
Copyright©2021 Jade Software Corporation Limited. All rights reserved.

.NET Developer’s Reference
 V E R S I O N 2020.0.02

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2021 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadme.txt file.

DotNetDev - 2020.0.02

Contents

Contents iii

Before You Begin vi
Who Should Read this Reference vi
What’s Included in this Reference vi
Related Documentation vi
Conventions vii

Chapter 1 Software Requirements 9
JADE Requirements 9
.NET Requirements 9

Chapter 2 Object Management 10
Overview 11
JADE Object Handling 11
JADE Object Caches 11
JADE Object Concurrency Management 12

Distributed Processing Architecture 13
Nodes 14
JoobContexts, Sessions, and JoobConnections 14
JADE Object Caches 14
Object Locking 15

Maintaining Data Consistency and Coherence 15
Data Consistency 15
Data Coherence 15
Automatic Cache Coherency 16
The Transaction Model 16
Transaction Isolation 17
Object Locking Overview 17

JADE Object Locking 18
Lock Types 18

Shared Locks 18
Reserve Locks 18
Update Locks 18
Exclusive Locks 19

Lock Type Compatibility 19
Lock Duration 19
Lock Timeout 19
Lock Kind 20
Explicit Locking and Unlocking 20
Implicit Locking and Unlocking 21

Implicit Locking 21
Implicit Unlocking 21
Examples 22

Load State 22
Upgrading and Downgrading Locks 23

General 23
Changing Lock Type 24
Changing Lock Duration 24

Collection Locking 25
Enumerating JADE Collections 25

Deadlocks 26
Simple Deadlocks 26
Indirect Deadlocks 26
Single Object Deadlocks 27
Deadlock Detection 28
Deadlock Exceptions 28

Double Deadlock Exceptions 28

DotNetDev - 2020.0.02

Avoiding Deadlock Exceptions 28
Lock Order 28
Reserve Locks 29
Update Locks 30

Investigating Deadlocks 31
Exceptions 31

JoobObjectLockedException 31
JoobDeadlockException 33
JoobInterveningUpdateException 34

Object Volatility 35
Volatile Objects 35
Stable Objects 36
Frozen Objects 37

Specifying and Changing Object Volatility 38
Class Volatility 38
Individual Object Volatility 39

Frozen Files and Partitions 39
Freezing User Schema Files 40

Chapter 3 Introductory Tutorial to JADE .NET 41
Overview 41
JADE Banking System 41

Model-View Separation 42
Customer Class 42
Bank Class 43
Application Subclass 43

Defining the JADE Connection Application 44
Defining the C# Exposure 45
Building the Class Exposure Project in Visual Studio 51
Adding a WPF Application 53

Adding References 56
Coding the Application Configuration File 59
Designing the Form 60
Coding the Form Constructor and Destructor 60
Listing Customers 63
Adding a Customer 64
Using Notifications 65
Invoking on the GUI Thread 66

Chapter 4 Erewhon .NET Example 68
Overview 68
Example .NET Files 68
Running the WpfErewhonApp Application 69

Notifications 70
Multiprocessing 71

Building Your Own Application 72

Chapter 5 Using the JADE .NET Framework 73
Overview 73
Exposing JADE Classes 73
JADE .NET Framework 74
JADE .NET API Documentation 74
.NET and JADE 74
How a .NET Application Connects to JADE 74

Chapter 6 .NET Exposure 75
Overview 75

.NET Developer's
Reference

Contents iv

DotNetDev - 2020.0.02

.NET Exposures 75
Application Configuration File 76

Connection String Extensions 77
Exposed JADE Classes 78
Exposed JADE Properties 79
Exposed JADE Methods 80

JADE Method Parameter Usage 80
Exposed JADE Class Constants 81
Collections 81

Chapter 7 Developing Applications in .NET to Use JADE Classes 85
Overview 85
Using JADE Classes in .NET 85

JADE .NET Assembly Public Keys 86
Connecting to JADE 86
Pool of Available Processes 87
Accessing Database Instances 87
Accessing JADE System Objects 88
Creating Objects 89
Deleting Objects 90
Locking 91
Notifications 91

Notifications in JADE and .NET 92
Exceptions 93
Accessing Imported .NET Exception Classes 93
Transactions 93
Multiple Database Access for .NET 94

Using Multiple Database Access 94

Appendix A Mapping JADE Primitives to CLR Data Types 96

Appendix B JADE .NET Spatial Feature 97
Spatial Data 97

Working with Geometry 98
Creating a Geometry 98
Querying and Analyzing Geometries 101

Spatial Index 101

.NET Developer's
Reference

Contents v

DotNetDev - 2020.0.02

Before You Begin

The JADE NET Developer’s Reference is intended as a major source of information when using the JADE .NET
class library to develop .NET applications accessing JADE database objects.

Who Should Read this Reference
The main audience for the JADE .NET Developer’s Reference is expected to be .NET developers using the .NET
Framework.

What’s Included in this Reference
The JADE .NET Developer’s Reference has seven chapters and two appendices.

Chapter 1 The software requirements for developing and running JADE .NET applications

Chapter 2 A reference to the JADE Object Manager functionality available from JADE .NET

Chapter 3 An introductory tutorial to JADE .NET

Chapter 4 An overview of the .NET example for the Erewhon Demonstration System

Chapter 5 An overview of the framework for developing .NET applications to connect to a JADE system

Chapter 6 A reference to the .NET classes resulting from exposing JADE classes

Chapter 7 A reference to the JadeSoftware.Jade.DotNetInterop library and the API required to use the
exposed classes

Appendix A A mapping of JADE primitive types to Common Language Runtime (CLR) data types

Appendix B A reference to developing applications to store, edit, and query spatial information directly
through the JADE .NET API

Related Documentation
Other documents that are referred to in this reference, or that may be helpful, are listed in the following table, with
an indication of the JADE operation or tasks to which they relate.

Title Related to…

JADE Database Administration Guide Administering JADE databases

JADE Developer’s Reference Developing or maintaining JADE applications

JADE Development Environment Administration Guide Administering JADE development environments

JADE Development Environment User’s Guide Using the JADE development environment

JADE Encyclopaedia of Classes System classes (Volumes 1 and 2), Window classes
(Volume 3)

JADE Encyclopaedia of Primitive Types Primitive types and global constants

JADE Installation and Configuration Guide Installing and configuring JADE

DotNetDev - 2020.0.02

Title Related to…

JADE Initialization File Reference Maintaining JADE initialization file parameter values

JADE Object Manager Guide JADE Object Manager administration

JADE Synchronized Database Service (SDS)
Administration Guide

Administering JADE Synchronized Database
Services (SDS), including Relational Population
Services (RPS)

JADE Thin Client Guide Administering JADE thin client environments

JADE Web Application Guide Implementing, monitoring, and configuring Web
applications

Conventions
The JADE .NET Developer’s Reference uses consistent typographic conventions throughout.

Convention Description

Arrow bullet () Step-by-step procedures. You can complete procedural instructions by using either
the mouse or the keyboard.

Bold Items that must be typed exactly as shown. For example, if instructed to type foreach,
type all the bold characters exactly as they are printed.

File, class, primitive type, method, and property names, menu commands, and dialog
controls are also shown in bold type, as well as literal values stored, tested for, and
sent by JADE instructions.

Italic Parameter values or placeholders for information that must be provided; for example,
if instructed to enter class-name, type the actual name of the class instead of the word
or words shown in italic type.

Italic type also signals a new term. An explanation accompanies the italicized type.

Document titles and status and error messages are also shown in italic type.

Blue text Enables you to click anywhere on the cross-reference text (the cursor symbol
changes from an open hand to a hand with the index finger extended) to take you
straight to that topic. For example, click on the "How a .NET Application Connects to
JADE" cross-reference to display that topic.

Bracket symbols ([]) Indicate optional items.

Vertical bar (|) Separates alternative items.

Monospaced font Syntax, code examples, and error and status message text.

ALL CAPITALS Directory names, commands, and acronyms.

Small font Keyboard shortcut keys.

Key combinations and key sequences appear as follows.

Convention Description

Key1+Key2 Press and hold down the first key and then press the second key. For example, "press
Shift+F2" means to press and hold down the Shift key and press the F2 key. Then
release both keys.

.NET Developer's
Reference

Before You Begin vii

DotNetDev - 2020.0.02

Convention Description

Key1,Key2 Press and release the first key, then press and release the second key. For example,
"press Alt+F,X" means to hold down the Alt key, press the F key, and then release both
keys before pressing and releasing the X key.

.NET Developer's
Reference

Before You Begin viii

DotNetDev - 2020.0.02

Chapter 1 Software Requirements

This chapter covers the following topics.

JADE Requirements

.NET Requirements

JADE Requirements
When a .NET application uses classes that have been exposed from a JADE system, it uses the APIs from the
JadeSoftware.Jade.DotNetInterop.dll and other assemblies in the JADE .NET framework for JADE version
7.0.03 or later. These assemblies are 64-bit DLLs.

The .NET application connects to the JADE database using the binary files from a standard JADE client, which
must be a 64-bit client.

Note The C# exposure can be generated using any JADE development client (32-bit or 64-bit).

.NET Requirements
To develop and compile .NET applications for .NET exposure, you require a minimum of:

Microsoft Visual Studio 2017 or higher

Note Projects must target .NET Framework 4.7.1 or higher.

For external component libraries, you require:

.NET 4.x components (or .NET 3.x, if you are using components designed for .NET 3.x)

DotNetDev - 2020.0.02

Chapter 2 Object Management

This chapter covers the following topics.

Overview

JADE Object Handling

JADE Object Caches

JADE Object Concurrency Management

Distributed Processing Architecture

Maintaining Data Consistency and Coherence

Data Consistency

Data Coherence

Automatic Cache Coherency

The Transaction Model

Object Locking Overview

JADE Object Locking

Lock Types

Lock Type Compatibility

Lock Duration

Lock Timeout

Lock Kind

Explicit Locking and Unlocking

Implicit Locking and Unlocking

Load State

Upgrading and Downgrading Locks

Collection Locking

Deadlocks

Exceptions

Object Volatility

Volatile Objects

Stable Objects

Frozen Objects

DotNetDev - 2020.0.02

Specifying and Changing Object Volatility

Class Volatility

Individual Object Volatility

Frozen Files and Partitions

Freezing User Schema Files

Overview
This chapter describes the JADE Object Manager, which implements object-oriented and distributed processing
functionality, including features such as object locking, transactions, transaction isolation, and automatic cache
coherency concurrency.

In this chapter, the term JADE session or JADE session execution is used to refer to a JADE process in a node.
This terminology should assist the .NET developer who is unfamiliar with the JADE and could potentially confuse
a JADE process with a Windows process.

JADE Object Handling
The JADE distributed processing architecture has a single semantic model for all objects and two basic lifetime
variations: persistent and transient lifetimes.

Persistent objects, which are permanently stored in the JADE database, live across JADE session executions and
are shared by all JADE sessions in all nodes of the system. Concurrency control is enforced for persistent objects.
Update operations on persistent objects must be performed within a transaction; typically inside a JoobContext
BeginTransaction and System.Data.IDbTransaction Commit method pair.

Changes made to persistent objects within a transaction are hidden from other JADE sessions until committed.
This means that other JADE sessions accessing these objects will not see the uncommitted updates, but will
instead view the most-recently committed editions.

Transient objects are local to the JADE session that created them; that is, they cannot be accessed by any other
JADE session. Because of this, no concurrency control operations are performed when they are updated, which
gives optimal performance. These transient objects are automatically removed when the JADE session that
created them becomes inactive, typically by disposing its attached JoobContext instance.

No transaction is necessary when creating, deleting, or updating transient objects. These objects can be updated
at any time.

By default, JADE objects are created with persistent lifetime. To create transient objects, there is a constructor for a
JADE object that takes the lifetime of the object as a parameter using the ClassPersistence enumeration, which
has the values Persistent and Transient.

JADE Object Caches
On each JADE client node, there is a persistent JADE object cache to hold in-memory copies of persistent objects
that have been accessed by JADE sessions, through their associated JADE context, on that node. One of the
benefits of caching an object is that the object can be accessed via JADE contexts attached to the client node at a
later time without needing to be fetched from the database server node.

Because objects are retained in cache, it is possible to run out of allocated cache space. When this happens, the
least-recently used objects are discarded from cache. If a discarded object is required in the future, the latest
edition is fetched from the database.

.NET Developer's
Reference

Chapter 2 Object Management 11

DotNetDev - 2020.0.02

JADE automatic cache coherency keeps objects in the cache from becoming out of date. When a JADE object is
updated, the database server knows which connected caches have copies of the object that are now obsolete. It
sends messages to the affected caches, resulting in obsolete objects being discarded. If a discarded object is
required in the future, the latest edition is fetched from the database server.

Locking an object guarantees that the copy in cache will be the latest edition.

JADE also maintains a transient JADE object cache on each client node, to contain transient objects created by
JADE sessions on that node. Even though cached, the transient objects are visible only to the JADE sessions that
created them.

If the transient JADE object cache of a client node overflows, transient objects are written out to a .tmp file. Each
transient database file is unique to a specific JADE session and is located in the path specified by the
TransientDbPath parameter in the [JadeClient] section of the JADE initialization file.

The file name has the following format.

tdb_<host-name>_<pid><designator>.tmp

In this format, the <pid> value is the operating system executing process identifier and the <designator> value is
one of the following.

[kbp_nnnnnn], for transient files associated with a JADE background session

[session-oid], for transient files associated with a JADE session, where session-oid is the object identifier of
the JADE session

If a .tmp file is found to be growing, you can identify the JADE session to which it belongs by locating the session
identifier in the jommsg.log; for example:

2014/08/25 15:58:14.399 0b958-bc0c Jom: Local process sign-on: oid=[187.251],
process=0x000000000D39DDD0, no=2, id=48140, db=4, type=2, (non-prodn),
scm=BankingViewSchema, app=DotNetConnection

In this log entry example, [187.251] is the object identifier of the JADE session. Note that in the message logs,
JADE sessions are referred to as local processes.

The temporary (.tmp) file for each session is deleted when the client node terminates. Certain kinds of failure (for
example, a node crash) can result in these temporary files not being deleted. You can delete any temporary
transient object overflow file that has been left behind, if required.

You can set the size of the JADE caches in the JADE initialization file used by the client node.

The default size for the persistent object cache (that is, the default value of the ObjectCacheSizeLimit
parameter in the [JadeClient] and [JadeServer] sections of the JADE initialization file) is 80M bytes, and 40M
bytes for the transient object cache (that is, the default value of the TransientCacheSizeLimit parameter in
the [JadeClient] and [JadeServer] sections of the JADE initialization file).

The minimum size for the persistent and transient object caches is 3M bytes.

JADE Object Concurrency Management
When multiple threads are accessing and updating JADE database objects at the same time, there are
concurrency issues that need to be managed, as follows.

Data must be kept consistent when being updated.

Applications need to access consistent, up-to-date data.

.NET Developer's
Reference

Chapter 2 Object Management 12

DotNetDev - 2020.0.02

JADE provides features such as object locking, transactions, transaction isolation, and automatic cache
coherency to address these issues.

Many of the features work automatically, but there are various options to make them more efficient.

This chapter discusses these features and options, describing how to use this area of functionality and the options
that are available to write efficient and scalable applications. Topics include:

Distributed processing architecture

Maintaining data consistency and currency

Automatic cache coherency

The transaction model

Transaction isolation

Object locking

Object volatility (stable and frozen objects)

Frozen files and partitions

Distributed Processing Architecture
The following diagram is an overview of the JADE distributed processing architecture.

.NET Developer's
Reference

Chapter 2 Object Management 13

DotNetDev - 2020.0.02

For the purposes of this chapter, a JADE system consists of a JADE database, a JADE database server, and one
or more JADE client nodes. Each client node is an executing process containing a pool of JADE sessions that
allow threads to connect to JADE using JoobContext instances. There is also a cache to hold local copies of
JADE objects accessed by JADE sessions on that client node, and a lock table to record which objects are
currently locked by active sessions on that node.

The JADE database server has a master lock table to record JADE object locks held by applications running on all
nodes.

Nodes
A JADE node is an executing process. There are two main types of nodes: the server node and client node.

The server node has a direct connection to the JADE database and maintains system-wide information (for
example, which objects are currently locked). Client nodes connect to the server node for JADE object locking,
retrieval, and storage. An executing process that connects to the JADE database server is a client node.

JoobContexts, Sessions, and JoobConnections
Each client node has a pool of JADE sessions, providing an interface to the JADE Object Manager and JADE
database.

A process thread attaches to an available JADE session by creating a JoobContext object. The thread is
detached from the JADE session when the JoobContext object is disposed.

A JoobContext object interacts with a JADE session using a JoobConnection object. JoobConnection objects
are typically created and disposed of automatically with their owning JoobContext object. In many scenarios,
users will not have to explicitly interact with JoobConnection objects.

The C# JoobSession, JoobNode, and JoobSystem classes are the wrappers for the JADE Object Manager
Process, Node, and System classes, respectively. When a JoobContext or a JoobConnection class is created
for first time, the JADE Object Manager initialize process occurs and a pool of JADE Object Manager process
agents is created (the default value is 10).

When your code gets a new JoobContext (depending on overload), a new JoobConnection is created, which
obtains a JADE Object Manager process agent from the pool.

The JoobContext is the primary way of interacting with a process agent; for example, for retrieval of a specific
instance, locking, notifications, and so on.

When the JoobContext is disposed of (explicitly or by a using block), the JADE Object Manager process agent is
put back in the pool. A JoobContext provides access to the JoobSession object, if needed. It can be obtained
with JoobContext.GetSystemVariables().Process to make the ObjectId available, which
JoobContext.FindInstance<JoobSession>(ObjectId); can then retrieve. The grace period is the amount of time
given to the process running on the node to complete and dispose of any JoobContexts before the node is
terminated and the JADE Object Manager starts terminating the process agents. (The TimeSpan wait time is
usually in the range 5 through 30 seconds, depending on the size and structure of your system.) For an example,
see "Locking", in Chapter 7.

The C# JoobObject class (and all of its subclasses) has an ObjectId property, which is equivalent to the JADE
Object Manager objects oid.

JADE Object Caches
Each client node has a JADE object cache to hold in-memory copies of JADE database objects.

When an object is retrieved from the JADE database, it is stored locally in the client node’s JADE object cache.
The object can be subsequently accessed locally, without needing to be retrieved via the database server.

.NET Developer's
Reference

Chapter 2 Object Management 14

DotNetDev - 2020.0.02

The JADE object cache is shared by all JADE sessions for that client node.

An object in the JADE object cache could become out of date if the object is updated on another client node.
However, automatic cache coherency and object locking keep the JADE object cache up to date, as described
later in this chapter.

Object Locking
Object locking is used to coordinate accessing and updating of JADE objects. There are four types of locks: two for
reading (Shared and Reserve) and two for updating (Update and Exclusive). Locking is explained in more detail
later in this chapter.

The current lock status of JADE objects is system-wide, and is maintained in tables on the server and client nodes.

The server lock table records the locks for all JADE objects, regardless of the client node on which the locking
JADE session is executing. Client nodes therefore need to communicate with the server node in order to lock and
unlock JADE objects.

Each client node lock table records copies of the JADE objects that are locked by active JADE sessions on the
node.

Maintaining Data Consistency and Coherence
This section describes data consistency and data coherence.

Data Consistency
When a JADE session is updating JADE objects, the data must be kept consistent. JADE sessions wanting to
update the same object must not interfere with each other, and other sessions viewing the data must not see
incomplete updates.

Object locking is used to ensure that only one JADE session at a time can be updating a JADE object. A JADE
session must lock an object before it can update it, with a lock type that is available only to one JADE session at a
time (that is, an exclusive or an update lock).

JADE sessions can update objects only within a transaction; that is, while the transaction is active (for example,
bracketed by JoobContext BeginTransaction and IDbTransaction Commit method calls).

While a transaction is active, any updates are not visible to other JADE sessions. The other JADE sessions
instead view the JADE objects, as they were without the uncommitted updates. Committing the transaction causes
the updates to be applied to the JADE database and made visible. This is discussed in more detail later in this
chapter.

Data Coherence
When a JADE session accesses a JADE object that has been copied into the JADE object cache on a client node,
the copy may no longer be current if the object has been updated on another client node. The object will need to
be fetched again from the database server node, to bring it up to date.

Automatic cache coherency (discussed in the following section) is a JADE feature that keeps objects in the JADE
object cache up to date.

Object locking can also be used to ensure that a JADE object is up to date. When a JADE session has an object
locked, its view of the object is guaranteed to be completely up to date.

.NET Developer's
Reference

Chapter 2 Object Management 15

DotNetDev - 2020.0.02

Automatic Cache Coherency
JADE objects being used by JADE sessions are copied into local memory, in the JADE object cache of the client
node. This speeds up access, by minimizing object requests to the database server node. However, this creates
the situation where if the object is updated on another client node, the local copy in cache could no be longer up
to date.

To handle the situation where the local copy in cache would otherwise become out of date, JADE provides a
feature, automatic cache coherency, which automatically detects when a JADE object has been updated and
causes local copies of the object to be marked for refresh in all of the caches where it has been copied. This
means that the next time the object is accessed, it is fetched from the database server node and therefore be up to
date. This feature is enabled by default.

For most read operations, this mode of operation is satisfactory and avoids the extra code and overhead involved
with having to place object locks. However, there is a small time delay between when the object is updated in the
database and when the client nodes are notified. If it is crucial to an application that a JADE object being read is
guaranteed to be up to date, a JADE session must lock the object.

Note Automatic cache coherency does not apply to JADE collections, which are kept up to date by being
automatically locked whenever accessed.

The Transaction Model
The transaction model is used to group and isolate sets of updates to database objects, in order to maintain data
consistency.

All sets of updates must be applied and made visible as a group. Until the updates are ready, they should be
invisible to other JADE sessions. If something goes wrong, all of the pending updates must be discarded.

In order to update objects, a JADE session must begin a transaction. The updates are held temporarily until the
transaction is committed, at which time they get applied to the JADE database as permanent changes and made
visible. Before that happens, other JADE sessions view the objects as they were without the uncommitted updates
(this is termed transaction isolation).

If the full set of updates cannot be completed (for example, due to an error), the transaction is rolled back, which
cancels the transaction and discards all of the pending updates in the set.

This concept implements the standard transaction ACID principles of atomicity (either all of the updates or none of
the updates get applied), and isolation (the updates are not visible until applied).

With JADE, a transaction is typically started using the JoobContext BeginTransactionmethod. This method
returns a System.Data.IDbTransaction JADE transaction object. The transaction object’s Commit method
commits the transaction, which applies the updates to the database. Alternatively, the Rollback method cancels
the transaction, discarding the uncommitted updates.

The transaction object must be disposed of at the end of the transaction. If Commit is not called before the
transaction object is disposed of, the transaction will be rolled back.

You can use a using block to carry out a transaction and ensure that the transaction object is disposed of at the
end of the block.

The following code fragment illustrates a successful transaction, where updates are permanently applied to the
JADE database and made visible.

using (JoobContext context = new JoobContext())
{

using (System.Data.IDbTransaction tran = context.BeginTransaction())

.NET Developer's
Reference

Chapter 2 Object Management 16

DotNetDev - 2020.0.02

{
//... update objects
tran.Commit();

}
}

The following code fragment illustrates a transaction that is rolled back, where updates are discarded and not
applied.

using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

//... update objects
tran.Rollback();

}

Transaction Isolation
Transaction isolation is the mechanism that makes updates that have not yet been committed invisible to other
JADE sessions. Instead, these JADE sessions view the most-recently committed editions of the JADE objects; that
is, the way they were without the uncommitted updates.

While a JADE object is being updated, two copies can exist in the JADE object cache: one with and one without
the updates. The copy with the updates is visible only to the updating JADE session. Other JADE sessions access
the other copy, which does not include the updates.

When a transaction is committed, any older copies of objects in the cache are removed.

JADE automatically provides transaction isolation for JADE objects.

Object Locking Overview
JADE objects are locked individually.

Locking a JADE object does two things. Firstly, it controls concurrent access to an object. Secondly, it ensures that
a JADE session accesses the most up-to-date edition of the object.

JADE provides four types of lock.

Shared

Reserve

Update

Exclusive

Update and exclusive locks are write locks, which allow JADE sessions to update an object and prevent other
sessions from updating the object. An exclusive lock also prevents the acquisition of read locks.

Shared and reserve locks are read locks, which prevent other JADE sessions from applying updates to an object
without prohibiting other read locks.

Lock types are discussed in more detail in the following section.

Although JADE sessions can access a JADE object without locking, they cannot update it, and the view of the
object’s data can change if it is updated by another session.

.NET Developer's
Reference

Chapter 2 Object Management 17

DotNetDev - 2020.0.02

If a JADE session does not want to update an object but wants to have a consistent view that will not change while
it is being accessed, it must obtain a lock on the JADE object (of any type). The object cannot have updates
committed by another JADE session until the object is unlocked.

If a JADE session wants to update a JADE object, this must be done within a transaction and an exclusive or an
update lock must first be acquired, either implicitly or explicitly. This ensures that no other JADE session can
update the object, as only one session at a time is allowed an exclusive or update lock on an object. In addition,
the lock always remains in place until the transaction has been committed or rolled back.

JADE automatically acquires an implicit exclusive or update lock for any object being updated, if it is not already
so locked.

When a JADE session requests a type of lock that is not compatible with the current locks in place by other
sessions, it is queued until those locks get unlocked (up to a specific time limit) and the session can acquire the
requested lock.

The locking concept helps to implement the standard transaction ACID principle of consistency (that is, data is
always consistent).

JADE Object Locking
This section describes and discusses object locking in detail. Object locking applies to JADE objects.

Lock Types
There are four lock types, each providing different levels of concurrency and updating ability. For details, see the
following subsections.

Shared Locks
A shared lock allows several JADE sessions to simultaneously read a JADE object but not update it.

Shared locks maintain concurrency while ensuring that a JADE session never works with obsolete data.

Reserve Locks
A reserve lock is available for situations where a JADE session eventually intends to update a JADE object but
needs to minimize the length of time the object is locked with an exclusive or update lock.

Using a reserve lock allows other JADE sessions to acquire shared locks, but not any other type of lock.

Reserve locks also provide a way to avoid potential deadlocks (for details, see "Avoiding Deadlock Exceptions",
later in this chapter).

Update Locks
An update lock allows a JADE session to update a JADE object, while still allowing other sessions to acquire
shared locks (but not any other type of lock). The other JADE sessions with shared locks see the most-recently
committed edition of the object, without the pending updates.

Update locks can be used only within a transaction.

When a JADE session commits a transaction, any update locks are automatically requested to be upgraded to
exclusive locks before the updates are committed. This ensures that no other JADE sessions have the objects
locked at the time the updates are committed.

.NET Developer's
Reference

Chapter 2 Object Management 18

DotNetDev - 2020.0.02

Exclusive Locks
An exclusive lock allows a JADE session to update a JADE object, while preventing all other sessions from
locking the object.

Lock Type Compatibility
The valid concurrent lock combinations are shown in the following table.

Exclusive Update Reserve Shared

Exclusive No No No No

Update No No No Yes

Reserve No No No Yes

Shared No Yes Yes Yes

To summarize:

A JADE object can have multiple shared locks, but only one reserve, update, or exclusive lock.

Shared locks are compatible with reserve locks and update locks, but not with exclusive locks.

A reserve lock is compatible with shared locks, but not with update locks or exclusive locks.

An exclusive lock is not compatible with any other lock type.

Lock Duration
A lock can have transaction duration or session duration.

A transaction duration lock will be unlocked when a transaction ends (that is, it is committed or rolled back). The
lock will not be unlocked at the end of a transaction if it has session duration.

Locks with session duration remain in place until unlocked explicitly, or when the JADE session becomes inactive,
which typically happens when its JADE context is disposed of. An explicit unlock request will unlock an object
regardless of the duration, unless the JADE session currently has a transaction in effect, in which case the unlock
request is ignored.

Explicit locks specify the lock duration. Implicitly acquired locks have transaction duration.

Lock Timeout
When a JADE session requests a lock on a JADE object that is currently incompatibly locked by another session,
the request is queued until no incompatible locks remain, in which case the request can be granted. However, the
lock request is queued only for a specific amount of time before it is rejected and a JoobObjectLockedException
is thrown.

The timeout value for lock requests is specified in a parameter of the JoobContext Lock method. For locks that
are implicitly acquired by JADE, the timeout value is specified in the following section and parameter of the JADE
initialization file.

[JadeServer]
ServerTimeout=nnnnn

.NET Developer's
Reference

Chapter 2 Object Management 19

DotNetDev - 2020.0.02

The ServerTimeout parameter specifies the maximum number of milliseconds to wait before an implicit lock
request times out. The default value is 10,000 milliseconds.

Lock Kind
As well as duration and type, locks have a kind. Normally, the kind is zero (0), but can have a different value when
stable objects are being used. JADE sessions have no direct control of the lock kind. It is of interest only when
analyzing current locks.

The possible values are listed in the following table.

Kind Description

LockKind.Normal Normal lock

LockKind.Local Local lock – a shared lock on a stable JADE object for a specific JADE session

LockKind.Node Node lock – a shared lock on a stable JADE object, recorded for a client node rather
than a specific JADE session

For more details, see "Stable Objects" and "Object Volatility", later in this chapter.

Explicit Locking and Unlocking
The Lock method of the JoobContext class is used to explicitly lock objects.

void Lock(JoobObject receiver,
LockType type,
LockDuration duration,
TimeSpan waitTime);

LockType and LockDuration are enums with the following sets of values.

LockType.Shared

LockType.Reserve

LockType.Update

LockType.Exclusive

LockDuration.Transaction

LockDuration.Session

Objects are explicitly unlocked using the JoobContext Unlock method.

void Unlock(JoobObject receiver);

The Unlock method call is ignored if the JADE session is in transaction state (that is, it has a JADE transaction in
effect) or in load state (that is, it is executing within a BeginLoad/EndLoad bracket, described under "Load State").
Instead, provided that the lock is of transaction duration, the object will be unlocked when the transaction is
committed or rolled back, or when load state is terminated.

Session duration locks must be unlocked using the Unlock method outside transaction state.

Note All locks held by a JADE session are released, regardless of duration, when the session becomes
inactive, which typically is when its JoobContext instance is disposed of.

.NET Developer's
Reference

Chapter 2 Object Management 20

DotNetDev - 2020.0.02

The following code fragment locks two JADE objects, then unlocks them:

//Request a shared lock, transaction duration, 1 second time out.
context.Lock(obj1, LockType.Shared, LockDuration.Transaction,

TimeSpan.FromSeconds(1));

//Request a reserve lock, session duration, 5 second time out.
context.Lock(obj2, LockType.Reserve, LockDuration.Session,

TimeSpan.FromSeconds(5));

context.Unlock(obj1);
context.Unlock(obj2);

Implicit Locking and Unlocking
This section describes implicit locking and unlocking.

Implicit Locking
JADE acquires locks implicitly in certain situations.

Whenever a JADE collection is accessed, a shared lock is implicitly acquired on the collection while it is being
accessed, if it is not already locked. The implicit shared lock is removed when the access is complete, unless the
JADE session is in transaction state or in load state.

When a JADE session is in transaction state, an implicit exclusive or update lock is acquired for any JADE object
before it is updated, if it is not yet locked with one of these two types. By default, the implicit lock type is exclusive.
However, you can use the JoobContext SetImplicitUpdatingLockType method to specify that update locks
should be the default for objects that are implicitly locked; for example:

context.SetImplicitUpdatingLockType(LockType.Update);

The implicit lock type reverts to the default value (exclusive) when the JADE session becomes inactive (that is,
when the JADE session is relinquished back to the pool of available sessions).

Implicit lock requests have transaction duration and they use the default timeout value (as specified in the
ServerTimeout parameter in the [JadeServer] section of the JADE initialization file).

Implicit Unlocking
When a JADE session terminates a transaction (that is, it is committed or rolled back), all of its transaction duration
locks are released. This happens regardless of whether the lock was acquired outside of or within transaction
state, and whether or not the Unlock method was used within the transaction.

Session duration locks are not released when a transaction ends. You must explicitly unlock them, using the
Unlock method.

Ending load state also implicitly unlocks transaction duration locks that were acquired while in load state.

When a JADE session becomes inactive (typically when its JoobContext instance is disposed of), all objects that
it still has locked are unlocked, regardless of duration.

.NET Developer's
Reference

Chapter 2 Object Management 21

DotNetDev - 2020.0.02

Examples
The following code sample demonstrates explicit and implicit locking, within and outside of transaction state.

// Lock objects outside transaction state.
TimeSpan timeOut = TimeSpan.FromSeconds(10);
context.Lock(obj1, LockType.Reserve, LockDuration.Transaction, timeOut);
context.Lock(obj2, LockType.Shared, LockDuration.Transaction, timeOut);
context.Lock(obj3, LockType.Shared, LockDuration.Session, timeOut);

using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

// Lock an object in transaction state.
context.Lock(obj4, LockType.Exclusive, LockDuration.Transaction, timeOut);

coll1.Add(obj1); // Acquires an implicit exclusive lock on coll1.

// Acquire an explicit update lock. This can only be done in transaction state.
context.Lock(coll2, LockType.Update, LockDuration.Transaction, timeOut);

coll2.Add(obj2); // No implicit lock, as coll2 is already locked.

context.Unlock(obj2); // This is ignored in transaction state.
context.Unlock(obj3); // This is ignored in transaction state.

obj5.Attr1 = "X"; // Acquires an implicit exclusive lock.

tran.Commit(); // Upgrades coll2’s update lock to exclusive,
// commits the updates,
// then unlocks coll1, coll2, obj1, obj2, obj4, and obj5.
// obj3 remains locked as it has session duration.

}
context.Unlock(obj3); // This will unlock obj3.

// Specify implicit update locks are to be used.
context.SetImplicitUpdatingLockType(LockType.Update);
using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

coll3.Add(obj2); // Acquires an implicit update lock on coll3.

tran.Commit(); // Upgrades the update lock to an exclusive lock,
// commits the update,
// then unlocks coll3.

}
context.SetImplicitUpdatingLockType(LockType.Exclusive);

Load State
A JADE session initiates load state using the JoobConnection BeginLoadmethod. Load state is terminated when
the JoobConnection EndLoadmethod is called, or when a transaction is terminated (that is, it is committed or
rolled back).

When a JADE session is in load state, JADE objects remain locked until load state ends, even if explicitly
unlocked using the JoobContext Unlock method.

.NET Developer's
Reference

Chapter 2 Object Management 22

DotNetDev - 2020.0.02

Using load state avoids the overhead of individually unlocking JADE objects, as objects are unlocked together as
a single operation. It also avoids repeatedly locking the same objects, as they remain locked until load state ends.

When EndLoad is called to end load state, only those locks that were acquired while in load state are unlocked.
Locks that were in place before load state was activated remain locked.

Load state affects only locks with transaction duration. Session duration locks are not affected.

You can nest BeginLoad calls. A matching EndLoad call unlocks only transaction duration locks acquired at the
current nesting level. Load state remains in effect until all BeginLoad calls have been matched with EndLoad
calls, or a transaction terminates. Terminating a transaction (for example, by calling Commit or Rollback) ends
load state for all nested levels.

Load state can be of use where the same JADE collection is being accessed repeatedly in a code sequence.
However, you should keep in mind that while locks are in effect, access by other JADE sessions can be restricted,
particularly if the sessions want to update the objects that get locked.

The following code fragment is a contrived example that illustrates load state.

context.Connection.BeginLoad();
C1 c1a = root.AllC1s["a"];
C1 c2b = root.AllC1s["b"];
C1 c2c = root.AllC1s["c"];
context.Connection.EndLoad();

Without load state, the collection root.AllC1s would be implicitly shared-locked and unlocked three times: once for
each indexed access. With the use of load state, the collection is locked and unlocked once only, as it remains
locked until load state ends.

Upgrading and Downgrading Locks
This section describes upgrading and downgrading locks.

General
A lock upgrade or downgrade occurs when a JADE session has an object locked, and requests a lock with a
different type or duration.

An upgrade means that the request is for a type or duration with a greater strength. A downgrade means a type or
duration of lower strength is requested.

The strength of the various lock types, from lowest to highest, is as follows.

1. Shared

2. Reserve

3. Update

4. Exclusive

For duration, session duration is stronger than transaction duration.

Locks are not released while being upgraded or downgraded, with one exception: when a shared lock is being
upgraded to an update lock, as described in the following section.

.NET Developer's
Reference

Chapter 2 Object Management 23

DotNetDev - 2020.0.02

Changing Lock Type
A type upgrade can queue and potentially time out, causing a JoobObjectLockedException to be thrown, if the
requested type is not compatible with existing locks. For example, this could happen when upgrading a shared
lock to exclusive.

Lock type downgrades will never be queued, as the strength is being lowered so there will be no lock
incompatibilities.

When a JADE session is in transaction state, requests to downgrade lock type are ignored. The lock maintains its
current type. However, lock types can be upgraded regardless of transaction state.

When a lock type is being upgraded from shared to update, the object is unlocked before the update lock is
requested. This happens even if the JADE session is in transaction state, and is the only situation where an object
is unlocked while in transaction state. The reason for doing this is to prevent potential deadlocks, as discussed in
more detail under "Avoiding Deadlock Exceptions", later in this chapter.

The following code fragment gives examples of upgrading and downgrading lock types.

TimeSpan timeOut = TimeSpan.FromSeconds(10);
context.Lock(obj1, LockType.Shared, LockDuration.Transaction, timeOut);
context.Lock(obj1, LockType.Reserve, LockDuration.Transaction, timeOut);

// The lock is now upgraded from shared to reserve.
context.Lock(coll, LockType.Exclusive, LockDuration.Transaction, timeOut);

using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

context.Lock(obj1, LockType.Exclusive, LockDuration.Transaction,
timeOut); // The lock type is upgraded to exclusive, as

// locks can be upgraded (but not downgraded)
// when in transaction state.

foreach (C1 obj2 in coll)
{

// The exclusive lock on coll is not downgraded by the implicit shared
// lock associated with foreach, because transaction state is in effect.

}
context.Lock(obj1, LockType.Shared, LockDuration.Transaction, timeOut);

// The lock type is not downgraded, but remains as exclusive.
tran.Commit(); // All transaction duration locks are released.

}

Changing Lock Duration
Lock duration can be upgraded only, from transaction to session. The lock duration cannot be downgraded from
session to transaction.

A request to downgrade both duration and type is ignored. The lock type for a lock with session duration can be
downgraded only by an explicit lock request that specifies session duration.

Lock duration upgrades do not result in queuing, provided they are not accompanied by requests to upgrade the
lock type.

JADE keeps track of the lock type associated with a lock’s most-recent session duration request. When a JADE
session has a session duration lock and issues a request for a higher lock type but of transaction duration, the
lock type is upgraded but the duration remains session duration. If automatic unlocking of transaction duration
locks then occurs (for example, when committing or rolling back a transaction), the session duration lock is
retained but its lock type reverts to the prior value.

.NET Developer's
Reference

Chapter 2 Object Management 24

DotNetDev - 2020.0.02

Similarly, when a JADE session is in transaction state and a session duration lock with a lower lock type is
requested on an existing lock of transaction duration, the lock duration is upgraded to session but the lock type is
not downgraded until the transaction is committed or rolled back.

The following code fragment gives examples of changing lock duration.

TimeSpan timeOut = TimeSpan.FromSeconds(5);
context.Lock(obj1, LockType.Shared, LockDuration.Transaction, timeOut);
context.Lock(obj1, LockType.Shared, LockDuration.Session, timeOut);
// obj1’s lock is now shared, session duration.
context.Lock(obj2, LockType.Exclusive, LockDuration.Session, timeOut);
context.Lock(obj2, LockType.Exclusive, LockDuration.Transaction, timeOut);
// obj2’s lock remains exclusive, session duration.
context.Lock(obj3, LockType.Shared, LockDuration.Session, timeOut);
using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

context.Lock(obj3, LockType.Exclusive, LockDuration.Transaction, timeOut);
// obj3’s lock is upgraded to exclusive, session duration.
tran.Commit();
// obj3’s lock reverts to shared, session duration.
// Session duration locks remain in place.

}
context.Lock(obj1, LockType.Exclusive, LockDuration.Session,

TimeSpan.FromSeconds(5));
// obj1’s lock type is upgraded to exclusive.
context.Lock(obj2, LockType.Reserve, LockDuration.Session, timeOut);
// obj2’s lock type is downgraded to reserve.
context.Lock(obj2, LockType.Shared, LockDuration.Transaction, timeOut);
// This is ignored, as it is requesting to downgrade both duration and type.
// obj2’s lock remains as reserve, session duration.

context.Unlock(obj3);
context.Unlock(obj2);
context.Unlock(obj1);

Collection Locking
JADE collections are composite objects, each comprising a collection header and one or more collection blocks.
When JADE collections are being used, it is imperative that all of the composite parts are fully coordinated by
being completely up to date and not changing during access. Because of this, whenever collections are accessed
and not already locked, they are automatically locked with a shared lock. They get unlocked after the access has
completed, unless the JADE session is in transaction state or in load state.

Enumerating JADE Collections
When a JADE collection is traversed using the default enumerator (for example, indirectly in a standard foreach
statement or directly in conjunction with the JoobCollection GetEnumerator method), it remains shared locked
until the enumerator is disposed; for example:

foreach (C1 obj1 in collA) //Shared lock is now acquired.
{

//...examine each member...
}
//Shared lock is now released.

.NET Developer's
Reference

Chapter 2 Object Management 25

DotNetDev - 2020.0.02

In other cases, when a JADE collection is traversed (for example, via a LINQ query or in conjunction with
JoobCollectionmethods StartingAtIndex, StartingAtKey, or StartingAtObject), the collection is shared locked
only for the period when retrieving a snapshot of member references from the associated collection; for example:

IEnumerable<C1> query = from C1 obj1 in collA select obj1;
foreach (C1 obj1 in query)
{

//...collection is not locked within the loop
}

foreach (C1 obj1 in collA.StartingAtIndex(0))
{

//...collection is not locked within the loop
}

The automatic locking of collections is particularly important when transactions are involved. If a JADE collection
is accessed when in transaction state, it is shared locked and remains so until the transaction ends. This can hold
up other JADE sessions wanting to update the collection, and it can also contribute to deadlocks.

Using update locks can help to prevent JADE sessions from being held up when JADE collections are updated,
as update locks are compatible with shared locks. For more details, see "Optimizing Locking", later in this chapter.

Deadlocks
A deadlock is a situation in which two or more JADE sessions are unable to proceed because they end up waiting
on locks held by one another.

Simple Deadlocks
The simple deadlock involves two JADE sessions and two JADE objects.

The initial situation is:

Session A has an exclusive lock on Object 1

Session B has an exclusive lock on Object 2

The attempted actions are:

Session A requests a lock on Object 2

Session B requests a lock on Object 1

The outcome is:

Session A is now waiting for Session B to unlock Object 2

At the same time, Session B is waiting for Session A to unlock Object 1

Neither JADE session can proceed

Indirect Deadlocks
The indirect case involves three or more JADE sessions.

.NET Developer's
Reference

Chapter 2 Object Management 26

DotNetDev - 2020.0.02

The initial situation is:

Session A has an exclusive lock on Object 1

Session B has an exclusive lock on Object 2

Session C has an exclusive lock on Object 3

The attempted actions are:

Session A requests a lock on Object 2

Session B requests a lock on Object 3

Session C requests a lock on Object 1

The outcome is:

The sessions cannot proceed because they are all waiting on each other

Single Object Deadlocks
A deadlock can occur with only one object being involved. For example, this can happen in conjunction with lock
type upgrades, as follows.

The initial situation is:

Session A and Session B both have a shared lock on Object 1

The attempted actions are:

Session A attempts to upgrade the lock type to exclusive

Session B also attempts to upgrade the lock type to exclusive

The outcome is:

Neither session can proceed, because they are waiting for each other due to them both having a shared lock

This type of deadlock occurs with the following sort of code sequence.

TimeSpan timeOut = TimeSpan.FromSeconds(5);
using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

context.Lock(obj1, LockType.Shared, LockDuration.Transaction, timeOut);
//...
context.Lock(obj1, LockType.Exclusive, LockDuration.Transaction, timeOut);
//...
tran.Commit();

}

Two JADE sessions simultaneously executing this sequence using the same JADE object can get in a deadlock
situation.

This type of sequence can occur subtly. For example, consider the following pattern where a JADE session
checks to see if a JADE collection contains an object, then adds it to the collection if it is not there.

using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

if (!allPeople.Contains(person))
allPeople.Add(person);

.NET Developer's
Reference

Chapter 2 Object Management 27

DotNetDev - 2020.0.02

tran.Commit();
}

A deadlock can result if two JADE sessions execute this sequence at the same time with the same collection.
Using Contains places a shared lock on the collection, and adding the member attempts to upgrade the lock to
exclusive (or update). Both JADE sessions can end up with a shared lock on the collection, thereby preventing
one another from upgrading.

Deadlock Detection
JADE automatically detects when a direct or indirect deadlock situation would arise due to a lock or lock upgrade
request, and throws a JoobDeadlockException if so. By default, the exception is thrown for the JADE session
requesting the lock.

This JADE session must release locks to allow other JADE sessions waiting to lock objects to continue and then
take appropriate action. If the JADE session is in transaction state, it must roll back the transaction in order to
unlock objects.

Deadlock Exceptions
By default, the JoobDeadlockException is thrown for the JADE session that made the request that caused the
deadlock. This can be varied, to throw an exception for both JADE sessions involved, or by using a priority to
determine which JADE session gets the exception.

Double Deadlock Exceptions
The JADE session that makes the lock request causing a deadlock gets the deadlock exception thrown.

The JADE session that is waiting for the lock held by the session making the request can also have a
JoobDeadlockException thrown for it, by enabling double deadlock exceptions. This is specified using the
following parameter in the JADE initialization file.

[JadeServer]
DoubleDeadlockException=true

The default value is false.

For indirect deadlocks (involving three or more JADE objects), the other sessions involved do not have exceptions
thrown for them.

When enabled, double deadlock exceptions apply to all deadlocks that occur.

Double deadlock exceptions can be useful when investigating the causes of deadlocks.

Avoiding Deadlock Exceptions
This section describes how to avoid deadlock exceptions.

Lock Order
For deadlocks involving multiple JADE objects, the classic technique for avoiding deadlocks is that each JADE
session should lock the objects in the same order. The direct and indirect examples described earlier in this
chapter could not arise if this principle is used. For example, the following two code fragments cause a deadlock, if
executed by different JADE sessions at the same time.

context.Lock(obj1, LockType.Shared, LockDuration.Transaction,
TimeSpan.FromSeconds(5));

.NET Developer's
Reference

Chapter 2 Object Management 28

DotNetDev - 2020.0.02

//...
context.Lock(obj2, LockType.Exclusive, LockDuration.Transaction,

TimeSpan.FromSeconds(5));
//...
context.Unlock(obj2);
context.Unlock(obj1);

context.Lock(obj2, LockType.Shared, LockDuration.Transaction,
TimeSpan.FromSeconds(5));

//...
context.Lock(obj1, LockType.Exclusive, LockDuration.Transaction,

TimeSpan.FromSeconds(5));
//...
context.Unlock(obj1);
context.Unlock(obj2);

The first JADE session cannot get the exclusive lock on obj2 because the second session has a shared lock on it.
The second JADE session cannot get the exclusive lock on obj1 because the first session has a shared lock on it.

The deadlock cannot occur if the second code sequence locks the objects in the same order as the first, as
follows.

context.Lock(obj1, LockType.Exclusive, LockDuration.Transaction,
TimeSpan.FromSeconds(5));

//...
context.Lock(obj2, LockType.Shared, LockDuration.Transaction,

TimeSpan.FromSeconds(5));
//...
context.Unlock(obj2);
context.Unlock(obj1);

The first JADE session to lock obj1 blocks the other, preventing it from locking obj2 and setting up the deadlock.

Lock ordering issues are not always obvious, as locks are commonly implicitly acquired. For example, accessing
a JADE collection implicitly acquires a shared lock, and updating an object implicitly acquires an update or
exclusive lock.

Reserve Locks
Reserve locks can be a useful way to avoid single object deadlocks due to lock upgrade requests. For example,
the following code fragment from an earlier example in this chapter can cause a JoobDeadlockException to be
thrown if executed by two JADE sessions at the same time with the same object, due to both wanting to upgrade a
lock on the allPeople collection from shared to exclusive:

using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

if (!allPeople.Contains(person))
allPeople.Add(person);

tran.Commit();
}

However, if the code initially locks the collection with a reserve lock instead of the implicit shared lock, the
deadlock situation will not arise; for example:

using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

context.Lock(allPeople, LockType.Reserve, LockDuration.Transaction,

.NET Developer's
Reference

Chapter 2 Object Management 29

DotNetDev - 2020.0.02

TimeSpan.FromSeconds(5));
if (!allPeople.Contains(person))

allPeople.Add(person);
tran.Commit();

}

The first JADE session to execute this code sequence acquires the reserve lock. Other JADE sessions executing
this sequence queue until the object is unlocked; that is, when the transaction is committed, as a reserve lock is
not compatible with other reserve locks. The lock, therefore, can be readily upgraded to exclusive, and the single
object deadlock will not occur.

Using an initial reserve lock as opposed to an exclusive lock has the benefit of not blocking other JADE sessions
from obtaining shared locks. This could be significant in cases where there is a reasonable time gap between
when the object is first locked and when it is updated. However, when that gap is very short, as in the above code
example, an exclusive lock may be preferable, as it avoids the overhead of upgrading the lock.

Update Locks
Deadlock exceptions due to lock upgrades can be avoided by using update locks instead of exclusive locks, as an
object gets unlocked before its lock is upgraded from shared to update (as mentioned in "Upgrading and
Downgrading Locks", earlier in this chapter). For example, you could change the above code sequence to the
following.

using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

bool retry = false;
do
{

if (!allPeople.Contains(person))
{

if (retry)
retry = false;

else
{

try
{

context.Lock(allPeople, LockType.Update,
LockDuration.Transaction,
TimeSpan.FromSeconds(2));

}
catch (JoobInterveningUpdateException)
{

retry = true;
continue;

}
}
allPeople.Add(person);

}
}
while (retry);

tran.Commit();
}

.NET Developer's
Reference

Chapter 2 Object Management 30

DotNetDev - 2020.0.02

A deadlock does not occur when two JADE sessions execute this code sequence at the same time. Even though
both JADE sessions can end up with shared locks on the collection, because the collection gets temporarily
unlocked, one of the sessions acquires the update lock, allowing it to proceed to transaction completion and
unlock the collection, then followed by the other session.

Note that this code fragment has to deal with a JoobInterveningUpdateException, which can be thrown if another
JADE session updates the collection before the update lock is acquired (while it is unlocked). To do this, the
collection is explicitly locked and a catch block is used to indicate the operation should be retried. The
JoobInterveningUpdateException is thrown after the update lock is acquired, so the object does not need to be
locked again. An explicit lock is used, because if an exception is thrown while an implicit lock is being attempted
for inverse maintenance, the transaction is rolled back before the catch block is executed. This avoids having to
repeat the whole transaction.

For more details, see "Exceptions", later in this chapter.

Investigating Deadlocks
When a deadlock exception is thrown, the JoobDeadlockException object contains properties that allow analysis
of the deadlock situation. This information includes a reference to the object for which the lock was requested and
a reference to the object for which the other JADE session involved with the deadlock was waiting. (For details,
see "JoobDeadlockException", later in this chapter.)

For deadlocks involving more than two JADE sessions, there is no direct way to determine the JADE session that
was requesting the lock on the object that the current JADE session has locked. However, to aid analysis, you can
configure the JADE initialization file to cause deadlock exceptions to be thrown for both JADE sessions involved.
(For details, see "Double Deadlock Exceptions", earlier in this chapter.)

You can obtain additional information about deadlocks by configuring the [Log] section in the JADE initialization
file to enable queue and lock tracing in the JADE message log files.

Exceptions
The three main exceptions related to locking are as follows.

JoobObjectLockedException – object lock request timed out.

JoobDeadlockException – deadlock detected.

JoobInterveningUpdateException – the object was updated before the lock upgrade completed.

JoobObjectLockedException
A JoobObjectLockedException is thrown when a lock request cannot be granted within the specified lock timeout
interval, due to incompatible locks held by other JADE sessions.

The JoobObjectLockedException object properties that indicate details about the lock request and the JADE
session that had the object locked at the time are listed in the following table.

Property Type Description

LockTarget ObjectId The object requested to be locked

LockType LockType The requested lock type

LockDuration LockDuration The requested lock duration - Transaction or Session

LockTimeout TimeSpan The requested lock timeout period

TargetLockedBy ObjectId The JADE session that had the object locked

.NET Developer's
Reference

Chapter 2 Object Management 31

DotNetDev - 2020.0.02

If required, you can repeat an explicit lock request, by using a catch block and a loop. This provides a way to
extend the lock timeout period in certain circumstances; for example:

bool locked = false;
int retries = 0;
while (!locked)
{

try
{

context.Lock(obj1, LockType.Update, LockDuration.Transaction,
TimeSpan.FromSeconds(4));

locked = true;
}
catch (JoobObjectLockedException ex)
{

if (++retries > 5)
throw ex;

Console.WriteLine("Object{0} locked by {1} – retrying", obj1.ToString(),
ex.TargetLockedBy.ToString());

}
}

The exception can be avoided, by using the JoobContext TryLock method. This method returns true or false, to
indicate the outcome of the lock request, instead of throwing an exception if the request times out; for example:

if (!context.TryLock(obj1, LockType.Exclusive, LockDuration.Transaction,
TimeSpan.FromSeconds(4)))

{
Console.WriteLine("Could not lock {0}", obj1.ToString());

}

Note Although the TryLock method does not result in a JoobObjectLockedException being thrown, a
JoobDeadlockException can still occur.

A JoobObjectLockedException can be thrown as a result of an implicit lock request made by JADE. Implicit lock
requests happen when JADE collections are accessed, or objects get implicitly locked for updating, including
during inverse maintenance to automatically update collections. For implicit lock requests, the default lock timeout
period is specified in the ServerTimeout parameter in the [JadeServer] section of the JADE initialization file.

For straightforward implicit lock requests, it may be appropriate to catch the exception and retry the operation that
resulted in the implicit lock request, if a longer timeout period was wanted. However, when a
JoobObjectLockedException is thrown during inverse maintenance (for example, when changing the collection
parent reference), the transaction is automatically rolled back, so the operation cannot be retried without
reprocessing the whole transaction. The transaction is rolled back in order to maintain referential integrity, which
can be compromised if inverse maintenance is not completed.

A catch block can check if the transaction has been rolled back by checking the JoobConnection
IsTransactionActive property; for example:

try
{

Member member = new Member();
member.Id = 99;
member.MyOwner = owner;
// ...

}
catch

.NET Developer's
Reference

Chapter 2 Object Management 32

DotNetDev - 2020.0.02

{
if (!context.Connection.IsTransactionActive)
{

Console.WriteLine("Transaction was automatically rolled back");
}
else

tran.Rollback();
}

As an alternative, the code can avoid lock exceptions on implicit locks by instead explicitly locking collections
before the operation involving inverse maintenance.

When update locks are being used, a lock exception can be thrown when committing a JADE transaction. This
happens if an update lock cannot be upgraded to an exclusive lock. In this circumstance, the transaction will have
been rolled back. A catch block can be used to detect this, for example:

using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

// ...
try
{

tran.Commit();
}
catch
{

Console.WriteLine("Could not commit transaction due to an exception");
}

}

JoobDeadlockException
A JoobDeadlockException is thrown when JADE detects that a lock request would result in a deadlock condition.
The lock request can be explicit or implicit, including when committing a transaction involving update locks.

At a minimum, the JADE session must abandon the lock request and release the lock that was blocking the other
session. If the JADE session is in transaction state, the transaction must be rolled back in order to release the lock.
Rolling back the transaction releases all transaction duration locks.

The JoobDeadlockException object properties that indicate details about the deadlock are listed in the following
table.

Property Type Description

LockTarget ObjectId Identifies the object requested to be locked

LockType LockType The requested lock type

LockDuration LockDuration The requested lock duration

LockTimeout TimeSpan The requested lock timeout period

TargetLockedBy ObjectId Identifies the JADE session that has the object locked

ObtainedLock ObjectId Identifies the object that the requesting JADE session has locked,
which caused the deadlock

.NET Developer's
Reference

Chapter 2 Object Management 33

DotNetDev - 2020.0.02

The following code fragment is an example of displaying JoobDeadlockException information.

catch (JoobDeadlockException dlException)
{

Console.WriteLine("Requested object {0}", dlException.LockTarget.ToString());
Console.WriteLine("Requested type {0}", dlException.LockType.ToString());
Console.WriteLine("Locked by {0}", dlException.TargetLockedBy.ToString());
Console.WriteLine("Obtained lock {0}", dlException.ObtainedLock.ToString());
//...

}

JoobInterveningUpdateException
A JoobInterveningUpdateException is thrown when a JADE session has upgraded a lock on an object from
shared to update, but another JADE session has updated the object in the interim when it was unlocked.

The exception is thrown after the update lock has been acquired. An application therefore has the option to ignore
the exception and continue execution, if appropriate; for example:

TimeSpan timeout = TimeSpan.FromSeconds(5);
using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

context.Lock(collA, LockType.Shared, LockDuration.Transaction, timeout);
// ...
try
{

context.Lock(collA, LockType.Update, LockDuration.Transaction, timeout);
}
catch (JoobInterveningUpdateException ex)
{

// Ignore the exception: the code does not depend on previously
// checked values (that may have changed).

}
//...

}

An alternative would be to resume execution from an earlier point in order to refresh any properties of the object
(that is now update locked) that may have changed, without needing to roll back the current transaction.

The following code fragment gives an example of how this could be done.

bool retryNeeded;
context.SetImplicitUpdatingLockType(LockType.Update);
using (System.Data.IDbTransaction tran = context.BeginTransaction())
{

do
{

retryNeeded = false;
try
{

//Calling TryGetValue acquires a shared lock on the collection.
Person existingPerson;
if (!allPeople.TryGetValue(person.Id, out existingPerson))
{

//Adding upgrades the lock from shared to update, which
//unlocks the collection in the interim.
allPeople.Add(person);

.NET Developer's
Reference

Chapter 2 Object Management 34

DotNetDev - 2020.0.02

}
}
catch (JoobInterveningUpdateException ex)
{

retryNeeded = true; //Need to check if the person has just been
//added to the collection by another process.

}
}
while (retryNeeded);

}

In this example, if a JoobInterveningUpdateException is thrown, the JADE session needs to check again to see if
the person is in the collection, as it could have been added by another JADE session while the collection was
unlocked. Note that when retrying, the collection is locked with an update lock.

Object Volatility
Object volatility refers to the frequency with which a JADE object is updated. This, in turn, can be used to
customize locking behavior and provide optimizations.

JADE defines the following three types of volatility.

Volatile, for objects that are regularly updated.

Stable, for objects that are infrequently updated.

Frozen, for objects that are almost never updated.

JADE objects are volatile, by default. Volatility can be specified at the JADE class level. There are also methods
that enable you to alter and interrogate the volatility for individual JADE objects.

The Schema Inspector displays class and object volatility by default, which enables you to check whether objects
and collections are set to stable or frozen without having to write code to determine the volatility state of an object
or collection.

Volatile Objects
A volatile object is one that is updated reasonably frequently. Normal locking is used on volatile objects.

A volatile object is recorded as locked by any JADE sessions that have it locked until they unlock it, and whenever
locked, the latest edition of the object is fetched from the database server.

.NET Developer's
Reference

Chapter 2 Object Management 35

DotNetDev - 2020.0.02

The following diagram shows the locks recorded for volatile objects.

Every lock is recorded locally on the client node and remotely on the database server node.

Stable Objects
A stable object is one that is mostly read, and only infrequently updated.

For stable objects, each node retains a generic node shared lock, recorded on the server node and the local client
node, even after JADE sessions have unlocked the object. Shared lock entries for individual JADE sessions are
recorded only on the local client node. The node’s shared lock is released when a JADE session requests an
exclusive lock on the object, when the object is swapped out of the client node’s object cache, or when the client
node terminates.

Using stable objects avoids the overhead of communication with the database server node to acquire a shared
lock and retrieve the object from the JADE database. This is because while a node lock is in place, the lock can be
handled locally, and the copy of the object in cache is the latest edition, because the object cannot be updated
while the client node’s shared lock is in place.

When an exclusive lock is requested on a stable object, all client nodes that have node shared locks for that
object are asked to release the lock. The client nodes release the lock when no JADE sessions on that node have
the object locked.

To prevent the exclusive lock request from being held up by other shared lock requests, further lock requests are
blocked until after the exclusive lock has been acquired and released (or the request times out).

Requests for reserve locks and update locks are handled normally. Node locks are not involved, as these lock
types are compatible with shared locks. In addition, requests for shared locks of session duration are handled
normally, and do not involve node locks.

An example of a good use of stable objects would be for JADE collections that are frequently enumerated but
infrequently updated.

The trade-off is that although stable objects optimize the acquisition of shared locks, acquiring exclusive locks
involves extra overhead, as all client nodes that are holding node locks need to be requested to release the locks
first.

.NET Developer's
Reference

Chapter 2 Object Management 36

DotNetDev - 2020.0.02

Another factor to consider is that using stable objects can result in an increase in the number of locks held in the
server node’s lock tables, because shared locks tend to be retained for longer. For very large numbers of
concurrent locks (10,000 or more), it may be beneficial to increase the value of the PersistentLockHashSize
parameter the PersistentLockHashSize parameter in the [JadeClient] and [JadeServer] section of the JADE
initialization file. For details, see the JADE Initialization File Reference.

Node locks are identifiable when lock information is displayed by the JADE Monitor, as node locks have the kind
property set to LockKind.Node.

Local shared locks on stable objects (that is, locks held on client nodes by JADE sessions where a node lock is
involved) have the kind property set to LockKind.Local.

Other locks have the kind property set to LockKind.Normal.

The following diagram shows the locks recorded for stable objects.

This example illustrates that shared locks for individual JADE sessions are recorded locally on the session’s client
node, whereas a node lock is recorded on the client node and the database server node. Exclusive locks are
recorded on the client node and database server node, in the same manner as volatile objects.

Note For convenience, node locks use the client node’s JADE background session as the session that has the
lock.

Frozen Objects
A frozen object is one that is updated rarely. In fact, when a JADE object is frozen, it cannot be updated until the
volatility is changed, and you should do this only when the system is unavailable to general users. Examples of
good candidates for being frozen include code tables used for interpreting abbreviations, or JADE objects that do
not change after they are created (for example, commercial events or archive data).

For frozen objects, shared and reserve lock requests are ignored. There is no need for the lock to be applied, as
frozen objects cannot be updated and therefore a consistent view of the data is guaranteed. In addition, a frozen
object in cache is always the latest edition, avoiding the need to fetch the object from the database server node.

Update locks are not allowed on frozen objects.

Exclusive locks on frozen objects are actioned.

Special action is required in order to update an object that is currently frozen. The object must first be thawed, by
changing the volatility to volatile or stable, using the JoobObject SetVolatility method described under
"Specifying and Changing Object Volatility", later in this chapter.

.NET Developer's
Reference

Chapter 2 Object Management 37

DotNetDev - 2020.0.02

Thaw a frozen object with caution, as other JADE sessions using the object may temporarily not know that the
object has been updated, and could even be assuming that it cannot change as they have requested shared locks
on the object (which will have been ignored if the object was frozen).

We recommend two techniques for changing the volatility of frozen objects. The first is to thaw and update frozen
objects when you can be sure that no other JADE sessions can be using the object and that there are no copies in
local caches; for example, when the system is run in single user mode or it is offline and unavailable to general
users.

The second technique is to change the volatility conditionally; that is, to use methods that change the volatility of a
frozen object only if the object’s class is not currently in use by another JADE session. For details, see the
following section.

The following diagram shows an example of locks held when requesting locks on frozen objects obj1 and obj2.

This example illustrates that exclusive lock requests are honored for frozen objects, whereas shared lock requests
are ignored.

Specifying and Changing Object Volatility
You can specify volatility at the individual object level or at a JADE class level.

Class Volatility
Class volatility is specified in the class definition in the JADE Class Browser. The volatility options are volatile,
stable, or frozen. When you specify volatility at the class level, you specify the volatility of all future instances of a
class. By default, class instances are volatile.

The volatility specified for a class is not inherited by subclasses. In addition, changing a class’s volatility does not
affect existing instances. To change the volatility of existing instances, you must use the methods outlined in the
following section.

Setting the class volatility to frozen is a good option for objects that do not change once they are created; for
example, records of sales and purchases.

Note The initial volatility for exclusive collections is as defined for the collection’s class. The volatility of the
object containing the collection is not considered.

.NET Developer's
Reference

Chapter 2 Object Management 38

DotNetDev - 2020.0.02

Individual Object Volatility
For individual JADE objects, the JoobObject Volatility property indicates the object’s volatility. It can have one of
the following values.

JoobObjectVolatility.Volatile

JoobObjectVolatility.Stable

JoobObjectVolatility.Frozen

An object’s volatility can be changed using the JoobObject SetVolatility method, which has the following
signature.

void SetVolatility(JoobObjectVolatility volatility, bool conditional);

The conditional parameter specifies whether changing the volatility of a frozen object should be conditional or
unconditional. If conditional, a JoobCannotThawClassInUseException is thrown if the object’s class is in use.
The conditional parameter is ignored when changing the volatility of volatile or stable objects.

Unconditionally change the volatility of a frozen object only when it can be assured that no other JADE sessions
are using the object.

Note If production mode is set, volatility can be conditionally changed only in single user mode. If attempted in
multiuser mode, a JoobFeatureNotAvailableException is thrown.

The following example demonstrates defining a collection to be stable.

Company company = null;
//...
company.AllStaff.SetVolatility(JoobObjectVolatility.Stable, false);

The following example demonstrates checking if an object is stable.

if (company.AllStaff.Volatility == JoobObjectVolatility.Stable)
Console.WriteLine("{0} is stable", company.AllStaff.ToString());

The following example demonstrates thawing a frozen object conditionally.

company.Codes.SetVolatility(JoobObjectVolatility.Volatile, true);

The Schema Inspector displays class and object volatility by default, which enables you to check whether objects
and collections are set to stable or frozen without having to write code to determine the volatility state of an object
or collection.

Frozen Files and Partitions
A convenient way to freeze a large number of JADE objects is to freeze a database file or partition. In effect, this
makes all objects read from that file or partition frozen. This reduces the number of lock and unlock requests, and
brings about the same overhead savings as if the objects had been frozen individually.

Frozen partitions can be used for a class where the partition for instances is determined by a date attribute.
Partitions containing old, historical data could be marked frozen. Specific examples include sales or orders,
banking transactions, test results, meter readings, and so on.

Use the JADE Database Administration utility to freeze files. The following example shows how to freeze the first
(oldest) partition ofMyFile.

jdbadmin ini=iniFile path=system action=Freeze file=MyFile partition=1

.NET Developer's
Reference

Chapter 2 Object Management 39

DotNetDev - 2020.0.02

Freezing a file or partition overrides any specified object volatility for all instances defined in that file or partition.
This means a volatile or stable object stored in a frozen file or partition is treated as a frozen object when the
object is read. The objects can be reverted to their actual volatility, by thawing the file or partition.

Use the JADE Database Administration utility to thaw files. The following example shows how to thaw the first
(oldest) partition ofMyFile.

jdbadmin ini=iniFile path=system action=Thaw file=MyFile partition=1

For more details, see ''Using the JADE Database Administration Utility", in Chapter 2 of the JADE Database
Administration Guide.

Note Modify the backup strategy to take advantage of the fact that frozen files or partitions cannot be updated,
so do not need to be backed up as frequently.

Freezing User Schema Files
The _userscm, _userxrf, and _userint user schema database files contain the metaschema entities that
describe all user classes, properties, applications, and so on. These files are not updated while a JADE session is
running. In fact, they change only when a schema is deployed. Obtain the performance benefits associated with
frozen objects by freezing these files.

Use the FreezeSchemaFiles command of the JADE Database Administration utility to freeze the user schema
database files, as follows.

jdbadmin ini=iniFile path=system action=FreezeSchemaFiles

You must thaw user schema database files before deploying a schema.

Use the ThawSchemaFiles command of the JADE Database Administration utility to thaw the user schema
database files, as follows.

jdbadmin ini=iniFile path=system action=ThawSchemaFiles

.NET Developer's
Reference

Chapter 2 Object Management 40

DotNetDev - 2020.0.02

Chapter 3 Introductory Tutorial to JADE .NET

This chapter covers the following topics.

Overview

JADE Banking System

Model-View Separation

Customer Class

Bank Class

Application Subclass

Defining the JADE Connection Application

Defining the C# Exposure

Building the Class Exposure Project in Visual Studio

Adding a WPF Application

Adding References

Coding the Application Configuration File

Designing the Form

Coding the Form Constructor and Destructor

Listing Customer

Adding a Customer

Using Notifications

Invoking on the GUI Thread

Overview
In this tutorial, the banking system that is built by attendees on the five-day JADE Developer's course is exposed
to .NET. You can download the schema files for the completed banking system (JADE-Banking-Schema) from
https://github.com/jadesoftwarenz.

The following sections explain in detail how the exposure is created using the JADE Exposure wizard and how a
WPF application is built in Visual Studio to use the exposed classes to add customers into the JADE database.

JADE Banking System
This section describes the JADE system that is built during the five-day JADE Developer's course. It is based on
customers of a bank and their bank accounts.

One of the aims of the tutorial is to demonstrate the functionality of JADE .NET with an exposure that is as small
and simple as possible. Consequently, only part of this system is exposed to .NET. To limit the size of the
exposure, the bank account classes are not exposed.

https://github.com/jadesoftwarenz

DotNetDev - 2020.0.02

Model-View Separation
In the design of the banking system, the model classes (mainly the classes for objects in the persistent database)
are in the BankingModelSchema. They are separated from the view classes (mainly the forms and application
definitions), which are in the BankingViewSchema.

Customer Class
The address, firstNames, lastName, and number properties are part of the exposure because they will be
accessed from .NET.

The allBankAccounts reference is not exposed, in accordance with the decision to exclude bank account classes
from the exposure.

The myBank reference is not exposed because it refers to the root object, which is the same for all Customer
objects and therefore not semantically important. The myBank reference can be regarded as part of the JADE
implementation in that when it is set, a Customer object is added to the root object's allCustomers collection
through the automatic inverse reference maintenance that is triggered. The setting of the myBank reference is
encapsulated in the setPropertiesOnCreate method.

The setPropertiesOnCreate method is exposed. If this method was not exposed, you would need to expose the
myBank reference, as explained previously.

Note When you expose a JADE method to .NET, you do not need to expose the properties and methods that are
accessed in that method. This is in line with the practice of exposing an interface but hiding the implementation.

The create method is not exposed. However, when a Customer object is created in .NET code, the JADE
constructor is executed causing a unique value to be assigned to the number property.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 42

DotNetDev - 2020.0.02

Bank Class
The Bank class is the root object class. An important function of a root object is to provide access to collections of
other objects from the model classes. In this tutorial, only the allCustomers collection is exposed to .NET.

Note When you run the exposure wizard, selecting a reference automatically selects the type of that reference;
for example, selecting allCustomers automatically exposes the CustomersByLastName dictionary class; that is,
you do not have to decide which collection classes to select in the exposure wizard.

The properties and methods related to sequence numbers are not exposed, even though they are used by the
create method of the Customer class to generate a unique customer number.

Application Subclass
One of the uses of an application subclass in a JADE system is to hold a reference to the root object, which is an
important object in that it enables access to collections of other model objects. The root object reference, which is
a key part of the exposure, ismyBank.

BankingModelSchema is the Application subclass in the following diagram.

It is not necessary to include the initialize method as part of the exposure. However, the initialize method should
be specified as the startup method in the definition of the client application that connects the .NET application to
the JADE database server.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 43

DotNetDev - 2020.0.02

Defining the JADE Connection Application
A JADE connection application is a client application that is started by the .NET application when the .NET
application creates a JoobContext object for the first time.

The JADE connection application connects the .NET application to the JADE database server. The application
and schema name of the JADE configuration application to be started are specified in the app.config file of the
.NET application. An app.config file is generated by the exposure wizard. For more details about application
configuration files, see "Application Configuration File", in Chapter 6.

You can define an application for the connection between .NET and JADE, as shown in the following image.

This application is defined in the BankingViewSchema.

Note The initialize method sets a reference on the app object to the root object of the banking system in the
same way as for any other JADE application. For details about how a .NET application accesses the app object,
see "Accessing JADE System Objects", in Chapter 7.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 44

DotNetDev - 2020.0.02

Defining the C# Exposure
The following instructions describe how you can create a C# exposure for classes in the banking system. For
more details, see "Chapter 17 - Using the C# Exposure Wizard", in the JADE Development Environment User's
Guide.

1. From the Browse menu in the BankingViewSchema, select Exposures and then select the C# tab.
Right-click and add an exposure.

2. On the Define Exposure step of the wizard, name the exposure BankingClasses and then select schemas
up to the BankingModelSchema.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 45

DotNetDev - 2020.0.02

3. On the next step of the wizard, select the following classes.

Bank, to enable the application to access the root object's allCustomers collection

BankingModelSchema, to enable the root object to be accessed using the myBank reference

Customer, because the application will create customers

You do not need direct access to this class from your C# application code. For simplicity in this tutorial, the
BankAccount classes are not included.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 46

DotNetDev - 2020.0.02

4. On the Select Features step of the wizard, for the Bank class, select the allCustomers collection.

Note When you select the allCustomers collection, the CustomerByLastName collection class becomes
part of the exposure. You never need to select the class of reference explicitly when using the C# Exposure
wizard.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 47

DotNetDev - 2020.0.02

5. For the BankingModelSchema, which is an Application subclass, select the myBank reference to the root
object.

6. For the Customer class, select the setPropertiesOnCreate method along with the address, firstNames,
lastName, and number properties so that it can be invoked from your C# code.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 48

DotNetDev - 2020.0.02

7. The Feature Mappings step of the wizard enables you to specify different names for the exposed classes,
properties, and methods. Accept the default names without change.

By default:

C# class names are the same as those of the corresponding JADE classes

C# property and method names are derived from the corresponding JADE names with the first letter
changed to uppercase

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 49

DotNetDev - 2020.0.02

8. The Save step of the wizard summarizes the exposure definition to be saved.

9. On the Generate step of the wizard, enter C:\Projects\BankingClasses as the directory where the C#
project file and class files will be created.

Check the option to create a sample C# project file. In addition, check the option to create an application
configuration file using the following information specified on the form.

JADE database path

JADE initialization file location

Sign-on schema name

Sign-on application name, for which you should select DotNetConnection

Mode (multiuser or single user) in which the JADE database should be open when the C# application
attempts to connect

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 50

DotNetDev - 2020.0.02

Note that this application configuration information is similar to that provided in the shortcut for a standard
JADE client.

10. Click the Generate file to generate the files when you build a C# project in the next section.

Building the Class Exposure Project in Visual Studio
In the final step of the C# Exposure wizard, a number of C# class files and other files were generated, including
the project file BankingClasses.csproj.

The instructions in this section enable you to build a class library DLL for the exposed classes from the JADE
banking system.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 51

DotNetDev - 2020.0.02

The DLL can be referenced by other .NET projects, enabling them to create and access instances of the
Customer class.

1. Open the BankingClasses.csproj file in Visual Studio.

The classes exposed in the C# Exposure wizard are visible in the Solution Explorer.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 52

DotNetDev - 2020.0.02

2. Build the project by selecting the Build BankingClasses command from the Visual Studio Build menu.

The BankingClasses.dll library is created in the bin\Debug directory of the project. The DLLs from the JADE
.NET framework are copied into the same location.

3. If prompted to do so, click the Save All icon and then enter C:\Projects\BankingSystem.sln when prompted
for the name and path of the solution file.

Adding a WPF Application
The following instructions create a WPF project called BankingApp to the solution and set the application as the
default one to be run for the solution (currently the BankingClasses project is the default project). Finally, the
project properties are changed to build a 64-bit application.

1. Right-click on the BankingSystem solution and then select the New Project command from the Add
submenu, to add a WPF project.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 53

DotNetDev - 2020.0.02

Complete the dialog, as shown in the following image.

2. The Solution Explorer shows the BankingSystem solution with two projects: BankingApp and
BankingClasses.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 54

DotNetDev - 2020.0.02

3. Right-click on the BankingApp project and then select Set as Startup Project from the menu. This causes
the application to be run when debugging is started.

4. Right-click on the BankingApp project and then select Properties from the menu. On the Build tab, change
the Platform target to be x64.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 55

DotNetDev - 2020.0.02

Adding References
For the BankingApp project to work with the exposed classes in the BankingClasses project, a reference must be
added to the BankingClass.dll that was built earlier. In addition, references to the JADE .NET framework DLLs
must be added.

To simplify your application coding that uses classes from the referenced DLLs, using directives are added to the
start of the MainWindow.xaml.cs file.

The following instructions add the required references and using directives.

1. Right-click on the BankingApp project then and then select the Add Reference command.

On the Projects sheet of the Add Reference dialog, select BankingClasses from the solution assemblies.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 56

DotNetDev - 2020.0.02

2. Using the Add Reference dialog again, add references to the following JADE .NET framework DLLs by
browsing for their location.

JadeSoftware.Joob.dll

JadeSoftware.Joob.Common.dll

JadeSoftware.Jade.DotNetInterop.dll

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 57

DotNetDev - 2020.0.02

3. Select the tab for the MainWindow.xaml.cs code file.

4. Add the following using directives for namespaces to your code.

using BankingClasses;
using JadeSoftware.Joob;
using JadeSoftware.Joob.Client;
using JadeSoftware.Joob.Exceptions;
using JadeSoftware.Jade.DotNetInterop;

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 58

DotNetDev - 2020.0.02

Coding the Application Configuration File
The connection string information in the application configuration is used by the .NET application to connect to the
database server. It contains the same kind of information you would see in a JADE client shortcut.

An example application configuration file called BankingClasses.exe.config was generated by the C# Exposure
wizard, so if your information provided to the wizard was correct, you can use the contents of this file without
modification.

1. Open the App.config file for the BankingApp project.

2. Overwrite the XML in this file with the contents of the BankingClasses.exe.config file.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
<section name="joob"

type="JadeSoftware.Joob.Configuration.JoobConfigurationSection,
JadeSoftware.Joob" />

</configSections>

<connectionStrings>
<add name="myDefault" providerName="JadeSoftware.Joob.JadeConnection"

connectionString="DataSource=C:/Jade7009/system/;
ConfigFile=C:/Jade7009/system/jade.ini;
SingleUser=False;
Schema=BankingViewSchema;
Application=DotNetConnection;
IntegratedSecurity=true"></add>

</connectionStrings>

<joob defaultConnection="myDefault">
<installation directory="C:\Jade7009\bin" />

</joob>

<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>

</startup>
</configuration>

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 59

DotNetDev - 2020.0.02

Designing the Form
The instructions in this section enable you to design a form to add a customer and to display a list of customer
names. The completed form layout is as follows.

1. Add three Label controls and set the Content property to First Names, Last Name, and Address.

2. Add three TextBox controls next to the labels and then set the Name to txtFirstNames, txtLastName, and
txtAddress. In addition, set the Text property of the text boxes to be an empty string.

3. Add a ListBox control and then set its Name to lstCustomers.

4. Add a Button control with the name btnAdd and then set its Content property to Add.

5. Add a Button control with the name btnRefresh and then set its Content property to Refresh.

Coding the Form Constructor and Destructor
Before you can work with Customer objects, you need to connect to the database. This is provided by a
JoobContext object.

The simplest JoobContext constructor is the default no-parameters constructor, which uses the
defaultConnection element from the application configuration file.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 60

DotNetDev - 2020.0.02

To establish a connection, simply create a JoobContext object as follows.

JoobContext context = new JoobContext();

When a connection is no longer needed, dispose of the JoobContext object.

context.Dispose();

If a form utilizes the connection for the entire time it is shown, the form should have a reference to a context object.
This reference is available to all code in the form. You can create the context object when the form is opened and
dispose of this object when the form is closed.

If the form requires an occasional connection to the JADE database only (perhaps only if a specific button on the
form is clicked), you can establish a temporary connection by creating a context object in a using block, as follows.

using (JoobContext context = new JoobContext())
{

// access the database
}

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 61

DotNetDev - 2020.0.02

Another object that is used throughout the application is the root object. The JoobContext object provides a way
of accessing this object using a template method that can return the first instance of any class. The first (and only)
instance of the Bank class is the root object.

bank = context.FirstInstance<Root>();

In the following instructions, a context object is created for the life of the form and a reference to the root object
established.

1. In the MainWindow.xaml.cs code file, add private member variables called context and bank to the
MainWindow class for the context object and the root object, respectively.

public partial class MainWindow: Window
{

private JoobContext context;
private Bank bank;

2. In the form constructor, initialize the context and bank references.

public MainWindow()
{

InitializeComponent();

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 62

DotNetDev - 2020.0.02

context = new JoobContext();
bank = context.FirstInstance<Bank>();

}

3. Add a form destructor to dispose the JoobContext object.

~MainWindow()
{

context.Dispose();
}

Listing Customers
The Bank root object's collection of Customer objects is to be displayed in the lstCustomers list box. For
simplicity, only the surname of the customer is displayed.

1. In the MainWindow.xaml form, double-click the Refresh button. This adds a click event method in the
MainWindow.xaml.cs code file.

2. Add the following code to the btnRefresh_Click method.

private void btnRefresh_Click(object sender, RoutedEventArgs e)
{

lstCustomers.ItemsSource = bank.AllCustomers;
lstCustomers.DisplayMemberPath = "LastName";

}

3. Run the BankingApp application and then click the Refresh button.

If you have created Customer objects previously as part of the JADE developer's course, they are displayed.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 63

DotNetDev - 2020.0.02

Adding a Customer
The JoobContext object has a method for beginning a transaction. The method returns a transaction object with
methods for committing or rolling back a transaction. The transaction object must be disposed of at the end of the
transaction.

The simplest syntax for carrying out a transaction uses a using statement that implicitly calls the Dispose method
on the transaction object at the end of the block.

The SetPropertiesOnCreate method, which was exposed by the C# Exposure wizard, sets properties of the
Customer object from values entered in the text boxes on the form.

If the statement calling the Commit method is omitted or not executed because an exception is thrown, the
transaction is automatically rolled back. With a using statement, you do not have to explicitly call the Rollback
method.

1. In the MainWindow.xaml form, double-click the Add button. This adds a click event method in the
MainWindow.xaml.cs code file.

2. Add the following code to the btnAdd_Click method.

private void btnAdd_Click(object sender, RoutedEventArgs e)
{

using (var tran = context.BeginTransaction())
{

Customer cust = new Customer();
cust.SetPropertiesOnCreate(txtAddress.Text,

txtFirstNames.Text,
txtLastName.Text);

tran.Commit();
}

}

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 64

DotNetDev - 2020.0.02

3. Run the BankingApp application and the enter data for a new customer. Click the Add button to add the
customer and then click the Refresh button to display the new customer.

Using Notifications
The JoobContext class enables you to register for notifications; that is, subscribe to events. The
RegisterClassNotificationHandler method, which registers for notifications for a specific event that happens to
any instance of the specified class, has the following parameters.

Class (when the event happens to an instance of the class, a notification is sent)

Event type (represented by an integer)

Event handler method (called when the event occurs)

There is also an UnregisterClassNotificationHandler method.

One use of notifications is to automatically refresh the information displayed in an application when the underlying
information changes. The instructions in this section are intended to make the Refresh button redundant.

1. In the MainWindow.xaml.cs code file, add a private refreshmethod with the same code as the btnRefresh_
Click method

private void refresh()
{

lstCustomers.ItemsSource = bank.AllCustomers;
lstCustomers.DisplayMemberPath = "LastName";

}

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 65

DotNetDev - 2020.0.02

2. In the form constructor, register to be notified when Customer objects are created. The
customerCreatedNotificationHandler method, which you will code shortly, is the event handler for the
notification.

public MainWindow()
{

InitializeComponent();
context = new JoobContext();
bank = context.FirstInstance<Bank>();
context.RegisterClassNotificationHandler(typeof(Customer),

NotificationEventConstants.SystemCreate,
customerCreatedNoteHandler);

3. Add a customerCreatedNoteHandler notification event handler method.

private void customerCreatedNoteHandler(object sender, NotificationEventArgs e)
{

MessageBox.Show("Customer added");
// cannot run refresh() yet because not on GUI thread

}

4. Run the BankingApp application form and enter data for a new customer. Click the Add button to add the
customer. A message box stating that the customer has been added is then displayed.

Notifications are delivered on a separate thread from the GUI thread on which the application runs. The
notifications thread can display a message box, as you have seen, but cannot see the list box or other controls on
the form. Consequently the refreshmethod cannot be executed directly from this thread.

Invoking on the GUI Thread
As explained in the previous section, the notification is received by a background thread and not by the GUI
thread on which the application is running. Although the refreshmethod cannot be run directly it can be invoked
using a delegate.

1. In the MainWindow.xaml.cs code file, define a delegate type for refreshing the display that takes no
parameters called RefreshDelegate and declare a member of this type.

public partial class MainWindow: Window
{

private JoobContext context;
private Bank bank;
delegate void RefreshDelegate();
RefreshDelegate refreshDelegate;

2. In the form constructor, point the refreshDelegate member to the refreshmethod.

public MainWindow()
{

InitializeComponent();
context = new JoobContext();
bank = context.FirstInstance<Bank>();
context.RegisterClassNotificationHandler(typeof(Customer),

NotificationEventConstants.SystemCreate,
customerCreatedNoteHandler);

refreshDelegate = new RefreshDelegate(refresh);

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 66

DotNetDev - 2020.0.02

3. In the customerCreatedNoteHandler notification event handler method, use the Invoke method to marshal
the refreshmethod to the GUI thread.

private void customerCreatedNoteHandler(object sender, NotificationEventArgs e)
{

MessageBox.Show("Customer added");
Dispatcher.Invoke(refreshDelegate);

}

4. Run the BankingApp application and then enter data for a new customer. Click the Add button to add the
customer. After the message box is closed, the list of customers is refreshed automatically.

.NET Developer's
Reference

Chapter 3 Introductory Tutorial to JADE .NET 67

DotNetDev - 2020.0.02

Chapter 4 Erewhon .NET Example

This chapter covers the following topics.

Overview

Example .NET Files

Running the WpfErewhonApp Application

Notifications

Multiprocessing

Building Your Own Application

Overview
This chapter describes the JADE .NET class exposure example for the JADE Erewhon demonstration system,
which is an Internet-enabled online purchasing and tendering application. You can download the JADE-Erewhon
example system from https://github.com/jadesoftwarenz.

The Erewhon .NET example consists of an exposure of classes from the Erewhon system that is used by a WPF
application to access the JADE database. The JADE .NET class library functions can be executed in the WPF
application to execute a number of actions.

Display a list of Agent objects

Create, update, and delete a Client object

Register and unregister for notifications on system events

Register and unregister for notifications on user events

Lock and unlock a Client object

Arm exception handlers and handle an exception

Run LINQ queries

Use multithreading

The code in the WPF application is for demonstration purposes only and is not intended for production systems.

Example .NET Files
The file ErewhonDotNetExample.zip file contains the following directories.

ErewhonExposure

WpfErewhonApp

The ErewhonExposure directory contains the files created by running the Exposure wizard from the JADE
development environment. This directory was specified as the output directory of the wizard. If you use the wizard
to expose all classes in the ErewhonInvestmentModelSchema schema, you would get a matching set of files.

https://github.com/jadesoftwarenz

DotNetDev - 2020.0.02

TheWpfErewhonApp directory contains the files and directories for a WPF solution built in Visual Studio. The
example application code has been added to this solution.

Running the WpfErewhonApp Application
When you run theWpfErewhonApp application, the following form is displayed.

You must first sign on by selecting Single User or Multi User, depending on how the database is opened, and
then clicking the Sign on button. A message is displayed in the logging window.

.NET Developer's
Reference

Chapter 4 Erewhon .NET Example 69

DotNetDev - 2020.0.02

The SelectAction combo box displays a list of functions that you can run.

After selecting an action, click the Run button. The status and any output generated by that action is recorded in
the logging window.

Notifications
To demonstrate user notifications, a number of actions must be run in the correct order.

1. Sign on to theWpfErewhonApp application.

2. Run the BeginUserNotification action to register for user notifications.

.NET Developer's
Reference

Chapter 4 Erewhon .NET Example 70

DotNetDev - 2020.0.02

3. Run the CauseUserEvent action. A message is displayed in the logging window, indicating a user event
has been received.

4. Run the EndUserNotification action to stop receiving user notifications.

5. Sign off from theWpfErewhonApp application.

Examine the application code for comments that provide additional explanation.

Multiprocessing
Each time you run the ListAgentsSlowly action, it is run on a new thread. If you click the Run button repeatedly,
multiple threads are started, each executing the ListAgentsSlowly method.

Running the ListAgentsSlowly action repeatedly can result in Busy messages being displayed in the logging
window.

.NET Developer's
Reference

Chapter 4 Erewhon .NET Example 71

DotNetDev - 2020.0.02

Building Your Own Application
The following instructions outline how you can build your own WPF application to connect to the JADE database.

1. Create a new WPF project.

2. Build the project and solution.

3. Add the existing project created by the Exposure wizard, ErewhonExposure, to this solution.

4. In the WPF project you created in the first step, add references to:

JadeSoftware.Jade.DotNetInterop.dll

JadeSoftware.Joob.dll

JadeSoftware.Joob.Common.dll

ErewhonExposure.dll (the exposure project added to the solution)

5. Ensure that the target platform is set to x64 (64-bit) on the Build tab of the Properties sheet for your WPF
application.

.NET Developer's
Reference

Chapter 4 Erewhon .NET Example 72

DotNetDev - 2020.0.02

Chapter 5 Using the JADE .NET Framework

This chapter covers the following topics.

Overview

Exposing JADE Classes

JADE .NET Framework

JADE .NET API Documentation

.NET and JADE

How a .NET Application Connects to JADE

Overview
The JADE .NET framework enables .NET developers to access classes and their associated properties and
methods in the JADE database.

This is achieved by generating a set of classes in .NET that act as proxies for the actual JADE classes. Accessing
the proxy classes is similar to the use of the actual classes in JADE.

The .NET library containing the classes is built by exposing the classes (and their methods and properties) of
interest in JADE. The wizard used to expose JADE features generates C# class files that you can then build into a
re-usable .NET class library.

Exposing JADE Classes
You can use .NET to write the application-related components of your system and access JADE database-related
components. The approach consists of the following steps.

1. Use JADE to define the classes for your .NET application.

2. Define a .NET exposure and generate C# source files as the starting point for building the application. For
details, see "Using the C# Exposure Wizard", in Chapter 18 of the JADE Development Environment User’s
Guide.

The C# class definitions contain the properties and methods defined in the exposure that are required to
access them in the JADE database.

3. Use the generated C# Visual Studio project file (or create your own) to build a Dynamic Link Library
(assembly) that contains the proxy classes.

4. Add a reference to the assembly, generated in the previous step of this instruction, to your own project.

5. Add instructions to your .NET code relating to JADE connection, JADE class access, and transaction control.

6. Build and run your .NET project.

DotNetDev - 2020.0.02

JADE .NET Framework
To use the JADE .NET API, you must have the tools to build .NET projects; for example, Microsoft Visual Studio
2010 or later. (Microsoft Visual Studio 2017 is recommended.)

The JADE .NET API is implemented in a number of assemblies that provide a set of .NET classes. The following
diagram shows the communication and interoperability role played by JadeSoftware.Jade.DotNetInterop.dll and
other assemblies in the framework.

JADE .NET API Documentation
The JadeDotNetAPI.chm file, which is located in the installed JADE documentation directory (for example,
C:\Jade\JADE Docs\documentation), contains documentation of the .NET classes and other components,
including those for collection concurrency, that comprise the JADE .NET API.

.NET and JADE
The JADE object model includes a class hierarchy that is similar to that of .NET. This common object-oriented
approach means there is a natural fit between JADE and .NET, enabling .NET objects to be modeled from the
JADE database.

How a .NET Application Connects to JADE
A .NET runtime application connects to a JADE system as a standard JADE client using the
JadeSoftware.Jade.DotNetInterop.dll library file on Windows. For more details about the code that causes the
sign on to occur, see "Connecting to JADE", in Chapter 7.

The JadeSoftware.Jade.DotNetInterop.dll file is one of the files supplied from JADE as part of a standard JADE
client installation, and is typically located in the bin directory; for example, C:\Jade\bin.

.NET Developer's
Reference

Chapter 5 Using the JADE .NET Framework 74

DotNetDev - 2020.0.02

Chapter 6 .NET Exposure

This chapter covers the following topics.

Overview

.NET Exposures

Application Configuration File

Exposed JADE Classes

Exposed JADE Properties

Exposed JADE Methods

JADE Method Parameter Usage

Exposed JADE Class Constants

Collections

Overview
JADE classes, properties, methods, and class constants are exposed using the .NET Exposure Wizard in the
JADE development environment. For details, see Chapter 17 of the JADE Development Environment User’s
Guide.

The exposure generates C# class files that correspond to the exposed JADE classes. These exposed classes are
then built into a .NET class library. You can then use this class library in .NET applications to access, create, and
update JADE objects in the JADE database.

The generated class library and your application can use the JADE .NET application programming interface (API)
contained in the JadeSoftware.Jade.DotNetInterop.dll file. This API uses the JADE .NET API to access the JADE
database.

Any .NET application or library using the JADE .NET API must include references to the following DLLs that are
found in your JADE binary directory (that is, bin).

JadeSoftware.Joob.dll

JadeSoftware.Joob.Common.dll

JadeSoftware.Jade.DotNetInterop.dll

.NET Exposures
The Exposures command from the Browse menu in the JADE development environment enables you to define a
.NET exposure. For details about using the .NET Exposure wizard, see "Using the .NET Exposure Wizard", in
Chapter 17 of the JADE Development Environment User’s Guide.

A .NET exposure definition is a collection of JADE classes, methods, and properties that are generated to create a
.NET class library for an existing JADE schema.

DotNetDev - 2020.0.02

When a JADE .NET exposure is generated, the following files are created.

File Contains …

Exposure-name.csproj A simple C# project file that includes all class files and creates a C# library with
the namespace Exposure-name.

Exposure-name.config An example application configuration file that can be used without modification for
a test application or to provide code fragments for production configuration files.

Class-name.cs For each exposed class, a C# class file is created containing the class definition in
the namespace Exposure-name.

JoobContextExtensions
.cs

JoobContext extension methods for creating instances of any exposed class that
have a create method with parameters, which allows these objects to be created
on a specific JoobContext.

You can open the Exposure-name.csproj C# project file using the professional or express editions of Microsoft
Visual Studio 2017 and create the library file Exposure-name.dll, which defines the namespace Exposure-name
containing the exposed classes. You can then include this DLL as a reference in a .NET application project, to
enable access to the JADE classes.

Application Configuration File
The following is an example of a generated configuration file.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
<section name="joob"

type="JadeSoftware.Joob.Configuration.JoobConfigurationSection,
JadeSoftware.Joob" />

</configSections>

<connectionStrings>
<add name="myDefault" providerName="JadeSoftware.Joob.JadeConnection"

connectionString="DataSource=C:/Jade7009/system/;
ConfigFile=C:/Jade7009/system/jade.ini;
SingleUser=False;
Schema=BankingViewSchema;
Application=DotNetConnection;
IntegratedSecurity=true"></add>

</connectionStrings>

<joob defaultConnection="myDefault">
<installation directory="C:\Jade7009\bin" />

</joob>

<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>

</startup>
</configuration>

Within the <configSections> element there is a joob section, which defines the JADE configuration and is
required if you intend using JADE configuration parameters. Within the joob section are a number of options that
enable you to customize your application.

.NET Developer's
Reference

Chapter 6 .NET Exposure 76

DotNetDev - 2020.0.02

In the <connectionStrings> section, specify the JADE database to which the connection is to be established. The
<add> sub-element has a connectionStrings attribute, which contains a series of comma-separated values that
define connection attributes for the JADE database.

DataSource. The location of the folder containing the database control file (_control.dat).

ConfigFile. The full path name of the JADE initialization file.

SingleUser. True or False, depending on the mode in which the database has been opened. The default
value is False.

Schema. A user schema in the database.

Application. An application defined in the database. The default value is RootSchemaApp.

IntegratedSecurity. True or False, depending on whether the connection uses the current Windows identity
established on the operating system thread to log on to JADE.

The default value is True. If you specify False, you must add UserName= and Password= values.

Specifying an application causes the JADE initialize or finalize methods defined on that application to be invoked.
(The default application, RootSchemaApp, does not have initialize or finalize methods defined.)

Specifying an application causes the JADE initialize and finalize methods defined on that application to be
invoked. (The default application, RootSchemaApp, does not have initialize or finalize methods defined.)

Connection String Extensions
You can specify the intended target database in connection strings in one of two ways.

The existing action; that is, the database control file path and the ServerNodeSpecifications parameter
value in the [JadeClient] or [ConnectionParams] section of the JADE initialization file.

Specifying the server URI, which has the following general format.

scheme://host-name:port-number or base-name/environment-UUID/
[server-UUID][?parameters]

The scheme value specifies the transport type, which can be one of the following values.

TcpIp

TcpIpv4

TcpIpv6

HPSM

JadeLocal

The host-name:port-number or base-name value specifies the target address of the server.

The environment-UUID value specifies the database, which is expected to be at the target address. This is
optionally followed by the database server identity UUID.

The optional parameters values enable you to specify the local address or port for TCP/IP transports.

Tip Connection establishment is fastest when your connectionString uses a server URI with both the
environment and server UUIDs specified.

.NET Developer's
Reference

Chapter 6 .NET Exposure 77

DotNetDev - 2020.0.02

The following are examples of connectionString DataSource values using:

TCP/IP version 4 implicitly

"DataSource=TcpIp://localhost:6005/48cf13df-bf6d-df11-87e2-2e5925024153;…"

TCP/IP version 4, explicitly declaring an explicit local address

"DataSource=TcpIpv4://host.company.com:6005/48cf13df-bf6d-df11-87e2-
2e5925024153?localHostname=aHostName;"

TCP/IP version 6, declaring an explicit local port

"DataSource=TcpIpv6://[fe81::6fe:7fff:fe97:bd20]:6005/48cf13df-bf6d-df11-87e2-
2e5925024153?localPort=54321;..."

HPSM, declaring both environment and server UUIDs

"DataSource=HPSM://localhost:SRCJoob-HPSM/48cf13df-bf6d-df11-87e2-
2e5925024153/48cf13df-bf6d-df11-87e2-2e5925024153;..."

Exposed JADE Classes
Each exposed JADE class is:

Generated as a single Class-name.cs C# class file

Generated in the namespace Exposure-name

Inherits from JoobObject as the base class

Contains a constructor to create an object as a transient or persistent JADE object

Contains a constructor to create an object with the default persistence of the JADE object

Contains exposed properties, methods, and constants

If the exposed JADE class is a subclass of another exposed JADE class, the class hierarchy is retained in the C#
definition; for example, if SubClass1 is a subclass of Class1 in the JADE definition, the C# class SubClass1 is
derived from Class1.

Note With the addition of create methods with parameters in JADE 2018 and higher, the constructors of
exposed classes will change, depending on the create method of classes. If an exposed JADE class has a create
method with parameters, the two constructors defined in the previous paragraph also include parameters to match
the create method of the class.

The data type of these parameters is based on the JADE type. To work correctly, any non-primitive parameters
require their class to be exposed. The conversions for JADE primitive types are the same as those for properties.
For details, see "Exposed JADE Properties", in the following section.

The following example shows an exposed JADE class.

[System.Runtime.Serialization.KnownTypeAttribute(typeof(Tender))]
[System.Runtime.Serialization.DataContractAttribute(IsReference=true)]
[System.ComponentModel.DataAnnotations.MetadataTypeAttribute(typeof

(TenderSaleMetadata))]
[JadeSoftware.Joob.Client.JoobClassAttribute("TenderSale",

"RootSchema.CommonSchema.ErewhonInvestmentsModelSchema",
ClassNamespace="ErewhonTesting")]

.NET Developer's
Reference

Chapter 6 .NET Exposure 78

DotNetDev - 2020.0.02

[JadeSoftware.Joob.Metadata.JomlTypeAttribute
(JadeSoftware.Joob.Metadata.JomlTypeKind.Class, "TenderSale", typeof
JoobObject))]

public partial class TenderSale: Sale
{

private static TenderSaleMetadata _metaModel;
partial void _initialize();
static TenderSale()
{

_metaModel = MetadataCache<TenderSaleMetadata>.GetData(null);
}
public TenderSale():

this(JadeSoftware.Joob.ClassPersistence.Persistent)
{
}
public TenderSale(JadeSoftware.Joob.ClassPersistence lifetime):

base(lifetime, typeof(TenderSale), _metaModel.metaClass)
{

this._initialize();
}
protected TenderSale(JadeSoftware.Joob.ClassPersistence lifetime,

System.Type type, JadeSoftware.Joob.ClassMetadata metaClass):
base(lifetime, type, metaClass)

{
this._initialize();

}

#region Jade Properties
#region Jade Methods
#region Jade Constants
}

The generated classes are decorated with a number of attributes, which are used by the JADE engine to ensure
correct and consistent access to the class in the JADE database. For each exposed class, an additional class is
generated, which is used internally to ensure consistency between the JADE database definition and the C#
definition. The name of this class is formed by appending Metadata to the name of the exposed class. For
example, if the TenderSale class is exposed, the class is named TenderSaleMetadata.

Exposed JADE Properties
Each exposed JADE property is defined in the C# class in the Jade Properties region. Each property has an
accessor and mutator (that is, a get method and a set method).

The data type of the property is based on the JADE type. The conversions for JADE primitive types are listed in the
following table.

JADE Type .NET Type

Binary Byte[]

Boolean Boolean

Byte Byte

Character Char

.NET Developer's
Reference

Chapter 6 .NET Exposure 79

DotNetDev - 2020.0.02

JADE Type .NET Type

Date DateTime

Decimal Decimal

Integer Int32

Integer64 Int64

JadeBytes JoobBytes

MemoryAddress <not supported>

Point Point (defined in JadeSoftware.Jade.DotNetInterop)

Real Double

String String

StringUtf8 String

Time TimeSpan

TimeStamp DateTime

TimeStampInterval TimeSpan

TimeStampOffset DateTimeOffset

The generated code varies depending on the JADE property type. The following example shows an exposed
JADE property.

[JadeSoftware.Joob.Client.JoobPropertyAttribute("myTender", typeof(Tender),
DatabaseTypeName="Tender")]
[System.Runtime.Serialization.DataMemberAttribute()]
public Tender MyTender
{

get
{

return this.GetPropertyReference<Tender>(_metaModel.myTender);
}
set
{

this.SetPropertyReference(_metaModel.myTender, value, false);
}

}

Exposed JADE Methods
Each exposed JADE method is defined in the C# class in the Jade Methods region.

The data type of the return value and parameters is based on the JADE type. The conversions for JADE primitive
types are the same as those for properties. For details, see "Exposed JADE Properties", in the previous section.

JADE Method Parameter Usage
In the signature of a JADE method, the type of each parameter must be declared along with the Usage value,
which can be Usage.Constant, Usage.Input, Usage.IO (combination of input and output), or Usage.Output.

If you do not specify a usage, a default of Usage.Constant is assumed.

.NET Developer's
Reference

Chapter 6 .NET Exposure 80

DotNetDev - 2020.0.02

The parameter usages are as follows.

For Usage.Constant and Usage.Input parameters, the parameter value specified in the method call is
passed to the corresponding parameter in the called method.

Note You cannot assign to a Usage.Constant or Usage.Input parameter.

For Usage.Output parameters, the value is passed in the reverse direction, from the parameter of the called
method back to the corresponding parameter of the caller. This copying back of the parameter value occurs
when the called method returns.

For Usage.IO parameters, the parameter value is passed in both directions, as follows.

From the caller to the called method when the method begins

From the called method back to the caller when it returns

The following is an example of an exposed JADE method.

[JadeSoftware.Joob.Client.JoobMethodAttribute("addIntegers")]
public Int32 AddIntegers(Int32 i1, Int32 i2)
{

using (JadeParam retnParam = new JadeParamInteger(Usage.Output),
jadeParam1 = new JadeParamInteger(i1),
jadeParam2 = new JadeParamInteger(i2))

{
this.SendMessage(_metaModel.addIntegers,

retnParam,
jadeParam1,
jadeParam2);

return (retnParam as JadeParamInteger).Value;
}

}

Exposed JADE Class Constants
Each exposed JADE class constant is defined in the C# class in the Jade Constants region.

The data type of the constant is based on the JADE type. The conversions for JADE primitive types are the same
as those for properties. For details, see "Exposed JADE Properties", earlier in this chapter.

Collections
Collection classes are derived from a subclass of various classes in the JadeSoftware.Joob namespace listed in
the following table, to inherit the required behavior.

Collection Description

JadeSoftware.Joob.ObjectArray Array of JADE objects

JadeSoftware.Joob.ObjectSet Set of JADE objects

JadeSoftware.Joob.MemberKeyDictionary Dictionary of JADE objects with one or more keys that are in
the member class

.NET Developer's
Reference

Chapter 6 .NET Exposure 81

DotNetDev - 2020.0.02

Collection Description

JadeSoftware.Joob.ExtKeyDictionary Dictionary of JADE objects with one or more keys that are
externally supplied

JadeSoftware.Joob.DynamicDictionary Dictionary of objects that encapsulates the behavior of the
JADE DynaDictionary class

The following example shows an exposed JADE Collection class called AgentDictByName that contains JADE
objects of type Agent.

public partial class AgentDictByName:
MemberKeyDictionary<AgentDictByNameKey, Agent>

{
private static AgentDictByNameMetadata _metaModel;
partial void Initialize();
static AgentDictByName()
{

_metaModel = MetadataCache<AgentDictByNameMetadata>.GetData(null);
}
private AgentDictByName():

this(JadeSoftware.Joob.ClassPersistence.Transient)
{
}
public AgentDictByName(JadeSoftware.Joob.ClassPersistence lifetime):

base(lifetime, typeof(AgentDictByName), _metaModel.metaClass)
{

this.Initialize();
}
protected AgentDictByName(JadeSoftware.Joob.ClassPersistence lifetime,

System.Type type, JadeSoftware.Joob.ClassMetadata metaClass):
base(lifetime, type, metaClass)

{
this.Initialize();

}
public virtual Agent this[String name, DateTime dob]
{

get
{

AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
return base[key];

}
set
{

AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
base[key] = value;

}
}
public virtual bool TryGetValue(String name, DateTime dob,

out Agent value)
{

AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
return base.TryGetValue(key, out value);

}
public virtual bool TryGetValue(String name, DateTime dob,

JadeSoftware.Joob.SearchStrategy strategy, out Agent value)

.NET Developer's
Reference

Chapter 6 .NET Exposure 82

DotNetDev - 2020.0.02

{
AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
return base.TryGetValue(key, strategy, out value);

}
public virtual IJoobDictionaryEnumerable<AgentDictByNameKey, Agent>

StartingAtKey(String name, DateTime dob)
{

AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
return base.StartingAtKey(key);

}
public virtual IJoobDictionaryEnumerable<AgentDictByNameKey, Agent>

StartingAtKey(String name, DateTime dob,
JadeSoftware.Joob.SearchStrategy strategy)

{
AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
return base.StartingAtKey(key, strategy);

}
public virtual void Remove(String name, DateTime dob)
{

AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
base.Remove(key);

}
public virtual void Remove(String name, DateTime dob, Agent member)
{

AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
base.Remove(key, member);

}
public virtual bool ContainsKey(String name, DateTime dob)
{

AgentDictByNameKey key = new AgentDictByNameKey(name, dob);
return base.ContainsKey(key);

}
}

In the following example, root contains a reference AllAgents of type AgentDictByName.

foreach (Agent agent in root.AllAgents)
{

agent.DoSomething();
}

When indexing a JADE array in .NET, the .NET convention of zero-based arrays is used; that is, the element at
position zero (0) is the first element in the array. In the following example, a C# class called SomeClass has an
IntegerArray property called MyIntegerArray.

SomeClass obj = joobContext.FirstInstance<SomeClass>();
Int32 i = obj.MyIntegerArray[0]; // returns first element of array
Int32 j = obj.MyIntegerArray.At(0); // also returns first element of array

In the following example, root contains a reference AllAgents of type AgentDictByName.

foreach (Agent agent in root.AllAgents)
{

agent.DoSomething();
}

.NET Developer's
Reference

Chapter 6 .NET Exposure 83

DotNetDev - 2020.0.02

When indexing a JADE array in .NET, the .NET convention of zero-based arrays is used; that is, the element at
position zero (0) is the first element in the array. In the following example, a C# class called SomeClass has an
IntegerArray property called MyIntegerArray.

SomeClass obj = joobContext.FirstInstance<SomeClass>();
Int32 i = obj.MyIntegerArray[0]; // returns first element of array
Int32 j = obj.MyIntegerArray.At(0); // also returns first element of array

.NET Developer's
Reference

Chapter 6 .NET Exposure 84

DotNetDev - 2020.0.02

Chapter 7 Developing Applications in .NET to
Use JADE Classes

This chapter covers the following topics.

Overview

Using JADE Classes in .NET

JADE .NET Assembly Public Keys

Connecting to JADE

Pool of Available Processes

Accessing Database Instances

Accessing JADE System Objects

Creating Objects

Deleting Objects

Locking

Notifications

Exceptions

Accessing Imported .NET Exception Classes

Transactions

Multiple Database Access for .NET

Using Multiple Database Access

Overview
This chapter documents classes in the JADE .NET API that you can use to build .NET applications that work with
the JADE classes in an exposure DLL. For more details, see the JADE .NET API documentation (that is, the
JadeDotNetAPI.chm file in the installed JADE documentation directory; for example, C:\Jade\JADE
Docs\documentation).

Using JADE Classes in .NET
The JoobContext and JoobConnection classes in the JadeSoftware.Joob library provide the link between a
.NET application and a JADE system.

Any .NET assembly using the JADE .NET API must include references to the following DLLs that are found in the
JADE binary (bin) directory.

JadeSoftware.Jade.DotNetInterop.dll

JadeSoftware.Joob.dll

JadeSoftware.Joob.Common.dll

DotNetDev - 2020.0.02

In addition, a reference to the exposure DLL created using the .NET Exposure wizard in the JADE development
environment is required. For details about the exposure DLL, see ".NET Exposure", in Chapter 6.

To simplify access to these classes in a C# project, add the following using directives.

using JadeSoftware.Jade.DotNetInterop;
using JadeSoftware.Joob.Client;
using JadeSoftware.Joob;
using <namespace-for-exposed-classes>;

JADE .NET Assembly Public Keys
JADE .NET assemblies are signed. Each release uses the same public key token for its assemblies, but they have
different versions, as shown in the following table.

Build/Configuration PublicKeyToken

Release_Ansi|x64 4ffc2b9eb5630e47

Release_Unicode|x64 b5033a0291fb93d9

An example of the app.config file is as follows.

<configSections>
<section name="joob"

type="JadeSoftware.Joob.Configuration.JoobConfigurationSection,
JadeSoftware.Joob, Version=7.0.9.0, Culture=neutral,
PublicKeyToken=4ffc2b9eb5630e47">

</section>
</configSections>

An application run with this example app.config file requires JadeSoftware.Joob.dll with an assembly version of
7.0.9.0 and signed with the Release_Ansi|X64 key.

Hot fix versions of JadeSoftware.Joob.dll (and so on) are released with the same assembly version as the initial
consolidated release (for example, 7.0.9.0) but the file version indicates the hot fix number. Your assemblies,
therefore, do not need to be rebuilt when a hot fix is installed but they must be rebuilt when a subsequent
consolidated release is installed.

Connecting to JADE
A JoobContext object is used to connect to the database. The default no-parameters constructor uses the
defaultConnection information specified in the application configuration file. For details, see "Application
Configuration File", in Chapter 6.

The following syntax creates a context object using the no-parameters constructor and establishes a connection to
the JADE database.

JoobContext context = new JoobContext();

The following syntax establishes a connection using an alternative connection string defined in the application
configuration file.

JoobContext context =
new JoobContext(JoobConnectionStringBuilder.CreateFromConfig("other"));

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 86

DotNetDev - 2020.0.02

When a connection is no longer required, the JoobContext object should be disposed of to release the
connection back to the pool.

context.Dispose();

If a connection is required only at certain times in the life of the application, you can create a temporary connection
with a using statement. The JoobContext object is implicitly disposed of at the end of the using block.

using (JoobContext context = new JoobContext())
{

// access the database
}

For details about using non-default connections and specifying connection parameters from your logic, see the
JADE .NET API documentation (that is, the JadeDotNetAPI.chm file in the installed JADE documentation
directory; for example, C:\Jade\JADE Docs\documentation).

Pool of Available Processes
When a connection is first established from a .NET application to JADE, a node is created with a pool of available
processes. The connection uses one of the processes and releases it back to the pool when the connection is
closed, which happens when the associated JoobContext object is disposed of.

If the default connection is used, the number of processes in the pool can be specified in the defaultPoolSize
attribute of the <jade> element of the application configuration file, as shown in the following example.

<joob defaultConnection="myDefault" defaultPoolSize="15">

If the defaultPoolSize attribute is omitted, the default value of 10 is used.

Note If you use the free JADE developer licence, which allows five processes only, reduce the pool size as
follows.

<joob defaultConnection="myDefault" defaultPoolSize="2">

If you do not change the default value, you will encounter exception 5504 (You have exceeded the number of
Process Licenses) when creating a JoobContext object.

For an alternative connection string defined in the application configuration, you can override the defaultPoolSize
value with the poolSize attribute within the <tuning> element, as shown in the following example.

<tuning>
<add connection="other" poolSize="20" />

</tuning>

Accessing Database Instances
The JoobContext class provides methods to access database objects from a specified class.

Method Returns …

FirstInstance<T> The first instance of a class

FindInstance<T> An object with the specified OID

LastInstance<T> The last instance of a class

AllInstances<T> All instances of a class

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 87

DotNetDev - 2020.0.02

The following typical sequence of C# calls returns the first instance of the Company class, iterates through a
collection on the class, and uses references and methods of the objects in the collection.

JoobContext context = new JoobContext();
Company company = context.FirstInstance<Company>();

If you know the object identifier (OID) of a JADE database object, you can obtain a reference to that object in your
C# code, as shown in the following example.

JoobContext context = new JoobContext();
ObjectId oid = new ObjectId(3272, 1);
Agent comp = context.FindInstance<Agent>(oid);

In the following example, a virtual collection of instances of the Stock class is iterated.

JoobContext context = new JoobContext();
foreach (Agent agent in context.AllInstances<>(Agent))
{

// process agent
}

Accessing JADE System Objects
You can obtain the OIDs of the JADE system objects by using the GetSystemVariables method of the
JoobContext instance, which returns an instance of the SystemVariables class. The properties of a
SystemVariables object are the OIDs of the JADE system objects. They are listed in the following table.

JADE System Object Type Description

App Application subclass (which must be exposed) The current transient
application instance. This is
often used to store
application-specific data.

Currentschema JadeSoftware.Joob.MetaSchema.Schema Current user-defined schema.

Global Global subclass (which must be exposed) The persistent object for a
schema, which is shared by all
applications running from that
schema.

This is often used to exchange
information between
applications or to retain
information when an
application closes.

Node JadeSoftware.Joob.Management.JoobNode The workstation that hosts the
execution of the current
process. One node object
exists for each logical
workstation connected to the
server node workstation. There
is one fixed server node and
none or many client nodes. A
node represents a workstation
that runs a number of
processes.

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 88

DotNetDev - 2020.0.02

JADE System Object Type Description

Process JadeSoftware.Joob.Management.JoobSession The current thread in a
workstation executing the
current method.

RootSchema JadeSoftware.Joob.MetaSchema.Schema The JADE RootSchema.

System JadeSoftware.Joob.Management.JoobSystem The JADE architectural
environment consisting of a
group of nodes to which the
current node belongs.

Notes You must expose the classes of the App and Global system objects for the types to be available to your
C# code.

See also "JoobContexts, Sessions, and JoobConnections", in Chapter 2, for details about the C# wrappers for the
JADE Object Manager Process, Node, and System classes.

The following code would obtain a reference to the Node object.

JoobContext context = JoobContext.CurrentContext;
SystemVariables sv = context.GetSystemVariables();
ObjectId nodeOid = sv.Node;
JadeSoftware.Joob.Management.JoobNode

node = context.FindInstance<JadeSoftware.Joob.Management.JoobNode>(nodeOid);

A typical use of the App object is to store a reference to a root object, which is a singleton persistent object that
contains collections of all objects in a class. For example, in a banking application, the root object would represent
the bank itself and would have a collection of all of the customers of the bank. The following code would obtain a
reference to the App object.

JoobContext context = JoobContext.CurrentContext;
SystemVariables sv = context.GetSystemVariables();
ObjectId appOid = sv.App;
ErewhonInvestmentsModelApp

app = context.FindInstance<ErewhonInvestmentsModelApp>(appOid);

Transient App objects are created when a connection to JADE is first established and the pool of processes is
created (typically when an application first creates a JoobContext instance). An App object is associated with
each process in the pool. Each App object exists for the lifetime of the process and is retained even when a
process is released back to the pool (which happens when the associated JoobContext object is disposed of).

Because the App object for each process is retained, it is available when a JoobContext instance is next created
and associated with that process. However, the associated process may be any of the processes in the pool.

If an initialize method is defined for the database application specified in the connection string, it is invoked when
each App object is created (typically when the first connection to JADE is established). Similarly, if a finalize
method is defined, it is invoked when each App object is deleted (typically when the .NET application terminates).

Creating Objects
You can use the new operator to create a persistent or transient instance of an exposed class. The constructor to
use is determined by whether the exposed JADE class has a create method with parameters.

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 89

DotNetDev - 2020.0.02

For an exposed class where the create method has no parameters, the new operator is used together with the
no-parameters constructor for the class or the constructor with a ClassPersistence enumeration value of
Persistent or Transient; for example:

Agent agent = new Agent();
Agent agent = new Agent(ClassPersistence.Persistent);

Alternatively, you can use the CreateInstance method of the JoobContext class.

JoobContext context = JoobContext.CurrentContext;
Agent agent = context.CreateInstance<Agent>(ClassPersistence.Persistent);

For an exposed class where the create method has parameters, the new operation is used together with the
constructor with the matching parameters as the create method or the constructor with matching parameters and
a ClassPersistence enumeration value of Persistent or Transient; for example:

Customer customer = new Customer("Wilbur", "wilbur@jadeworld.com");
Customer customer = new Customer(ClassPersistence.Persistent, "Wilbur",

"wilbur@jadeworld.com");

Note Attempting to use the no-parameters constructor on a class requiring parameters raises exception 4027
(Method called with incorrect number of parameters).

Alternatively, you can create an instance of an exposed class by using the JoobContext extension methods
generated in JoobContextExtensions.cs. Each exposed class that has a create method with parameters
generates a JoobContext extension method with the signature CreateXXInstance, with the XX value being the
name of the exposed class; for example:

JoobContext context = JoobContext.CurrentContext;
Customer customer = context.CreateCustomerInstance(ClassPersistence.Persistent,

"Wilbur", "wilbur@jadeworld.com");

Transient objects belong to the process that created them and are not accessible by any other process. The
transient objects for a process are retained until explicitly deleted or when the process is disposed of (typically
when the .NET application terminates).

Because the transient objects for each process are retained, they are available the next time a JoobContext
instance is created and associated with that process. However, the associated process may be any of the
processes in the pool.

Note To create, modify, or delete a persistent object, you must be in transaction state. For details, see
"Transactions", later in this chapter.

Deleting Objects
You can use the Delete method, which is inherited from the JoobObject class, to delete an instance of an
exposed JADE class.

agent.Delete();

Alternatively, you can use the DeleteObject method of the JoobContext class.

JoobContext context = JoobContext.CurrentContext;
context.DeleteObject(agent);

Note To create, modify, or delete a persistent object, you must be in transaction state. For details, see
"Transactions", later in this chapter.

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 90

DotNetDev - 2020.0.02

Locking
The locking-related methods provided by the JoobContext class are shown in the following table.

Method Description

Lock Locks a JADE object and throws an exception if the attempt fails

Unlock Releases a lock on a JADE object

TryLock Locks a JADE object and returns False if the attempt fails

GetLockStatus Gets the type and duration of the lock on a JADE object by the current process

In the following example, an attempt is made to lock an agent object using the Lock method. If the object is
already locked with an incompatible lock, a normal lock exception is thrown. The JADE concepts of passback,
continue, resume, or abort (for the action that is taken after the exception handling code has been executed) are
not supported.

JoobContext context = JoobContext.CurrentContext;
Agent agent = context.FirstInstance<Agent>();
try
{

context.Lock(agent, // object to be locked
LockType.Exclusive, // type of lock
LockDuration.Session, // session/transaction duration
TimeSpan.FromSeconds(5)); // time before exception thrown

}
catch (JoobObjectLockedException)
{

// lock object handling code
}

Notifications
The JoobContext class provides the RegisterNotificationHandler method to request being notified about events
for a specified JADE object and the RegisterClassNotificationHandler method to request being notified about
events for all objects of a specified class.

The first parameter is the target of the notifications. The second parameter is the event type number (you can use
the constants in the NotificationEventConstants class for system events). The third parameter is the name of the
event handler method to be invoked.

The following example shows how you can register for notifications.

JoobContext context = JoobContext.CurrentContext;
// Register for any kind of system event on the 'agent' object
// the event handler method is called 'myEventHandler'
context.RegisterNotificationHandler(agent,

NotificationEventConstants.SystemAny,
myEventHandler);

// Register for user event 5000 for all instances of the Agent class
// the event handler method is called 'event5000Handler'
context.RegisterClassNotificationHandler(agent, 5000, event5000Handler);

There are UnregisterNotificationHandler and UnregisterClassNotificationHandler methods to stop the sending
of notifications. The methods have the same parameters as the methods that register for notifications.

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 91

DotNetDev - 2020.0.02

The Notify method, which is inherited from the JoobObject class, publishes a user event. The first parameter is
the event type number. The second parameter is True if the event is raised immediately and False if it deferred
until the next time a transaction is committed. The method is overloaded so that the third parameter, which is user
information about the event, can be of any type.

The following example shows how you can cause a user event.

// 'agent' is an instance of the Agent class
agent.Notify(agent, false, 0);

An event handler method has a signature similar to any C# event handler.

void myEventHandler(object sender, NotificationEventArgs e)
{

JoobContext context = sender as JoobContext;
int eventNo = e.EventNo;
ObjectId target = e.Target;

}

The first parameter is JoobContext object that was used to register for notifications. The second parameter is a
NotificationEventArgs object, which has the following properties.

Property Description

EventNumber The event number integer that was passed as the middle parameter of the
RegisterClassNotificationHandler or RegisterNotificationHandler method.

Target The ObjectId of the object to which the event happened.

UserInfo For user events, it is an object representing the UserInfo parameter that was passed to the
Notify method when the user event was published. For system events, it is a null object
reference.

Notifications in JADE and .NET
If a .NET application calls a JADE method that executes the beginNotification or beginClassNotificationmethod,
the notification is delivered to the thread that created the JoobContext object.

When the beginNotification or beginClassNotification is executed in a JADE method, it is regarded as
subscribing to a different notification than one done by executing the RegisterNotificationHandler or
RegisterClassNotificationHandler method in .NET, even if all of the parameters are equivalent. However, when
an event is explicitly (or implicitly) caused in either language, it is delivered to all subscribers even if the language
that caused the notification did not subscribe to the notification.

When a JoobContext object is disposed of, all subscriptions are cancelled.

As the JADE code is running within .NET, the JADE process will not have an idle state. Consequently, you must
execute the doWindowEvents method of the Application class to enable the notification response method to run.
For details about the cautions regarding the use of this method, see Volume 1 of the JADE Encyclopaedia of
Classes.

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 92

DotNetDev - 2020.0.02

Exceptions
The JadeSoftware.Joob.Exception namespace contains exception classes, including JOM exceptions that are
implemented as subclasses of JoobJomException. These exceptions can be caught in the normal manner, as
shown in the following example.

void catchAnException()
{

JoobContext context = JoobContext.CurrentContext;
Client c = context.FirstInstance<Client>();

try
{

c.Name = c.Name; // generated 'update outside transaction' exception
}
catch (JoobUpdateOutsideTransactionException)
{

// Expected exception
}
catch (JoobJomException jje)
{

int jomErrorError = jje.ErrorCode;
String jomErrorText = jje.ErrorText;

}
catch (JoobException e)
{

String errorMessage = e.Message;
}

}

Accessing Imported .NET Exception Classes
The JadeDotNetInvokeException user interface exception class provides the dotNetExceptionObject property,
that is a type of JadeDotNetType. This property is populated with the .NET Exception object when an exception
of type JadeDotNetInvokeException is generated and the class of the .NET exception object class was imported
from the .NET assembly.

If the exception type object is not available, the property value is null. If the class was not imported from the
.NET assembly, an object of JadeDotNetType type is created.

If the property is set to a reference, you can cast the object to its type and use it to obtain further .NET exception
information.

Transactions
The JoobContext class provides the BeginTransactionmethod, which returns a transaction object. All JADE
actions required to be in transaction state (that is, create, update, or delete actions) must be within the scope of the
transaction object returned by the BeginTransactionmethod. The transaction object provides the methods
Commit and Rollback, to commit or abort the transaction, respectively.

The following example shows a method that uses a transaction to delete a persistent Agent object.

void DeleteClient(Client client)
{

JoobContext context = JoobContext.CurrentContext;
using (System.Data.IDbTransaction tx = context.BeginTransaction())

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 93

DotNetDev - 2020.0.02

{
client.Delete();
tx.Commit();

}
}

If the statement that commits the transaction is omitted, the transaction is rolled back when the transaction object is
disposed of, at the end of the using block.

Multiple Database Access for .NET
The JADE .NET API enables access to multiple JADE databases; that is, a single .NET application (operating
system process) can access a number of JADE databases concurrently.

The restrictions on accessing multiple JADE databases are:

The JADE databases must be at the same feature level.

Multiple connections to the same database are not allowed.

There is a limit of 20 concurrent connections.

Some JADE initialization file parameters (for example, the LogDirectory parameter in the [JadeLog] section)
are read-only when the first database connection is opened, and they remain unchanged for the life of the
process.

Tip Use a common JADE initialization file for all database connections, to ensure that the same jommsg.log file
is used, regardless of the order in which database connections are established.

Using Multiple Database Access
To access multiple JADE databases, you must supply connection details via the appropriate JoobContext
constructor. This can take the form of an existing JoobConnection object, or it can be via a
JoobConnectionStringBuilder object, as shown in the following example.

<BLOCK 1A>
using (JoobContext context = new JoobContext

(JoobConnectionStringBuilder.CreateFromConfig("LocalJade")))
{

// Established context to database with schema MultipleDb1 as
// specified by the "LocalJade" connection string in the app.config
<BLOCK 2A>

using (JoobContext remoteContext = new JoobContext
(JoobConnectionStringBuilder.CreateFromConfig("RemoteJade")))

{
// Established context to database with schema MultipleDb2 as
// specified by "RemoteJade" connection string.
<BLOCK 3>

}
<BLOCK 2B>

}
<BLOCK 1B>

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 94

DotNetDev - 2020.0.02

The app.config file reads as follows.

<connectionStrings>
<add name="RemoteJade" providerName="JadeSoftware.Joob.JoobConnection"
connectionString="DataSource=tcpip://remoteHost:6005/7bf0f9cd-680a-
e111-9eaf-5ae520524153;ConfigFile=\\remoteHost\C:\Jade\system\jade.ini;
Schema=MultipleDb2;IntegratedSecurity=True"></add>

<add name="LocalJade" providerName="JadeSoftware.Joob.JoobConnection"
connectionString="DataSource=C:\Jade\system;ConfigFile=C:\Jade\system\jade.ini;
Schema=MultipleDb1;IntegratedSecurity=True"></add>

</connectionStrings>

The model for multiple database access follows the pattern of requiring a live JoobContext before a JoobObject
can interact with its database.

When an appropriate JoobContext has been instantiated for a database, JoobObject instances from that
database can be retrieved, created, and de-referenced. Each JoobObject instance knows the database to which it
belongs and provided that a JoobContext is alive for its database on the current thread, JoobObject manipulation
can occur.

For example, a JoobObject variable of a MultipleDb2 class can be declared in BLOCK 1A or BLOCK 2A. You can
set, get, or invoke JADE schema-defined properties and methods only from within BLOCK 3. You can locate
instances of classes only from schema MultipleDb2 within BLOCK 3. However, you can manipulate instances of
classes from MultipleDb1 within BLOCK 2A, BLOCK 2B, and BLOCK 3.

.NET Developer's
Reference

Chapter 7 Developing Applications in .NET to Use JADE Classes 95

DotNetDev - 2020.0.02

Appendix A Mapping JADE Primitives to CLR
Data Types

This appendix describes the mapping of JADE primitive types to Common Language Runtime (CLR) data types.

CLR Type JADE Primitive Type Conversion Notes

Boolean Boolean

Byte Byte

Int32 Integer

Int64 Integer64

Double Real

Decimal Decimal CLR decimals are in the range approximately -7.9x10^28
through 7.9x10^28. JADE decimals are in the range -10^23 -
1 through 10^23 - 1.

A .NET Decimal value has 96 bits and can have up to 29
significant digits. JADE supports Decimal properties with
values with up to 23 significant digits. If necessary, JADE
rounds decimal values on assignment to the number of
decimal places defined on the property.

Char Character

String String, StringUtf8

Char[] String, StringUtf8

DateTime Date, TimeStamp The time part of a CLR DateTime is lost when saving to the
database.

DateTimeOffset TimeStampOffset

TimeSpan Time, TimeStampInterval The JADE Time type supports only CLR TimeSpan values in
the range 0:00:00 through 23:59:59. (There may be an
overflow or data loss saving data to the database.)

Byte[] Binary

DotNetDev - 2020.0.02

Appendix B JADE .NET Spatial Feature

This appendix discusses the spatial feature in JADE .NET, which enables you to develop applications to store,
edit, and query spatial information directly through the JADE .NET API.

The first part of this appendix focuses on spatial data, explaining how you can create, edit, and analyze spatial
objects in JADE .NET. The second part talks about the spatial index used in JADE .NET, which can be helpful
when dealing with a large collection of spatial objects.

Spatial Data
Spatial data, also known as geospatial data or geographic information, is the data that describes the geographic
location of features and boundaries on the earth.

The geometry data type uses the two-dimensional Cartesian coordinate system, meaning that spatial data of this
type are presented in a uniform two-dimensional plane with units of your choice. When dealing with this type of
spatial data, or planar data, we assume that the earth is flat.

In JADE .NET, the following interfaces and classes are introduced to assist in the development of spatial
components within applications. However, they are generalized to a level higher, so that they can also be used in
non-spatial domains in the future.

IMultiDimensionObject is an interface representing all objects that have dimensionality – not only spatial
geometries, but also other non-spatial dimensional data as well. It exposes two properties (Dimension and
Envelope) and some predicate methods such as Contains and Touches for evaluating relationships between two
instances of IMultiDimensionalObjects.

IEnvelope is an interface representing the envelope of an IMultiDimensionalObject. IEnvelope implements
IMultiDimensionalObject.

DotNetDev - 2020.0.02

MultiDimensionalObject is an abstract class directly implementing IMultiDimensionalObject and it is the base
class for JoobGeometry, which is discussed in the following section.

Unlike the interfaces and classes in previous paragraphs, JoobSpatialException is specific to the spatial domain
and is used for reporting errors that occurred during the creation and manipulation of spatial data.

Working with Geometry
As shown in the following diagram, there are a few more classes introduced that enable you to create and
manipulate geometries in JADE .NET.

JoobGeometry inherits from MultiDimensionalObject and can be used to represent all geometry types that JADE
.NET supports; that is, Point, LineString, LinearRing, Polygon,MultiPoint,MultiLineString,MultiPolygon, and
GeometryCollection.

JoobGeometry exposes a large number of properties and methods that are useful for querying geometry
information and performing spatial analysis. Their implementations are compatible with the Open Geospatial
Consortium’s (OGC)’s Simple Features specification version 1.1.0:

OpenGIS Implementation Specification for Geographic information - Simple feature access - Part 1: Common
architecture

OpenGIS Implementation Specification for Geographic information - Simple feature access - Part 2: SQL
option

JoobRegion is a special subclass of JoobGeometry, representing the Minimum Bounding Rectangle (MBR) of a
specified JoobGeometry.

JoobGeometryBuilder, which is described later in this appendix, is a helper class that enables you to create
geometries in a point-by-point fashion.

Creating a Geometry
In JADE .NET, there are several ways to create a JoobGeometry object, by using the:

JoobGeometry constructor to accept a string encoded in the WKT (Well Known Text) format

JoobGeometry constructor to accept a byte array encoded in the WKB (Well Known Binary) format

JoobGeometryBuilder class

.NET Developer's
Reference

Appendix B JADE .NET Spatial Feature 98

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

DotNetDev - 2020.0.02

Creating a geometry using WKT or WKB is quite straightforward — all you need to do is to supply a valid WKT
string or a WKB byte array to a JoobGeometry constructor; for example:

public void CreateRing()
{

var wkt = "LineString (10 20, 30 15, 20 15, 10 10, 10 20)";
using (var geom = new JoobGeometry(wkt))
{

...
}

}

If an invalid WKT or WKB is provided, a JoobSpatialException is thrown. For details about the WKT and WKB
formats, see the OGC specification Simple feature access - Part 1: Common. Geometry data do not always present
themselves in WKT or WKB formats; instead, they may come with a series of coordinates. In this circumstance, you
can use JoobGeometryBuilder to create a geometry one point at a time. The following are two examples of using
JoobGeometryBuilder: the first creates a simple line string starting from the coordinate (10, 40) to the coordinate
(30, 50), and the second creates a polygon with one interior ring.

public JoobGeometry CreateLineString()
{

var builder = new JoobGeometryBuilder();
builder.BeginGeometry(GeometryType.LineString);

builder.BeginFigure(10, 40);
builder.AddLine(30, 50);
builder.EndFigure();

builder.EndGeometry();
return builder.GetConstructedGeometry(ClassPersistence.Persistent);

}
public JoobGeometry CreatePolygonWithOneInteriorRing()
{

var builder = new JoobGeometryBuilder();
builder.BeginGeometry(GeometryType.Polygon);

builder.BeginFigure(1, 2);
builder.AddLine(3, 4);
builder.AddLine(4, 1);
builder.AddLine(1, 2);
builder.EndFigure();

builder.BeginFigure(2, 2);
builder.AddLine(3, 3);
builder.AddLine(3, 2);
builder.AddLine(2, 2);
builder.EndFigure();

builder.EndGeometry();
return builder.GetConstructedGeometry(ClassPersistence.Persistent);

}

It is important to note that there is a finite-state machine embedded in JoobGeometryBuilder to ensure that a
JoobGeometry can be built only if valid call sequences are issued. For example, calling BeginFigure without first
calling BeginGeometry or when creating a polygon by calling EndFigure without issuing at least three calls to
AddLine violate the state machine and result in an exception.

.NET Developer's
Reference

Appendix B JADE .NET Spatial Feature 99

http://www.opengeospatial.org/standards/sfa

DotNetDev - 2020.0.02

You can also use the JoobGeometryBuilder to create composite geometries such as MultiPoint and
MultiLineString, or even nested composite geometries; for example, one GeometryCollection nested inside
another GeometryCollection, as shown in the following example.

public JoobGeometry CreateNestedGeometryCollection()
{

var builder = new JoobGeometryBuilder();
builder.BeginGeometry(GeometryType.GeometryCollection);
{

builder.BeginGeometry(GeometryType.Point);
builder.BeginFigure(1, 2);
builder.EndFigure();
builder.EndGeometry();

builder.BeginGeometry(GeometryType.GeometryCollection);
{

builder.BeginGeometry(GeometryType.Polygon);
builder.BeginFigure(1, 2);
builder.AddLine(3, 4);
builder.AddLine(4, 1);
builder.AddLine(1, 2);
builder.EndFigure();
builder.EndGeometry();

builder.BeginGeometry(GeometryType.LinearRing);
builder.BeginFigure(2, 8);
builder.AddLine(4, 2);
builder.AddLine(4, 7);
builder.AddLine(2, 8);
builder.EndFigure();
builder.EndGeometry();

builder.BeginGeometry(GeometryType.MultiPolygon);
{

builder.BeginGeometry(GeometryType.Polygon);
builder.BeginFigure(1, 2);
builder.AddLine(3, 4);
builder.AddLine(4, 1);
builder.AddLine(1, 2);
builder.EndFigure();
builder.EndGeometry();

builder.BeginGeometry(GeometryType.Polygon);
builder.BeginFigure(2, 8);
builder.AddLine(4, 2);
builder.AddLine(4, 7);
builder.AddLine(5, 10);
builder.AddLine(2, 8);
builder.EndFigure();
builder.EndGeometry();

}
builder.EndGeometry();

}
builder.EndGeometry();

}
builder.EndGeometry();

.NET Developer's
Reference

Appendix B JADE .NET Spatial Feature 100

DotNetDev - 2020.0.02

return builder.GetConstructedGeometry(ClassPersistence.Persistent);
}

Querying and Analyzing Geometries
As mentioned earlier in this appendix, JoobGeometry provides a number of properties and methods for
information inquiry and spatial analysis. Most of these properties and methods are self-explanatory and easy to
use.

For more details, see the JADE .NET API documentation (that is, the JadeDotNetAPI.chm file in the installed
JADE documentation directory; for example, C:\Jade\JADE Docs\documentation).

Spatial Index
Spatial indexes are used to organize a collection of spatial objects in the ways that spatial queries can be
optimized. There are many spatial index methods available; for example,Quadtree, R-tree, X-tree, and kd-tree.
In JADE .NET, R-tree is chosen as the spatial index method.

R-tree is a tree data structure similar to B-tree, but is used for indexing multi-dimensional information. The R in
R-tree stands for rectangle, indicating the shape R-tree uses to split space. For more details about R-tree and
how it works, see the following Web sites.

R-tree on Wikipedia

R-tree Portal

Since R-trees deal only with rectangles and different geometries may have the same bounding rectangle,
searching an R-tree cannot always give you an accurate answer. For example, if you are looking for geometries
in a R-tree that are intersecting with the search region in the following diagram, you end up with two geometries:
both the blue one and the green one.

To obtain the accurate answer, you then need a second level of filtering concerning only the actual geometries,
not their bounding rectangles.

.NET Developer's
Reference

Appendix B JADE .NET Spatial Feature 101

http://en.wikipedia.org/wiki/R-tree
http://chorochronos.datastories.org/?q=node/21

DotNetDev - 2020.0.02

However, this second-level filtering could be a much more computational-intensive process, especially when the
actual shape of a geometry is complex. Therefore, use R-tree to narrow down the number of geometries before
passing them to the second-level filter.

When you are interacting with JADE .NET’s R-tree APIs, you do not have to worry about this two-level filtering
process, as it is automatically handled for you.

JADE .NET provides the following classes that enable you to work with R-trees.

JoobRTree is an abstract class encapsulating the implementation of the R-tree algorithm in JADE .NET. It
exposes a series of search methods that enable you to find required IMultiDimensionalObjects. Be aware that R-
tree can handle multi-dimensional data that may or may not reside in the spatial domain. JoobRTree, as well as
MemberKeyRTree and ExtKeyRTree, are therefore generic types and expect you to specify the type parameters
when you create subclasses.

.NET Developer's
Reference

Appendix B JADE .NET Spatial Feature 102

DotNetDev - 2020.0.02

In addition to the normal collection methods such as Add and Remove, JoobRTree contains a list of search
methods for searching geometries spatially. Currently, JADE .NET supports eight spatial relationships: contain,
within, disjoint, intersect, touch, cross, overlap, and equal.

To perform a spatial search, you can call the corresponding search method such as ContainSearch or
IntersectSearch, or you can call the generic Searchmethod with a relationship parameter; for example:

var rtree = // new ...

rtree.Add(new SpatialObject { Geometry = new JoobGeometry("...") });
rtree.Add(new SpatialObject { Geometry = new JoobGeometry("...") });
...
var searchRegion = new JoobGeometry("POLYGON ((...))");
var results = rtree.IntersectSearch(searchRegion);
// or
results = rtree.Search(searchRegion, MultiDimensionalObjectRelationship.Intersect);

MemberKeyRTree is an abstract subclass of JoobRTree. Similar to a MemberKeyDictionary, objects stored in a
MemberKeyRTree are keyed using their own properties. However, there can be a single key only for a
MemberKeyRTree, and the key must be of type IMultiDimensionalObject.

ExtKeyRTree is also an abstract subclass of JoobRTree. Each ExtKeyRTree can also have only a single key of
type IMultiDimensionalObject.

SpatialRTree is a concrete subclass of ExtKeyRTree, with a key type predefined to JoobGeometry.

When you create a subclass from JoobRTree or one of its subclasses, you automatically benefit from all of the
advantages provided by the JADE collection implementation; for example, inverse maintenance and distributed
processing.

.NET Developer's
Reference

Appendix B JADE .NET Spatial Feature 103

	Contents
	Before You Begin
	Who Should Read this Reference
	What’s Included in this Reference
	Related Documentation
	Conventions

	Chapter 1 Software Requirements
	JADE Requirements
	.NET Requirements

	Chapter 2 Object Management
	Overview
	JADE Object Handling
	JADE Object Caches
	JADE Object Concurrency Management
	Distributed Processing Architecture
	Nodes
	JoobContexts, Sessions, and JoobConnections
	JADE Object Caches
	Object Locking

	Maintaining Data Consistency and Coherence
	Data Consistency
	Data Coherence
	Automatic Cache Coherency
	The Transaction Model
	Transaction Isolation
	Object Locking Overview

	JADE Object Locking
	Lock Types
	Shared Locks
	Reserve Locks
	Update Locks
	Exclusive Locks

	Lock Type Compatibility
	Lock Duration
	Lock Timeout
	Lock Kind
	Explicit Locking and Unlocking
	Implicit Locking and Unlocking
	Implicit Locking
	Implicit Unlocking
	Examples

	Load State
	Upgrading and Downgrading Locks
	General
	Changing Lock Type
	Changing Lock Duration

	Collection Locking
	Enumerating JADE Collections

	Deadlocks
	Simple Deadlocks
	Indirect Deadlocks
	Single Object Deadlocks
	Deadlock Detection
	Deadlock Exceptions
	Double Deadlock Exceptions

	Avoiding Deadlock Exceptions
	Lock Order
	Reserve Locks
	Update Locks

	Investigating Deadlocks

	Exceptions
	JoobObjectLockedException
	JoobDeadlockException
	JoobInterveningUpdateException

	Object Volatility
	Volatile Objects
	Stable Objects
	Frozen Objects

	Specifying and Changing Object Volatility
	Class Volatility
	Individual Object Volatility

	Frozen Files and Partitions
	Freezing User Schema Files

	Chapter 3 Introductory Tutorial to JADE .NET
	Overview
	JADE Banking System
	Model-View Separation
	Customer Class
	Bank Class
	Application Subclass

	Defining the JADE Connection Application
	Defining the C# Exposure
	Building the Class Exposure Project in Visual Studio
	Adding a WPF Application
	Adding References
	Coding the Application Configuration File
	Designing the Form
	Coding the Form Constructor and Destructor
	Listing Customers
	Adding a Customer
	Using Notifications
	Invoking on the GUI Thread

	Chapter 4 Erewhon .NET Example
	Overview
	Example .NET Files
	Running the WpfErewhonApp Application
	Notifications
	Multiprocessing

	Building Your Own Application

	Chapter 5 Using the JADE .NET Framework
	Overview
	Exposing JADE Classes
	JADE .NET Framework
	JADE .NET API Documentation
	.NET and JADE
	How a .NET Application Connects to JADE

	Chapter 6 .NET Exposure
	Overview
	.NET Exposures
	Application Configuration File
	Connection String Extensions

	Exposed JADE Classes
	Exposed JADE Properties
	Exposed JADE Methods
	JADE Method Parameter Usage

	Exposed JADE Class Constants
	Collections

	Chapter 7 Developing Applications in .NET to Use JADE Classes
	Overview
	Using JADE Classes in .NET
	JADE .NET Assembly Public Keys
	Connecting to JADE
	Pool of Available Processes
	Accessing Database Instances
	Accessing JADE System Objects
	Creating Objects
	Deleting Objects
	Locking
	Notifications
	Notifications in JADE and .NET

	Exceptions
	Accessing Imported .NET Exception Classes
	Transactions
	Multiple Database Access for .NET
	Using Multiple Database Access

	Appendix A Mapping JADE Primitives to CLR Data Types
	Appendix B JADE .NET Spatial Feature
	Spatial Data
	Working with Geometry
	Creating a Geometry
	Querying and Analyzing Geometries

	Spatial Index

