
Copyright©2018 Jade Software Corporation Limited. All rights reserved.

Logical Certifier
White Paper

 VERSION 2018

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2018 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.

WP_LogicalCertifier - 2018.0.01

Contents

Contents iii

JADE Logical Certifier 4
Referential Integrity 4
Possible Issues with Referential Integrity 4
Consequences of Referential Integrity Problems 5
The JADE Logical Certifier and Referential Integrity 5
Manually Maintained References 5
Examples of User Data Errors and Fixes 5

User Data Metadata Distinction 6
Metamodel Example Errors 7

Running the Logical Certifier 8
Tasks Performed by the Logical Certifier 8
Precautions 8
Backup Strategy 9
When to Run the Logical Certifier 9

When to Run the Logical Certifier to Analyze Metadata 9
When to Run the Logical Certifier to Analyze User Data 9

Restricting the Analysis Coverage 10

Analysis and Repair Process 11
Effect of Update Mode 11
A Repair that is Not Actioned 11
Fixes are Evaluated Independently 12
Summary of Analysis and Repair Process 12

Practical Exercises 13
Before You Begin 13
Exercise One: Creating an Inverse and Examining Metadata 13
Exercise Two: Breaking Referential Integrity 14
Exercise Three: Analyzing the Damage 15
Exercise Four: Interpreting the Analysis Output 16
Exercise Five: Repairing the Damage 17
Exercise Six: Additional Referential Integrity Examples 17

Part A: Nulling the Manual Side 17
Part B: Reverse Update Mode 18
Part C: Indeterminate Update Mode Results in Choices 18
Part D: Dictionary that Has a Member at Invalid Keys 19
Part E: Repair that Fails due to Duplicate Entry 20

WP_LogicalCertifier - 2018.0.01

JADE Logical Certifier

The JADE Logical Certifier is a tool (application) that is used to verify and, if necessary, restore the referential
integrity in a JADE database.

This white paper discusses the JADE Logical Certifier and its usage; that is:

Why the JADE Logical Certifier is needed

What the JADE Logical Certifier does

How to run the JADE Logical Certifier

How to interpret and repair the errors the JADE Logical Certifier produces

How often you should run the JADE Logical Certifier

How to restrict analysis coverage

This document uses an example that describes a simple domain model (managing a hardware company’s
products) from which you can create a corresponding simple schema with some database objects.

Exercises towards the end of this document demonstrate some examples of broken referential integrity in this
simple schema and how you can use the JADE Logical Certifier to restore referential integrity.

For more details about the JADE Logical Certifier, see the following subsections.

Referential Integrity
A JADE inverse reference defines a contract specifying the knowledge that two types of entities have about each
other. JADE supports cardinalities one-to-one, one-to-many, and many-to-many.

In JADE, the relationships are managed using object identifiers (oids); for example, consider the following
one-to-many relationship.

Company <——> Product

Company::allMyProducts is an automatic inverse reference of Product::myCompany. If a Product instance P
exists that references a Company instance C, the contract requires that P is a member of C::allMyProducts. The
absence of this member constitutes a lack of referential integrity and would be detected by the JADE Logical
Certifier as an error (identified as error 1 in "Logical Certifier Errors and Repairs", in Chapter 5 of the JADE Object
Manager Guide).

Conversely, if P is a member of C::allMyProducts, P::myCompany must reference C.

Possible Issues with Referential Integrity
JADE should maintain referential integrity when a relationship is set up with a JADE-defined inverse. In the rare
event that such an inverse was not maintained correctly, that could be indicative of a JADE fault. If it can be shown
that an error in user data occurred in a recent JADE release and it is not a historical issue, if your JADE licenses
include support, contact your local JADE support center or JADE Support.

Sometimes data is lost through corruption in database storage media. In such cases, it is expected that a backup
should be recoverable from a separate storage medium. In the event that a correct backup is not available,
running the Logical Certifier to restore referential integrity is usually part of the repair procedure.

WP_LogicalCertifier - 2018.0.01

Consequences of Referential Integrity Problems
Referential integrity problems can result in data inaccessibility, the wrong data being accessed, or runtime
exceptions being generated.

The business impact of a referential integrity problem is not determined by the classification of that problem (as
identified in "Logical Certifier Errors and Repairs", in Chapter 5 of the JADE Object Manager Guide). Business
impact is determined by how the anomaly impacts upon workflows associated with the entities concerned.

The JADE Logical Certifier and Referential Integrity
The Logical Certifier is run in two modes.

In analysis mode, the Logical Certifier checks referential integrity, records errors found, and generates
corresponding fixes.

In repair mode, the Logical Certifier performs the fixes generated in the prior analysis.

The logical certification process analyzes each class in a schema and performs various cross-checks on each
instance, to verify its logical/referential integrity.

The term certify is ambiguous, since it is an incomplete term used in the context of both the JADE Logical Certifier
(performing a logical certify) and also in the context of the JADE Database utility (performing a file certify via the
Certify Files operation that checks on the physical structure and format of .dat files). To avoid confusion, it is
preferable to use the complete term.

Manually Maintained References
The Logical Certifier does not check for errors in cases when there is no inverse defined. It is your responsibility to
ensure referential integrity for manually maintained collections (not managed via a JADE inverse relationship).

A manually maintained collection can contain invalid object references or invalid keys, and these will not be
reported by the Logical Certifier.

Examples of User Data Errors and Fixes
There are a number errors for which the Logical Certifier checks. This document briefly discusses three of these.
See "Logical Certifier Errors and Repairs", in Chapter 5 of the JADE Object Manager Guide), for a complete list of
the checks. Consider again the case of the following inverse relationship.

Company::allMyProducts <——> Product::myCompany

In this inverse relationship:

If a product (for example, "box of nails") references its company but the product is not held in the collection
of products known to the company, this would be reported by the Logical Certifier as an Error 1 (Missing
Reference to a Collection).

The fix provided by the Logical Certifier is to insert the product into the collection by performing a collection
rebuild. This scenario is the subject of Exercise Two.

If a product has since been removed from stock (the product instance has been removed from the database)
but the product was not removed from the company’s collection of products, the reference to the product in
the collection is invalid.

Logical Certifier
White Paper

JADE Logical Certifier 5

WP_LogicalCertifier - 2018.0.01

This circumstance would be reported by the Logical Certifier Error 12 (Collection contains invalid reference).
The fix provided by the Logical Certifier is to remove the invalid product reference from the collection by
performing a collection rebuild.

If a product (for example, "box of nails") is included in the company’s collection of products but is stored at
the wrong key (for example, "carton of nails"), the product would not be found in the collection using the
member’s key property value. This might occur if the product key (product::description) was changed;
however, the collection was not updated correctly. The Logical Certifier will identify two errors in this
scenario.

When analyzed from the Company side of the inverse, the Logical Certifier will report Error 3 (Collection
contains object at invalid keys). The fix provided by the Logical Certifier is to move the product in the
collection and correct the key by performing a collection rebuild. When analyzed from the Product side, the
Logical Certifier will report Error 1 (Collection does not include reference to inverse object), the same error
as reported in example 1, above. This is because the Logical Certifier implicitly does a lookup in the
dictionary using the actual key property value (using the description "carton of nails"). The nature of this fix
depends on the update mode for the inverse; this aspect of how the Logical Certifier works is discussed in
"Effect of Update Mode", later in this document. The fix for this error will not be run, however, because the
execution of the fix is conditional upon the circumstance still existing. The rebuild fix generated for the Error 3
will be run first, meaning that the product will then be found so that the second fix will be skipped. This
scenario is the subject of Exercise Six, part D, later in this document.

Tip If you want to perform an online repair of a collection while it is concurrently updated, call the
repairCollectionmethod of the Application class, to remove invalid object references and fix up dictionary keys in
a specified collection. This is sometimes faster than a Logical Certifier rebuild repair.

For more details, see "Chapter 5 – The JADE Logical Certifier Diagnostic Utility", in the JADE Object Manager
Guide.

User Data Metadata Distinction
User data objects are instances of user classes defined by you. The example in the previous section describes
using the Logical Certifier to analyze the referential integrity of such objects (that is, Company and Product).

The Logical Certifier includes support for analyzing the logical integrity of the metamodel. The metamodel consists
of JADE system classes that describe the user model (user schemas). The term metamodel is appropriate,
because it is a self-describing system; JADE system classes are used to describe classes (and class methods and
properties). The metamodel consists of instances of classes such as Class, ExplicitInverseRef, Inverse,
JadeMethod, Parameter, ReturnType, and so on. These metamodel entities are created, modified, and deleted
during development or during a schema deployment. In Exercise One, a schema is created that represents the
relationship between a company and its products, and some of the metamodel elements used to represent this
model are inspected.

Metadata errors can have application runtime consequences, but typically result when making changes to the
user model, either via the JADE development environment or during a schema load; for example, an error 4
(Object not found) or 1090 (Attempted access via null object reference) may be raised when performing a
reorganization). Often the role of the Logical Certifier in such cases is to analyze the referential integrity of the
metamodel prior to the model change, and repair the errors so that the required model changes can then be
implemented.

Performing a logical certify of metadata can take a long time to complete. Similarly, performing a logical certify of
user data can take a long time to complete, due to the number of objects that will be analyzed. For this reason,
analysis coverage can be restricted by schema or class (for details, see "Restricting the Analysis Coverage", later
in this document).

When metadata is analyzed, the opening line of the _logcert.log file will have an entry of the form:

21 September 11:53:00: Analysis of user schemas meta-structure started

Logical Certifier
White Paper

JADE Logical Certifier 6

WP_LogicalCertifier - 2018.0.01

This provides a means by which you can quickly verify that you have initiated the intended function. You can abort
the operation if you selected the wrong function.

Metamodel Example Errors
This section contains examples of metadata errors.

Caution If your JADE licenses include support, contact your local JADE support center or JADE Support before
attempting metaschema repairs.

An object that has a reference (manual) to its parent but the object is missing from the inverse collection on
the parent.

The add action provided by the Logical Certifier repairs the anomaly.

*** Error 1: Collection does not include reference to inverse object
JadeUserProfile/1749.135->UserProfile::typesChanged (inverse of
GUIClass/1284.1155)
FIX40: add 1429.135.1749.2.4 1284.1155

A collection has an invalid member type, which the Logical Certifier will report as:

*** Error 2: CollClass::memberType references invalid object.

The appropriate action to take depends on other circumstances reported by the Logical Certifier, which is an
example of why it is a good idea to contact your local JADE support center or JADE Support for advice if your
JADE licenses include support.

Logical Certifier
White Paper

JADE Logical Certifier 7

WP_LogicalCertifier - 2018.0.01

Running the Logical Certifier

You can run the Logical Certifier from a GUI application (accessed from the JADE Logical Certifier shortcut in the
JADE Utilities submenu of your JADE installation in the Start menu). Alternatively, you can run the Logical Certifier
as a RootSchema application in a single-user development session, by clicking the Run Application toolbar
button or in batch mode. In batch mode, which has the following format, the operation argument specifies the
mode for the invocation.

jadclient path=database-path ini=JADE-initialization-file-path schema=RootSchema
app=JadeLogicalCertifierNonGui server=SingleUser startAppParameters
operation=certify|certifyMeta|repair logDir=log-file-disk-path

The logDir parameter specifies the path to which the various log files are created (for details, see the following
section). It is also the location in which a _logcert.in file is placed when running an analysis of a subset of the
database (for details, see "Restricting the Analysis Coverage", later in this document).

Tasks Performed by the Logical Certifier
The Logical Certifier examines metadata to determine classes and their relationships, and builds a transient
method that performs all of the integrity checks when executed.

The analysis results in the following four files being output to the specified directory.

_logcert.err, which provides a description of the errors found and gives repairs

_logcert.fix, which contains the fixes executed when the Logical Certifier is run in repair mode

_logcert.log, which provides a running commentary of the analysis

_logcert.cls, which provides a list of classes for which errors were detected

When the repair is run, the following files are created.

_repair.log, which provides a commentary of the repair process

_repair.err, which lists repairs that were unable to be actioned (normally none)

In addition, the fix file is renamed _logcertBackup.fix.

Although many errors can be repaired without your input, some situations require you to decide between
alternative repairs (for details, see Exercise Six, Part C). In addition, situations involving duplicate keys require
you to write a script to repair the error. This is discussed in the section "Analysis and Repair Process". (See also
Exercise Six, Part E.)

Precautions
It is important that no reorganization of the database has been performed after the analysis, as the reorganization
may invalidate the repairs.

The Logical Certifier does not take into account the significance of all combinations of errors, nor the significance
of the types involved. The fixes provided by the analysis process are prescriptive and are derived from the
classification of the error type (documented in "Logical Certifier Errors and Repairs", in Chapter 5 of the JADE
Object Manager Guide).

WP_LogicalCertifier - 2018.0.01

The Logical Certifier also applies rules that take into account the update mode (manual, automatic, or man/auto)
in determining what fix is reasonable.

For these reasons, if your JADE licenses include support, contact your local JADE support center or JADE Support
before attempting metadata repairs.

Often when providing files documenting analysis of metadata to JADE Support, it is useful to also provide the files
constituting the system description (that is, _user*.dat and _control.dat) so that the model can be examined
first-hand.

As with any database-affecting operation, a sound backup and change management process is required.

Backup Strategy
A full user data analysis is usually performed on a recent backup copy of the database.

For the repair, the following strategies are recommended.

Run the repair on a backup copy of the system and test the result before running the repair against the
production system.

You should still have a backup copy that you can restore.

Take a backup immediately prior to running the repair against the production system (the backup should be
verified).

Test the result and restore from backup, if necessary.

When to Run the Logical Certifier
This section describes when to run the Logical Certifier diagnostic utility.

When to Run the Logical Certifier to Analyze Metadata

When to Run the Logical Certifier to Analyze User Data

When to Run the Logical Certifier to Analyze Metadata
In a production system, metadata would typically be analyzed following a deployment of schema changes.

In development systems, metadata should be analyzed regularly, especially during the development phase in
which the model changes are frequent.

When to Run the Logical Certifier to Analyze User Data
In production systems, user data should be analyzed regularly, since this data is volatile and affects the
end-user’s business.

In development systems, user data would typically be analyzed regularly, to ensure the validity of the testing
process.

Logical Certifier
White Paper

Running the Logical Certifier 9

WP_LogicalCertifier - 2018.0.01

Restricting the Analysis Coverage
It is sometimes useful to perform an analysis on a subset of the model. The restriction is defined through
selections you make in the user interface if you are running the GUI Logical Certifier or via specifications in a _
logcert.in file if you are running the Logical Certifier in batch mode. Examples of situations requiring this are
when:

A runtime anomaly suggests a problem in a specific area.

Performing a follow-up analysis after a repair.

You can rename the _logcert.cls file produced by the prior analysis that lists classes for which errors were
detected to _logcert.in, which is read by the subsequent analysis.

Checking an area of the model that is known to have encountered errors in the past.

Typically, the analysis coverage would be limited by specifying a subset of classes, but you can restrict the
analysis by specifying:

An instance range

An instance date-created range

Inclusion or exclusion of subclasses

For a meta-certify operation, you can use the _metacert.in file to specify the RootSchema classes that are to be
certified. The format of the _metacert.in file is the same as that of the _logcert.in file except that the Schema and
AllSchemas values are not valid, because the certification of meta data is performed at RootSchema level so you
cannot filter the schema selection.

For more details, see "Chapter 5 – The JADE Logical Certifier Diagnostic Utility", in the JADE Object Manager
Guide.

Note It is important to run a full logical certify and repair on occasion, so that known clean points are
established. This is important because fixing the errors promptly minimizes potential runtime negative
consequences. In addition, knowing the version of JADE in which an error was induced is relevant to determining
whether the error is the result of a known cause that has been addressed.

A reproducer involves taking a database from a known clean state to an erroneous state through a set of
well-defined steps. A Logical Certifier analysis is required to verify the start and end states.

Logical Certifier
White Paper

Running the Logical Certifier 10

WP_LogicalCertifier - 2018.0.01

Analysis and Repair Process

This document earlier described the analysis and repair modes in which you can run the Logical Certifier. In
practice, some decision-making is sometimes involved and a process that is iterative and that includes manual
checking of the generated logs is recommended.

The following sections provide some analysis and repair scenarios and suggest a general process that is
appropriate.

Effect of Update Mode
As the "Precautions" section earlier in this document stated, when two entities are inconsistent, the following
question arises.

Which entity is correct and which needs amendment?

The Logical Certifier decides which fix is appropriate, by treating the manual side of an inverse reference as being
correct.

In Exercise Six, Part A, the scenario is provided in which a product does not know its company but the company’s
collection of products includes this product. When the Logical Certifier analyzes this scenario, the error reported
and the fix generated depend on the update mode of the following relationship.

Product::myCompany <——> Company::allMyProducts

If the reference Product::myCompany is defined as manual (and the collection is automatically updated), the
assumption made by the Logical Certifier is that the reference was intentionally set to null and for some reason
inverse maintenance failed, so the product was not removed from the company’s collection of products. In this
case, the repair action is to remove the product from Company::allMyProducts.

However, if the collection is manually updated and the reference on Product is automatically set, the fix generated
by the Logical Certifier is to set the reference Product::myCompany (based on the assumption that the product
was intentionally added to the collection of products referenced by the company).

If the inverse is defined as man/auto on both sides, the rule of assuming the manual side to be correct does not
apply. In such cases, you will be required to edit the repair file to select the correct repair option presented (when
options are commented out). This scenario is demonstrated in Exercise Six, Part C. Which of these two repairs is
correct depends on the model and requires your decision. You may know, for example, that even though the
inverse is defined as man/auto, the update is always performed from one side, so that side should be regarded as
the correct reference.

Tip Examine the error file before the repair is run, to see if you need to make fix choices.

A Repair that is Not Actioned
A repair may not be actioned because it violates some other principle. For example, the repair may result in a
duplicate key for a dictionary that is defined as not allowing duplicates.

The _repair.err file reports the fact that the fix was not run as a result of the condition encountered, as follows.

Error: FIX1 rebuild AllProductsByDescription/2976.1.2973.2.1: size before=2, size
after=2 results in duplicate

WP_LogicalCertifier - 2018.0.01

Tip After a repair is run, check the _repair.err log for the details of any fixes that were not run, before you decide
what action to take next.

This scenario is the subject of Exercise Six, Part E, later in this document.

Fixes are Evaluated Independently
As described earlier in this document, the Logical Certifier iterates through instances of each class and performs
various checks after looking at what properties are defined on the class that have inverses. This means that for a
specific inverse, checks are performed on instances of both classes participating in the relationship, with the result
that errors reported often occur in pairs (one for each side of the inverse).

When finding an error, the Logical Certifier does not link this to an error discovered earlier while investigating the
relationship from the other side. Each repair does, however, come with a check clause that specifies the condition
that gave rise to the fix. If this condition no longer applies, the fix is not run (perhaps because the fix applied as the
result of analyzing the other side of the relationship resolved the issue).

When an object is stored at a key different from its key property value, two errors are reported. An error that the
member is not stored at the correct key is reported from the collection owner side. Another error that the member
cannot be found in the collection on the other side is reported from the member side. It is not known whether the
object reference is absent or if it is stored at the wrong key. The fix generated for this depends on the update mode
of the inverse. When the rebuild fails (as described earlier in this document), the final state is determined by the fix
that the Logical Certifier applies in accordance with the update mode.

Because you should perform this investigation on a backup copy of the system, typically you would decide to write
a script that deals with the key property value that results in a duplicate key. (It may be possible to identify the
appropriate unique value from other identifiers on the member, and set the correct key value.)

Tip Evaluate what other changes may have occurred as the result of a fix not running. Typically the last action
you perform is not a repair; it is a final Logical Certifier analysis that confirms that there are no more errors.

This scenario is the subject of Exercise Six, Part E, later in this document.

Summary of Analysis and Repair Process
When considering the scenarios described in earlier sections of this document, it is advisable to analyze the files
created by the Logical Certifier after each invocation before deciding what to do next.

After each analysis phase, check for fixes that require a choice to be made, and also consider whether any
scripted solutions are appropriate.

After each repair, check the repair log and repair error log for fixes that were not executed, and evaluate the cause
of this while also giving consideration to how this affects the end state.

An iterative process that terminates with an error-free analysis is recommended.

Logical Certifier
White Paper

Analysis and Repair Process 12

WP_LogicalCertifier - 2018.0.01

Practical Exercises

The following subsections contain practical exercises, which are provided so that you can step through the
process of analyzing and repairing a small system. Part of this process involves using the Logical Certifier with a
crafted fix file, to intentionally break referential integrity.

Before You Begin
We recommend that you use a throw-away system for these exercises.

You can decide to extract the schema following the completion of Exercise One. This will enable you to establish a
clean initial state by removing the schema, loading the schema extract, and then running the JadeScript::setup
method from Exercise One, to recreate data.

You can use this procedure where an exercise step states "Ensure that existing errors have been repaired".

Exercise One: Creating an Inverse and Examining
Metadata

In this exercise, you will create a schema having a simple 1-M (one-to-many) inverse and observe elements of the
metamodel that JADE creates to describe the user model. This schema will later be intentionally damaged and
then repaired using the Logical Certifier.

1. Create a new schema called LogCertTester.

2. Create classes Company and Product.

3. Add public property Product::productPrice of type Real.

4. Add public key property Product::productDescription of type String [30].

5. Create class AllProductsByDescription as a subclass ofMemberKeyDictionary.

This subclass should have a membership of type Product and be keyed by Product::productDescription.

6. Add an auto reference Company::allMyProducts of type AllProductsByDescription and a manual public
inverse Product::myCompany.

7. Define and then save the following JadeScript::setupmethod.

vars
prod : Product;
comp : Company;

begin
beginTransaction;
create comp;
create prod;
prod.productDescription := "Box of nails";
prod.productPrice := 12;
prod.myCompany := comp;
create prod;
prod.productDescription := "2m ladder";
prod.productPrice := 260;

WP_LogicalCertifier - 2018.0.01

prod.myCompany := comp;
commitTransaction;

end;

8. Run the JadeScript::setupmethod and then use the inverse to navigate the objects in the JADE Object
Inspector, to demonstrate that referential integrity is correct.

9. Inspect the Company class in the JADE Object Inspector, by running the code Company.inspect(); inside a
Workspace.

10. Select properties in the left pane of the inspector. Note that the type is PropertyNDict and that it contains
allMyProducts.

11. Double-click on properties and then double-click allMyProducts.

Note The oid 1000014.x in the title bar. 1000014 is the class number of the ExplicitInverseRef class.

12. Select the inverses property. Note that it has type InverseSet and that it contains one inverse.

13. Double-click on inverses. Note that the Inverse object has oid 1000035.x, where 1000035 is the class
number of the Inverse class.

14. Extract the schema, for use in later exercises,

You will now have observed some of the glue that is the metamodel that defines the user schema.

In the next exercise, referential integrity will be intentionally broken so that we can demonstrate using the Logical
Certifier to analyze and repair the damage.

Exercise Two: Breaking Referential Integrity
JADE normally ensures that referential integrity is maintained. However, as discussed earlier, the Logical Certifier
repair mechanism necessarily disables inverse maintenance, which provides the ability to break referential
integrity through the use of a hand-crafted, erroneous fix file.

1. Open a new Workspace and then define and run the following method to generate an erroneous fix.

vars
fixLine : String;

begin
//Remove first instance of Product from company's collection of products
fixLine := "FIX1: remove ";
fixLine := fixLine & AllProductsByDescription.number.String;
fixLine := fixLine & ".1." & Company.number.String;
fixLine := fixLine & ".2.1 ";
fixLine := fixLine & Product.firstInstance.getOidString;
write fixLine;

end;

The output from this method should have the following form. (These class numbers will vary, depending on
what other schemas have been loaded.)

FIX1: remove 2976.1.2973.2.1 2975.1

In this fix:

2976 is the class number of the AllProductsByDescription class

2973 is the class number of the Company class

Logical Certifier
White Paper

Practical Exercises 14

WP_LogicalCertifier - 2018.0.01

2975 is the class number of the Product class

2. If required, save the Workspace.

3. Create a _logcert.fix fix file and then paste the output from step 1 of this instruction into that file.

4. Save the file to a directory where the output files will be created; for example, c:\temp.

5. Close the JADE database.

6. Run the Logical Certifier application in GUI or in batch mode, directing the application to the fix file created in
the previous step of this instruction.

If you are using:

The GUI application, select Repair in the Operation combo box and then browse to the location of the
fix file.

A batch file, modify the example provided in the "Running the Logical Certifier" section, earlier in this
document, so that logDirPath=c:\temp (if that is where you saved the erroneous fix file) and
operation=repair.

The repair will have renamed logCert.fix to logcertBackup.fix and generated:

repair.err, which contains entries indicating repairs that failed. No errors should be listed.

repair.log, which shows repair actions that were performed. This log should end with Repair complete:
0 errors (0 warnings).

_logcert.fix, which should be empty.

7. Examine the error file and log file to ensure that the repair completed successfully. The repair log should
contain a line similar to the following.

FIX1 Removed Product/2975.1 from collection
AllProductsByDescription/2976.1.2973.2.1

8. Open the JADE development environment and use the Object Inspector to verify that the Product instance
has been removed from the company’s products.

Verify that the removed Product instance has a valid reference to its company. This inconsistency shows that
referential integrity is broken.

9. Save the generated files (for example, to c:\temp\firstCorruption) and then close the database.

In the next exercise, the Logical Certifier will be used to identify the (artificially) induced anomaly.

Exercise Three: Analyzing the Damage
In this exercise, the Logical Certifier will be used to analyze the inverse relationship between Company and
Product.

1. Run the Logical Certifier application in the GUI or the batch mode. Direct the application to the appropriate
location where the output will be saved. If you are using:

The GUI application, select Certify Selected Schemas in the Operation combo box and select
LogCertTester in the Schema list box.

A batch file, modify the example provided in the "Running the Logical Certifier" section, earlier in this
document, so that logDirPath=c:\temp (if that is where you saved the erroneous fix file) and
operation=certify.

Logical Certifier
White Paper

Practical Exercises 15

WP_LogicalCertifier - 2018.0.01

2. Observe that the following four files have been produced in the specified output directory.

logcert.err, which identifies the errors that were discovered

logcert.cls, which indicates which classes have instances that require repair

logcert.fix, which is the file that will be used in repair mode to repair the identified error

logcert.log, which is the file that records the analysis procedure

Exercise Four: Interpreting the Analysis Output
When you have completed Exercise Three, an error file is produced (that is, _logcert.err), which contains lines in
the following format.

---- Errors for LogCertTester::Product --------------
*** Error 1: Collection does not include reference to inverse object
Company/2973.1->Company::allMyProducts (inverse of
Product/2975.1->Product::myCompany) does not include Product/2975.1 (error
coll=AllProductsByDescription/2976.1.2973.2.1)
FIX1: add 2976.1.2973.2.1 2975.1
CHECK: '2975.1'.asOid.getPropertyValue('myCompany').Object='2973.1'.asOid and not
'2973.1'.asOid.getPropertyValue('allMyProducts').Object.Collection.includes
('2975.1'.asOid)
---- Summary
--

Product/2975.1->Product::myCompany [1]

The problem is clearly identified by the statement indicating that a product instance is not included in the
collection of products held by a company instance. The fix of adding the product instance is also given. This is
informational, only.

A possible runtime application consequence is that the product will be absent from a list box that displays
products for the company and thus be inaccessible for updating.

Note The error is identified as being of type Error 1. The classification of error types is documented in "Logical
Certifier Errors and Repairs", in Chapter 5 of the JADE Object Manager Guide.

Open the fix file; that is, _logcert.fix. This is the file that is used by the Logical Certifier to perform the repair. It
contains a line in the following format.

FIX1: add 2976.1.2973.2.1 2975.1
CHECK: '2975.1'.asOid.getPropertyValue('myCompany').Object='2973.1'.asOid and not
'2973.1'.asOid.getPropertyValue('allMyProducts').Object.Collection.includes
('2975.1'.asOid)

Note the presence of the CHECK phrase, following the repair action. This check is used by the Logical Certifier to
verify that the condition identified during the analysis phase is still present in the database when the repair is run.
This is important because the analysis phase would typically be performed on a backup copy of the database due
to the length of time required. It also offers some protection against the possibility of running a repair when the
analysis was performed against a different system.

The informational log (that is, _logcert.log), among other things, contains the following information.

A description of what relationships were checked.

A description of the memory requirements for checking each relationship. Increasing transient cache and
interpreter cache will generally result in reduced analysis times.

Logical Certifier
White Paper

Practical Exercises 16

WP_LogicalCertifier - 2018.0.01

The number of instances of each class checked. If an exception was generated that prevented completion of
analysis for a specific class, you can compare this figure with the total number of instances.

The number of errors detected.

The _logcert.cls file defines the set of classes in which errors were detected. You can rename this file to _
logcert.in and use it to perform a subsequent restricted analysis.

Exercise Five: Repairing the Damage
To run the repair, repeat step 6 in Exercise Two. Use the logs to verify that the repair completed successfully.

Use the JADE development environment Object Inspector to independently verify that logical integrity has been
restored. Alternatively, run another Logical Certifier analysis and verify that no errors are reported.

Exercise Six: Additional Referential Integrity Examples
Exercises Three through Five demonstrated analysis, interpretation, and repair of a specific referential integrity
problem identified as Error 1.

In this exercise, other error types are investigated so that you can see how these are reported and repaired. Parts
A, B, and C demonstrate the effect of inverse update mode that was discussed in "Analysis and Repair Process",
earlier in this document.

For more details about the examples in this exercise, see the following subsections.

Part A: Nulling the Manual Side
1. Ensure that existing errors have been repaired.

As mentioned earlier, you should remove the schema, restart JADE, and then reload the schema before
creating fresh data.

2. This time we will intentionally break referential integrity by using the following Workspace script to generate
a different erroneous fix.

vars
fixLine : String;

begin
// A product does not know its owning company
fixLine := "FIX1: null " & Product.firstInstance.getOidString

& " myCompany";
write fixLine;

end;

A consequence of this anomaly is that a 1090 exception (Attempted access via null object reference) would
be raised if you attempt to reference Product::myCompany from this instance of Product.

3. Run the erroneous repair created from the script in the previous step.

4. Analyze the damage by running the Logical Certifier in analysis mode. This anomaly will be reported in the
following way.

*** Error 15: No inverses found for Company/2973.1->Company::allMyProducts
(coll1=AllProductsByDescription/2976.1.2973.2.1, member=Product/2975.1)
(2976.1.2973.2.1 created 01 January 1970, 12:00:00, parent 2973.1 created 17
July 2009, 14:48:39)

Logical Certifier
White Paper

Practical Exercises 17

WP_LogicalCertifier - 2018.0.01

FIX1: remove 2976.1.2973.2.1 2975.1
CHECK: 2973.1'.asOid.getPropertyValue
('allMyProducts').Object.Collection.includes('2975.1'.asOid)

Note The repair action to perform a remove is a consequence of the Product::myCompany reference being
defined as manual, so the assumption made by the Logical Certifier is that the reference was intentionally set to
null and for some reason, inverse maintenance failed and the object was not removed.

Part B: Reverse Update Mode
1. Ensure that you have repaired existing errors.

2. Change the update mode of Company::allMyProducts from automatic to manual.

3. Adjust the JadeScript::setupmethod to perform a dictionary addition Company::allMyProducts::add as
opposed to setting Product::myCompany, and then run setup.

4. Run the erroneous fix from "Part A", in the previous section.

The anomaly is now reported in the following way.

---- Errors for LogCertTester::Company --------------
*** Error 14a: Collection member does not reference inverse object

Product/2975.1->Product::myCompany (inverse of Company::allMyProducts) does not
reference Company/2973.1 (references Object/0.0)
FIX1: set 2975.1 myCompany 2973.1 CHECK: '2973.1'.asOid.getPropertyValue
('allMyProducts').Object.Collection.includes('2975.1'.asOid) and
'2975.1'.asOid.getPropertyValue('myCompany').Object=null

As in Part A, the manual side of the inverse is assumed to be correct and the repair is performed against the
automatic side, to restore referential integrity.

Part C: Indeterminate Update Mode Results in Choices
1. Ensure that existing errors have been corrected.

2. Change the update mode of Company::allMyProduct from automatic to manual/automatic.

3. Run the JadeScript::setupmethod (no change to this method is required).

4. Run the erroneous fix from Part A.

The anomaly is now reported in the following way.

---- Errors for LogCertTester::Company --------------
*** Error 15: No inverses found for Company/2973.1->Company::allMyProducts
(coll1=AllProductsByDescription/2976.1.2973.2.1, member=Product/2975.1)
(2976.1.2973.2.1 created 01 January 1970, 12:00:00, parent 2973.1 created 20 July
2009, 16:54:32)
//FIX1: Choose either first fix if man/auto reference Company::allMyProducts acts
as auto else following 1 line(s)
//FIX1: remove 2976.1.2973.2.1 2975.1 CHECK: '2973.1'.asOid.getPropertyValue
('allMyProducts').Object.Collection.includes('2975.1'.asOid)
//FIX1: set 2975.1 myCompany 2973.1 CHECK: '2973.1'.asOid.getPropertyValue
('allMyProducts').Object.Collection.includes('2975.1'.asOid)

Logical Certifier
White Paper

Practical Exercises 18

WP_LogicalCertifier - 2018.0.01

Various fix alternatives are presented. To activate the appropriate fix, you must remove the comment (that is, //) in
the _logcert.fix file.

Part D: Dictionary that Has a Member at Invalid Keys
If you run the erroneous repair from Exercise Six, Part A, it will prevent the automatic dictionary from being
updated when a member’s key is changed.

If you change the key property of the member, dictionary maintenance will not occur so the member will be stored
at the old, incorrect key value. You can then run a repair that resets the reference Product::myCompany. The end
state then is one in which the problem is purely that a member is stored at an incorrect key.

1. Ensure that existing errors have been corrected.

2. Run the erroneous repair created in Part A.

3. Run the following Workspace script to alter the key property values of the first instance of Product.

beginTransaction;
Product.firstInstance.productDescription := "Box of screws";

commitTransaction;

4. Obtain the fix to reset Product::myCompany, by running the following script.

vars
fixLine : String;

begin
fixLine := "FIX1: set " & Product.firstInstance.getOidString

& " myCompany " & Company.firstInstance.getOidString;
write fixLine;

end;

The form of the fix should be as follows.

FIX1: set 2975.1 myCompany 2973.1

5. Run the repair constructed from the output of the previous step.

Note that attempting to retrieve the first product, a box of screws, via the key value "Box of screws" results
in a null object referenced being returned.

Company.firstInstance.allMyProducts.getAtKey("Box of screws")

Conversely, attempting to retrieve a "Box of nails" results in a "Box of screws" being returned.

6. Run the Logical Certifier in analysis mode. This anomaly will be reported in the following manner.

---- Errors for LogCertTester::Company --------------
*** Error 3: Collection contains object at invalid keys

AllProductsByDescription/2976.1.2973.2.1 Company::allMyProducts contains
Product/2975.1 at invalid keys (2976.1.2973.2.1 created 01 January 1970,
12:00:00, parent 2973.1 created 05 August 2009, 16:37:59)
FIX1: rebuild 2976.1.2973.2.1

After running the repair, the first product will be accessible via its "Box of screws" key value.

Logical Certifier
White Paper

Practical Exercises 19

WP_LogicalCertifier - 2018.0.01

Note The Logical Certifier will also report a second error, stating that the Product instance cannot be found in
the collection. The nature of the corresponding fix depends on the update mode specified for the inverse. This
second fix will not be run, however, since its execution is conditional upon still being unable to find the product in
the collection, and the rebuild fix will be run first to address this. If an error prevents the first fix from being run, the
second fix will then be run and the update mode determines the final outcome. This is the subject of the next
exercise.

Part E: Repair that Fails due to Duplicate Entry
If you run the erroneous repair from Exercise Six, Part A, it will prevent the automatic dictionary from being
updated when a member’s key is changed. If you change the key property of the member to be the same as that of
another member, dictionary maintenance will not occur. You can then run a repair that resets the reference
Product::myCompany.

The end state is then one in which the member is stored at an incorrect key. However, this is different from Part D,
as there is the additional fact that the key property value is the same as that of another member so attempting to
insert the member at its key property value will cause a duplicate key exception and the rebuild action will be
aborted. In contrast to Part D, the second fix generated will run as a consequence of the first fix not being
implemented.

1. Ensure that existing errors have been corrected.

2. Run the erroneous repair created in Part A.

3. Run the following Workspace script to alter the key property values of the first instance of Product.

beginTransaction;
Product.firstInstance.productDescription :=

Product.lastInstance.productDescription;
commitTransaction;

4. Obtain the fix to reset the Product::myCompany by running the following script.

vars
fixLine : String;

begin
fixLine := "FIX1: set " & Product.firstInstance.getOidString

& " myCompany " & Company.firstInstance.getOidString;
write fixLine;

end;

The form of the fix should be as follows.

FIX1: set 2975.1 myCompany 2973.1

5. Run the repair constructed from the output of the previous step.

6. Verify in the Object Inspector that both Product instances now have the same name and that the reference to
the parent company is set.

7. Run the Logical Certifier in analysis mode.

Save the output in a new folder named according to the update mode for the inverse.

8. Run the repair.

Logical Certifier
White Paper

Practical Exercises 20

WP_LogicalCertifier - 2018.0.01

Observe that the rebuild fix to address the invalid key fails due to a duplicate key being encountered. This is
documented in the repair error log, as follows.

Error: FIX1 rebuild AllProductsByDescription/2976.1.2973.2.1: size before=2,
size after=2 results in duplicate

The end state of the system will be determined by the second fix, which in turn depends on the update mode
in place. At this point, you would typically evaluate the situation and determine that the two errors reported in
the analysis phase come from the same condition (an object at the wrong key). You may be able to
determine that the key property value is incorrect (as is the case here) and the correct value from other
information (the product price, in this example).

You would then set the correct key property value (for example, by a JadeScript) and then go ahead with the
rebuild, if required.

9. Verify that the second error reported (and corresponding fix) will vary, according to the update mode
(Company <-> Product), as follows.

Collection is automatically updated. (Both fixes will fail.)

---- Errors for LogCertTester::Product --------------
*** Error 1: Collection does not include reference to inverse object

Company/2973.1->Company::allMyProducts (inverse of
Product/2975.1->Product::myCompany) does not include Product/2975.1 (error
coll=AllProductsByDescription/2976.1.2973.2.1)
FIX2: add 2976.1.2973.2.1 2975.1 CHECK: '2975.1'.asOid.getPropertyValue
('myCompany').Object='2973.1'.asOid and not '2973.1'.asOid.getPropertyValue
('allMyProducts').Object.Collection.includes('2975.1'.asOid)

Reference Product::myCompany is automatically updated. (Removes part of the relationship.)

---- Errors for LogCertTester::Product --------------
*** Error 8: No inverses found for Product/2975.1->Product::myCompany
(obj=Product/2975.1, related=Company/2973.1) (2975.1 created 22 September
2009, 11:32:51)
FIX2: null 2975.1 myCompany CHECK: '2975.1'.asOid.getPropertyValue
('myCompany').Object='2973.1'.asOid

Both sides man/auto. (No outcome unless a choice is made. Choices match first two cases.)

---- Errors for LogCertTester::Product --------------
*** Error 8: No inverses found for Product/2975.1->Product::myCompany
(obj=Product/2975.1, related=Company/2973.1) (2975.1 created 22 September
2009, 11:32:51)
//FIX2: Choose either first fix if man/auto Product::myCompany acts as auto
else following 1 line(s)
//FIX2: null 2975.1 myCompany CHECK: '2975.1'.asOid.getPropertyValue
('myCompany').Object='2973.1'.asOid
//FIX2: add 2976.1.2973.2.1 2975.1 CHECK: '2975.1'.asOid.getPropertyValue
('myCompany').Object='2973.1'.asOid and not '2973.1'.asOid.getPropertyValue
('allMyProducts').Object.Collection.includes('2975.1'.asOid)

Logical Certifier
White Paper

Practical Exercises 21

	Contents
	JADE Logical Certifier
	Referential Integrity
	Possible Issues with Referential Integrity
	Consequences of Referential Integrity Problems
	The JADE Logical Certifier and Referential Integrity
	Manually Maintained References
	Examples of User Data Errors and Fixes
	User Data Metadata Distinction

	Metamodel Example Errors

	Running the Logical Certifier
	Tasks Performed by the Logical Certifier
	Precautions
	Backup Strategy
	When to Run the Logical Certifier
	When to Run the Logical Certifier to Analyze Metadata
	When to Run the Logical Certifier to Analyze User Data

	Restricting the Analysis Coverage

	Analysis and Repair Process
	Effect of Update Mode
	A Repair that is Not Actioned
	Fixes are Evaluated Independently
	Summary of Analysis and Repair Process

	Practical Exercises
	Before You Begin
	Exercise One: Creating an Inverse and Examining Metadata
	Exercise Two: Breaking Referential Integrity
	Exercise Three: Analyzing the Damage
	Exercise Four: Interpreting the Analysis Output
	Exercise Five: Repairing the Damage
	Exercise Six: Additional Referential Integrity Examples
	Part A: Nulling the Manual Side
	Part B: Reverse Update Mode
	Part C: Indeterminate Update Mode Results in Choices
	Part D: Dictionary that Has a Member at Invalid Keys
	Part E: Repair that Fails due to Duplicate Entry

