
Copyright©2018 Jade Software Corporation Limited. All rights reserved.

Web Services Tips and Techniques
White Paper

 VERSION 2018

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2018 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.

WP_WebServicesTips - 2018.0.01

Contents

Contents iii

Web Services Tips and Techniques 4
Session Management 4

Session Definition 5
WSDL Generation 5
Runtime Processing 6
Using the Session Object 7
Timing Out Sessions 7
Removing Sessions 7

Performance Testing 7
soapUI 8
JADE Monitor 15

Debugging 16
JADE Debugger 16
Logging 16

IIS 17
Jadehttp 20
Web Application 20

Method Re-implementation 21
Fiddler 21

Message Sizes 23
Web Server Setup 24

Create an Application Pool 25
Create a Virtual Directory 26
Edit a Handler Mapping 27
Set Up ISAPI Restrictions 29

Usage Statistics 29
Web Service Client 30
Web Service Application 33

Consumer Asynchronous Calls 34
WSDL Import 34
Setting up a Worker Application 35
Coding Example 37

Using SOAP Headers 39
SOAP Header Element 39
Information to Put in the Header 40
Defining SOAP Headers 41
Inserting Authentication Headers 45

Denial of Service 46
Badly-Formed Messages 46

Badly-Formed XML 46
Badly-Formed SOAP Messages 47
UTF-8 Illegal Byte Sequence Errors (Error Code 1418) 47
Invalid Data 47
Client-Side Exceptions 47

Handling Badly-Formed Messages 48
Use Session Handling 48
Use Web Server Logging 48
Minimize Error Reporting 48
Use Unicode JADE 48
Inform Users 48

Exception Handling 49

WP_WebServicesTips - 2018.0.01

Web Services Tips and Techniques

This white paper complements theWeb Services white paper, and is intended to provide useful information to
assist a developer of JADE Web services. These tips and techniques are based on user feedback about the areas
for which people have had the most questions.

Notes All references to the JADE platform in the following sections are relative to JADE 6.3.

All third-party software referred to in this document is based on a specific release, and the version that you
download may not look or behave in the same manner that is described in this document.

For more details about the areas that are covered in this white paper, see the following subsections.

Session Management
Session management in Web services is optional and if required, it must be specified at design time; that is, this is
not a deployment option because the generated WSDL has information relating to sessions. This section contains
the following topics.

Session Definition

WSDL Generation

Runtime Processing

Using the Session Object

Timing Out Sessions

Removing Sessions

WP_WebServicesTips - 2018.0.01

Session Definition
The inclusion of session management in a Web service is defined as part of the exposure list definition, as is
shown in the following image.

Check the Include Session Handling check box, to include session handling.

WSDL Generation
The WSDL that is generated will now include session handling information against every method.

The following is a snippet of a WSDL containing session-related information.

In the <types> definition section:

</xsd:complexType>
<xsd:element name="JadeSessionHeader" type="tns:JadeSessionHeader"/>
<xsd:complexType name="JadeSessionHeader">
<xsd:sequence>
<xsd:element name="sessionId" type="xsd:string"/>

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 5

WP_WebServicesTips - 2018.0.01

</xsd:sequence>
</xsd:complexType>

In the message section:

<message name="getClientJadeSessionHeader">
<part name="sessionId" element="tns:JadeSessionHeader"/>

</message>

In the <binding> section:

<operation name="getClient">
<soap:operation soapAction="urn:JadeWebServices/WebServiceOverHttpApp/getClient"
style="document"/>

<input>
<soap:body use="literal" />
<soap:header use="literal"
message="tns:getClientJadeSessionHeader" part="sessionId"/>

</input>
<output>

<soap:body use="literal" />
<soap:header use="literal"
message="tns:getClientJadeSessionHeader" part="sessionId"/>

</output>
</operation>

This information tells the target system to create a class called JadeSessionHeader with a single string property
on import and to generate a SOAP header containing the session id at execution time.

Note As the <header> tag is defined in the <input> and <output> sections, this SOAP header is Input-Output.

Runtime Processing
At run time, the following processing occurs.

The Web service client sends a request.

The Web service receives the request, and if there is no SOAP header or the SOAP header does not have a
session id, the Web service generates a header with a new session id in the response. If there is session id
information, it is used to obtain the session object.

The Web service client must send the generated session id with every request, or a new session will be
created each time. Generally, your code does not have to do anything – the framework will handle the
passing of this information.

The following is an example of a SOAP message with session information.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<JadeSessionHeader
xmlns="urn:JadeWebServices/WebServiceOverHttpApp/">
<sessionId>0fd1c8984243d2f8</sessionId>

</JadeSessionHeader>

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 6

WP_WebServicesTips - 2018.0.01

</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

Using the Session Object
When session management is used, a persistent instance of the subclass ofWebSession in the current schema is
created. This instance can be referred to in code using the currentSession system variable.

Additional properties and methods can be added to this class for storing state information. As this is a persistent
instance, any updating of these properties must be done in transaction state.

Note The currentSession object is valid only for the duration of the Web service call. Any attempt to reference
its properties or methods outside of this call (for example, in notification code) will result in a null object reference
error.

Timing Out Sessions
Sessions can be set to automatically time out based on a configuration setting. This can be set in the Define
Application dialog or dynamically configured at run time. When the timeout is set and there is no activity for the
session within that time, the session is deleted. If this session is subsequently referenced, a SOAP fault (error
code 11007) will be returned to the Web service client.

It is recommended that session timeouts be used to clean up unused sessions. The default message for this can
be changed by re-implementing the Application class timedOutSessionMessage method. Note, however, that
the string returned by this method must be a SOAP message. The response returned by this message is what will
be returned to the Web service client if a subsequent request uses the session id of the timed-out session. For
details, see "Removing Sessions", in the following section.

Note When all Web service applications are shut down or the database node is shut down, all Web sessions
are deleted.

Removing Sessions
There may be situations where a session needs to be removed immediately; for example, when a user logs off. To
do this, you can call theWebSession class removeSessionmethod.

If you are removing the current session and want to return a specific message, you can call theWebSession class
removeSessionWithMessage method, passing the message that you want to return.

In all other cases, if you want to send a message that differs from the default, you can reimplement the Application
class removeSessionMessage method. Note, however that the string returned by this method must be a SOAP
message. The response returned by this message is what will be returned to the Web service client if a
subsequent request uses the session id of the removed session.

Tip One way to create a SOAP message in this case would be to create a JadeSOAPException instance,
populate the errorCode, errorItem, and extendedErrorText properties, and then call the createSOAPMessage
method to generate the SOAP-formatted message.

Performance Testing
This section contains the following topics.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 7

WP_WebServicesTips - 2018.0.01

soapUI

JADE Monitor

soapUI
Performance and scalabilty of JADE Web services can be tested by using the freely available soapUI tool. The
use of this tool will be briefly demonstrated in this section. Version 3.0 of soapUI is used in this example.

Before we start, we should do the following.

1. Disable logging at the Web server.

You do this in IIS by using the MMC snap-in. For details, see "Debugging", later in this document.

2. Minimize logging by jadehttp.

If you turned tracing on in jadehttp, turn this off. For configuration options, see "Debugging", later in this
document.

3. Turn off logging by the Web service application. For configuration options, see "Debugging", later in this
document.

4. Change your Web service provider applications to be Web-enabled non-GUI applications. If you use the GUI
version, your performance will be degraded, as the Web monitor status window is continually updated.

We will use ErewhonInvestmentsViewSchema in the Erewhon example system to demonstrate the use of
soapUI.

1. From the Application Browser, select theWebServiceOverHttpApp application.

2. On theWeb Options sheet of the Define Application dialog, change the number of application copies to 5.

3. Generate the WSDL.

4. Run the application.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 8

WP_WebServicesTips - 2018.0.01

You should have five copies of the application running. Now bring up soapUI, which will display the window
shown in the following image.

5. Select New soapUI project from the File menu, which will display the following dialog.

6. Specify the project name of ErewhonWebServiceTest.

7. Enter the WSDL path of the WSDL that was extracted previously.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 9

WP_WebServicesTips - 2018.0.01

8. Check the Create TestSuite check box.

9. Click OK.

The dialog shown in the following image is then displayed.

To keep this example simple, we create a test only for the four operations selected above. Unselect all other
operations and then click OK.

When the request for a name for the test suite is displayed, click OK.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 10

WP_WebServicesTips - 2018.0.01

A window that looks like the example in the following image is then displayed. (You may need to expand your
project to see this.)

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 11

WP_WebServicesTips - 2018.0.01

We will need to enter some data for the getAgent and getClient methods. The following image is an example of
the getAgent operation.

To do this, double-click on the getAgent entry under Test Steps and then specify Hank Williams between the
<web:agentName> and the </web:agentName> tags. Similarly, specify Brian Olsen for the getClient request.

We are now ready to run the test.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 12

WP_WebServicesTips - 2018.0.01

Click the green arrow icon at the left of the getAgent window. This will call the Web service and return a SOAP
message in the pane at the right, as shown in the following image.

You can also set up assertions for the call. In this example, set up five assertions as follows.

Not SOAP fault

SOAP Response

Schema Compliance (WSDL compliance)

Response SLA – set to 200 ms

Response contains Hank Williams

The resulting assertions from this call are shown in the following image.

The response time was greater than 200 ms (286ms), hence the Response SLA assertion failed.

See the http://www.soapui.org online reference for documentation about assertions.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 13

http://www.soapui.org/

WP_WebServicesTips - 2018.0.01

You can also run the tests multiple times.

Double-clicking on the LoadTest1 item in the left pane will bring up the load test window at the right.

All of the items that we selected earlier are available for load testing.

There are several options to the test; for example, the number of threads, limit, strategy, and so on.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 14

WP_WebServicesTips - 2018.0.01

We are going to run the simple tests with a test delay of five ms, five threads, and running for one minute. Running
this produces the following result.

The results show that we are getting transactions per second (that is, tps) of around 140. Note that in the getAgent
case, there are three errors recorded and the bottom pane shows the reason. In this instance, all three errors
relate to one of the assertions we added to the getAgent operation exceeding the required response time of
200ms. Putting in a longer delay will eliminate these errors but the transaction per second will then be fewer.

Scripts can be written to perform any initialization before the test is run (Setup Script) and to perform any
finalization when the test is complete (TearDown Script). These tests can also be run without the user interface
(UI). for more details, see the soapUI documentation.

The discussion in this section relates to measuring performance when providing a Web service. If you are now
consuming an external Web service and want to measure performance as a JADE consumer, currently you will
have to write your own test framework. If, however, you want to test just the performance of the Web service, you
can obviously use the soapUI tool by the process mentioned in this section.

JADE Monitor
The JADE Monitor is useful for measuring performance. It can provide you with statistical information, method
analysis, and file analysis to help you determine the bottlenecks in your system. For details, see the JADE Monitor
User’s Guide.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 15

WP_WebServicesTips - 2018.0.01

Debugging
Several debugging aids are available to help you to debug your Web service applications, as follows.

JADE Debugger

IIS logs, Jadehttp logs, Web application logs

Method reimplementation to capture additional information

Fiddler tool

For details, see the following subsections.

JADE Debugger
The JADE Debugger can be used to step through JADE code in a Web service application or a Web service
consumer application. As the use of the debugger should be familiar to you as a JADE user, it is not described in
this document. For details, see "Using the JADE Debugger", in Chapter 7 of the JADE Development Environment
User's Guide.

Logging
You can use IIS, Jadehttp, or Web application logs as a debugging tool for your Web service application. For
details, see the following subsections.

IIS

Jadehttp

Web Application

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 16

WP_WebServicesTips - 2018.0.01

IIS
This section refers only to the use of IIS 7. For other releases, consult the appropriate documentation.

Logging can be enabled using the IIS Manager from the MMC console. From here, we can get to the logging
options window by selecting Default Web Site and then selecting Logging, which displays the window shown in
the following image.

Set up options to meet your requirements. IIS format for the log file provides the most information. Make sure that
logging is enabled (the Actions window will show Disable, if it is).

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 17

WP_WebServicesTips - 2018.0.01

Making requests to your Web service will now log information similar to that shown in the following image.

The example in the above image is in IIS format. The IIS log file format is a fixed ASCII text-based format, so you
cannot customize it.

The IIS log file format records the following data.

Client IP address

User name

Date

Time

Service and instance

Server name

Server IP address

Time taken

Client bytes sent

Server bytes sent

Service status code (a value of 200 indicates that the request was fulfilled successfully)

Windows status code (a value of 0 indicates that the request was fulfilled successfully)

Request type

Target of operation

Parameters (the parameters that are passed to a script)

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 18

WP_WebServicesTips - 2018.0.01

Not all fields will contain information. For fields for which there is no information, a hyphen (-) is displayed as a
placeholder. If a field contains a non-printable character, it is replaced with a plus sign (+), to preserve the log file
format. This typically occurs with virus attacks, when, for example, a malicious user sends carriage returns and
line feeds that, if not replaced with the plus sign (+), would break the log file format.

The information provided by a single entry from the output displayed in the previous image, as follows, is listed in
the following table.

127.0.0.1, -, 9/10/2009, 10:36:56, W3SVC1, WILBUR, 127.0.0.1, 1897, 659, 3779, 200,
0, POST, /HTTPTest/jadehttp.dll,
WebSer-
viceOver-
HttpApp&serviceName=ErewhonInvestmentsServiceAdmin&listName=WebServiceOverHttpApp,

Field Appears As Description

Client IP address 127.0.0.1 The IP address of the
client.

User name - The user is
anonymous.

Date 9/10/2009 This log file entry was
made on September
10, 2009.

Time 10:36:56 This log file entry was
recorded at 10:36
A.M.

Service and instance W3SVC1 This is a Web site, and
the site instance is 1.

Server name WILBUR The name of the
server.

Server IP 127.0.0.1 The IP address of the
server.

Time taken 1897 This action took 1,897
milliseconds.

Client bytes sent 659 The number of bytes
sent from the client to
the server.

Server bytes sent 3779 The number of bytes
sent from the server to
the client.

Service status code 200 The request was
fulfilled successfully.

Windows status code 0 The request was
fulfilled successfully.

Request type POST The user issued a
POST command.

Target of operation /HTTPTest/jadehttp.dll The user wants to
connect to jadehttp.

Parameters WebServiceOver ….. Parameters passed.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 19

WP_WebServicesTips - 2018.0.01

You can use a free Log Parser tool provided by Microsoft to analyze the IIS logs. Log Parser is a powerful,
versatile tool that provides universal query access to text-based data.

Jadehttp
Tracing can be turned on in jadehttp, by parameters in the jadehttp.ini file, as follows.

[Jadehttp Logging]
trace=true
traceFile=d:\temp\web.log
traceFileSize=1000000

These settings specify that tracing is to be turned on, the trace file to use is in d:\temp\web.log, and the maximum
file size before switching logs is 1,000,000 bytes.

The log will mainly consist of the following three types of messages, as follows.

Sending data to Jade connection Id=

Received:

Sending reply to the Web Browser:

When the value of the Trace parameter is set to true, logging does occur but it does not log user data, only details
of the message meta data; that is, it logs messages acknowledging only that a message has been received or
sent and it does not include any of the text sent or received from the client, as this text could contain personal
information, passwords, credit card details, and so on.

Note You cannot use this parameter to inspect and debug data passing through the jadehttp library.

Web Application
The information that is shown in the Web application monitor log when running the application as a GUI
application can be captured to a file, either in GUI or in non-GUI mode. The log_file_name configuration file
setting allows this output to be captured. For details, see "Configuring Web Applications", in Chapter 3 of the JADE
Web Application Guide.

The following image is an example of sample output.

The messages captured by the application are as follows.

IP address of the client.

Query String – equivalent to the URL on a browser window.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 20

WP_WebServicesTips - 2018.0.01

Http String – body of the POST message. This will have the SOAP request.

Elapsed time from receiving the message to sending the response.

Queue Depth – number of requests waiting to be processed.

This information can be analyzed to determine elapsed times, queue depth over time, and so on.

Method Re-implementation
The JadeWebServiceProvider class processRequest method and the JadeWebServiceProvider class reply
method can be re-implemented and the incoming and outgoing messages can be logged, along with other
relevant information. In the processRequest method, log the incomingMessage property as the incoming Web
service message and then call inheritMethod. In the reply method, call inheritMethod and log the returned string
as the outgoing Web service message.

Similarly, on the consumer side, the JadeWebServiceConsumer class invoke method and the
JadeWebServiceConsumer class processReply method can also be re-implemented to log information. In the
invoke method, log the inputMessage parameter as the outgoing Web service message and then call
inheritMethod. In the processReply method, log the soapResponse as the incoming Web service message and
then call inheritMethod.

Fiddler
Fiddler is a Web Debugging Proxy that logs all HTTP or HTTPS traffic between your computer and the Internet.
Fiddler enables you to inspect all HTTP or HTTPS traffic, set breakpoints, and "fiddle" with incoming or outgoing
data. It includes a powerful event-based scripting subsystem. Fiddler is freeware that you can download from
http://www.fiddler2.com/fiddler2/version.asp.

The start-up screen for Fiddler looks like the following.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 21

http://www.fiddler2.com/fiddler2/version

WP_WebServicesTips - 2018.0.01

By default, Fiddler captures all traffic. To restrict the traffic to that in which you are interested, you can set up filters.
In this example, we are going to restrict traffic to wilbur.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 22

WP_WebServicesTips - 2018.0.01

We will now select the Inspectors tab, to inspect the traffic. In this example, we have set up the Erewhon Web
service on host wilbur. Now when a Web service client calls the Web service for the getClient operation on host
wilbur, the following information can be observed in Fiddler.

We can see that another entry has been added to the left pane. Selecting this gives us the details of this call. Note
that the Raw tab is selected for both the request and response in the previous example. This will give us the HTTP
headers as well as the body of the messages.

Fiddler has many other features and it will prove to be a valuable tool for debugging Web services. This brief
example shows how you can view messages from and to a Web service client.

Message Sizes
The maximum message size that can be handled by a JADE Web service is approximately 95M bytes. However,
in general, message sizes should be kept small to improve performance and scalability. A review of our customers
who use Web services shows that maximum message sizes tend to vary between about 1K bytes through to
around 20M bytes.

Generating a large message can take a significant amount of time, depending on whether the message is
generated from a large number of small objects or whether the main payload of the message is a string. For
example, some applications use the Web service as a container to pass XML strings back and forth. In this case,
the performance in generating and parsing the message will be insignificant, but this XML string will likely have to
be subsequently parsed to obtain the information that it contains.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 23

WP_WebServicesTips - 2018.0.01

Note that the strings representing these messages are stored on the object, so you will need to make sure that
your transient cache is big enough to hold these messages.

It is, of course, not always possible to control the size of the message; for example, when you are consuming an
external Web service where the requirements are dictated by the Web service provider. In this situation where
large messages are involved, be prepared to have a big transient cache and possibly slow message generation.

If your transient cache is not large enough to hold the object in the cache, you will get a 1018 (No memory for
buffers) exception, which is likely to relate to the input message or the response message being too large. The
input message is held on the JadeWebServiceConsumer class soapRequest property and is for the user to
inquire upon. If you have no requirement to inspect this property in code, a possible workaround is to write a
mapping method that nulls the value out, as shown in the following example.

soapRequest(set: Boolean; _value: String io) mapping, updating;
begin

if set then
_value := null;

endif;
end;

You could log other information, check its length, or even truncate the string in this method. Note that if you are
using the statistics logging provided by the framework, the soap request value will be whatever value it was set to
in this mapping method.

This technique cannot be applied to the response message that is stored in the JadeWebServiceConsumer
class soapResponse property. This means that if the response messages from the Web service can be large, you
will still need to increase your transient cache size.

Web Server Setup
The JADE Web applications framework currently supports the following Web servers.

IIS on Windows

Apache on Windows

This section endeavors to explain how to set up IIS 7.0.

Note If you want to receive error messages from your JADE Web service, make sure that your Web server does
not modify HTTP responses or returned errors.

The following example Web server setup assumes the following.

IIS 7 is set up on your machine

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 24

WP_WebServicesTips - 2018.0.01

Clicking on Internet Information Services under Services and Applications at the left shows you the display in
the panes at the right. This will bring up the following window.

For the Web server to work with JADE Web applications, the following steps are required to be set up in IIS.

1. Create an application pool

2. Create a virtual directory

3. Set up the Handler Mappings

4. Set up ISAPI restrictions

For more details, see the following subsections.

Create an Application Pool
In the Computer Management window, click on Application Pools on the left (you might need to expand the list to
see this) and then select Add Application Pool on the right. This will display the Add Application Pool dialog.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 25

WP_WebServicesTips - 2018.0.01

Fill in the entries shown in the following example and then click OK.

Now select Set Application Pool Defaults on the right of the Application Pool Defaults dialog, set Enable 32-Bit
Applications to True if you are using the 32-bit jadehttp.dll; otherwise leave it as False and then click OK. Note
that if you set this to True and use a 64-bit jadehttp.dll, Server Error 500 is likely to occur.

Create a Virtual Directory
In the Computer Management window, click on Default Web Site on the left, right-click, and then select Add
Virtual Directory.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 26

WP_WebServicesTips - 2018.0.01

Fill in the entries shown in the following dialog and then click OK.

Make sure that the folder specified in the Physical path text box is present, or you can create it by using the…
button. This directory must contain the jadehttp.dll.

Edit a Handler Mapping
In the Computer Management window, click on the virtual directory that you created in the left pane and then
double-click on the Handler Mappings icon in the middle pane.

This will bring up a list of handler mappings.

To edit the handler mappings for your virtual directory

1. Select CGI-exe.

2. Click Edit Feature Permissions.

3. Enable all three Read, Script, and Execute options.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 27

WP_WebServicesTips - 2018.0.01

4. Enable the ISAPI-dll, by performing the following actions.

a. Select the ISAPI-dll handler mapping and then click Edit.

The Edit Module Mapping dialog, shown in the following image, is then displayed.

b. Set the following values.

*.dll, in the Request path text box.

IsapiModule, in the Module list box.

The path and file name of your JADE system’s jadehttp.dll executable, in the Executable
(optional) text box.

c. Click the Request Restrictions button to display the Request Restrictions dialog, select the Execute
option on the Access sheet, and then click OK.

5. Click OK on the Edit Module Mapping dialog.

6. If the Edit Module Mapping message box, shown in the following image, is displayed, click OK.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 28

WP_WebServicesTips - 2018.0.01

Set Up ISAPI Restrictions
In the Computer Management window, click on the machine name (which is at the top of the tree) in the left pane
and then double-click on the ISAPI and CGI Restrictions icon in the middle pane.

This will show a list of ISAPI and CGI extensions, including the one you created in the previous section when you
clicked Yes on the Add Module Mapping message box; that is, the one with [No Description] in the Description
column.

Double-click on this entry and then enter a suitable description in the Edit ISAPI or CGI Restriction dialog that is
displayed.

Make sure that the Allow extension path to execute check box is checked, and then click OK.

If you need to specify another virtual directory or physical directory, follow these same steps.

Note You should restart IIS if you make changes to any of the Web server settings.

Usage Statistics
This section contains the following topics.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 29

WP_WebServicesTips - 2018.0.01

Web Service Client

Web Service Application

Web Service Client
A JADE Web service client can access information related to the last Web service call. As there is a performance
overhead in gathering statistics, this information is gathered only when you specifically request it. When the
JadeWebServiceConsumer class logStatistics property is set to true, this information is gathered.

At the end of a Web service call, you can request this information by calling the JadeWebServiceConsumer class
getLastStatistics method. This method takes a Boolean parameter that indicates whether you want only the
statistical information (true) or all information (false). Setting this parameter to true will return an XML string
similar to the following.

<?xml version="1.0" encoding="utf-8"?>
<WebServiceStatistics>
<name>ErewhonInvestmentsServiceAdmin</name>
<operation>getClient</operation>
<url>http://wilbur/jade/jadehttp.dll?WebServiceOverHttpApp&serviceName=
ErewhonInvestmentsServiceAdmin&listName=WebServiceOverHttpApp </url>
<dateTime>11 September 2009, 14:44:08</dateTime>
<requestTime>5</requestTime>
<getResponseTime>692</getResponseTime>
<responseTime>21</responseTime>
<processingTime>26</processingTime>
<errorCode>0</errorCode>
<requestSize>452</requestSize>
<responseSize>1781</responseSize>

</WebServiceStatistics>

Setting the parameter to false will return an XML string similar to the following.

<?xml version="1.0" encoding="utf-8"?>
<WebServiceStatistics>
<name>ErewhonInvestmentsServiceAdmin</name>
<operation>getClient</operation>
<url>http://wilbur/jade/jadehttp.dll?WebServiceOverHttpApp&serviceName=
ErewhonInvestmentsServiceAdmin&listName=WebServiceOverHttpApp </url>
<dateTime>11 September 2009, 14:44:40</dateTime>
<requestTime>5</requestTime>
<getResponseTime>29</getResponseTime>
<responseTime>16</responseTime>
<processingTime>21</processingTime>
<errorCode>0</errorCode>
<requestSize>452</requestSize>
<responseSize>1781</responseSize>
<requestHeaders><![CDATA[Accept: text/plain
Accept: text/html
Accept: text/xml
Content-Type: text/xml; charset=utf-8
Host: wilbur
Pragma: no-cache
Proxy-Connection: Keep-Alive
SOAPAction: "urn:JadeWebServices/WebServiceOverHttpApp/getClient"
User-Agent: Jade/6.3.04
]]></requestHeaders>

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 30

WP_WebServicesTips - 2018.0.01

<soapRequest><![CDATA[<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tns="urn:JadeWebServices/WebServiceOverHttpApp/"
xmlns:s1="urn:JadeWebServices/WebServiceOverHttpApp/">

<soap:Body>
<s1:getClient>
<s1:clientName>Brian Olsen</s1:clientName>
</s1:getClient>
</soap:Body>
</soap:Envelope>
]]></soapRequest>
<responseHeaders><![CDATA[HTTP/1.1 200 OK
Content-Length: 1781
Content-Type: text/xml; charset=utf-8
Server: Microsoft-IIS/7.0
X-Powered-By: ASP.NET
Date: Fri, 11 Sep 2009 02:44:40 GMT
]]></responseHeaders>
<soapResponse><![CDATA[<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<getClientResponse xmlns="urn:JadeWebServices/WebServiceOverHttpApp/">
<getClientResult xsi:type="Client">
<address1>2834 The Palace</address1>
<address2>San Diego</address2>
<address3>United States of America</address3>
<email>bo@wol.com</email>
<fax>64 2 2930 9393</fax>
<name>Brian Olsen</name>
<phone>1 2 3848 8384</phone>
<webSite>www.wol/olsen.com</webSite>
<allRetailSales>
<RetailSale>
<mySaleItem xsi:type="RetailSaleItem">
<shortDescription>Jungle Hideaway</shortDescription>
</mySaleItem>
<price>6250000.00</price>
</RetailSale>
<RetailSale>
<mySaleItem xsi:type="RetailSaleItem">
<shortDescription>Wedding Ring</shortDescription>
</mySaleItem>
<price>8399.00</price>
</RetailSale>
</allRetailSales>
<allTenderSales>
<TenderSale>
<mySaleItem xsi:type="TenderSaleItem">
<shortDescription>Coffee Mill</shortDescription>
</mySaleItem>
<myTender>
<offer>1305.00</offer>

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 31

WP_WebServicesTips - 2018.0.01

<timeStamp>1999-11-17T00:55:00.000-00:00</timeStamp>
</myTender>
</TenderSale>
<TenderSale>
<mySaleItem xsi:type="TenderSaleItem">
<shortDescription>Oil Painting</shortDescription>
</mySaleItem>
<myTender>
<offer>7732.00</offer>
<timeStamp>2000-02-05T19:25:00.000-00:00</timeStamp>
</myTender>
</TenderSale>
</allTenderSales>
</getClientResult>
</getClientResponse>
</soap:Body>

</soap:Envelope>

This call returns the HTTP headers and the request and response message. As the messages can be large, if you
want to capture statistical information only , set the parameter to true. The tags are described in the following
table.

Field Appears as... Description

name ErewhonInvestmentsServiceAdmin The name of the Web service

operation getClient The name of the Web service
operation

url http://wilbur/jade/ ... The URL of the request

dateTime 11 September 2009, 14:44:08 The date and time of the request

requestTime 5 Time to process and send the
request

getResponseTime 692 Time taken by the Web service call

response 21 Time taken to process the response

errorCode 0 Error code of error when
sending/receiving

requestSize 452 Size of request message

responseSize 1781 Size of response message

requestHeaders ![CDATA[Accept: text/plain … HTTP Send headers

soapRequest ![CDATA[<?xml version="1.0" encoding="utf-8"?>
….

SOAP request message

responseHeaders <![CDATA[HTTP/1.1 200 OK …. HTTP response headers

soapResponse <![CDATA[<?xml version="1.0"
encoding="utf-8"?> ….

SOAP response message

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 32

WP_WebServicesTips - 2018.0.01

Web Service Application
In the current release, there is no programmatic interface to obtain statistical information relating to a Web service
application. Such information can be obtained by logging the Web application monitor output. The JADE Monitor
has information relating to the Web service processes. An example of this is shown in the following image.

The Web service information that is monitored is listed in the following table.

Row Name Description

Maximum Response Time Maximum time in ms. for a message response

Minimum Response Time Fastest response time in ms. for a message response

Total Requests Total requests

Total Response Time Total response time

Rejected Requests Number of requests rejected (no available connections)

Queue Depth Number of requests in the queue

Total Connections Number of total connections

Assigned Connections Number of connections currently in use

Total Workers Number of application copies

Idle Workers Number of applications that are idle

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 33

WP_WebServicesTips - 2018.0.01

Consumer Asynchronous Calls
The steps involved in setting up a Web service to make asynchronous calls are as follows.

1. WSDL Import

2. Set up a worker application

3. Write code to handle asynchronous calls

For details, see the following subsections.

WSDL Import

Setting up a Worker Application

Coding Example

WSDL Import
To generate the code for making asynchronous calls, check the Generate methods for asynchronous calls
check box on the Web Service Consumer Wizard dialog, shown in the following image.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 34

WP_WebServicesTips - 2018.0.01

When you have done this, two additional methods will be generated for each Web service message defined in the
WSDL, as shown in the following image.

The two additional methods have a Begin and End suffix. In this example, the searchBeginmethod is used to
start the request and the searchEndmethod is used to receive the response.

Setting up a Worker Application
To use asynchronous calls, set up a worker application that sends the request to the Web service. In its simplest
form, the worker application can be a non-GUI application that is required to only implement the initialize and
finalize methods.

The initialize method must call the Application class asyncInitialize method and the finalize method must call the
Application class asyncFinalize method. In the supplied example schema, the initialize method is called
workerInitialize and it is implemented as follows.

The notification is so that the application can be shut down using a causeEvent call.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 35

WP_WebServicesTips - 2018.0.01

The finalize method is called workerFinalize and it is implemented as follows.

The userNotification terminates the application when it receives a shutdown notification.

We create a worker non-GUI application calledWebServiceWorkerApp.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 36

WP_WebServicesTips - 2018.0.01

Coding Example
The sample application has the following start up form, which is the only form.

Although this application has been set up to call the Web services synchronously or asynchronously, this section
discusses only the asynchronous operation.

The Bing Search Web service provides several sources on which the search can occur. In this example, we are
using four of these (Web, image, video, and news) and allowing one or more of these to be selected for the
search. The form also enables you to enter the number of worker processes to start. If the current number of
worker processes is less than the specified number, additional worker processes will be started, up to the
specified number.

To demonstrate the benefit and use of asynchronous operations, we will set up four workers, one for each of the
sources, so that if all four sources are selected, all four search requests can be done asynchronously. Note that
the Bing API actually lets you specify all of the sources in a single call. However, we are not doing so in this
example, so that we can demonstrate the use of asynchronous calls.

The Form class that we are using is called BingSearch. In this class, we define a webService property, to hold a
reference to the Web service consumer instance (an instance of LiveSearchService). This is initialized in the load
method of the BingSearch class.

The following discussion concentrates on a method called runAsync on the BingSearch class.

1. Tell the consumer instance the name of the worker application, as follows.

webService.workerApp := "WebServiceWorkerApp";

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 37

WP_WebServicesTips - 2018.0.01

2. Start the required number of copies of the worker applications, as follows.

vars
c : Integer;

begin
// get a count of apps already running
c := getAppCount(webService.workerApp);
while c < txtWorkers.text.Integer do

c := c + 1;
app.startApplicationWithParameter(currentSchema.name,

webService.workerApp, null);
endwhile;

end;

3. Set up the parameters to the Web service call, as follows (assuming that Web source is selected).

create searchRequestWeb;
create searchRequestWebParam;
searchRequestWeb.parameters := searchRequestWebParam;
searchRequestWebParam.appId := appID;
searchRequestWebParam.query := txtQuery.text;
searchRequestWebParam.sources.add("Web");
create webrequest transient;
searchRequestWebParam.web := webrequest;
webrequest.count := txtEntries.text.Integer;
webrequest.offset := txtOffset.text.Integer;

4. Set up the required parameters for each source on which we want to search and then initiate the
asynchronous call by calling the searchBeginmethod on the Web service, passing the required parameter,
as follows.

contextWeb := webService.searchBegin(searchRequestWeb);
objArray.add(contextWeb);

The objArray is a local variable, defined as follows.

objArray: JadeMethodContextArray;

Note JadeMethodContextArray is defined in this schema as a subclass ofObjectArray with membership
JadeMethodContext. The variable is used as the parameter to the processForMethods method call, as we
will see later.

5. Write similar code for each of the other sources. When all of the required asynchronous calls have been
initiated, we then do the following.

context := process.waitForMethods(objArray);

Tip The waitForMethods method takes a variable number of parameters that must be of type
JadeMethodContext or an array of JadeMethodContext, and where this number can vary, it is easier to
code using the array.

This method now waits for one of the calls to complete. When a call is completed, the context variable will
contain the JadeMethodContext of the call that was completed.

The following code fragment assumes that the context returned was for the web source.

response := webService.searchEnd(searchRequestWeb, contextWeb);
webresponse := response.parameters.web;

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 38

WP_WebServicesTips - 2018.0.01

text := null;
if webresponse <> null then

staStatusLine.caption := staStatusLine.caption & "Web = " &
webresponse.total.String & " ";

jrtResults.setCharacterFormat(true, jrtResults.fontName,
jrtResults.fontSize, Red, 0, 0, 0, 0);

foreach webresult in webresponse.results do
text := text & webresult.title & CrLf & webresult.description &

CrLf & webresult.url & CrLf & CrLf;
endforeach;
jrtResults.append(text);

endif;

The searchEndmethod is now called on the Web service, to get the response object. The rest of the code in
this fragment processes this response object.

6. Call waitForMethods again, as follows.

context := process.waitForMethods(objArray);

When the context that is returned is null, all requests have been completed. The sample application is supplied
with this white paper. For more information, see the Asynchronous Method Calls white paper.

Note By default, the Web services framework allows you to have two consecutive connections only open (as
defined by the HTTP 1. specification, or four if you are using HTTP 1.0).

To increase the maximum number of allowed connections, change the Web service client’s XML configuration file
to a higher number. For details about configuring the Web service consumer, see "Configuring Web Applications",
in Chapter 3 of the JADE Web Application Guide.

Using SOAP Headers
Even if you have done some fairly involved development of a JADE Web service, there is a possibility that you
have never bothered with SOAP headers. In fact, it is not uncommon to put information in the body of your SOAP
message that really should be in the header section of your message.

In the following subsections, we will look at what sort of information should go into the header, how you can read
and write message headers in the JADE Web services framework, and how you can add to the current SOAP
infrastructure by using SOAP headers.

SOAP Header Element
The specifications for a SOAP header element differ slightly between SOAP 1.1 and SOAP 1.2. The following
discussion is based on SOAP 1.1.

A SOAP message consists of three elements: the top level Envelope element and two of its children (the Header
element and the Body element).

The following is a SOAP message with all three of these elements.

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tns="urn:JadeWebServices/WebServiceOverHttpApp/"
xmlns:s1="urn:JadeWebServices/WebServiceOverHttpApp/">
<soap:Header>

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 39

WP_WebServicesTips - 2018.0.01

<s1:erewhonHeader>
<s1:priority>HIGH</s1:priority>

</s1:erewhonHeader>
</soap:Header>
<soap:Body>

<s1:getClient>
<s1:clientName>Brian Olsen</s1:clientName>

</s1:getClient>
</soap:Body>

</soap:Envelope>

The Body element is where the main data in the message lives. The Header element is where any metadata that
might describe the body, details of how the body should be processed, or simply extra information about the
message can live. The Header element is optional, but if it exists, it must be the first child of the Envelope element.
The Header element itself consists of zero or more child elements, referred to as header blocks. Each header
block needs to be namespace-qualified.

The SOAP 1.1 specifications define three attributes that can apply to header blocks: the encodingStyle attribute,
the actor attribute, and the mustUnderstand attribute. All three of these attributes are optional and they can be
used in addition to any other attributes that you may want to include.

The encodingStyle attribute is used to indicate how the encapsulated data is encoded. The SOAP specification
includes a mechanism for encoding data that includes data type information in XML attributes. This is becoming
less popular as more and more people define their headers using XML Schema.

The actor attribute is used to indicate which node should process this particular header block. A SOAP message
can be passed through a sequence of nodes, and it is conceivable that a header block may apply to one node in
the sequence and not to others. You might set the actor attribute to the endpoint of the node, which will process
the header block so that other nodes in the sequence will know to ignore it. The absence of the actor attribute
implies that the header block is targeted for the ultimate recipient of the SOAP message. Note that the actor
attribute has been renamed the role attribute in the SOAP 1.2 specification.

The mustUnderstand attribute is the way that a header block indicates that it must be understood and processed
in accordance with any specifications that may be defined for the specified qualified element name. If the recipient
does not know how to process the header block, it must generate a MustUnderstand fault and not proceed with
any further processing of the message. The mustUnderstand attribute is a Boolean value, and if it is not present,
it is assumed to be false.

Information to Put in the Header
The SOAP specifications are not clear about what information goes in the header. Those familiar with HTTP or
MIME headers are probably used to seeing various sorts of metadata included with the main data in the message.

The focus of the SOAP header should be to help process the data in the body. It makes sense to include
information about authentication or transactions, because this information will be involved in identifying the
person or company who sent the body and in what context it will be processed. Expiration data could be included
in the header to indicate when the data in the body may need to be refreshed. User account information could be
included, in order to ensure that processing the message is performed only for a request that has been
legitimately paid for.

Here's another factor in determining whether information should be included in SOAP headers.

Will that information have broad application to a wide variety of SOAP messages?

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 40

WP_WebServicesTips - 2018.0.01

If so, include it in the header. It makes more sense to define a single schema and insert it into the definition of one
header element than to force inclusion of the same data into the body schemas of a large number of message
definitions. For example, if you are defining several Web service methods that use common information, it may
make sense to put these in the header rather than pass it in as a parameter. Authentication and routing are
problems common to many XML Web services, so it makes sense that these specifications deal with information
that lives in the Header element.

The stateless nature of Web services means that if you require state, SOAP headers can be used to relay this
information. Within the JADE Web services framework, SOAP headers are used to relay session information when
session handling is enabled.

The following SOAP header is generated when session handling is enabled.

<soap:Header>
<JadeSessionHeader xmlns="urn:JadeWebServices/WebServiceOverHttpApp/">

<sessionId>91b17de375a04d9b</sessionId>
</JadeSessionHeader>

</soap:Header>

Defining SOAP Headers
SOAP headers are defined by the Web service provider application. The steps to follow when defining these
headers are as follows.

1. Create a subclass of the JadeWebServiceSoapHeader class.

2. Add properties to this class that you want to send in the SOAP header.

3. Add a property reference to this class in your Web service provider class.

4. Select the methods for which you want to generate the SOAP header.

The following simple example demonstrates how to create and use a SOAP header in JADE. The example uses
the Erewhon Investments example system.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 41

WP_WebServicesTips - 2018.0.01

Step 1: Create a subclass of the JadeWebServiceSoapHeader class

Call this class ErewhonHeader. The class can be defined as shown in the following image.

We will define the options for the header on theWeb Services sheet, as shown in the following image.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 42

WP_WebServicesTips - 2018.0.01

We have defined the SOAP header direction as I-O (the default value is Input). The following meanings apply to
this setting.

Input – This means that the SOAP header is provided by the Web service client and input to the Web service.
The Web service itself does not send a SOAP header.

I-O – Both the Web service client and the Web service send this header.

Output – Only the Web service sends this header. The Web service client receives this header but does not
send it back.

The Must Understand attribute is set to true. (Its usage was explained in the previous section.)

Step 2: Add properties to the class

Add the following single String property to this class.

Name: priority, type: String, length: 30, access: public

Step 3: Add a property reference to this class in your Web service provider class

Add the following property reference to the SOAP header class created in step 1 to the
ErewhonInvestmentsService class.

Name: erewhonHeader, type: ErewhonHeader, access: public

Step 4: Select the methods for which you want to generate the SOAP header

Add the header to the ErewhonInvestmentsService class getClient method. To do this, right-click on this method
and then select theWeb Services Options menu item. This displays the dialog shown in the following image.

Select the ErewhonHeader entry and then click OK.

That’s it for defining the header.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 43

WP_WebServicesTips - 2018.0.01

When the WSDL is generated, all of the required information for the SOAP header is generated. Importing this
Web service into a client now creates a subclass of the JadeWebServiceSoapHeader class on the client, as
shown in the following image.

You can now create an instance of this class and set its priority property to send to the Web service, as follows.

vars
wsc : WSD_ErewhonInvestmentsService;
was : GetClient;
wasr : GetClientResponse;
header : ErewhonHeader;

begin
create wsc;
create was;
// create the header and assign this to the property
create header;
header.priority := 'HIGH';
wsc.erewhonHeader := header;
was.clientName := "Brian Olsen";
wasr := wsc.getClient(was);

epilog
delete was;
delete wsc;

end;

The SOAP message that is generated from this call includes the SOAP header, as follows.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tns="urn:JadeWebServices/WebServiceOverHttpApp/"
xmlns:s1="urn:JadeWebServices/WebServiceOverHttpApp/">

<soap:Header>
<s1:erewhonHeader>

<s1:priority>HIGH</s1:priority>
</s1:erewhonHeader>

</soap:Header>
<soap:Body>

<s1:getClient>

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 44

WP_WebServicesTips - 2018.0.01

<s1:clientName>Brian Olsen</s1:clientName>
</s1:getClient>

</soap:Body>
</soap:Envelope>

The Web service can now check the header and decide whether to give this request a HIGH priority or not. If it
does not, it can then set the priority value to MEDIUM, for example, and when the Web service client gets this
header back, it knows that it’s request for HIGH priority was rejected.

If you had several of these methods where the header is applicable, you need only to hook up these methods with
the header. If you did not have this header, this value would need to be passed as a parameter on each
applicable method. If you then wanted to send additional parameters, you would need to add this to all affected
methods. This can become cumbersome and error-prone. Another way of looking at this is that SOAP headers
provide you with ‘parameter refactoring’ for Web services.

Inserting Authentication Headers
The JADE Web service WSDL import feature imports only headers that are defined in the WSDL. There are cases
where the headers are not defined in the WSDL but are required by the Web service. An example of this is Web
services security (WS-Security).

The following example shows how we can insert a header into the SOAP message before it is sent. The example
demonstrates the use of the UserNameToken Profile.

Refer to http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-
UsernameTokenProfile.pdf for a detailed explanation on the use of this profile in Web services security.

First, we create an insertSecurityHeader method in the JadeWebServiceConsumer subclass, as follows.

insertSecurityHeader(userName, password: String): String;
vars

header: String;
begin

header := '<soap:Header>' & CrLf;
header := header & '<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss

/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">' & CrLf;
header := header & '<wsse:UsernameToken>' & CrLf;
header := header & '<wsse:Username>' & userName & '</wsse:Username>' & CrLf;
header := header & '<wsse:Password>' & password & '</wsse:Password>' & CrLf;
header := header & '</wsse:UsernameToken>' & CrLf;
header := header & '</wsse:Security>' & CrLf;
header := header & "</soap:Header>" & CrLf;
return header;

end;

We then re-implement the JadeWebServiceConsumer class invoke method, as follows.

invoke(inputMessage: String): String updating;
vars

msg: String;
p: Integer;

begin
p := inputMessage.pos("<soap:Body>", 1);
msg := inputMessage[1 : p - 1];
msg := msg & insertSecurityHeader('fredbloggs', 'password');
// put the appropriate username and password in here
msg := msg & inputMessage[p : end];

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 45

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile

WP_WebServicesTips - 2018.0.01

return inheritMethod(msg);
end;

This will then generate a SOAP message that looks like the following.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tns="https://tpvs.hmrc.gov.uk/dpsauthentication">

<soap:Header>
<wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

<wsse:UsernameToken>
<wsse:Username>fredbloggs</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

Denial of Service
This section contains the following topics.

Badly-Formed Messages

Handling Badly-Formed Messages

Badly-Formed Messages
The issue we are going to deal with here is how we can best deal with the risk of non-malicious flooding leading
to denial of service, resulting from badly-formed messages.

Badly-formed messages that are detected in the JADE Web service framework are of several types, as follows.

Badly-formed XML (for example, no end tags)

Badly-formed SOAP messages (for example, with no <Body> element)

UTF-8 illegal byte sequence errors (ANSI systems or invalid UTF-8)

Invalid data (for example, string too long)

Client-side exceptions

When any of these exceptions occur, your code can trap these exceptions in a global exception handler, but the
incoming data is not available to be inspected. The following subsections discuss each of these in turn.

Badly-Formed XML
The XML parser can generate exceptions in the range 8901 through 8910, although only some of these apply to
Web services. Specifically, mismatched tags, missing namespaces, and missing tags are some of the things that
cause exception 8901 (XML parser error).

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 46

WP_WebServicesTips - 2018.0.01

This exception code is returned to the client, but the input message is not available to your exception handler.

Badly-Formed SOAP Messages
A SOAP message at a minimum must have an <Envelope> tag and a <Body> tag.

If the <Envelope> tag is missing, the SOAP parser will assume that the request is from the Test Harness and will
respond with an HTML page. If the client is not a browser or it is not expecting HTML, this causes exception 11052
(The service returned a fault message) at the client.

If the <Body> tag is missing, the SOAP parser will not have the name of the Web service method to call and
returns error 11002 (Web Service method does not exist). This exception code is returned to the client, but the
input message is not available to your exception handler.

UTF-8 Illegal Byte Sequence Errors (Error Code 1418)
When this exception occurs while the message is being processed, the Application class
jadeWebServiceInputError method is called. This method can be re-implemented in your Application subclass.
The method is passed the incoming message as a binary value to be inspected or logged, or both inspected and
logged.

While further processing of this message cannot continue, you can define a suitable error message to be returned
to the caller.

Invalid Data
When a message is being processed, transient objects are being created and property values being set on these
transients. At this point, the following exceptions can occur because of invalid data.

1035 (String/Binary too long)

4033 and 4043 (Result of expression overflows Decimal precision)

When either of these exceptions occurs, the Web services framework creates a SOAP exception with details of the
property in error so that the Web service client knows which property value was invalid. The original exception that
was raised is then passed back to the next exception handler.

Note Not all invalid data are handled. For example, an integer overflow does not create a special SOAP
exception message so the Web service client will not know what caused the overflow problem.

Client-Side Exceptions
This category refers to exceptions that are raised only on the Web service client as a result of one of the following.

Version number mismatch

Invalid exposure list name

Session timed out

The requested service is a secure service

Invalid response message

In these cases, no exception is raised in the Web service application.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 47

WP_WebServicesTips - 2018.0.01

Handling Badly-Formed Messages
This section contains the following topics, which enable you to handle badly-formed message.

Use Session Handling
It is much easier to track within JADE where badly-formed messages are coming from if session handling is
enabled.

With sessions, you can keep track of state information like the frequency of errors for a specified session, types of
errors, IP addresses, and other useful information. When an exception occurs, you can log this information using
the currentSession system variable.

Use Web Server Logging
As discussed under "Logging", earlier in this document, Web servers can provide useful information like IP
addresses, message sizes, and elapsed time. These can be analyzed to provide debugging information when
users are experiencing problems.

Minimize Error Reporting
Logging detailed exception information is time-consuming, particularly if there is a continuous stream of
badly-formed messages coming into the service. By keeping track of the message source and the frequency of the
same types of errors, you can minimize detailed reporting of the same error over and over again.

Use Unicode JADE
If you find that you are getting a high frequency of UTF-8 conversion errors, you should consider converting your
system to use Unicode JADE.

Refer to Chapter 4 of the JADE Runtime Application Guide for details about converting an ANSI system to
Unicode.

Inform Users
Based on the information gathered, it should be possible to tell if the badly formed messages are coming from a
specific source. In this case, the user should be informed of the problem.

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 48

WP_WebServicesTips - 2018.0.01

Exception Handling
A Web service application arms several exception handlers. The following image shows where the exception
handlers are armed.

The exception handler stack will look like the following.

<Web Service Method> user exception handlers, can be local or global
<Framework> framework local exception handler
<User Application> user global exception handlers
<Web Application> global exception handlers in the framework initialize method

The order of execution of the exception handlers is that local exception handlers are executed first, then the global
ones. Within this, the most-recently armed handler is executed first. For example, if the exceptions were armed in
the following order:

1. <framework global 1>

2. <framework global 2>

3. <user global 1>

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 49

WP_WebServicesTips - 2018.0.01

4. <framework local 1>

5. <user global 2>

6. <user local 1>

The exception handler execution will be as follows, assuming Ex_Pass_Back.

1. <user local 1>

2. <framework local 1>

3. <user global 2>

4. <user global 1>

5. <framework global 2>

6. <framework global 1>

Note the change in order between the arming and the execution for <framework local 1> and <user global 2>.

Where your code arms an exception handler, it is safe to do an Ex_Abort_Exception, except for the following
cases.

Connection exceptions in the range 31000 through 31999

Licence exceeded exceptions 5503 and 5504

These exception types must be handled by the Web application framework and your exception handlers must do
an Ex_Pass_Back.

In addition, the framework also handles lock exceptions. When a lock exception is encountered, it will retry the
lock based on the number of times specified in the <lock_retries> element in the configuration file. For details,
see Chapter 3 of the JADE Web Application Guide. See also "Global Exception Handlers", in the JADE Exception
Handling white paper.

If you want to trap lock exceptions in your code, you will need to arm local exception handlers. The framework’s
local exception handler guards against exceptions that occur when receiving and processing the input and when
generating and sending the reply.

The following exceptions are handled by the framework’s local exception handler.

Connection exceptions in the range 30000 through 32999.

Lock exceptions.

String/Binary too long (1035) or decimal precision errors (4033 and 4043). In these cases, the SOAP
exception that is raised will contain details of the property in error.

UTF-8 decoding exception (1418). When this occurs, you are given the option of inspecting the binary value
that was sent, by re-implementing the Application class jadeWebServiceInputError method. The returned
string from this method is sent back to the Web service client. The default message that is returned is:

Input is not encoded as valid UTF-8

Web Services Tips and
Techniques White Paper

Web Services Tips and Techniques 50

	Contents
	Web Services Tips and Techniques
	Session Management
	Session Definition
	WSDL Generation
	Runtime Processing
	Using the Session Object
	Timing Out Sessions
	Removing Sessions

	Performance Testing
	soapUI
	JADE Monitor

	Debugging
	JADE Debugger
	Logging
	IIS
	Jadehttp
	Web Application

	Method Re-implementation
	Fiddler

	Message Sizes
	Web Server Setup
	Create an Application Pool
	Create a Virtual Directory
	Edit a Handler Mapping
	Set Up ISAPI Restrictions

	Usage Statistics
	Web Service Client
	Web Service Application

	Consumer Asynchronous Calls
	WSDL Import
	Setting up a Worker Application
	Coding Example

	Using SOAP Headers
	SOAP Header Element
	Information to Put in the Header
	Defining SOAP Headers
	Inserting Authentication Headers

	Denial of Service
	Badly-Formed Messages
	Badly-Formed XML
	Badly-Formed SOAP Messages
	UTF-8 Illegal Byte Sequence Errors (Error Code 1418)
	Invalid Data
	Client-Side Exceptions

	Handling Badly-Formed Messages
	Use Session Handling
	Use Web Server Logging
	Minimize Error Reporting
	Use Unicode JADE
	Inform Users

	Exception Handling

