
Copyright©2018 Jade Software Corporation Limited. All rights reserved.

REST Services
White Paper

 VERSION 2016

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2018 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.

WP_RestServices - 2016

Contents

Contents iii

REST Services 4
Why RESTWeb Services? 4
REST Services in JADE 4
REST Service Components 5

The JadeRestService Class 5
JadeRestService Class Methods 5

GET Method Example 6
POST Method Example 6
PUT Method Example 7
DELETE Method Example 7

Syntax of a REST Request 7
Defining a REST Service Application 9

REST Service Application Types 10
JADE REST Services Application and SSL 10

REST Message Handling 10
JADE versus C# Types 13

Generating and Parsing JSON independent of REST 13
Received and Reply Format 14

Notes about REST Service Messages 14
WADL-like Generated XML Description 17

WP_RestServices - 2016

REST Services

This white paper contains information about the REST-based Web services that JADE provides.

A Web service usually uses HTTP to exchange data. Unlike a Web application, which is typically HTML over
HTTP, a Web service is Extensible Markup Language (XML) over HTTP. A client sends a request in XML, and the
server responds with an XML response. This XML can be Plain Old XML (POX), which is typically a non-standard
XML of which only the client and server can make sense, or it is standard Simple Object Access Protocol (SOAP).

A Representational State Transfer (REST) API is a service. A REST API differs from SOAP-based Web services in
the way it is intended to be used. By using REST, the API tends to be lightweight and embraces HTTP. For
example, a REST API leverages HTTP methods to present the actions a user would like to perform and the
application entities would become resources these HTTP methods can act on. Although SOAP is not used,
messages (requests and responses) are either in XML or JavaScript Object Notation (JSON).

Why REST Web Services?
REST-based Web services are implemented using HTTP. They offer a light-weight alternative to the original
SOAP and WSDL-based Web services.

REST works with resources that are identified with a Uniform Resource Identifier (URI). REST resources are
named with nouns as part of the URI rather than verbs; for example, /customers rather than /getCustomers. One
of the key characteristics of RESTful Web API is that the URI or the request message does not include a verb.

To use REST services, a client sends an HTTP request using the GET, POST, PUT, or DELETE verb.

The traditional HTTP error messages (for example, 200 - OK and 404 - Not found) can be used to indicate whether
a request is successful. If a request is successful, information can be returned in Extensible Markup Language
(XML) or JavaScript Object Notation (JSON) format.

Session handling is not performed, so there is no timeout of connections. Additionally, information is not retained
between requests from a client. If that is required, it must be provided by the application developer.

REST Services in JADE
Earlier JADE releases supported only the Simple Object Access Protocol (SOAP) and WSDL-based Web services.

JADE now implements the Representational State Transfer (REST) stateless architecture style as a simpler
alternative to SOAP Web services. Mainstream Web 2.0 service providers such as Google, Salesforce, and
Facebook have endorsed this easier-to-use, resource-oriented model to expose their services. REST-based Web
services, implemented using HTTP, offer a light-weight alternative to the Web services available in earlier
releases.

JADE REST services currently support the following output formats.

JSON (Microsoft JSON)

XML (Microsoft XML (version .NET 4.5)

JSONN (NewtonSoft JSON) version 6.0.1

WP_RestServices - 2016

REST services in JADE use the existing HTTP communications framework.

REST Service Components
This section contains:

The JadeRestService Class

JadeRestService Class Methods

GET Method Example

POST Method Example

PUT Method Example

DELETE Method Example

Syntax of a REST Request

The JadeRestService Class
A transient instance of a subclass of the JadeRestService class is created by each REST services application
and is used by each REST services message that is received.

The JadeRestService class processRequest method is called on this object, passing the message details in the
URL. That method decodes the URL and any objects passed in XML or JSON format, and calls the required
method on the same JadeRestService object. The result returned by the method is encoded into XML or JSON,
as requested. The JadeRestService class reply method is then called, passing the string to be returned to the
client.

JadeRestService Class Methods
You can create REST service methods only for a JadeRestService subclass.

REST Services
White Paper

REST Services 5

WP_RestServices - 2016

The methods defined in the JadeRestService class are summarized in the following table.

Method Description

createVirtualDirectoryFile Passes files created by a JADE application to the jadehttp library

deleteVirtualDirectoryFile Deletes specified files from the virtual directory used by the jadehttp
library

getOutputFormat Returns an Integer value that represents the output format

getServerVariable Returns the specified HTTP header information for your REST
service request from the Internet Information Server (IIS)

isVDFilePresent Returns true if the specified file is present in the virtual directory
used by the jadehttp library

processRequest Processes the received message

reply Sends the returned value from the called method to the client

The following subsections contain examples of REST service methods to handle GET, POST, PUT, and DELETE
requests, which could be defined in a JadeRestService subclass in your schema.

GET Method Example
The method in the following example returns a Customer object in XML or JSON in response to a GET request in
which the customer identifier is specified.

getCustomer(pId: Integer): Customer updating;
vars

customer: Customer;
begin

// allCustomers is keyed on the customer id
customer := app.myRoot.allCustomers.getAtKey(pId);
if customer = null then

// Setting HTTP status optional - you could simply return a 'null' customer
self.httpStatusCode := 404;
return null;

else
// Make an object to return and avoid returning references
return customer.cloneSelf(true);

endif;
end;

POST Method Example
The method in the following example creates a customer in response to a POST request in which the data for the
customer is specified as primitive type parameters.

postCustomer(pName: String; pAddress: String);
vars

customer: Customer;
begin

beginTransaction;
create customer;
// Properties are set from the primitive parameters
customer.name := pName;
customer.address := pAddress;

REST Services
White Paper

REST Services 6

WP_RestServices - 2016

customer.myRoot := app.myRoot;
commitTransaction;

end;

PUT Method Example
The method in the following example updates an existing customer in response to a PUT request.

Note One or more parameters are used to identify the Customer object to be updated. The remaining
parameters are used to update the object.

putCustomer(pId: Integer; pName: String; pAddress: String);
vars

customer: Customer;
begin

// Identify customer to be updated using pId
customer := app.myRoot.allCustomers.getAtKey(pId);
if not customer = null then

// Update customer using pName and pAddress
beginTransaction;
customer.name := pName;
customer.address := pAddress;
commitTransaction;

endif;
end;

DELETE Method Example
The method in the following example deletes a specified customer in response to a DELETE request.

deleteCustomer(pId: Integer);
begin

// Delete customer with specified id
beginTransaction;
delete app.myRoot.allCustomers.getAtKey(pId);
commitTransaction;

end;

Syntax of a REST Request
A REST request is sent from a client as an HTTP verb (GET, POST, PUT, or DELETE), followed by the URL of the
resource. The syntax is similar to that of other types of JADE Web-enabled applications.

Verb IIS server URL/jadehttp.dll/path[.xml|json|jsonn]?app_name[&extra_info]
<-------------------------> <-------------------> <------------------->

first part second part third part

The following JADE REST service request retrieves information in JSON format for a customer with an identifier of
123.

GET http://localhost/jade/jadehttp.dll/customer/123.json?RestApp
<--------------------------------> <---------------> <----->

first part second part third part

The first part of the URL is the path to the jadehttp.dll file.

http://localhost/jade/jadehttp.dll

REST Services
White Paper

REST Services 7

WP_RestServices - 2016

In this example, the IIS host is the local machine and jade is an alias defined in IIS for the physical directory that
contains the jadehttp.dll file.

The second part of the URL contains the following.

Identifier of the resource, which in this example is customer.

The JadeRestService method that is invoked for a GET request on the resource /customer is obtained by
converting the HTTP verb to lowercase (get) and appending the name with the first letter capitalized
(Customer), resulting in the method name getCustomer.

Each additional URL path level is a parameter passed to the called method. Each string value is converted to
the required method parameter type. An exception is raised if the data is invalid or there is a mismatch in the
number of parameters.

A GET request for /customer/123 would result in a getCustomer(123) method call; that is, the getCustomer
method would require the first parameter to be of the Integer type.

A GET request for /customer/Clark Kent would result in a getCustomer("Clark Kent") method call; that is,
the getCustomer method would require the first parameter to be of the String type.

Note REST requests must be URL-encoded before the request is sent, so that /customer/Clark Kent
would become /customer/Clark%20Kent.

A GET request for /customer/Clark Kent/Smallville would result in a getCustomer("Clark Kent",
"Smallville") method call; that is, the getCustomer method would require the type of the first and second
parameters to be String.

URL path levels separated by the slash character (/) are used to pass primitive parameters. An object
parameter is passed as XML or JSON as the body of the data received. You can pass one object parameter
only in a REST service request.

A ParamListType parameter can be used in the method signature to receive multiple path parameters from
the URL but it must be the last parameter of the JADE method. All parameters passed for a ParamListType
parameter are assumed to be strings.

You can include the output format of the data at the end of the path information.

/customer/123.xml returns customer information in Microsoft XML format

/customer/123.json returns customer information in Microsoft JSON format

/customer/123.jsonn returns customer information in NewtonSoft JSON format

If the output format is not specified (/customer/123), data is returned in Microsoft JSON format.

The third part of the URL is the query string. It contains the name of the JADE REST services application. In the
following example, the JADE REST services application is called RestApp.

To delete an employee:

DELETE http://localhost/jade/jadehttp.dll/customer/123?RestApp

To update the details of an employee:

PUT http://localhost/jade/jadehttp.dll/customer/123?RestApp

To create a new employee:

POST http://localhost/jade/jadehttp.dll/customer?RestApp

REST Services
White Paper

REST Services 8

WP_RestServices - 2016

The XML or JSON user data is passed in as the body of the data received. That data is contained in the httpIn
parameter passed to the JadeRestService class processRequest method.

To return a collection of all employees:

GET http://localhost/jade/jadehttp.dll/customers?RestApp

This request is passed using a GET HTTP request and returns an array of customers as XML or JSON.

See also "REST Message Handling", later in this document.

Defining a REST Service Application
The REST services application is defined in the Define Application dialog in the standard way. For details, see
"Defining Applications, in Chapter 3 of the JADE Development Environment User’s Guide.

On the Application sheet, select Rest Services or Rest Services, Non-Gui in the Application Type combo box.

REST Services
White Paper

REST Services 9

WP_RestServices - 2016

This is defined from the development perspective. To successfully execute your application, set up the virtual
directory and the jadehttp.ini (IIS) file correctly for your REST server. To configure IIS, see:

https://www.jadeworld.com/docs/jade-2016/Default.htm#resources/wp_erewhon/part_
1/configuring_iis.htm

In the jadehttp.ini file, add an [application-name] section to enable clients to connect to the JADE REST services
application. Set the parameter values to match the configuration information you specified on the Define
Application dialog.

[RestApp]
ApplicationType=RestServices
TcpConnection=localhost
TcpPort=45000

REST Service Application Types
The ApplicationType_Rest_Services and ApplicationType_Non_GUI_Rest are available. These types are
treated in most cases the same as ApplicationType_Web_Enabled and ApplicationType_Non_GUI_Web.

Use of the ApplicationType_Rest_Services type causes the display of the Web Application Monitor when the
application is initiated; ApplicationType_Non_GUI_Rest does not.

JADE REST Services Application and SSL
You can implement security for REST-based Web services using:

Operating system security and Internet Information Server (IIS) for data access

Secure Sockets Layer (SSL) for data transmission

The communication from the client to IIS has no JADE involvement. Calling with an https header from C#
automatically uses SSL. When the message is received by the JADE Rest Service, it has already been decrypted
by IIS and passed to JADE as clear text.

To use SSL, you first need to establish the SSL configuration within IIS, which involves configuring the SSL
certificate within IIS.

1. Add the certificate to the IIS Server certificates.

2. Create a binding on the default web site for HTTPS and the certificate.

3. Turn on SSL for the JADE web site that is to be used. If no certificate is required on the client, set the Ignore
option for the client setting.

REST Message Handling
JADE handles REST messages as follows.

1. When the REST Services application is initiated, the web framework is initialized and the required number of
application copies is activated.

2. A REST message is sent from a client using a URL that is of the form:

<iis-server-url>/jadehttp.dll/<path[.xml/json/jsonn]>?<application-name>
[&extra-info]

REST Services
White Paper

REST Services 10

https://www.jadeworld.com/docs/jade-2016/Default.htm#resources/wp_erewhon/part_1/configuring_iis.htm
https://www.jadeworld.com/docs/jade-2016/Default.htm#resources/wp_erewhon/part_1/configuring_iis.htm

WP_RestServices - 2016

The following URL is an example of a REST message from the client.

http://localhost/jade/JadeHttp.dll/customer/123.json?RestApp

The path parameter contains:

The name of the action at the first level; for example, customer. The method to be called is constructed
from the type of request (get, put, post, or delete) and the action name with the first character
capitalized; for example, getCustomer.

Each additional URL path level becomes the parameters passed to the called method. Each string
value is converted to the required method parameter type (an exception is generated if the data is
invalid). For example, 123 is converted to an integer when the parameter is defined as an Integer.

Note A ParamListType can be used in a method signature but it must be the last parameter.

Optionally, the output format of the data returned can be included at the end of the path information; that
is, .xml, .json, or .jsonn. If this is not present, the data is formatted into JSON. See step 7 later in this
instruction for more details.

3. When a message arrives, the web processing framework calls the JadeRestService class processRequest
(httpIn: String; queryStr: String; pathIn: String; methodType: String); method on the application REST
service object. This method can be re-implemented by the application, if required, but that method must call
inheritMethod for the processing to be completed.

4. When the JadeRestService class processRequest method is called:

It parses the <path> part of the received data. The first identifier is combined with the message method
type (that is,GET, PUT, POST, or DELETE in lowercase) to create the method name to be called. For
example, /customer for a GET type calls a getCustomer method (the first path character is made
uppercase) on the JadeRestService subclass being used. An exception is generated if the method
does not exist on the JadeRestService subclass.

Converts subsequent levels of the path into the parameters (validated and converted to the correct
type) passed to the method. For example, /customer/123/12:45 results in a call to getCustomer(123,
12:45) if the signature is id: Integer; time: Time.

If the method signature includes an object parameter:

The httpIn text is searched for an XML or JSON script. Such a script must be the last text part of the
string.

An XML script is recognized by its <?xml header. The XML is parsed to create the contained
object or objects. The XML can indicate that the passed object is null.

If the base object is not null, the object must be of the type required by the parameter; otherwise
an exception is generated.

If an XML header is not found, the text is searched for the first { if the parameter object type is not a
collection or the first { or [when the parameter object type is a collection. If found, JSON format is
assumed.

JSON has no other header, and does not indicate the content type of object.

The JSON format from NewtonSoft is also different from that of Microsoft.

If the { or [character is not found and the end of the string is '' (that is, null), the base object
passed is assigned as being a null object.

REST Services
White Paper

REST Services 11

WP_RestServices - 2016

If the JSON header is found, the JSON is parsed and the object defined by the parameter type is
created and populated.

Note Because there is no class name in the JSON, passing the wrong object results in the entire
content being ignored unless both object types happened to have the same property name.

Any classes or properties referenced in the XML or JSON that do not exist in the schema are
ignored.

For properties that exist, the passed value in the XML or JSON is validated for its type and
generates an exception if the format is invalid.

Any text prior to the found XML or JSON script is ignored. This could be used by the application to
pass additional information that could be processed by a reimplementation of the
JadeRestService class processRequest method.

One object parameter only can be defined for the method. It can appear in any position in the
signature other than after a ParamListType.

Any objects created by the XML or JSON parsing are deleted after the required method is called.

The created base object (or null, if null was indicated) is passed as the object parameter.

5. An exception is generated if the path and any passed object do not match the method signature.

6. The located method is called, executing the logic defined by the application for the operation.

7. The method returns a value to be passed back to the client. This value is encoded into a string according to
the format requested by the client.

The XML format is that expected by the Microsoft DataContractSerializer class for an Object or a
TimeStampInterval primitive type return value. While other primitive type return values are formatted
for the Microsoft XmlSerializer (XmlSerializer does not support the TimeSpan type). The output
includes oids for each included object and references to already included objects, therefore supporting
circular and multiple references to the same object in the returned data.

The JSON format is that expected by the Microsoft DataContractJsonSerializer class. This format type
does not support circular references or multiple references to the same object in the returned data (an
exception is generated if the situation is detected). This is the default format if no format was specified.

The JSONN format is that expected by the NewtonSoft JSON class software. This format is different from
that of Microsoft in the structure, tags, and the format of some primitive types. The output includes oids
for each object and references to already included objects, and therefore supports circular and multiple
references to the same object in the returned data.

Note also about return value handling:

If the returned value is an object, the entire referenced object tree is encoded into XML or JSON, as
required.

For returned objects, all property values are included, including null values.

If the returned value is a string that is already encoded in XML format (that is, it starts with <?xml), the
XML string value is sent as is.

8. The JadeRestService class reply(str: String); method is called, passing the string constructed from the
returned value. This method sends the string back to the client. The reply method can be re-implemented by
the application, but the re-implementation must call inheritMethod.

REST Services
White Paper

REST Services 12

WP_RestServices - 2016

9. The processRequest method then deletes:

Any objects created from the passed XML or JSON.

The returned value, if it is a non-shared transient object.

Any objects added to the objectsToBeDeleted collection by user logic. (They must be non-shared
transient objects; otherwise an exception is generated.)

A returned shared transient object is not deleted on completion of the REST Services processing. It
would be unsafe to do so, because JADE cannot be certain of whether that is the intention and JADE
would have to go into transaction state to do so.

Note Anything added to the JadeRestService class objectsToBeDeleted collection is expected be
to non-shared transients, and any other object lifetime will cause the logic to fail because the logic is
not in transient state.

JADE versus C# Types
The following table lists the C# type expected for each JADE type.

JADE Type C# Type

Binary Byte []

Boolean Boolean

Byte Byte

Character Char

Date DateTime

Decimal Decimal

Integer Int32

Integer64 Int64

JadeBytes Byte []

HugeStringArray String []

Point String format <integer>, <integer>

Real Double

String String

StringUtf8 String

Time DateTime

TimeStamp DateTime

TimeStampInterval TimeSpan

TimeStampOffset DateTime (with UTC offset set)

Generating and Parsing JSON independent of REST
The JadeJson class enables JSON to be parsed or serialized as a standalone feature that is independent of the
Representational State Transfer (REST) Application Programming Interface (API).

REST Services
White Paper

REST Services 13

WP_RestServices - 2016

The methods defined in the JadeJson class that enable you to create, load, unload, and parse JSON in the same
way you can with XML are summarized in the following table.

Method Description

generateJson Generates JSON from a primitive type variable or an object

generateJsonFile Generates JSON from a primitive type variable or an object and writes the output to
a file

parse Parses JSON text to create and populate an object and all referenced objects

parseFile Reads and parses JSON text from a file to create and populate an object and all
referenced objects

parsePrimitive Parses JSON text for a primitive type and returns the primitive type value

parsePrimitiveFile Parses JSON text for a primitive type from a file and returns the primitive type value

Received and Reply Format
The received format of REST service messages is:

XML

XML format expected by the Microsoft DataContractSerializer for objects or XmlSerializer for primitive types
(except for the TimeStampInterval primitive type). Objects are encoded with oids and circular references are
allowed.

JSON

JSON format expected by the Microsoft DataContractJsonSerializer. No duplicate references are allowed.

JSONN

JSONN as expected by NewtonSoft. Objects are encoded with oids and circular references are allowed.

The reply format of REST service messages is:

All object properties are returned, including null values.

For objects, the entire object tree is returned.

If the called method returns a string that is XML (that is, starts with <? xml), the string is sent as is.

The REST message limits and default values are:

The JadeDynamicObject type is not supported by JADE REST services.

REST service messages can contain only public and read-only properties that are going to be serialized.
Protected properties are excluded from the serialization process.

Notes about REST Service Messages
When using the JADE REST service:

A REST service is stateless; there is no session object.

There is no time-out facility, because there is no session object.

The standard web XML configuration file can be used.

REST Services
White Paper

REST Services 14

WP_RestServices - 2016

REST services do not provide an exposure facility. The application controls what object types can be passed
from the client by the signatures of the methods called to handle the incoming requests. However, clicking
the Generate Description button on theWeb Options sheet of the Define Application dialog displays a
common Save As dialog that enables you to specify or select the name and location of the .xml file to which
the XML description of the REST service is written.

The generated XML file is based on the following entities.

The application name and required URL.

The list of available resources with the:

HTTP name required (that is,GET, PUT, POST, or DELETE)

Resource id (for example, Person)

Required parameter names and types

Type of object required in JSON or XML format

The list of classes referred to by the signatures of the resource methods.

The name of the class

The name and C# type of each property of each class

One object only can be passed to a method, but that method can contain references to other child objects
that were also passed in the XML or JSON. The object parameter can occur in any location within the method
signature except after a ParamListType.

Any primitive type parameters for the called method must be specified in the URL path in the order in which
they appear in the method signature.

The web server in a RESTWeb service can be IIS or Apache.

The JadeRestService class processRequest method, called to process the request, can be
re-implemented.

If the processRequest method is reimplemented, inheritMethod should always be called to complete the
processing.

processRequest(httpIn: String; queryStr: String; pathIn: String;
methodType: String);

The JadeRestService class reply method, called by the framework to send the reply, can also be
re-implemented.

reply(msg: String);

Failures that are generated by IIS (for example, when the service is not available) are in HTML format.

JADE logic and processing exceptions generate an XML reply of the form:

<?xml version="1.0" encoding="UTF-8"?>
<Fault>

<errorCode>11102</errorCode>
<errorItem>Method 'TestRestService::deleteStringArray' not

found</errorItem>
<errorText>Requested Rest Service method does not exist</errorText>

</Fault>

The XML style is required because JSON does not identify the name of the entity being returned.

REST Services
White Paper

REST Services 15

WP_RestServices - 2016

User logic can set the JadeRestService class httpStatusCode property to a value that will generate a
WebException in the calling client C# logic (if not 0 and < 200 or > 299).

The returned value from the called method is still also returned. The client C# logic can retrieve that
information by processing the C# WebException Response property.

REST Services
White Paper

REST Services 16

WP_RestServices - 2016

WADL-like Generated XML Description
The following is an example of a Web Application Description Language (WADL) generated XML description.

<Application name="RestTest"
uri="http://localHost/Jade/jadehttp.dll/">
<resources>

<method name="GET" id="Person1">
<request>

<param name="id" type="int" />
</request>
<response type="Person" />

</method>
<method name="PUT" id="Person">

<request>
<param name="id" type="int" />
<xml-or-json-object name="Person" />

</request>
<response type="Person" />

</method>
<method name="GET" id="PersonArray">

<request/>
<response type="List<Person>" />

</method>
</resources>
<CommunicationClasses>

<Person>
<countryOfBirth type="Country" />
<dob type="DateTime" />
<forenames type="String" />
<sex type="Char" />
<surname type="String" />

</Person>
<PersonSub superclass="Person">

<description type="String" />
</PersonSub>

</CommunicationClasses>
</Application>

REST Services
White Paper

REST Services 17

	Contents
	REST Services
	Why REST Web Services?
	REST Services in JADE
	REST Service Components
	The JadeRestService Class
	JadeRestService Class Methods
	GET Method Example
	POST Method Example
	PUT Method Example
	DELETE Method Example

	Syntax of a REST Request

	Defining a REST Service Application
	REST Service Application Types
	JADE REST Services Application and SSL

	REST Message Handling
	JADE versus C# Types

	Generating and Parsing JSON independent of REST
	Received and Reply Format
	Notes about REST Service Messages

	WADL-like Generated XML Description

