
Copyright©2018 Jade Software Corporation Limited. All rights reserved.

Multithreading JADE Applications
- A PrimerWhite Paper

  VERSION 2018



Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2018 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.



WP_Multithreading - 2018.0.01

Contents

Contents iii

Multithreading JADE Applications 4
The Basics 4

Nodes and Processes 4
Client Nodes 4
Server Node 5

Server Applications 5
Server Methods 5

System, Nodes, and Processes in the JADE Database 5
Initiating New Application Processes 6

Application::startApplication 7
Application::startApplicationWithParameter 7
Application::startApplicationWithString 8
Application::startAppMethod 9
Node::createExternalProcess 9

Controlling Multithreaded Applications 10
Debugging Multithreaded Applications 11

Debugging Processes Started via startApplication or createExternalProcess 12
Debugging Processes Started with a startApplication Method Call 12



WP_Multithreading - 2018.0.01

Multithreading JADE Applications

In JADE applications, it is sometimes desirable to initiate asynchronously executing applications, threads, or
processes. This may be required for performance reasons, or to separate the execution of specific functions.
Another reason may be a requirement to initiate a separate process on another machine.

This white paper describes the basics of multithreading using JADE, and provides some examples of the use and
control of multithreaded applications. For more details, see the following subsections.

The Basics
This section contains the following topics.

Nodes and Processes

Client Nodes

Server Node

Server Applications

Server Methods

System, Nodes, and Processes in the JADE Database

Nodes and Processes
In JADE, each application process (thread) executes within a JADE node. Multiple application processes can
execute within a single node. A JADE node is physically one of the following executing programs.

A jade.exe program for a fat client (that is, a standard client; not a thin one).

A jadapp.exe program, which is an application server for JADE thin clients.

A jadrap.exe program, which is the JADE database server (the JADE Remote Node Access utility).

A user program that uses the C-API level of the JADE Object Manager, including .NET class libraries.

For the purposes of this paper, there are two main types of nodes: server nodes and client nodes. The distinction
between the two is not black-and-white, since at certain times a server node can behave as a client node, and the
reverse.

Client Nodes
A client node is either an executing jade.exe program or a jadapp.exe program. Multiple application processes
can be run within a client node, either by programmatically starting additional process (discussed later in this
white paper) or by specifying newcopy=false in the command line of the operating system shortcut used to initiate
the application.

For method execution, the application developer can specify that a specific method is to be executed at the client
node (using the clientExecution command in the method signature) or on the server node (by using the
serverExecution command in the method signature). Methods that are specified for serverExecution are
referred to as server methods.

By default, a method executes in the same node as its calling method.



WP_Multithreading - 2018.0.01

Server Node
The two main types of process that execute within the server node (that is, in a jadrap.exe) are:

Server applications

Server methods

Server Applications
Server applications run in the server node and cannot have a user interface. They must be defined as application
type Non_GUI. Server applications are normally started at the same time as the jadrap.exe starts, by including a
ServerApplication<application-number> parameter in the [JadeServer] section of the JADE initialization file.

However, server applications can also be initiated programmatically at any time, by any other JADE process. For
details, see "Initiating New Application Processes", later in this document.

Server Methods
Server methods are methods that specify serverExecution in the method signature, or methods that are called by
another method that has serverExecution in its signature. These methods execute on a thread in the JADE
database server; that is, the JADE Remote Node Access utility (jadrap.exe).

System, Nodes, and Processes in the JADE Database
A JADE system consists of the database and the collections of nodes and processes that go to make up the
system. There is one System object for each JADE system. You can reference the System object, by using the
reserved word system.

A persistent Node object in the JADE database represents each node in a running JADE system. JADE
automatically maintains these node objects. An application process can directly access its own node object
through the use of the JADE reserved word node.

Each process running in a JADE system is represented by a persistent Process object in the database. The
Process object is created automatically by JADE when the application process starts, and is destroyed when the
application process terminates.

An application process can directly access its own process object through the use of the JADE reserved word
process.

The System::nodes property returns a reference to a collection of all nodes in a JADE system. The
Node::processes property returns a reference to a collection of all processes running on the node.

If you want to know whether any node is executing a specific application, you could write a method like that shown
in the following example.

findApp(appName: String): Boolean serverExecution; //more efficient on server
vars

allNodes: NodeDict;
allProcesses: ProcessDict;
nod: Node;
proc: Process;

begin
allNodes := system.nodes.cloneSelf(true);
foreach nod in allNodes do

allProcesses := nod.processes.cloneSelf(true);
foreach proc in allProcesses do

Multithreading JADE Applications
White Paper

Multithreading JADE Applications 5



WP_Multithreading - 2018.0.01

if proc.persistentApp.name = appName then
return true;

endif;
endforeach;
delete allProcesses;

endforeach;
return false;

epilog
delete allNodes;
delete allProcesses;

end;

It is important not to use system.nodes and node.processes directly with the foreach statements, because that
causes them to be locked. These two collections are updated whenever nodes and processes start up or
terminate, so locking them could disrupt system accessibility.

Note In actual use, the method in the previous example should arm an exception handler, to protect against the
possibility of a node or process terminating while the code is executing.

Initiating New Application Processes
The five RootSchema JADE methods that allow you to start new application processes from an existing running
JADE process are:

Application::startApplication

Application::startApplicationWithParameter

Application::startApplicationWithString

Application::startAppMethod

Node::createExternalProcess

Multithreading JADE Applications
White Paper

Multithreading JADE Applications 6



WP_Multithreading - 2018.0.01

The following diagram and subsections describe the use of each of these methods.

Application::startApplication
The Application class startApplicationmethod is the easiest way to start a separate application process. The
method requires only the schema name and application name be passed as parameters; for example:

app.startApplication("MySchema", "MyApp");

If the startApplicationmethod is executed on the client node, the new process is initiated in the same node as the
initiator process. In the image in "Initiating New Application Processes", this is depicted as process1 starting
process2.

If the startApplicationmethod is executed on the server node (that is, serverExecution is specified for the
method that calls startApplication), the new process is initiated on the server node, effectively as a server
application. In the image in "Initiating New Application Processes", this is depicted as process1 via server method
m1 starting process3.

Processes that are started using the startApplicationmethod behave exactly like a JADE process that was
started by any other method; for example, started via an operating system shortcut. This means that the
application will execute the application’s initialize method and form load event (if specified) at process startup,
and the application’s finalize method at application shutdown. Of course, don’t forget that applications that are
executed on the server node cannot display forms and must be of application type Non_GUI.

Application::startApplicationWithParameter
The Application class startApplicationWithParameter method is similar to the startApplicationmethod, but it
enables you to pass an object reference to the initialize method of the application that is being started. This can
be useful if you want to pass parameters to the initiated process, telling it what to do.

Multithreading JADE Applications
White Paper

Multithreading JADE Applications 7



WP_Multithreading - 2018.0.01

Shared transient objects are ideal for this, provided that the application to be started is to run on the same node,
as shown in the following example.

startReport(reportName: String);
vars

param : Param;
begin

beginTransientTransaction;
create param sharedTransient;
param.reportName := reportName;
commitTransientTransaction;
app.startApplicationWithParameter(currentSchema.name, "ReportApp", param);

end;

In the image in "Initiating New Application Processes", this is the code that process1 would execute. In your
Application subclass, the initialize method executed by process2 of the image could be similar to the following
example.

reportAppInit(param: Param);
vars

repManager : ReportManager;
begin

create repManager transient;
repManager.runTheReport(param.reportName);

epilog
delete repManager;
beginTransientTransaction;
delete param;
commitTransientTransaction;

end;

If the application was to be started on a different node (that is, the server node), the object being passed must be
persistent. Shared transient objects can be accessed only by processes that are running in the node in which the
objects were created.

Of course, the method in the previous example is simplistic, as is explained under "Controlling Multithreaded
Applications", later in this white paper.

Note Do not attempt to pass a non-shared transient object to the application being started. Non-shared transient
objects exist only in the context of the process that creates them, so cannot be accessed by the other application.

Application::startApplicationWithString
The Application class startApplicationWithStringmethod enables you to start an application, passing a single
String parameter to the initialize method of the application that is being started. If this is suitable, it avoids having
to create and delete an object to contain particular specifications for the application, as shown in the following
simple example.

startReport(reportName: String);
begin

app.startApplicationWithString(currentSchema.name, "ReportApp",reportName);
end;

The initialize method for the ReportApp application could look similar to the following example.

reportAppInit(strParam: String);
vars

Multithreading JADE Applications
White Paper

Multithreading JADE Applications 8



WP_Multithreading - 2018.0.01

repManager : ReportManager;
begin

create repManager transient;
repManager.runTheReport(strParam);

epilog
delete repManager;

end;

Application::startAppMethod
The Application class startAppMethodmethod enables you to initiate a separate application process, starting
with a specified method of your Application subclass. When the execution of the method is complete, the process
terminates.

If you call allowZeroForms, to end execution of the process, you need to code a terminate instruction.

Like the startApplicationWithParameter method, an object reference is passed to the method that is executed.

Note Application processes that are started using startAppMethod do not automatically execute the finalize
method for the application when they terminate, even if the method is defined for the application.

Node::createExternalProcess
The Node class createExternalProcess method enables you to initiate any operating system task (for example,
you can use this method to start a Word or NotePad session). You can also use it to start a JADE process in a new
node. In the image in "Initiating New Application Processes", this is shown by process1 starting process4, and by
process4 via a serverExecutionmethod m2 starting process5.

Note In this last case, the new node runs on a different host machine from the initiating client (that is, the server).

The createExternalProcess method provides considerable control over the relationship between the initiator and
the initiated process, because you can optionally specify that the new process is to be run modally (that is, the
initiator process will not continue until the new process terminates), and for modally initiated processes, a return
code can be captured when the initiated process terminates.

The method signature for Node::createExternalProcess is:

createExternalProcess(directory: String;
command: String;
args: StringArray;
alias: String;
thinClient: Boolean;
modal: Boolean;
result: Integer output): Integer;

In the following code fragment, a client process (for example, process4 in the image in "Initiating New Application
Processes") starts a non-modal background client process on the server host machine in a new jade.exe.

startBackgroundClient() serverExecution;
vars

binPath : String;
argumentsArray : StringArray;
iResult1 : Integer;
iResult2 : Integer;

begin
create argumentsArray transient;

Multithreading JADE Applications
White Paper

Multithreading JADE Applications 9



WP_Multithreading - 2018.0.01

argumentsArray.add(" ");
iResult1 := node.createExternalProcess(app.getJadeInstallDir(),

"\jade.exe " & "path=" & app.dbPath(),
argumentsArray,
null,
false, // not thin client
false, // not modal
iResult2);

epilog
delete argumentsArray;

end;

Controlling Multithreaded Applications
Once you have started a separate JADE process, you may want to be able to terminate it programmatically at will,
or you may want it to submit progress reports to the initiating process. This can be done easily through the use of
notifications. Shared transient objects or JADE’s Process objects are extremely useful for this sort of inter-process
communication.

Obviously, there are many ways that you can use notifications to achieve the specific inter-process communication
and control that you need. You can build on the basic ways to achieve this, documented in this section.

To show how termination of a process or progress reports from another process can be achieved, let’s expand the
code examples shown in "Application::startApplicationWithParameter", earlier in this white paper.

The initiator process first sets up additional information in the Param object that is passed to the process being
initiated, and subscribes to events that may be caused on its own process object; for example:

startReport(reportName: String); // for example, as a method of a form
vars

param : Param;
begin

beginTransientTransaction;
create param sharedTransient;
param.reportName := reportName;
param.initiatorProcess:= process; // new info
commitTransientTransaction;
beginNotification(param, Progress_Report, 0, 0);
beginNotification(param, Process_Registration, Response_Cancel, 0);
beginClassNotification(Process, false, Object_Delete_Event, 0, 0);
app.startApplicationWithParameter(currentSchema.name, "ReportApp", param);

end;

The class that receives the notifications could be coded like the method shown in the following example.

userNotification(eventType: Integer;
theObject: Object;
eventTag: Integer;
userInf : Any) updating;

begin
if eventTag = Progress_Report then

// issue progress report to GUI
elseif eventTag = Process_Registration then

// save the reference provided
runningReportProcess := userInfo.Process;

Multithreading JADE Applications
White Paper

Multithreading JADE Applications 10



WP_Multithreading - 2018.0.01

endif;
end;

Note that the above method uses a shared transient to pass information to the new process. This assumes that the
new process being started will run in the same node and will therefore have visibility to that shared transient. If
you are using startApplicationWithParameter method in a server method, you need to use a persistent object to
pass information to the new process. In the above code example, you would also need to code the sysNotify
method to handle deletion of process objects by JADE, so that when your initiated process ends, your initiator
process handles the Object_Delete_Event notification.

Next, we look at what the initiated process needs to do. In your application subclass, the reportAppInit method (to
be executed by process2 of the image in "Initiating New Application Processes") could be as follows.

reportAppInit(param: Param); // method of Application subclass
vars

repManager : ReportManager;
begin

beginNotification(param, Terminate_Request, 0, 0);
// save param.initiatorProcess somewhere if required
param.causeEvent(Process_Registration, true, process);
param.causeEvent(Progress_Report, true, "Starting Report " & param.reportName);
create repManager transient;
repManager.runTheReport(param.reportName);

epilog
delete repManager;
beginTransientTransaction;
delete param;
commitTransientTransaction;

end;

userNotification(eventType: Integer;
theObject: Object;
eventTag: Integer;
userInfo: Any) updating;

begin
if eventTag = Terminate_Request then

terminate;
endif;

end;

Debugging Multithreaded Applications
There are some special considerations and techniques to be used when debugging multithreaded applications
using the JADE development environment. This section offers some suggestions and techniques that will help you
with this.

In the image in "Initiating New Application Processes", if process1 is running under the control of the JADE
debugger and executes a startApplication, startApplicationWithParameter, startApplicationWithString or
startAppMethodmethod call, the spawned process (process2 or process3) will not run under the control of the
debugger. This is just the way that JADE works, but you can use one of the techniques in the following
subsections to debug a spawned process.

For more details, see the following subsections.

Multithreading JADE Applications
White Paper

Multithreading JADE Applications 11



WP_Multithreading - 2018.0.01

Debugging Processes Started via startApplication or createExternalProcess
To debug an application initiated by calling the startApplicationmethod, replace the startApplication call with a
debugApplication call, which requires that the client is also running the JADE development environment.
Executing this command within a server method will attempt to start and debug the application on the client.

Alternatively, you simply comment out the startApplication statement and substitute a read instruction or a
message box. Run your main application from the development environment. When the message box is
displayed, start the required application using the debugger in the normal way, and then allow the initiator
application to continue.

If your application is a server application and you are using startApplication to initiate the new process, this
doesn’t exactly replicate the true runtime environment, since the application you’re running in debug mode will be
running in a jade.exe on your workstation rather than in the server node.

If you need to debug applications while they are running as server applications, the best that can be done is to
sprinkle write instructions through your code (remembering that the interpreter output window will appear on the
server, not necessarily on your workstation). You can use the executeWhen instruction around the write
instructions so that they do not have to be removed but are executed only when testing.

Note For more information about the executeWhen instruction, see Chapter 1 of the JADE Developer’s
Reference.

Debugging Processes Started with a startApplication Method Call
Debugging processes started with a startApplicationWithParameter, startApplicationWithString, or
startAppMethod call involves a little more effort, since you generally want to have your initiated debugger
process pick up the parameter that you’re passing in the call that starts the application. One way to do this is as
follows.

1. Temporarily modify the signature of the application method that will be executed so that it has no
parameters, and ensure that the method is the initialize method for the application.

2. For startApplicationWithParameter and startAppMethod calls at the start of the initialize method, add code
to fetch the object that would have been passed.

For debugging, this can be done using the firstInstance or firstSharedTransientInstance method.

3. For startApplicationWithString calls, modify the method to use an explicit string value, or insert a read
instruction or message box to specify the string value.

4. In the primary application, substitute a read instruction or message box for the call.

5. Run the primary application from the development environment without the debugger.

6. When the message box is displayed, run the secondary application with the debugger from the development
environment in the normal way.

Note This technique isn’t applicable to server applications. As before, the best that can be done, without
temporarily changing the applications to run outside the server, is to use write instructions in the code, possibly in
conjunction with the executeWhen instruction.

Multithreading JADE Applications
White Paper

Multithreading JADE Applications 12


	Contents
	Multithreading JADE Applications
	The Basics
	Nodes and Processes
	Client Nodes
	Server Node
	Server Applications
	Server Methods

	System, Nodes, and Processes in the JADE Database

	Initiating New Application Processes
	Application::startApplication
	Application::startApplicationWithParameter
	Application::startApplicationWithString
	Application::startAppMethod
	Node::createExternalProcess

	Controlling Multithreaded Applications
	Debugging Multithreaded Applications
	Debugging Processes Started via startApplication or createExternalProcess
	Debugging Processes Started with a startApplication Method Call



