryAddress primitive type returns the value of the internal pointer as a 32-bit
(4 byte) binary value.

An exception is raised if the process is not running in a 32-bit memory address space.

asBinary64
Signature asBinary64(): Binary;

The asBinary64 method of the MemoryAddress primitive type returns the value of the internal pointer as a 64-bit
(8 byte) binary value.

An exception is raised if the process is not running in a 64-bit memory address space.

display
Signature display(): String;

The display method of the MemoryAddress primitive type returns a string representing the value of the receiver.

isValid
Signature isValid(): Boolean;

The isValid method of the MemoryAddress primitive type returns true if the value of the receiver was assigned by
a process on the current node; that is, the pointer is valid for the current operating system process.

Encyclopaedia of
Primitive Types

Point Type Chapter 1 114

EncycloPrim - 2020.0.02

Point Type
A variable of type Point is used to represent a point in two-dimensional space. A Point primitive type encapsulates
two integer values: the x (horizontal) and y (vertical) coordinates.

You can use the Point primitive type to represent a position on the display or within a form or control. (When used
to represent a position in a form or control, the integer values represent the units of the scaleMode property of the
form or control.) Additionally, you can use the Point primitive type to represent any other two-dimensional data; for
example, points on a graph.

For details about the methods defined in the Point primitive type, see "Point Methods", in the following subsection.

For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the JADE
Developer’s Reference.

Point Methods
The methods defined in the Point primitive type are summarized in the following table.

Method Description

display Returns a string representing the value of the receiver

set Sets the value of the receiver to a specified point

setX Sets the x (horizontal) value of the receiver

setY Sets the y (vertical) value of the receiver

x Returns the x (horizontal) value of the receiver

y Returns the y (vertical) value of the receiver

display
Signature display(): String;

The display method of the Point primitive type returns a string representing the value of the receiver.

set
Signature set(x, Integer;

y: Integer) updating;

The set method of the Point primitive type sets the value of the receiver to a specified point.

The x and y parameters are integer values of the horizontal (x) and vertical (y) coordinates.

setX
Signature setX(x: Integer) updating;

The setX method of the Point primitive type sets the x (horizontal) value of the receiver.

The following examples show the use of the setX method.

newPoint.setX(distance.Integer);

Encyclopaedia of
Primitive Types

Point Type Chapter 1 115

EncycloPrim - 2020.0.02

redrawGraph() updating;
vars

gLine : Object;
objectArray : ObjectArray;

begin
drawNew;
foreach gLine in objectArray do

gLine.GLines.drawNew;
gLine.GLines.lastPoint.setX(0);
gLine.GLines.redrawGraph;

endforeach;
end;

setY
Signature setY(y: Integer) updating;

The setY method of the Point primitive type sets the y (vertical) value of the receiver.

The code fragments in the following examples show the use of the setY method.

gLine.lastPoint.setY(self.height.Integer);

newPoint.setY(yScale.heightOfYValue(dataArray.last).Integer);

x
Signature x(): Integer;

The x method of the Point primitive type returns the x (horizontal) value of the receiver.

The following example shows the use of the x method.

drawLine(lastPoint.x, lastPoint.y, distance + lastPoint.x,
newPoint.y, color);

lastPoint.setX(lastPoint.x + distance.Integer);
lastPoint.setY(newPoint.y);

y
Signature y(): Integer;

The y method of the Point primitive type returns the y (vertical) value of the receiver.

The following example shows the use of the y method.

newPoint.setY(yScale.verticalPixels.Integer - newPoint.y);

Encyclopaedia of
Primitive Types

Real Type Chapter 1 116

EncycloPrim - 2020.0.02

Real Type
Use the Real primitive type to represent a floating point number. A Real primitive type has a set of values that is a
subset of real numbers. These values can be represented in floating point notation with a fixed number of digits.

Use a Real primitive type to store floating point numbers; for example, a temperature.

Real numbers are useful for computations involving very large or very small numbers, or when the range of
magnitudes cannot be predicted.

Notes Real primitive types provide fifteen digits of precision; that is, if you assign a Real value to a Real attribute
or local variable and then retrieve the value in your method, only the first fifteen significant digits can be relied on
for complete accuracy.

As a floating point number stores an approximation of the value that is accurate to fifteen significant digits, you
should use an Integer, an Integer64, or a Decimal primitive type to store values where precision is required; for
example, for monetary values.

Real numbers are stored internally using an eight-byte representation, providing fifteen significant digits of
accuracy.

You can use the JadeEditMask class and TextBox class getTextAsReal and setTextFromReal methods to
handle locale formatting for numeric fields.

For details about the constants and methods defined in the Real primitive type, see "Real Constants" and "Real
Methods", in the following subsections. For details about converting primitive types, see "Converting Primitive
Types", in Chapter 1 of the JADE Developer’s Reference.

Real Constants
The constants provided by the Real primitive type are listed in the following table.

Constant Integer Value

FP_Classification_NegInfinity 2

FP_Classification_Normal 6

FP_Classification_NotANumber 1

FP_Classification_PosInfinity 3

FP_Classification_SubNormal 5

FP_Classification_Zero 4

Real Methods
The methods defined in the Real primitive type are summarized in the following table.

Method Description

abs Returns the absolute value of the receiver

arccos Returns the arc cosine of the receiver

arcsin Returns the arc sine of the receiver

Encyclopaedia of
Primitive Types

Real Type Chapter 1 117

EncycloPrim - 2020.0.02

Method Description

arctan Returns the arc tangent of the receiver

arcTan2 Returns the arc tangent of a point (atan2 function)

cos Returns the cosine of the receiver

currencyFormat Returns a string in the currency format of the current locale

display Returns the receiver as a string

exp Returns the exponential e to the power of the receiver

getFloatingPointClassification Returns an integer indicating whether the receiver is a normal floating
point value or a special value

infinity Sets the receiver to the special positive infinity value

isInfinity Returns true if the receiver has the special positive infinity value

isNaN Returns true if the receiver has the special not a number value

log Returns the natural logarithm of the receiver

log10 Returns the base 10 logarithm of the receiver

max Returns the larger value of the receiver and the specified Real

min Returns the lesser value of the receiver and the specified Real

nan Sets the receiver to the special not a number value

numberFormat Returns a string in the number format of the current locale

parseCurrencyWithCurrentLocale Sets the receiver to the result of parsing a string representing a
currency value for the current locale

parseCurrencyWithFmtAndLcid Sets the receiver to the result of parsing a string representing a
currency value for the specified format and the specified locale

parseNumberWithCurrentLocale Sets the receiver to the result of parsing a string representing a number
for the current locale

parseNumberWithFmtAndLcid Sets the receiver to the result of parsing a string representing a number
for the specified format and the specified locale

rounded Returns an integer containing the rounded value of the receiver

rounded64 Returns a 64-bit integer containing the rounded value of the receiver

roundedTo Returns the receiver rounded to the specified number of decimal places

roundedUp Returns an integer containing the value of the receiver rounded up to
the nearest whole number

roundedUp64 Returns a 64-bit integer containing the value of the receiver rounded up
to the nearest whole number

setByteOrderLocal Returns a Real that has the bytes ordered as required by the local node

setByteOrderRemote Returns a Real that has the bytes ordered as required by the specified
remote node

setFloatingPointClassification Sets the receiver to a specified special value

sin Returns the sine of the receiver

Encyclopaedia of
Primitive Types

Real Type Chapter 1 118

EncycloPrim - 2020.0.02

Method Description

sqrt Returns the square root of the receiver

tan Returns the tangent of the receiver

truncated Returns an integer containing the truncated value of the receiver

truncated64 Returns a 64-bit integer containing the truncated value of the receiver

truncatedTo Returns the receiver truncated to the specified number of decimal
places

userCurrencyFormat Returns the receiver as a string in the specified currency format

userCurrencyFormatAndLcid Returns the receiver as a string in the specified currency format for the
specified locale

userNumberFormat Returns the receiver as a string in the specified number format

userNumberFormatAndLcid Returns the receiver as a string in the specified number format for the
specified locale

abs
Signature abs(): Real;

The abs method of the Real primitive type returns a real containing the absolute value of the receiver.

arccos
Signature arccos(): Real;

The arccos method of the Real primitive type returns the arc cosine (or inverse cosine) of the receiver. An
exception is raised if the receiver is invalid.

The resulting value represents an angle in degrees.

arcsin
Signature arcsin(): Real;

The arcsin method of the Real primitive type returns the arc sine (or inverse sine) of the receiver. An exception is
raised if the receiver is invalid.

The resulting value represents an angle in degrees.

arctan
Signature arctan(): Real;

The arctan method of the Real primitive type returns the arc tangent (inverse tangent) of the receiver. An
exception is raised if the receiver is invalid.

The resulting value represents an angle in degrees.

Encyclopaedia of
Primitive Types

Real Type Chapter 1 119

EncycloPrim - 2020.0.02

arcTan2
Signature arcTan2(real: Real): Real;

The arcTan2 method of the Real primitive type returns the arc tangent (inverse tangent) of the real parameter
divided by the receiver.

The method implements the atan2 mathematical function relating to the angle subtended by a point in the
Cartesian plane.

angle := self.arcTan2(real);

An exception is raised if the receiver is invalid. The resulting value represents an angle in degrees.

cos
Signature cos(): Real;

The cos method of the Real primitive type returns the cosine of the receiver. The receiver value represents an
angle in degrees, and the resulting value is always in the range -1 through 1.

The following example shows the use of the cos method.

testReal();
vars

realValue : Real;
begin

realValue := 34; // Defines the variable value
write realValue.cos; // Outputs 0.829037572555042

end;

currencyFormat
Signature currencyFormat(): String;

The currencyFormat method of the Real primitive type returns a string containing the receiver in the currency
format defined for the current locale; for example, $123.22 or -123.225. This can include currency symbols,
thousands separators, sign characters, and decimal point characters.

The following examples show the use of the currencyFormat method.

tblPrices.text := company.currentPrice.currencyFormat;

testReal();
vars

stringValue : String;
realValue : Real;

begin
realValue := -123456.987; // Defines the variable value
write realValue; // Outputs -123456.987
stringValue := realValue.currencyFormat; // Associates string and format
write stringValue; // Outputs ($123,456.99)
realValue := 34.5;
write realValue.max(40.6); // Outputs 40.6

end;

Encyclopaedia of
Primitive Types

Real Type Chapter 1 120

EncycloPrim - 2020.0.02

You can use the defineCurrencyFormat method of the CurrencyFormat class if you want to create your own
transient format objects and define a currency format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

display
Signature display(): String;

The display method of the Real primitive type returns a string containing the receiver.

exp
Signature exp(): Real;

The exp method of the Real primitive type returns the exponential e to the power of the receiver.

getFloatingPointClassification
Signature getFloatingPointClassification(): Integer;

The getFloatingPointClassification method of the Real primitive type returns an integer that indicates the whether
the receiver is a normal floating point value or some other kind of special value.

Floating point numbers can have special values, such as infinity or NaN (Not a Number). Some floating point
calculations may produce infinity or NaN as the result of an operation on invalid input operands.

The values returned by the getFloatingPointClassification method are represented by the constants defined for
the Real primitive type and shown in the following table.

Constant Integer Value

FP_Classification_NegInfinity 2

FP_Classification_Normal 6

FP_Classification_NotANumber 1

FP_Classification_PosInfinity 3

FP_Classification_SubNormal 5

FP_Classification_Zero 4

infinity
Signature infinity(): Real updating;

The infinity method of the Real primitive type sets the receiver to the special positive infinity value. It does this by
calling the setFloatingPointClassification method with the FP_Classification_PosInfinity constant value as the
parameter. The method also returns the positive infinity value.

See also the isInfinity method.

Encyclopaedia of
Primitive Types

Real Type Chapter 1 121

EncycloPrim - 2020.0.02

isInfinity
Signature isInfinity(): Boolean;

The isInfinity method of the Real primitive type returns true if the value returned by the
getFloatingPointClassification method is the constant FP_Classification_PosInfinity, which represents the
special positive infinity value.

See also the infinity method.

isNaN
Signature isNaN(): Boolean;

The isNaN method of the Real primitive type returns true if the value returned by the
getFloatingPointClassification method is the constant FP_Classification_NotANumber, which represents the
special not a number value.

See also the nan method.

log
Signature log(): Real;

The log method of the Real primitive type returns the natural logarithm of the receiver. An exception is raised if the
receiver is invalid.

log10
Signature log10(): Real;

The log10 method of the Real primitive type returns the base 10 logarithm of the receiver. An exception is raised if
the receiver is invalid.

max
Signature max(real: Real): Real;

The max method of the Real primitive type returns the larger value of the receiver and the real parameter.

If the value of the receiver is greater than the value of the real parameter, the value of the receiver is returned. If
the value of the receiver is less than or equal to the value of the real parameter, the value of real is returned.

The following example shows the use of the max method.

testReal();
vars

realValue : Real;
begin

realValue := 34.5; // Defines the variable value
write realValue.max(40.6); // Outputs 40.6

end;

Encyclopaedia of
Primitive Types

Real Type Chapter 1 122

EncycloPrim - 2020.0.02

min
Signature min(real: Real): Real;

The min method of the Real primitive type returns the lesser value of the receiver and the real parameter.

If the value of the receiver is less than the value of the real parameter, the value of the receiver is returned. If the
value of the receiver is greater than or equal to the value of the real parameter, the value of real is returned.

The following example shows the use of the min method.

testReal();
vars

realValue : Real;
begin

realValue := 34.5; // Defines the variable value
write realValue.min(40.6); // Outputs 34.5

end;

nan
Signature nan(): Real updating;

The nan method of the Real primitive type sets the receiver to the special not a number value. It does this by
calling the setFloatingPointClassification method with the FP_Classification_NotANumber constant value as
the parameter. The method also returns the not a number value.

See also the isNaN method.

numberFormat
Signature numberFormat(): String;

The numberFormat method of the Real primitive type returns a string containing the receiver in the numeric
format defined for the current locale; for example, 07456.357 or 7,456.38. This can include thousands separators,
sign characters, and decimal point characters.

You can use the defineNumberFormat method of the NumberFormat class if you want to create your own
transient format objects and define a numeric format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

The following example shows the use of the numberFormat method.

vars
stringValue : String;
realValue : Real;

begin
realValue := -123456.987; // Defines the variable value
write realValue; // Outputs -123456.987
stringValue := realValue.numberFormat; // Associates string and format

Encyclopaedia of
Primitive Types

Real Type Chapter 1 123

EncycloPrim - 2020.0.02

write stringValue; // Outputs -123,456.99
end;

parseCurrencyWithCurrentLocale
Signature parseCurrencyWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseCurrencyWithCurrentLocale method of the Real primitive type parses the string specified in the
source parameter to ensure that it matches the Real format of the current locale for currency character sequence,
currency position, sign sequence, sign position, thousands separator, decimal point sequence, and character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

This is equivalent to calling the parseCurrencyWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseCurrencyWithFmtAndLcid
Signature parseCurrencyWithFmtAndLcid(source: String;

fmt: CurrencyFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseCurrencyWithFmtAndLcid method of the Real primitive type parses the string specified in the source
parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for currency character sequence, currency position, sign character sequence, sign position, thousands
separator, decimal point sequence, and character set.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

The currency character sequence is optional but if it is included in the source, it must be correctly positioned as
defined by the NumberFormat class negativeFormat property and the CurrencyFormat class positiveFormat
property.

Thousands separator character sequences are optional but if they are included in the source, each one must have
at least one digit preceding and following it, and must occur before the decimal point (if any).

A space included in the sign and currency sequence is optional.

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

Encyclopaedia of
Primitive Types

Real Type Chapter 1 124

EncycloPrim - 2020.0.02

Only the first 15 significant digits of the value of the string are stored in the receiver. Any additional digits are
rounded into the fifteenth digit and replaced with zeros. The number of decimal places before and after the
decimal point is preserved. Leading zeros before the decimal point and trailing zeros after the decimal point are
ignored. For example, "12345678901234567890" is parsed and results in 12345678901234600000 being
stored in the receiver.

This method supports a maximum of 30 significant digits, whereas the fixed-point representation of a Real value
can require up to 320 digits.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithCurrentLocale
Signature parseNumberWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseNumberWithCurrentLocale method of the Real primitive type parses the string specified in the source
parameter to ensure that it matches the Real format of the current locale for sign sequence, sign position,
thousands separator, decimal point sequence, and character set.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to zero (0).

This is equivalent to calling the parseNumberWithFmtAndLcid method, passing null in the fmt parameter and
zero (0) in the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseNumberWithFmtAndLcid
Signature parseNumberWithFmtAndLcid(source: String;

fmt: NumberFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseNumberWithFmtAndLcid method of the Real primitive type parses the string specified in the source
parameter using the specified format and locale, to ensure that it matches the format specified in the fmt
parameter for sign sequence, sign position, thousands separator, decimal point sequence, and character set.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid value.

Encyclopaedia of
Primitive Types

Real Type Chapter 1 125

EncycloPrim - 2020.0.02

The sign sequence is optional but if it is included in the source, it must be correctly positioned. A space included in
the sign sequence is optional.

Thousands separator sequences are optional but if they are included in the source, each one must have at least
one digit preceding and following it, and must occur before the decimal point (if any).

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

Only the first 15 significant digits of the value of the string are stored in the receiver. Any additional digits are
rounded into the fifteenth digit and replaced with zeros.

The number of decimal places before and after the decimal point is preserved. Leading zeros before the decimal
point and trailing zeros after the decimal point are ignored. For example, "12345678901234567890" is parsed
and formatted results in 12345678901234600000 being stored in the receiver.

This method supports a maximum of 30 significant digits, whereas the fixed-point representation of a Real value
can require up to 320 digits.

If native digits are allowed, if the first digit found in the source is a native digit, all subsequent digits must also be
native. Similarly, if the first digit found is ASCII, all subsequent digits must also be ASCII.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

rounded
Signature rounded(): Integer;

The rounded method of the Real primitive type returns an integer containing the rounded value of the receiver.

The following code fragments show the use of the rounded method.

while count > 0 do
tbl.rowHeight[count] := (tbl.height / tbl.rows).rounded;
count := count - 1;

endwhile;

write (6.4).Real.rounded; // outputs 6 [0,1,2,3,4 are rounded down]
write (6.5).Real.rounded; // outputs 7 [5,6,7,8,9 are rounded up]

write (-6.4).Real.rounded; // outputs -6 [0,1,2,3,4 are rounded up]
write (-6.5).Real.rounded; // outputs -7 [5,6,7,8,9 are rounded down]

rounded64
Signature rounded64(): Integer64;

The rounded64 method of the Real primitive type returns a 64-bit integer containing the rounded value of the
receiver.

The following examples show the use of the rounded64 method.

while count > 0 do
tbl.rowHeight[count] := (tbl.height / tbl.rows).rounded64;

Encyclopaedia of
Primitive Types

Real Type Chapter 1 126

EncycloPrim - 2020.0.02

count := count - 1;
endwhile;

write (6.4).Real.rounded64; // outputs 6 [0,1,2,3,4 are rounded down]
write (6.5).Real.rounded64; // outputs 7 [5,6,7,8,9 are rounded up]

write (-6.4).Real.rounded64; // outputs -6 [0,1,2,3,4 are rounded up]
write (-6.5).Real.rounded64; // outputs -7 [5,6,7,8,9 are rounded down]

roundedTo
Signature roundedTo(decimalPlaces: Integer): Real;

The roundedTo method of the Real primitive type returns the receiver rounded to the number of decimal places
specified in the decimalPlaces parameter.

The following example shows the use of the roundedTo method.

vars
realValue : Real;

begin
realValue := 340.5; // Defines the variable value
realValue := (realValue / 27).roundedTo(2);
write realValue; // Outputs 12.61
realValue := 340.5; // Redefines the variable value
realValue := (realValue / 27).roundedTo(5);
write realValue; // Outputs 12.61111

end;

Note As Real values are implemented as floating point values, rounding may not return the expected value.

roundedUp
Signature roundedUp(): Integer;

The roundedUp method of the Real primitive type returns an integer containing the receiver rounded up to the
nearest whole number.

The following examples show the use of the roundedUp method.

integerValue := (columnWidth[column] / realValue).roundedUp;
vars

realValue : Real;
begin

realValue := 340.5; // Defines the variable value
realValue := (realValue / 20).roundedUp;
write realValue; // Outputs 18

end;

roundedUp64
Signature roundedUp64(): Integer64;

The roundedUp64 method of the Real primitive type returns a 64-bit integer containing the receiver rounded up to
the nearest whole number.

Encyclopaedia of
Primitive Types

Real Type Chapter 1 127

EncycloPrim - 2020.0.02

The following examples show the use of the roundedUp64 method.

integerValue := (columnWidth[column] / realValue).roundedUp64;
vars

realValue : Real;
begin

realValue := 340.5; // Defines the variable value
realValue := (realValue / 20).roundedUp64;
write realValue; // Outputs 18

end;

setByteOrderLocal
Signature setByteOrderLocal(architecture: Integer): Real;

The setByteOrderLocal method of the Real primitive type returns a real that has the bytes ordered as required by
the local node. The bytes of the receiver are assumed to be ordered as indicated by the architecture parameter.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

setByteOrderRemote
Signature setByteOrderRemote(architecture: Integer): Real;

The setByteOrderRemote method of the Real primitive type returns a real that has the bytes ordered as required
by the remote node indicated by the architecture parameter. The bytes of the receiver are assumed to be ordered
as required by the local node.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Encyclopaedia of
Primitive Types

Real Type Chapter 1 128

EncycloPrim - 2020.0.02

Node Class Constant Description

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently
Windows 32-bit little-endian)

setFloatingPointClassification
Signature setFloatingPointClassification(classification: Integer) updating;

The setFloatingPointClassification method of the Real primitive type sets the receiver to a special value
specified by the classification parameter.

The following table lists valid values for the classification parameter (for which you can use a constant defined for
the Real primitive type) and the special value that results.

classification Parameter Resultant Special Value for Receiver

FP_Classification_NegInfinity (2) Negative infinity.

FP_Classification_NotANumber (1) A Not a Number value. The result of an invalid operation; for
example, attempting to find the square root of a negative number.

FP_Classification_PosInfinity (3) Positive infinity.

Note There are many possible Not a Number (NaN) representations. JADE returns a single NaN representation.
A NaN does not compare equal to any floating-point number or NaN, even if the latter has an identical
representation, as shown in the following code example.

vars
real : Real;

begin
real.setFloatingPointClassification(Real.FP_Classification_NotANumber);
write real = real; // outputs false

end;

sin
Signature sin(): Real;

The sin method of the Real primitive type returns the sine of the receiver. The receiver value represents an angle
in degrees, and the resulting value is always in the range -1 through 1.

The following example shows the use of the sin method.

vars
realValue : Real;

begin
realValue := 340.5; // Defines the variable value
write realValue.sin; // Outputs -0.333806859233771

end;

Encyclopaedia of
Primitive Types

Real Type Chapter 1 129

EncycloPrim - 2020.0.02

sqrt
Signature sqrt(): Real;

The sqrt method of the Real primitive type returns the square root of the receiver.

The following example shows the use of the sqrt method.

vars
realValue : Real;

begin
realValue := 340.5; // Defines the variable value
write realValue.sqrt; // Outputs 18.4526420872459

end;

An exception is raised if the receiver is invalid.

tan
Signature tan(): Real;

The tan method of the Real primitive type returns the tangent of the receiver. The receiver value represents an
angle in degrees, and the resulting value is always in the range -1 through 1.

The following example shows the use of the tan method.

vars
realValue : Real;

begin
realValue := 340.5; // Defines the variable value
write realValue.tan; // Outputs -0.354118572530698

end;

truncated
Signature truncated(): Integer;

The truncated method of the Real primitive type returns an integer containing the truncated value of the receiver.

The following example shows the use of the truncated method.

vars
realValue : Real;

begin
realValue := 340.56789; // Defines the variable value
write realValue.truncated; // Outputs 340

end;

truncated64
Signature truncated64(): Integer64;

The truncated64 method of the Real primitive type returns a 64-bit integer containing the truncated value of the
receiver.

Encyclopaedia of
Primitive Types

Real Type Chapter 1 130

EncycloPrim - 2020.0.02

The following example shows the use of the truncated64 method.

vars
realValue : Real;

begin
realValue := 340.56789; // Defines the variable value
write realValue.truncated64; // Outputs 340

end;

truncatedTo
Signature truncatedTo(decimalPlaces: Integer): Real;

The truncatedTo method of the Real primitive type returns the receiver truncated to the number of decimal places
specified in the decimalPlaces parameter. The following example shows the use of the truncatedTo method.

vars
realValue : Real;

begin
realValue := 340.56789; // Defines the variable value
write realValue.truncatedTo(3); // Outputs 340.567

end;

userCurrencyFormat
Signature userCurrencyFormat(fmt: CurrencyFormat): String;

The userCurrencyFormat method of the Real primitive type returns a string containing the receiver in the
currency format specified in the fmt parameter.

To define your currency formats, use the Schema menu Format command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user currency format name with a dollar sign ($);
for example, userCurrencyFormat($MyCurrency).

You can use the defineCurrencyFormat method of the CurrencyFormat class if you want to create your own
transient format objects and define a currency format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userCurrencyFormatAndLcid
Signature userCurrencyFormatAndLcid(fmt: CurrencyFormat;

lcid: Integer): String;

The userCurrencyFormatAndLcid method of the Real primitive type returns a string containing the receiver in
the currency format and locale specified in the fmt parameter and lcid parameter, respectively.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

Encyclopaedia of
Primitive Types

Real Type Chapter 1 131

EncycloPrim - 2020.0.02

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userNumberFormat
Signature userNumberFormat(fmt: NumberFormat): String;

The userNumberFormat method of the Real primitive type returns a string containing the receiver in the number
format specified in the fmt parameter.

To define your numeric formats, use the Schema menu Format command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user number format name with a dollar sign ($); for
example, userNumberFormat($MyNumber).

You can use the defineNumberFormat method of the NumberFormat class if you want to create your own
transient format objects and define a numeric format that dynamically overrides the format for the locale at run
time. (For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userNumberFormatAndLcid
Signature userNumberFormatAndLcid(fmt: NumberFormat;

lcid: Integer): String;

The userNumberFormatAndLcid method of the Real primitive type returns a string containing the receiver in the
number format and locale specified in the fmt parameter and lcid parameter, respectively.

If the value of the fmt parameter is null, the settings for the locale specified in the lcid parameter are used. If the
value of the lcid parameter is zero (0), the settings of the current locale are used.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

String Type Chapter 1 132

EncycloPrim - 2020.0.02

String Type
Use the String primitive type to define String variables and attributes. A string contains zero or more characters. A
null string is a string that has a zero length ("").

Note A string containing embedded null characters can be assigned to a local String variable and passed as a
String parameter. Assigning a string containing embedded null characters to a String attribute may result in
truncation of the string at the first null character.

To safely pass a string variable containing embedded null characters from JADE to an external method, define the
string parameter in JADE as io usage.

When you specify a length less than 540 for a String attribute, it is embedded. Space is allocated within instances
of the class to store a string with a length less than or equal to the specified length.

When you specify a length greater than or equal to 540 or you select the Maximum Length check box, which
corresponds to 2,147,483,647 characters, for a String attribute, it is not embedded. It is stored in a separate
variable-length object, a String Large Object (slob), which can store a string with a length less than or equal to the
specified length. The amount of storage required for a slob is determined by the value of the string.

String variables can be bounded or unbounded, as shown in the following code fragment.

vars
str1 : String[100]; // Bounded - str1 can store a string with a

// length less than or equal to 100 characters
str2 : String; // Unbounded - str2 can store a string with a length

// less than or equal to 2,147,483,647 characters

The ordering relationship of the character values in corresponding positions sets the ordering between two string
values. In strings of unequal length, each character in the longer string without a corresponding character in the
shorter string takes on a greater-than value; for example, Zs is greater than Z. Null strings can be equal only to
other null strings.

To specify a substring str[m:n] of a string str, two integers separated by a colon (:) character are used. In
substrings, the first integer is the start position, and the second integer (following the colon (:) character) is the
length of the substring or end, to indicate the end of the string. The first character is defined as being at position 1.

If the length of a substring is zero (0), a null string ("") is returned.

A variable of type Character can be used to reference a single character in a string, in effect treating the string as
an array of characters, as shown in the following code fragment.

vars
str : String;
char : Character;

begin
str := "JADE Primitive Types";
char := str[7]; // seventh character of the string, which is 'r'

For details about the methods defined in the String primitive type, see "String Methods", in the following
subsection. For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the
JADE Developer’s Reference.

Encyclopaedia of
Primitive Types

String Type Chapter 1 133

EncycloPrim - 2020.0.02

String Methods
The methods defined in the String primitive type are summarized in the following table.

Method Description

asANSI Returns ANSI String values as Binary values in a Unicode environment

asDate Returns a date based on the contents from the receiving string

asGuid Returns a binary representation based on the class identifier (clsid) of the receiving
string

asObject Returns an object reference based on the contents of the oid-like receiving string
and an optional lifetime indication

asOid Returns an object reference based on the contents of the receiving string

asStringUtf8 Returns a locale-sensitive conversion of the receiving string in UTF8 format

asUuid Returns a binary by formatting the string as a Universally Unique Identifier (UUID)

base64Decode Returns a binary value resulting from decoding a Base64-encoded message

bufferAddress Returns the value of the pointer to the internal buffer as an integer

bufferMemoryAddress Returns the value of the pointer to the internal buffer as a memory address

compareEql Returns true if the receiver is equal to a specified string

compareGeneric Returns an integer showing if the receiver is greater than, equal to, or less than a
specified character

compareGeq Returns true if the receiver is greater than or equal to a specified string

compareGtr Returns true if the receiver is greater than a specified string

compareLeq Returns true if the receiver is less than or equal to a specified string

compareLss Returns true if the receiver is less than the value of a specified string

compareNeq Returns true if the receiver is not equal to a specified string

compressToBinary Returns a compressed binary representation of the receiver

display Returns a string containing the receiver

fillString Fills the receiving string with the specified string

firstCharToLower Converts an uppercase first character in the receiving string to lowercase

firstCharToUpper Converts a lowercase first character in the receiving string to uppercase

getHugeTokens Returns an array of the tokens not greater than 2047 characters in the receiver

getNextToken Returns the next token in the receiver

getTokens Returns an array of the tokens not greater than 62 characters in the receiver

isByte Returns true if the receiver is a string representation of a valid byte value

isDecimal Returns true if the receiver is a string representation of a valid decimal value

isInteger Returns true if the receiver is a string representation of a valid integer value

isInteger64 Returns true if the receiver is a string representation of a valid 64-bit integer value

Encyclopaedia of
Primitive Types

String Type Chapter 1 134

EncycloPrim - 2020.0.02

Method Description

isReal Returns true if the receiver is a string representation of a valid real number

length Returns the current length of a string variable or attribute

makeString Returns a string of the specified length filled with the value of the receiver

makeXMLCData Returns a new string of the receiver prepended with <![CDATA[and appended
with]]>

maxLength Returns the declared maximum length of a string variable

padBlanks Returns a copy of the receiving string padded to the specified length with trailing
blanks (spaces)

padLeadingZeros Returns a copy of the receiving string padded to the specified length with leading
zeros

plainTextToStringUtf8 Returns a UTF8 string with escaped character sequences replaced by UTF8
characters

pos Returns an integer containing the position of a substring in the receiver

replace__ Returns a copy of the receiver string with all occurrences of the specified target
substring replaced with the specified replacement string

replaceChar Replaces all occurrences of a character with another character

replaceFrom__ Returns a copy of the receiver string with only the first occurrence of the specified
target substring replaced with the specified replacement substring, starting from the
specified startIndex parameter

reverse Returns a string containing the reversed characters in the receiving string

reversePos Returns the position of the last occurrence of a substring in the receiving string

reversePosIndex Returns the position of the last occurrence of a substring within a substring of the
receiving string

scanUntil Returns a substring of the receiving string starting from the specified index up to
(but not including) the first occurrence of any of the specified characters

scanWhile Returns a substring of the receiving string starting from the specified index up to
(but not including) the first occurrence of any character other than the specified
characters

toLower Returns a copy of the receiving string with all uppercase characters converted to
lowercase

toUpper Returns a copy of the receiving string with all lowercase characters converted to
uppercase

trimBlanks Returns a copy of the receiving string with blanks (spaces) trimmed from both ends
of the receiver

trimLeft Returns a copy of the receiving string with the leading blanks (spaces) removed

trimRight Returns a copy of the receiving string with trailing blanks (spaces) trimmed from the
end of the receiver

Encyclopaedia of
Primitive Types

String Type Chapter 1 135

EncycloPrim - 2020.0.02

asANSI
Signature asANSI(lcid: Integer): Binary;

The asANSI method of the String primitive type returns the receiving string converted to a Binary value using the
character set of the code page for the locale specified by the lcid parameter. You can use this method in a
Unicode environment to produce ANSI strings in a binary format.

An exception is raised on the first source character that cannot be represented in the code page of the specified
locale; for example, a multi-byte Chinese character encountered when the locale is specified as New Zealand.

asDate
Signature asDate(): Date;

The asDate method of the String primitive type returns a date based on the contents of the receiving string. If the
receiving string does not contain a valid date, "invalid" is returned. The data value must represent one of the
following date formats.

dd-MMM-yy (for example, 30-Aug-11)

dd/MM/yy (for example, 30/08/11)

MMM dd, yy (for example, Aug 30, 11)

yyyy:MM:dd (for example, 2011:08:30)

Any non-alphanumeric character can be used as a delimiter.

JADE converts a two-digit year as follows.

If the current year is equal to or less than 50, all dates default to the current century.

If the current year is greater than 50, dates that have a year greater than 50 default to the current century.

If the current year is greater than 50, dates equal to or less than 50 default to the next century.

Note You should always use four-digit years in your applications.

When enhanced locale support is not enabled(that is, the EnhancedLocaleSupport parameter in the
[JadeEnvironment] section of the JADE initialization file is set to false), if the current year is:

Equal to or less than 50, all dates default to the current century

Greater than 50, dates that have a year greater than 50 default to the current century

Greater than 50, dates equal to or less than 50 default to the next century

The following example shows the use of the asDate method.

vars
dateValue : Date;

begin
dateValue := "15 May 2010".asDate; // 15 May 2010
dateValue := "15-May-2010".asDate; // 15 May 2010
dateValue := "15/5/2010".asDate; // 15 May 2010
dateValue := "May 15, 2010".asDate; // 15 May 2010
dateValue := "2010:5:15".asDate; // 15 May 2010

Encyclopaedia of
Primitive Types

String Type Chapter 1 136

EncycloPrim - 2020.0.02

dateValue := "29/2/2011".asDate; // "*invalid*"
end;

asGuid
Signature asGuid(): Binary;

The asGuid method of the String primitive type returns the class identifier (clsid) receiver string as a Globally
Unique Identifier (GUID) binary representation. Binary GUID representations of string class identifiers (used in
ActiveX control and automation libraries, for example) take less space than a visual string representation. This
method raises an exception if the receiver is not a GUID string in the following format.

"{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}"

See also the Binary primitive type asGuidString method.

asObject
Signature asObject(): Object;

The asObject method of the String primitive type returns an object reference based on the contents of the oid-like
receiving string based on class numbers, followed by an optional lifetime indication.

This method is the inverse of the Object class getObjectStringForObject method.

The form of the oid-like string can be one of the following.

class-number.instId

class-number.instId.parent-class-number

class-number.instId.parent-class-number.subLevel.subId

The optional lifetime can be '(t)', to indicate a transient object, or '(s)', to indicate a shared transient object. If the
optional lifetime is absent, it indicates a persistent object.

The following code fragments are examples of the use of the asObject method.

// return persistent instance of class number 16401
obj := '16401.1'.asObject;
// return transient instance of class number 16401
obj := '16401.1 (t)'.asObject;
// return shared transient instance of class number 16401
obj := '16401.1 (s)'.asObject;

Tip The asObject method is useful for debugging from a Workspace method to inspect a specific oid; for
example, an oid returned in an exception dialog.

For details about returning an object reference based on the contents of the receiving string, see the String
primitive type asOid method.

asOid
Signature asOid(): Object;

The asOid method of the String primitive type returns an object reference based on the contents of the receiving
string.

Encyclopaedia of
Primitive Types

String Type Chapter 1 137

EncycloPrim - 2020.0.02

This method is the inverse of the Object class getOidStringForObject method.

The following example shows the use of the asOid method.

begin
// inspect an instance of an object, in this case 2048.5
'2048.5'.asOid.inspect;

end;

For details about returning an object reference based on the contents of the oid-like receiving string based on
class numbers and a following optional lifetime indication, see the String primitive type asObject method.

asStringUtf8
Signature asStringUtf8(lcid: Integer): StringUtf8;

The asStringUtf8 method of the String primitive type returns the receiving string converted to a UTF8 string value.

In an ANSI environment, the conversion uses the character set of the code page for the locale specified by the lcid
parameter.

asUuid
Signature asUuid(): Binary;

The asUuid method of the String primitive type returns a binary by formatting the string as a Universally Unique
Identifier (UUID).

If the string is not formatted as a valid UUID representation (that is, as returned by the Binary primitive type
uuidAsString method), exception 1407 (Invalid argument passed to method) is raised.

The code fragment in the following example shows the use of the asUuid method.

vars
 str : String;
 bin : Binary;
begin
 str := "4dfc912a-b466-01d0-1027-000085823b00";
 bin := str.asUuid();

Applies to Version: 7.1.06 (Service Pack 5) and higher

base64Decode
Signature base64Decode(): Binary;

The base64Decode method of the String primitive type returns a Binary value resulting from the decoding of a
Base64-encoded message. A Base64-encoded message contains characters from the following alphabet.

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

The message may also contain line-break characters (Cr and Lf) inserted by the Base64 encoding algorithm;
these are ignored by the decoder, as are any characters that are not in the Base64 alphabet.

Use the base64Encode or base64EncodeNoCrLf method on the String primitive type to encode a binary value
using Base64 encoding.

Encyclopaedia of
Primitive Types

String Type Chapter 1 138

EncycloPrim - 2020.0.02

The following example shows the use of the base64Decode method.

vars
bin: Binary;
file: File;

begin
create file;
file.fileName := "d:\temp\harry.jpg";
file.kind := File.Kind_Binary;
file.open;
bin := file.readBinary(file.fileLength);
write 'original length = ' & bin.length.String;
write 'base64Encode length = ' & bin.base64Encode().length.String;
write 'base64EncodeNoCrLf length = ' &

bin.base64EncodeNoCrLf().length.String;
write 'base64Decode length = ' &

bin.base64Encode().base64Decode().length.String;
write 'base64Decode length (from NoCrLf) = ' &

bin.base64EncodeNoCrLf().base64Decode.length.String;
file.close;

epilog
delete file;

end;

Note The length of an encoded string is about a third longer, even if the string is encoded with carriage-return
and line-feed (Cr and Lf) characters.

bufferAddress
Signature bufferAddress(): Integer;

The bufferAddress method of the String primitive type returns an integer containing the value of the pointer to the
internal buffer that contains the string. This value may be required when a JADE Binary type value is being
mapped to a structured record type for a call to an external function. Call the bufferAddress method to determine
the address of the buffer when an external function requires a data structure to contain a pointer to a second
structure.

The use of the bufferAddress method for the String primitive type is similar to that for the Binary primitive type.
For an example of using the bufferAddress method of the Binary primitive type to initialize the Windows
SECURITY_DESCRIPTOR and SECURITY_ATTRIBUTES structures, see bufferAddress, under "Binary Type".

The code fragment in the following example shows the use of the bufferAddress method when copying clipboard
data directly into a JADE string.

call copyString(str.bufferAddress, locked);
call globalUnlock(locked);

Caution Do not use this method to pass the address of a string to an external function that will be executed by a
presentation client. If an external function is called from an application server method and executed by a different
process (the presentation client), the memory address is not valid and will almost certainly result in a jade.exe
(thin client) fault in the called function.

Encyclopaedia of
Primitive Types

String Type Chapter 1 139

EncycloPrim - 2020.0.02

bufferMemoryAddress
Signature bufferMemoryAddress(): MemoryAddress;

The bufferMemoryAddress method of the String primitive type returns a memory address containing the value of
the pointer to the internal buffer that contains the string. This value may be required when a JADE String type
value is being mapped to a structured record type for a call to an external function.

Call the bufferMemoryAddress method to determine the address of the buffer when an external function requires
a data structure to contain a pointer to a second structure.

The use of the bufferMemoryAddress method for the String primitive type is similar to that for the Binary
primitive type.

For an example of using the bufferMemoryAddress method of the Binary primitive type to initialize the Windows
SECURITY_DESCRIPTOR and SECURITY_ATTRIBUTES structures, see bufferMemoryAddress, under "Binary
Type".

The code fragment in the following example shows the use of the bufferMemoryAddress method when copying
clipboard data directly into a JADE string.

call copyString(str.bufferMemoryAddress, locked);
call globalUnlock(locked);

Caution Do not use this method to pass the address of a string to an external function that will be executed by a
presentation client. If an external function is called from an application server method and executed by a different
process (the presentation client), the memory address is not valid and will almost certainly result in a jade.exe
(thin client) fault in the called function.

compareEql
Signature compareEql(rhs: String;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareEql method of the String primitive type returns true if the receiver is equal to the value of the rhs
parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

String Type Chapter 1 140

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareEql(lhs, true, false, null);

recv.toLower = lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareEql method.

write "Alice".compareEql("alice", true, false, null); // Outputs true
write "Alice".compareEql("alice", false, false, null); // Outputs false

compareGeneric
Signature compareGeneric(rhs: String;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Integer;

The compareGeneric method of the String primitive type compares the receiver with the value of the rhs
parameter and returns one of the following values.

Value Returned if the receiver is …

Negative integer Less than the right-hand side value represented by the rhs parameter

Zero (0) Equal to the right-hand side value represented by the rhs parameter

Positive integer Greater than the right-hand side value represented by the rhs parameter

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operators (<, <=, =, >=, >, <>), documented in Chapter 1 of the JADE
Developer’s Reference, use a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

String Type Chapter 1 141

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareGeneric(lhs, true, false, null);

(recv.toLower>lhs.toLower).Integer - (recv.toLower<lhs.toLower).Integer;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareGeneric method.

vars
locale : Locale;

begin
write "alice".compareGeneric("carol", false, false, null); // Outputs -1
write "bob".compareGeneric("bob", false, false, null); // Outputs 0
write "carol".compareGeneric("alice", false, false, null); // Outputs 1

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "àcute".compareGeneric("zebra", false, false, null); // Outputs 1
write "àcute".compareGeneric("zebra", false, true, locale);// Outputs -1

compareGeq
Signature compareGeq(rhs: String;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareGeq method of the String primitive type returns true if the receiver is greater than or equal to the
value of the rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (>=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

String Type Chapter 1 142

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareGeq(lhs, true, false, null);

recv.toLower >= lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareGeq method.

vars
locale : Locale;

begin
write "alice".compareGeq("carol", false, false, null); // Outputs false
write "bob".compareGeq("bob", false, false, null); // Outputs true
write "carol".compareGeq("alice", false, false, null); // Outputs true

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "àcute".compareGeq("zebra", false, false, null); // Outputs true
write "àcute".compareGeq("zebra", false, true, locale); // Outputs false

compareGtr
Signature compareGtr(rhs: String;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareGtr method of the String primitive type returns true if the receiver is greater than the value of the rhs
parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (>), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

String Type Chapter 1 143

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareGtr(lhs, true, false, null);

recv.toLower > lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareGtr method.

vars
locale : Locale;

begin
write "alice".compareGtr("carol", false, false, null); // Outputs false
write "bob".compareGtr("bob", false, false, null); // Outputs false
write "carol".compareGtr("alice", false, false, null); // Outputs true

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "àcute".compareGtr("zebra", false, false, null); // Outputs true
write "àcute".compareGtr("zebra", false, true, locale); // Outputs false

compareLeq
Signature compareLeq(rhs: String;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareLeq method of the String primitive type returns true if the receiver is less than or equal to the value
of the rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

String Type Chapter 1 144

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareLeq(lhs, true, false, null);

recv.toLower <= lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareLeq method.

vars
locale : Locale;

begin
write "alice".compareLeq("carol", false, false, null); // Outputs true
write "bob".compareLeq("bob", false, false, null); // Outputs true
write "carol".compareLeq("alice", false, false, null); // Outputs false

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "àcute".compareLeq("zebra", false, false, null); // Outputs false
write "àcute".compareLeq("zebra", false, true, locale); // Outputs true

compareLss
Signature compareLss(rhs: String;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareLss method of the String primitive type returns true if the receiver is less than the value of the rhs
parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

String Type Chapter 1 145

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareLss(lhs, true, false, null);

recv.toLower < lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareLss method.

vars
locale : Locale;

begin
write "alice".compareLss("carol", false, false, null); // Outputs true
write "bob".compareLss("bob", false, false, null); // Outputs false
write "carol".compareLss("alice", false, false, null); // Outputs false

// Comparisons with accented characters using binary and locale sort orders
locale := currentSchema.getLocale("5129");
write "àcute".compareLss("zebra", false, false, null); // Outputs false
write "àcute".compareLss("zebra", false, true, locale); // Outputs true

compareNeq
Signature compareNeq(rhs: String;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareNeq method of the String primitive type returns true if the receiver is not equal to the value of the
rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<>), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

String Type Chapter 1 146

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareNeq(lhs, true, false, null);

recv.toLower <> lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

The code fragment in the following example shows the use of the compareNeq method.

write "Alice".compareNeq("alice", true, false, null); // Outputs false
write "Alice".compareNeq("alice", false, false, null); // Outputs true

compressToBinary
Signature compressToBinary(typeAndOption: Integer): Binary;

The compressToBinary method of the String primitive type returns a compressed binary representation of the
string of the receiver using the ZLIB compression value specified in the typeAndOption parameter, one of the
Binary type constants listed in the following table.

Constant Integer Value Description

Compression_ZLib 1402 String and binary compression to binary using ZLIB level 5
(256*5 + 122)

Compression_ZLibFast 378 String and binary compression to binary using ZLIB level 1
(256*1 + 122)

Compression_ZLibSmall 2426 String and binary compression to binary using ZLIB level 9
(256*9 + 122)

Notes This method adds the type byte to the front of the compressed binary. This type byte is ignored when the
value is used in a JADE system but if the data is to be passed to an external library, it is your responsibility to
remove the type byte, if necessary.

You cannot concatenate the results of multiple compressToBinary method calls.

You must use the Binary primitive type uncompressToString method to uncompress a binary value from this
binary representation.

display
Signature display(): String;

The display method of the String primitive type returns a string enclosed in double quotation marks ("")
containing the receiver.

If the length of the receiver is zero (0), the string "<null>" is returned.

Encyclopaedia of
Primitive Types

String Type Chapter 1 147

EncycloPrim - 2020.0.02

fillString
Signature fillString(string: String) updating;

The fillString method of the String primitive type fills the receiving string with repeated copies of the string
specified in the string parameter up to the length of the receiver.

The following example shows the use of the fillString method.

vars
stringValue : String;

begin
stringValue := 'hello world';
stringValue.fillString('foo');
write stringValue; // Outputs 'foofoofoofo'

end;

firstCharToLower
Signature firstCharToLower() updating;

The firstCharToLower method of the String primitive type converts an uppercase first character in the receiving
string to lowercase, according to the conventions of the current locale.

The following example shows the use of the firstCharToLower method.

vars
stringValue : String;

begin
stringValue := 'HELLO WORLD';
stringValue.firstCharToLower;
write stringValue; // Outputs 'hELLO WORLD'

end;

firstCharToUpper
Signature firstCharToUpper() updating;

The firstCharToUpper method of the String primitive type converts a lowercase first character in the receiving
string to uppercase, according to the conventions of the current locale.

The following example shows the use of the firstCharToUpper method.

vars
stringValue : String;

begin
stringValue := 'hello world';
stringValue.firstCharToUpper;
write stringValue; // Outputs 'Hello world'

end;

Encyclopaedia of
Primitive Types

String Type Chapter 1 148

EncycloPrim - 2020.0.02

getHugeTokens
Signature getHugeTokens(): HugeStringArray;

The getHugeTokens method of the String primitive type returns an array of the tokens in the receiver that have a
length in the range 0 through 2047 characters. For details about tokens, see the getNextToken method.

The following example shows the use of the getHugeTokens method.

vars
stringValue : String;
hugeStringArray : HugeStringArray;

begin
stringValue := 'this:is/a;string';
hugeStringArray := stringValue.getHugeTokens;
write hugeStringArray [1]; // Outputs this
write hugeStringArray [2]; // Outputs is
write hugeStringArray [3]; // Outputs a
write hugeStringArray [4]; // Outputs string

end;

getNextToken
Signature getNextToken(int: Integer io): String;

The getNextToken method of the String primitive type returns the next token in the receiver; that is, it returns the
string from the current value of the int parameter to the next delimiter.

Tip As the String::scanUntil method (which supersedes this getNextToken method) provides increased
functionality and flexibility, you may want to use that method instead.

The string delimiter can be any of the following characters.

Colon character (:)

Semicolon character (;)

Stroke character (/)

Double quotation character (")

Single quotation character (')

Space

Tab

End of string

To define the position from which the next delimiter is returned, specify the starting position in the int parameter in
a method.

The following example shows the use of the getNextToken method.

vars
str : String;
token : Integer;

begin

Encyclopaedia of
Primitive Types

String Type Chapter 1 149

EncycloPrim - 2020.0.02

str := 'this:is/a;string';
token := 1;
write str.getNextToken(token) & ' ' & token.String; // Outputs 'this 6'
write str.getNextToken(token) & ' ' & token.String; // Outputs 'is 9'
write str.getNextToken(token) & ' ' & token.String; // Outputs 'a 11'
write str.getNextToken(token) & ' ' & token.String; // Outputs 'string 17'

end;

The getNextToken method returns null when the end of string is reached.

getTokens
Signature getTokens(): StringArray;

The getTokens method of the String primitive type returns an array of the tokens in the receiver that have a length
not greater than 62 characters. For details about tokens, see the getNextToken method.

The following example shows the use of the getTokens method.

vars
stringValue : String;
stringArray : StringArray;

begin
stringValue := 'this:is/a;string';
stringArray := stringValue.getTokens;
write stringArray [1]; // Outputs this
write stringArray [2]; // Outputs is
write stringArray [3]; // Outputs a
write stringArray [4]; // Outputs string

end;

isByte
Signature isByte(): Boolean;

The isByte method of the String primitive type returns true if the receiver represents a valid byte value; that is, in
the range zero (0) through 255; otherwise, it returns false.

The following example shows the use of the isByte method.

vars
stringValue : String;

begin
stringValue := '+123';
write stringValue.isByte; // Outputs true
stringValue := '+321';
write stringValue.isByte; // Outputs false

end;

isDecimal
Signature isDecimal(): Boolean;

The isDecimal method of the String primitive type returns true if the receiver represents a valid decimal value;
otherwise, it returns false.

Encyclopaedia of
Primitive Types

String Type Chapter 1 150

EncycloPrim - 2020.0.02

The following example shows the use of the isDecimal method.

vars
stringValue : String;

begin
stringValue := '+123.456';
write stringValue.isDecimal; // Outputs true
stringValue := '+123,456';
write stringValue.isDecimal; // Outputs false

end;

isInteger
Signature isInteger(): Boolean;

The isInteger method of the String primitive type returns true if the receiver represents an integer value;
otherwise, it returns false.

The following example shows the use of the isInteger method.

vars
stringValue : String;

begin
stringValue := '+123';
write stringValue.isInteger; // Outputs true
stringValue := '+123.456';
write stringValue.isInteger; // Outputs false

end;

isInteger64
Signature isInteger64(): Boolean;

The isInteger64 method of the String primitive type returns true if the receiver represents a 64-bit integer value;
otherwise, it returns false.

The following example shows the use of the isInteger64 method.

vars
stringValue : String;

begin
stringValue := '+123';
write stringValue.isInteger64; // Outputs true
stringValue := '+123.456';
write stringValue.isInteger64; // Outputs false

end;

isReal
Signature isReal(): Boolean;

The isReal method of the String primitive type returns true if the receiver represents a valid real value; otherwise,
it returns false.

Encyclopaedia of
Primitive Types

String Type Chapter 1 151

EncycloPrim - 2020.0.02

The following example shows the use of the isReal method.

vars
stringValue : String;

begin
stringValue := '+123.456';
write stringValue.isReal; // Outputs true
stringValue := '+123,456';
write stringValue.isReal; // Outputs false

end;

length
Signature length(): Integer;

The length method of the String primitive type returns the actual length of the value that has been assigned to an
embedded String property; for example, if you declared a String property with length of 30 but the value stored is
of length 20, the length method returns 20.

The following example shows the use of the length method.

vars
stringValue : String;

begin
stringValue := 'hello world';
write stringValue.length; // Outputs 11

end;

makeString
Signature makeString(length: Integer): String;

The makeString method of the String primitive type returns a string of the length specified in the length parameter
filled with the value of the receiver. If the receiver is null (""), the returned string is filled with spaces.

If the value of the length parameter is less than or equal to zero (0), an empty string is returned.

The following example shows the use of the makeString method.

vars
strValue : String;

begin
strValue := "*";
write strValue.makeString(10); // Outputs **********
strValue := "*--";
write strValue.makeString(10); // Outputs *--*--*--*
strValue := null;
write strValue.makeString(10); // Outputs (ten spaces)

end;

makeXMLCData
Signature makeXMLCData(): String;

The makeXMLCData method of the String primitive type returns a new string of the receiver prepended with <!
[CDATA[and appended with]]>. Note that the receiver is not modified in any way.

Encyclopaedia of
Primitive Types

String Type Chapter 1 152

EncycloPrim - 2020.0.02

The following example is a receiver string.

<greeting>Hello, world!</greeting>

The returned string of this receiver string is as follows.

<![CDATA[<greeting>Hello, world!</greeting>]]>

Call this method for any string for which you do not want the framework to interpret the XML special characters
(that is, <, >, &, and ").

maxLength
Signature maxLength(): Integer;

The maxLength method of the String primitive type returns the declared maximum length of a string variable. If
the string variable maximum length has not been declared, the value of the Max_UnboundedLength global
constant in the SystemLimits category is returned.

The following example shows the use of the maxLength method.

vars
stringValue : String[100];

begin
stringValue := 'hello world';
write stringValue.maxLength; // Outputs 100

end;

padBlanks
Signature padBlanks(int: Integer): String;

The padBlanks method of the String primitive type returns a string of the length specified in the int parameter,
consisting of the receiving string padded with appended (trailing) spaces.

If the string is longer than the integer value, it is not truncated but the whole string is returned.

The following example shows the use of the padBlanks method.

vars
stringValue : String;

begin
stringValue := 'Alfonso:';
write stringValue.padBlanks(10) & '123 Sesame St.';
// Outputs 'Alfonso: 123 Sesame St.'

end;

padLeadingZeros
Signature padLeadingZeros(int: Integer): String;

The padLeadingZeros method of the String primitive type returns a string of the length specified in the int
parameter, consisting of the receiving string padded with leading zeros.

The following example shows the use of the padLeadingZeros method.

vars
stringValue : String;

Encyclopaedia of
Primitive Types

String Type Chapter 1 153

EncycloPrim - 2020.0.02

begin
stringValue := '123.45';
write stringValue.padLeadingZeros(10); // Outputs '0000123.45'

end;

plainTextToStringUtf8
Signature plainTextToStringUtf8(utf8: StringUtf8 output): Integer;

The plainTextToStringUtf8 method of the String primitive type assigns a UTF8 string to the value of the utf8
output parameter. The plain text of the receiver is converted to UTF8 format with any escaped character
sequences being replaced by the appropriate UTF8 character.

The method returns zero (0) if the entire string is converted successfully. If an invalid escaped character sequence
is encountered, the plainTextToStringUtf8 method returns the offset of the first character in error and the utf8
parameter contains the result of the conversion up to the invalid character.

In the following example, the character sequence © is recognized as a valid character © but the character
sequence &cool; is not recognized. The invalid character starts at position 14.

vars
str : String;
str8 : StringUtf8;

begin
str := "© Jade &cool; Software";
write str.plainTextToStringUtf8(str8); // 14
write str8; // © Jade

end;

pos
Signature pos(substr: String;

start: Integer): Integer;

The pos method of the String primitive type returns an integer containing the position of a substring in a string.
The substring is specified by the substr parameter. The search for the substring begins at the position specified
by the start parameter.

The start parameter must be greater than zero (0) and less than or equal to the length of the receiver. If the substr
or the start parameter is greater than the length of the receiver, this method returns zero (0). This method returns
zero (0) if the specified substring is not found.

Note The character search is case-sensitive.

The following example shows the use of the pos method.

vars
stringValue : String;

begin
stringValue := 'position example';
write stringValue.pos('pos', 1); // Outputs 1
write stringValue.pos('pos', 10); // Outputs 0

end;

Encyclopaedia of
Primitive Types

String Type Chapter 1 154

EncycloPrim - 2020.0.02

replace__
Signature replace__(target: String;

replacement: String;
bIgnoreCase: Boolean): String;

The replace__ method of the String primitive type replaces all occurrences of the substring specified in the target
parameter with the substring specified in the replacement parameter, ignoring case-sensitivity if you set the value
of the bIgnoreCase parameter to true.

Set the bIgnoreCase parameter to false if you want the substring replacement to be case-sensitive.

The replace__ method returns the original receiver String if the value specified in the target parameter has a
length of zero (0); that is, it is an empty string.

The following example shows the use of the replace__ method.

vars
 output, input : String;
begin
 input := "ababab";
 output := input.replace__('b','a',false);
 write output; // aaaaaa
end;

Applies to Version: 2018.0.01 and higher

replaceChar
Signature replaceChar(char: Character;

withChar: Character): updating;

The replaceChar method of the String primitive type replaces all occurrences of the character specified in the
char parameter with the character specified in the withChar parameter.

Note The character replacement is case-sensitive.

The following example shows the use of the replaceChar method.

vars
stringValue : String;

begin
stringValue := "zhis example shows character replacement";
write stringValue; // Outputs: zhis example shows character replacement
stringValue.replaceChar("z", "T");
write stringValue; // Outputs: This example shows character replacement

end;

Encyclopaedia of
Primitive Types

String Type Chapter 1 155

EncycloPrim - 2020.0.02

replaceFrom__
Signature replaceFrom__(target: String;

replacement: String;
startIndex: Integer;
bIgnoreCase: Boolean): String;

The replaceFrom__ method of the String primitive type replaces only the first occurrence of the substring
specified in the target parameter with the substring specified in the replacement parameter, starting from the
specified startIndex parameter.

Case-sensitivity is ignored if you set the value of the bIgnoreCase parameter to true. Set this parameter to false if
you want the substring replacement to be case-sensitive.

This method raises exception 1413 (Index used in string operation is out of bounds) if the value specified in the
startIndex parameter is less than 1 or it is greater than the length of the original string. In addition, it returns the
original receiver String if the value specified in the target parameter has a length of zero (0); that is, it is an empty
string.

The following example shows the use of the replaceFrom__ method.

vars
output, input : String;

begin
input := "ababab";
output := input.replaceFrom__('b','a',6,false);
write output; // ababaa

end;

Applies to Version: 2018.0.01 and higher

reverse
Signature reverse(): String;

The reverse method of the String primitive type returns a string consisting of the receiving string with the position
of all characters reversed. For example, a string that contains "abcde" is returned as "edcba". The following
example shows the use of the reverse method.

vars
stringValue : String;

begin
stringValue := 'abcde';
write stringValue.reverse; // Outputs 'edcba'

end;

reversePos
Signature reversePos(substr: String): Integer;

The reversePos method of the String primitive type returns the position of the last occurrence of the substring
specified in the substr parameter in the receiving string.

Note The character search is case-sensitive.

Encyclopaedia of
Primitive Types

String Type Chapter 1 156

EncycloPrim - 2020.0.02

The following example shows the use of the reversePos method.

vars
stringValue : String;

begin
stringValue := "Reverse position example";
write stringValue.reversePos('pos'); // Outputs 9

end;

reversePosIndex
Signature reversePosIndex(substr: String;

index: Integer): Integer;

The reversePosIndex method of the String primitive type returns the position of the last occurrence of the
substring specified in the substr parameter, in a string formed from the first character of the receiving string up to
(and including) the character position specified in the index parameter.

Notes The character search is case-sensitive.

The value of the index parameter cannot exceed the length of the receiving string.

The following example shows the use of the reversePosIndex method.

vars
stringValue : String;
count : Integer;

begin
stringValue := "car->taxi->bus->train";
count := stringValue.length;
while count > 0 do

count := stringValue.reversePosIndex('->', count);
write count;
count := count - 1;

endwhile;
// Outputs 15
// Outputs 10
// Outputs 4
// Outputs 0

end;

This method returns zero (0) if the specified substring is not found.

scanUntil
Signature scanUntil(delimiters: String;

index: Integer io): String;

The scanUntil method of the String primitive type returns a substring of the receiving string starting from the index
specified in the index parameter up to (but not including) the first occurrence of any of the characters specified in
the delimiters parameter.

The index of the delimiting character is returned in the second parameter.

If a delimiting character is not found, the return value is the remainder of the receiving string (from the specified
index) and an index value of zero (0) is returned in the second parameter.

Encyclopaedia of
Primitive Types

String Type Chapter 1 157

EncycloPrim - 2020.0.02

Note The character search is case-sensitive.

The following example shows the use of the scanUntil method.

vars
stringValue : String;
pos : Integer;

begin
stringValue := "this:is/a;string";
pos := 1;
write stringValue.scanUntil(":/;", pos); // Outputs this
pos := pos+1;
write stringValue.scanUntil(":/;", pos); // Outputs is

end;

See also the String primitive type getNextToken and scanWhile methods.

scanWhile
Signature scanWhile(characters: String;

index: Integer io): String;

The scanWhile method of the String primitive type returns a substring of the receiving string starting from the
index specified in the index parameter up to (but not including) the first occurrence of any character other than the
characters specified in the characters parameter.

The index of the delimiting character is specified in the second parameter.

If a delimiting character is not found, the return value is the remainder of the string and an index value of zero (0)
is returned in the second parameter, as shown in the following example.

vars
i: Integer;
s: String;

begin
i:= 3;
s:= '0246'.scanWhile('0123456789', i);
write '<' & s & '> ' & i.String; // outputs <46> 0, not <> 0

end;

Notes The character search is case-sensitive.

The delimiting character is any character that is not specified in the characters parameter.

The following example shows the use of the scanWhile method.

vars
stringValue : String;
pos : Integer;

begin
stringValue := "this:is/a;string";
pos := 1;
write stringValue.scanWhile("abcdefghijklmnopqrstuvwxyz", pos);
// Outputs this
pos := pos+1;
write stringValue.scanWhile("abcdefghijklmnopqrstuvwxyz", pos);

Encyclopaedia of
Primitive Types

String Type Chapter 1 158

EncycloPrim - 2020.0.02

// Outputs is
end;

See also the String primitive type scanUntil method.

toLower
Signature toLower(): String;

The toLower method of the String primitive type returns a copy of the receiving string with all uppercase
characters converted to lowercase, according to the conventions of the current locale.

The following example shows the use of the toLower method.

vars
stringValue : String;

begin
stringValue := "UPPERCASE TEXT CAN LOOK THREATENING";
write stringValue.toLower;
// Outputs uppercase text can look threatening

end;

toUpper
Signature toUpper(): String;

The toUpper method of the String primitive type returns a copy of the receiving string with all lowercase
characters converted to uppercase, according to the conventions of the current locale.

The following example shows the use of the toUpper method.

vars
stringValue : String;

begin
stringValue := "lowercase";
write stringValue.toUpper; // Outputs LOWERCASE

end;

trimBlanks
Signature trimBlanks(): String;

The trimBlanks method of the String primitive type returns a copy of the receiving string with blanks (spaces)
trimmed from both ends of the receiver.

The following example shows the use of the trimBlanks method.

vars
stringValue : String;

begin
stringValue := ' some text '.trimBlanks;
write stringValue; // Outputs 'some text'

end;

Encyclopaedia of
Primitive Types

String Type Chapter 1 159

EncycloPrim - 2020.0.02

trimLeft
Signature trimLeft(): String;

The trimLeft method of the String primitive type returns a copy of the receiving string with leading blanks (spaces)
removed.

The following example shows the use of the trimLeft method.

vars
stringValue : String;

begin
stringValue := ' some text '.trimLeft;
write stringValue; // Outputs 'some text '

end;

trimRight
Signature trimRight(): String;

The trimRight method of the String primitive type returns a copy of the receiving string with trailing blanks
(spaces) trimmed from the end of the receiver.

The following example shows the use of the trimRight method.

vars
stringValue : String;

begin
stringValue := ' some text '.trimRight;
write stringValue; // Outputs ' some text'

end;

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 160

EncycloPrim - 2020.0.02

StringUtf8 Type
Use the StringUtf8 primitive type to define StringUtf8 variables and attributes; that is, strings that have been
encoded in the UTF8 format. This allows all valid Unicode characters to be used even in an ANSI system. A
character string contains zero or more characters. A null string is a string that has a zero length (""). You can
access characters in a string as components of an array.

When you specify a length less than or equal to 540 for a StringUtf8 attribute, it is embedded. Space is allocated
within instances of the class to store a string with a length less than or equal to the specified length.

When you specify a length greater than 540 or you select the Maximum Length check box (which corresponds to
2,147,483,647 characters) for a StringUtf8 attribute, it is not embedded. It is stored in a separate variable-length
object, a StringUtf8 Large Object (slobutf8), which can store a string with a length less than or equal to the
specified length. The amount of storage required for a slob is determined by the value of the string.

StringUtf8 variables can be bounded or unbounded, as shown in the following code fragment.

vars
s1 : StringUtf8[100]; // Bounded - s1 can store a string with a

// length less than or equal to 100 characters
s2 : StringUtf8; // Unbounded - s2 can store a string with a length

// less than or equal to 2,147,483,647 characters

The ordering relationship of the character values in corresponding positions sets the ordering between two string
values. In strings of unequal length, each character in the longer string without a corresponding character in the
shorter string takes on a greater-than value; for example, Zs is greater than Z. Null strings can be equal only to
other null strings.

To specify a substring str[m:n] of a string str, two integers separated by a colon (:) character are used. The first
integer indicates the start position and the second integer is the length of the substring. In place of the second
integer, end indicates the substring extends to the end of the string. For a substring starting at the first character of
the string, the first integer would be 1.

If the length of a substring is zero (0), a null string ("") is returned.

Note You can ignore the fact that a non-ASCII character in a UTF8 string requires more than one byte of
storage, as the start position and length integers are based on character positions rather than on byte positions.

A StringUtf8 literal is enclosed in double ("") or single ('') quotation marks, and is usually preceded by an at sign
(@), as shown in the following example.

stringUtf8 := @"Jade Software";

If all the characters are US-ASCII characters, as in the preceding example, the @ sign is optional.

The StringUtf8 literal can contain a non-US-ASCII character, by enclosing a value representing the character
between an ampersand (&) character and a semicolon (;) character, as shown in the following examples.

stringUtf8 := @"Copyright © Jade Software";

stringUtf8 := @"Copyright © Jade Software";

stringUtf8 := @"Copyright © Jade Software";

In the first example, a character entity reference as defined in the HTML 4 standard is used. In the second and
third examples, the value of the Unicode code point of the character in decimal and in hexadecimal is used.

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 161

EncycloPrim - 2020.0.02

A variable of type StringUtf8 can be used to reference a single character in a string, in effect treating the string as
an array of one-character UTF8 strings, as shown in the following code fragment.

vars
str1 : StringUtf8;
str2 : StringUtf8;

begin
str1 := @"JADE Primitive Types";
str2 := str1[7]; // UTF8 string consisting of seventh character 'r'

For details about the methods defined in the StringUtf8 primitive type, see "StringUtf8 Methods", in the following
subsection. For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the
JADE Developer’s Reference.

StringUtf8 Methods
The methods defined in the StringUtf8 primitive type are summarized in the following table.

Method Description

asANSI Returns ANSI String values as Binary values in a Unicode environment

asDate Returns a date based on the contents of the receiving UTF8 string

asPlainText Returns a string with a character entity escape sequence replacing each
non-US-ASCII character

asString Returns multiple-byte or code page-sensitive values as String values in an
ANSI environment

bufferMemoryAddress Returns the value of the pointer to the internal buffer as a memory address

byteOffsetFromCharacterIndex Returns the byte offset for a specified index of a character within the
receiving UTF8 string

characterIndexFromByteOffset Returns the index of a character for a specified byte offset within the
receiving UTF8 string

compareEql Returns true if the receiver is equal to a specified UTF8 string

compareGeneric Returns an integer showing if the receiver is greater than, equal to, or less
than a UTF8 string

compareGeq Returns true if the receiver is greater than or equal to a specified UTF8
string

compareGtr Returns true if the receiver is greater than a specified UTF8 string

compareLeq Returns true if the receiver is less than or equal to a specified UTF8 string

compareLss Returns true if the receiver is less than the value of a specified UTF8 string

compareNeq Returns true if the receiver is not equal to a specified UTF8 string

compressToBinary Returns a compressed binary representation of a UTF8 string

display Returns the receiver encoded in the character set of the default code page
for the current locale

firstCharToLower Converts an uppercase first character in the receiving UTF8 string to
lowercase

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 162

EncycloPrim - 2020.0.02

Method Description

firstCharToUpper Converts a lowercase first character in the receiving UTF8 string to
uppercase

isValid Returns true if the receiver represents a valid UTF8 string

length Returns the current number of characters in the receiver

maxLength Returns the declared maximum number of characters in the receiver

padBlanks Returns a copy of the receiving string padded to the specified length with
trailing blanks (spaces)

padLeadingZeros Returns a copy of the receiving string padded to the specified length with
leading zeros

pos Returns an integer containing the character index of the start of a UTF8
substring in the receiver

posUsingByteOffset Returns an integer containing the byte offset of the start of a UTF8
substring in the receiver

replaceChar Replaces all occurrences of a character with another character

reverse Returns a UTF8 string containing the reversed characters in the receiving
UTF8 string

reversePos Returns the position of the last occurrence of a substring in the receiving
UTF8 string

reversePosIndex Returns the position of the last occurrence of a substring within a substring
of the UTF8 string

scanUntil Returns a substring of the receiving UTF8 string starting from the specified
index up to (but not including) the first occurrence of any of the specified
characters

scanWhile Returns a substring of the receiving UTF8 string starting from the specified
index up to (but not including) the first occurrence of any character other
than the specified characters

size Returns the number of bytes required to store the receiver excluding the
end-of-string character

substringAtByteOffset Returns a UTF8 substring with a specified length starting with the character
at a specified byte offset

toLower Returns a copy of the receiving UTF8 string with all uppercase characters
converted to lowercase

toUpper Returns a copy of the receiving UTF8 string with all lowercase characters
converted to uppercase

trimBlanks Returns a copy of the receiving UTF8 string with blanks (spaces) trimmed
from both ends of the receiver

trimLeft Returns a copy of the receiving UTF8 string with the leading blanks
(spaces) removed

trimRight Returns a copy of the receiving UTF8 string with trailing blanks (spaces)
trimmed from the end of receiver

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 163

EncycloPrim - 2020.0.02

asANSI
Signature asANSI(lcid: Integer): Binary;

The asANSI method of the StringUtf8 primitive type returns the receiving UTF8 string converted to a Binary value
using the character set of the code page for the locale specified by the lcid parameter.

You can use this method in a Unicode environment to produce ANSI strings in a binary format.

asDate
Signature asDate(): Date;

The asDate method of the StringUtf8 primitive type returns a date based on the contents of the receiving string.

If the receiving string does not contain a valid date, "invalid" is returned.

The data value must represent one of the following date formats.

dd-MMM-yy (for example, 30-Aug-11)

dd/MM/yy (for example, 30/08/11)

MMM dd, yy (for example, Aug 30, 11)

yyyy:MM:dd (for example, 2011:08:30)

Any non-alphanumeric character can be used as a delimiter.

JADE converts a two-digit year as follows.

If the current year is equal to or less than 50, all dates default to the current century.

If the current year is greater than 50, dates that have a year greater than 50 default to the current century.

If the current year is greater than 50, dates equal to or less than 50 default to the next century.

Note Always use four-digit years in your applications.

The following example shows the use of the asDate method.

vars
dateValue : Date;

begin
dateValue := @"15 May 2010".asDate; // 15 May 2010
dateValue := @"15-May-2010".asDate; // 15 May 2010
dateValue := @"15/5/2010".asDate; // 15 May 2010
dateValue := @"May 15, 2010".asDate; // 15 May 2010
dateValue := @"2010:5:15".asDate; // 15 May 2010
dateValue := @"29/2/2011".asDate; // "*invalid*"

end;

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 164

EncycloPrim - 2020.0.02

asPlainText
Signature asPlainText(): String;

The asPlainText method of the StringUtf8 primitive type returns a string containing the US-ASCII characters from
the receiving UTF8 string with the non-US-ASCII characters replaced with a character entity escape sequence
using an entity name if possible; otherwise a hexadecimal value.

ASCII control characters (excluding carriage returns, line feeds, and tabs) are converted to hexadecimal escape
sequences. The ampersand and semicolon characters are converted to & and ; respectively.

The following code example shows the difference between using the asPlainText method and converting to a
String value.

vars
str8: StringUtf8;

begin
str8 := @"Copyright ©;";
write str8.asPlainText; // outputs "Copyright ©;"
write str8.String; // outputs "Copyright ©;"

end;

asString
Signature asString(lcid: Integer): String;

The asString method of the StringUtf8 primitive type returns the receiving UTF8 string converted to a String
value.

In an ANSI environment, the conversion uses the character set of the code page for the locale specified by the lcid
parameter.

bufferMemoryAddress
Signature bufferMemoryAddress(): MemoryAddress;

The bufferMemoryAddress method of the StringUtf8 primitive type returns a memory address containing the
value of the pointer to the internal buffer that contains the UTF8 string. This value may be required when a JADE
StringUtf8 type value is being mapped to a structured record type for a call to an external function. Call the
bufferMemoryAddress method to determine the address of the buffer when an external function requires a data
structure to contain a pointer to a second structure.

The use of the bufferMemoryAddress method for the StringUtf8 primitive type is similar to that for the Binary
primitive type.

For an example of using the bufferMemoryAddress method of the Binary primitive type to initialize the Windows
SECURITY_DESCRIPTOR and SECURITY_ATTRIBUTES structures, see bufferMemoryAddress, under "Binary
Type".

The code fragment in the following example shows the use of the bufferMemoryAddress method when copying
clipboard data directly into a JADE string.

call copyString(stringUtf8.bufferMemoryAddress, locked);
call globalUnlock(locked);

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 165

EncycloPrim - 2020.0.02

Caution Do not use this method to pass the address of a UTF8 string to an external function that will be
executed by a presentation client. If an external function is called from an application server method and executed
by a different process (the presentation client), the memory address is not valid and will almost certainly result in a
jade.exe (thin client) fault in the called function.

byteOffsetFromCharacterIndex
Signature byteOffsetFromCharacterIndex(index: Integer): Integer;

The byteOffsetFromCharacterIndex method of the StringUtf8 primitive type returns the byte offset for the
character specified by the index parameter within the receiving UTF8 string.

In the following code example, the first character of the UTF8 string str8 requires two bytes with the remaining four
characters requiring one byte each. The second character therefore starts at offset three (3).

vars
str8 : StringUtf8;

begin
str8 := @"©2007";
write str8.byteOffsetFromCharacterIndex(1); // writes 1
write str8.byteOffsetFromCharacterIndex(2); // writes 3
write str8.byteOffsetFromCharacterIndex(3); // writes 4
write str8.byteOffsetFromCharacterIndex(4); // writes 5
write str8.byteOffsetFromCharacterIndex(5); // writes 6

end;

characterIndexFromByteOffset
Signature characterIndexFromByteOffset(offset: Integer): Integer;

The characterIndexFromByteOffset method of the StringUtf8 primitive type returns the index of the character
that starts at the byte offset specified in the byte parameter within the receiving UTF8 string, or after that offset; that
is, the method scans from the offset position forwards to find the next character. If there is no next character, an
exception is raised.

In the following code example, the two characters of the string str8 require two bytes and three bytes in the UTF8
encoding. The first character starts at offset one (1) and the second character at offset three (3).

vars
str8: StringUtf8;

begin
str8 := @"©€";
write str8.characterIndexFromByteOffset(1); // writes 1
write str8.characterIndexFromByteOffset(2); // writes 2
write str8.characterIndexFromByteOffset(3); // writes 2
write str8.characterIndexFromByteOffset(4); // raises 1413 exception
write str8.characterIndexFromByteOffset(5); // raises 1413 exception

end;

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 166

EncycloPrim - 2020.0.02

compareEql
Signature compareEql(rhs: StringUtf8;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareEql method of the StringUtf8 primitive type returns true if the receiver is equal to the value of the rhs
parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the sort order of the specified locale is performed if the value of the
bUseLocale parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed; for example,
the first of the following code fragments is equivalent to the second code fragment.

recv.compareEql(lhs, true, false, null);

recv.toLower = lhs.toLower;

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

compareGeneric
Signature compareGeneric(rhs: StringUtf8;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Integer;

The compareGeneric method of the StringUtf8 primitive type compares the receiver with the value of the rhs
parameter and returns one of the following values.

Value Returned if the receiver is …

Negative integer Less than the right-hand side value represented by the rhs parameter

Zero (0) Equal to the right-hand side value represented by the rhs parameter

Positive integer Greater than the right-hand side value represented by the rhs parameter

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 167

EncycloPrim - 2020.0.02

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operators (<, <=, =, >=, >, <>), documented in Chapter 1 of the JADE
Developer’s Reference, use a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed.

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

compareGeq
Signature compareGeq(rhs: StringUtf8;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareGeq method of the StringUtf8 primitive type returns true if the receiver is greater than or equal to the
value of the rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (>=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 168

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed.

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

compareGtr
Signature compareGtr(rhs: StringUtf8;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareGtr method of the StringUtf8 primitive type returns true if the receiver is greater than the value of the
rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (>), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed.

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

compareLeq
Signature compareLeq(rhs: StringUtf8;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareLeq method of the StringUtf8 primitive type returns true if the receiver is less than or equal to the
value of the rhs parameter; otherwise, it returns false.

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 169

EncycloPrim - 2020.0.02

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<=), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed.

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

compareLss
Signature compareLss(rhs: StringUtf8;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareLss method of the StringUtf8 primitive type returns true if the receiver is less than the value of the
rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 170

EncycloPrim - 2020.0.02

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed.

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

compareNeq
Signature compareNeq(rhs: StringUtf8;

bIgnoreCase: Boolean;
bUseLocale: Boolean;
locale: Locale): Boolean;

The compareNeq method of the StringUtf8 primitive type returns true if the receiver is not equal to the value of
the rhs parameter; otherwise, it returns false.

Parameters enable you to make the comparison case-sensitive or case-insensitive, and to use the sort order
associated with a locale or the strict binary sort order. (These are the same comparison options that you can
specify on dictionary keys.)

Note The relational binary comparison operator (<>), documented in Chapter 1 of the JADE Developer’s
Reference, uses a strict binary value comparison.

If the value of the bIgnoreCase parameter is false:

A strict binary value comparison is performed if the value of the bUseLocale parameter is also false.

A case-sensitive comparison using the sort order of the current locale of the process is performed if the value
of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-sensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

If the value of the bIgnoreCase parameter is true:

A case-insensitive binary value comparison for characters less than Decimal 254 is performed.

A case-insensitive comparison using the sort order of the current locale of the process is performed if the
value of the bUseLocale parameter is true and the value of the locale parameter is null.

A case-insensitive comparison using the specified locale is performed if the value of the bUseLocale
parameter is true and the value of the locale parameter is not null.

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 171

EncycloPrim - 2020.0.02

compressToBinary
Signature compressToBinary(typeAndOption: Integer): Binary;

The compressToBinary method of the StringUtf8 primitive type returns a compressed binary representation of
the UTF8 string of the receiver using the ZLIB compression routine specified in the typeAndOption parameter,
using one of the Binary type constants listed in the following table.

Constant Integer Value Description

Compression_ZLib 1402 String and binary compression to binary using ZLIB level 5
(256*5 + 122)

Compression_ZLibFast 378 String and binary compression to binary using ZLIB level 1
(256*1 + 122)

Compression_ZLibSmall 2426 String and binary compression to binary using ZLIB level 9
(256*9 + 122)

Notes This method adds the type byte to the front of the compressed binary. This type byte is ignored when the
value is used in a JADE system but if the data is to be passed to an external library, it is your responsibility to
remove the type byte, if necessary.

You cannot concatenate the results of multiple compressToBinary method calls.

You must use the Binary type uncompressToStringUtf8 method to uncompress a binary value from this binary
representation.

display
Signature display(): String;

The display method of the StringUtf8 primitive type returns a string enclosed in double quotation marks ("")
containing the receiver encoded in the ANSI character set of the default code page for the current locale.

If the length of the receiver is zero (0), the string "<null>" is returned.

firstCharToLower
Signature firstCharToLower() updating;

The firstCharToLower method of the StringUtf8 primitive type converts an uppercase first character in the
receiving string to lowercase, according to the conventions of the current locale.

The following example shows the use of the firstCharToLower method.

vars
str8 : StringUtf8;

begin
str8 := @'HELLO WORLD';
str8.firstCharToLower;
write str8; // Outputs 'hELLO WORLD'

end;

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 172

EncycloPrim - 2020.0.02

firstCharToUpper
Signature firstCharToUpper() updating;

The firstCharToUpper method of the StringUtf8 primitive type converts a lowercase first character in the
receiving string to uppercase, according to the conventions of the current locale. The following example shows the
use of the firstCharToUpper method.

vars
str8 : StringUtf8;

begin
str8 := @'hello world';
str8.firstCharToUpper;
write str8; // Outputs 'Hello world'

end;

isValid
Signature isValid(): Boolean;

The isValid method of the StringUtf8 primitive type returns true if the receiver is a correctly formatted UTF8 string.

length
Signature length(): Integer;

The length method of the StringUtf8 primitive type returns the current number of characters of the receiver. The
following example shows the use of the length method.

vars
str8 : StringUtf8;

begin
str8 := @"hello world";
write str8.length; // Outputs 11

end;

maxLength
Signature maxLength(): Integer;

The maxLength method of the StringUtf8 primitive type returns the declared maximum length of the receiver. If
the maximum length of a StringUtf8 variable has not been declared, -1 is returned.

The following example shows the use of the maxLength method.

vars
str8 : StringUtf8[100];

begin
str8 := @"hello world";
write str8.maxLength; // Outputs 100

end;

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 173

EncycloPrim - 2020.0.02

padBlanks
Signature padBlanks(int: Integer): StringUtf8;

The padBlanks method of the StringUtf8 primitive type returns a string of the length specified in the int parameter,
consisting of the receiving string padded with appended (trailing) spaces.

If the string is longer than the integer value, it is not truncated but the whole string is returned.

The following example shows the use of the padBlanks method.

vars
str8 : StringUtf8;

begin
str8 := @'Alfonso:';
write str8.padBlanks(10) & '123 Sesame St.';
// Outputs 'Alfonso: 123 Sesame St.'

end;

padLeadingZeros
Signature padLeadingZeros(int: Integer): StringUtf8;

The padLeadingZeros method of the StringUtf8 primitive type returns a string of the length specified in the int
parameter, consisting of the receiving string padded with leading zeros.

The following example shows the use of the padLeadingZeros method.

vars
str8 : StringUtf8;

begin
str8 := @'123.45';
write str8.padLeadingZeros(10); // Outputs '0000123.45'

end;

pos
Signature pos(substr: StringUtf8;

start: Integer): Integer;

The pos method of the StringUtf8 primitive type returns an integer containing the character index of the start of a
substring within a string. The substring is specified by the substr parameter. The search for the substring begins
at the character index specified by the start parameter.

The start parameter must be greater than zero (0) and less than or equal to the length of the receiver. If the substr
or the start parameter is greater than the length of the receiver, this method returns zero (0).

This method returns zero (0) if the specified substring is not found.

Note The character search is case-sensitive.

The following example shows the use of the pos method.

vars
str8 : StringUtf8;

begin
str8 := @'position example';

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 174

EncycloPrim - 2020.0.02

write str8.pos('pos', 1); // Outputs 1
write str8.pos('pos', 10); // Outputs 0

end;

posUsingByteOffset
Signature posUsingByteOffset(substr: StringUtf8;

start: Integer): Integer;

The posUsingByteOffset method of the StringUtf8 primitive type returns an integer containing the byte offset of
the start of a UTF8 substring within the receiver. The substring is specified by the substr parameter.

The search for the substring begins at the byte offset specified by the start parameter.

The start parameter must be greater than zero (0) and less than or equal to the number of bytes in the receiver. If
the substr or the start parameter is greater than the number of bytes in the receiver, this method returns zero (0).

This method returns zero (0) if the specified substring is not found.

Note The character search is case-sensitive.

In the following code example, the two characters of the string str8 require three bytes and two bytes in the UTF8
encoding. The first character starts at offset one (1) and the second character at offset four (4).

vars
str8 : StringUtf8;

begin
str8 := @"€©";
write str8.posUsingByteOffset(@"©", 3); // Outputs 4

end;

replaceChar
Signature replaceChar(char: Character;

withChar: Character): updating;

The replaceChar method of the StringUtf8 primitive type replaces all occurrences of the character specified in the
char parameter with the character specified in the withChar parameter.

Note The character replacement is case-sensitive.

The following example shows the use of the replaceChar method.

vars
str8 : StringUtf8;

begin
str8 := "zhis example shows character replacement";
write str8; // Outputs: zhis example shows character replacement
str8.replaceChar("z", "T");
write str8; // Outputs: This example shows character replacement

end;

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 175

EncycloPrim - 2020.0.02

reverse
Signature reverse(): StringUtf8;

The reverse method of the StringUtf8 primitive type returns a string consisting of the receiving string with the
position of all characters reversed. For example, a string that contains "abcde" is returned as "edcba".

The following example shows the use of the reverse method.

vars
str8 : StringUtf8;

begin
str8 := 'abcde';
write str8.reverse; // Outputs 'edcba'

end;

reversePos
Signature reversePos(substr: StringUtf8): Integer;

The reversePos method of the StringUtf8 primitive type returns the position of the last occurrence of the substring
specified in the substr parameter in the receiving string.

Note The character search is case-sensitive.

The following example shows the use of the reversePos method.

vars
str8 : StringUtf8;

begin
str8 := "Reverse position example";
write str8.reversePos('pos'); // Outputs 9

end;

reversePosIndex
Signature reversePosIndex(substr: StringUtf8;

index: Integer): Integer;

The reversePosIndex method of the StringUtf8 primitive type returns the position of the last occurrence of the
substring specified in the substr parameter, in a string formed from the first character of the receiving string up to
(and including) the character position specified in the index parameter.

Notes The character search is case-sensitive.

The value of the index parameter cannot exceed the length of the receiving string.

The following example shows the use of the reversePosIndex method.

vars
str8 : StringUtf8;
count : Integer;

begin
str8 := "car->taxi->bus->train";
count := str8.length;
while count > 0 do

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 176

EncycloPrim - 2020.0.02

count := str8.reversePosIndex('->', count);
write count;
count := count - 1;

endwhile;
// Outputs 15
// Outputs 10
// Outputs 4
// Outputs 0

end;

This method returns zero (0) if the specified substring is not found.

scanUntil
Signature scanUntil(delimiters: StringUtf8;

index: Integer io): StringUtf8;

The scanUntil method of the StringUtf8 primitive type returns a UTF8 substring of the receiving string starting
from the index specified in the index parameter up to (but not including) the first occurrence of any of the
characters specified in the delimiters parameter.

The index of the delimiting character is returned in the second parameter. If a delimiting character is not found, the
return value is the remainder of the receiving string (from the specified index) and an index value of zero (0) is
returned in the second parameter.

Note The character search is case-sensitive.

The following example shows the use of the scanUntil method.

vars
str8 : StringUtf8;
pos : Integer;

begin
str8 := @"this:is/a;string";
pos := 1;
write str8.scanUntil(@":/;", pos); // Outputs this
pos := pos + 1;
write str8.scanUntil(@":/;", pos); // Outputs is

end;

scanWhile
Signature scanWhile(characters: StringUtf8;

index: Integer io): StringUtf8;

The scanWhile method of the StringUtf8 primitive type returns a UTF8 substring of the receiving string starting
from the index specified in the index parameter up to (but not including) the first occurrence of any character other
than the characters specified in the characters parameter.

The index of the delimiting character is specified in the second parameter. If a delimiting character is not found,
the return value is the remainder of the string and an index value of zero (0) is returned in the second parameter,
as shown in the following example.

vars
index : Integer;
str8 : StringUtf8;

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 177

EncycloPrim - 2020.0.02

begin
index := 3;
str8 := @'0246'.scanWhile(@'0123456789', index);
write '<' & str8 & '> ' & index.StringUtf8;
// outputs <46> 0, not <> 0

end;

Notes The character search is case-sensitive.

The delimiting character is any character that is not specified in the characters parameter.

The following example shows the use of the scanWhile method.

vars
str8 : StringUtf8;
index : Integer;

begin
str8 := @"this:is/a;string";
index := 1;
write str8.scanWhile(@"abcdefghijklmnopqrstuvwxyz", index);
// Outputs this
index := index + 1;
write str8.scanWhile(@"abcdefghijklmnopqrstuvwxyz", index);
// Outputs is

end;

size
Signature size(): Integer;

The size method of the StringUtf8 primitive type returns the number of bytes required to store the receiver. Note
that this value does not include the null character that marks the end of the string.

The following example shows the use of the size method.

vars
str8 : StringUtf8;

begin
str8 := @"JADE";
write str8.size; // 4 bytes - one for each ASCII character
str8 := @"©";
write str8.size; // 2 bytes for the copyright symbol
str8 := @"€";
write str8.size; // 3 bytes for the euro currency symbol

end;

substringAtByteOffset
Signature substringAtByteOffset(offset: Integer;

length: Integer): StringUtf8;

The substringAtByteOffset method of the StringUtf8 primitive type returns a UTF8 substring beginning with the
character that starts at the byte offset specified by the value of the offset parameter within the receiving UTF8
string or after that offset; that is, the method scans from the offset position forwards to find the next character.

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 178

EncycloPrim - 2020.0.02

The value of the length parameter determines the maximum number of characters that can be returned in the
UTF8 substring.

In the following code example, the first character of the string str8 requires three bytes for UTF8 encoding. The
first character starts at byte offset one (1) and the second character at byte offset four (4).

vars
str8: StringUtf8;

begin
str8 := @"€xyz";
write str8.substringAtByteOffset(3,2); // writes xy

end;

toLower
Signature toLower(): StringUtf8;

The toLower method of the StringUtf8 primitive type returns a copy of the receiving string with all uppercase
characters converted to lowercase, according to the conventions of the current locale.

The following example shows the use of the toLower method.

vars
str8 : StringUtf8;

begin
str8 := "UPPERCASE TEXT CAN LOOK THREATENING";
write str8.toLower;
// Outputs uppercase text can look threatening

end;

toUpper
Signature toUpper(): StringUtf8;

The toUpper method of the StringUtf8 primitive type returns a copy of the receiving string with all lowercase
characters converted to uppercase, according to the conventions of the current locale.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

The following example shows the use of the toUpper method.

vars
str8 : StringUtf8;

begin
str8 := "lowercase";
write str8.toUpper; // Outputs LOWERCASE

end;

Encyclopaedia of
Primitive Types

StringUtf8 Type Chapter 1 179

EncycloPrim - 2020.0.02

trimBlanks
Signature trimBlanks(): StringUtf8;

The trimBlanks method of the StringUtf8 primitive type returns a copy of the receiving string with blanks (spaces)
trimmed from both ends of the receiver.

The following example shows the use of the trimBlanks method.

vars
str8 : StringUtf8;

begin
str8 := ' some text ';
write str8.trimBlanks; // Outputs 'some text'

end;

trimLeft
Signature trimLeft(): StringUtf8;

The trimLeft method of the StringUtf8 primitive type returns a copy of the receiving string with leading blanks
(spaces) removed.

The following example shows the use of the trimLeft method.

vars
str8 : StringUtf8;

begin
str8 := ' some text ';
write str8.trimLeft; // Outputs 'some text '

end;

trimRight
Signature trimRight(): StringUtf8;

The trimRight method of the StringUtf8 primitive type returns a copy of the receiving string with trailing blanks
(spaces) trimmed from the end of the receiver.

The following example shows the use of the trimRight method.

vars
str8 : StringUtf8;

begin
str8 := ' some text ';
write str8.trimRight; // Outputs ' some text'

end;

Encyclopaedia of
Primitive Types

Time Type Chapter 1 180

EncycloPrim - 2020.0.02

Time Type
Use the Time primitive type to declare a variable representing the time of day since midnight to the nearest
millisecond.

If you declare a Time primitive type variable in your method that is referenced within the code of the method, it is
initialized with the current time each time the method is invoked. If such a local variable is declared but is not
referenced in the code, its value is not initialized. Object properties of Time primitive type are initialized to null.

In JADE thin client mode, local variables of type Time are always initialized to the time relative to the presentation
client.

The following example shows the use of the Time primitive type.

testTime();
vars

time : Time;
h,m,s,ms : Integer;

begin
h := 15;
m := 39;
s := 06;
ms := 45;
time.setTime(h, m, s, ms);
write time; // Outputs 15:39:06

end;

The following table lists valid operations for the Time primitive type.

Expression Expression Type

time-expression + integer-expression (time)

time-expression - integer-expression (time)

time-expression + time-expression (time)

time-expression - time-expression (integer)

time-expression + timestamp-expression (timestamp)

The following example, in which 10 minutes is added to a Time primitive type variable, uses a millisecond integer
value.

time := time + 600000 // 10 * 60 * 1000

If you add 60000 milliseconds (one minute) to a time variable and the assigned time is later than 23:59:59:999,
the resulting value is 00:00:59:999 or later.

For details about the methods defined in the Time primitive type, see "Time Methods", in the following subsection.

For details about converting primitive types, see "Converting Primitive Types", in Chapter 1 of the JADE
Developer’s Reference.

Encyclopaedia of
Primitive Types

Time Type Chapter 1 181

EncycloPrim - 2020.0.02

Time Methods
The methods defined in the Time primitive type are summarized in the following table.

Method Description

currentLocaleFormat Returns a string containing the time in the format of the current locale

display Returns a string representing the value of the receiver

format Returns a string containing the time in the specified format

hour Returns the hour part of the receiver in 24-hour clock form

isValid Returns true if the receiver contains a valid time

milliSecond Returns the millisecond part of the receiver

minute Returns the minute part of the receiver

parseWithCurrentLocale Sets the receiver to the result of parsing a string representing a time for the
current locale

parseWithFmtAndLcid Sets the receiver to the result of parsing a string representing a time for the
specified format and the specified locale

parseWithPicAndLcid Sets the receiver to the result of parsing a string representing a time for the
specified time picture and the specified locale

second Returns the second part of the receiver

setByteOrderLocal Returns a time that has the bytes ordered as required by the local node

setByteOrderRemote Returns a time that has the bytes ordered as required by the specified remote
node

setTime Sets the value of the receiver to a specified time in 24-hour clock form

setTimeStrict Sets the value of the receiver to a specified time and checks that the individual
time values are within range

subtract Returns the interval between the receiver and the specified time

userFormat Returns a string containing the receiver in the supplied time format

userFormatAndLcid Returns a string containing the receiver in the specified time format for the
specified locale

userFormatPicAndLcid Returns a string containing the receiver in the specified time picture for the
specified locale

currentLocaleFormat
Signature currentLocaleFormat(): String;

The currentLocaleFormat method of the Time primitive type returns a string containing the time in the format of
the current locale.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Time Type Chapter 1 182

EncycloPrim - 2020.0.02

display
Signature display(): String;

The display method of the Time primitive type returns a string representing the value of the receiver.

format
Signature format(picture: String): String;

The format method of the Time primitive type returns a string containing the time in the format specified in the
picture parameter and current locale settings for time markers (AM/PM). For example:

testTimeFormat();
vars

time : Time;
begin

write "The time now is " & time.format("hh.m:ss tt");
end;

The example shown in this method writes The time now is 08.41:08 a.m. (if the Time regional setting for that user
locale has the AM symbol specified as a.m.).

Use the string picture elements listed in the following table to construct time format picture strings. Separate each
element with a space or a separator character; for example, a period (.) or a colon character (:).

Picture Description Output Format

h Hours, with no leading zero (12-hour clock) 8

hh Hours, with a leading zero (12-hour clock) 08

H Hours, with no leading zero (24-hour clock) 13

HH Hours, with a leading zero (24-hour clock) 08

m Minutes, with no leading zero 6

mm Minutes, with leading zero 06

s Seconds, with no leading zero 47

ss Seconds, with leading zero 07

t One-character time marker string of the current locale p

tt Multiple-character time marker string of the current locale PM

In this table, the t and tt picture elements are determined by the AM symbol or PM symbol for the current locale of
the user (defined by using the AM symbol or PM symbol combo box in the Time sheet of the Regional Settings
Properties dialog, accessed from the Regional Settings icon in the Control Panel).

Encyclopaedia of
Primitive Types

Time Type Chapter 1 183

EncycloPrim - 2020.0.02

Notes You can use the defineTimeFormat method of the TimeFormat class if you want to create your own
transient format objects and define a time format that dynamically overrides the format for the locale at run time.
(For details, see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

hour
Signature hour(): Integer;

The hour method of the Time primitive type returns the hour part of the receiver in 24-hour clock form.

The following example shows the use of the hour method.

vars
h, m, s : Integer;

begin
// Call this method to alter the time settings
displayedTime.setTime(displayedTime.hour + h,

displayedTime.minute + m,
displayedTime.second + s, 00);

clockFrame.caption := displayedTime.String;
end;

isValid
Signature isValid(): Boolean;

The isValid method of the Time primitive type returns true if the receiver contains a valid time value.

The code fragment in the following example shows the use of the isValid method.

if not any.Time.isValid() then
app.msgBox("New value must contain a valid Time", "No date entered",

MsgBox_OK_Only);
return false;

endif;

Use this method after a conversion instead of testing for a null value, as null indicates midnight, which is a valid
time.

milliSecond
Signature milliSecond(): Integer;

The milliSecond method of the Time primitive type returns the millisecond part of the receiver.

The code fragment in the following example shows the use of the milliSecond method.

if eventTag = 3 then
displayedTime.setTime(displayedTime.hour,

displayedTime.minute,

Encyclopaedia of
Primitive Types

Time Type Chapter 1 184

EncycloPrim - 2020.0.02

displayedTime.second,
displayedTime.milliSecond + 10);

clockFrame.caption := displayedTime.minute.String[1:2].padLeadingZeros
(2) & ":" &
displayedTime.second.String[1:2].padLeadingZeros
(2) & ":" & displayedTime.milliSecond.String
[1:2].padLeadingZeros (2);

beginTimer(10, Timer_OneShot, 4);
elseif eventTag = 4 then

...

minute
Signature minute(): Integer;

The minute method of the Time primitive type returns the minute part of the receiver.

For an example of the use of the minute method, see the Time primitive type hour method.

parseWithCurrentLocale
Signature parseWithCurrentLocale(source: String;

errOffset: Integer output): Integer updating;

The parseWithCurrentLocale method of the Time primitive type parses the string specified in the source
parameter to ensure that it matches the time format of the current locale in terms of element (milliseconds,
seconds, minutes, hours) order and separators.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid time value (the isValid method of the Time primitive type
will return false).

This is equivalent to calling the parseWithFmtAndLcid method, passing null in the fmt parameter and zero (0) in
the lcid parameter.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseWithFmtAndLcid
Signature parseWithFmtAndLcid(source: String;

fmt: TimeFormat;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseWithFmtAndLcid method of the Time primitive type parses the string specified in the source parameter
to ensure that it matches the time format specified in the fmt parameter.

The time must match the appropriate values for the locale specified in the lcid parameter. If the source string
contains a valid time, it is assigned to the receiver; otherwise the invalid time value is assigned to the receiver (the
isValid method of the Time primitive type will return false).

Encyclopaedia of
Primitive Types

Time Type Chapter 1 185

EncycloPrim - 2020.0.02

If the value of the fmt parameter is null, the time format of the locale specified in the lcid parameter is used. If the
value of the lcid parameter is zero (0), the time format of the current locale is used. If the value of the fmt
parameter is not null, the AM/PM indicators, if specified, are used rather than the locale indicators.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid time value.

Leading zeros in the hour, minute, and second elements are optional.

This method is the same as the parseWithPicAndLcid method except that the picture string is taken from the
TimeFormat class format property. For more details and examples of valid date matches, see the
parseWithPicAndLcid method.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

parseWithPicAndLcid
Signature parseWithPicAndLcid(source: String;

pic: String;
lcid: Integer;
errOffset: Integer output): Integer updating;

The parseWithPicAndLcid method of the Time primitive type parses the string specified in the source parameter
using the specified time picture and locale, validating that the source matches the time format picture to ensure
that it matches the time picture string specified in the pic parameter.

If the source string contains a valid time, it is assigned to the receiver; otherwise the invalid time value is assigned
to the receiver (the isValid method of the Time primitive type will return false).

If the value of the pic parameter is null, the time format picture of the locale specified in the lcid parameter is used.
If the value of the lcid parameter is zero (0), the time format picture of the current locale is used.

If the value of the source parameter matches the format rules, the method returns zero (0) and sets the receiver to
the parsed value. If it does not match the format rules, it returns a JADE error code (parse errors are in the range
1800 through 1869), indicates the first offending character returning its zero-based offset using the output
errOffset parameter, and sets the receiver to the invalid time value.

Leading zeros in the hour, minute, and second elements are optional when separators are specified.

If the marker picture is "t", the source marker text must be a single character matching the first character of one of
the AM/PM indicators for the locale. If the marker picture is "tt" (or longer), the source marker text must match
exactly one of the AM/PM indicators for the locale. A locale-based case-insensitive comparison is used. If the AM
indicator for the locale is "a.m." (for example, New Zealand), the indicator "AM" (for example, United States) is
also accepted.

If the hour picture is "h" or "hh", the hour value must be in the range 0 through 12. If the hour picture is "H" or
"HH", the hour value must be in the range 0 through 23. The minute and second values must be in the range 0
through 59.

Source text "12:00a.m." and "0:00a.m." with picture "h:mmtt" or "hh:mmtt" converts to time 00:00 (midnight).
Source text "12:00p.m." with picture "h:mmtt" or "hh:mmtt" converts to time 12:00 (midday).

Encyclopaedia of
Primitive Types

Time Type Chapter 1 186

EncycloPrim - 2020.0.02

The format can include ".fff" after "s", to recognize a millisecond value. The decimal separator for the locale is
expected between the second and millisecond values. The text can include zero (0) through three digits in the
millisecond value.

The "H:mm:ss.fff" picture allows the following.

"1:23:45.678" 1:23:45.678

"1:23:45" 1:23:45.000

"1:23:45.6" 1:23:45.600

"1:23:45.600" 1:23:45.600

"1:23:45.006" 1:23:45.006

"1:23:45.07" 1:23:45.070

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

second
Signature second(): Integer;

The second method of the Time primitive type returns the second part of the receiver.

For an example of the use of the second method, see the Time primitive type hour method.

setByteOrderLocal
Signature setByteOrderLocal(architecture: Integer): Time;

The setByteOrderLocal method of the Time primitive type returns a time that has the bytes ordered as required
by the local node.

The bytes of the receiver are assumed to be ordered as indicated by the architecture parameter.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

Encyclopaedia of
Primitive Types

Time Type Chapter 1 187

EncycloPrim - 2020.0.02

setByteOrderRemote
Signature setByteOrderRemote(architecture: Integer): Time;

The setByteOrderRemote method of the Time primitive type returns a time that has the bytes ordered as required
by the remote node indicated by the architecture parameter.

The bytes of the receiver are assumed to be ordered as required by the local node.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

setTime
Signature setTime(hours: Integer;

minutes: Integer;
seconds: Integer;
milliseconds: Integer): Boolean updating;

The setTime method of the Time primitive type sets the value of the receiver to a specified time in 24-hour clock
form using any valid combination of parameters. This method returns true if the specified time is valid or it returns
false if it is invalid (for example, 24:00).

The parameters are integer values for hours, minutes, seconds, and milliseconds.

The code fragments in the following examples show the use of the setTime method.

startTime.setTime(startH.Integer, startM.Integer, 0, 0);
endTime.setTime(endH.Integer, endM.Integer, 0, 0);

if stopWatchButton.caption = "Stop Watch" then
endTimer(1);
stopWatchButton.caption := "Start";
app.doWindowEvents (1);
clockFrame.caption := "00:00:00";
displayedTime.setTime(0, 0, 0, 0);

elseif ... then
...

endif;

You can use this method to set a valid time less than 24 hours in milliseconds. For example, the following code
fragment sets the time to twelve hours in milliseconds.

startTime.setTime(0, 720, 0, 0);

Encyclopaedia of
Primitive Types

Time Type Chapter 1 188

EncycloPrim - 2020.0.02

setTimeStrict
Signature setTimeStrict(hours: Integer;

minutes: Integer;
seconds: Integer;
milliseconds: Integer): Boolean updating;

The setTimeStrict method of the Time primitive type checks that the hours, minutes, seconds, and milliseconds
specified in the method parameters are within the range of time in the HH:MM:SS:sss (24-hour clock form) format.

If any of the specified parameters is outside the range of the HH:MM:SS:sss time format (that is, a value that is
greater than 23 hours, 59 minutes, 59 seconds, or 999 milliseconds), this method returns false and sets the
receiver to the specified "invalid" time.

Tip Use the Time primitive type setTime method to set the value of the receiver in 24-hour clock form to a
specified time using any valid combination of parameters.

subtract
Signature subtract(time: Time): TimeStampInterval;

The subtract method of the Time primitive type returns the interval between the receiver and the value of the time
parameter as a TimeStampInterval value.

The following example shows the use of the subtract method.

vars
now, hourFromNow : Time;

begin
hourFromNow:= now + 60 * 60 * 1000;
write hourFromNow.subtract(now); // Outputs "0:01:00:00.000"

end;

userFormat
Signature userFormat(fmt: TimeFormat): String;

The userFormat method of the Time primitive type returns a string containing the receiver in the specified time
format.

To define your time formats, use the Schema menu Format command from the Schema Browser.

Notes When you use a format in a JADE method, prefix your user time format name with a dollar sign ($); for
example, userFormat($MyTime).

You can use the defineTimeFormat method of the TimeFormat class if you want to create your own transient
format objects and define a time format that dynamically overrides the format for the locale at run time. (For details,
see Chapter 1 of the JADE Encyclopaedia of Classes.)

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

Encyclopaedia of
Primitive Types

Time Type Chapter 1 189

EncycloPrim - 2020.0.02

The code fragments in the following examples show the use of the userFormat method.

tblTime.text := p.name & " (" &
p.startTime.userFormat($HourMin) & "-" &
p.endTime.userFormat($HourMin) & ")";

if counter > 0 then
igfFrame.myOutline.IGOutline.addXLabel(time.userFormat

($PlainTime));
endif;

userFormatAndLcid
Signature userFormatAndLcid(fmt: TimeFormat;

lcid: Integer): String;

The userFormatAndLcid method of the Time primitive type returns a string containing the receiver in the time
format specified in the fmt parameter of the locale specified in the lcid parameter.

If the value of the fmt parameter is null, the time format of the locale specified in the lcid parameter is returned. If
the value of the lcid parameter is zero (0), the time format of the current locale is returned. same as the
userFormatPicAndLcid method except that the picture string is taken from the TimeFormat class format
property. For more details and examples of valid date matches, see the userFormatPicAndLcid method.

If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled. Formatting of locale data is done on
the application server, based on the locale of the corresponding presentation client.

userFormatPicAndLcid
Signature userFormatPicAndLcid(pic: String;

lcid: Integer): String;

The userFormatPicAndLcid method of the Time primitive type returns a string containing the receiver in the time
format picture specified in the pic parameter of the locale specified in the lcid parameter.

If the value of the pic parameter is null, the time format picture of the locale specified in the lcid parameter is
returned. If the value of the lcid parameter is zero (0), the time format picture of the current locale is returned.

The picture string can include ".fff" following "s", to output the millisecond part of the time; for example,
"H:mm:ss.fff" can generate the strings "13:07:23.543" and "9:53:11.000".

Note If you do not define the EnhancedLocaleSupport parameter in the [JadeEnvironment] section of the JADE
initialization file on the database node or you set it to false, inconsistent results could be returned to the
application server when running in JADE thin client mode and there are locale overrides, as all overrides on the
application server are suppressed if enhanced locale support is not enabled.

The following example of the userFormatPicAndLcid method outputs 15:07:23.123.

vars
t : Time;
s : String;

begin
t.setTime(15,7,23,123);
s := t.userFormatPicAndLcid(″HH:mm:ss.fff″, 0);

Encyclopaedia of
Primitive Types

Time Type Chapter 1 190

EncycloPrim - 2020.0.02

write s;
end;

Encyclopaedia of
Primitive Types

TimeStamp Type Chapter 1 191

EncycloPrim - 2020.0.02

TimeStamp Type
A TimeStamp primitive type is used to store the variable as type timestamp; that is, the date and time. If you
declare a variable of type TimeStamp in your method that is referenced within the code of the method, it is
initialized with the current date and time each time the method is invoked. If such a local variable is declared but is
not referenced in the code, its value is not initialized.

In JADE thin client mode, local variables of type TimeStamp are always initialized to the date and time relative to
the presentation client.

The following example shows the use of the TimeStamp primitive type.

vars
timeStamp : TimeStamp;
time : Time;
h,m,s,ms : Integer;

begin
h := 15;
m := 39;
s := 06;
time.setTime(h, m, s, ms);
timeStamp.setTime(time); // Assigns format to string
write timeStamp; // Outputs 11 August 2000 3:39pm

end;

The following table lists valid operations for the TimeStamp primitive type.

Expression Expression Type

timestamp-expression + time-expression (timestamp)

timestamp-expression - time-expression (timestamp)

timestamp-expression + timestampinterval-expression (timestamp)

timestamp-expression - timestampinterval-expression (timestamp)

Caution The TimeStamp value that results from adding to a timestamp value or subtracting from a timestamp
value does not take daylight saving into account.

For details about the constant and methods defined in the TimeStamp primitive type, see "TimeStamp Constant"
and "TimeStamp Methods", in the following subsections. For details about converting primitive types, see
"Converting Primitive Types", in Chapter 1 of the JADE Developer’s Reference.

TimeStamp Constant
The constant provided by the TimeStamp primitive type is listed in the following table.

Constant Value Description

UnixEpoch 01 January 1970, 00:00:00 The Unix epoch in which the Unix time is represented as the
number of seconds that have elapsed since the Unix epoch

Applies to Version: 2020.0.01 and higher

Encyclopaedia of
Primitive Types

TimeStamp Type Chapter 1 192

EncycloPrim - 2020.0.02

TimeStamp Methods
The methods defined in the TimeStamp primitive type are summarized in the following table.

Method Description

date Returns the date part of the receiver

display Returns a string representing the value of the receiver

getSecondsFromUnixEpoch Returns the number of seconds between the Unix epoch and the
TimeStamp

isValid Returns true if the receiver contains a valid timestamp value

literalFormat Returns a string representing the receiver in literal format

localToUTCTime Converts a timestamp in local time to UTC using the time zone in which the
method executes

localToUTCTimeUsingBias Converts a timestamp in local time to UTC using the specified bias

setByteOrderLocal Returns a timestamp that has the bytes ordered as required by the local
node

setByteOrderRemote Returns a timestamp that has the bytes ordered as required by the specified
remote node

setDate Sets the date part of the receiver to a specified date

setFromUnixEpoch Sets the TimeStamp by adding the specified number of seconds to the Unix
epoch

setTime Sets the time part of the receiver to a specified time

time Returns the time part of the receiver

utcToLocalTime Converts a timestamp in UTC time to local time for the time zone in which the
method executes

utcToLocalTimeUsingBias Converts a timestamp in UTC time to local time using the specified bias

date
Signature date(): Date;

The date method of the TimeStamp primitive type returns a date that is the same as the date part of the receiver.

Encyclopaedia of
Primitive Types

TimeStamp Type Chapter 1 193

EncycloPrim - 2020.0.02

Note If you change the date returned by the date method using the setDate method of the Date primitive type,
you are not actually changing the date part of the timestamp.

vars
ts : TimeStamp;

begin
ts.date.setDate(1,2,2007); // does not change ts

To change the date part of a timestamp, use the setDate method of the TimeStamp primitive type:

vars
ts : TimeStamp;
d : Date;

begin
d.setDate(1,2,2007);
ts.setDate(d); // does change ts

display
Signature display(): String;

The display method of the TimeStamp primitive type returns a string representing the value of the receiver.

getSecondsFromUnixEpoch
Signature getSecondsFromUnixEpoch(): Integer64;

The getSecondsFromUnixEpoch method of the TimeStamp primitive type returns the number of seconds
between the Unix epoch and the timestamp.

Applies to Version: 2020.0.01 and higher

isValid
Signature isValid(): Boolean;

The isValid method of the TimeStamp primitive type returns true if the receiver contains a valid timestamp value;
otherwise it returns false.

literalFormat
Signature literalFormat(): String;

The literalFormat method of the TimeStamp primitive type returns a string representing the receiver in literal
format.

The following example shows the use of the literalFormat method.

vars
timeStamp : TimeStamp;
date : Date;
time : Time;

begin
date.setDate(11, 5, 2013);
time.setTime(16, 12, 23, 0);
timeStamp.setDate(date);

Encyclopaedia of
Primitive Types

TimeStamp Type Chapter 1 194

EncycloPrim - 2020.0.02

timeStamp.setTime(time);
write timeStamp.literalFormat; // Outputs 2013:05:11:16:12:23
date.setDate(11, 5, 2013);
time.setTime(16, 12, 23, 5);
timeStamp.setDate(date);
timeStamp.setTime(time);
write timeStamp.literalFormat; // Outputs 2013:05:11:16:12:23.005

end;

localToUTCTime
Signature localToUTCTime(): TimeStamp;

The localToUTCTime method of the TimeStamp primitive type converts a timestamp in local time to Coordinated
Universal Time (UTC) using the time zone of the machine in which the method executes; for example, if the
method is executing in an application server for a presentation client running on another machine, the bias is
taken from the time zone of the machine running the application server.

To convert between local and UTC time in a thin client application in which you want to be sensitive to the bias of
the presentation client machine, use the localToUTCTimeUsingBias method, as shown in the following code
fragment.

self.localToUTCTimeUsingBias(app.currentUTCBias(PresentationClient));

Notes Translations between UTC and local time are based on the formula UTC = local time + bias.

Greenwich Mean Time (GMT) has been replaced as the world standard time by Coordinated Universal Time
(UTC), which is based on atomic measurements rather than the rotation of the earth. (GMT remains the standard
time zone for the Prime Meridian, or zero longitude.)

See also the TimeStamp primitive type localToUTCTimeUsingBias, utcToLocalTime, and
utcToLocalTimeUsingBias methods and the Application class currentUTCBias and getUTCTime methods.

localToUTCTimeUsingBias
Signature localToUTCTimeUsingBias(bias: Integer): TimeStamp;

The localToUTCTimeUsingBias method of the TimeStamp primitive type converts a timestamp in local time to
UTC time using the number of minutes specified in the bias parameter.

Note Translations between UTC and local time are based on the formula UTC = local time + bias.

See also the TimeStamp primitive type localToUTCTime, utcToLocalTimeUsingBias, and utcToLocalTime
methods and the Application class currentUTCBias and getUTCTime methods.

setByteOrderLocal
Signature setByteOrderLocal(architecture: Integer): TimeStamp;

The setByteOrderLocal method of the TimeStamp primitive type returns a timestamp that has the bytes ordered
as required by the local node.

The bytes of the receiver are assumed to be ordered as indicated by the architecture parameter.

Encyclopaedia of
Primitive Types

TimeStamp Type Chapter 1 195

EncycloPrim - 2020.0.02

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

setByteOrderRemote
Signature setByteOrderRemote(architecture: Integer): TimeStamp;

The setByteOrderRemote method of the TimeStamp primitive type returns a timestamp that has the bytes
ordered as required by the remote node indicated by the architecture parameter.

The bytes of the receiver are assumed to be ordered as required by the local node.

The architecture parameter is a unique number that indicates internal byte ordering and alignment information
relevant to the hardware platform of this release of JADE and is returned by the getOSPlatform method of the
Node class.

The architecture can be one of the Node class constant values listed in the following table.

Node Class Constant Description

Architecture_32Big_Endian 32-bit big-endian internal byte ordering and alignment

Architecture_32Little_Endian 32-bit little-endian internal byte ordering and alignment

Architecture_64Big_Endian 64-bit big-endian internal byte ordering and alignment

Architecture_64Little_Endian 64-bit little-endian internal byte ordering and alignment

Architecture_Gui Binary data passed in the byte order of the GUI system (currently Windows
32-bit little-endian)

setDate
Signature setDate(date: Date) updating;

The setDate method of the TimeStamp primitive type sets the date part of the receiver to a specified date.

setFromUnixEpoch
Signature setFromUnixEpoch(secondsFromEpoch: Integer64) updating;

The setFromUnixEpoch method of the TimeStamp primitive type sets the timestamp by adding the specified
number of seconds to the Unix epoch.

Applies to Version: 2020.0.01 and higher

Encyclopaedia of
Primitive Types

TimeStamp Type Chapter 1 196

EncycloPrim - 2020.0.02

setTime
Signature setTime(time: Time) updating;

The setTime method of the TimeStamp primitive type sets the time part of the receiver to a specified time.

time
Signature time(): Time;

The time method of the TimeStamp primitive type returns a time that is the same as the time part of the receiver.

Note If you change the time returned by the time method using the setTime method of the Time primitive type,
you are not actually changing the time part of the timestamp.

vars
ts : TimeStamp;

begin
ts.time.setTime(09,10,11,999); // does not change ts

To change the time part of a timestamp, use the setTime method of the TimeStamp primitive type:

vars
ts : TimeStamp;
t : Time;

begin
t.setTime(09,10,11,999);
ts.setTime(t); // does change ts

utcToLocalTime
Signature utcToLocalTime(): TimeStamp;

The utcToLocalTime method of the TimeStamp primitive type converts a timestamp in UTC time to local time
using the time zone of the machine in which the method executes; for example, if the method is executing in an
application server for a presentation client running on another machine, the bias is taken from the time zone of the
machine running the application server.

To convert between local and UTC time in a thin client application in which you want to be sensitive to the bias of
the presentation client machine, use the utcToLocalTimeUsingBias method, as shown in the following code
fragment.

self.utcToLocalTimeUsingBias(app.currentUTCBias(PresentationClient));

Note Translations between UTC and local time are based on the formula UTC = local time + bias.

See also the TimeStamp primitive type utcToLocalTimeUsingBias, localToUTCTimeUsingBias, and
localToUTCTime methods and the Application class currentUTCBias and getUTCTime methods.

utcToLocalTimeUsingBias
Signature utcToLocalTimeUsingBias(bias: Integer): TimeStamp;

The utcToLocalTimeUsingBias method of the TimeStamp primitive type converts a timestamp in UTC time to
local time using the number of minutes specified in the bias parameter.

Encyclopaedia of
Primitive Types

TimeStamp Type Chapter 1 197

EncycloPrim - 2020.0.02

Note Translations between UTC and local time are based on the formula UTC = local time + bias.

See also the TimeStamp primitive type utcToLocalTime, localToUTCTimeUsingBias, and localToUTCTime
methods and the Application class currentUTCBias and getUTCTime methods.

Encyclopaedia of
Primitive Types

TimeStampInterval Type Chapter 1 198

EncycloPrim - 2020.0.02

TimeStampInterval Type
The TimeStampInterval primitive type is used to represent the difference between two TimeStamp values. The
null value for timestamp interval is equivalent to a timestamp interval of zero duration.

The following example shows a timestamp interval established by subtracting two timestamps. This example also
shows the use of methods to display the number of whole days in an interval and the remaining time in
milliseconds.

vars
time : Time;
date : Date;
ts1, ts2 : TimeStamp;
interval : TimeStampInterval;

begin
date.setDate(31,12,2007); // New Year's Eve
time.setTime(23,59,0,0); // Minute before midnight
ts1.setDate(date);
ts1.setTime(time);
date.setDate(1,1,2008); // New Year's Day
time.setTime(12,0,0,0); // Noon
ts2.setDate(date);
ts2.setTime(time);
interval := ts2 - ts1;
write interval; // 0:12:01:00.000 (days:hours:mins:secs)
write interval.getMilliseconds; // 43260000 milliseconds

end;

The following table lists valid operations for the TimeStampInterval primitive type.

Expression Expression Type

timestamp-expression - timestamp-expression (timestampinterval)

timestamp-expression + or - timestampinterval-expression (timestamp)

timestampinterval-expression * or / integer-expression (timestampinterval)

timestampinterval-expression + or - timestampinterval-expression (timestampinterval)

timestampinterval-expression < or <= or = or >= or > or <> timestampinterval-
expression

(boolean)

Caution The TimeStampInterval value that results from subtracting two timestamp values does not take
daylight saving into account.

For details about the methods defined in the TimeStampInterval primitive type, see "TimeStampInterval Methods",
in the following subsection. For details about converting primitive types, see "Converting Primitive Types", in
Chapter 1 of the JADE Developer’s Reference.

Encyclopaedia of
Primitive Types

TimeStampInterval Type Chapter 1 199

EncycloPrim - 2020.0.02

TimeStampInterval Methods
The methods defined in the TimeStampInterval primitive type are summarized in the following table.

Method Description

display Returns a string representing the value of the receiver

getMilliseconds Returns the duration of the timestamp interval in milliseconds

isValid Returns true if the receiver represents a valid timestamp interval

set Sets the value of the receiver from a number of whole days and a number of milliseconds

display
Signature display(): String;

The display method of the TimeStampInterval primitive type returns a string representing the value of the
receiver, in the format days:hours:minutes:seconds.milliseconds.

getMilliseconds
Signature getMilliseconds(): Integer64;

The getMilliseconds method of the TimeStampInterval primitive type returns the duration of the timestamp
interval in milliseconds.

isValid
Signature isValid(): Boolean;

The isValid method of the TimeStampInterval primitive type returns true if the receiver contains a valid timestamp
interval value.

set
Signature set(days: Integer;

milliseconds: Integer) updating;

The set method of the TimeStampInterval primitive type sets the value of a timestamp interval from the days and
milliseconds parameters.

The value of the days and milliseconds parameters should both have the same sign. If one is positive and one is
negative, an exception is raised.

If the value of the milliseconds parameter is greater than one day in milliseconds (that is, 86400000), the
TimeStampInterval value that is set is incremented by the number of whole days that the milliseconds parameter
value represents.

Encyclopaedia of
Primitive Types

TimeStampOffset Type Chapter 1 200

EncycloPrim - 2020.0.02

TimeStampOffset Type
The TimeStampOffset primitive type is used to represent a Coordinated Universal Time (UTC) date and time
value, together with an offset that indicates how much that value differs from the local time when the value was set.
The value of the offset component is precise to the minute.

A TimeStampOffset value unambiguously identifies a single point in time.

If you declare a TimeStampOffset primitive type local variable in your method that is referenced within the code of
the method, it is initialized with the current date, time, and offset each time the method is invoked. If such a local
variable is declared but is not referenced in the code, its value is not initialized. The offset is that of the
presentation client if running in thin client mode; otherwise, it is the offset of the node where the code is executing.

The following example shows the initialization of a local TimeStampOffset variable.

vars
tso : TimeStampOffset;
ts : TimeStamp;

begin
// Executed in New Zealand, which is 13 hours 'ahead of Greenwich' in summer

write ts; // outputs 20 January 2009, 09:15:20
// (current date and time in New Zealand)

write tso; // outputs 19 January 2009, 20:15:20 +1300
// (current date and time in Greenwich)

end;

Object attributes of type TimeStampOffset are initialized with a null date, null time, and null offset; that is,
00:00:00 +0000.

The following table lists valid operations for the TimeStampOffset primitive type.

Expression Expression Type

timestampoffset-expression + time-expression (timestampoffset)

timestampoffset-expression - time-expression (timestampoffset)

timestampoffset-expression + timestampinterval-expression (timestampoffset)

timestampoffset-expression - timestampinterval-expression (timestampoffset)

timestampoffset-expression - timestampoffset-expression (timestampinterval)

timestampoffset -expression < or <= or = or >= or > or <> timestampoffset -expression (boolean)

For details about the methods defined in the TimeStampInterval primitive type, see "TimeStampOffset Methods",
in the following subsection. For details about converting primitive types, see "Converting Primitive Types", in
Chapter 1 of the JADE Developer’s Reference.

TimeStampOffset Methods
The methods defined in the TimeStampOffset primitive type are summarized in the following table.

Method Description

asLocalTimeStamp Returns a timestamp representing the local time of the receiver

Encyclopaedia of
Primitive Types

TimeStampOffset Type Chapter 1 201

EncycloPrim - 2020.0.02

Method Description

asUTCTimeStamp Returns a timestamp representing the UTC time of the receiver

display Returns a string representing the value of the receiver

getUTCBias Returns the current bias in minutes

isValid Returns true if the receiver represents a valid timestamp offset

setFromLocalTimeStamp Sets the value of the receiver from the specified timestamp

asLocalTimeStamp
Signature asLocalTimeStamp(): TimeStamp;

The asLocalTimeStamp method of the TimeStampOffset primitive type returns a timestamp representing the
local time of the receiver.

asUTCTimeStamp
Signature asUTCTimeStamp(): TimeStamp;

The asUTCTimeStamp method of the TimeStampOffset primitive type returns a timestamp representing the UTC
time of the receiver.

display
Signature display(): String;

The display method of the TimeStampOffset primitive type returns a string representing the value of the receiver,
in the format date, time + offset, where the offset is in the twenty-four hour clock format; for example, 19 January
2009, 02:56:10 +1300.

getUTCBias
Signature getUTCBias(): Integer;

The getUTCBias method of the TimeStampOffset primitive type returns the current bias, which is the difference in
minutes between Coordinated Universal Time (UTC) and local time (that is, bias = UTC - ‘local time’).

As the bias is current, it includes any daylight saving adjustment in effect at the time the value is obtained.

isValid
Signature isValid(): Boolean;

The isValid method of the TimeStampOffset primitive type returns true if the date, time, and offset components of
the receiver contain valid values; otherwise it returns false.

setFromLocalTimeStamp
Signature setFromLocalTimeStamp(timeStamp: TimeStamp;

utcBias: Integer) updating;

The setFromLocalTimeStamp method of the TimeStampOffset primitive type sets the value of the receiver from
the timeStamp parameter and the offset specified in the utcBias parameter.

Encyclopaedia of
Primitive Types

TimeStampOffset Type Chapter 1 202

EncycloPrim - 2020.0.02

In the following example, a TimeStampOffset value is constructed from a local date and time together with an
offset value obtained from the getUTCBias method.

vars
tso_direct : TimeStampOffset;
bias : Integer;
tso_calculated : TimeStampOffset;
ts : TimeStamp;

begin
write tso_direct;
bias := tso_direct.getUTCBias;
tso_calculated.setFromLocalTimeStamp(ts, bias);
write tso_calculated;

end;

EncycloPrim - 2020.0.02

Appendix A Global Constants Reference

Global constants provide a more-meaningful representation than simply using literal values.

JADE provides system global constants at the Object class level, which are grouped by the following categories.

ApplicationStatus

CharacterConstants

ColorConstants

Environment

Exceptions

ExecutionLocation

JadeDbFileVolatility

JadeDynamicObjectNames

JadeDynamicObjectTypes

JadeErrorCodesDatabase

JadeErrorCodesIDE

JadeErrorCodesRPS

JadeErrorCodesSDS

JadeErrorCodesWebService

JadeLocaleIdNumbers

JadeOdbc

JadeProcessEvents

JadeProfileString

KeyCharacterCodes

LockDurations

LockTimeouts

Locks

MessageBox

MessageBoxCustom

NotificationResponses

ObjectVolatility

PossibleTransientLeaks

Printer

EncycloPrim - 2020.0.02

RPSTransitionHaltCode

SDSConnectionState

SDSDatabaseRoles

SDSEventTypes

SDSReorgState

SDSSecondaryState

SDSStopTrackingCodes

SDSTakeoverState

SDSTransactionStates

SQL

Sounds

SystemEvents

SystemLimits

TimerDurations

UUIDVariants

UnusedParameterReport

UserEvents

For details about promoting class constants to global constants, see "Promoting Class Constants to Global
Constants", in Chapter 4 of the JADE Development Environment User’s Guide.

ApplicationStatus Category
The global constants for the application mouse pointer (app.mousePointer) status are listed in the following table.

Global Constant Integer Value Description

Busy 11 Hourglass mouse pointer indicates that the application is currently busy

Idle 0 Mouse pointer is in the idle state

For details about the mouse pointer (which controls the shape of the mouse pointer for all windows of the
application), see the Application class mousePointer property in Chapter 1 of the JADE Encyclopaedia of
Classes.

CharacterConstants Category
The global constants for the carriage return and tab characters are listed in the following table.

Global Constant String or Character Value Description

Cr #"0D" character Carriage return character

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 204

EncycloPrim - 2020.0.02

Global Constant String or Character Value Description

CrLf #"0D 0A" string Carriage return / line feed characters

Lf #"0A" character Line feed character

Tab #"09" character Tab character

ColorConstants Category
The color global constants are listed in the following table.

Global Constant Integer Value

Azure #FFFFF0

Black 0

Blue 16711680

DarkBlue 12582912

DarkGray 4210752

Gray 12632256

Green 32768

LightGreen 65280

LightYellow 8454143

Mauve 16711935

Purple 12583104

Red 255

White 16777215

Yellow 65535

Environment Category
The global constant for JADE environments that you can use in your applications, if required, is listed in the
following table.

Global Constant Primitive Type Value

IsUnicodeSystem Boolean (-1).Character.Integer <> 255

Exceptions Category
The global constants for exceptions are listed in the following table.

Global Constant Integer Value Description

Ex_Abort_Action 1 Causes the currently executing methods to be aborted

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 205

EncycloPrim - 2020.0.02

Global Constant Integer Value Description

Ex_Continue 0 Resumes execution from the next expression after the expression that
caused the exception

Ex_Pass_Back -1 Passes control back to the prior local exception handler for this type of
exception, or if a local handler is not found, a global exception
handler for this type of exception

Ex_Resume_Next 2 Passes control back to the method that armed the exception handler

For more details, see "Exception Class Return Values", in Chapter 1 of the JADE Encyclopaedia of Classes.

ExecutionLocation Category
The global constants for the location of executed methods are listed in the following table.

Global Constant Integer Value Method is executed…

CurrentLocation 0 In the current location

DatabaseServer 1 On the database server node

PresentationClient 2 On the presentation client (applicable to applications running in
thin client mode)

JadeDbFileVolatility Category
The global constants for the volatility of database files and partitions are listed in the following table.

Global Constant Integer Value

FileVolatility_Frozen Volatility_Frozen + 1

FileVolatility_Stable Volatility_Stable + 1

FileVolatility_Transparent 0

FileVolatility_Volatile Volatility_Volatile + 1

JadeDynamicObjectNames Category
The global constants for the name of dynamic objects used by JADE RootSchema classes are listed in the
following table.

Global Constant String Value

JAA_MemberKeyDictionaryEntryName "JAAMemberKeyDictionaryEntry"

JStats_ArrayName "JStatsArray"

JStats_DictionaryName "JStatsDictionary"

JStats_JadeBytesName "JStatsJadeBytes"

JStats_SetName "JStatsSet"

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 206

EncycloPrim - 2020.0.02

Global Constant String Value

SDS_PrimaryName "SDSPrimary"

SDS_SecondaryName "SDSSecondary"

SDS_SecondaryProxyName "SDSSecondaryProxy"

SDS_TransactionName "SDSTransaction"

For more detail, see the JadeDynamicObject class name property in Chapter 1 of the JADE Encyclopaedia of
Classes.

JadeDynamicObjectTypes Category
The global constants for the type of dynamic objects used by JADE RootSchema classes are listed in the
following table.

Global Constant Integer Value

JAA_MemberKeyDictionaryEntryType 50

JStats_ArrayType 101

JStats_DictionaryType 102

JStats_JadeBytesType 104

JStats_SetType 103

SDS_PrimaryType 1

SDS_SecondaryProxyType 2

SDS_SecondaryType 3

SDS_TransactionType 4

For more detail, see the JadeDynamicObject class type property in Chapter 1 of the JADE Encyclopaedia of
Classes.

JadeErrorCodesDatabase Category
The global constants for JADE database exception error codes that you can use in your own exception handlers, if
required, are listed in the following table.

Global Constant Integer Value

JErr_DbDiskFull 3033

JErr_DbEditionOutOfDate 3049

JErr_DbFileExists 3071

JErr_DbFileNotCreated 3121

JErr_DbFileNotDefined 3120

JErr_DbFileNotFound 3036

JErr_DbFileOffline 3162

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 207

EncycloPrim - 2020.0.02

Global Constant Integer Value

JErr_DbLockedForArchive 3079

JErr_DbLockedForReorg 3059

JErr_DbUserAbort 3051

JErr_FileInstantiated 3142

JErr_PartitionModulusRangeErr 3161

For details about exception handling, see Chapter 3 of the JADE Developer’s Reference. See also "Exception
Class", in Chapter 1 of the JADE Encyclopaedia of Classes.

JadeErrorCodesIDE Category
The global constants for the JADE development environment error codes are listed in the following table.

Global Constant Integer Value

Patch_History_Load_Dup_Patch 16007

Patch_History_Load_No_Schema 16006

JadeErrorCodesRPS Category
The global constants for the Relational Population Service (RPS) error codes that you can use in your own
exception handlers, if required, are listed in the following table.

Global Constant Integer Value

JErr_DataPumpAlreadyRunning 3265

JErr_LegalOnRpsOnly 3264

JErr_NotDataPumpApp 3266

JErr_RpsAdminHalt 3262

JErr_RpsConnectionError 3274

JErr_RpsDuplicatedKey 3258

JErr_RpsExtractRequestError 3269

JErr_RpsMultiRowAffected 3260

JErr_RpsTableNameNotFound 3273

JErr_RpsZeroRowsAffected 3259

JErr_ValidOnRpsMappingOnly 3272

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 208

EncycloPrim - 2020.0.02

JadeErrorCodesSDS Category
The global constants for the Synchronized Database Service (SDS) error codes that you can use in your own
exception handlers, if required, are listed in the following table.

Global Constant Integer Value

JErr_SdsIllegalOnPrimary 3207

JErr_SdsIllegalOnSecondary 3206

JErr_SdsIncompleteJournal 3200

JErr_SdsInvalidCommand 3205

JErr_SdsMaxSecondariesExceeded 3210

JErr_SdsNotInitialized 3201

JErr_SdsResponseTimeout 3212

JErr_SdsSecondaryNotAttached 3204

JErr_SdsSecondaryNotFound 3208

JErr_SdsTrackerBusy 3211

JadeErrorCodesWebService Category
The global constants for Web service error codes that you can use in your own exception handlers, if required, are
listed in the following table.

Global Constant Integer Value

JADEWS_CREATE_WS_APP_FAILED 11082

JADEWS_DECIMAL_OVERFLOW 11055

JADEWS_ENUM_FAULT 11053

JADEWS_INTEGER_OVERFLOW 11059

JADEWS_INVALID_REQUEST 11056

JADEWS_INVALID_RESPONSE 11051

JADEWS_LICENCES_EXCEEDED 11004

JADEWS_NO_WEBSERVICE_CLASS 11001

JADEWS_NO_WEBSERVICE_METHOD 11002

JADEWS_RESPONSE_TIME_EXCEEDED 11005

JADEWS_SERVICE_FAULT 11052

JADEWS_SERVICE_UNAVAILABLE 11008

JADEWS_SESSION_ENDED 11006

JADEWS_SESSION_TIMED_OUT 11007

JADEWS_STRING_TOO_LONG 11054

JADEWS_VERSION_MISMATCH 11009

JADEWS_WSDL_GENERATION_FAILED 11081

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 209

EncycloPrim - 2020.0.02

For more details, see Chapter 11, "Building Web Services Applications", of the JADE Developer’s Reference.

JadeLocaleIdNumbers Category
The global constants for commonly used locale identifiers (LCIDs) are listed in the following table. You can use
these values with the Application class setJadeLocale method, which changes the formatting information to
suppress the regional overrides for all locales except for the LCID_SessionWithOverrides global constant.

Global Constant Integer Value

LCID_Arabic_Bahrain 15361

LCID_Arabic_Egypt 3073

LCID_Arabic_Kuwait 13313

LCID_Arabic_SaudiArabia 1025

LCID_Arabic_UAE 14337

LCID_Assamese_India 1101

LCID_Bengali_India 1093

LCID_Chinese_SimplfdSingapore 4100

LCID_Chinese_SimplifiedPRC 2052

LCID_Chinese_TraditionalMacao 5124

LCID_Chinese_TraditionalTaiwan 1028

LCID_Chinese_TraditnalHongKong 3076

LCID_Dutch_Belgium 2067

LCID_Dutch_Netherlands 1043

LCID_English_Australia 3081

LCID_English_Canada 4105

LCID_English_India 16393

LCID_English_Ireland 6153

LCID_English_Jamaica 8201

LCID_English_Malaysia 17417

LCID_English_NewZealand 5129

LCID_English_Singapore 18441

LCID_English_SouthAfrica 7177

LCID_English_UnitedKingdom 2057

LCID_English_UnitedStates 1033

LCID_French_Belgium 2060

LCID_French_Canada 3084

LCID_French_France 1036

LCID_French_Switzerland 4108

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 210

EncycloPrim - 2020.0.02

Global Constant Integer Value

LCID_German_Austria 3079

LCID_German_Germany 1031

LCID_German_Switzerland 2055

LCID_Greek_Greece 1032

LCID_Gujarati_India 1095

LCID_Hindi_India 1081

LCID_Indonesian_Indonesia 1057

LCID_Invariant 127

LCID_Irish_Ireland 2108

LCID_Italian_Italy 1040

LCID_Japanese_Japan 1041

LCID_Kannada_India 1099

LCID_Konkani_India 1111

LCID_Korean_Korea 1042

LCID_Malay_Malaysia 1086

LCID_Malayalam_India 1100

LCID_Maori_NewZealand 1153

LCID_Marathi_India 1102

LCID_Oriya_India 1096

LCID_Polish_Poland 1045

LCID_Portuguese_Brazil 1046

LCID_Portuguese_Portugal 2070

LCID_Punjabi_India 1094

LCID_Russian_Russia 1049

LCID_Sanskrit_India 1103

LCID_SessionWithOverrides 1024

LCID_Spanish_Argentina 11274

LCID_Spanish_Chile 13322

LCID_Spanish_Mexico 2058

LCID_Spanish_Nicaragua 19466

LCID_Spanish_PuertoRico 20490

LCID_Spanish_Spain_InternatSrt 3082

LCID_Spanish_Spain_TradSort 1034

LCID_Spanish_UnitedStates 21514

LCID_Tamil_India 1097

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 211

EncycloPrim - 2020.0.02

Global Constant Integer Value

LCID_Telugu_India 1098

LCID_Thai_Thailand 1054

LCID_Vietnamese_Vietnam 1066

LCID_Welsh_UnitedKingdom 1106

The LCID_Invariant global constant is an operating system-independent locale, based on English (USA). The
format of the short date is MM/dd/yyyy and time is HH:mm:ss.

The LCID_SessionWithOverrides global constant is the Windows session locale, including user regional
overrides. It is the initial locale for the application. You can pass the enhanced locale support methods that have
an lcid parameter zero (0), in which case the current locale is used.

JadeOdbc Category
The global constants for Web service error codes that you can use in your own exception handlers, if required, are
listed in the following table.

Global Constant Integer Value

JErr_Attribute_Name_Conflict 8347

JErr_ColumnName_Cannot_Change 8356

JErr_Column_Not_Found 8349

JErr_Invalid_For_RpsMapping 8353

JErr_No_Jade_Type 8352

JErr_Not_Soft_Table 8351

JErr_SQL_Type_Not_Mapped 8348

JErr_Table_Name_Conflict 8345

JErr_Table_Not_Found 8346

JadeProcessEvents Category
The global constants for JADE process events for which user notifications are sent are listed in the following table.

Global Constant Integer Value Description

Process_Call_Stack_Info_Event System_Base_Event + 243 Call stack information

Process_Local_Stats_Event System_Base_Event + 240 Local request statistics

Process_Method_Cache_Stats_Event System_Base_Event + 248 Method cache statistics

Process_Remote_Stats_Event System_Base_Event + 241 Remote request statistics

Process_TDB_Analysis_Event System_Base_Event + 245 Detailed analysis of a transient
database file

Process_TDB_Info_Event System_Base_Event + 244 File name and length of a transient
database file

Process_Web_Stats_Event System_Base_Event + 242 Web statistics information

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 212

EncycloPrim - 2020.0.02

JadeProfileString Category
The global constants for JADE initialization file profiles are listed in the following table.

Global Constant Description

ProfileAllKeys Returns all key strings, separated by spaces, in the initialization file section

ProfileAllSections Returns all initialization file sections, separated by spaces

ProfileRemoveKey Removes the key string from the initialization file section

ProfileRemoveSection Removes an entire initialization file section

For more details, see the Application class getProfileString, getProfileStringAppServer, setProfileString, and
setProfileStringAppServer methods, the Process class getProfileString and setProfileString methods, and the
Node class getProfileString and setProfileString methods in Chapter 1 of the JADE Encyclopaedia of Classes.

KeyCharacterCodes Category
The global constants for printable key character codes are listed in the following table.

Global Constant Value Global Constant Value

J_key_0 48 J_key_1 49

J_key_2 50 J_key_3 51

J_key_4 52 J_key_5 53

J_key_6 54 J_key_7 55

J_key_8 56 J_key_9 57

J_key_A 65 J_key_Ampersand 38

J_key_Asterisk 42 J_key_AtSign 64

J_key_B 66 J_key_Back 8

J_key_BackSlash 92 J_key_Bar 124

J_key_C 67 J_key_Carat 94

J_key_Colon 58 J_key_Comma 44

J_key_Ctrl 17 J_key_CurlyLeft 123

J_key_CurlyRight 125 J_key_D 68

J_key_Delete 46 J_key_Dollar 36

J_key_DoubleQuote 34 J_key_DownArrow 40

J_key_E 69 J_key_End 35

J_key_Enter 13 J_key_Equal 61

J_key_Escape 27 J_key_Exclamation 33

J_key_F 70 J_key_F1 112

J_key_F10 121 J_key_F11 122

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 213

EncycloPrim - 2020.0.02

Global Constant Value Global Constant Value

J_key_F12 123 J_key_F2 113

J_key_F3 114 J_key_F4 115

J_key_F5 116 J_key_F6 117

J_key_F7 118 J_key_F8 119

J_key_F9 120 J_key_G 71

J_key_GreaterThan 62 J_key_H 72

J_key_Hash 35 J_key_Home 36

J_key_Hyphen 45 J_key_I 73

J_key_Insert 45 J_key_J 74

J_key_K 75 J_key_L 76

J_key_LeftArrow 37 J_key_LeftBracket 91

J_key_LeftParenthesis 40 J_key_LeftQuote 96

J_key_LessThan 60 J_key_Linefeed 10

J_key_M 77 J_key_N 78

J_key_NumPadMinus 109 J_key_NumPadMultiply 106

J_key_NumPadPlus 107 J_key_O 79

J_key_P 80 J_key_PageDown 34

J_key_PageUp 33 J_key_Percent 37

J_key_Plus 43 J_key_Q 81

J_key_Question 63 J_key_R 82

J_key_Return 13 J_key_RightArrow 39

J_key_RightBracket 93 J_key_RightParenthesis 41

J_key_S 83 J_key_SemiColon 59

J_key_Shift 16 J_key_SingleQuote 39

J_key_Slash 47 J_key_Space 32

J_key_Stop 46 J_key_T 84

J_key_Tab 9 J_key_Tilde 126

J_key_U 85 J_key_UnderScore 95

J_key_UpArrow 38 J_key_V 86

J_key_W 87 J_key_X 88

J_key_Y 89 J_key_Z 90

J_key_a 97 J_key_b 98

J_key_c 99 J_key_d 100

J_key_e 101 J_key_f 102

J_key_g 103 J_key_h 104

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 214

EncycloPrim - 2020.0.02

Global Constant Value Global Constant Value

J_key_i 105 J_key_j 106

J_key_k 107 J_key_l 108

J_key_m 109 J_key_n 110

J_key_o 111 J_key_p 112

J_key_q 113 J_key_r 114

J_key_s 115 J_key_t 116

J_key_u 117 J_key_v 118

J_key_w 119 J_key_x 120

J_key_y 121 J_key_z 122

J_with_Alt 4 J_with_Ctrl 2

J_with_Shift 1

LockDurations Category
The global constants for lock durations are listed in the following table.

Global Constant Integer Value Description

Persistent_Duration 2 Reserved for future use (not yet implemented).

Session_Duration 1 Automatically unlocks the object at the end of the current session
(that is, the current thread or process) if no manual unlocks are
issued. In persistent transaction state, all unlock requests for
persistent objects are ignored.

Similarly, in transient transaction state, all unlock requests for
shared transient objects are ignored. A session lock is therefore
not released if the unlock request is made while in transaction
state. To release a session lock, the unlock request must be made
while not in transaction state.

Transaction_Duration 0 Automatically unlocks the object at the end of transaction time. If a
manual unlock is issued, this unlocks the object only if you are not
in transaction or load state.

LockTimeouts Category
The global constants for lock timeouts are listed in the following table.

Global Constant Integer Value Description

LockTimeout_Immediate -1 Lock request times out immediately

LockTimeout_Infinite Max_Integer (#7FFFFFFF) Lock request times out only after the number
of milliseconds indicated by the Max_Integer
value is reached

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 215

EncycloPrim - 2020.0.02

Global Constant Integer Value Description

LockTimeout_Process_Defined -2 Uses the process-defined default lock request
timeout

LockTimeout_Server_Defined 0 Uses the server-defined default

You can set the process-defined default lock request timeout programmatically, by calling the Process class
setDefaultLockTimeout method. By default (that is, if you do not call this method), the default lock timeout for a
process is the value of the ServerTimeout parameter in the [JadeServer] section of the JADE initialization file.

Locks Category
The global constants for locks are listed in the following table.

Global Constant Integer Value Description

Exclusive_Lock 3 No other process can lock the same object.

Get_Lock 0 Not valid for lock requests. This lock type indicates a process is waiting
to acquire a lock that will cause all other lock requests for the object to
be queued (for example, when upgrading a lock from update to
exclusive).

Reserve_Lock 2 When you place a reserve lock on an object, other processes
attempting to acquire an exclusive lock or reserve lock on that same
object wait until the reserve lock is relinquished, but those attempting to
acquire a shared lock succeed.

Share_Lock 1 When you place a shared lock on an object, other processes attempting
to update the object or explicitly acquire an exclusive lock wait until the
lock is released but can acquire a shared lock or a reserve lock.

Update_Lock 4 Placing an update lock allows you to update the object, while still
allowing other processes to acquire shared locks to view the most
recently committed edition.

MessageBox Category
The global constants for message boxes are listed in the following table. (For more details, see the Application
class msgBox method in Chapter 1 of the JADE Encyclopaedia of Classes.)

Global Constant Integer Value Description

MsgBox_Abort_Retry_Ignore 2 Displays the Abort, Retry, and Ignore buttons

MsgBox_App_Modal 0 User must respond to the message box before
continuing work

MsgBox_Default_First 0 First button is the default

MsgBox_Default_Second 256 Second button is the default

MsgBox_Default_Third 512 Third button is the default

MsgBox_Exclamation_Mark_Icon 48 Displays the Exclamation Mark icon

MsgBox_Information_Icon 64 Displays the Information icon

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 216

EncycloPrim - 2020.0.02

Global Constant Integer Value Description

MsgBox_OK_Cancel 1 Displays the OK and Cancel buttons

MsgBox_OK_Only 0 Displays only the OK button

MsgBox_Question_Mark_Icon 32 Displays the Question Mark icon

MsgBox_Retry_Cancel 5 Displays the Retry and Cancel buttons

MsgBox_Return_Abort 3 Returned when the Abort button has been selected

MsgBox_Return_Cancel 2 Returned when the Cancel button or the Esc key has
been selected

MsgBox_Return_Ignore 5 Returned when the Ignore button has been selected

MsgBox_Return_No 7 Returned when the No button has been selected

MsgBox_Return_OK 1 Returned when the OK button has been selected

MsgBox_Return_Retry 4 Returned when the Retry button has been selected

MsgBox_Return_Yes 6 Returned when the Yes button has been selected

MsgBox_Stop_Icon 16 Displays the Stop icon

MsgBox_System_Modal 4096 All applications are suspended until the user
responds to the message box

MsgBox_Yes_No 4 Displays Yes and No buttons

MsgBox_Yes_No_Cancel 3 Displays Yes, No, and Cancel buttons

MessageBoxCustom Category
The global constants for customized message boxes are listed in the following table. (For more details, see the
Application class msgBoxCustom method in Chapter 1 of the JADE Encyclopaedia of Classes.)

Global Constant Integer Value Description

MsgBoxCustom_Cancel_None 0 There is no Cancel button
(the default), and pressing
Esc will be ignored

MsgBoxCustom_Cancel_One 1 First button is the Cancel
button

MsgBoxCustom_Cancel_Two 2 Second button is the
Cancel button

MsgBoxCustom_Cancel_Three 3 Third button is the Cancel
button

MsgBoxCustom_Cancel_Four 4 Fourth button is the Cancel
button

MsgBoxCustom_Cancel_Five 5 Fifth button is the Cancel
button

MsgBoxCustom_Default_First MsgBox_Default_First (0) First button is the default
button (default)

MsgBoxCustom_Default_Second MsgBox_Default_Second (256) Second button is the default

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 217

EncycloPrim - 2020.0.02

Global Constant Integer Value Description

MsgBoxCustom_Default_Third MsgBox_Default_Third (512) Third button is the default

MsgBoxCustom_Default_Fourth #300 Fourth button is the default

MsgBoxCustom_Default_Fifth #400 Fifth button is the default

MsgBoxCustom_Icon_Exclamation_Mark MsgBox_Exclamation_Mark_Icon Displays the exclamation
icon

MsgBoxCustom_Icon_Information MsgBox_Information_Icon Displays the information
icon

MsgBoxCustom_Icon_Question_Mark MsgBox_Question_Mark_Icon Displays the question mark
icon

MsgBoxCustom_Icon_Stop MsgBox_Stop_Icon Displays the stop icon

MsgBoxCustom_Return_One 1

MsgBoxCustom_Return_Two 2

MsgBoxCustom_Return_Three 3

MsgBoxCustom_Return_Four 4

MsgBoxCustom_Return_Five 5

The MsgBoxCustom_Return_ global constants can be used to return and test the value of the clicked button.

NotificationResponses Category
The global constants for event notification responses are listed in the following table.

Global Constant Integer Value Sends a notification…

Response_Cancel 1 When the target notification object receives a matching event
and then cancels the notification

Response_Continuous 0 Whenever the target notification object receives a matching
event

Response_Suspend 2 When the target notification object receives a matching event
and suspends notification until users refresh their local copy of
the target object from the database

ObjectVolatility Category
The global constants for the volatility state of persistent objects are listed in the following table.

Global Constant Integer Value Object is…

Volatility_Frozen #04 Frozen (that is, it is not updated)

Volatility_Stable #08 Stable (that is, it is updated infrequently)

Volatility_Volatile #00 Volatile (that is, it is updated often)

For details, see "Cache Concurrency", in Chapter 6 of the JADE Developer’s Reference.

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 218

EncycloPrim - 2020.0.02

PossibleTransientLeaks Category
The global constant that enables you to mark lines of code for exclusion from the transient leaks analysis report is
listed in the following table.

Global Constant Description

ExcludeFromTransientLeakReport Marks the line of code for exclusion from the transient leaks analysis
report when specified in a comment on the same line

For details about possible transient leak analysis, see "Locating Possible Transient Object Leaks", in Chapter 4 of
the JADE Development Environment User’s Guide.

Printer Category
The printer global constants are listed in the following table.

Global Constant Integer
Value

Description

Print_10X11 45 10 x 11 inches

Print_10X14 16 10 x 14 inches

Print_11X17 17 11 x 17 inches

Print_15X11 46 15 x 11 inches

Print_9X11 44 9 x 11 inches

Print_A2 66 A2 420 x 594 mm

Print_A3 8 A3 297 x 420 mm

Print_A3_Extra 63 A3 Extra 322 x 445 mm

Print_A3_Extra_Transverse 68 A3 Extra Transverse

Print_A3_Transverse 67 A3 Transverse 297 x 420 mm

Print_A4 9 A4 210 x 297 mm

Print_A4Small 10 A4 Small 210 x 297 mm

Print_A4_Extra 53 A4 Extra 9.27 x 12.69 inches

Print_A4_Plus 60 A4 Plus 210 x 330 mm

Print_A4_Transverse 55 A4 Transverse 210 x 297 mm

Print_A5 11 A5 148 x 210 mm

Print_A5_Extra 64 A5 Extra 174 x 235 mm

Print_A5_Transverse 61 A5 Transverse 148 x 210 mm

Print_A_Plus 57 Super A - A4 227 x 356 mm

Print_B4 12 B4 250 x 354 mm

Print_B5 13 B5 182 x 257 mm

Print_B5_Extra 65 B5 (ISO) Extra 201 x 276 mm

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 219

EncycloPrim - 2020.0.02

Global Constant Integer
Value

Description

Print_B5_Transverse 62 B5 (JIS) Transverse 182 x 257 mm

Print_B_Plus 58 Super B – A3 305 x 487 mm

Print_CSheet 24 C size sheet

Print_Cancelled 15015 Print progress dialog Cancel button was clicked

Print_Collate_Ignored 15030 Printing started, so change to the collate property ignored

Print_Copies_Ignored 15010 Printing started, so change of copies ignored

Print_Currently_Open 15013 Printer is currently open

Print_Custom_Paper 256 Customized paper size

Print_DSheet 25 D size sheet

Print_DocumentType_Invalid 15032 You changed printer.documentType to Print_Custom_
Paper instead of calling the printer.setCustomPaperSize
method

Print_Duplex_Ignored 15029 Printing started, so change to the duplex property ignored

Print_Duplex_Invalid 15028 Value of the duplex property is invalid

Print_ESheet 26 E size sheet

Print_Env_10 20 Envelope #10 4.125 x 9.5 inches

Print_Env_11 21 Envelope #11 4.5 x 10.375 inches

Print_Env_12 22 Envelope #12 4.75 x 11 inches

Print_Env_14 23 Envelope #14 5 x 11.5 inches

Print_Env_9 19 Envelope #9 3.875 x 8.875 inches

Print_Env_B4 33 Envelope B4 250 x 353 mm

Print_Env_B5 34 Envelope B5 176 x 250 mm

Print_Env_B6 35 Envelope B6 176 x 125 mm

Print_Env_C3 29 Envelope C3 324 x 458 mm

Print_Env_C4 30 Envelope C4 229 x 324 mm

Print_Env_C5 28 Envelope C5 162 x 229 mm

Print_Env_C6 31 Envelope C6 114 x 162 mm

Print_Env_C65 32 Envelope C65 114 x 229 mm

Print_Env_DL 27 Envelope DL 110 x 220 mm

Print_Env_Invite 47 Envelope Invite 220 x 220 mm

Print_Env_Italy 36 Envelope 110 x 230 mm

Print_Env_Monarch 37 Envelope Monarch 3.875 x 7.5 inches

Print_Env_Personal 38 6¾ Envelope 3.625 x 6.5 inches

Print_Executive 7 Executive 7¼ x 10½ inches

Print_Failed_To_Obtain_Printer 15014 Task could not obtain printer

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 220

EncycloPrim - 2020.0.02

Global Constant Integer
Value

Description

Print_Fanfold_Lgl_German 41 German Legal Fanfold 8½ x 13 inches

Print_Fanfold_Std_German 40 German Std Fanfold 8½ x 12 inches

Print_Fanfold_US 39 US Std Fanfold 14.875 x 11 inches

Print_Folio 14 Folio 8½ x 13 inches

Print_Frame_Too_Large 15007 Frame larger than page depth

Print_Header_Footer_Too_Large 15006 Header and footer larger than page depth

Print_In_Preview 15031 Print object in use in print preview and cannot be reused

Print_ISO_B4 42 B4 (ISO) 250 x 353 mm

Print_Invalid_Control 15001 Attempt to print control that is not a frame

Print_Invalid_Position 15024 Attempt to set a print position that is outside the valid range

Print_Japanese_PostCard 43 Japanese Postcard 100 x 148 mm

Print_Landscape 2 Horizontal page orientation

Print_Ledger 4 Ledger 17 x 11 inches

Print_Legal 5 Legal 8½ x 14 inches

Print_Legal_Extra 51 Legal Extra 9.275 x 15 inches

Print_Letter 1 Letter 8½ x 11 inches

Print_LetterSmall 2 Letter Small 8½ x 11 inches

Print_Letter_Extra 50 Letter Extra 9.275 x 12 inches

Print_Letter_Extra_Transverse 56 Letter Extra Transverse 9.275 x 12 inches

Print_Letter_Plus 59 Letter Plus 8.5 x 12.69 inches

Print_Letter_Transverse 54 Letter Transverse 8.275 x 11 inches

Print_Metafile_Playback_Error 15033 Internal error occurred when attempting to play back a print
metafile

Print_NewPage_Failed 15002 New page on printer failed

Print_NoDefault_Printer 15021 Your workstation has no default printer set up

Print_Not_Available 15017 Printer does not match available printers

Print_Note 18 Note 8½ x 11 inches

Print_Orientation_Invalid 15011 Orientation must be Portrait (1) or Landscape (2)

Print_PaperSource_Invalid 15027 Value of the paperSource property is invalid

Print_Portrait 1 Vertical page orientation

Print_Preview_Ignored 15008 Printing started, so change of print preview ignored

Print_PrintReport_Ignored 15022 Printing started, so change of print report ignored

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 221

EncycloPrim - 2020.0.02

Global Constant Integer
Value

Description

Print_Printer_Ignored 15023 You attempted to change the printer in use after printing
began or before any printing has occurred (the printer must
be closed before commencing the new output on a
different printer)

Print_Printer_Not_Open 15003 Printer not open

Print_Printer_Open_Failed 15005 Open of printer failed

Print_Quarto 15 Quarto 215 x 275 mm

Print_Restricted 15019

Print_Statement 6 Statement 5½ x 8½ inches

Print_Stopped 15016 Print progress dialog Stop button was clicked

Print_Successful 0 The print was successful

Print_Tabloid 3 Tabloid 11 x 17 inches

Print_Tabloid_Extra 52 Tabloid Extra 11.69 x 18 inches

Print_TextOut_Error 15004 Text output to printer failed

Print_Unformatted_failed 15025 Printing of unformatted text failed; that is, the
printUnformatted method request failed

RPSTransitionHaltCode Category
The global constants that enable you to determine whether the Relational Population Service (RPS) table alter
script will be loaded automatically or whether manual action is required from the RDB administrator when a
schema instantiation is replayed by an RPS node and the data pump application and database tracking are
halted to achieve a schema transition.

When the event RPS_SchemaTransition (event type 220) is caused on the system instance, the userInfo
parameter passed to the userNotification callback method contains one of the global constants listed in the
following table. (The RPS_SchemaTransition event is represented by a global constant in the SDSEventTypes
category.)

Global Constant Integer Value Description

RPS_HaltAutoScript 1 An automatic initiate alter script was generated (will be
automatically loaded by the data pump application if
configured to automatically restart)

RPS_HaltManualScript 2 A manual alter script was generated (requires administration
user intervention to apply changes to RDB before tracking
can be resumed)

RPS_HaltMappingDeleted 3 The RPS mapping was deleted on the primary database,
rendering the RPS node and associated RDB defunct

RPS_HaltNoScript 0 Changes do not affect RDB, so no script was generated

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 222

EncycloPrim - 2020.0.02

SDSConnectionState Category
The global constants for the Synchronized Database Service (SDS) connection state are listed in the following
table.

Global Constant Integer Value

SDS_Connected 2

SDS_Connecting 3

SDS_ConnectionFailed 4

SDS_ConnectionStateUndefined 0

SDS_Disconnected 1

These are used in return values or dynamic object attribute values by the JadeDatabaseAdmin class
sdsGetMyServerInfo method.

SDSDatabaseRoles Category
The global constants for the Synchronized Database Service (SDS) database roles are listed in the following
table.

Global Constant Integer Value

SDS_RolePrimary 1

SDS_RoleSecondary 2

SDS_RoleUndefined (returned when the method is invoked on a non-SDS-capable or
non-RPS-capable system)

0

SDS_SubroleNative 1

SDS_SubroleRelational 2

These are used in return values or dynamic object attribute values by the JadeDatabaseAdmin class
sdsGetMyServerInfo, sdsGetDatabaseRole, or sdsGetDatabaseSubrole method.

SDSEventTypes Category
The global constants for the Synchronized Database Service (SDS) event types are listed in the following table.

Global Constant Integer Value

RPS_SchemaTransition 220

SDS_ConnectionStateChange 17386

SDS_JournalTransferStopped 17385

SDS_RoleChangeEvent 22

SDS_RoleChangeProgress 17387

SDS_TrackingDisabled 17388

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 223

EncycloPrim - 2020.0.02

Global Constant Integer Value

SDS_TrackingEnabled 17389

SDS_TrackingHalted 17390

SDS_TrackingStarted 17389

SDS_TrackingStopped 17388

These are used in return or dynamic object attribute values by the JadeDatabaseAdmin class
sdsGetMyServerInfo method and in the case of the RPS_SchemaTransition global constant, in the userInfo
parameter passed to the userNotification callback method that contains one of the RPSTransitionHaltCode
category global constants.

SDSReorgState Category
The global constants for the Synchronized Database Service (SDS) reorganization state are listed in the following
table.

Global Constant Integer Value

SDS_ReorgStateNotReorging 1

SDS_ReorgStateOfflinePhase 5

SDS_ReorgStateReorgingFiles 4

SDS_ReorgStateRestarting 6

SDS_ReorgStateSeekingApproval 2

SDS_ReorgStateStarting 3

These are used in return values or dynamic object attribute values by the JadeDatabaseAdmin class
sdsGetMyServerInfo method.

SDSSecondaryState Category
The global constants for the Synchronized Database Service (SDS) secondary state are listed in the following
table.

Global Constant Integer Value

SDS_BlockWrite 2

SDS_JournalSwitch 1

SDS_StateCatchingUp 1

SDS_StateDisconnected 0

SDS_StateReorging 5

SDS_StateSynchronized 2

SDS_StateTrackingHalted 4

SDS_StateTransferHalted 3

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 224

EncycloPrim - 2020.0.02

These are used in return values or dynamic object attribute values by the JadeDatabaseAdmin class
sdsGetMyServerInfo method.

SDSStopTrackingCodes Category
The global constants for the Synchronized Database Service (SDS) stop tracking are listed in the following table.

Global Constant Integer Value

SDS_AuditStopTrackingAll 1

SDS_AuditStopTrackingNative 2

SDS_AuditStopTrackingRdb 3

SDS_ReasonAdminAudited 1

SDS_ReasonAdminDirect 2

SDS_ReasonAutoUpgradeMismatch 6

SDS_ReasonDeltaModeEntered 12

SDS_ReasonEnablingDbCrypt 13

SDS_ReasonErrorHalt 8

SDS_ReasonRestart 10

SDS_ReasonRpsAdminHalt 4

SDS_ReasonRpsReorgHalt 9

SDS_ReasonRpsRestart 11

SDS_ReasonRpsSnapshot 3

SDS_ReasonTakeover 7

SDS_ReasonTransition 5

These are used in return values or dynamic object attribute values by the JadeDatabaseAdmin class
getReasonTrackingStoppedString, sdsAuditStopTracking, sdsGetMyServerInfo, and sdsGetSecondaryInfo
methods.

SDSTakeoverState Category
The global constants for the Synchronized Database Service (SDS) takeover state are listed in the following table.

Global Constant Integer Value

SDS_HostileTakeoverInitiated 4

SDS_PrimaryRoleActive 1

SDS_PrimaryRoleRelinquished 11

SDS_RelinquishPrimaryRole 5

SDS_RelinquishSecondaryRole 6

SDS_SecondaryRoleActive 2

SDS_SecondaryRoleRelinquished 12

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 225

EncycloPrim - 2020.0.02

Global Constant Integer Value

SDS_TakeoverAbandoned 8

SDS_TakeoverConditional 1

SDS_TakeoverFailure 7

SDS_TakeoverForced 2

SDS_TakeoverInitiated 3

SDS_WaitForQuietPoint 9

SDS_WaitForTakeoverDisposition 10

These values are used as the values contained in the userInfo parameter for a role change progress event
notification. For details, see "Detecting SDS Role Changes", in Chapter 10 of the JADE Developer’s Reference.
See also the sdsInitiateTakeover method of the JadeDatabaseAdmin class.

SDSTransactionStates Category
The global constants for the Synchronized Database Service (SDS) transaction states are listed in the following
table.

Global Constant Integer Value

SDS_TranDeferred 3

SDS_TranInDoubt 8

SDS_TranInterrupted 2

SDS_TranNormal 1

SDS_TranPrepareToCommit 6

SDS_TranReadyToAbort 7

SDS_TranReadyToCommit 5

SDS_TranWaitingAuditCommit 4

These are used in return values or dynamic object attribute values by the JadeDatabaseAdmin class
sdsGetMyServerInfo, sdsGetTransactions, or sdsGetTransactionsAt method.

SQL Category
The global constants for the Structured Query Language (SQL) are listed in the following table. The SQL global
constants are for internal use only.

Global Constant Integer Value

SQL_COLLECTION 3

SQL_COLLECTION_METHOD 7

SQL_EXPLICIT_INVERSE 4

SQL_IMPLICIT_INVERSE 5

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 226

EncycloPrim - 2020.0.02

Global Constant Integer Value

SQL_INVALID 0

SQL_METHOD 2

SQL_PROPERTY 1

SQL_TYPE_BIGINT -5

SQL_TYPE_BINARY -2

SQL_TYPE_BIT -7

SQL_TYPE_CHAR 1

SQL_TYPE_DATE 9

SQL_TYPE_DATE_VERSION3 91

SQL_TYPE_DECIMAL 3

SQL_TYPE_DOUBLE 8

SQL_TYPE_FLOAT 6

SQL_TYPE_INTEGER 4

SQL_TYPE_INTERVAL_DAY_TO_SEC 110

SQL_TYPE_LONGVARBINARY -4

SQL_TYPE_LONGVARCHAR -1

SQL_TYPE_NULL 0

SQL_TYPE_NUMERIC 2

SQL_TYPE_OID -50

SQL_TYPE_REAL 7

SQL_TYPE_SMALLINT 5

SQL_TYPE_TIME 10

SQL_TYPE_TIMESTAMP 11

SQL_TYPE_TIMESTAMP_VERSION3 93

SQL_TYPE_TIME_VERSION3 92

SQL_TYPE_TINYINT -6

SQL_TYPE_VARBINARY -3

SQL_TYPE_VARCHAR 12

SQL_TYPE_WCHAR -8

SQL_TYPE_WLONGVARCHAR -10

SQL_TYPE_WVARCHAR -9

SQL_XKEYDICT 6

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 227

EncycloPrim - 2020.0.02

Sounds Category
The global constants for the multimedia sounds are listed in the following table.

Global Constant Integer Value

Snd_Asterisk #40

Snd_Beep -1

Snd_Default 0

Snd_Exclamation #30

Snd_Hand #10

Snd_Question #20

The waveform sound for each sound type is identified by an entry in the Sounds section of the registry. (Assign
sounds to system events by using the Sounds and Multimedia program item of the standard Windows Control
Panel.)

SystemEvents Category
The global constants for JADE events for which system notifications are sent are listed in the following table.

Global Constant Integer Value Description

Any_System_Event 0 Object has been created, deleted, or updated

Object_Create_Event 4 Object has been created

Object_Delete_Event 6 Object has been deleted

Object_Update_Event 3 Object has been updated

System_Base_Event #80000000

SystemLimits Category
The global constants for JADE system limits are listed in the following table.

Global Constant Integer Value

Max_Byte #FF

Max_Identifier_Length 100

Max_Integer #7FFFFFFF (equates to 2,147,483,647)

Max_Integer64 #7FFFFFFFFFFFFFFF (equates to 9,223,372,036,854,775,807)

Max_UnboundedLength #FFFFFFFF

MaximumCollectionBlockSize #40000

MaximumCollectionDisplay 32000

Min_Byte #00 (equates to 0)

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 228

EncycloPrim - 2020.0.02

Global Constant Integer Value

Min_Integer #80000000 (equates to -2,147,483,648)

Min_Integer64 #8000000000000000 (equates to -9,223,372,036,854,775,808)

TimerDurations Category
The global constants for timer durations are listed in the following table.

Global Constant Integer Value Description

Timer_Continuous 0 Occurs continuously until it is disabled by the Object::endTimer
method

Timer_OneShot 1 Occurs once only

For details, see the Object class beginTimer method, in Chapter 1 of the JADE Encyclopaedia of Classes.

UUIDVariants Category
The global constants for specifying the layout of a generated Universally Unique Identifier (UUID) are listed in the
following table.

Global Constant Integer Value Description

VariantDce 2 Distributed Computing Environment, which is the scheme used by Qt
C++ application development framework, and which is the
recommended variant to pass to the generateUuid method

VariantMicrosoft 3 Reserved for Microsoft backward compatibility (GUID)

VariantNcs 1 Reserved for NCS (Network Computing System) backward
compatibility

UnusedParameterReport Category
The global constant that you can use to exclude an unused parameter from the Unused Parameter Report in is
listed in the following table.

Global Constant Primitive Type Value

ExcludeFromUnusedParameterReport String "ExcludeFromUnusedParameterReport"

Applies to Version: 2020.0.01 and higher

UserEvents Category
The global constants for user events are listed in the following table.

Global Constant Integer Value

Any_User_Event -1 (to subscribe to all user events)

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 229

EncycloPrim - 2020.0.02

Global Constant Integer Value

User_Base_Event 16

User_Max_Event Max_Integer (#7FFFFFFF, equating to 2147483647)

Encyclopaedia of
Primitive Types

Appendix A Global Constants Reference 230

	Contents
	Before You Begin
	Who Should Read this Encyclopaedia
	What's Included in this Encyclopaedia
	Related Documentation
	Conventions

	Chapter 1 Primitive Types
	Overview
	Any Type
	Any Methods
	asString
	display
	getName
	getType
	isIntegral
	isIntegral64
	isKindOf
	isNumericType
	isTextType

	Binary Type
	Binary Constants
	Binary Methods
	ansiToString
	ansiToUnicode
	asDecimal
	asGuidString
	base64Encode
	base64EncodeNoCrLf
	bufferAddress
	bufferMemoryAddress
	compressToBinary
	convertPicture
	convertToFile
	copyImage
	display
	fromANSIToString
	fromANSIToStringUtf8
	length
	maxLength
	pictureSize
	pictureType
	posBinary
	posByte
	uncompressToBinary
	uncompressToString
	uncompressToStringUtf8
	unicodeToAnsi
	unicodeToString
	unpackCString
	uuidAsString

	Boolean Type
	Boolean Method
	display

	Byte Type
	Using Byte Types in Assignments
	Byte Methods
	bitAnd
	bitNot
	bitOr
	bitXor
	display
	isEven
	isOdd
	max
	min
	numberFormat
	padLeadingWith
	parseCurrencyWithCurrentLocale
	parseCurrencyWithFmtAndLcid
	parseNumberWithCurrentLocale
	parseNumberWithFmtAndLcid
	userCurrencyFormat
	userCurrencyFormatAndLcid
	userNumberFormat
	userNumberFormatAndLcid

	Character Type
	Character Methods
	compareEql
	compareGeneric
	compareGeq
	compareGtr
	compareLeq
	compareLss
	compareNeq
	display
	isAlpha
	isDelimiter
	isHex
	isLower
	isNumeric
	isPrintable
	isUpper
	makeString
	setByteOrderLocal
	setByteOrderRemote
	toHex
	toLower
	toUpper

	Date Type
	Historical Note about the Date Type
	Date Primitive Type Examples
	Date Methods
	day
	dayName
	dayNameWithLcid
	dayOfWeek
	dayOfYear
	daysInMonth
	display
	format
	isFormatable
	isLeapYear
	isValid
	lastOccurrenceOfDayInMonth
	longFormat
	month
	monthName
	monthNameWithLcid
	nthOccurrenceOfDayInMonth
	parseForCurrentLocale
	parseLongWithCurrentLocale
	parseLongWithFmtAndLcid
	parseLongWithPicAndLcid
	parseShortWithCurrentLocale
	parseShortWithFmtAndLcid
	parseShortWithPicAndLcid
	setByteOrderLocal
	setByteOrderRemote
	setDate
	setDateYearAbsolute
	shortDayNameWithLcid
	shortFormat
	shortMonthNameWithLcid
	subtract
	userFormat
	userLongFormatAndLcid
	userLongFormatPicAndLcid
	userShortFormatAndLcid
	userShortFormatPicAndLcid
	year

	Decimal Type
	Decimal Methods
	abs
	asBinary
	asDecimal
	currencyFormat
	display
	getDeclaredPrecision
	getDeclaredScaleFactor
	numberFormat
	parseCurrencyWithCurrentLocale
	parseCurrencyWithFmtAndLcid
	parseNumberWithCurrentLocale
	parseNumberWithFmtAndLcid
	rounded
	rounded64
	roundedTo
	setByteOrderLocal
	setByteOrderRemote
	truncated
	truncated64
	truncatedTo
	userCurrencyFormat
	userCurrencyFormatAndLcid
	userNumberFormat
	userNumberFormatAndLcid

	Integer Type
	Integer Methods
	abs
	bitAnd
	bitNot
	bitOr
	bitXor
	display
	isEven
	isOdd
	max
	min
	numberFormat
	padLeadingWith
	parseCurrencyWithCurrentLocale
	parseCurrencyWithFmtAndLcid
	parseNumberWithCurrentLocale
	parseNumberWithFmtAndLcid
	setByteOrderLocal
	setByteOrderRemote
	userCurrencyFormat
	userCurrencyFormatAndLcid
	userNumberFormat
	userNumberFormatAndLcid

	Integer64 Type
	Integer64 Methods
	abs
	bitAnd
	bitNot
	bitOr
	bitXor
	display
	isEven
	isOdd
	max
	min
	numberFormat
	padLeadingWith
	parseCurrencyWithCurrentLocale
	parseCurrencyWithFmtAndLcid
	parseNumberWithCurrentLocale
	parseNumberWithFmtAndLcid
	setByteOrderLocal
	setByteOrderRemote
	userCurrencyFormat
	userCurrencyFormatAndLcid
	userNumberFormat
	userNumberFormatAndLcid

	MemoryAddress Type
	MemoryAddress Methods
	adjust
	asBinary32
	asBinary64
	display
	isValid

	Point Type
	Point Methods
	display
	set
	setX
	setY
	x
	y

	Real Type
	Real Constants
	Real Methods
	abs
	arccos
	arcsin
	arctan
	arcTan2
	cos
	currencyFormat
	display
	exp
	getFloatingPointClassification
	infinity
	isInfinity
	isNaN
	log
	log10
	max
	min
	nan
	numberFormat
	parseCurrencyWithCurrentLocale
	parseCurrencyWithFmtAndLcid
	parseNumberWithCurrentLocale
	parseNumberWithFmtAndLcid
	rounded
	rounded64
	roundedTo
	roundedUp
	roundedUp64
	setByteOrderLocal
	setByteOrderRemote
	setFloatingPointClassification
	sin
	sqrt
	tan
	truncated
	truncated64
	truncatedTo
	userCurrencyFormat
	userCurrencyFormatAndLcid
	userNumberFormat
	userNumberFormatAndLcid

	String Type
	String Methods
	asANSI
	asDate
	asGuid
	asObject
	asOid
	asStringUtf8
	asUuid
	base64Decode
	bufferAddress
	bufferMemoryAddress
	compareEql
	compareGeneric
	compareGeq
	compareGtr
	compareLeq
	compareLss
	compareNeq
	compressToBinary
	display
	fillString
	firstCharToLower
	firstCharToUpper
	getHugeTokens
	getNextToken
	getTokens
	isByte
	isDecimal
	isInteger
	isInteger64
	isReal
	length
	makeString
	makeXMLCData
	maxLength
	padBlanks
	padLeadingZeros
	plainTextToStringUtf8
	pos
	replace__
	replaceChar
	replaceFrom__
	reverse
	reversePos
	reversePosIndex
	scanUntil
	scanWhile
	toLower
	toUpper
	trimBlanks
	trimLeft
	trimRight

	StringUtf8 Type
	StringUtf8 Methods
	asANSI
	asDate
	asPlainText
	asString
	bufferMemoryAddress
	byteOffsetFromCharacterIndex
	characterIndexFromByteOffset
	compareEql
	compareGeneric
	compareGeq
	compareGtr
	compareLeq
	compareLss
	compareNeq
	compressToBinary
	display
	firstCharToLower
	firstCharToUpper
	isValid
	length
	maxLength
	padBlanks
	padLeadingZeros
	pos
	posUsingByteOffset
	replaceChar
	reverse
	reversePos
	reversePosIndex
	scanUntil
	scanWhile
	size
	substringAtByteOffset
	toLower
	toUpper
	trimBlanks
	trimLeft
	trimRight

	Time Type
	Time Methods
	currentLocaleFormat
	display
	format
	hour
	isValid
	milliSecond
	minute
	parseWithCurrentLocale
	parseWithFmtAndLcid
	parseWithPicAndLcid
	second
	setByteOrderLocal
	setByteOrderRemote
	setTime
	setTimeStrict
	subtract
	userFormat
	userFormatAndLcid
	userFormatPicAndLcid

	TimeStamp Type
	TimeStamp Constant
	TimeStamp Methods
	date
	display
	getSecondsFromUnixEpoch
	isValid
	literalFormat
	localToUTCTime
	localToUTCTimeUsingBias
	setByteOrderLocal
	setByteOrderRemote
	setDate
	setFromUnixEpoch
	setTime
	time
	utcToLocalTime
	utcToLocalTimeUsingBias

	TimeStampInterval Type
	TimeStampInterval Methods
	display
	getMilliseconds
	isValid
	set

	TimeStampOffset Type
	TimeStampOffset Methods
	asLocalTimeStamp
	asUTCTimeStamp
	display
	getUTCBias
	isValid
	setFromLocalTimeStamp

	Appendix A Global Constants Reference
	ApplicationStatus Category
	CharacterConstants Category
	ColorConstants Category
	Environment Category
	Exceptions Category
	ExecutionLocation Category
	JadeDbFileVolatility Category
	JadeDynamicObjectNames Category
	JadeDynamicObjectTypes Category
	JadeErrorCodesDatabase Category
	JadeErrorCodesIDE Category
	JadeErrorCodesRPS Category
	JadeErrorCodesSDS Category
	JadeErrorCodesWebService Category
	JadeLocaleIdNumbers Category
	JadeOdbc Category
	JadeProcessEvents Category
	JadeProfileString Category
	KeyCharacterCodes Category
	LockDurations Category
	LockTimeouts Category
	Locks Category
	MessageBox Category
	MessageBoxCustom Category
	NotificationResponses Category
	ObjectVolatility Category
	PossibleTransientLeaks Category
	Printer Category
	RPSTransitionHaltCode Category
	SDSConnectionState Category
	SDSDatabaseRoles Category
	SDSEventTypes Category
	SDSReorgState Category
	SDSSecondaryState Category
	SDSStopTrackingCodes Category
	SDSTakeoverState Category
	SDSTransactionStates Category
	SQL Category
	Sounds Category
	SystemEvents Category
	SystemLimits Category
	TimerDurations Category
	UUIDVariants Category
	UnusedParameterReport Category
	UserEvents Category

