
Copyright©2019 Jade Software Corporation Limited. All rights reserved.

Erewhon Demonstration System
Reference

 VERSION 2018

Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2019 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.

WP_Erewhon - 2018.0.02

Contents

Contents iii

Introduction 5

Part 1 Setting Up the Erewhon Demo System 6
Batch Loading the Erewhon Schemas 6
Initializing the Erewhon Investments Database 7
Initializing the Database from the Command Line 7
Running the Administration Application (Standard Client) 8
Running the Shop Application (Standard Client) 8
Running the Tender Closure Application (Standard Client) 8
Running JADE in Thin Client Mode 8
Running the Web Shop Application using Apache HTTP Server 10
Running the Web Shop Using Internet Information Server 11

Configuring IIS 11
Step 1: Installing CGI and ISAPI Extensions 11
Step 2: Adding an Application Pool 12
Step 3: Adding an Application 14
Step 4: Configuring Handler Mappings for the Application 14
Step 5: Adding a Virtual Directory for Images 16

Running the Web Shop Application 17
Authorizing the WebShop Application for IIS 17

Part 2 User Guide 19
Administration Application 19

Logon 19
Main Administration Window – File Menu 19
Main Administration Window – Edit Menu 19

Company Details 20
Agent Commission Rates (Company User Only) 21
Locations (Company User Only) 22
Sale Item Categories (Company User Only) 23

Main Administration Window – View Menu 24
Agents and Clients (Company User Only) 25
Commission Rates 25
Sale Items (by Category) 27
Sales 29

JADE Thin Client Shop Application 29
Logon 30
Product Search 30
Viewing the Details of a Product 31
Buying or Bidding for a Product 31
Shopping Cart 31
Product Details 32
Checkout 33

Web Shop Application 33
Logon 34
Product Search 35
Viewing the Details of a Product 35
Buying or Bidding for a Product 35
Product Details/Tender 36
Checkout 37

Tender Closure Application 37

Part 3 Model Implementation 39
Locations 40
Agents and Commission Rates 41

WP_Erewhon - 2018.0.02

Sales and Clients 42
JADE Reference Diagram 42
Agent 43
Client 43
Company 43
Commission Rate 44
Country 44
Region 44
Retail Sale 44
Tender Sale 44
Retail Sale Item 44
Tender Sale Item 44
Sale Item Category 45
Tender 45

Part 4 Design Considerations 46
Conventions 46
Models, Views, and Controllers 46
Model and View Separation 47
Schemas 47

CommonSchema 48
ErewhonInvestmentsModelSchema 48
ErewhonInvestmentsViewSchema 48
SelfDocumentorSchema 48
WebServiceConsumer 49

Transaction Separation 49
Model Operations 49
Exception Handling 51
Cache Synchronization 52
listCollection 53
CollectionListBox Class 54
Object Notifications 54
Edition Checking 54
Synchronization of Shop Views 55
Locking 56

Exclusive Locks 56
Shared Locks 56
Reserve Locks 57
Unlocking Objects 57

Inverses and Referential Integrity 57
One-to-One Relationships 58
One-to-Many Relationships 58
Many-to-Many Relationship 58
Parent-Child Relationships 58
Multiple Inverse Relationships 58
Automatic Key Maintenance 58

Key Paths 59
Server Methods 59
Skins 60

Erewhon Demonstration System
Reference

Contents iv

WP_Erewhon - 2018.0.02

Introduction

The JADE Erewhon demonstration system is an Internet-enabled online purchasing and tendering application. It
has been built to give you a good appreciation of JADE’s features, including Web deployment, JADE smart client
technology, and Web services. You can also look at the code to see how a JADE system is built.

This document provides you with all of the information you need to install and run the JADE Erewhon
demonstration system. It also looks at how some of JADE’s key features are used.

This system is more than just a demonstration of JADE’s capabilities. It is a resource that you can draw upon when
building your own JADE applications. You can also use it for your own JADE presentations in the public arena.

The demonstration system has been created to enable an imaginary company called Erewhon Investments Inc. to
trade internationally over the Internet.

Erewhon Investments Inc. is an online business specializing in the sale of high-value antiques, luxury homes, and
luxury holidays. With some of the world’s wealthiest individuals as clients, Erewhon Investments caters to a
steadily growing niche market at the very top end. The company is based in New Zealand, yet operates in a global
market place, with suppliers and customers all around the world.

Erewhon Investments needed a Web-based merchandising system that could support their two real-time sale
processes: retail purchases and a tendering process where clients can lodge date-constrained tenders to bid on
an item.

The application had to have the reliability to accommodate the numerous Erewhon agents, each of whom has
multiple items for sale, and provide facilities for these agents to access item and sale details from any location in
the world, at any time of the day.

Added to this was the complication of different agents using varying commission rates – the system had to be able
to define multiple commission rates per sale item category, with the ability for different rates to apply to different
agents.

In terms of client user requirements, the system had to have a search capability, to enable clients to search the
database and create a list of items filtered from some or all of the following criteria: region, category, tender or
retail, and price range.

Having completed the search, the client then had to be able to step through the search results and view details
about each of the items filtered. The details had to include the name, description, price details, and a photograph.

From there, the client had to be able to make a retail purchase or bid on a tender item. Both orders had to be
added to the client’s shopping cart for later confirmation. The shopping cart had to be able to maintain a current
list of the items selected for client query, confirmation, or deletion. Confirmation of the shopping cart processes the
transactions.

As both agents and clients had to be able to access the system from geographically widespread locations, the
system had to provide both thin client and Web deployment options.

WP_Erewhon - 2018.0.02

Part 1 Setting Up the Erewhon Demo
System

Before you install the Erewhon Investments demonstration system, make sure you have installed your JADE
system.

The following describes how to load the Erewhon schemas from the development environment. This requires the
examples\erewhon folder to be local or visible via a file share from the machine on which you are running the
development environment. If this is not the case, you can get the latest version of the Erewhon files from
https://github.com/jadesoftwarenz/JADE-Erewhon, by following the instructions in the README.mdMarkdown
language document. If you do not want to use the JADE development environment to load the Erewhon schemas,
you can load them in batch mode. For details, see "Batch Loading the Erewhon Schemas", later in this document.

1. From the Schema menu, select Load.

2. In the Load Options dialog, check the Load Multiple Schemas check box.

3. Click the Browse button and find folder containing the Erewhon schema files. Select the
ErewhonInvestments.mul file in this folder and then click Open.

4. In the Load Options dialog, click OK to load the demonstration system, or click Cancel to return to the main
window.

The following schemas are loaded into your environment.

CommonSchema

ErewhonInvestmentsModelSchema

ErewhonInvestmentsViewSchema

SelfDocumentorSchema

WebServiceConsumer.

If a message box about class numbers and property subIds (shown in the following image) is displayed, click
OK to ignore it.

Batch Loading the Erewhon Schemas
The following describes how to batch-load the Erewhon schemas. Ensure that any JADE database and
application servers for this system are shut down before proceeding.

1. Start a command line session on the host where your database is located.

2. Change to the <install-dir> folder, where <install-dir> is the folder in which your JADE system is installed.

https://github.com/jadesoftwarenz/JADE-Erewhon

WP_Erewhon - 2018.0.02

3. Enter the following command, where the Erewhon-dir value is the folder containing the Erewhon schema
files.

bin\jadloadb ini=<install-dir>\system\jade.ini path=<install-dir>\system
scmFile=Erewhon-dir\ErewhonInvestments.mul

Initializing the Erewhon Investments Database
The following describes how to initialize the Erewhon Investments database from the development environment.
This requires the \erewhon folder to be local or visible via a file share from the machine on which you are running
the development environment. If you want to initialize the database from the command line, see “Initializing the
Database from the Command Line”, later in this document.

1. In the Schema Browser window, select ErewhonInvestmentsModelSchema.

2. From the Browse menu, select Classes.

3. In the Class Browser, select the JadeScript class in the top-left panel of the window.

4. In the top-right pane of the window, scroll down the list of methods and then select the initializeData method.

5. From the Jade menu, select Execute It (or alternatively, press F9). This will run the method.

6. In the Browse for Folder form, find the DataFiles folder in the <install-dir>\examples\erewhon folder (where
<install-dir> is the folder where you installed your JADE system). Select the DataFiles folder and then click
OK. Click Cancel to return to the Class Browser window.

7. Progress messages are displayed in the Jade Interpreter Output Viewer Window during the database
initialization. When the load completes, Database initialized is displayed in this window and Execution
complete is displayed in the JADE status line. Select Exit from the File menu of the Jade Interpreter Output
Viewer to close it.

The Erewhon demonstration system database is now initialized.

Initializing the Database from the Command Line
The following describes how to initialize the Erewhon Investments database from the command line. Ensure that
any JADE database and application servers for this system are shut down before proceeding.

1. Start a command line session on the host where your database is located.

2. Change to the <install-dir> folder, where <install-dir> is the folder in which your JADE system is installed.

3. Enter the following command, where the Erewhon-dir value is the folder containing the Erewhon schema
files.

bin\jadclient server=singleUser ini=<install-dir>\system\jade.ini
path=<install-dir>\system schema= ErewhonInvestmentsModelSchema
app=DataLoader startAppParameters Erewhon-dir\DataFiles

4. The database will now be initialized. You will see progress messages and when the load completes, a
Database initializedmessage.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 7

WP_Erewhon - 2018.0.02

Running the Administration Application (Standard Client)
Select the Schema Browser window. If this window is not visible, select Schema Browser from the Window menu
to set focus to it.

1. In the Schema Browser window, select ErewhonInvestmentsViewSchema.

2. Click the Run Application toolbar button (this is the one with the arrow icon).

3. Select Administration in the Application Name combo box. Click OK to start this application.

4. Select a name from the User Name combo box. The Company Administrator is Erewhon Investments Inc.

5. Click OK to run the application.

For information about using the application, see “Part 2 – User Guide”, later in this document.

Running the Shop Application (Standard Client)
1. Select the Schema Browser window. If this window is not visible, select Schema Browser from the Window

menu to set focus to it.

2. In the Schema Browser window, select the ErewhonInvestmentsViewSchema.

3. Click the Run Application toolbar button (this is the one with the arrow icon).

4. Select ErewhonShop in the Application Name combo box. Click OK to run this application.

5. Select a name from the User Name combo box.

6. Click OK to run the application.

For information about using the application, see “Part 2 – User Guide”, later in this document.

Running the Tender Closure Application (Standard
Client)

1. Select the Schema Browser window. If this window is not visible, select Schema Browser from the Window
menu to set focus to it.

2. In the Schema Browser window, select ErewhonInvestmentsViewSchema.

3. Click the Run Application toolbar button (this is the one with the arrow icon).

4. Select TenderClosureApp in the Application Name combo box.

5. Click OK to run the application.

For information about using the application, see “Part 2 – User Guide”, later in this document.

Running JADE in Thin Client Mode
Note The JADE thin client communicates with the application server via TCP/IP. You must have TCP/IP installed
and configured to use the JADE thin client.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 8

WP_Erewhon - 2018.0.02

To run JADE in thin client mode, you must create two shortcuts: one for the application server, and one for the thin
client.

1. For the application server, create a shortcut with the following properties.

Target:

<install-dir>\bin\jadapp.exe
path=<install-dir>\system
server=singleUser
appserverport=60000
ini=<install-dir>\system\jade.ini

Start In:

<install-dir>\bin

The <install-dir> value is the folder in which you installed your JADE system.

2. For the JADE thin client, create a shortcut with the following properties.

Target:

<install-dir>\bin\jade.exe
schema=JadeSchema
app=Jade
appserver=<computer-name>
appserverport=60000

Start In:

<install-dir>\bin

The <install-dir> value is the folder in which you installed your JADE system and <computer-name> is
the name or IP address of your computer (or localhost, or the loop-back IP address 127.0.0.1). To find your
computer name or IP address, open a the Network and Sharing Center in Control Panel and then click
Local Area Connection to view the IP address.

3. You can now run JADE in thin client mode.

Note Ensure that you have shut down any open JADE sessions before running the application server. This
includes the JADE development environment.

4. Start the application server from the application server shortcut. The application server will start and is now
waiting for thin client connections.

5. Run JADE as a thin client of the application server from the thin client shortcut. The connection is displayed
in the application server window. Log on to JADE as usual, and initiate applications using the standard client
instructions in an earlier section. Notice that the interface presented under the JADE thin client is identical to
the JADE standard client.

For information about using the application, see “Part 2 – User Guide”, later in this document.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 9

WP_Erewhon - 2018.0.02

Running the Web Shop Application using Apache HTTP
Server

See the JADE Installation and Configuration Guide (which is also available from the JADE Web site at
https://www.jadeworld.com/developer-center/resource-library) for information about deploying JADE Web
applications.

1. Before running the Web shop application, you must install the JADE HTTP driver for Apache, and define a
virtual directory for JADE in your Apache configuration files. Copy the Windows version of the
mod_jadehttp.so file to the Apache modules folder. Now edit the conf/httpd.conf file and at the end of the
Dynamic Shared Object (DSO) Support section, add the following lines.

LoadModule jadehttp_module modules/mod_jadehttp.so
<IfModule mod_jadehttp.c>

Include conf/jadehttp.conf
</IfModule>

Now create a file called conf/jadehttp.conf with the following details.

<IfModule mod_jadehttp.c>
<Location /jade-info>

SetHandler jadehttp-info
</Location>
<Location /JadeEval>

SetHandler jadehttp-handler
Application WebShop
TcpConnection 127.0.0.1 6107

</Location>
</IfModule>

<Directory>
require from all

</Directory>
Alias /images "C:\Temp"

Create the C:\Temp folder on your machine if it does not already exist, and then restart your Apache HTTP
Server.

Note Ensure that you have shut down any open JADE sessions before proceeding further. This includes
the JADE development environment and the JADE application server.

2. Click the JADE icon from your JADE program folder in the Start menu. This will run the JADE development
environment in single-user mode.

3. Log on, and select ErewhonInvestmentsViewSchema in the Schema Browser window.

4. Click the Run Application toolbar button (this is the one with the arrow icon).

5. SelectWebShop in the Application Name combo box.

6. Click OK to run the application.

7. TheWebShop application will start and will appear as a single window. The application is now waiting for
users to connect from a browser. If a warning message is displayed, advising you that you are running a
Web application with an invalid Web working directory, you should click the No button on the message box,
create the C:\Temp folder on your machine as stated in step 1 of this instruction, and then try again.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 10

https://www.jadeworld.com/developer-center/resource-library

WP_Erewhon - 2018.0.02

8. Bring up your Internet browser and then enter the following URL.

<computer-name>/JadeEval?WebShop

The <computer-name> value is the name or IP address of your machine (or localhost or the loop-back IP
address 127.0.0.1), and JadeEval is the name of the virtual directory you created in your Web server; for
example, a URL might be one of the following.

erewhon/JadeEval?WebShop

192.168.1.100/JadeEval?WebShop

localhost/JadeEval?WebShop

127.0.0.1/JadeEval?WebShop

Running the Web Shop Using Internet Information Server
See the JADE Installation and Configuration Guide (which is also available from the JADE Web site at
https://www.jadeworld.com/developer-center/resource-library) for information about deploying JADE Web
applications.

The following subsections contain instructions for running theWebShop application using Microsoft Internet
Information Server (IIS).

Configuring IIS

Running the WebShop application

Authorizing the WebShop application

Configuring IIS
The configuration instructions are grouped into the following subsections.

Check that important IIS components are installed

Add and configure an application (and application pool) for theWebShop application

Add a virtual directory forWebShop image files

Step 1: Installing CGI and ISAPI Extensions
To install these optional components of IIS:

1. Select Programs and Features from the Control Panel.

2. Click the TurnWindows features on or off hyperlink on the left.

3. Expand Internet Information Services, thenWorld Wide Web Services, and then Application
Development Features.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 11

https://www.jadeworld.com/developer-center/resource-library

WP_Erewhon - 2018.0.02

4. Check the boxes CGI and ISAPI Extensions and then click the OK button.

Step 2: Adding an Application Pool
To add an application pool to be used by JADE Web applications:

1. Select Administrative Tools from the Control Panel.

2. Open Internet Information Services (IIS) Manager.

3. In the Connections panel on the left, select Application Pools.

4. Right-click and then select Add Application Pool.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 12

WP_Erewhon - 2018.0.02

5. Configure the pool to use unmanaged (non-.NET) code and then set the Managed pipeline mode field to
Classic, as shown in the following image.

6. If you are using a 32-bit version of JADE, right-click on the application pool and then select Advanced
Settings. In the Advanced Settings dialog, set Enable 32-Bit Applications to True.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 13

WP_Erewhon - 2018.0.02

Step 3: Adding an Application
To add an application:

1. Select the Default Web Site in the Connections panel.

2. Right-click and then select Add Application.

3. Enter the alias JadeEval. (This will be part of the URL for theWebShop application.)

4. Select the application pool that you created previously.

5. Enter the location of the Physical path, which is the bin folder for your JADE release; that is, replace
<install-dir> in the following image with the correct location.

6. Click the OK button.

Step 4: Configuring Handler Mappings for the Application
To configure handler mappings for the application:

1. Select the application in the Connections panel.

2. Double-click the Handler Mappings icon in the central panel.

3. Right-click the CGI-exe handler mapping and select Edit Feature Permissions.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 14

WP_Erewhon - 2018.0.02

4. Enable all options, as shown in the following image.

5. Right-click the ISAPI-dll handler mapping and then select Edit.

6. Set the Executable text box to the path and file name of the jadehttp.dll file in the bin folder of your JADE
system.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 15

WP_Erewhon - 2018.0.02

7. If the following dialog is displayed, click the Yes button.

Step 5: Adding a Virtual Directory for Images
To add a virtual directory for images:

1. Ensure that a C:\Temp folder exists on your machine.

2. Select Default Web Site in the Connections panel.

3. Right-click and then select Add Virtual Directory.

4. Complete the dialog as shown in the following image and then click the OK button.

5. Now start IIS for your Web site.

Note Ensure that you have shut down any open JADE sessions before proceeding further. This includes the
JADE development environment and the JADE application server.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 16

WP_Erewhon - 2018.0.02

Running the Web Shop Application
With the IIS configuration completed, you can now attempt to run theWebShop application.

1. Click the JADE icon from your JADE program folder in the Start menu. This will run the JADE development
environment in single-user mode.

2. Log on and in the Schema Browser window, select ErewhonInvestmentsViewSchema.

3. Click the Run Application toolbar button (this is the one with the arrow icon).

4. SelectWebShop in the Application Name combo box.

5. Click OK to run the application, or Cancel to return to the main window.

6. TheWebShop application will start and will appear as a single window. The application is now waiting for
users to connect from a browser.

7. Open your Internet browser and then enter the following URL.

<computer-name>/JadeEval/jadehttp.dll?WebShop

The <computer-name> value is the name or IP address of your machine (or localhost or the loop-back IP
address 127.0.0.1), and JadeEval is the name of the virtual directory you created in your Web server; for
example, a URL could be one of the following.

erewhon/JadeEval/jadehttp.dll?WebShop

192.168.1.100/JadeEval/jadehttp.dll?WebShop

localhost/JadeEval/jadehttp.dll?WebShop

127.0.0.1/JadeEval/jadehttp.dll?WebShop

8. At this point, JADE’s security features that protect against unauthorized running of applications via a Web
browser will result in an error message (Service unavailable or similar) being displayed in your Web
browser.

We must now authorize theWebShop application for IIS. For details, see the following section.

Authorizing the WebShop Application for IIS
We now need to specifically allow theWebShop application to be accessed via IIS from a Web browser.

Using Windows Explorer, you will find that JADE has created an additional four folders, as follows.

<install-dir>\bin_jadehttp

<install-dir>\bin_jadehttp\ini

<install-dir>\bin_jadehttp\logs

<install-dir>\bin_jadehttp\transfer

If these folders have not been created, ensure that IIS is running for your Web site. If it isn’t, start it and then select
the refresh option in your Web browser.

1. Using Notepad, open the <install-dir>\bin_jadehttp\ini\jadehttp.ini file.

The <install-dir> value is the folder in which you installed your JADE system.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 17

WP_Erewhon - 2018.0.02

2. Add the following lines at the end of the file.

[WebShop]
TcpConnection=127.0.0.1
TcpPort=6107
ConnectionGroup=WebShopForms
MinInUse=1
MaxInUse=1
CloseDelay=600
ApplicationType=WebEnabledForms

Save the file and then close Notepad.

3. Now return to your Web browser window and select the refresh option.

You should now be presented with theWebShop logon form, at which point you can log on and run the
application.

Erewhon Demonstration System
Reference

Part 1 Setting Up the Erewhon Demo System 18

WP_Erewhon - 2018.0.02

Part 2 User Guide

The JADE Erewhon Demo System consists of an Administration application (for Erewhon company and agent
users) and a Shop application (for clients).

The Administration application is delivered as either a JADE standard client or a JADE thin client. The Shop
application comprises two applications: one delivered as a JADE standard client or a JADE thin client, and the
other as a JADE HTML thin client. For more details, see the following subsections.

Administration Application
The Administration application allows company and agent users to maintain core system data. For details, see
the following subsections.

Logon

Main Administration Window - File Menu

Main Administration Window - Edit Menu

Main Administration Window - View Menu

Logon
To log on, select a user name from the drop-down list box on the Logon form then and click OK.

Note The list of user names includes the name of the Erewhon Investments Inc. company user and the names
of all agents.

To access the Administration application’s full range of functionality and data, select the Erewhon Investments
Inc. user. Selecting an agent user name will mean that a limited subset of the Administration application’s
functionality and data will be available.

Main Administration Window – File Menu
To exit from the application, select the File menu Exit command (Alt+F, X), or press Alt+F4.

To view copyright and version details, select the File menu About command (Alt+F, A).

Main Administration Window – Edit Menu
This section contains the following topics.

Company Details

Agent Commission Rates (Company User Only)

Locations (Company User Only)

Sale Item Categories (Company User Only)

WP_Erewhon - 2018.0.02

Company Details
Use the Edit Company screen, shown in the following image, to maintain company user details.

To edit the company details, select Edit Company Details (Alt+E, D) from the Edit menu. Make changes as
necessary and then click the OK button to update the database.

Erewhon Demonstration System
Reference

Part 2 User Guide 20

WP_Erewhon - 2018.0.02

Agent Commission Rates (Company User Only)
Use the Agent Commission Rates screen, shown in the following image, to maintain a list of agents for each sale
item’s range of commission rates. (Note that an agent can use one rate only per sale item.)

To modify the list of agents for a commission rate:

1. After opening the form, select a sale item category. The list of commission rates for that category is then
displayed.

2. Select a commission rate from the list. This will populate two lists on the right: a list of all agents using the
selected commission rate, and a list of all agents who do not use the selected commission rate.

3. To remove an agent from the list of those who use the selected commission rate, select the agent from the list
on the left and then click the > button.

4. To remove all agents from the list of those who use the selected commission rate, click the >> button.

5. To add an agent to the list of those who use the selected commission rate, select the agent from the list on
the right and then click the < button.

6. To add all agents to the list of those who use the selected commission rate, click the << button.

7. Once you are satisfied with the list selections, click the Apply button to update the database or click the OK
button to update the database and close the form. If you do not want to save the changes, click the Undo
button.

8. To exit the form, without changing details, click Close.

Erewhon Demonstration System
Reference

Part 2 User Guide 21

WP_Erewhon - 2018.0.02

Locations (Company User Only)
Use the Locations screen, shown in the following image, to maintain country and region details. Note that country
is used to define a macro geographic area and region is used to define an associated micro geographic area. A
form with a folder showing two tabs is then displayed. (Note that a region must always belong to a country.)

There are Add, Edit, and Remove buttons on both the Countries and Regions sheets.

To add a new country or region, select the appropriate tab and then click the Add button. A form is then
displayed, in which to enter the name of the location. Type the name and then click the OK button to add the
location to the database.

To change a country or region, select the appropriate tab and then click the Edit button. A form is then
displayed, showing the current name. Change the name and then click the OK button to update the
database.

To remove a country or region, select the appropriate item and then click the Remove button. Note that when
a country is removed, all of its regions are also removed.

Erewhon Demonstration System
Reference

Part 2 User Guide 22

WP_Erewhon - 2018.0.02

Sale Item Categories (Company User Only)
Selecting the Edit menu Edit Sale Item command displays the Sale Items Categories form with a list of sale item
categories. The right-hand panes display the sale item categories associated commission rates and sale items.

To add a new category, click the Add button. A form will then be displayed, in which to enter the name and
description of the category. Type the name and description, then click the OK button to add the category to
the database.

Erewhon Demonstration System
Reference

Part 2 User Guide 23

WP_Erewhon - 2018.0.02

To change a category, click the Edit button. A form will then be displayed, showing the current name and
description. Change the description and then click the OK button to update the database (note that the name
of the category cannot be changed).

To remove a category, click the Remove button. Note that when a category is removed, all of its commission
rates will also be removed.

Main Administration Window – View Menu
This section contains the following topics.

Agents and Clients (Company User Only)

Commission Rates

Sale Items (by Category)

Sales

Erewhon Demonstration System
Reference

Part 2 User Guide 24

WP_Erewhon - 2018.0.02

Agents and Clients (Company User Only)
Use the Agents and Clients screen to display a form with a folder containing two tabs: one for a list of agents and
the other for a list of clients.

On each sheet there are Add, Edit, and Remove buttons.

To add a new agent or client, select the required tab and then click the Add button. A form will be displayed,
in which to enter the agent’s or client’s details. Enter the details and then click the OK button to add the agent
or client to the database.

To change an agent’s or client’s details, select the required tab and then click the Edit button. A form will be
displayed, showing the details. Make any changes and then click the OK button to update the database.

To remove an agent or client, select the required tab and then click the Remove button. Note that when a
client is removed, all of its retail sales, tender sales, and outstanding tenders will also be removed.

Commission Rates
Use the Commission Rates screen to add or maintain variable commission rates for each sale item category.

Erewhon Demonstration System
Reference

Part 2 User Guide 25

WP_Erewhon - 2018.0.02

A form displays with a drop-down list of sale item categories. Upon selecting a sale item category, a list is
displayed of all commission rates for that category.

This form also has the following maintenance capabilities (company user only).

To add a new commission rate, select your required sale item category from the drop-down list box and then
click the Add button. A form will be displayed, in which to select the rate’s category and enter the rate
percentage. Enter the category and percentage, and then click the OK button to add the new commission
rate to the database.

To change a commission rate, select your required sale item category from the drop-down list box and the
required commission rate and then click the Edit button. A form will be displayed, showing the current sale
item category and rate percentage. Change the details to met your requirements and then click the OK
button to update the database.

To remove a commission rate, select it and then click the Remove button.

Erewhon Demonstration System
Reference

Part 2 User Guide 26

WP_Erewhon - 2018.0.02

Sale Items (by Category)
Use the Sale Items (by Category) screen to add or maintain sale items. Note that only agents can add a new sale
item. This screen employs a hierarchical tree of sale item categories, which can be expanded by clicking the +
icon or collapsed by clicking the - icon.

As each sale item category’s folder is opened, two subfolders are shown: one for the Items for Sale, and the other
for the Items for Tender. Opening either of the subfolders will display a list of their respective sale items.

This form also has the following maintenance capabilities.

To add a new sale item, open the folder of the sale item category to which the new sale item will belong,
select the Items for Sale or Items for Tender subfolder, and then click the Add button (note that the Add
button can also be clicked if a sale item leaf is selected).

A form will be displayed, in which to enter the details of the sale item (the sale item category will have been
preselected).

To load a photo of the sale item from a disk file, double-click the empty picture frame. Enter the remainder of
the details and then click the OK button to add the sale item to the database. Note that only agents can add
sale items.

Erewhon Demonstration System
Reference

Part 2 User Guide 27

WP_Erewhon - 2018.0.02

To change a sale item, open the required sale item category folder and subfolder. Next, select the sale item
that you want to change, and then click the Edit button. A form will be displayed, showing the current sale
item details. Change the details to meet your requirements and then click the OK button to update the
database.

To remove a sale item, click the Remove button. Note that when a tender sale item is removed, all
associated tenders are also removed.

While a sale item can be added only by an agent, it can be edited or removed by that agent or by the
company user.

Erewhon Demonstration System
Reference

Part 2 User Guide 28

WP_Erewhon - 2018.0.02

Sales
Use the Sales screen to view sales summaries by agent, client, or for the whole company.

To list the sales, select the agent, client, or company option using the radio buttons. If the agent or client option is
selected, one of those entities must be selected from the drop-down list box to display the sales summary specific
to that agent or client. To sort the results, click on any of the table column headers to sort by that column.

Notes When this summary is viewed by an agent user, only his or her sales appear in the list.

Total amounts are displayed at the bottom of the screen.

JADE Thin Client Shop Application
The JADE thin client shop application is the shop-front interface for clients to run over local or wide-area networks,
or the Internet. The ErewhonShop application can also be run as a standard JADE client application (that is, a
two-tier or fat client application). For details, see the following subsections.

Logon

Product Search

Viewing the Details of a Product

Erewhon Demonstration System
Reference

Part 2 User Guide 29

WP_Erewhon - 2018.0.02

Buying or Bidding for a Product

Shopping Cart

Product Details

Checkout

Logon
On the logon form, select a user name from the drop-down list box and then click the OK button. To cancel the
logon, click the Cancel button.

Product Search
The Product Search form is the main form of the ErewhonShop application. To begin, search for a list of products
by selecting the required search criteria in the Search panel, and then click the Search button.

A new search list can be generated at any time by changing the search criteria and then clicking the Search
button again. Search criteria can also be reset by clicking the Reset button. The list of search results can be
cleared at any time by clicking the Clear button below the list of results (this will not affect any of the items
currently in the shopping cart).

Erewhon Demonstration System
Reference

Part 2 User Guide 30

WP_Erewhon - 2018.0.02

Viewing the Details of a Product
To see more-detailed information about a product, select it in the search list and then click the Details button. This
button will then be replaced by a button with a caption of List and the search results are replaced with details of
the selected item. Clicking the List button while the item details are displayed returns to the list of search results.

Note If no product item is selected while viewing the list of search results, the Details button is disabled.

Buying or Bidding for a Product
Some products are retail sale items, while others are tender items for which you must enter a bid.

To buy a retail sale item, select it in the search results list and then click the Buy/Bid button, or click the Buy/Bid
button while the item details for that item are displayed.

If the product is a tender item (that is, it requires you to make a bid), you must first click the Details button to see
the item details for the item, and then enter a tender amount greater than or equal to the minimum price of the
item.

After entering your offer, click the Buy/Bid button again and the tender will then be added to your shopping cart.
Alternatively, if you do not want to bid on the item, click the List button to return to the search results list.

Shopping Cart
The shopping cart list will be updated whenever a product item is bought or tendered for. A running total is also
displayed beneath the cart list. To empty the shopping cart, click the Empty button. To go to the checkout, click the
Checkout button.

Erewhon Demonstration System
Reference

Part 2 User Guide 31

WP_Erewhon - 2018.0.02

Product Details
When a product is selected in the search results list, the Details button is enabled. Click this button to display
more-detailed information about the product item.

If the product item is a tender item, the details of the product include a field in which to enter your offer (your tender
amount). The same product searching and shopping cart functions are available as when the search results list is
displayed (see above).

If the Clear button is clicked with the product details in view, the details will be replaced with an empty search
results list. Clicking the Reset button (in the Search panel) with a product’s details displayed will have the same
effect as the Clear button, but the search criteria will also default to their original settings. If the Search button is
clicked with a product’s details displayed, the details will be replaced with the (new) search results list.

Erewhon Demonstration System
Reference

Part 2 User Guide 32

WP_Erewhon - 2018.0.02

Checkout
The checkout is the final confirmation of your shopping cart before proceeding with the transaction of purchasing
sale items or submitting any bids for tender items, or both purchasing sale items and submitting any bids for
tender items.

To remove any unwanted items from the shopping cart, select the item in the list and then click the Remove
button. To remove all of the items in the shopping cart, click the Empty button. If you want to return to the Product
Search form, click the Back button. To initiate the final processing of the shopping cart, click the Proceed button. A
list of the bought and tendered items will then be displayed so that you can confirm the transaction.

Web Shop Application
TheWebShop application is the shop-front interface for clients to run over the World-Wide-Web. The application is
built in JADE and is automatically deployed over the Internet using JADE’s native functionality. For details, see the
following subsections.

Logon

Product Search

Viewing the Details of a Product

Buying or Bidding for a Product

Erewhon Demonstration System
Reference

Part 2 User Guide 33

WP_Erewhon - 2018.0.02

Product Details - Tender

Checkout

Logon
The following image is theWebShop application logon form.

Select a user name from the drop-down list box and then click Enter.

Erewhon Demonstration System
Reference

Part 2 User Guide 34

WP_Erewhon - 2018.0.02

Product Search
The Product Search form is the main form of theWebShop application. To begin, search for a list of products by
selecting the required search criteria in the Search panel and then click the Search button.

A new search list can be generated at any time by changing the search criteria and then clicking the Search
button. The search criteria can also be reset by clicking the Reset button. The list of search results can be cleared
at any time by clicking the Clear button below the list of results (this will not affect any of the items currently in the
shopping cart). To scroll through the search results list, click the Next button or the Back button.

Some products are retail sale items, while others are tender items for which you must enter a bid.

Viewing the Details of a Product
The second column in the search results list is the name of the product item, which is a link to the details of the
product. By clicking on the product item’s name link, the details of the product will be displayed. If the selected
product is a tender item, then as the details of the product are displayed, a field will also be shown in which to
enter your offer (your tender amount).

Buying or Bidding for a Product
The first column in the search results list will contain a link named Bid or Buy. Click this link to purchase a sale
item (buy) or bid for a tender item. If you are buying a product item, it will be added to your shopping cart
immediately. If the selected product is a tender item, the details of the product will be displayed and a field will
also be shown, in which to enter your offer (your tender amount).

Erewhon Demonstration System
Reference

Part 2 User Guide 35

WP_Erewhon - 2018.0.02

After entering your offer, click the Buy/Bid button and the tender will then be added to your shopping cart. To
return to the search results list, click the List button. To go to the checkout, click the Checkout button.

Product Details/Tender
When a product is selected in the search results list by clicking the product name, more-detailed information about
the product item will be shown. Click the List button to revert to the search results list.

If the product item is a tender item, the details of the product will include a field in which to enter your offer (your
tender amount).

Clicking the Reset button with the product details in view will cause the product details to be replaced with an
empty search results list and the search criteria will also default to their original settings. If the Search button is
clicked with a product’s details displayed, the details will be replaced with the new search results list.

Erewhon Demonstration System
Reference

Part 2 User Guide 36

WP_Erewhon - 2018.0.02

Checkout
The checkout is the final confirmation of your shopping cart before proceeding with the transaction of purchasing
sale items or submitting any bids for tender items, or both purchasing sale items and submitting any bids for
tender items.

To remove any unwanted items from the shopping cart at this point, click the Remove link (underlined) in the first
column of the item’s row. To remove all of the items in the shopping cart, click the Empty button. If you want to
return to the Product Search form, click the Back button. To initiate the final processing of the shopping cart, click
the Proceed button. A list of the bought and tendered items will then be displayed, so that you can review the
transaction.

Tender Closure Application
The Tender Closure application runs the processing that converts the highest tenders for sale items into actual
sales. It does this by processing all tender items at a specific date, and if the tender item’s closure date is on or
prior to the specified date and the item is not sold, the highest tender offer is converted into a sale. Typically, such
an operation would be implemented as a batch (separate) process that runs outside the main applications (for
example, it can be implemented as a separate application that schedules the processing to be run once a day,
late at night), which is why we have implemented this processing in a separate application.

Erewhon Demonstration System
Reference

Part 2 User Guide 37

WP_Erewhon - 2018.0.02

The application has only one form, shown in the following image.

Enter the date in the Close tenders as at date text box at which tenders are to be closed. Any unsold tender items
with a closure date on or prior to this date will be processed.

To process tenders immediately, click the Close Now button. The operation will start and when it completes, the
number of closed tender items will be displayed. The application also gives an example of how to use JADE
timers to schedule processing. Enter a number of minutes in the Closure interval text box and then click the Start
button. This will start a timer that counts down from the specified number of minutes, with progress being
displayed at the bottom of the form.

When the time period expires, any unsold tender items with a closure date on or prior to the date specified in the
Close tenders as at date text box will be processed. The number of closed tender items will be displayed. The
closure date will then advance one day and the timer will restart from the specified number of minutes. This allows
you to simulate the scheduling of the operation to run once a day. To stop the timer, click the Stop button (which is
enabled only when the timer is active). To shut down the application, click the Exit button.

Erewhon Demonstration System
Reference

Part 2 User Guide 38

WP_Erewhon - 2018.0.02

Part 3 Model Implementation

This section describes the model entity classes that implement the core object model of the Erewhon Investments
system. All of these classes are defined in ErewhonInvestmentsModelSchema and they inherit from a common
superclass,ModelEntity, as follows.

ModelEntity (abstract)

Address

Agent

Client

Company

CommissionRate

Location (abstract)

Country

Region

Sale (abstract)

RetailSale

TenderSale

SaleItem (abstract)

RetailSaleItem

TenderSaleItem

SaleItemCategory

Tender

Diagrams describe the relationships between these classes, followed by an overview of each concrete class. For
more details, see the following subsections.

WP_Erewhon - 2018.0.02

Locations
The following diagram describes the relationships between Location, Country, and Region and their related
ModelEntity classes.

Erewhon Demonstration System
Reference

Part 3 Model Implementation 40

WP_Erewhon - 2018.0.02

Agents and Commission Rates
The following diagram describes the relationships between Agent and CommissionRate, and their related
ModelEntity classes.

Erewhon Demonstration System
Reference

Part 3 Model Implementation 41

WP_Erewhon - 2018.0.02

Sales and Clients
The following diagram describes the relationships between Sale (and subclasses), SaleItem (and subclasses),
Client and Tender, and their related ModelEntity classes.

JADE Reference Diagram
The following diagram describes the JADE implementation of the relationships described above. In JADE, a
two-way relationship is implemented by defining an inverse between two reference properties. Single-value
references are used to implement the “one” side of a relationship; collection references are used to implement the
“many” side. In this way, one-to-one, one-to-many, and many-to-many relationships can be implemented.

Erewhon Demonstration System
Reference

Part 3 Model Implementation 42

WP_Erewhon - 2018.0.02

This diagram has an example of at least one relationship of each cardinality. Cardinalities are represented by the
standard UML syntax, except that P and C represent a parent/child relationship, where P is the parent.

Agent
Agents represent users of the system who bring in items for sale. These items can be offered for retail sale or for
sale by tender. An agent can have many items for sale at any one time. For each sale item category in the system,
an agent operates at one (and only one) commission rate. The commission rate from which an agent is operating
for a category determines the percentage of each sale from the category that an agent takes as commission.

Client
Clients represent users of the system who log on to search for and purchase items. Clients can purchase retail
items immediately, or place bids on items offered for sale by tender. Once a tender sale item is closed, the highest
tender is converted into a sale for the client. Clients know about all sales in which they have been involved, and
all tender offers they have made.

Company
A single instance of Company provides the root object for the system. We assume only one persistent company
instance at any one time and the create (constructor) method of Company enforces this. Company represents the
top of the parent-child reference hierarchy, and provides collections through which we can navigate to all other
objects in the system.

Erewhon Demonstration System
Reference

Part 3 Model Implementation 43

WP_Erewhon - 2018.0.02

Commission Rate
One or more commission rates can exist for each sale item category. Each commission rate can have multiple
agents operating from it. A commission rate determines the percentage commission its agents make on sales from
the commission rate’s category.

Country
Countries provide a means of grouping and organizing geographical regions. Each country can have multiple
regions defined for it and as such, may or may not represent an actual country; for example, a continent that has
relatively few regions may be counted as a country.

Region
Regions provide a means of grouping sale items into geographical areas. Each region is owned by a country and
can have multiple sale items located in it.

Retail Sale
Retail sale objects model sales of retail items. Each retail sale has a price and a time stamp, and inherits its client,
sale item, and company references from the Sale class. A retail sale knows the item that was sold and the client to
whom it was sold. The agent’s commission on the sale is calculated at the time the sale is created.

Tender Sale
Tender sales represent sales of items offered for sale by tender. A tender sale is created when the closure date on
a tender sale item has passed, and the highest tender is accepted and converted into a sale. Each tender sale
knows the item sold, the client to whom it was sold, and the winning tender object. The agent’s commission on the
sale is calculated at the time the sale is created.

Retail Sale Item
Instances of this class represent items offered for retail sale. All items are owned by the company and are
organized into categories and geographical regions. Each item knows the agent who brought it in for sale. All sale
items have a two-part code consisting of a string prefix followed by an integer number. The prefix is supplied by
the application, while the number is allocated automatically when an item is created. Items can also hold a 200 by
200 pixel image of themselves.

Once an item has been sold, itsmySale property refers to the sale in which it is involved. IfmySale is not
assigned (that is, it has a null value), the item is not yet sold.

Tender Sale Item
Instances of this class represent items offered for sale by tender. All items are owned by the company and are
organized into categories and geographical regions. Each item knows the agent who brought it in for sale. All sale
items have a two-part code consisting of a string prefix followed by an integer number. The prefix is supplied by
the application, while the number is allocated automatically when an item is created. Items can also hold a 200 by
200 pixel image of themselves.

Erewhon Demonstration System
Reference

Part 3 Model Implementation 44

WP_Erewhon - 2018.0.02

A tender sale item has a minimum (reserve) price, offers below which will not be accepted. The item’s closure date
indicates the date at which bidding will stop. At this date, the highest tender is accepted and a sale is created for
the item. A tender sale item knows all bids that have been made for it. Once an item has been sold, itsmySale
property refers to the sale in which it is involved. IfmySale is not assigned (that is, it has a null value), the item is
not yet sold.

Sale Item Category
Sale item categories allow items to be grouped into logical categories. All categories are owned by the Company
object.

Categories also hold all of the commission rates at which agents can operate for sale items belonging to the
category.

Tender
Tender objects represent bids made by clients on items offered for tender sale. A tender holds the offer price and
time stamp of the bid, as well as the client who made the bid and the item for which they have tendered. If a tender
is accepted when bidding for an item is closed, a tender sale object is created and myTenderSale will be set to
this object. IfmyTenderSale is non-null after bidding on the tender’s item has closed, it means that the tenderer
won the item.

Erewhon Demonstration System
Reference

Part 3 Model Implementation 45

WP_Erewhon - 2018.0.02

Part 4 Design Considerations

This section discusses some of the design issues considered during implementation of the Erewhon Investments
demonstration system. It focuses on those we feel are most important, and as such should not be seen as an
exhaustive discussion of all design issues. What we propose in this document are guidelines.

We have tried to illustrate as many points as we can in the Erewhon system, without making it too complex. At the
same time, it is intended to be a working multiuser system that deals with a number of issues encountered when
building production applications. This is essential to illustrate the rationale of our design decisions.

What we’re trying to stress are the design issues themselves, or themes. The demonstration system is just one
possible implementation. There are undoubtedly many other ways of addressing the problems we shall discuss.
We have tried to keep things as straightforward as possible to make it easier for those new to JADE, but without
trivializing the points.

The main thing to take away from this document is an awareness of some of the issues that should be considered
early on in a development project.

For details about design considerations, see the following subsections.

Conventions
Before we get underway, we should point out some of the conventions used in the Erewhon system. These should
be seen as guidelines only, as several are subject to personal preference.

All protected property and method names start with a lower case z. We use this to distinguish them from
public features, and to force them to appear at the end of property and method lists.

Single-value (that is, non-collection) references are prefixed with my.

Multi-value (that is, collection) references are prefixed with all.

Global constants are used extensively for such things as error numbers, application names, and version
numbers. From the Browse menu in JADE, selectGlobal Constants command to view the global constants
for a schema.

Except for development, testing, or peripheral methods, literal strings are not used in code. Instead, strings
are defined as translatable strings. To view translatable strings for a schema in JADE, select the Strings
command from the Schema menu.

In general, we prefer to make properties read-only rather than implement getmethods for them (see “Model
Operations”, later in this document).

Models, Views, and Controllers
The Model, View, Controller architecture (MVC) was popularized by Smalltalk. It divides a system into an
underlying model, any number of different views of the model, and controllers that synchronize interaction
between the model and the views. MVC makes it possible to concentrate on the essentials of a system (the
model), and add the application and user interface layers independently. There can be many different view and
controller pairs for each model; the intention is that views and controllers can be modified extensively with little or
no change in the model.

WP_Erewhon - 2018.0.02

For many systems, though, the role of the controller is small, with little or no distinction between views and
controllers in terms of implementation. While they always represent distinct concepts, often they are implemented
as one. Views can take responsibility for their own synchronization and sometimes the model provides
synchronization services. The Erewhon system is an example of this. In such cases, we can simply refer to the
Model and the Views (MV).

Model and View Separation
The model and views have been separated into their own schemas (which are discussed in the following section).
This makes explicit the distinction between the model and its views.

The model should focus on the problem (or business) domain. The question to start with is “How do we best
model the business operations?”. By separating the model from the views, the model can be made more
independent of application-level and user interface requirements. Separating the model allows you to build a
more-stable base, since the business domain (which the model represents) is generally less likely to change than
the application layers or the user interface, or both the application layers and the user interface. A well-defined
model can support several applications. For example, in the Erewhon system we have one model schema, with
the view schema defining four applications that run over this model.

We have used subschemas in JADE to separate the model from the views. It allows for a cleaner, more
well-defined design and implementation. It also means that separate development teams can more easily work on
separate parts of the system, but still within the same single JADE environment. Separating the views from the
model by packaging them in their own schemas prevents the model schema from becoming cluttered with user
interface implementation, and means that the model schema can support many different views. It also makes it
easier to identify the services provided by the model.

Schemas
A schema is the highest-level organizational structure in JADE and represents the object model for a specific
domain. A schema is a logical grouping of classes, together with their associated methods and properties. These
effectively define the object model upon which applications are based. The appearance and functionality of
applications in a schema can differ, but they all share the underlying object model defined by the schema. JADE
provides the RootSchema, which is always at the top of the schema hierarchy. The RootSchema provides
essential system classes that are available to all subschemas.

The schemas that make up the Erewhon Investments system are shown in the following image of the JADE
Schema Browser window.

The schema hierarchy is analogous to a class hierarchy and similar terminology is used. For example,
ErewhonInvestmentsModelSchema is a subschema of CommonSchema, and
ErewhonInvestmentsViewSchema is a subschema of ErewhonInvestmentsModelSchema. Subschemas inherit
all the classes, methods, and properties that are defined in their superschemas. Therefore, all schemas in the
Erewhon system inherit the entities defined in the CommonSchema.

The system is implemented in three main schemas and two supplementary schemas, as follows.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 47

WP_Erewhon - 2018.0.02

CommonSchema
This inherits from RootSchema and provides common services for all of its subschemas. Services include
common exception-handling methods on the GCommonSchema class and a selection of subclassed controls,
including a date text box and collection viewer list box.

ErewhonInvestmentsModelSchema
This schema implements the model for the system. All classes for which persistent objects are created are defined
in this schema as subclasses ofModelEntity. The schema also implements a number of classes that provide
services to the views including transaction agents and order proxies. A number of utility JadeScript methods are
provided in this schema for development and testing use, such as methods to initialize the database.

ErewhonInvestmentsViewSchema
This schema implements the views or applications that run over the model. The entire user interface is
implemented in this schema. The schema defines six applications.

Administration is a back-office application that company staff and agents can use to administer the system. It
is expected that this application would be deployed on a mixture of standard clients and JADE thin clients.

ErewhonShop is a front-office application that clients will use to search the items for sale, and to buy or bid
on items. It is expected that this application would be deployed on JADE thin clients, but the application can
obviously be run on standard clients as well.

WebShop is a Web application server that allows clients to search, buy, and bid on items from within a Web
browser. It provides similar functionality to the ErewhonShop application but with a slightly different interface
for Web browsers.

The TenderClosureApp closes all sale items open for tender if their closure date is at or prior to a specified
date. The application closes each tender sale item and accepts the highest bid.

You can specify a timer interval so that the operation is performed automatically on a regular basis. We
expect that one copy of this application would run on a standard client (possibly on the same machine as the
server) and would be set to run the operation at a time when activity is low.

WebServiceOverHttpApp andWebServiceOverTcpApp are applications that demonstrate JADE’s Web
service provider capabilities. For details, see the SOAP Web Services white paper (which is also available
from the JADE Web site at https://www.jadeworld.com/developer-center/resource-library/white-papers).

The view schema also extends model classes by adding methods to them in the view schema. For example,
display and getSearchResultStringmethods are added to ModelEntity subclasses in the view schema.

SelfDocumentorSchema
This schema demonstrates JADE interfaces and JADE packages by exporting a framework that allows objects to
document themselves. Refer to the FormDocumentorSetup form in the ErewhonInvestmentsViewSchema, to
see how this package and the interface that it exports is used.

The btnShow_click method on the form invokes the package. This form can be accessed by running the
Administration application from the view schema and selecting the Misc | Show Details via Interface menu item.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 48

https://www.jadeworld.com/developer-center/resource-library/white-papers

WP_Erewhon - 2018.0.02

WebServiceConsumer
This schema demonstrates JADE’s Web service consumer capabilities. For details, see the SOAP Web Services
white paper (which is also available from the JADE Web site at https://www.jadeworld.com/developer-
center/resource-library/white-papers).

Transaction Separation
The TransactionAgent class in the model schema provides activity methods that implement all transactions in the
model. Except for development or peripheral tasks (for example, initializing the database), there are no other
places in the model that begin or commit transactions. Our views also should rarely (if ever) begin and commit
their own transactions. Rather, transaction methods should be added to the TransactionAgent in the model, or to
the TransactionAgent subschema copy class in the view schemas.

Transactions are a concept in their own right. A transaction brackets one or more model operations into one
activity (logical unit of work) bounded by begin transaction, and commit or abort transaction. Each operation in the
model should generally not be responsible for going into and out of transaction state, as this is error-prone and
reduces the flexibility by which operations can be combined into transactions or activities.

It is important to recognize that transactions are application-defined. The application requirements determine the
boundaries of a transaction, as it is the application that determines what is a logical unit of work. In the Erewhon
system, we have defined the TransactionAgent class in the model schema because we have only one set of
transactions for the views. We thought it made the system an easier example to understand if the transaction
methods were defined in the model schema along with the operations that they call. However, it is important to
note that although they are located in the same schema, the transaction methods are distinct from the model. They
are determined by the requirements of the applications in the view schema.

Indeed, for a larger system, it may be appropriate to implement transactions in their own subschema between the
model and the views. Alternatively, each view can implement its own TransactionAgent class (or an equivalent
mechanism). For systems with many transactions or complex transactions, creating several specialized
TransactionAgent (or equivalent) subclasses is an approach worth considering. Some systems even go as far as
defining classes to represent individual transactions. The technique that you adopt depends on the specific
requirements of your application.

Separating out transactions in this way brings several benefits, as follows.

Transaction code is centralized.

Model operations do not have to worry about beginning, committing, or aborting transactions.

Model operations can be more-easily combined into different transactions or activities.

It provides a centralized layer for enforcing certain lock policies.

It provides a layer to encapsulate exception handling.

Model Operations
Operations in the model should be based on business application requirements. In
ErewhonInvestmentsModelSchema, operations are implemented as methods on the ModelEntity subclasses.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 49

https://www.jadeworld.com/developer-center/resource-library/white-papers
https://www.jadeworld.com/developer-center/resource-library/white-papers

WP_Erewhon - 2018.0.02

We have avoided unconditionally defining get and setmethods for all ModelEntity subclass properties. It is not
uncommon for projects (almost religiously) to insist on defining all properties as protected and implementing
public get and setmethods. However, this tends to overlook certain higher-level JADE concepts that provide an
effective alternative without sacrificing encapsulation or flexibility, and with lower runtime overhead. In general, we
have defined properties that are part of the public interface of a class as read-only, for the following reasons.

A property, when accessed in the JADE language, is already equivalent both conceptually and in reality to a
pair of related get and set operations implemented by the JADE Object Manager. When you refer to a
property using the JADE language, you are doing so via the default get and set operations provided by the
Object Manager; never directly.

The access option for a property defines which of the implicit get and set operations are part of the public
interface of the class; protected implies none, read-only implies get only, and public implies both.

If you insist on defining and writing getmethod wrappers for all properties that simply return the property
value, this does not really increase encapsulation. All it does is incur the unnecessary runtime overhead of
dynamic binding and method dispatch.

It is accepted, though, that for implementation encapsulation (that is, information hiding) getmethods are
appropriate. However, these should be identified on a case-by-case basis. For example, the Sale class in
ErewhonInvestmentsModelSchema implements a getAgentCommissionmethod that simply returns the value
of the zAgentCommission property. The implementation of sale commissions has in fact changed a couple of
times from being a value derived when the get is requested, to being a value calculated and stored on the sale
when it is created. These changes indicate that in this case, having a get wrapper for the agent commission is
warranted but implementing a getName method on Address, for example, instead of simply defining name as
read-only would seem heavy-handed.

If you ever need to redefine the behavior of the implicit get or set operations (without changing the type of the
property), JADE has the solution: mapping methods. These can be added at any time, so there is no loss of
flexibility.

The read-only option still imposes the discipline whereby only the methods defined in a class (the
implementation) can change the state of its instances (the desirable level of encapsulation).

Unconditionally defining set operations for all properties defeats encapsulation, as it exposes every property to
updates from any other class. This can also give rise to update order dependencies, as the order in which
properties are set cannot be controlled if they can be set from anywhere. It is common to set references
individually and to set groups of attributes (that is, properties other than references) in a single call. This is what
we have implemented in the Erewhon system (see the update methods on the ModelEntity subclasses).

Bear in mind that our decision to implement a single update method for attributes on some classes was based on
our business/application requirements. Those classes implementing a single update method for attributes
represent low-volatility data that will be updated one object at a time from the views. However, imagine, for
example, that we have to support a frequent (albeit fictitious) transaction that requires updating just the e-mail
address on all Address objects. It would make sense in this case to have an individual setEmailmethod rather
than passing all attribute values to update, knowing that only the e-mail address is going to change. The key point
is to determine what set or update methods you need, and how many properties each of them update, based on
the transactions and operations your model must support.

Be wary of defining set or update methods for each class that set all of its properties (attributes and references, as
opposed to just attributes) in one call. An exception to this is when an object is first created. For object creation, it
is often useful to have a method that sets all properties in one call. The model schema does this by implementing
a create method on ModelEntity subclasses. This method is to be invoked only when an entity is first created. For
updates to existing objects, setting all attributes (that is, properties other than references) in one method is
common, but setting references should be considered more carefully. The Erewhon model schema implements an
update method on several ModelEntity subclasses that sets all attributes only.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 50

WP_Erewhon - 2018.0.02

The decision as to what references can be updated (after an object has been created) should be based on
business/application requirements. Methods should be defined that represent the operations to be performed,
rather than just implementing methods that set all references at once. Having such generic methods makes model
operations less clear, reduces encapsulation, and can introduce update order dependencies (increasing the
chance of deadlocks). Typically, changing a single reference is a single operation. Of course, that does not
exclude the possibility of operations that need to change multiple references. However, methods that do this
should be the exception, not the rule.

ModelEntity classes implement specific operations to change those references to which updates are permitted;
for example:

Agent::addCommissionRate

CommissionRate::clearAllAgents

SaleItem::updateCategory

SaleItem::updateRegion

Exception Handling
Exception handlers are an effective means of encapsulating code for handling unexpected or infrequent errors.
Within a transaction, exception handlers are often responsible for restoring things to a consistent state if
something goes wrong (usually by aborting the transaction). They are useful for efficiently guarding against invalid
object references on an exception basis, rather than always checking the validity of an object in-line (which can
require more round trips to the server and defeat caching).

For a discussion of exception handling in JADE, see the JADE Exception Handling white paper (which is also
available from the JADE Web site at https://www.jadeworld.com/developer-center/resource-library/white-papers).

Exception handling is used extensively in the Erewhon system. Some examples are:

TransactionAgent methods arm handlers to catch exceptions and translate them into error numbers that are
returned to the views. This shields the views from having to implement their own exception handling around
transaction requests. For examples of this, look at any TransactionAgent method, the TransactionAgent
zExceptionHandler, zLockExceptionHandler, zSilentLockExceptionHandler methods, and the
ActivityAgent zRegisterObjectAndErrorCode method.

The model schema Application subclass ErewhonInvestementsModelApp::initialize method arms a
generic global exception handler and a generic global lock exception handler that are used to catch any
exceptions not caught locally. The GCommonSchema class in CommonSchema provides both of these
exception handler methods. The commonExceptionHandler method gives an example of a simple generic
exception handler and the commonLockExceptionHandler gives an example of a lock exception handler.
The view schema GErewhonInvestmentsViewSchema class reimplements the commonExceptionHandler
method to perform some exception handling specifically for theWebShop application.

The ModelEntity class implements zCollAddExceptionHandler to safely add an object to a collection when
it is already there and zCollRemoveExceptionHandler to safely remove an object from a collection when it
is not there. To see uses of these methods, select them in the Class Browser window in JADE and then
select References from the Methods menu.

The FormClientApp class in the view schema implements a zInvalidObjectExHandler method that catches
all invalid object or deleted object exceptions and redisplays the current form. This exception handler is
armed at the start of FormClientApp subclass event methods.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 51

https://www.jadeworld.com/developer-center/resource-library/white-papers

WP_Erewhon - 2018.0.02

Cache Synchronization
When an application references a persistent object, JADE first looks to see if the object is resident in local cache. If
it is, the cached object is used for the current operation. If the object is not in cache, it is fetched from the server,
brought into cache, and used for the current operation. Once an object has been brought into cache, it is available
for use in subsequent operations. Objects do not exist in cache indefinitely. JADE can discard objects from cache
when required, to make space for objects being brought into cache. JADE also provides facilities for you to
manually discard objects. When an object is discarded, the next reference to it will cause it to be fetched again
from the server. In a multiuser system, a locally cached object can be made obsolete when another user updates
it. A caching strategy is necessary to keep locally cached objects synchronized with the database, when required.

The Erewhon Investments applications are multiuser and therefore require a caching strategy. A good caching
strategy ensures that the objects stored in local cache are the latest editions where necessary, and that this is
maintained with the minimum amount of network and processing activity.

An application that makes efficient use of cache will have significant performance advantages over one that does
not, as JADE’s use of cache is one of its key strengths. A caching strategy comprises all of the mechanisms you
use to synchronize local cache with the JADE database.

In the Erewhon Investments system, we have the following considerations.

While JADE has facilities for developers to manually request that objects be resynchronized in local cache,
the automatic cache coherency provided by JADE makes life much easier for developers, and Erewhon
takes advantage of this feature. Readers familiar with earlier versions of Erewhon will notice how much code
the automatic cache coherency eliminates!

Automatic cache coherency is enabled by adding the following lines to the JADE initialization file (an
example jade.ini file for the Erewhon system is provided in examples/erewhon/erewhonjade.ini).

[JadeServer]
AutomaticCacheCoherencyDefault=true
AutomaticCacheCoherency=ServerDefault

[JadeClient]
AutomaticCacheCoherency=ServerDefault

With automatic cache coherency enabled, objects updated in other nodes (database server, application
servers, background nodes, or standard clients) are automatically reloaded in local cache.

Each operation in the model (that is, methods defined on ModelEntity classes) must handle its own integrity
locking. By integrity locking, we mean that each operation is responsible for locking those objects of which it
requires the latest editions in order to ensure data integrity. Each method assumes responsibility for its own
integrity so that the operation is safe, regardless of the context in which it is invoked. Any synchronization
locking (that is, locking specifically to serialize transactions) will be done in the respective transaction
methods; for example:

TransactionAgent::trxCloseTendersAtDate

Any TransactionAgent method that allows an object to be updated must provide a mechanism for the caller
to request that it performs an edition check. This allows the TransactionAgent method to verify, on behalf of
the caller, that the expected edition of the object is being updated.

Outside of TransactionAgent methods, we are concerned primarily with ensuring that application forms are
kept synchronized when objects that they are viewing change and that we have the latest edition of an object
before comparing it against search criteria.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 52

WP_Erewhon - 2018.0.02

We have made use of several mechanisms to implement our caching strategy, in order to illustrate some of the
approaches available to you in JADE:

Automatic cache coherency

listCollection

CollectionListBox subclassed control

Object notifications

Edition checking

These are discussed in the following sections.

listCollection
The listCollectionmethod of the ListBox and ComboBox classes (provided by the RootSchema) enables list
box or combo box controls to have a collection attached to them. Logic attaches the collection to the list box or
combo box by using the listCollectionmethod. If you use this method to attach a collection to a list box or combo
box, little is required to load entries into the list.

If the list box is not sorted, an entry is retrieved from the collection only when it is to be displayed or accessed by
logic. Only a few entries from the collection are therefore initially accessed, instead of the entire contents of the
collection (though if the list box is sorted, every element in the collection must be accessed). However, as you
scroll through the collection, list box entries are not discarded, which means that for large collections, the list box
can contain an unacceptably large number of entries. For this reason, listCollection should be used only for small
collections that will never contain too many items.

When you call listCollection, you specify true or false for an update parameter. If the update parameter in the
listCollectionmethod is true:

Deleting the collection results in the list box or combo box being cleared and the collection is no longer
associated with the list box or combo box.

Any changes to the collection cause the contents of the list box or combo box to be discarded and the
collection is rebuilt to the current display point (the current entry is reselected if it still exists).

If the update parameter is set to false, the list box or combo box is not updated and can contain out-of-date
information.

The view schema makes use of listCollection in several of its forms (for example, the zInitialize method of
FormCommissionRate and FormLocationsList). By setting the update parameter to true, the individual controls
handle synchronization of the data they are displaying.

Note We assume that we will never have a large number of commission rates and locations. If this were not the
case, use of the default listCollection would not be appropriate.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 53

WP_Erewhon - 2018.0.02

CollectionListBox Class
The CollectionListBox class in the CommonSchema presents an example of a subclassed control. It implements
a ListBox subclass that can view a collection in subsets of its members. It implements the listCollectionmethod
(described earlier in this document) so that it presents the same interface as standard JADE list boxes and combo
boxes. Once a collection has been registered with the CollectionListBox (using listCollection), it takes care of
loading elements from the collection as required, depending on the scroll position (the entire collection is not
loaded). As you scroll through a collection, members of the list box that are no longer visible are discarded. In this
way, the CollectionListBox can view collections containing thousands of items without the actual list box contents
ever growing to be too large. The CollectionListBox will register notifications on the collection and the members
displayed in the list, so that it can automatically synchronize itself if they change.

While the CollectionListBox is capable of viewing very large collections, if the collection is very big, the time
taken for the list box to position itself in the collection when scrolling can become quite noticeable. However, this
occurs only with collections of thousands of elements and you would have to question the appropriateness of
displaying that many entries in a list box in the first place.

Forms in the view schema make good use of the CollectionListBox to display information (for example,
FormAgentClientList and FormSaleItemCategoryList). By using CollectionListBox, the forms do not need to
worry about synchronizing this information. They can let the list box do it.

Object Notifications
If there are individual objects for which you want to implement specific behavior when they change (such as
updating a view), you can use object notifications to manage that part of your caching strategy.

The CollectionListBox control class (described earlier in this document) in the CommonSchema uses object
notifications to be informed of updates to objects that it is displaying, so that it can update itself if they change.

The CollectionListBox class begins object notifications in its zLoadSubset, zLoadSubsetReversed, and
zSetCollectionmethods. An example is:

if showUpdates then
// We want to be told about changes to this object
beginNotification(obj, Object_Update_Event, Response_Continuous,

NotifyInstanceUpdate);
endif;

If the obj object is changed, the list box will receive a notification upon which it can update itself. JADE calls the
sysNotificationmethod when the notification is received.

Edition Checking
There are several forms in the Administration application that present an object to the user, enabling them to edit
it. In a multiuser application, we must guarantee integrity by preventing two users from editing the same object at
the same time, or by preventing the changes of one user being overwritten by the changes of another (who may
have made his or her changes based on an obsolete object). There are several approaches, as follows.

Share lock the object being edited as soon as the form is displayed. When the user goes to commit his or her
changes, try to get an exclusive lock. If the exclusive lock cannot be obtained, display an error. This
approach presents the problem that the object might be locked for a long period (for example, if the user
takes a long time to make his or her changes, or goes out to lunch with the form open). It could also deadlock
if two users, who both hold a share lock for an object, try to commit their changes at the same time (as neither
user will be able to upgrade his or her share lock to an exclusive lock in order to update the object).

Reserve lock the object during form initialization. This allows other users read access, but only we can

Erewhon Demonstration System
Reference

Part 4 Design Considerations 54

WP_Erewhon - 2018.0.02

upgrade the lock to an exclusive lock (which means that only we can update the object). Until we do so, other
processes can still read the object. As with the share lock, this approach means that the object might be
locked for a long period.

Share lock and unlock, or resynchronize, the object during form initialization, and register a notification on it.
If a notification is received while the user is editing, we display a message saying the object has been
changed and discard the user’s updates. The uses must start editing again. This approach introduces a
timing hole in that a user may be able to commit his or her changes before the notification of an update
arrives at the client from the server.

Use edition checking (described in the following list). We have used this approach in the Erewhon system.

When presenting the user with a form to edit an object, the view does not keep a lock on the object in order to
prevent it from being locked for a long period (potentially impacting concurrency). The form resynchronizes the
object it is editing when it initializes using the resynchObject method (see
FormBase::zResynchObjectAndGetEdition in ErewhonInvestmentsViewSchema).

We cannot allow an update to proceed if the object on which the user based his or her update is no longer current.
We use edition checking to implement this, as follows.

1. The zResynchObjectAndGetEditionmethod synchronizes the object and saves its edition on the form.

2. When the form calls the required TransactionAgent method to perform the update, it passes in the saved
edition (for example, see FormAgent::zDoAction and FormClient::zDoAction).

3. Each TransactionAgent method that receives a non-zero edition parameter first obtains an exclusive lock
on the object to be updated. This brings the latest edition of the object into cache and locks it, thus
preventing other users from updating it. We exclusively lock the object because we know we are about to
update it. If the supplied edition is not equal to the latest edition of the object, we know that another user has
changed it and we return ObjectOutOfDate to the caller. For examples of this, see the TransactionAgent
methods trxUpdateAgent and trxUpdateClient in the model schema.

This approach gives us a good balance between ensuring that we do not process an out-of-date object, without
requiring that the object be locked for the whole time the user is in the edit dialog.

Synchronization of Shop Views
The two shop views (all subclasses of FormClientApp in the view schema) implement searching and shopping
cart facilities. Both of these features hold references to persistent ModelEntity objects during the session. As the
shop view can be deployed on the Web, we do not want to rely on notifications to synchronize the view. The shop
views deal mainly with sale items, clients, categories, and locations. We expect such objects to be deleted only
rarely, so have adopted a fairly straightforward approach of using exception handlers to trap object-not-found and
object-deleted exceptions.

Each event method on FormClientApp and its subclasses arms a local exception handler at the start of the
method. It then calls a non-event method to do the processing. If an invalid object is encountered, the exception
simply resets the form, gives the user a message, and then resumes. For an example of this, see the
FormClientSaleItems::btnResultsDetails_click and FormClientApp::zInvalidObjectExHandler methods.

Any exceptions not caught locally will be caught by the commonExceptionHandler method implemented in the
GCommonSchema class. This exception handler method is armed globally when an application starts. The view
schema reimplements this method in its GErewhonInvestmentsViewSchema class. For non-Web applications,
this reimplementation inherits the default behavior, which logs the exception and displays an error message box.
For Web applications, it simply aborts the current transaction and redisplays the last page.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 55

WP_Erewhon - 2018.0.02

Locking
Transactions protect against inconsistencies that can occur if something goes wrong within the transaction itself,
but they can do so only within a single thread of execution. Whenever two or more database transactions are
operating at the same time, there is the risk that they may interfere with each other by modifying the same objects.

Concurrency control is necessary, and for this we use locks.

To protect against inconsistencies, JADE provides mechanisms to lock objects. In JADE, a lock does two things.
Firstly, it controls concurrent access to an object. Secondly, locking an object ensures that the latest edition of the
object is brought into local cache in the node. In the JADE language, you can use the exclusiveLock,
sharedLock, and reserveLock methods of the Object class to lock objects. The valid concurrent lock
combinations are displayed in the following table.

Exclusive Shared Reserve

Exclusive No No No

Shared No Yes Yes

Reserve No Yes No

Exclusive locks are also known as write locks and shared locks are also known as read locks.

Locks can have two durations: session and transaction. Session locks are held until the end of the session
(process/application) that acquired the lock or until the lock is explicitly released using the unlock method.
Transaction duration locks are held until the end (either commit or abort) of the next transaction (at which point all
transaction duration locks for the process are released) or until the lock is explicitly released using the unlock
method when not in transaction state (manual unlocks of transaction duration locks within a transaction are
ignored).

Ignoring explicit unlocks of transaction duration locks when in transaction state and releasing all transaction
duration locks at the end of a transaction is known as two-phase locking. By doing so, JADE avoids the classic
“assumed update” problem, by not allowing a second process to update objects modified by a first process until
the first process has committed or aborted the entire transaction.

For examples of locking in the Erewhon Investments system, see the methods on the TransactionAgent class and
ModelEntity subclasses in the model schema.

Exclusive Locks
Before an object can be updated, JADE insists that it be exclusively locked. This prevents two processes from
updating the same object at the same time. An exclusive lock can be obtained only if there are no other locks in
place for the object. When you lock an object using an exclusive lock, no other process can lock (and hence
update) the same object. JADE automatically applies an exclusive lock when an object is updated. By default,
updated objects are locked automatically for the duration of the transaction.

Shared Locks
A shared lock allows several processes to simultaneously read an object but not update it. Shared locks enable
greater concurrency while ensuring that a process never works with obsolete data. If you lock an object using a
shared lock, other processes attempting to update the object or explicitly acquire an exclusive lock wait until the
lock is released, but can acquire a shared lock or a reserve lock.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 56

WP_Erewhon - 2018.0.02

Reserve Locks
A reserve lock is available for situations where you intend to update an object but you need to minimize the length
of time the object is locked with an exclusive lock. When you place a reserve lock on an object, other processes
attempting to acquire an exclusive lock or reserve lock on that same object wait until the reserve lock is
relinquished, but those attempting to acquire a shared lock succeed.

Unlocking Objects
You can unlock objects manually. Use the unlock method to explicitly unlock an object. Requests to unlock
transaction duration locks when in transaction state are ignored. All transaction duration locks are held until the
next commit or abort transaction instruction, at which time they are all released, regardless of whether or not they
were explicitly released with an unlock.

Inverses and Referential Integrity
A reference is a property that contains a reference to another object; that is, it is an end-point in a one- or
two-directional relationship. The two types of reference in JADE are:

An implicit reference, in which an object references another object and either of the following is true.

The referenced object does not contain a reference back to the first object.

The referenced object contains a reference to the first object, but the two properties have not been
defined as end-points in a two-way relationship.

An inverse (or explicit) reference, in which two objects reference each other and the two properties have
been defined as end-points in a two-way relationship.

Inverse (or explicit) references are used in JADE to implement relationships between objects. They offer
significant advantages in that JADE will automatically handle updating one side of a relationship (an inverse
reference) whenever the other side changes. In addition, if one or both ends of a relationship is a dictionary,
related elements in the dictionary are automatically updated whenever their keys change. This helps to ensure
referential integrity in your model. In fact, in a persistent model, inverse (or explicit) references should be the rule.
There should be few cases where they are not used, and in such cases, a good reason for not using them.

In JADE, a reference can refer to a single object, or to multiple objects (via a collection). This allows you to
implement one-to-one, one-to-many, and many-to-many relationships. Relationships can be defined as
peer-to-peer or parent-child. They differ only when objects are deleted. A parent-child relationship allows you to
implement a cascading delete where all related children of a parent object are deleted when the object itself is
deleted. In a peer-to-peer relationship, when one object is deleted, all references to it in its related objects are
removed (set to null).

JADE allows a reference to have multiple inverses (that is, participate in multiple relationships). In such cases,
JADE will automatically propagate updates on a single reference to multiple inverse references.

The ErewhonInvestmentsModelSchema employs inverse references extensively. Some examples are as
follows.

One-to-One Relationships

One-to-Many Relationships

Many-to-Many Relationship

Parent-Child Relationships

Erewhon Demonstration System
Reference

Part 4 Design Considerations 57

WP_Erewhon - 2018.0.02

Multiple Inverse Relationships

Automatic Key Maintenance

One-to-One Relationships
SaleItem::mySale to Sale::mySaleItem

TenderSale::myTender to Tender::myTenderSale

One-to-Many Relationships
Company::allAgents to Agent::myCompany

SaleItemCategory::allCommissionRates to CommissionRate::mySaleItemCategory

Many-to-Many Relationship
Agent::allCommissionRates to CommissionRate::allAgents

Parent-Child Relationships
Company::allClients to Client::myCompany (a one-to-many relationship)

Country::allRegions to Region::myCountry (a one-to-many relationship)

Parent-child relationships are what allow the JadeScript method deleteAllData to purge the database by simply
deleting the Company. JADE cascades the delete through all of the parent-child relationships in the model.

Multiple Inverse Relationships
Tender::myTenderSaleItem to TenderSaleItem::allTendersByOfferTime

Tender::myTenderSaleItem to TenderSaleItem::allTendersByTimeOffer

WhenevermyTenderSaleItem is set on a Tender, the Tender is added to both the allTendersByOfferTime and
allTendersByTimeOffer dictionaries on the sale item.

Sale::myClient to Client::allTenderSales

Sale::myClient to Client::allRetailSales

These illustrate a conditional multiple inverse relationship. WhenevermyClient is set on a Sale, the Sale is added
to allTenderSales on the Client if it is a tender sale (because membership of the allTenderSales dictionary is
TenderSale) and allRetailSales, if it is a retail sale (because membership of the allRetailSales dictionary is a
RetailSale).

Automatic Key Maintenance
Client::myCompany to Company::allClients

In the above one-to-many relationship, if the name of a client is changed, the allClients dictionary of the Company
to which the client is related will automatically be updated.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 58

WP_Erewhon - 2018.0.02

SaleItem::myCompany to Company::allSaleItems

In the above one-to-many relationship, if the code prefix or code number of the sale item changes, the
allSaleItems dictionary of the sale item’s company will automatically be updated.

Key Paths
A key path is a mechanism that enables you to define a dictionary key that is not an embedded property of the
members of the dictionary, but is instead derived from the member objects. When you define a key path, you
specify a chain of references starting from the member class and finishing at an end-point. At run time, the
references are traversed to arrive at the end-point that yields the key value. Like all dictionary keys, if the
dictionary participates in a relationship, changes to key path keys will automatically be propagated to the related
dictionaries.

The ErewhonInvestmentsModelSchema has several dictionaries that make use of keys paths. Three of them are:

SaleByItemDict

RetailSaleByTimeItemDict

TenderSaleByTimeItemDict

Server Methods
The serverExecutionmethod option indicates that the method and all methods subsequently called by this
method are to be executed at the database server node (unless they are clientExecutionmethods, in which case
they are executed at the node of the client calling the method).

By simply adding serverExecution to a method signature, JADE will shift execution of the method to the database
server node. This method option provides performance benefits (by reducing network traffic) when a method
accesses a large number of persistent objects in multiuser mode. The methods are executed at the node in which
the objects reside, rather than the required objects having to be passed across the network to the client node for
processing.

See the TransactionAgent::trxCloseTendersAtDate and Company::closeTendersAtDate methods in the
model schema for an example of serverExecution. These methods are used to close all open tender sale items
at a specified date, and as such, we expect that they may reference a large number of objects. As this is a
batch-type operation and there is no requirement for them to be processed at the client node, we implement this
transaction as a server method to avoid all of the tender sale items and their associated tenders and related
objects having to be brought across the network.

Server methods are great for distributing code to reduce network traffic. However, be aware of the following
restrictions.

Transactions must be total client transactions or total server transactions; that is, any begin and commit
transaction pair of instructions must be done while executing on the client (without executing an updating
server method), or while executing on the server (without the execution of updating client methods).

Persistent transactions must be started, performed, and finalized at a single node. All of the update
operations of the transaction must occur in the same node that started the transaction.

Server methods cannot invoke GUI methods.

In the ErewhonInvestmentsModelSchema, it is for the first two reasons that the InitialDataLoader loadData
method commits the first transaction before invoking the zCloseTendersAtCurrentDate method (which begins
and commits a transaction on the server).

Erewhon Demonstration System
Reference

Part 4 Design Considerations 59

WP_Erewhon - 2018.0.02

Tender closures are performed in a server method, so they require a separate transaction on the server. The first
transaction, which we begin on the client, must be committed on the client before we start the server transaction.

Skins
A skin is a series of images that is applied to the caption line, menu line, and border areas of each form to provide
an enhanced look and feel. The skin can also define images for most controls, to further enhance the look and feel
of forms.

JADE provides a collection of skins for the JADE development environment and a global collection that contains
any user-defined skins for all schemas.

The Erewhon Administration application provides a Skins menu that is populated dynamically with the names of
all skins that are present in the system. With this menu, users can select the skin they want applied to the
application. To see how this is implemented, see the zSetupSkinSelectMenu and mnuSkin_click methods on the
FormAdminMdi class in ErewhonInvestmentsViewSchema.

Erewhon Demonstration System
Reference

Part 4 Design Considerations 60

	Contents
	Introduction
	Part 1 Setting Up the Erewhon Demo System
	Batch Loading the Erewhon Schemas
	Initializing the Erewhon Investments Database
	Initializing the Database from the Command Line
	Running the Administration Application (Standard Client)
	Running the Shop Application (Standard Client)
	Running the Tender Closure Application (Standard Client)
	Running JADE in Thin Client Mode
	Running the Web Shop Application using Apache HTTP Server
	Running the Web Shop Using Internet Information Server
	Configuring IIS
	Step 1: Installing CGI and ISAPI Extensions
	Step 2: Adding an Application Pool
	Step 3: Adding an Application
	Step 4: Configuring Handler Mappings for the Application
	Step 5: Adding a Virtual Directory for Images

	Running the Web Shop Application
	Authorizing the WebShop Application for IIS

	Part 2 User Guide
	Administration Application
	Logon
	Main Administration Window – File Menu
	Main Administration Window – Edit Menu
	Company Details
	Agent Commission Rates (Company User Only)
	Locations (Company User Only)
	Sale Item Categories (Company User Only)

	Main Administration Window – View Menu
	Agents and Clients (Company User Only)
	Commission Rates
	Sale Items (by Category)
	Sales

	JADE Thin Client Shop Application
	Logon
	Product Search
	Viewing the Details of a Product
	Buying or Bidding for a Product
	Shopping Cart
	Product Details
	Checkout

	Web Shop Application
	Logon
	Product Search
	Viewing the Details of a Product
	Buying or Bidding for a Product
	Product Details/Tender
	Checkout

	Tender Closure Application

	Part 3 Model Implementation
	Locations
	Agents and Commission Rates
	Sales and Clients
	JADE Reference Diagram
	Agent
	Client
	Company
	Commission Rate
	Country
	Region
	Retail Sale
	Tender Sale
	Retail Sale Item
	Tender Sale Item
	Sale Item Category
	Tender

	Part 4 Design Considerations
	Conventions
	Models, Views, and Controllers
	Model and View Separation
	Schemas
	CommonSchema
	ErewhonInvestmentsModelSchema
	ErewhonInvestmentsViewSchema
	SelfDocumentorSchema
	WebServiceConsumer

	Transaction Separation
	Model Operations
	Exception Handling
	Cache Synchronization
	listCollection
	CollectionListBox Class
	Object Notifications
	Edition Checking
	Synchronization of Shop Views
	Locking
	Exclusive Locks
	Shared Locks
	Reserve Locks
	Unlocking Objects

	Inverses and Referential Integrity
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationship
	Parent-Child Relationships
	Multiple Inverse Relationships
	Automatic Key Maintenance

	Key Paths
	Server Methods
	Skins

