
Copyright©2018 Jade Software Corporation Limited. All rights reserved.

External Interface
Developer's Reference

 V E R S I O N 2018.0.01

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information
or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations
of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright © 2018 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the JADEReadMe.txt file.

ExtIntDevRef - 2018.0.01

Contents

Contents iii

Before You Begin viii
Who Should Read this Reference viii
What’s Included in this Reference viii
Conventions viii
Related Documentation ix

Chapter 1 Using External Methods and External Functions 11
Using External Methods 11

Writing External Methods 12
Include Files 12
Library Files 12
Microsoft Compiler Name Decoration 12
Supported Compiler Versions 12
Object Method Interface 12
Primitive Method Interface 13
Passing Parameters Using the DskParam Structure 13

Binary 14
Boolean 14
Byte 14
Character 14
Date 14
Decimal 15
Integer 15
Integer64 15
MemoryAddress 15
Oid 15
Point 15
Real 16
String 16
StringUtf8 16
Time 16
TimeStamp 16
TimeStampInterval 17
TimeStampOffset 17
Parameter List 17

Initializing the DskParam Structure 17
String and Binary Parameters and Return Types 17

Using the C++ Proxy Classes 18
Example of a C++ External Method 18

Using External Functions 19
Parameter Mapping to C Data Types 20
Parameter Mapping to a Windows Data Type 21
C++ Structure or Class Support 21
Using Real Primitive Types in External Functions 21
Parameter Passing Conventions 21

Passing by Value or Reference 21
Parameter Passing Rules 22
Passing Null Pointer Values 22

Unicode Awareness 22
Calling External Functions from JADE Thin Clients 23

Handling Faults 23

Chapter 2 Using External Interfaces 24
External Database Coexistence 25

ODBC Requirements for External Database Coexistence 26
External Database Coexistence ODBC Requirements under Windows 26

ExtIntDevRef - 2018.0.01

Semantic Schema Enrichment 26
Usage Example 27

Object Identifier Mapping 29
External Proxy Classes 29
Mapping an SQL Data Type to a JADE Primitive Type 30

SQL Server Restrictions 31
MS Access 2007 Restrictions 31

Using the External Schema Wizard 31
Accessing an External Relational Database from JADE 32

Accessing Objects in Your External Database 32
Summary of the Properties and Methods Provided by External Database Classes 34

Object Lifetimes 37
Using External Collections 37
ADHOC Query Extensions 37
Sequential Access 38
Exception Handling 38

Schema Mismatch Exceptions 38
Optimizing the where Clause 38
Updating External Databases 39
Security at Run Time 39

Obtaining a Relational View of Your JADE Database 39
Configuring a JADE ODBC Driver 42

Adding a Data Source 42
Configuring the JADE ODBC Standard Client Driver 43
Configuring the JADE ODBC Thin Client Driver 45
Specifying Additional Relational Views 47

Using the Data Source in a Connection String 48
JADE ODBC Thin Client Driver 48

JADE ODBC Service Application 48
User-Defined ODBC Service Application 49
Configuring an ODBC Service 49

Defining the Configuration in the JADE Initialization File 49
Creating and Maintaining the Configuration File 49
XML Configuration for an ODBC Server Application 51

Installing the JADE ODBC Thin Client Driver 52
User Authentication 52
Starting and Ending an ODBC Thin Client Session 52
Initialize and Finalize Query Callback 52
User Impersonation 53
Session State 53
Server/Client Version Checking 53

JADE ODBC Driver Soft Entities and Attributes 53
JadeRelationalEntityIF Interface 54
JadeRelationalAttributeIF Interface 54
JadeRelationalQueryProviderIF Interface 54

SQL Examples 54
Accessing Classes and Subclasses Using SQL 54
Accessing Relationship Views Using SQL 54

One-to-One Relationship 54
One-to-Many Relationship 55
Many-to-Many Relationship 55
Collections 55
Collection Methods 56

Mapping Your JADE Database to a Relational Database 57
Interfacing to OLE 2.0 58

Embedding and Linking Objects 59
What the OleControl Shows 59
Creating an OLE Control 59
Activating the OLE Application at Run Time 59

Connecting to Network Devices Using TCP/IP 60
External Software Requirements 61

External Interface
Developer's Reference

Contents iv

ExtIntDevRef - 2018.0.01

Using the TcpIpConnection Class 61
Properties Provided by the TcpIpConnection Class 61
Properties Provided by the Connection Class 62
Methods Provided by the TcpIpConnection Class 62

Connection Authentication 63
pChallenge or ppChallenge 64
challengeSize or pChallengeSize 64
pResponse or ppResponse 64
responseSize or pResponseSize 64

Data Encryption 64
pDataIn 65
dataInLength 65
ppDataOut 65
pDataOutLength 65

TCP/IP Proxy Servers 65
Constants Provided by the JadeTcpIpProxy Class 66
Properties Provided by the JadeTcpIpProxy Class 66
Method Provided by the JadeTcpIpProxy Class 66

Multiple Worker TCP/IP Connections 66
JadeMultiWorkerTcpConnection Class 67

JadeMultiWorkerTcpConnection Class Constants 67
JadeMultiWorkerTcpConnection Properties 67
JadeMultiWorkerTcpConnection Methods 68

JadeMultiWorkerTcpTransport Class 68
JadeMultiWorkerTcpTransport Class Constants 68
JadeMultiWorkerTcpTransport Properties 69
JadeMultiWorkerTcpTransport Methods 69

JadeMultiWorkerTcpTransportIF Interface 70
JadeMultiWorkerTcpTransportIF Interface Constants 70
JadeMultiWorkerTcpTransportIF Interface Callback Method Signatures 70

Connecting to Network Devices Using a Secure Sockets Layer (SSL) 71
Connecting to Network Devices Using a Named Pipe 71

Using the NamedPipe Connection Class 71
NamedPipe Class Property 72
NamedPipe Class Methods 72

InternetPipe Subclass 72
InternetPipe Class Methods 73

Interfacing to the Internet 73

Chapter 3 Transforming an External Relational Database 74
Overview 74
Defining Your External Database Schema 75

Using the Databases Menu 75
Adding an External Database Schema 75

Specifying a Name for Your External Database Schema 77
Establishing the Connection to the External Database 78
Selecting Tables for Exclusion from the Schema 80
Specifying Class and Property Name Identifiers 81
Creating Classes from Tables 83
Defining Attributes for a Class 84
Defining Collection Classes 86
Adding References to a Class 88

Using the External Schema Wizard Relationship Dialog 91
Refining the Class Membership Query 93
Inspecting Collection Class Queries 94
Inspecting Reference Queries 96
Finishing Your External Database Schema Definition 97

Deleting an External Database Schema 98
Changing an External Database Schema 99
Viewing an External Database Definition in Read-Only Mode 99

External Interface
Developer's Reference

Contents v

ExtIntDevRef - 2018.0.01

Printing an External Database Schema 99
Extracting an External Database Schema 100
Loading an External Database Schema 100

Chapter 4 Using External Component Libraries 102
Overview 102

The Component Object Model (COM) Standard 103
ActiveX Automation 103
ActiveX Controls 104
ActiveX Interfaces 104
How JADE Imports ActiveX Object Definitions 105

ActiveX Interface Classes 105
Control Classes 105
Automation Classes 106

Using Generated ActiveX Classes 106
Using the Generated ActiveX Control Classes 106
Using the Generated ActiveX Automation Classes 106

Using Automation Events 108
Using Controls as Automation Objects 109
ActiveX Class Interfaces 109
Using Standard Classes 109
Editing ActiveX Methods That Return a StringArray 110

ActiveX Default Values and Considerations 111
Default Names 111
Data Types 111
Component Categories 112
Optional Parameters 112

.NET Assemblies 113
Location of .NET Assemblies 113
How JADE Imports .NET Object Definitions 113

Abstract Grouping Classes 114
.NET Default Values and Considerations 114

Importing Into an ANSI JADE System 114
Default Names 115
Data Types 115
Updating .NET Properties on Value Types 116

.NET-Related JADE Modules 117
Using .NET Components 117

Non-GUI .NET Components 118
.NET Helper Methods 118

.NET Controls 119

Chapter 5 XML Metadata Interchange (XMI) Support 120
Overview 120
Supported Version of XMI Files 120
Generating Schema Files from an XMI File 120
Enterprise Architect 7 and JADE Mappings 121

JADE Schema Maps to Enterprise Architecture Package 121
JADE Class Maps to Enterprise Architecture Class 121
Additional Data for JADE Collection Classes 122
Additional Data for JADE Dictionary Classes 122
Additional Data for JADE External Key Dictionary Classes 123
Additional Data for JADE Member Key Dictionary Classes 123
JADE Property Maps to Enterprise Architecture Attribute 123
JADE Method Maps to Enterprise Architecture Operation 124
JADE Constant Maps to Enterprise Architecture Constant Attribute 124
JADE Exported Package Maps to Enterprise Architecture Package 125
JADE Exported Class Maps to Enterprise Architecture Class 125
JADE Exported Property Maps to Enterprise Architecture Attribute 125

External Interface
Developer's Reference

Contents vi

ExtIntDevRef - 2018.0.01

JADE Exported Method Maps to Enterprise Architecture Operation 125
JADE Exported Constant Maps to Enterprise Architecture Attribute 125
JADE Imported Package Maps to Enterprise Architecture Package 126
JADE Interface Maps to Enterprise Architecture Interface 126
JADE Interface Method Maps to Enterprise Architecture Operation of Interface 126
JADE Interface Constant Maps to Enterprise Architecture Operation of Interface 126
JADE Constant Category Maps to Enterprise Architecture Class 127
JADE Global Constant Maps to Enterprise Architecture Attribute of the Constant Category Class 127
JADE Library Maps to Enterprise Architecture Class 127
JADE External Function Maps to Enterprise Architecture Operation of the Library Class 127
JADE Locales Map to Enterprise Architecture Class 127
JADE Translatable String Maps to Enterprise Architecture Attribute of the Locale Class 128
JADE Locale Format Maps to Enterprise Architecture Attribute of the Locale Class 128
JADE Application Maps to Enterprise Architecture Class 128
JADE Subschema Copy Class Maps to Enterprise Architecture Class 129

Appendix A ODBC Reserved Words 130

Appendix B External Functions 131

External Interface
Developer's Reference

Contents vii

ExtIntDevRef - 2018.0.01

Before You Begin

The JADE External Interface Developer’s Reference is intended as a major source of information when you are
using external interfaces to develop or maintain JADE applications.

Who Should Read this Reference
The main audience for the JADE External Interface Developer’s Reference is expected to be developers of JADE
application software products.

What’s Included in this Reference
The JADE External Interface Developer’s Reference has five chapters and two appendixes.

Chapter 1 Gives a reference to using external methods and external functions

Chapter 2 Gives a reference to external interfaces, including OCX, OLE, mainframe hosts, and ODBC

Chapter 3 Provides instructions for transforming an external relational database

Chapter 4 Provides instructions for importing and maintaining ActiveX control libraries and automation
libraries

Chapter 5 Gives a reference to XML Metadata Interchange (XMI) support

Appendix A Gives a reference to the Open Database Connectivity (ODBC) reserved words

Appendix B Gives a reference to the JADE pointers in the RootSchema jomos external function library

Conventions
The JADE External Interface Developer’s Reference uses consistent typographic conventions throughout.

Convention Description

Arrow bullet () Step-by-step procedures. You can complete procedural instructions by using either
the mouse or the keyboard.

Bold Items that must be typed exactly as shown. For example, if instructed to type foreach,
type all the bold characters exactly as they are printed.

File, class, primitive type, method, and property names, menu commands, and dialog
controls are also shown in bold type, as well as literal values stored, tested for, and
sent by JADE instructions.

Italic Parameter values or placeholders for information that must be provided; for example,
if instructed to enter class-name, type the actual name of the class instead of the
word or words shown in italic type.

Italic type also signals a new term. An explanation accompanies the italicized type.

Document titles and status and error messages are also shown in italic type.

ExtIntDevRef - 2018.0.01

Convention Description

Blue text Enables you to click anywhere on the cross-reference text (the cursor symbol
changes from an open hand to a hand with the index finger extended) to take you
straight to that topic. For example, click on the "Parameter Mapping to C Data Types"
cross-reference to display that topic.

Bracket symbols ([]) Indicate optional items.

Vertical bar (|) Separates alternative items.

Monospaced font Syntax, code examples, and error and status message text.

ALL CAPITALS Directory names, commands, and acronyms.

SMALL CAPITALS Keyboard keys.

Key combinations and key sequences appear as follows.

Convention Description

KEY1+KEY2 Press and hold down the first key and then press the second key. For example,
"press Shift+F2" means to press and hold down the Shift key and press the F2 key.
Then release both keys.

KEY1,KEY2 Press and release the first key, then press and release the second key. For example,
"press Alt+F,X" means to hold down the Alt key, press the F key, and then release
both keys before pressing and releasing the X key.

Related Documentation
Other documents that are referred to in this reference, or that may be helpful, are listed in the following table, with
an indication of the JADE operation or tasks to which they relate.

Title Related to…

JADE Developer’s Reference Developing or maintaining JADE applications

JADE .NET Developer’s Reference Developing applications using .NET class libraries exposed in
JADE

JADE Database Administration Guide Administering JADE databases

JADE Development Environment
Administration Guide

Administering JADE development environments

JADE Development Environment User’s
Guide

Using the JADE development environment

JADE Encyclopaedia of Classes System classes (Volumes 1 and 2), Window classes
(Volume 3)

JADE Encyclopaedia of Primitive Types Primitive types and global constants

JADE Installation and Configuration Guide Installing and configuring JADE

JADE Initialization File Reference Maintaining JADE initialization file parameter values

JADE Object Manager Guide JADE Object Manager administration

JADE Report Writer User’s Guide Using the JADE Report Writer to develop and run reports

External Interface
Developer's Reference

Before You Begin ix

ExtIntDevRef - 2018.0.01

Title Related to…

JADE Synchronized Database Service (SDS)
Administration Guide

Administering JADE Synchronized Database Services (SDS),
including Relational Population Services (RPS)

JADE Thin Client Guide Administering JADE thin client environments

JADE Web Application Guide Implementing, monitoring, and configuring Web applications

External Interface
Developer's Reference

Before You Begin x

ExtIntDevRef - 2018.0.01

Chapter 1 Using External Methods and
External Functions

This chapter covers the following topics.

Using External Methods

Writing External Methods

Example of a C++ External Method

Using External Functions

Parameter Mapping to C Data Types

Parameter Mapping to a Windows Data Type

C++ Structure or Class Support

Using Real Primitive Types in External Functions

Parameter Passing Conventions

Unicode Awareness

Calling External Functions from JADE Thin Clients

Handling Faults

Using External Methods
You can write external user-methods (or routines) for JADE classes. External routines can be written in any
language that can create a Dynamic Link Library.

The .NET DLL files or executables to be used with:

32-bit JADE executables must be built for the x86 (32-bit) platform.

64-bit JADE executables must be built for the x64 (64-bit) platform.

For details, see "Writing External Methods", in the following section, and "JADE Application Programming Interface
(API)", in Chapter 3 of the JADE Object Manager Guide. For details about low-level C API to obtain JADE
initialization file information, directory information, and to convert JADE characters to an ANSI or Unicode string,
see "C-Level Application Programming Interface (API)", in Chapter 6 of the JADE Object Manager Guide. For
details about adding an external method to a class, see "Adding External Methods to Classes", in Chapter 8 of the
JADE Development Environment User’s Guide.

Notes Before you can create a new external method, the library containing your library file must already exist
and you must select the class to which the method is to be added. You can use the same library to import both
external methods and external functions, if required.

In JADE thin client mode, an external method call made from JADE logic executes on the application server
workstation and not that of the presentation client.

ExtIntDevRef - 2018.0.01

Writing External Methods
The demodll folder in the JADE examples directory provides you with a demonstration schema, C++ external
method (demodll.cpp), and the include files and library files used when writing external methods.

Sample .vcproj files are included for the current Microsoft Visual Studio versions. For details, see the readme.txt
file in the demodll folder in the JADE examples directory.

Include Files
As a minimum, include the following header files in your library.

jomobj.hpp

jomtypes.h

Other include files that may be required are installed in the include subdirectory.

Library Files
When using Microsoft Visual C or C++ to write external methods, link to the jom.lib library file. If you need to call a
JADE method that returns strings, you also need to link to the jomutil.lib library file.

Note Library files are available with JADE for the support of ANSI characters, Unicode characters, 32-bit, and
64-bit. Ensure that you link with the appropriate libraries for the type of project that you are building.

Microsoft Compiler Name Decoration
The Microsoft compiler uses the calling conventions used in the declaration of a function to identify the form of the
name decoration (name mangling) that is used.

JADE assumes the Windows standard calling convention (stdcall) for external methods and functions.

By default, the Microsoft compiler decorates the exported name by adding a leading underscore character (_) and
a trailing at sign (@), followed by a number that represents the number of bytes in the parameter list. External
JADE methods must be exported using undecorated names. For more details, see the sample vcproj files or the
Microsoft Linker documentation.

Supported Compiler Versions
You can create Windows libraries containing external JADE methods by using any compiler that supports the
Windows "standard calling convention" (stdcall). However, if these libraries contain calls to the JADE Object
Manager API, they should link to the relevant JADE Object Manager import libraries provided in the JADE library
directory during installation or upgrade.

For details about the supported version of the Microsoft compiler, see "Software Requirements", in Chapter 1 of
the JADE Installation and Configuration Guide.

Object Method Interface
The C++ function signature for the JADE Object Manager methods is:

extern "C" DllExport int JOMAPI
functionName (DskBuffer *pBuffer,

DskParam *pParams,
DskParam *pReturn)

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 12

ExtIntDevRef - 2018.0.01

The JADE Object Manager method parameters are listed in the following table.

Parameter Description

pBuffer A pointer to the object buffer for the receiver object.

pParams Used to pass one or more parameters to the method. If there are no parameters, you can
pass a null pointer.

pReturn This pointer is used to pass a return value from the invoked method back to the sender.

The values listed in the following table are returned.

Value Description

0 The function was successful.

<>0 The function failed and is converted by the system into a system exception.

The jomtypes.h and jomdefs.h header files, included in jomobj.hpp, contain details for the types and associated
defines used by this interface.

Primitive Method Interface
The C++ function signature for the JADE Object Manager primitive methods is:

extern "C" DllExport int JOMAPI
functionName (UINT primitiveNumber,

DskParam *primitiveValue,
DskBuffer *pParams,
DskParam *pReturn)

The primitive method parameters are listed in the following table.

Parameter Description

primitiveNumber The unique number assigned to the type of the primitive in the schema.

primitiveValue Contains the actual value of the primitive.

pParams Used to pass one or more parameters to the method. If there are no parameters, you can
pass a null pointer.

pReturn This pointer is used to pass a return value from the invoked method back to the sender.

The values listed in the following table are returned.

Value Description

0 The function was successful.

<>0 The function failed and is converted by the system into a system exception.

Passing Parameters Using the DskParam Structure
The DskParam structure consists of a header and a body. The header specifies the type of parameter being
passed. Header values are defined in the jomtypno.h file. Valid parameter types are defined in the jomtypes.h
file.

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 13

ExtIntDevRef - 2018.0.01

The body contains the parameter value and combines all of the C++ types that are currently supported. When a
method contains more than one parameter, these C++ types are passed by the pParams parameter in the
parameterList format of DskParam.

A parameterList is an array of pointers to DskParam structures, with one pointer for each parameter. If a
parameter is not used or is not defined, a NULL pointer may be used; for example, when a method has no
parameters or it does not return a value.

Use the following functions declared in jomparam.hpp to get and set parameter values in a DskParam structure.

Binary
int paramGetBinary(const ShortDskParam& param,

BYTE*& pValue,
Size& length)

int paramSetBinary(ShortDskParam& param,
const BYTE* pValue,
Size length,
PUsage usage = USAGE_CONSTANT)

Boolean
int paramGetBoolean(const DskParam& param,

Boolean& value)

int paramSetBoolean(DskParam& param,
Boolean value = FALSE,
PUsage usage = USAGE_CONSTANT)

Byte
int paramGetByte(const DskParam& param,

Byte& value)

int paramSetByte(DskParam& param,
Byte value = 0,
PUsage usage = USAGE_CONSTANT)

Character
int paramGetCharacter(const DskParam& param,

Character& value)

int paramSetCharacter(DskParam& param,
Character value = 0,
PUsage usage = USAGE_CONSTANT)

Date
int paramGetDate(const DskParam& param,

DskDate& value)

int paramSetDate(DskParam& param,
DskDate value = 0,
PUsage usage = USAGE_CONSTANT)

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 14

ExtIntDevRef - 2018.0.01

Decimal
int paramGetDecimal(const DskParam& param,

DskDecimal& value)

int paramSetDecimal(DskParam& param,
const DskDecimal& value,
PUsage usage = USAGE_CONSTANT)

Integer
int paramGetInteger(const DskParam& param,

Integer& value)

int paramSetInteger(DskParam& param,
Integer value = 0,
PUsage usage = USAGE_CONSTANT)

Integer64
int paramGetInteger64(const DskParam& param,

Integer64& value)

int paramSetInteger64(DskParam& param,
Integer64 value = 0,
PUsage usage = USAGE_CONSTANT)

MemoryAddress
int paramGetMemoryAddress(const DskParam& param,

DskMemoryAddress& value)

int paramSetMemoryAddress(DskParam& param,
const DskMemoryAddress& value,
PUsage usage = USAGE_CONSTANT)

Oid
int paramGetOid(const DskParam& param,

DskObjectId& value)

int paramSetOid(DskParam& param,
const DskObjectId& value,
PUsage usage = USAGE_CONSTANT)

Point
int paramGetPoint(const DskParam& param,

DskPoint& value)

int paramSetPoint(DskParam& param,
const DskPoint& value,
PUsage usage = USAGE_CONSTANT)

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 15

ExtIntDevRef - 2018.0.01

Real
int paramGetReal(const DskParam& param,

Real& value)

int paramSetReal(DskParam& param,
Real value = 0,
PUsage usage = USAGE_CONSTANT)

Note The JADE Real primitive type equates to the C double type (an 8-byte real representation).

If you need to explicitly set or get float, double, or long double values, use the appropriate paramGetFloat,
paramGetDouble, paramGetLDouble, paramSetFloat, paramSetDouble, or paramSetLDouble function.

String
int paramGetString(const DskParam& param,

Character* pValue,
Size length)

int paramSetString(DskParam& param,
Character* pValue,
Size length = UseNullTerminatedLength,
PUsage usage = USAGE_CONSTANT)

Note Within JADE, you can embed null characters in strings. If a string containing embedded null characters is
passed as a usage input parameter to an external method, you should assume that the string returned by
paramGetString ends at the first null character; that is, assume that the string has been truncated at the first null
character.

To safely pass strings containing embedded null characters from JADE to external methods, define the string
parameter in JADE as io usage.

StringUtf8
int JOMAPI paramGetString(const DskParam ¶m,

Character *&pValue)

int paramSetStringUtf8(DskParam& param,
const StringUtf8Info& value,
PUsage usage = USAGE_CONSTANT)

Time
int paramGetTime(const DskParam& param,

DskTime& value)

int paramSetTime(DskParam& param,
DskTime value = 0,
PUsage usage = USAGE_CONSTANT)

TimeStamp
int paramGetTimeStamp(const DskParam& param,

DskTimeStamp& value)

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 16

ExtIntDevRef - 2018.0.01

int paramSetTimeStamp(DskParam& param,
const DskTimeStamp& value,
PUsage usage = USAGE_CONSTANT)

TimeStampInterval
int paramGetTimeStampInterval(const DskParam& param,

DskTimeStampInterval& value)

int paramSetTimeStampInterval(DskParam& param,
const DskTimeStampInterval& value,
PUsage usage = USAGE_CONSTANT)

TimeStampOffset
int paramGetTimeStampOffset(const DskParam& param,

DskTimeStampOffset& value)

int paramSetTimeStampOffset(DskParam& param,
const DskTimeStampOffset& value,
PUsage usage = USAGE_CONSTANT)

Parameter List
int paramGetParameter(const DskParam& param,

EntryCount index,
DskParam*& pValue)

Initializing the DskParam Structure
When your external method is called from a JADE method, the DskParam structure headers are initialized to
contain the correct parameter and return types specified in your schema-defined method header.

If you are passing a DskParam structure to a method or function, it is your responsibility to initialize the
DskParam header to contain the appropriate type for the associated parameter or return type. Use the paramSet
functions in jomparam.hpp to do this.

String and Binary Parameters and Return Types
Use the following functions declared in jomparam.hpp to initialize a DskParam structure to contain a JADE
language string or binary.

These functions allocate a buffer of the specified length from the JADE string pool, copy the string or binary value
into this buffer, and then initialize the DskParam structure to contain a reference to this buffer.

int JOMAPI paramCreateJadeString(DskParam *pJadeString,
Character *pData,
Size length);

int JOMAPI paramCreateJadeBinary(DskParam *pJadeString,
BYTE *pData,
Size length);

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 17

ExtIntDevRef - 2018.0.01

The following functions that release the memory associated with the copy of the string or binary are also available.

int JOMAPI paramDeleteJadeString(DskParam *pJadeString);

int JOMAPI paramDeleteJadeBinary(DskParam *pJadeString);

Using the C++ Proxy Classes
The DskObject class is defined in jomobj.hpp. Use this class to make object-related API calls easier to use. In
particular, the DskObject class methods listed in the following table are available.

JADE Object Manager API Call DskObject Method

jomCreateObject createObject

jomDeleteObject deleteObject

jomGetProperty getProperty

jomSetProperty setProperty

jomLockObject lockObject

jomUnlockObject unlockObject

jomUpdateEdition updateEdition

jomSendMsg sendMsg

jomSendDbMsg sendDbMsg

jomGetObject getObject

jomClearBuffers clearBuffer

For more details, see "JADE Application Programming Interface (API)", in Chapter 3 of the JADE Object Manager
Guide.

Example of a C++ External Method
The following is an example of a C++ external method library.

#include "jomobj.hpp"

extern "C" DllExport int JOMAPI
PassOneParam(DskBuffer *pbuffer,

DskParam *pParams,
DskParam *pReturn)

{
Character *myParam;
int result;

// single parameter example
result = paramGetString(*pParams, myParam);
CHECK_RESULT;

// return a 1 to JADE
return paramSetInteger(*pReturn, 1);

}

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 18

ExtIntDevRef - 2018.0.01

extern "C" DllExport int JOMAPI
PassTwoParams(DskBuffer *pbuffer,

DskParam *pParams,
DskParam *pReturn)

{
Character *myParam1;
int myParam2;
int result;
DskParam *pParam;

// get multiple parameters
result = paramGetParameter(*pParams, 1, pParam);
CHECK_RESULT;
result = paramGetString(*pParam, myParam1);
CHECK_RESULT;

result = paramGetParameter(*pParams, 2, pParam);
CHECK_RESULT;
result = paramGetInteger(*pParam, myParam2);
CHECK_RESULT;
// return a 2 to JADE
return paramSetInteger(*pReturn, 2);

}

Using External Functions
An external function is a routine that is not necessarily associated with any specific class. For details about adding
an external function to a class, see "Defining External Functions", in Chapter 8 of the JADE Development
Environment User’s Guide.

For details about low-level C API to obtain JADE initialization file information, directory information, and to convert
JADE characters to an ANSI or Unicode string, see "C-Level Application Programming Interface (API)", in Chapter
6 of the JADE Object Manager Guide.

Notes JADE supports external functions only; utility functions written in the JADE language are not supported.

Only one External Functions Browser for the current schema can be open at any time in the JADE development
environment. However, you can have concurrent open External Functions Browsers for different schemas in a
development session.

Define external function calls for compatibility with the running JADE environment on which the calls are made.
For example, calling Windows Application Programming Interfaces (APIs) that pass a Windows handle have
different parameter definitions that depend on whether the client is running in 32-bit or 64-bit mode.

To cater for this, you need to establish two different external function call definitions with the required parameter
types. Your calling JADE logic must then determine which architecture is being used by the client and which
external function call it should therefore make.

External functions are exported from a library and can be called directly from a method written in the JADE
language. This enables you to directly call entry points exported from existing third-party libraries or the operating
system without having to write an external method wrapper. An external function defines a mapping between
JADE parameters and the external parameters. Parameter mapping is made interpretively at run time when an
external function is called.

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 19

ExtIntDevRef - 2018.0.01

Defining an external function is very much like defining an external method and a subset of the same information
is captured. However, external functions are viewed and maintained from the External Functions Browser,
accessed from the Browse menu at schema level, unlike external methods that are viewed and maintained from
the Class Browser or the Primitive Types Browser.

External function calls are invoked with the JADE language call expression, to make a clear distinction between
function calls (that are not invoked on an object) and object method invocations.

For details about external functions declared in the RootSchema jomos external function library that call Windows
library functions as defined in the Microsoft Developer Network (MSDN), see Appendix B.

Parameter Mapping to C Data Types
The primitive types that can be used as parameters to external functions are a restricted subset of the JADE
primitive types. External functions do not support mapping to Decimal, Date, Time, TimeStamp,
TimeStampInterval, or TimeStampOffset primitive types.

The external function mapping of standard C types to simple JADE primitive types is listed in the following table.

C Data Type Recommended JADE Primitive Type

int Integer

int64 Integer64

void* MemoryAddress

long Integer

short Integer

char (ANSI) Character

wchar_t (Unicode) Character

bool Boolean

float Real[4]

double Real or Real[8]

The external function mapping of standard C types to structured JADE primitive types is listed in the following
table.

C Data Type Recommended JADE Primitive Type

char* containing null-terminated string String

char* containing binary data Binary

You can substitute other JADE primitive types to clarify the interface. For example, you can map a JADE Boolean
primitive type to any of int, long, short, char, or unsigned char C data types, and so on.

The handling and interpretation of signed or unsigned values is left to the external function protocol and your use
of the function.

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 20

ExtIntDevRef - 2018.0.01

Parameter Mapping to a Windows Data Type
The JADE Point primitive type can be used as a parameter to or the return value from an external function, as
listed in the following table.

Windows Data Type Stack Frame Size Bytes JADE Primitive Type

LPPOINT 4 Point

Both the parameter and the return value must be passed by reference, regardless of the parameter usage (for
example, constant, input, or io). The external function must therefore define the parameter or return type as a
reference or pointer to a point structure. In Windows API calls, this corresponds to the LPPOINT typedef; that is, a
pointer to POINT.

C++ Structure or Class Support
JADE does not provide a facility to define structured record types with explicitly named members, although many
external functions take such structures as parameters.

To provide a mapping to structured parameter types, you can define a fixed-length Binary primitive type in the
function signature, where the binary length matches the size of the structure.

It is your responsibility to manually access fields within the Binary structure. For example, the
GetTimeZoneInformation WIN32 Application Programming Interface (API) returns information in a TIME_ZONE_
INFORMATION structure and takes a pointer to this structure as a parameter. If the size and layout of the structure
are known, you can define a binary of the correct fixed-length in the signature.

You can then use the bracket ([]) substring operator on the binary to obtain the contents of individual structure
fields and use type casting to convert them to an appropriate primitive type.

You can use the bufferAddress method of the String or Binary primitive type to determine the actual memory
address if the structure needs to contain a pointer to another structure. For details, see "String Type" or "Binary
Type", in Chapter 1 of the JADE Encyclopaedia of Primitive Types.

Using Real Primitive Types in External Functions
As external functions can use any of the standard external floating point types, you must specify the size of the real
in the parameter definition. A four-byte Real primitive type maps to a C float and an eight-byte Real primitive type
maps to a C double.

Note As the JADE Real primitive type maps internally to a double (8-byte real), conversion to real[4] may result
in loss of precision.

Parameter Passing Conventions
The Windows Standard calling convention only is supported. In the Standard calling convention, parameters are
pushed from right to left.

The called function is responsible for cleaning the stack and the exact number of arguments expected by the
called function must be passed.

Passing by Value or Reference
The "pass by value" and "pass by reference" modes of parameter passing are supported by most languages.

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 21

ExtIntDevRef - 2018.0.01

C++ and Pascal directly support "by reference" parameters and C directly supports only "by value" parameters. In
C, "pass by reference" is emulated by passing the address of a variable to a parameter defined as a pointer to
type.

In JADE external function support, the C++ "by reference" parameter definition of the type& form and the C pointer
parameter definition of the type* form are considered equivalent. As they are the same from the viewpoint of the
caller, the address of a variable is passed to the called function in both forms.

Parameter Passing Rules
The JADE external function facility passes parameters using the following conventions.

Structured parameter (String and Binary) types

Always passed by reference; that is, the address of the String or Binary variable is taken and passed

When usage is output or io (which signifies the calling function may update the value), length must be
specified in the parameter definition

A function that returns a String primitive type is assumed to return a zero-terminated string

A function that returns a Binary primitive type must have the length of the Binary specified in the return
type

Simple parameter (Integer, Character, Real, and Boolean) types

When the usage is defined as constant or input, the parameter is passed by value

When the usage is defined as output or io, the parameter is passed by reference

Structured parameter (Point) type

Always passed by reference; that is, the address of the Point variable is taken and passed

Passing Null Pointer Values
It may be necessary under certain circumstances to pass a null pointer as a parameter value to an external
function. You cannot pass a null pointer parameter value by specifying a value of null or "" in the external function
call, as these both produce a pointer to an empty string instead of a null pointer.

To pass a null pointer parameter value, specify a value of zero (0) in the external function call. For String and
Binary parameters, a value of zero (0) yields a null pointer for the parameter value of the external function.

Unicode Awareness
When defining and using external functions, you must ensure that the correct versions of Unicode or ANSI
functions are used in your function definitions, depending on the required internal String representation. For
example, most WIN32 API functions that take string parameters have two versions: a Unicode (or wide character)
version that is appended with a W character and an ANSI version that is appended with an A character.

For example, the two versions of the IsCharAlphaNumeric WIN32 API function are listed in the following table.

Version WIN32 API Function

Unicode IsCharAlphaNumericW

ANSI IsCharAlphaNumericA

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 22

ExtIntDevRef - 2018.0.01

Calling External Functions from JADE Thin Clients
Use the presentationClientExecution or applicationServerExecution option in the function definition of an
external function (that is, not in the call expression) to specify where the function call is made, as shown in the
following example.

getProfileString(sectionName : String;
keyName : String;
default : String;
value : String[100] output;
length : Integer): Integer is GetProfileStringW in

kernel32 applicationServerExecution;

External functions are called on the JADE thin client workstation by default; that is, presentationClientExecution
is assumed.

Note The presentationClientExecution qualifier has no effect if JADE is not currently running in JADE thin
client mode.

Handling Faults
The Disabled parameter in the [FaultHandling] section of the JADE initialization file specifies how a fault is
handled. If the parameter is set to true, the fault is passed to the system default handler (for example, to Windows
error reporting). If the parameter is set to false, the process is terminated after taking a process dump, where
possible.

A JADE exception can be raised instead of terminating the process. This option is available for a function in a
third-party DLL where any fault that occurred would never imperil the integrity of the executing process (for
example, by corrupting memory or data).

For more details, see the Disabled parameter in Chapter 1 of the JADE Initialization File Reference.

External Interface
Developer's Reference

Chapter 1 Using External Methods and External Functions 23

ExtIntDevRef - 2018.0.01

Chapter 2 Using External Interfaces

This chapter covers the following topics.

External Database Coexistence

ODBC Requirements for External Database Coexistence

Semantic Schema Enrichment

Object Identifier Mapping

External Proxy Classes

Mapping an SQL Data Type to a JADE Primitive Type

Using the External Schema Wizard

Accessing an External Relational Database from JADE

Obtaining a Relational View of Your JADE Database

Configuring a JADE ODBC Driver

JADE ODBC Thin Client Driver

JADE ODBC Driver Soft Entities and Attributes

SQL Examples

Mapping Your JADE Database to a Relational Database

Interfacing to OLE 2.0

Embedding and Linking Objects

What the OleControl Shows

Creating an OLE Control

Activating the OLE Application at Run Time

Connecting to Network Devices Using TCP/IP

External Software Requirements

Using the TcpIpConnection Class

Connection Authentication

Data Encryption

TCP/IP Proxy Servers

Multiple Worker TCP/IP Connections

Connecting to Network Devices Using a Secure Sockets Layer (SSL)

ExtIntDevRef - 2018.0.01

Connecting to Network Devices Using a Named Pipe

External Software Requirements

Using the NamedPipe Connection Class

InternetPipe Subclass

Interfacing to the Internet

For considerations when using the Relational Population Service (RPS) to replicate a production JADE database
to one or more Relational Database Management System (RDBMS) target databases, see Chapter 2, "Relational
Population Service (RPS) Support", in the JADE Synchronized Database Service (SDS) Administration Guide.

External Database Coexistence
JADE external database coexistence provides:

Mapping technology to enrich relational schemas with object model semantics

Tables (base, derived, or predefined views) mapped to subclasses of ExternalObject

Columns mapped to attributes

Foreign key definitions are used to determine inverse relationships

Tuples (or rows) map to instances of external classes

Each external database is represented by a subclass of ExternalDatabase and a singleton instance

Object identifier to primary key mapping enables JADE to uniquely identify a tuple and map this to a proxy
object in JADE

Inverse relationships can be defined and implemented using references to class types

Multiple-valued properties can be implemented with Dictionary, Set, or Array types

JADE can coexist with existing legacy or heritage relational databases in a seamless fashion. JADE provides the
External Schema Wizard, to enable you to map your relational database to a JADE object model. (For details
about using the External Schema Wizard, see Chapter 3, "Transforming an External Relational Database".)

You can map one or more external relational databases into a JADE object model, by using a Global Conceptual
Schema (GCS). The GCS provides a high-level integrated view of external relational databases as part of an
existing JADE schema, hiding structural differences between the JADE object model and the relational model,
giving the appearance of accessing a single unified database. The relationships between tables in the relational
database are mapped to bi-directional relationships using inverse references.

Access relational objects in an external database in a procedural manner, by using the JADE language rather
than constructing Structured Query Language (SQL) statements. The External Schema Wizard enables you to
map:

Tuples (which may be the result of a project/join or a view) to objects

SQL types to JADE primitive types

Joins to bi-directional relationships based on foreign and primary keys

The mapping is specified declaratively rather than programmatically, to reduce coding requirements and to
increase flexibility.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 25

ExtIntDevRef - 2018.0.01

The schema mapping technology is supported by Open Database Connectivity (ODBC), which provides the
gateway to access relational databases. ODBC is used during the schema transformation phase to access catalog
information, and at run time to populate virtual object instances using SQL queries. As ODBC uses SQL as its
database access language, a single application can access different database management systems with the
same source code. The JADE query engine calls functions in the ODBC interface, which are implemented in
drivers; that is, database-specific modules.

ODBC Requirements for External Database Coexistence
To support external database coexistence, the ODBC Data Source Name (DSN) must be defined on any
workstation that is accessing an external relational database. If you are running JADE in thin client mode, the DSN
must be defined on the application server.

External Database Coexistence ODBC Requirements under Windows
The Microsoft Data Access Components (MDAC) installed with your Windows operating system is sufficient for
external database coexistence.

When running JADE on a 64-bit machine under Windows in 32-bit mode, you must define the DSN by using the
32-bit version of the Microsoft Data Source Administrator (that is, do not use the default 64-bit version).

To run the 32-bit version, execute:

<\windows directory>\SysWOW64\odbcad32.exe

When running JADE on a 64-bit machine, the bit version of the JADE node where the JADE external database
code is executed must match the bit version of the external ODBC driver that is being used and the bit version in
which the DSN is defined. For example, if accessing Microsoft Access, which supplies only a 32-bit driver, the
JADE node must be executing in 32-bit and the DSN must be defined in the 32-bit ODBC Data Source
Administrator.

Semantic Schema Enrichment
The semantic schema enrichment process used to take an existing relational database schema and map this into
a JADE object model makes use of existing JADE object concepts and language constructs, to access the
external database in a unified manner.

The schema enrichment process of the External Schema Wizard is not a simple deterministic mapping from a pure
relational schema to a JADE object model, as a relational database schema does not generally provide the
additional higher level semantic information required for deriving useful relationships between classes.

The transformation of a relational schema into a JADE object model by using the External Schema Wizard is
therefore a partially automated process that requires you to specify additional information and for you to have
some knowledge of the semantics of the relational database that is being mapped.

In many cases, JADE can derive certain useful information directly from the relational catalog; for example,
primary and foreign key specifications. Often, foreign key relationships can also be derived from naming
conventions; for example, if dept-id is the primary key of the department table, the External Schema Wizard
deduces dept-id in the employee table is probably a foreign key.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 26

ExtIntDevRef - 2018.0.01

Usage Example
The following example of a partial reference schema definition shows the capability of the mapping to a relational
database provided by JADE.

CREATE TABLE customer
(

id integer NOT NULL,
fname char(15) NOT NULL,
lname char(20) NOT NULL,
address char(35) NOT NULL,
city char(20) NOT NULL,
state char(2) NOT NULL,
phone char(12) NOT NULL,
company_name char(35) NULL,

PRIMARY KEY ("id")
)
CREATE TABLE employee
(

emp_id integer,
manager_id integer,
dept_id integer,
emp_fname char(20),
emp_lname char(20),
salary numeric(20,3) NOT NULL,
start_date date NOT NULL,
birth_date date NULL,
sex char(1) NULL,

PRIMARY KEY ("emp_id")
)

CREATE TABLE department
(

dept_id integer,
dept_name char(40),
dept_head_id integer,

PRIMARY KEY ("dept_id")
)

The schema enrichment process provided by the External Schema Wizard enables this schema to be mapped to
the following JADE schema definition.

typeHeaders

E_Central subclassOf ExternalDatabase;

// External proxy classes
E_Customer subclassOf ExternalObject transient;
E_Department subclassOf ExternalObject transient;
E_Employee subclassOf ExternalObject transient;

// External proxy collections
E_CustomerDict subclassOf ExternalDictionary transient;

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 27

ExtIntDevRef - 2018.0.01

E_DepartmentDict subclassOf ExternalDictionary transient;
E_EmployeeSet subclassOf ExternalSet transient;

typeDefinitions

// Represents external database and is also our 'root object' class
E_Central
(
referenceDefinitions

customers: E_CustomerDict implicitMemberInverse;
departments: E_DepartmentDict implicitMemberInverse;

)

E_Customer
(
attributeDefinitions

address: String[36];
city: String[21];
companyName: String[36];
firstName: String[16];
lastName: String[21];
phone: String[13];

)

E_Department
(
attributeDefinitions

name: String[50];
referenceDefinitions

// SELECT * FROM employee
// WHERE employee.emp_id = department.dept_head_id
manager: E_Employee explicitInverse;
// SELECT * FROM employee
// WHERE employee.dept_id = department.dept_id
employees: E_EmployeeSet explicitInverse;

)

E_Employee
(
attributeDefinitions

birthDate: Date;
firstName: String[20];
lastName: String[20];
salary: Decimal[20,3];
sex: Character;
startDate: Date;

referenceDefinitions
department: E_Department explicitInverse;
manager: E_Employee explicitInverse;

// the following methods were added after the mapping phase using
// the standard JADE class browser
jadeMethodDefinitions

age(): Real; // compute using birthDate
lengthOfService(): Real;

)

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 28

ExtIntDevRef - 2018.0.01

inverseDefinitions
employees of Department automatic parentOf department of E_Employee manual;

Note Tables are not simply mapped to classes, and columns to attributes. The classes contain properties that
are references to other external SQL proxy classes; that is, E_Department and E_Employee. In addition, the E_
Department class defines a multiple-valued property, employees, whose type is a collection.

Object Identifier Mapping
The mapping of an object identifier to primary key (or special columns) mappings directly maps a proxy instance
to a row in the relational database. The ObjectIdentifier property of the proxy denotes the primary key of the
relational entity that the proxy is modeling.

External Proxy Classes
The External Schema Wizard process creates the external proxy class, which acts as the mediator between the
JADE world and the relational world. Proxy classes are derived from a common abstract subclass of Object in the
hierarchy: ExternalObject. The proxy classes that comprise the transformation schema have two components: an
interface and a mapping (or query) specification.

The interface defines the properties and any methods. The mapping, using an SQL-like query, defines how to
populate a proxy object with instances from the external relational database. The tuples, or instances retrieved by
this query, are virtual instances of the proxy object, enabling you to deal with transient instances of the SQL proxy
classes defined in the schema.

An SQL proxy class definition can be mapped from one of the following relational entities.

A base table

A relational database view

A query (for example, a join)

The properties of a proxy class can be attributes or virtual references. Attributes are simple types whose domain is
one of the supported JADE primitive types. The type of an external reference can be another external class type or
an external collection. External references are always defined as explicit inverse references. These references
are implemented using mapping methods, and employ an external object or an external collection method to
retrieve an instance.

The JADE query engine provides methods on the external schema entities used by the External Schema Wizard
to import catalog information from an external relational schema. These methods employ the relevant ODBC
catalog functions. As some drivers or data sources do not support all required functions, the External Schema
Wizard has less information to use for production of a default mapping.

The JADE query engine interrogates driver capability, to determine whether a required function is available before
using it; for example, catalog functions, block mode, and scrollable cursors.

The following entities are imported from external relational catalogs and are stored as persistent meta information
in your JADE schema.

Tables

Columns

Primary and foreign keys

Indexes

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 29

ExtIntDevRef - 2018.0.01

The catalog import functions create new entities in the JADE schema or update existing definitions if they already
exist, to enable the External Schema Wizard to provide schema upgrade capabilities.

JADE provides the classes listed in the following table, to encapsulate the behavior of your external database
schema.

Class Description

ExternalArray Represents the rows in a result set generated from an SQL query containing a sort
specification

ExternalCollection Provides the common protocol for external collection classes

ExternalDatabase Represents a connection to an external database

ExternalDictionary Represents the rows in a result set generated from an SQL query with an ORDER BY sort
specification

ExternalIterator Encapsulates behavior required to sequentially access elements of a collection

ExternalObject Base class for all external database classes

ExternalSet Represents the rows in a result set generated from an SQL query that has no sort
specification

ExternalSet Represents the rows in a result set generated from an SQL query that has no sort
specification

ODBCException Defines behavior for exceptions that occur as a result of ODBC communicating with
external databases

For details, see Chapter 1 of the JADE Encyclopaedia of Classes.

Mapping an SQL Data Type to a JADE Primitive Type
The following table lists the ANSI SQL data types and the JADE primitive types to which they are mapped by
default.

ANSI SQL Data Type JADE Primitive Type

BINARY, VARBINARY, LONGVARBINARY Binary

BIT Boolean

CHAR(1), TINYINT Character

CHAR, VARCHAR, LONGVARCHAR String

DECIMAL and NUMERIC (precision and scale factor) Decimal (precision and scale factor)

REAL, FLOAT, DOUBLE Real

INTEGER, SMALLINT Integer

BIGINT (64-bit integer) Decimal[20, 0]

DATE Date

TIME Time

TIMESTAMP TimeStamp

Some external databases may have restrictions in the use of specific SQL data types, which the user may need to
be aware of when changing data in those databases.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 30

ExtIntDevRef - 2018.0.01

SQL Server Restrictions
If inserting character strings into a SQL Server database, trailing spaces may be added, depending on the type of
the SqlServer field and the Use ANSI Null, Paddings andWarnings setting. For details, see the SQL Server
documentation.

MS Access 2007 Restrictions
Multi-valued fields are mapped to String by the Microsoft (MS) Access ODBC driver. An update of a Multi-valued
field in JADE code results in an error from MS Access.

Multi-valued fields that are marked as indexes have collections created by default in the JADE import, even
though use of these collections results in an error from MS Access.

In both cases, the ODBC interface does not distinguish Multi-valued fields from Memo fields.

Using the External Schema Wizard
The External Schema Wizard automates the process of transforming a relational database model into a JADE
object model.

Use the External Schema Wizard to access the catalog information from selected external data sources and
generate classes. For details, see Chapter 3, "Transforming an External Relational Database".

Note Some data sources (ODBC drivers) may not support all catalog functions and some schemas may not
contain all of the information required to derive or suggest possible relationships.

The External Schema Wizard enables you to:

Select data sources configured on the development workstation

Import information from a relational catalog, including tables, columns, primary and foreign keys, and
indexes

Select tables for transformation

Map base tables or views, as well as join derived tables to classes

Select columns, and column to attribute mapping

Override default names suggested for all entities

Automatically map SQL types to JADE primitive types

Override the default JADE primitive types and length mappings

Define external collection types, based on suggested potential dictionaries using primary key and index
information obtained from the catalog

Define relationships between derived classes, based on suggested potential relationships using foreign key
information

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 31

ExtIntDevRef - 2018.0.01

Accessing an External Relational Database from JADE
You can access the relational database using the JADE language and by navigating relationships using inverse
references; for example, you can code the following style of iterative access.

foreach emp in dept.employees do
emp.display;

endforeach;

This code uses the external iterator and an external collection. The external collection issues the required SQL
query to create a virtual collection of instances; that is, the rows of the employee table, where employee.dept_id =
department.dept_id. The dept_id foreign key is obtained from the virtual department instance, which is the
parent of the virtual employee dictionary.

The ExternalIterator class implements the standard iterator protocol; that is, the next and back methods, and so
on.

The external iterator and external collections enable constructs like the foreach instruction to function in a
transparent fashion.

Accessing Objects in Your External Database
The ExternalIterator class, the ExternalCollection class, and its subclasses provide methods with behavior
similar to that of the methods provided by the corresponding JADE classes. For details, see Chapter 1 of the JADE
Encyclopaedia of Classes.

Tip You do not have to explicitly open your external database, but if you do so, you must also close it explicitly.

You can access objects (or records) in your external database by using the getAtKey method of the
ExternalDictionary class, as shown in the following example.

getEmployee;
vars

ed : EmployeesByLastNameDict; // an external dictionary
emp : Employee; // an external object

begin
create ed;
emp := ed.getAtKey("D");
write emp;

epilog
delete ed;

end;

In this example, EmployeesByLastNameDict is an index in the relational database that has been described to
JADE by the External Schema Wizard. You can also use the ExternalDictionary and ExternalIterator class
dictionary and iterator methods and the foreach instruction to access entries in an external collection sequentially.

The following example shows the use of the foreach instruction.

vars
ed : EmployeesByLastNameDict; // an external dictionary
emp : Employee; // an external object

begin
create ed;
foreach emp in ed do

listBoxEmployees.addItem(emp.employeeName);

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 32

ExtIntDevRef - 2018.0.01

endforeach;
end;

The following example shows the use of an iterator.

vars
ed : EmployeesByLastNameDict; // an external dictionary
emp : Employee; // an external object
iter : ExternalIterator;

begin
create ed;
iter := ed.createIterator;
while iter.next(emp) do

listBoxEmployees.addItem(emp.employeeName);
endwhile;

epilog
delete ed;
delete iter;

end;

To add objects (or rows) to your external database, use the ExternalCollection class createObject method and
the ExternalObject class update method, as shown in the following example.

createEmployee;
vars

ed : EmployeesByLastNameDict; // an external dictionary
emp : Employee; // an external object

begin
create ed;
emp := ed.createObject; // creates a reference to the object
emp.employeeName := "Sid";
emp.update; // updates collection with the new object

epilog
delete ed;

end;

To update an object, use the ExternalObject class update method, as shown in the following example.

updateEmployee;
vars

ed : EmployeesByLastNameDict; // an external dictionary
emp : Employee; // an external object

begin
create ed;
emp := ed.last;
if emp.isUpdatable then

emp.region := "ZZ";
emp.update;

else
write "not updateable";

endif;
epilog

delete ed;
end;

The beginExternalTransaction and commitExternalTransaction methods provided by the ExternalDatabase
class enable you to start an external database transaction if your external database supports transactions.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 33

ExtIntDevRef - 2018.0.01

You can use this method at the start of a series of updating operations (that is, creates, deletes, or updates) that
must be applied atomically to the target database to ensure consistency and the ability to recover. (Updates are
committed immediately, by default, if they are not within a beginExternalTransaction and
commitExternalTransaction pair of instructions which delays the commitment of updates until the
commitExternalTransaction method is called.)

Summary of the Properties and Methods Provided by External Database Classes
This subsection contains a summary of the properties and methods provided by external database classes. For
details, see the appropriate class in Chapter 1 of the JADE Encyclopaedia of Classes.

The ExternalArray class encapsulates the behavior of an ordered virtual collection that represents the rows in a
result set generated from an SQL query containing a sort specification; that is, the ORDER BY clause. Instances of
this class occur in the order determined by the ORDER BY clause. It does not explicitly provide any properties or
methods. It inherits those provided by the ExternalCollection superclass.

The ExternalCollection class provides the common protocol for external collection classes. External collection
classes represent the result set of a selection from an external data source. External collections provide
operations for direct and relative key access, and may be used in collaboration with external iterators to access
rows in a result set. They are read-only; that is, operations such as add, remove, clear, and purge are not
supported.

The properties provided by the ExternalCollection class are summarized in the following table.

Property Description

database Contains a reference to the external database instance

filterExpression Contains the filter that enables you to select specific rows

sortExpression Contains the expression that controls how instances in the collection are ordered

The methods provided by the ExternalCollection class are summarized in the following table.

Method Description

at Returns the entry at a specified index in the collection

canCreate Returns true if member type instances can be created

createIterator Creates the external iterator for an external collection

createObject Creates a new instance of the external object

first Returns the first entry in the collection

getSQL Returns the SQL statement of the receiver

includes Returns true if the collection contains the specified object

last Returns the last entry in the collection

maxSize Returns the maximum number of entries that the external
collection can contain

size Returns the current number of entries in the collection

The ExternalDatabase class encapsulates the behavior required to access entries in an external database. This
class represents a connection to an external database, and provides properties and methods that operate on the
data source.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 34

ExtIntDevRef - 2018.0.01

The properties provided by the ExternalDatabase class are summarized in the following table.

Property Description

connectionString Contains parameters required to connect to a data source

name Contains the name of the external database

password Contains the password required by the data source

serverName Contains the name of the server defined for the data source

userName Contains a user id used to establish a connection

The methods provided by the ExternalDatabase are summarized in the following table.

Method Description

abortExternalTransaction Rolls back the changes made during the current transaction

beginExternalTransaction Starts a database transaction

canTransact Returns true if the external database supports transactions

close Closes the connection to an external database

commitExternalTransaction Commits a transaction

executeSQL Directly executes an SQL statement

getFileDSN Returns the file data source name

getLastError Returns the last ODBC exception when the isSQLValid
method returns false

getMachineDSN Returns the machine data source name

importStoredProcedures For internal use only

isOpen Returns true if the external database is currently open

isSQLValid Checks the syntax of an SQL statement

isUpdatable Returns true if the external database can be updated

loadProcedure Reserved for future use

open Opens a connection to an external database

setFileDSN Programmatically sets the file data source name

setMachineDSN Programmatically sets the machine data source name

The ExternalDictionary class encapsulates the behavior of an ordered virtual collection containing keys that
represents the rows in a result set generated from an SQL query containing a sort specification; that is, the
ORDER BY clause. External dictionaries provide direct key access to an external object instance; that is, random
access to a row or tuple in the relational database.

The methods provided by the ExternalDictionary class are summarized in the following table.

Method Description

getAtKey Returns the object at the specified key

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 35

ExtIntDevRef - 2018.0.01

Method Description

getAtKeyGeq Returns the object with a key greater than or equal to the
specified key

getAtKeyGtr Returns the object with a key greater than the specified key

getAtKeyLeq Returns the object with a key less than or equal to the
specified key

getAtKeyLss Returns the object with a key less than the specified key

includesKey Returns true if the receiver contains an entry at the specified
key

startKeyGeq Sets a start position within a collection for an external iterator
object

startKeyGtr Sets a start position within a collection for an external iterator
object at the next object after the specified key

startKeyLeq Sets a start position within a collection for an external iterator
object at the object equal to or before the specified key

startKeyLss Sets a start position within a collection for an external iterator
object at the object before the specified key

The ExternalIterator class encapsulates the behavior required to sequentially access elements of an external
collection. An external iterator instance sequentially accesses the virtual instances of the collection, in a forward or
a reverse direction. The methods provided by the ExternalIterator class are summarized in the following table.

Method Description

back Accesses entries in reverse order in the collection to which
the external iteration is attached

getCollection Returns the external collection associated with the receiver

isValid Returns true if the receiver is a valid external iterator

next Accesses successive entries in the collection to which the
external iterator is attached

reset Initializes the external iterator

startAtIndex Sets the starting position of the external iterator to a specified
row in the result set

The ExternalObject class provides a superclass for all external class subclasses, and defines the behavior
specific to external proxy classes. The query engine uses the ExternalObject class at run time to populate virtual
proxy instances. Each external class contains the SQL query required to populate a class extent or to do a join
query for a single valued reference.

The methods provided by the ExternalObject class are summarized in the following table.

Method Description

deleteSelf Deletes the external object

isUpdatable Returns true if instances can be updated (that is, create,
delete, or update instances)

update Completes a create or update operation and saves changes
to the external database

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 36

ExtIntDevRef - 2018.0.01

The ExternalSet class encapsulates the behavior of an unordered virtual collection that represents the rows in a
result set generated from an SQL query that has no sort specification; that is, it has no ORDER BY clause. The
order in which instances are retrieved is dependent on your data-source. The method provided by the
ExternalSet class is summarized in the following table.

Method Description

includes Returns true if the virtual external collection or result set
contains the specified object

Object Lifetimes
The lifetime of external objects is conceptually persistent, as they are retrieved from a persistent database.
However, the external proxy objects are implemented as shared transient objects in JADE.

You can create and delete rows or records in an external database, by using methods provided by the relevant
classes. The creation and deletion of proxy objects is automatic. A proxy can have one current object only for each
collection reference, which corresponds to the current-row in a cursor operation.

Caution When using proxy objects, do not retain references to an external object beyond the last access for a
specific collection; that is, the last direct or relative key access or the last object fetched using a foreach instruction
or the next or back method of the ExternalIterator class.

Using External Collections
External collections implement non-updating collection methods; for example, the first, last, and size methods.

External dictionaries provide direct key access to instances of an external object; that is, random access to a row
or tuple in the external relational database. For example:

department := E_Company.departments[name];

Relative key access is provided by the dictionary key methods; for example, getAtKeyGtr or startKeyLss.

SQL server locks are released when the cursor used to perform the query is closed. JADE manages cursors
automatically, and closes them under the following conditions.

Cursors used to support an iteration are closed when the external iterator is deleted (or at the end of a
foreach instruction).

Cursors used for collection-level access methods such as first, last, getAtKey, and so on, are closed when
the collection is used for a different query or the collection is deleted.

All cursors are closed when the database connection is explicitly closed.

ADHOC Query Extensions
ADHOC queries are supported, enabling you to explicitly set filtering (by using the WHERE clause) and sort
specifications (by using the ORDER BY clause) on external collections at run time, overriding the canned query
associated with the collection.

The filterExpression and sortExpression properties provided by the ExternalCollection class enable you to
explicitly set external collections at run time. You can set these properties before a collection is used in a foreach
instruction or in conjunction with an iterator. The filterExpression property allows the SQL WHERE clause
associated with a collection to be specified or overridden and the sortExpression property allows the SQL
ORDER BY clause to be specified or overridden. These expressions are combined with the column list and table
selection expressions to build an SQL query.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 37

ExtIntDevRef - 2018.0.01

For example, you could use these properties to create a shared external collection instance, set the filter and sort
expressions, and then use an iterator or foreach instruction to fetch the instances, as shown in the following
example.

findRichCustomers();
vars

accounts : CustomerAccountSet;
account : Account;

begin
create accounts;
accounts.filterExpression := "account.balance > 100000";
accounts.sortExpression := "account.balance";
foreach account in accounts do

display(account.number, account.name);
endforeach;

end;

For more details, see "ExternalCollection Class", in Chapter 1 of the JADE Encyclopaedia of Classes.

Sequential Access
External iterators implement the standard iterator protocol, and you can use them directly.

Standard JADE foreach instruction syntax is fully supported, including the reversed and where clauses.

Exception Handling
The ODBCException class provides additional information specific to the ODBC interface for external database
access.

Changes to the external relational database schema that may become inconsistent with the schema mapping are
detected and handled.

Schema Mismatch Exceptions
Special consideration is given to detecting and handling changes to the relational schema that may become
inconsistent with the schema mapping. In some cases, changes are handled transparently. For example, when a
column is added or the column type is changed and a valid type mapping still exists, the query engine creates a
proxy, mapping the actual columns to the attributes defined in JADE.

Some types of changes to the relational schema render mappings or queries invalid; for example, when a table
that is mapped to an external class is deleted.

When a mapping or query that is no longer valid is referenced, the appropriate ODBC exception is raised.

When the schema mapping becomes so out of date that it is unusable, you must return to the External Schema
Wizard to update the mapping information.

Optimizing the where Clause
The JADE foreach instruction optimizes special cases when the predicate following the where clause consists of
a conditional key expression, including when iterating with a foreach instruction over an external proxy collection.
(For details, see "where Clause Optimization", in Chapter 1 of the JADE Developer’s Reference.)

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 38

ExtIntDevRef - 2018.0.01

A special case occurs when the predicate following the where clause contains operands that are all attributes of
the collection member type. In this case, the where predicate from the foreach instruction can become the where
predicate in the SQL statement or it can be joined with an existing where predicate in the query specification
associated with the external collection.

Updating External Databases
Positioned (cursor-based) or non-cursor updates are supported by external collection methods to create, update,
or delete a current external proxy object, as follows.

Non-cursor updates

The ExternalDatabase and ExternalObject classes provide transaction support and direct SQL execution.
The executeSQL method of the ExternalDatabase class enables you to perform searched updates.

Cursor-based updates

Positioned (cursor-based) updates are supported by ExternalCollection class methods to create, update, or
delete a current proxy object.

Use the colon and equals symbols (:=) assignment operator to update the attributes of a proxy. (For details, see
"Assignments", in Chapter 1 of the JADE Developer’s Reference. See also "Accessing Objects in Your External
Database", earlier in this chapter.)

Security at Run Time
Your external relational database can have table-level or column-level security enforced.

If a user does not have the required access rights for selected columns in a table, these columns are initialized to
JADE null values in the external proxy class.

If a specific query is not possible for security reasons, an ODBC exception is raised.

Obtaining a Relational View of Your JADE Database
The JADE ODBC (Open Database Connectivity) standard driver and thin client driver are provided to enable you
to use SQL statements to access a relational view of your JADE database. You can use a JADE ODBC driver with
any tool that accesses databases using ODBC (for example, MS Query or Crystal Reports).

The JADE Relational Views Wizard enables you to create relational views of your JADE database. For details
about using this wizard to define relational views, see Chapter 9, "Defining ODBC Inquiry Relational Views and
Ad Hoc Indexes", in the JADE Development Environment User’s Guide.

For guidelines about query optimization, soft attributes, and thin client and application server queries, see the
Relational Queries Using ODBC white paper on the JADE Web site at https://www.jadeworld.com/developer-
center/resource-library/white-papers.

The JADE ODBC drivers are installed as part of the JADE installation process. When you have created a
relational view of your JADE database, you must then configure an ODBC data source in order to access your
relational view. For details, see "Configuring an ODBC Driver", later in this chapter.

The JADE ODBC drivers are invoked by another application, often a third-party generic tool (for example, a report
writer) to access data in the JADE database. A JADE ODBC driver differs from other JADE invocations in that it
has no command line arguments passed to it and it has no control over the directory from which it is invoked. It
must therefore obtain all of its session parameters from the data source configuration or environment variables.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 39

https://www.jadeworld.com/developer-center/resource-library/white-papers
https://www.jadeworld.com/developer-center/resource-library/white-papers

ExtIntDevRef - 2018.0.01

The JADE ODBC thin client establishes a TCP/IP connection with a user-defined ODBC server application
running in a JADE node. The JADE ODBC standard (fat) client runs as a JADE client node, establishing
communication with a JADE database server in the same way as any other JADE standard client.

The JADE ODBC driver is a Core Level implementation of an ODBC Version 3.51 driver. The ODBC driver
accepts only SQL keywords that are all uppercase characters (for example, LIKE), or optionally keywords with an
initial capital letter (for example, Like, but not like or liKe) or keywords that are all lowercase characters (for
example, the SQL Server keywords). The case of identifier characters used in a query must be distinct from those
in keywords.

The JADE ODBC drivers are available in 32-bit and 64-bit versions. If running on a 64-bit machine, the driver used
must match the third-party tool being used; for example, it may be necessary to install 32-bit JADE ODBC drivers
for use with 32-bit tools.

Notes The OidFieldSeparator parameter in the [JadeOdbc] section of the JADE initialization file on the server
enables you to customize the OID field separator with a single punctuation or similar character (for example, @).
This can be useful when the default OID String values that are produced are misinterpreted by a third-party tool as
a different ODBC type such as a Decimal.

Time attributes are handled differently in Access 97 (where they are retrieved as a character string) and Access
2000 (where they are retrieved and displayed as a time stamp). This causes differences in the display of time
fields.

The ODBC driver supports SQL Minimum Grammar, including the following.

=, >, <, <=, and >= comparison operators

LIKE pattern matching operator

NOT, AND, and OR boolean operators

SELECT, FROM, WHERE, and ORDER BY clause

In addition to the SQL Minimum Grammar, the ODBC driver supports the following.

GROUP BY and HAVING clauses

The following aggregate functions

COUNT(*) and COUNT([ALL|DISTINCT] columnName)

columnType is SQL_BIGINT

SUM([ALL | DISTINCT] columnName) and AVG([ALL | DISTINCT] columnName)

Valid for numeric types only

columnType is dependent on type of columnName

SQL_TINYINT or SQL_INTEGER : columnType is SQL_INTEGER

SQL_BIGINT : columnType is SQL_BIGINT

SQL_DECIMAL(p, s) : columnType is SQL_DECIMAL(23, s)

MIN([ALL | DISTINCT] columnName) and MAX([ALL | DISTINCT] columnName)

Valid for all types except SQL_BIT

columnType is the same as columnName type

Simple Joins and left and right outer Joins, but it does not support Nested Queries

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 40

ExtIntDevRef - 2018.0.01

UNION clause, which combines the results of two queries when the queries have the same number of
columns and the selected columns are of the same data type

SELECT clause AS<column-name> column aliasing predicate that can be used in the ORDER BY clause

For SQL Server queries, you must enclose all table and field names that conflict with SQL keywords with double
quotation ("") characters. (See the Query Analyzer help for details.) The third sheet of the System DSN wizard in
the ODBC Data Source Administrator has the configurable Use ANSI quoted identifiers check box, which
enables RPS to interrogate the RPS ODBC data source that it uses to determine if to quote SQL identifiers (that is,
table, column, and procedure names). This allows reserved T-SQL keywords to be used in SQL statements, which
is useful if you want a property to have the same name as a T-SQL reserved word.

Notes When importing tables from JADE using Microsoft Access, do not select any field as the Unique Record
Identifier. Although the object identifier (oid) seems the natural choice for this, Access performs validation that
causes unnecessary problems and it does not work at all with Access 2000 and Windows 98. The Unique Record
Identifier is useful to Access only when updating tables, which is not allowed in the JADE database.

When using the JADE ODBC standard client and setting the TerminateProcessOnDisconnect parameter in the
[JadeClient] section of the JADE initialization file to true, unwanted side-effects may occur when the connection to
the JADE database server is disconnected, as the underlying program that opened the connection is also
terminated.

When using the JADE ODBC standard client, we recommend that cache coherency is used in the ODBC node, to
ensure use of the latest edition.

The output of query execution tracing to the jommsg.log file is switched on or off using the
QueryExecutionTraceOn parameter in the [JadeOdbc] section.

The values returned by the JADE ODBC driver for a Date attribute are listed in the following table.

Attribute Value Returned Value

Valid date Valid date

Value not initialized Null value

Value invalid Current date (with non-fatal warning)

The values returned by the JADE ODBC driver for a Time attribute are listed in the following table.

Attribute Value Returned Value

Valid time Valid time

Value not initialized 00:00:00 (default value == 0)

Value invalid 00:00:00 (with non-fatal warning)

The values returned by the JADE ODBC driver for a TimeStamp attribute are listed in the following table.

Attribute Value Returned Value

Valid date/time Valid date/time

Value not initialized Current date 00:00:00

Date not set/time set Current date and time (as in ODBC specifications)

Date set/time not set Valid date/00:00:00

Invalid values Current date 00:00:00 (with non-fatal warning)

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 41

ExtIntDevRef - 2018.0.01

Configuring a JADE ODBC Driver
The JADE ODBC drivers are installed as part of the JADE installation process. The following subsections explain
how to configure a JADE ODBC driver.

As the JADE ODBC driver is invoked by third-party applications, it is unlikely that your current working directory
will identify the path for the JADE libraries.

If your JADE libraries are not located in your current working directory, the libraries are loaded from the same
directory as the JADE ODBC driver. If the libraries are not found in that directory, exception 8327 is raised.

Windows ODBC drivers are run from the directory specified by the following registry values.

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\OBDCINST.INI\JADE ODBC Driver\Driver

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\OBDCINST.INI\JADE ODBC Driver\Setup

Each data source may also store where to find its driver directly, as follows.

HKEY_CURRENT_USER\SOFTWARE\ODBC\OBDC.INI\Data-Source\Driver

Tips If the operating system error 126 (ERROR_MOD_NOT_FOUND), error 1157 (ERROR_DLL_NOT_
FOUND), or JADE error 8327 (Directory location of the Jade ODBC library in the DSN is not the Jade Install
Directory) is raised, check that the ODBC driver has been installed by accessing the Control Panel ODBC applet
to determine if the JADE driver is listed on the ODBC Drivers sheet. If not, install the driver by using the JADE
installation medium or odbcinst.

If the JADE driver exists but it is listed as Not Marked or it is the incorrect version, the registry settings specified
earlier in this section are pointing at the wrong directory and need to be corrected. If the version is correct, check
that the directory contains valid JADE library files.

Adding a Data Source
To add a new data source

1. Run the Microsoft Data Source Administrator program from the Control Panel Administrative Tools option
Data Sources (ODBC) applet.

If you are running JADE on a 64-bit machine under Windows in 64-bit mode and you are configuring a 32-bit
tool, run the following program:

<\windows-directory>\SysWOW64\odbcad32.exe

This runs the 32-bit version of the Microsoft Data Source Administrator program rather than the 64-bit
version.

2. To add a JADE data source for all but SQL Server, select the User DSN tab. For SQL Server, select the
System DSN tab.

3. Click the Add button. The Create New Data Source dialog is then displayed. The list box displays the
following JADE ODBC drivers:

A generic standard driver that is updated with each JADE release

A version-specific standard driver that is specific to a release of JADE

The thin client driver

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 42

ExtIntDevRef - 2018.0.01

4. Select the appropriate JADE ODBC driver.

5. Click the Finish button.

You can then configure the JADE ODBC standard client or thin client driver. For details, see "Configuring the
JADE ODBC Standard Client Driver" and "Configuring the JADE ODBC Thin Client Driver", in the following
subsections.

Configuring the JADE ODBC Standard Client Driver
The JADE ODBC Setup dialog, shown in the following image, is displayed when you have added a new data
source for a JADE ODBC standard client driver on the Create New Data Source dialog.

To configure the JADE ODBC standard client data source

1. In the Data Source Name text box, specify your data source name. You can specify any name that you
choose, to identify this data source.

2. In the Description text box, specify a description of the data source. This description is for your own
documentation for the data source.

3. In the Directory text box, specify the directory that is the location of your JADE database. In multiuser mode,

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 43

ExtIntDevRef - 2018.0.01

this is the location of the database on the server.

Tip If you have the server workstation mapped to a different drive, you would still specify the drive that is
seen by the server workstation as the database location, regardless of the drive mapping of individual client
workstations. This is the same directory specified in the path parameter when running a standard client on
that machine.

4. In the JADE INI File text box, specify the full path and file name of the JADE initialization file on the client
node. The initialization file defaults to jade.ini, located in your database (system) path.

5. In the Server Type list box, select the required server type. The default server type is SingleUser.

6. In the Keywords list box, the All Upper option is selected by default and specifies that only reserved words
(or keywords) that are all uppercase characters are recognized; that is, they adhere to the ODBC standard
and minimize reserved word conflicts with your user table or column names. (For details about the ODBC
reserved words, see "ODBC Reserved Words", in Appendix A.)

Select the Initial Upper option if you want all ODBC reserved words converted to an initial capital letter so
that words such as Like (which is used by some applications) are then recognized.

Select the Upper or Lower option for SQL Server, whose keywords are sent to the ODBC driver in lowercase
format.

7. In the Schema Name text box, specify the name of the schema from which the data for your relational view is
to be sourced.

8. In the App Name text box, specify the name of the application from which the data for your relational view is
to be sourced.

9. In the View Name text box, specify the name of the required relational view. The relational view that you
specify must already exist. For details, see "Defining Your Relational View", in Chapter 9 of the JADE
Development Environment User’s Guide.

10. If you want to define multiple schema and relational view pairs for a DSN, click the Add View button. For
details, see "Specifying Additional Relational Views", later in this chapter.

11. Click the OK button. Alternatively, click the Cancel button to abandon your selections.

You can now use the DSN to access data defined in the relational view.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 44

ExtIntDevRef - 2018.0.01

Configuring the JADE ODBC Thin Client Driver
The JADE ODBC Thin Client Setup dialog, shown in the following image, is displayed when you have added a
new data source for a JADE ODBC thin client driver on the Create New Data Source dialog.

To configure the JADE ODBC thin client data source

1. In the Data Source Name text box, specify your data source name. You can specify any name that you
choose, to identify this data source.

2. In the Description text box, specify a description of the data source. This description is for your own
documentation for the data source.

3. In the Server Hostname text box, specify the name of the host that is used to connect to a JADE ODBC
service application.

4. In the Server Port Number text box, specify the port number for which the ODBC service application accepts
connections.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 45

ExtIntDevRef - 2018.0.01

5. In the Server Transport combo box, the TcpIPv4 option is selected by default, and specifies the transport
type to connect to the server node. The server transport values available for your ODBC thin client
connection are:

TcpIPAny, which connects using IP version 4 or 6.

TcpIPv4, which connects using IP version 4.

TcpIPv6, which connects using IP version 6.

For the TcpIPAny transport type, the client will first attempt to connect via IP version 6 and then IP version 4
protocol on the provided IP addresses. Each connection failure will be logged, and the next available
combination tried. For details about the TCP/IP transport, see "TCP/IP Transport", in Chapter 2 of your JADE
Installation and Configuration Guide.

6. In the Schema Name text box, specify the name of the schema from which the data for your relational view is
to be sourced.

7. In the View Name text box, specify the name of the required relational view. The relational view that you
specify must already exist. For details, see "Defining Your Relational View", in Chapter 9 of the JADE
Development Environment User’s Guide.

8. In the Keywords combo box, the All Upper option is selected by default and specifies that only reserved
words (or keywords) that are all uppercase characters are recognized; that is, they adhere to the ODBC
standard and minimize reserved word conflicts with your user table or column names. For details about the
ODBC reserved words, see "ODBC Reserved Words", in Appendix A.

Select the Initial Upper option if you want all ODBC reserved words converted to an initial capital letter so
that words such as Like (which is used by some applications) are then recognized.

Select the Upper or Lower option for SQL Server, whose keywords are sent to the ODBC driver in lowercase
format.

9. In the Client Buffer Size combo box, the 1M option is selected by default and specifies the size of the client
buffer. The size of the thin client buffer determines the maximum data transfer size for the result set from the
ODBC service application to the presentation client.

The actual maximum size is the minimum of the selected client buffer size and the value of the
ServerResultSetBufferSize parameter in the [JadeOdbc] section of the JADE initialization file.

If you want to change the size of the client buffer, select the required value from the 1M (the default), 2M, 5M,
and 10M items in the drop-down list.

10. Click the OK button. Alternatively, click the Cancel button to abandon your selections.

You can now use the DSN to access data defined in the relational view.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 46

ExtIntDevRef - 2018.0.01

Specifying Additional Relational Views
If you want to define multiple schema and relational view pairs for a DSN and you clicked the Add View button on
the JADE ODBC Setup dialog, the Additional Relational Views dialog, shown in the following image, is then
displayed.

To specify additional relational views

1. In the Schema Name and View Name pairs of text boxes, enter the schema and relational view names of
each pair that you require for the DSN.

When you have defined all additional schema and relational view pairs that you require, click the OK button
to return to the JADE ODBC Setup dialog. All additional relational views for the DSN are then displayed in
the Additional Relational Views list box.

The tables in all relational views are available to the caller. It is your responsibility to ensure that there are no
name conflicts in the included relational views, as there is no check for the same table name included in
multiple relational views. If there is a table name conflict, an exception is raised if the table is accessed.

To avoid table name conflicts across multiple views and schemas, you can use the Add Class Prefix item in
the Modifier list box and specify the prefix in the Value box on the ninth sheet of the Relational View Wizard
to prefix table names with a unique code.

The ODBC driver logs into JADE using the top-level schema name and application name defined in the DSN
(that is, specified in the Schema Name and App Name text boxes on the JADE ODBC Setup dialog). Any
methods called that are not in the application schema may raise an exception if they access the global or
app system variable.

The log-in application security method called, if any, is defined in the top-level relational view for tables in all
schemas.

2. Click the OK button. Alternatively, click the Cancel button to abandon your selections.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 47

ExtIntDevRef - 2018.0.01

Using the Data Source in a Connection String
In some cases, you may be required to specify an ODBC connection string. The syntax of the connection string is
as follows.

DSN=DSN-name;UID=userid;PWD=password;

JADE ODBC Thin Client Driver
The JADE ODBC thin client driver must be installed and configured on the machine on which the ODBC tool is to
be run. This driver (jadodbc_c.dll) must be installed with all JADE libraries included in a thin client installation.

The server side of the ODBC thin client driver is a user-defined ODBC service application that can be run in any
JADE node.

JADE ODBC Service Application
The JADE ODBC service application is a user-defined non-GUI application that provides TCP/IP connection to the
JADE database for the JADE ODBC thin client driver. The node providing the service can be a standard client,
application server, or database server node.

The server-side network transport and connection management are provided by the JADE multiple-worker TCP
transport mechanism. The multi-worker infrastructure enables a number of client connections to be supported by a
smaller number of worker processes. ODBC queries are executed by a worker process selected from a pool of
worker processes.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 48

ExtIntDevRef - 2018.0.01

User-Defined ODBC Service Application
To define an ODBC service application:

Define a non-GUI application in the schema that defines the relational view that is being used in the ODBC
DSN.

The application must call the following method from its initialize method.

Application::odbcWorkerInitialize

The application must call the following method from its finalize method.

Application::odbcWorkerFinalize

The odbcWorkerIntialize method processes the ODBC server configuration parameters, starting additional copies
of the application as required.

When ODBC initialization has completed successfully, the service is ready to accept client connections on the
configured TCP listen port. Each worker application joins the transport group associated with the ODBC service
for a schema and relational view combination.

Configuring an ODBC Service
The following subsections cover configuring an ODBC service.

Defining the Configuration in the JADE Initialization File
The [JadeOdbcServer] section of the JADE initialization file contains the ODBC server configuration parameters;
for example:

[JadeOdbcServer]
ListenHostName = localHost
ListenPort = 53099
ReadTimeout = 0
MinWorkers = 1
MaxWorkers = 1
QueueDepthLimit = 1
QueueDepthLimitTimeout = 2
WorkerIdleTimeout = 120

To support multiple schema and relational view combinations, the [JadeOdbcServer] section of the JADE
initialization file can include the ApplicationConfigFile parameter containing the name of an XML configuration
file, which can define the configuration parameters for multiple JADE ODBC service applications; for example:

[JadeOdbcServer]
ApplicationConfigFile=D:\jadetest\database\A6300\odbc_config1.xml

Creating and Maintaining the Configuration File
Use the JADE Monitor schema OdbcServerConfigurator application to create and maintain the XML
configuration file, as shown in the following example.

jade.exe path=c:\jade\system ini=c:\jade\system\jade.ini schema=JadeMonitorSchema
app=OdbcServerConfigurator

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 49

ExtIntDevRef - 2018.0.01

The OdbcServerConfigurator application provides the Odbc Server Config dialog, shown in the following image,
which enables you to define sections in the XML file for multiple schema and application name combinations,
where the application name matches the name of your user-defined ODBC service application.

To configure the ODBC server

1. In the File menu, select the:

New command, if you want to add a new ODBC server configuration. The dialog then displays in black
the application and ODBC configuration parameter values. When you add and save an ODBC server
configuration, a file with a default name of config<n>.xml is output to the path that you specify. (The <n>
value is incremented with each subsequent configuration file.)

Open command, if you want to maintain an existing ODBC server configuration. The common Open
dialog is then displayed, to enable you to select the config<n>.xml ODBC configuration file that you
required. When you have selected the appropriate file from its destination and clicked the Open button,
the Odbc Server Config file dialog is then populated with the parameter values from that file.

Append New command, if you want to add a new ODBC server configuration to the end of an existing
configuration file. (This command is enabled only when a new or an existing ODBC server
configuration is displayed in the dialog.)

2. In the schema and name rows, specify the name of the schema and application from which the data for your
relational view is to be sourced, respectively.

3. Click on the odbc_config node to expand it, and then specify the following optional parameter values to
meet your requirements.

a. The optional listen_host_name parameter specifies the host name or IP address of the local interface
card on which to listen. If you do not specify this parameter or set it to 0.0.0.0, the ODBC service listens
on all interfaces.

b. The listen_port_number parameter specifies the listener port number for which the ODBC server
transport accepts connections. This must be a unique port number in the range 1024 through 65534
that does not conflict with any other TCP service running on the machine.

c. The read_timeout parameter specifies in seconds the length of time to wait before a network read

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 50

ExtIntDevRef - 2018.0.01

request is terminated. The default value is 120 seconds.

The value of this parameter is used as the JadeMultiWorkerTcpConnection class timeout property
value. The parameter value is translated from seconds in the read_timeout parameter to milliseconds
in the timeout property for the TCP/IP connection between the thin client ODBC driver and the ODBC
server application.

d. The following dynamic worker pool parameters control the minimum and maximum number of ODBC
applications workers, when new workers are started, and when idle workers are terminated.

minimum_workers

maximum_workers

queue_depth_limit

queue_depth_limit_timeout

worker_idle_timeout

When the number of outstanding requests queued for an ODBC worker application exceeds the
number specified in the queue_depth_limit parameter for the time period specified by the queue_
depth_limit_timeout parameter and fewer than the value specified in the maximum_workers
parameter copies are running, an additional worker will be started.

When an ODBC worker application has been idle for the number of seconds specified in the worker_
idle_timeout parameter and there are more than the number of copies specified in the minimum_
workers parameter, an idle worker will be terminated.

4. In the File menu, select the Save command, if you want to save the configuration file. The common Save As
dialog is then displayed, to enable you to select the file location and name. The default name of
config<n>.xml is output to the path that you specify.

5. In the File menu, select the Save As command, if you want to save the configuration file to another location
or name. The common Save As dialog is then displayed, to enable you to select the file location or a different
name.

6. In the File menu, select the Exit command, to close the Odbc Server Config dialog the JADE Monitor.

XML Configuration for an ODBC Server Application
The configuration file for ODBC server applications has the following format. For details about these values, see
steps 2 and 3 under "Creating and Maintaining the Configuration File", in the previous section.

<?xml version="1.0" ?>
<jade_config>
<application schema="DocumentationExample" name="ExampleApp">
<odbc_config>
<listen_host_name>JadeServerNode</listen_host_name>
<listen_port_number>6005</listen_port_number>
<minimum_workers>2</minimum_workers>
<maximum_workers>10</maximum_workers>
<read_timeout>180</read_timeout>
<queue_depth_limit>0</queue_depth_limit>
<queue_depth_limit_timeout>15</queue_depth_limit_timeout>
<worker_idle_timeout>30</worker_idle_timeout>

</odbc_config>
</application>

</jade_config>

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 51

ExtIntDevRef - 2018.0.01

Installing the JADE ODBC Thin Client Driver
The JADE ODBC thin client driver is installed as part of the standard JADE installation.

To install the driver (jadodbc_c.dll) manually, run odbcinst.exe, supplying the following arguments.

registryKey=<> binDir=<> dllName=<> [deinstall]

The registryKey argument is the name of the ODBC driver that is displayed in the Data Source Administrator
Driver tab of the ODBC Data Source Administrator dialog, the binDir argument is the directory in which the driver
DLL is located, the dllName argument is the name of the driver DLL, and the optional deinstall argument is an
argument to deinstall the driver.

The following is an example of the command line.

odbcinst registryKey="Jade ODBC Thin Client" binDir=d:\jade\bin dllName=jadodbc_
c.dll

User Authentication
When a new ODBC client connection is opened in a JADE ODBC service application, the Global class
isUserValid method is invoked with the login user code and password passed as parameters.

If the method returns false, the client connection is refused.

Starting and Ending an ODBC Thin Client Session
The following Application class methods can be reimplemented, if required.

startOdbcSession(rv: RelationalView; username: String);

This method is called in an ODBC service application after the isUserValid method of the Global class to
indicate a new session has been established.

endOdbcSession(sessionObject: Object);

This method is called in an ODBC service application when a session is closed. The value of the
sessionObject parameter is the session object set by the application using the setOdbcSessionObject
method or else it is null.

Initialize and Finalize Query Callback
The following methods in the Application class can be reimplemented, if required.

initializeOdbcSelect(rv: RelationalView; username: String);

This method is called in an ODBC service application before the execution of an SQL query. The rv
parameter specifies the relational view currently in use and the username parameter specifies the user code
of the logged-on user. This method can be reimplemented as required; for example, to re-establish
application state for the user executing the query.

finalizeOdbcSelect(rv: RelationalView; username: String);

This method is called in an ODBC service application at the end of the execution of an SQL Query. The rv
parameter specifies the relational view currently in use and the username parameter specifies the user code
of the logged-on user. This method can be reimplemented as required; for example, to clean up any transient
objects left from the execution of the query.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 52

ExtIntDevRef - 2018.0.01

User Impersonation
When an ODBC worker process is calling user methods to satisfy a query in the execution phase, the value of the
Process class userCode property is set to the user code with which the connected user logged on with.

Session State
The following methods defined in the Application class can be called in an ODBC service application to set and
get a reference to an application-maintained session object.

setOdbcSessionObject(object: Object);

This method would typically be called in the Application class startOdbcSession method, to save an
application-defined context object for the user. The ODBC service application maintains this object on behalf
of the client that is currently executing a query.

getOdbcSessionObject(): Object;

This method returns the last saved session object. Obtaining a saved session object reference using the
getOdbcSessionObject method in an ODBC server application is analogous to dereferencing the
currentSession environmental variable in a Web application.

Server/Client Version Checking
The ODBC thin client:

Checks the validity of the versions of jadodbc_c, jomos, jomjdi, jadcnet, and jomutil across the
client-server at start up. An error is raised if the versions do not match.

Is updated as part of the JADE thin client automatic download. If no thin client connectivity is available, the
files must be updated by the system administrator.

JADE ODBC Driver Soft Entities and Attributes
The JADE ODBC driver enables you to:

Include user-defined (or soft) entities in a relational view

Include user-defined (or soft) attributes of real classes or of entities in a relational view

Implement a query provider that, given a class or soft entity and a search predicate expression (or WHERE
clause), can return a result set of objects that will be used by the ODBC driver

To achieve a soft exposure to your application:

1. Implement the following RootSchema interfaces.

JadeRelationalEntityIF

JadeRelationalAttributeIF

JadeRelationalQueryProviderIF (optional)

2. Call methods in the RelationalView class, to add entities and attributes to the view.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 53

ExtIntDevRef - 2018.0.01

JadeRelationalEntityIF Interface
The JadeRelationalEntityIF interface instance is passed to the addUserTable method of the RelationalView
class to add a soft entity to a relational view.

The values returned for the getJadeClass, getSQLName, and callIFAllInstances methods at the time of the
method call are stored in the schema meta data for the relational view. If these values change, you must remove
the attribute and then add it again to update the meta data.

The allInstances, getPropertyValue, getQueryProvider, and isAttributeValid interface methods are called at run
time to access the data in the JADE database.

JadeRelationalAttributeIF Interface
To expose soft attributes, implement RootSchema JadeRelationalAttributeIF interface.

The JadeRelationalAttributeIF interface instance is passed to the addUserAttribute method of the
RelationalView class to add a soft attribute to a user-defined entity. The values returned at the time of the method
call are stored in the schema meta data for the relational view. If these values change, you must remove the
attribute and then add it again to update the meta data.

JadeRelationalQueryProviderIF Interface
To provide a search implementation that optimally finds and filters instances of a soft entity, implement the
JadeRelationalQueryProviderIF interface. The interface implementation is used if the JadeRelationalEntityIF
interface returns a reference to it in the getQueryProvider method.

The query provider interface provides methods to map the SQL search expression to an application
representation of the expression. The resultant expression is passed back to the application to execute the query.

SQL Examples
The following subsections give some examples of SQL statements that can be applied to relational views that
have been created from a fictitious JADE database.

Accessing Classes and Subclasses Using SQL
If you were to create a table from a class called Book, the following SQL statement lists all books.

SELECT * FROM Book

If Book has subclasses Fiction and Nonfiction, and these are included in your view, the following SQL statement
lists all fiction books.

SELECT * FROM Fiction

Accessing Relationship Views Using SQL
The following examples show SQL statements required to access views of JADE classes that have relationships
to each other.

One-to-One Relationship
In this example, the Account and Password classes have been included in the view. The Account class has a
password property.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 54

ExtIntDevRef - 2018.0.01

The SQL statements in the following example access account number 12345.

SELECT * FROM Account, Password
WHERE Account.password = Password.oid
AND Account.code = '12345'

One-to-Many Relationship
In this example, the Customer and Invoice classes have been included in the view. The Customer class has an
invoices property that is a collection. The Invoice class has a customer property.

The SQL statements in the following example access customer 123456.

SELECT * FROM Invoice, Customer
WHERE Invoice.customer = Customer.oid
AND Customer.code = '123456'

Many-to-Many Relationship
In these examples, the Book and Author classes have been included in the view. The Author class has an
allBooks property that is a dictionary. The Book class has an authors property that is an array. These examples
also create the Book_authors table, which contains author_oid, book_oid, and number.

The SQL statements in the following example list a book and all its authors.

SELECT * FROM Book, Book_authors, Author
WHERE Book.oid = Book_authors.book_oid
AND Book_authors.author_oid = Author.oid
AND Book.name = 'War of the Worlds'

The SQL statements in the following example list the first author of all books.

SELECT * FROM Book, Book_authors, Author
WHERE Book.oid = Book_authors.book_oid
AND Book_authors.author_oid = Author.oid
AND Book_authors.number = 1

The SQL statements in the following example list an author and its books.

SELECT * FROM Author, Author_allBooks, Book
WHERE Author.oid = Author_allBooks.author_oid
AND Author_allBooks.book_oid = Book.oid
AND Author.name = 'HG Wells'

Collections
In these examples, the Password class has a prevPasswords string array property. A relational table is created
called Password_prevPasswords, with password_oid, value, and number data items.

The SQL statements in the following example list the previous passwords for a current password of abcd.

SELECT * FROM Password, Password_prevPasswords
WHERE Password.oid = Password_prevPasswords.password_oid
AND Password.currentvalue = 'abcd'

The SQL statements in the following example list the most-recent previous password for the abcd password.

SELECT * FROM Password, Password_prevPasswords
WHERE Password.oid = Password_prevPasswords.password_oid

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 55

ExtIntDevRef - 2018.0.01

AND Password.currentvalue = 'abcd'
AND Password_prevPasswords.number = 1

Collection Methods
You can create a derived table from a method that returns a collection of objects. The parameters (if any) of such a
method must be JADE primitive types whose usage is input or constant.

Notes If the collection method returns a transient collection, that collection is deleted when the query has
completed.

A table derived from a method returning a collection has two columns of object identifiers (oids): one maps to the
instance of the object on which the methods is defined and the other maps to instances of the collection returned
by the method.

In addition, a defined column corresponds to each of the parameters in the methods. For example, a Company
class method getCustomerBalances(minBal: Decimal; maxBal: Decimal); that returns a list of customers
whose outstanding balance is in the range minBal less than or equal to bal less than or equal to maxBal creates
a derived table called Company_getCustomerBalances that can have the following four columns.

company_oid

customer_oid

minBal

maxBal

The OidFieldSeparator parameter in the [JadeOdbc] section of the JADE initialization file on the server enables
you to customize the OID field separator with a single punctuation or similar character (for example, @). This can
be useful when the default OID String values that are produced are misinterpreted by a third-party tool as a
different ODBC type such as a Decimal.

The derived table represents a virtual collection of customers whose outstanding balance is in the range minBal
through maxBal. The values of minBal and max Bal are included in the WHERE clause of the select statement
and are used as the parameter values passed to the getCustomerBalances method.

The logical relationship between Company, Company_getCustomerBalances, and Customer is shown in the
following Entity-Relationship Diagram (ERD).

The following SQL statement selects customers with a balance in the range $500 through $5000.

SELECT Customer.name, Customer.balance
FROM Company, Customer, Customer_getCustomerBalances
WHERE Company.oid=Company_getCustomerBalances.company_oid AND

Customer.oid=Company_getCustomerBalances.customer_oid AND
Company_getCustomerBalances.minBal = 500 AND
Customer_getCustomerBalances.maxBal = 5000

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 56

ExtIntDevRef - 2018.0.01

When specifying table columns in the WHERE clause that correspond to the parameters of a collection method,
any comparison must be for equality (that is, the equals symbol only) and used in an AND operation. (An error is
raised if this is not the case.) If a parameter is not specified, the method is passed a NULL value for that
parameter.

Exceptions raised by methods that are mapped to columns are logged if the LogUserMethodExceptions
parameter in the [JadeOdbc] section of the JADE initialization file is set to true. The result of a method column that
raises an exception is by definition a NULL value. Using a NULL value in a comparison always returns a FALSE
result.

Tip For methods that are mapped to ODBC columns, it is better to handle exceptions within your user code and
return a valid value rather than propagating the error out to the ODBC driver code.

Although the following SQL statement would achieve the same result as the previous example, using the
getCustomerBalances method may significantly reduce the io required to complete the query. (This would be
particularly relevant if getCustomerBalances were returning an existing collection and not building one on each
invocation of the method.)

SELECT Customer.name, Customer.balance
FROM Company, Customer
WHERE Customer.company=Company.oid AND

Customer.balance >= 500 AND
Customer.balance >= 5000

Mapping Your JADE Database to a Relational Database
The Relational Population Service (RPS) provides automatic replication of objects from a production JADE
database to one or more relational databases when running an RPS node.

The Relational Population Service wizard provides facilities that enable you to map classes and properties to the
required relational tables and columns.

All mapping meta data becomes part of the system specification in the JADE database, and can be extracted,
loaded, versioned, and so on.

The supported RPS relational target databases are Microsoft SQL Server 2008 and higher.

An RPS system consists of:

An RPS mapping defined in the JADE production database, which maps classes and attributes of a JADE
schema to relation database tables and columns.

An RPS node (or multiple RPS nodes), which runs as a relational SDS database and executes the
Datapump application to pump the JADE data to the Relational Database Management System (RDBMS)
target.

An RDBMS target database for each RPS node, which contains the tables and columns defined in the RPS
mapping.

The RPS Manager utility, which enables you to create the RDBMS tables and columns from the RPS
mapping, load the data instances from the JADE production database, and control the execution of the
Datapump application.

For details about mapping your JADE database to a relational database, see Chapter 15, "Using the Relational
Population Service (RPS) to Replicate a JADE Database", in the JADE Development Environment User's Guide.

For considerations when using RPS, see Chapter 2, "Relational Population Service (RPS) Support", in the JADE
Synchronized Database Service (SDS) Administration Guide.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 57

ExtIntDevRef - 2018.0.01

Interfacing to OLE 2.0
JADE enables you to interface to Object Linking and Editing (OLE 2.0) object images.

Data stored for a persistent OleObject object is compressed automatically, which significantly reduces the
required storage overhead when large numbers of OleObject objects are stored. Transient OleObject objects are
created for runtime use of OleControl objects. These transient objects are not compressed, as that would create
an unnecessary overhead for that runtime object.

JADE provides the OleObject system class, which is used to store the Object Linking and Editing (OLE 2.0) object
images for the OleControl class. The OleObject class can also be used to store programmatically controlled OLE
images that are not attached to a control. (For more details, see "OleObject Class", in Chapter 1 of the JADE
Encyclopaedia of Classes.)

The OleControl system class provided by JADE allows attachment of objects that are actually edited or controlled
by other applications. For example, a Word document, an Excel spread sheet, a video clip, or a Paintbrush picture
can be stored in JADE, but editing or playing the object invokes the controlling application. (For more details, see
"OleControl Class", in Chapter 2 of the JADE Encyclopaedia of Classes.)

The OleControl class handles any object for which an OLE Server is registered in the database operating system
registry. An application that is capable of being an OLE Server has a *.reg file associated with it. To load the
registration information, double-click on the .reg file in the Windows Explorer.

Notes Neither the OleObject nor the OleControl class is available in a JADE application running on a server
node.

The JADE extract process extracts a definition of the OleControl object (as it does with other controls painted at
design time when the form definitions are extracted) but it does not extract the user data associated with the
control. It is your responsibility to extract the user data and load it into a deployed database, if required.

For example, the following objects can be handled by the OleControl class.

Word for Windows

Excel

Media Player (for sound and videos)

Sound Recorder

Paintbrush

Word Art 2

Equation 2

MS Graph

You can use OLE 2.0 and ActiveX controls in JADE only on the currently supported Windows operating systems.
(For details, see "Software Requirements" under "Operational Requirements", in the JADE Installation and
Configuration Guide.)

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 58

ExtIntDevRef - 2018.0.01

Embedding and Linking Objects
The types of attachment provided by the OleControl class are listed in the following table.

Attachment Description

Embedding A new object is constructed and the data is copied into the JADE database.

An existing file is used to build the object and that object is then copied into the JADE database.
In most cases, the original file is then no longer referenced or updated. The file type must be
recognized as belonging to a defined OLE Server.

Linking A link to a file only is stored in the JADE database.

The data that is stored in the JADE database for an embedded object is determined by the application server that
is being used. In most cases, the entire embedded object is stored. For Media Player objects, only the initial image
and a link to the rest of the data on the CD-ROM are stored.

What the OleControl Shows
When a loaded object is not active in the control, an image similar to a picture box is displayed; for example:

The first frame of the inserted video

The image of a bitmap

The first page of a Word for Windows document

An image of an Excel spread sheet

The OLE control provides scroll bars if the image is bigger than the control, to enable the whole image to be
viewed. This image is defined by the OLE Server, which is just an icon in some cases.

Creating an OLE Control
The JADE Painter handles the OLE control as it does for any other control, although it is displayed like an empty
picture box, for example.

An object can be inserted or edited in the control in Painter, or programmatically at run time.

In Painter, to initiate a dialog form that displays a folder with the options listed in the following table, click on the
OleControl palette button or the oleObject property in the Specific sheet of the Properties dialog.

Option Action

Create New Initiates the application and creates a new object

Embed from file Builds an object based on a copy of the file

Link from File Builds an object based on the file that must be available for subsequent access

Activating the OLE Application at Run Time
An object that is present in the control can be activated at run time, usually by the user double-clicking the image.
When an object is activated, the application controlling the object is initiated to edit or play the object.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 59

ExtIntDevRef - 2018.0.01

The activation occurs in the following ways, depending on its capabilities and on controllable options.

In place

If the application is in-place capable and the control is large enough, it runs in the control itself. The menu
bar of the form may be replaced by the initiated menu of the application. The toolbar of the application may
also be inserted into the control. For example, Word for Windows 6 replaces the menu bar of the form with its
own menu bar (but many options are disabled). It also inserts the Word for Windows toolbar at the top of the
control. The user may then edit the document that is displayed within the control.

When the user clicks on any other control on the form other than the displayed OLE object, the OLE
application is deactivated. The menu bar of the form is restored, the inserted toolbar is hidden, and the image
is replaced by the static object version. Any changes made to the object are stored in the OleObject of the
control.

As two applications are running simultaneously, the deactivation process is very complex and can result in
the loss of mouse messages after the initial mouseDown event. When clicking to deactivate, the object being
clicked may not respond (except to cause the deactivate event).

Open activation

If the application does not support in-place activation, the application is opened in normal mode as though
the application had been initiated from the program folder or shortcut. The control image is drawn through
with diagonal lines, to show that the server is active.

The application’s menus may include different options applicable to OLE use. These options can include:

update OleControl (save changes into JADE now)

exit & Return to OleControl (shut down and save changes)

When shutting down an application, you are usually asked whether you want to update the OLE control. This
is not universal, however, and in some cases, changes that were made are discarded when closing using
the Control-Menu unless the exit & Return to OleControl option is selected.

For more details, see "OleControl Class", in Chapter 2 of the JADE Encyclopaedia of Classes.

Connecting to Network Devices Using TCP/IP
You can connect to external (JADE or non-JADE) systems from JADE by using Transmission Control Protocol /
Internet Protocol (TCP/IP) as the transport provider.

By specifying the host connection details to TCP/IP, the transfer of information between JADE and an external
system is achieved simply by applying methods that are implemented by the TcpIpConnection class.

The TcpIpConnection class also provides the JadeInternetTCPIPConnection subclass, which implements the
interface defined by the TcpIpConnection class specifically for the Internet TCP/IP API. The methods defined in
the JadeInternetTCPIPConnection class are listed in the following table.

Method Description

openPipeCallback Initiates an asynchronous read of the opened TCP/IP connection

readBinary Reads binary data from the Internet connection and returns when the specified number
of bytes has been read or when a block of data is received

readDataWithLength Reads data from the Internet TCP/IP connection and returns when the specified length
of data is read

readPipeCallback Performs Web session evaluation processing

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 60

ExtIntDevRef - 2018.0.01

Method Description

sendReply Sends the formatted HyperText Markup Language (HTML) page to the opened Internet
TCP/IP connection

writeBinary Writes binary data to the Internet TCP/IP connection and returns when the operation is
complete

External Software Requirements
To connect to network devices using TCP/IP, you must have the TCP/IP protocol installed from your host operating
system installation medium. For more details, see "Software Requirements", in Chapter 1 of the JADE Installation
and Configuration Guide.

For details about configuring and maintaining your TCP/IP communications protocol, see "Configuring Your
Network Protocol", in Chapter 2 of the JADE Installation and Configuration Guide.

Using the TcpIpConnection Class
Within JADE, you establish a connection and send or receive data programmatically. The Connection class
defines all of the methods that you require for external communications. The TcpIpConnection class is a subclass
of the Connection class and is specifically for external communication through TCP/IP.

Note As you can create a TcpIpConnection object as a shared transient object, you can pass it to another JADE
process on the same JADE node, if required.

When using the Connection class, note the following restrictions.

The Connection class hides underlying implementation and transport-dependent details.

Any exception conditions result in an exception of type ConnectionException being raised.

Connection objects must be transient.

If an attempt is made to create a persistent Connection object, an exception is raised.

Asynchronous methods have a receiver object and a message (method name) specified as parameters.

When the method completes, the specified (callback) method of the specified object is called. The callback
method is assumed to match the signature required by the calling asynchronous method.

Properties Provided by the TcpIpConnection Class
The properties defined in the TcpIpConnection class are summarized in the following table.

Property Description

authenticationLibrary Contains the name of the library that contains the authentication method

cryptLibrary Contains the name of the library that contains the encryption and decryption
methods

decryptMethod Contains the name of the decryption method in the encryption and decryption
library

encryptMethod Contains the name of the encryption method in the encryption and decryption
library

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 61

ExtIntDevRef - 2018.0.01

Property Description

genAuthChallengeMethod Contains the name of the method used to generate the authentication
challenge

genAuthResponseMethod Contains the name of the method used to generate the response from the
authentication challenge

localIpAddress Contains the local IP address

localInterface Contains the interface name or IP address of a local network interface

localPort Contains the local service port

networkProxy Contains a reference to the object identifier (oid) of the proxy in the
TcpIpConnection class object

port Contains the target service port or listen port

remoteIpAddress Contains the remote host IP address

remoteName Contains the remote host name

remotePort Contains the port number used on the remote node

resolveRemoteName Specifies whether the remote host name is to be located

verifyAuthResponseMethod Contains the name of the method used to verify the response to the
authentication challenge

Properties Provided by the Connection Class
The following table summarizes the properties defined in the Connection class and inherited by the
TcpIpConnection class.

Property Function

fillReadBuffer If set to true, the readBinary and readBinaryAsynch methods do not return or notify you until
the requested length of data has been received. If set to false, these methods return or notify
you as soon as any data is received.

name Contains a generic name that specifies to what the connection object is to connect.

state A read-only property that returns the state of the connection. The states are disconnected (0),
connecting (1), connected (2), and disconnecting (3).

timeout Contains the number of milliseconds after which a synchronous or asynchronous listen
(including continuous), read, or write operation times out.

For details about the properties defined in the Connection class and inherited by the TcpIpConnection class, see
Chapter 1 of the JADE Encyclopaedia of Classes.

Methods Provided by the TcpIpConnection Class
The following table summarizes the methods defined in the Connection class and inherited by the
TcpIpConnection class.

Method Description

close Closes a connection to a remote application and returns when the connection is
closed

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 62

ExtIntDevRef - 2018.0.01

Method Description

closeAsynch Closes a connection to a remote application and returns immediately

getMaxMessageSize Returns the maximum message size that can be sent or received at one time

listen Waits for a remote application to connect to its port and returns when the connection
is established

listenAsynch Waits for a remote application to connect to its port and returns immediately

listenContinuous Waits for a remote application to connect to its port and returns the new connection
on a new instance of the TcpIpConnection class while the original instance is still
available for listening on subsequent calls

listenContinuousAsynch Waits for remote applications to connect to its port and returns immediately

open Establishes a connection to a remote application and returns when the connection
is established

openAsynch Establishes a connection to a remote application and returns immediately

readBinary Reads binary data from the connection and returns when the specified number of
bytes has been read or when a block of data is received

readBinaryAsynch Reads binary data from the connection and returns immediately

readUntil Reads data from the connection and returns when the specified delimiter is found in
the data stream

readUntilAsynch Reads data from the connection until the specified delimiter is found in the data
stream and returns immediately

writeBinary Writes binary data to the connection and returns when the operation is complete

writeBinaryAsynch Writes binary data to the connection and returns immediately

For details about the methods defined in the Connection class and inherited by the TcpIpConnection class, see
Chapter 1 of the JADE Encyclopaedia of Classes.

Connection Authentication
Connection authentication is initiated on the listener end of the connection by generating an authentication
challenge and sending it to the connection initiator. The connection initiator generates an authentication response
from the received challenge, and returns this to the listener to verify. If the verification is not successful, the listener
closes the connection.

Authentication data is encrypted or decrypted if data encryption has been set up.

You must specify the name of the user-supplied authentication library in the authenticationLibrary property of the
TcpIpConnection class before an open, openAsynch, listen, or listenAsynch method operation.

You must specify the name of the challenge generation method in the genAuthChallengeMethod property. The
challenge generation method must have the following C++ signature.

int JOMAPI generateChallenge (BYTE **ppChallenge,
Size *pChallengeSize);

You must specify the name of the response generation method in the genAuthResponseMethod property. The
response generation method must have the following C++ signature.

int JOMAPI generateResponse (BYTE *pChallenge,
Size challengeSize,

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 63

ExtIntDevRef - 2018.0.01

BYTE **ppResponse,
Size *pResponseSize);

You must specify the name of the response verification method in the verifyAuthResponseMethod property. The
response verification method must have the following C++ signature.

int JOMAPI verifyResponse (BYTE *pChallenge,
Size challengeSize,
BYTE *pResponse,
Size responseSize);

The authentication methods return one of the values listed in the following table.

Value Description

0 The response was successful

Non-zero The response failed

pChallenge or ppChallenge
Use the pChallenge or ppChallenge input parameter for a randomly generated challenge or the challenge
received from the server-side of the connection.

challengeSize or pChallengeSize
Use the challengeSize or pChallengeSize input parameter for the size of the challenge received from the server-
side of the connection.

The maximum challenge size is 1,024 bytes.

pResponse or ppResponse
Use the pResponse or ppResponse output parameter for the response generated from the challenge or returned
from the client side of the connection.

responseSize or pResponseSize
Use the responseSize or pResponseSize output parameter for the size of the response received from the server-
side of the connection.

The maximum response size is 1,024 bytes.

Data Encryption
Data is encrypted before any physical data is written and it is decrypted after any physical data has been read.

You must specify the name of the user-supplied encryption library in the cryptLibrary property before an open,
openAsynch, listen, or listenAsynch method operation.

You must specify the name of the encryption method in the encryptMethod property. The encryption method must
have the following C++ signature.

int JOMAPI encrypt (BYTE *pDataIn,
Size dataInLength,
BYTE **ppDataOut,
Size *pDataOutLength);

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 64

ExtIntDevRef - 2018.0.01

You must specify the name of the decryption method in the decryptMethod property. The decryption method must
have the following C++ signature.

int JOMAPI decrypt (BYTE *pDataIn,
Size dataInLength,
BYTE **ppDataOut,
Size *pDataOutLength);

Caution If character data is passed in or out, your routines must be aware of the ANSI or Unicode character size
(that is, 1 byte for ANSI and 2 bytes for Unicode).

The encryption and decryption methods return the following values.

Value Description

0 The encryption or decryption routine was successful

Non-zero The encryption or decryption routine failed

pDataIn
Use the pDataIn input parameter to specify the input data stream for encryption or decryption.

dataInLength
Use the dataInLength input parameter to specify the length of the input data stream.

ppDataOut
Use the ppDataOut output parameter to specify the location of the output data stream after encryption or
decryption.

pDataOutLength
Use the pDataOutLength output parameter to specify the length of the encrypted or decrypted data stream.

TCP/IP Proxy Servers
The Object class provides the transient JadeTcpIpProxy subclass, which implements TCP/IP network proxy
support that enables you to open a TCP/IP network connection through a proxy server.

If you cannot establish a direct TCP/IP connection because of physical network layouts or restrictions (for
example, the use of a firewall), you may have to establish a connection through a proxy server by using the
functionality provided by this class.

Proxies can be used as part of a firewall solution, as they sit between the client application and the server
application and do not permit the client to connect directly to the server. The client is required to connect to the
proxy, and asks the proxy to connect to the server on the client’s behalf. The proxy may also require authentication
from the client before it allows the connection to the server. There are a number of different types of proxies, the
two major types being HyperText Transfer Protocol (HTTP) and SOCKS. From the perspective of the client, the
difference between the types of proxy is the protocol (that is, the type and format of messages) used between the
client and the proxy. The other issue for the client is determining the type of proxy and where it is running.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 65

ExtIntDevRef - 2018.0.01

The TcpIpConnection class networkProxy property contains a reference to the JadeTcpIpProxy class. If this
reference contains a non-null value, the JadeTcpIpProxy class connect method is executed, which in turn calls
the TcpIpConnection class open or openAsynch method for each attempt to connect to the proxy. If the value of
the networkProxy property value is null, the TcpIpConnection class open or openAsynch method is executed.

For details, including code examples and issues to consider when reimplementing JadeTcpIpProxy class
functionality, see Chapter 1 of your JADE Encyclopaedia of Classes. See also "Firewall for the JADE Internet
Environment", in Chapter 4 of the JADE Installation and Configuration Guide.

Constants Provided by the JadeTcpIpProxy Class
The constants provided by the JadeTcpIpProxy class are listed in the following table.

Constant Integer Value Constant Integer Value

BrowserType_Auto 3 ProxyType_Auto 0

BrowserType_InternetExplorer 1 ProxyType_Direct 5

BrowserType_Netscape 2 ProxyType_Http 1

BrowserType_None 0 ProxyType_Https 4

ProxyType_Socks4 2

Properties Provided by the JadeTcpIpProxy Class
The properties defined in the JadeTcpIpProxy class are summarized in the following table.

Property Contains the …

browserType Browser type whose proxy host configuration settings are used

domain Domain name to log in to the host

host Name or IP address of the host

password Password that is to complete the log in to the host

port Port number used to connect to the host

proxyType Communications protocol used to connect to the proxy host

userName User name that logs in to the host

Method Provided by the JadeTcpIpProxy Class
The method defined in the JadeTcpIpProxy class is summarized in the following table.

Method Description

connect Establishes a connection to the target host through the specified network proxy

Multiple Worker TCP/IP Connections
Multiple worker TCP/IP connections provide an interface for sharing the messages arriving on client sockets
among a pool of worker server JADE applications, using a single listen TCP/IP socket. This enables server-style
applications to share a workload generated by a large number of clients among a small number of server
processes.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 66

ExtIntDevRef - 2018.0.01

No master or manager application is required, and all worker processes share exactly the same initialization and
message processing logic.

Note All JADE worker processes must reside in the same JADE node as the TCP listen socket.

A client connection can be bound to a single worker process. Events for a bound connection are directed to that
bound worker. Events for unbound connections are handled by any worker. JadeMultiWorkerTcpConnection

For details, see the JadeMultiWorkerTcpTransport and JadeMultiWorkerTcpConnection classes in Volume 1 of
the JADE Encyclopaedia of Classes.

JadeMultiWorkerTcpConnection Class
The JadeMultiWorkerTcpConnection class provides an interface for sharing the messages arriving on client
sockets among a pool of worker server JADE applications.

JadeMultiWorkerTcpConnection Class Constants
The constants provided by the JadeMultiWorkerTcpConnection class are listed in the following table.

Constant Integer Value Description

open 3 Connection is open

JadeMultiWorkerTcpConnection Properties
The properties defined in the JadeMultiWorkerTcpConnection class are summarized in the following table.

Property Description

connectionId Contains the unique number assigned to the client connection when it opens

fillReadBuffer Specifies whether the read buffer is filled

idleTimeout Contains the maximum number seconds to wait for idle connections to have no input
before causing a WorkerIdleTimeout management connection event

keepAssigned Specifies whether the connection is kept assigned after exiting from the callback method

localAddress Contains the address of the local connection

localPortnumber Contains the port number of the local connection

remoteAddress Contains the address of the remote connection

remotePortnumber Contains the port number of the remote connection

state Contains the current state of the connection

timeout Contains the number of seconds to wait for a readBinary or writeBinary method call to
complete

userObject Contains connection-related information between event callbacks

userState Contains the state value between event callbacks

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 67

ExtIntDevRef - 2018.0.01

JadeMultiWorkerTcpConnection Methods
The methods defined in the JadeMultiWorkerTcpConnection class are summarized in the following table.

Method Description

bindToAssignedWorker Binds this connection to the currently assigned worker (that is, to the current JADE
process)

bindToWorkerId Attempts to bind the connection to the worker process with the specified worker
identifier

causeUserEvent Queues a user event for the connection with the specified tag value

close Requests that the connection be closed locally

getAssignedWorkerId Returns the worker to which the connection is assigned

getBoundWorkerId Returns the worker identifier (the current or another worker process) to which the
connection is bound

getFullName Returns a string containing the full name of the associated
JadeMultiWorkerTcpTransport object

getGroupId Returns the identifier of the transport group to which the connection belongs

getLocalHostname Returns a string containing the generic host name associated with the localAddress
property

getRemoteHostname Returns a string containing the generic host name associated with the
remoteAddress property

readBinary Reads binary data from the connection and returns when the specified number of
bytes has been read or when a block of data is received

readUntil Reads data from the connection and returns when the specified delimiter is found in
the data stream

unbind Unbinds the connection if it is currently bound

writeBinary Writes binary data to the connection and returns when the operation is complete

writeBinaryAndFile Writes binary data and the file to the connection, writes the specified section of the
file, and then returns when the operation is complete

JadeMultiWorkerTcpTransport Class
The JadeMultiWorkerTcpTransport class encapsulates behavior required for multiple user TCP/IP connections
between JADE systems.

JadeMultiWorkerTcpTransport Class Constants
The constants provided by the JadeMultiWorkerTcpTransport class are listed in the following table.

Constant Integer Value Occurs…

Notify_Continuous 0 Continuously until disabled by a call to the cancelNotify method

Notify_OneShot 1 Once only

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 68

ExtIntDevRef - 2018.0.01

JadeMultiWorkerTcpTransport Properties
The properties defined in the JadeMultiWorkerTcpTransport class are summarized in the following table.

Property Contains the …

listenHostname Host name of the listening connection

listenPortnumber Port number of the listening connection

listenState State of the listen connection

queueDepthLimit Connection ready queue size required to trigger the QueueDepthExceeded
management event

queueDepthLimitTimeout Number of seconds that the connection ready queue size must remain greater
than the value of the queueDepthLimit property before triggering the
QueueDepthExceeded management event

statisticsLogInterval Number of seconds at which worker and group to-date statistics are written to
the jommsg.log file

userGroupObject Reference to an object that you can associate with the transport group

workerId Unique sequential number assigned on the first beginListening method call
on this JadeMultiWorkerTcpTransport object

workerIdleTimeout Number of seconds after the last event handled by this process that the
WorkerIdleTimeout management event is queued for this process

JadeMultiWorkerTcpTransport Methods
The methods defined in the JadeMultiWorkerTcpTransport class are summarized in the following table.

Method Description

beginListening Attaches to the transport group and creates a new group if the specified group
does not exist

cancelNotify Stops callbacks being queued to this process

causeUserEventOnConnId Queues a user event for the specified connection

countAssignedConnections Returns the number of connections currently assigned to this worker

countBoundConnections Returns the number of connections currently bound to this worker

countIdleWorkers Returns the number of idle worker processes sharing the pool

countQueuedConnections Returns the number of connections that are unassigned and have queued
events

countWorkers Returns the number of worker processes sharing the pool

getFullName Returns the full name of this transport group (that is, the values of the
listenHostname and listenPortnumber properties, separated by a colon
character)

getGroupId Returns the unique number assigned to each transport group when it is created
by the first worker to call the beginListening method with a new full name

getGroupStatistics Populates the specified JadeDynamicObject with properties containing the to-
date values of statistics captured by this transport group

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 69

ExtIntDevRef - 2018.0.01

Method Description

getMyStatistics Populates the specified JadeDynamicObject with properties containing the to-
date values of statistics captured by the receiving worker

notifyEventsAsync Notifies the implementing JadeMultiWorkerTcpTransportIF receiver of
asynchronous events

stopListening Closes the listen connection to prevent further client connections

validateServerProcess Validates the server process

JadeMultiWorkerTcpTransportIF Interface
The JadeMultiWorkerTcpTransportIF interface provides TCP/IP multiple worker connection event callback
methods.

You can view the JadeMultiWorkerTcpTransportIF interface and its constants and methods only in the Interface
Browser of a user schema that has an implementation mapping to this RootSchema interface. (For details about
implementing the JadeMultiWorkerTcpTransportIF interface for a class selected in the Class Browser of a user
schema, see "Implementing an Interface", in Chapter 14, "Adding and Maintaining Interfaces", of the JADE
Development Environment User's Guide.)

JadeMultiWorkerTcpTransportIF Interface Constants
The constants provided by the JadeMultiWorkerTcpTransportIF interface are listed in the following table.

Constant Integer Value

ConnEvType_IdleTimeout 1

MgmntEvType_QueueDepthExceeded 1

MgmntEvType_WorkerIdleTimeout 2

JadeMultiWorkerTcpTransportIF Interface Callback Method Signatures
The signatures of callback methods provided by the JadeMultiWorkerTcpTransportIF interface are summarized
in the following table.

Method Callback method for the …

closedEvent ClosedEvent connection event

connectionEvent ConnectionEvent connection event

managementEvent ManagementEvent transport event

openedEvent OpenedEvent connection event

readReadyEvent ReadReadyEvent connection event

userEvent UserEvent connection event

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 70

ExtIntDevRef - 2018.0.01

Connecting to Network Devices Using a Secure Sockets
Layer (SSL)

You can connect to external systems from JADE by using an SSL library protocol instead of the TCP/IP protocol
when the TcpIpConnection class sslContext property contains a reference to a JadeSSLContext transient
object.

JadeSSLContext connections use digital certificates in X509 format, which must exist on disk in
Privacy-Enhanced Electronic Mail (PEM)-encoded certificate (PEM) format.

The transient JadeX509Certificate class stores the digital certificates in X509 format.

SSL is a secure communication protocol on top of an already established TCP/IP connection.

SSL libraries are generated from publicly available third-party sources, maintained by the OpenSSL Group
(http://www.openssl.org). Jade supports TLS version 1, TLS version 1.1, and TLS version 1.2.

For details about the JadeSSLContext and JadeX509Certificate classes and the properties and methods
defined in these classes, see Chapter 1 of the JADE Encyclopaedia of Classes.

Connecting to Network Devices Using a Named Pipe
You can connect to external systems from JADE by using the Windows NamedPipe feature, which is available on
all supported Windows operating systems, to establish a two-way communication channel between a JADE
process and another JADE or non-JADE process.

One process must offer the server end of the NamedPipe channel and another process can then connect to the
client end of the channel. After the connection is made and while it remains valid, both sides of the pipe have
equal status (that is, the terms server and client do not apply).

Multiple instances of the pipe can be opened, by running multiple copies of the JADE application from the same
jade.exe executable program, where each application opens the same pipe name. For details, see "NamedPipe
Class", in Chapter 1 of the JADE Encyclopaedia of Classes.

Using the NamedPipe Connection Class
Within JADE, you establish a connection and send or receive data programmatically. The Connection class
defines all of the methods that you require for external communications. The NamedPipe class is a subclass of the
Connection class and is specifically for external communication through the Windows NamedPipe facility. When
using the Connection class, note the following restrictions.

The Connection class hides underlying implementation and transport-dependent details. Any exception
conditions result in an exception of type ConnectionException being raised.

Connection objects must be transient. If an attempt is made to create a persistent Connection object, an
exception is raised.

Asynchronous methods have a receiver object and a message (method name) specified as parameters.
When the method completes, the specified (callback) method of the specified object is called. The callback
method is assumed to match the signature required by the calling asynchronous method.

The NamedPipe class supports both synchronous and asynchronous operations, as follows.

As the functionality of the timeout property in the Connection class is not supported in the NamedPipe class,
synchronous methods that time out will wait forever for completion.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 71

http://www.openssl.org/

ExtIntDevRef - 2018.0.01

Asynchronous methods have a receiver object and a message (method name) specified as parameters.
When the method (I/O) completes, the specified (callback) method of the object is called. The callback
method must match the signature required by the calling asynchronous method.

Only one synchronous or asynchronous read operation can be in effect at each end of each instance of the pipe.
Multiple asynchronous write operations can be in effect.

Opening the server end of the pipe waits until the other end of the pipe is connected. Opening the client end of the
pipe fails immediately if the server end of the pipe has not been offered.

NamedPipe Class Property
The property defined in the NamedPipe class is summarized in the following table.

Property Description

serverName Specifies the name of the server workstation

NamedPipe Class Methods
The methods defined in the NamedPipe class are summarized in the following table.

Method Description

close Closes a connection to a remote application

closeAsynch Closes a connection to a remote application and returns immediately

getMaxMessageSize Gets the maximum message size that can be sent or received at one time

listen Offers a connection to a remote application and returns when established

listenAsynch Offers a connection to a remote application and returns immediately

open Attempts to open the client end of a named pipe connection

openAsynch Attempts to open a connection to a named pipe and returns immediately

readBinary Reads binary data from the connection and returns when the data has been read

readBinaryAsynch Initiates a read of binary data from the connection and returns immediately

writeBinary Writes binary data to the connection and returns when the operation is complete

writeBinaryAsynch Initiates a write of binary data to the connection and returns immediately

As the listenContinuous and listenContinuousAsynch methods inherited from the Connection superclass are
not supported for the NamedPipe class, an exception is raised if you attempt to use these methods.

InternetPipe Subclass
The InternetPipe class, a subclass of the NamedPipe class, provides an interface for communicating with JADE
applications from the Internet through an Internet server.

Note This class is available only under a Windows operating system that supports services. To access your
JADE applications from the Internet, the JADE server node and the workstation running the JADE application must
be running a Windows operating system that supports services.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 72

ExtIntDevRef - 2018.0.01

To communicate with the jadehttp file on the Internet server using the pipe channel, the JADE application creates
a transient instance of the InternetPipe class and then offers the named pipe for opening with the name of the
JADE application. When the pipe is connected, it waits for Internet requests to be sent over the pipe. If no named
pipe is open, the Internet user is advised that the service is not available. Multiple instances of the pipe can be
opened, by running multiple copies of the JADE application from the same jade.exe executable program, where
each application opens the same pipe name.

InternetPipe Class Methods
The methods defined in the InternetPipe class are summarized in the following table.

Method Description

openPipeCallback Initiates an asynchronous read of the opened pipe

readPipeCallback Performs Web session evaluation processing

sendReply Sends the formatted HyperText Markup Language (HTML) page to the opened pipe

For details, see "InternetPipe Class", in Chapter 1 of the JADE Encyclopaedia of Classes.

Interfacing to the Internet
You can use the World Wide Web (Internet) to access your JADE applications, using the HTML thin client mode.
Web browsers, such as Netscape Navigator or Microsoft Explorer, provide a convenient client interface to JADE
data on distributed servers.

Notes You cannot run Unicode Web applications.

Both the JADE server node workstation and the workstation that is running the JADE application must be running
under a Windows operating system that supports services when accessing your JADE applications from the
Internet.

When using the HTML thin client mode to access a JADE application from the Internet, your JADE application and
Microsoft Internet Information Server (IIS) 2.0 must reside on the same workstation.

The JADE HTML thin client interface to the Internet provides the following features.

Automatic generation of the Web interface

Session management

Web browsers

Web server

JADE clients

Security

For details, see "Implementing Web Applications", in Chapter 1 of the JADE Web Application Guide. See also
"Firewall for the JADE Internet Environment", in Chapter 2 of the JADE Installation and Configuration Guide.

External Interface
Developer's Reference

Chapter 2 Using External Interfaces 73

ExtIntDevRef - 2018.0.01

Chapter 3 Transforming an External
Relational Database

This chapter covers the following topics.

Overview

Defining Your External Database Schema

Using the Databases Menu

Adding an External Database Schema

Specifying a Name for Your External Database Schema

Establishing the Connection to the External Database

Selecting Tables for Exclusion from the Schema

Specifying Class and Property Name Identifiers

Creating Classes from Tables

Defining Attributes for a Class

Defining Collection Classes

Adding References to a Class

Refining the Class Membership Query

Inspecting Collection Class Queries

Inspecting Reference Queries

Finishing Your External Database Schema Definition

Deleting an External Database Schema

Changing an External Database Schema

Viewing an External Database Definition in Read-Only Mode

Printing an External Database Schema

Extracting an External Database Schema

Loading an External Database Schema

Overview
JADE provides the External Schema Wizard, which enables you to map your relational database to a JADE object
model. The External Schema Wizard, installed with your JADE software, automates the process of transforming a
relational database model into a JADE object model and enables you to add and configure an external database
schema for your schema.

Note Before you can create, maintain, or access an external database schema, you must first install an ODBC
driver. For details, see "ODBC Requirements for External Database Coexistence", in Chapter 2.

ExtIntDevRef - 2018.0.01

You can map one or more external relational databases into a JADE object model. Use the External Schema
Wizard to access the catalog information from selected external data sources and generate proxy classes. For an
overview of external database coexistence, see "External Database Coexistence", in Chapter 2.

Defining Your External Database Schema
The External Databases Browser, accessed from the Schema Browser, enables you to select and operate an
external database schema.

Use the External Databases Browser to create, maintain, or access an external database schema for the current
JADE schema. You can configure more than one external database to coexist with JADE.

To open an External Databases Browser

Select the External Databases command from the Browse menu in the Schema Browser.

An External Databases Browser window is then opened. If you have not yet created an external database
schema, nothing is displayed in the External Databases Browser.

Only one External Databases Browser for the current schema can be open at any time. However, you can have
concurrent open External Databases Browsers for different schemas in a development session. You can change
your default browser options, if required, by using the Browser sheet, accessed from the Options menu
Preferences command.

Using the Databases Menu
The External Databases Browser provides the Databases menu, containing the commands listed in the following
table, to enable you to define and maintain your external database schema.

Command Action

Add Displays the External Schema Wizard, to enable you to add and configure a new external
database schema

Remove Deletes the selected external database schema from the schema

Change Displays the External Schema Wizard, to enable you to maintain the selected external database
schema

View Displays the External Schema Wizard in read-only mode

Print Outputs a full description of the external database schema to the printer

Extract Extracts the selected external database schema

Load Loads an external database schema from a file

Adding an External Database Schema
Add an external database schema to the current JADE schema from the Databases menu in the External
Databases Browser.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 75

ExtIntDevRef - 2018.0.01

Notes When adding a new external database to a versioned schema in the development environment, add the
external database in the current version. You can specify connection and subsequent database modifications in
the latest version.

Use the + and - label in the upper-left column of a table header to include or exclude rows (that is, toggle the
selection of rows).

To add an external database definition

Select the Add command from the Databases menu.

The External Schema Wizard, shown in the following image of the first sheet, is then displayed.

Notes The External Schema Wizard is a wizard-style dialog that consists of 12 steps, each represented by a
sheet of the dialog. Use the Next > and < Back buttons to navigate forwards or backwards through the steps, or
explicitly to a step by tabbing the sheet tab. No step is enabled until the previous step has been completed.

As the changes are committed at each step, you can click the Close button on any sheet to close the wizard and
resume your external database transformation later, if required.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 76

ExtIntDevRef - 2018.0.01

Specifying a Name for Your External Database Schema
The Name sheet of the External Schema Wizard is displayed when the dialog is first opened, to enable you to
define the name of your new external database schema.

To specify a name for your external database schema

1. In the External Database Name text box, specify the name of your new external database schema; for
example, ExtDb. The name must be unique to the current JADE schema and must be a valid unique class
name. JADE converts the first character to uppercase, if required.

The name is used as a subclass of the JADE ExternalDatabase class. When you have defined the name for
your external database schema and proceeded to the next step in the schema transformation, you cannot
change this name.

2. Click the Next > button when you have defined your external database schema name.

Alternatively, click the Close button to abandon the schema transformation.

When you click the Next > button, the External Schema Wizard then enables you to establish the connection to
the external database.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 77

ExtIntDevRef - 2018.0.01

Establishing the Connection to the External Database
When you have specified the name to be associated with your external database schema, the Data Source sheet
of the External Schema Wizard, shown in the following image, then enables you to specify the information
required to establish the connection to the external database using ODBC.

Your data source connection can be a machine or a file data source.

To specify your data source

1. Check the Proceed Offline check box if you want to use the External Schema Wizard without connecting to
the data source every time. This check box is enabled only after a successful connection to a data source
has been established at least once, and the necessary catalog information has been read. If the External
Schema Wizard is used offline, it cannot detect any changes that have occurred in the catalog information of
the data source since the last connection was established.

By default, this check box is unchecked; that is, the External Schema Wizard attempts to connect to the data
source every time that it is used.

2. The Machine Data Source option button is selected by default if it is a new data source. If a data source has
been specified previously, the last data source that was used is displayed. Select the required data source
from the drop-down list box if you want to connect to a machine data source.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 78

ExtIntDevRef - 2018.0.01

Alternatively, select the File Data Source option button and specify the data source name in the
corresponding text box if you want to specify a file data source.

3. If you know the name of your data source, click the Connection String option button and then specify the
source in the Connection String text box; for example:

DSN=TestDataSource;AutoStop=yes

Note For security reasons, your user code and password are not displayed.

4. If you do not know the data source, click the Browse button.

The ODBC Driver Managers Data Source Browser is then displayed, to enable you to select an existing data
source from the Machine sheet or the File sheet of the ODBC Driver Managers dialog. When you have
selected the required data source and clicked the OK button, the selected data source is then displayed in
the Connection String text box (without the user code and password).

Caution If you later change the data source to access a database with a different schema, this marks all
existing class definitions as obsolete and causes their deletion.

5. Check the Save Default Authentication check box if you want to store the authentication part of the
connection string; that is, the user code and password. When this check box is unchecked (the default), no
administrative-level password is stored in an unsecured system and any existing authentication that is stored
is deleted. If no authentication is stored, the ODBC driver prompts you for it.

6. Click the Next > button when you have specified your data source. Alternatively, click the Close button to
close the wizard.

When you click the Next > button, the External Schema Wizard then enables you to select the tables for exclusion
from your external database schema.

For details about the JADE methods that enable you to set or return the external database machine or file data
source, see the ExternalDatabase Methods, in Chapter 1 of the JADE Encyclopaedia of Classes.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 79

ExtIntDevRef - 2018.0.01

Selecting Tables for Exclusion from the Schema
When you have established the connection to the external database, the Tables sheet of the External Schema
Wizard, shown in the following image, then enables you to select the tables that are to be excluded from the
external database schema transformation.

By default, all base tables and views are included. You can select a table for exclusion at any stage of the schema
transformation, as long as it is not being referenced.

Tables are grouped by table type into base tables, views, and system tables. Bitmaps indicate each of the table
types, and they are used throughout the External Schema Wizard. If a remark or description exists for a table or
view in the external relational database, it is displayed at the right of the table or view name.

To select tables for exclusion from your external database schema

1. In the Table Name list box, click the check box at the left of each table or view that you want to exclude.

The check box is then unchecked and that table is no longer included in your external database schema.

When you access this sheet again, only those tables previously selected are checked. If one or more
selected tables are subsequently unchecked, existing class definitions using that table are then marked as
obsolete and are deleted.

2. Click the Next > button when you have selected the tables or views to exclude from your external database
schema. Alternatively, click the Close button to close the wizard.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 80

ExtIntDevRef - 2018.0.01

When you click the Next > button, the External Schema Wizard then enables you to select identifiers for class and
property names.

Specifying Class and Property Name Identifiers
When you have selected the tables that you want excluded from your external database schema, the Identifiers
sheet of the External Schema Wizard, shown in the following image, then enables you to specify the identifiers
that are automatically generated for new classes and properties, based on the identifiers used in the external
relational database.

You can manually change these identifiers later in the schema transformation process, if required.

To specify class and property name identifiers for your external database schema

1. Check the Separate words with underscores check box in the Format group box if you want to insert an
underscore character between words when constructing an identifier from several words.

By default, underscore characters are not inserted; that is, this check box is unchecked. When you select this
check box and an underscore character already exists in the identifier, no underscore character is inserted.

2. Check the Remove underscores from words check box in the Format group box if you want to remove
underscore characters from identifiers in the relational database schema and change the letter following the
removed underscore character to uppercase.

By default, underscore characters are not removed; that is, this check box is unchecked.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 81

ExtIntDevRef - 2018.0.01

3. Check the Convert all uppercase to mixedcase check box in the Format group box if you want to convert
identifiers in the relational database schema that are all uppercase characters to a mixed-case
representation. By default, no uppercase character identifiers are converted to a mixed case representation;
that is, this check box is unchecked.

Tip As JADE enforces property names to start with a lowercase character, check this box when a relational
database uses only uppercase characters for identifiers.

4. Check the Use singular table names for classes check box in the Format group box if you want to convert
table names in the plural form in the relational database schema to the singular form before using them to
construct class names. By default, the plural forms of table names are not converted to the singular form; that
is, this check box is unchecked.

5. In the Attribute Name Prefix text box in the Property Name group box, specify an optional prefix for all
attribute properties, if required. By default, no prefix is added to attribute names. The attribute prefix must
start with a lowercase alpha character.

6. In the Reference Name Prefix text box in the Property Name group box, specify an optional prefix for all
reference properties, if required. By default, no prefix is added to reference names. The reference prefix must
start with a lowercase alpha character.

7. In the Class Name Prefix text box in the Class Names group box, specify an optional prefix for all class
names including collection class names, if required. By default, no prefix is added to class names. The prefix
must start with an uppercase alpha character.

If you checked the Separate words with underscores check box, an underscore character is inserted
between the prefix and the root of the class name.

Tip Use this feature to implement a naming convention to distinguish between JADE and external class
names.

8. In the Array Name Suffix text box in the Class Names group box, specify an optional suffix for Array class
names, if required. By default, a suffix of Array is appended to Array class names.

If you checked the Separate words with underscores check box, an underscore character is inserted
between the root of the array class name and the suffix.

9. In the Dictionary Name Suffix text box in the Class Names group box, specify an optional suffix for
dictionary class names, if required. By default, a suffix of Dict is appended to dictionary class names.

If you checked the Separate words with underscores check box, an underscore character is inserted
between the root of the dictionary class name and the suffix.

10. Uncheck the Include Keys In Name check box in the Class Names group box if you do not want dictionary
class names to include the names of properties used as keys for the dictionary. By default, dictionary class
names include the names of properties used as keys; that is, this check box is checked.

11. In the Prefix Keys With text box in the Class Names group box, specify a prefix for the keys part of a
dictionary class name, if required. By default, a prefix of By is added to dictionary class names that include
the names of properties used as keys for the dictionary.

This text box is enabled only when the Include Keys In Name check box is checked.

12. In the Set Name Suffix text box in the Class Names group box, specify an optional suffix for set class names,
if required. By default, a suffix of Set is appended to set class names.

If you checked the Separate words with underscores check box, an underscore character is inserted
between the root of the set class name and the suffix.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 82

ExtIntDevRef - 2018.0.01

13. Click the Next > button when you have specified your class and property name identifiers. Alternatively, click
the Close button to close the wizard.

When you click the Next > button, the External Schema Wizard then enables you to define the classes that are to
be created from relational database tables.

Creating Classes from Tables
When you have specified your class and property name identifiers, the Define Classes sheet of the External
Schema Wizard then enables you to define the classes that are to be created from relational database tables.

Note You can map multiple tables into one class.

An example of the Define Classes sheet of the External Schema Wizard is shown in the following image.

The Relational Tables list box alphabetically lists all tables specified in the Tables sheet for inclusion in the
schema transformation.

A bitmap at the left of each table indicates the type of table; that is, whether it is a base table, a view, or a system
table. By default, the first unused table in the list is selected. A table listed in black (that is, one that is not grayed)
already has at least one defined class using that table.

The Name text box displays the class name to be generated for the selected relational table. If no relational table
is selected, this text box is empty and the Add Class button is disabled.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 83

ExtIntDevRef - 2018.0.01

The External Schema Classes list box lists all the classes defined for this external database schema; that is, all
subclasses of the ExternalObject class for this external database.

To define classes from relational tables

1. In the Relational Tables list box, select one or more tables that are to be used in your class. (A class that is
based on more than one table is called a join.)

As the selection in the Relational Tables list box automatically moves to the next unused table in the list, you
can add a default class name for each table in the list by successively clicking the Add Class button.
Alternatively, click the Add All button to initiate the creation of a new class for each relational table that is not
used by a class.

2. A default class name is generated for the selected table or tables and is displayed in the Name text box.
Specify a different name for the class, if required.

The name must be a valid class name that is unique to the ExternalObject class.

3. In the Access group box, select the appropriate option button to specify the type of access you require for the
currently selected class; that is, protected or public. (The default access type is determined by the user
profile.)

4. Click the Add Class button to add your class to the ExternalObject hierarchy and update the JADE
database. The next unused table in the Relational Tables list box is then selected.

Alternatively, click the Add All button to initiate the creation of a new class for each relational table that is not
used by a class.

5. To delete an existing class that you no longer require in your external database schema, in the External
Schema Classes list box, select the class or classes that you want to delete, and then click the Remove
button.

6. To edit the type of access of a class, select the class in the External Schema Classes list box that you want
to change and then click the Edit button.

The Define Class dialog is then displayed. Controls and sheets that are not valid for the changing of an
external database schema class are disabled. For details about using this dialog, see "Defining a Class", in
Chapter 3 of the JADE Development Environment User’s Guide.

7. Click the Next > button when you have defined your external database schema classes. Alternatively, click
the Close button to close the wizard.

When you click the Next > button, the External Schema Wizard then enables you to define attributes for a class.

Defining Attributes for a Class
When you have created classes from tables, the Define Attributes sheet of the External Schema Wizard then
enables you to add attributes to a class, based on columns of the tables defined in the Define Classes sheet.

The creation of class attributes is a prerequisite for the definition of dictionaries.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 84

ExtIntDevRef - 2018.0.01

An example of the Define Attributes sheet of the External Schema Wizard is shown in the following image.

The Classes list box lists all of the subclasses of the ExternalObject class defined for this external database
schema. The Attributes table displays all of the potential and defined attributes for the class selected in the
Classes list box.

The rows of the Attributes table are grouped into sections, with a separate section for each table included in the
class. Each row of the table displays a check box at the left of a table column of one of the tables included in the
class and a generated attribute name and default JADE primitive type for that attribute, based on the description of
the table column from the relational database.

When you first access this sheet and no attributes are defined for a class, all the attributes in the Attributes table
are checked. When you have added one or more attributes to a class, only those attributes are checked.

Rows in the Attributes table that correspond to an existing attribute for the selected class are displayed in black.
Rows that do not correspond to an existing attribute are displayed in gray and enable you to change the attribute
name by specifying the required name in an edit text box in the table. A changed attribute name is then displayed
in black.

To define attributes for a class

1. In the Classes list box, select the ExternalObject subclass whose attributes you want to define.

The Attributes table is then automatically populated with all of the possible attributes that can be added to
that class. If you have not yet defined any attributes for the selected class, all of the attributes in the
Attributes table are checked.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 85

ExtIntDevRef - 2018.0.01

If you have added one or more attributes to that class, only those attributes are checked; that is, your
previous selections are retained and displayed when you next access the Define Attributes sheet of the
Wizard.

Note Any attributes that correspond to primary key columns are always checked and added to the selected
class, as these are required for references and update operations.

2. To exclude a table column for transformation to an attribute, uncheck the check box at the left of that column
in the Attributes table.

3. When you have made the required changes to the attributes for the selected class, click the Save button. The
attributes for that class are then saved.

The selection in the Classes list box automatically moves to the next ExternalObject subclass that has no
attributes defined for it in the Attributes table, enabling you to define attributes for each class.

4. Repeat steps 1 through 3 for each ExternalObject subclass whose attributes you want to define.

5. To change a generated attribute, select the attribute name and then click the Edit button. The Define
Attributes dialog is then displayed. Options that are not valid for the changing of an external database
schema attribute are disabled.

You can change the attribute type, length, scale factor, precision, and access mode. For details, see "Adding
an Attribute Property", in Chapter 4 of the JADE Development Environment User’s Guide.

The JADE primitive type of the attribute can be changed only if a reasonable conversion exists. Symmetric
conversions only are allowed. If a data type conversion produces a truncation or that type is not defined for
your ODBC driver, an exception is raised at run time. For details, see "Mapping an SQL Data Type to a JADE
Primitive Type", in Chapter 2.

6. To delete a defined attribute, uncheck its check box and then click the Save button. Alternatively, select the
required attribute in the Attributes table and then click the Remove button. (The Remove button is disabled
if you have not selected an attribute or you have selected an attribute based on a primary key.)

If the attribute is used anywhere in your schema, you are prompted to confirm that it is to be deleted.

7. Click the Next > button when you have defined the attributes for your classes. (Alternatively, click the Close
button to close the wizard.)

When you click the Next > button, the External Schema Wizard then enables you to define collections.

Note If you have made any changes to your attribute definitions that you have not yet saved, a warning is issued
before the next sheet is displayed.

Defining Collection Classes
When you have defined attributes for your classes, the Define Collections sheet of the External Schema Wizard
then enables you to define your collection classes, which you can then use to define references in the following
step.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 86

ExtIntDevRef - 2018.0.01

An example of the Define Collections sheet of the External Schema Wizard is shown in the following image.

The Collections table displays the potential and defined collections for the current external database schema.

The rows of the Collections table are grouped into sections, with a separate section for each member class of the
collection; that is, the subclasses of the ExternalObject class. Each section contains a row for an array-based
collection, a set-based collection, and a dictionary-based collection.

Dictionaries are defined for each primary key and for each index with keys of the attributes that correspond to the
table columns.

Each row of the table displays a check box at the left of the generated collection name. The row for a dictionary
collection also contains its keys, and for an array collection, its order attributes. Rows that correspond to an
existing collection are displayed in black.

Rows that do not correspond to an existing collection are displayed in gray and enable you to change the
collection name by specifying the required name in an edit text box in the table. A changed collection name is
then displayed in black.

To define collections

1. To include all collection subclasses in your external database schema with the displayed generated names,
click the Save button.

2. To exclude a collection subclass from your external database schema, uncheck the check box at the left of
that column in the Collections table.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 87

ExtIntDevRef - 2018.0.01

If you have not yet defined any collection subclasses, all generated collection subclasses are checked
except for array collections. If you have added one or more collection subclasses, only those collection
classes are checked; that is, your previous selections are retained and displayed when you next access the
Define Collections sheet of the Wizard.

3. Click the Save button, to retain your selection or de-selection of the collection class.

4. Repeat steps 2 and 3 for each collection subclass that you want to create or an existing external database
schema collection class that you now want to exclude.

5. To change a generated collection class name or its options (that is, access type, keys, and the sort order):

a. Select the required class in the Collections table.

b. Make the required changes in the Define Class dialog that is then displayed. (Options that do not apply
to the external database schema transformation process are disabled.) For details, see "Defining Your
Own Classes", in Chapter 3 of the JADE Development Environment User’s Guide.

c. Click the OK button in the Define Class dialog to save your changes and close the dialog.

6. To add a collection subclass that is not automatically generated:

a. Click the Add button to specify your new ExternalCollection subclass in the Define Class dialog that is
then displayed. (Options that do not apply to the external database schema transformation process are
disabled.) For details, see "Defining Your Own Classes", in Chapter 3 of the JADE Development
Environment User’s Guide.

Select the ExternalDictionary, ExternalArray, or ExternalSet class as the superclass.

b. Click the OK button in the Define Class dialog to save your new collection class (which is then
displayed in the Collections table).

7. To delete a collection subclass, uncheck its check box and then click the Save button. Alternatively, select
the class that you want to delete in the Collections table, and then click the Remove button. If the collection
is used anywhere in the external database, you are prompted to confirm that you want to delete it.

8. Click the Next > button when you have defined all of the required collection classes.

Alternatively, click the Close button to close the wizard.

When you click the Next > button, the External Schema Wizard then enables you to define references.

Note If you have made any changes to your collection definitions that you have not yet saved, a warning is
issued before the next sheet is displayed.

Adding References to a Class
When you have defined your collection subclasses and dictionary class keys, the Define References sheet of the
External Schema Wizard then enables you to add references to your external database classes. References
added to a class are based on any foreign keys defined for or by the class member tables, or by an association of
arbitrary columns. Foreign keys represent one-to-one and one-to-many relationships. Primary keys determine the
object identity for a class formed by the union of tables.

Note A reference property is a one relationship and a collection property is a many relationship. If a property
defining the relationship is not a collection, only one reference is allowed. The collection can be a set, an array, or
a dictionary.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 88

ExtIntDevRef - 2018.0.01

An example of the Define References sheet of the External Schema Wizard is shown in the following image.

The Left Side Class combo box and the Right Side Class list box list all of the ExternalObject subclasses
defined for your external database schema, to enable you to select the classes between which to define a
relationship. The Left Side Class combo box also includes the external relational database class that
corresponds to this external database schema, to enable you to define a root object reference.

The tables at the right of the sheet represent the two classes that you select. The tables display a section for each
relational table defined for the selected classes (by using the Define Classes sheet, in an earlier step). These
sections list the columns of the tables.

Columns that participate in the primary key of the table are indicated with a bitmap, as are columns that participate
in a foreign key and those that participate in both types of key. A dotted (broken) line drawn between these two
tables indicates a candidate relationship. A solid line indicates a relationship that you have already defined.

The types of relationship that can be shown are listed in the following table.

Relationship Description

Foreign key-based Uses primary and foreign key information from the relational database to determine
the columns that are involved

Name-based Matches columns with the same name and similar types, to identify potential
relationships

User-defined Relies on you to select the columns that are involved in the relationship

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 89

ExtIntDevRef - 2018.0.01

If a relationship uses several columns on one side of the relationship, these columns are bracketed. A directional
arrow on a line indicates the relationship from a foreign key to a primary key.

A relationship line that already has a defined reference is displayed with a 1 or M character at each end of the
line, indicating the cardinality of the relationship; that is, one or many.

To specify a reference

1. In the Left Side Class combo box, specify or select the class for the left-hand side of the relationship.

2. In the Right Side Class list box, select the class for the right-hand side of the relationship.

3. Click on the line that represents a candidate relationship.

Alternatively, if you want to define a relationship that is not automatically generated as a candidate
relationship, perform the following actions.

a. In the first table, select the column or columns that are to form one end of the reference.

b. In the second table, select the column or columns that you want to form the other end of the reference.

4. Click the Add button.

Tip Alternatively, to specify an arbitrary relationship, you can drag-and-drop between a single column in each
table, or you can select multiple compatible columns with the same type in the same order and then click the Add
button.

The External Schema Wizard Relationship dialog is then displayed, to enable you to define your reference.

To edit an existing reference

1. Click the relationship line between the two references. The selected line is then displayed in white. You can
select only one relationship line at any time.

2. Click the Edit button.

The External Schema Wizard Reference dialog is then displayed, to enable you to change the existing reference.
For details, see "Using the External Schema Wizard Relationship Dialog", in the following subsection.

To delete an existing reference

1. Click the relationship line between the two references.

2. Click the Remove button.

The references between the two classes are then removed.

To proceed to the next step of the schema transformation process

Click the Next > button when you have defined all required class references for your external database
schema.

Alternatively, click the Close button to close the wizard.

When you click the Next > button, the External Schema Wizard then enables you to refine your external database
schema class SQL queries.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 90

ExtIntDevRef - 2018.0.01

Using the External Schema Wizard Relationship Dialog
When you have selected a relationship line between two columns on the Define References sheet and clicked
the Add button or the Edit button, the External Schema Wizard Relationship dialog is then displayed.

An example of the External Schema Wizard Relationship dialog is shown in the following image.

A reference property is a one relationship and a collection property is a many relationship. If a property defining
the relationship is not a collection, only one reference is allowed. The collection can be an array, a set, or a
dictionary with member keys.

Note All references are read-only, and all relationships between two ExternalObject subclasses are explicit
inverse relationships; that is, you must define one reference for each side of the relationship.

The Left Side group box and Right Side group box represent the two sides of the relationship and correspond to
the two classes that you selected in the Define References sheet. Each group box displays the selected class
and a generated reference name.

The Implementation group boxes enable you to select the type of collection that is to be used to implement a
many-sided relationship. The display area at the lower right of the dialog describes the selected relationship in
terms of relational tables and columns.

The classes selected in the Define References dialog are displayed in the Class list boxes. Values that cannot
be altered are disabled. For details about JADE references, see "Adding a Reference Property", in Chapter 4 of
the JADE Development Environment User’s Guide.

To add or change a reference

1. If you do not want the generated default cardinality for your reference, select the appropriate option button in
the Cardinality group box.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 91

ExtIntDevRef - 2018.0.01

Change the cardinality to indicate a many-sided relationship, if required. The Implementation group box on
the corresponding side of the relationship is then enabled and the name of a reference on that side of the
relationship is replaced with the plural form of the name if you have not yet edited the reference on that side
of the relationship.

2. If the generated default names are not suitable, change the names displayed in the Name text box of the Left
Side group box and Right Side group box.

3. If an Implementation group box is enabled for either side, change the collection type by selecting the
appropriate option button, if required.

Any collections that match the selected implementation option are displayed in the Collection combo box,
with the list box portion displaying the first match. Select another collection that matches your selected
implementation, if required.

4. In the Relationship Type group box, select the appropriate option button to specify the composition
semantics that you require. The relationship is between instances of two classes.

A peer-to-peer relationship is an equivalent relationship between two objects. A parent-child relationship is a
relationship in which the child object belongs to, or is subsidiary, to the parent object. This enables you to
capture additional semantic information only; for example, for modeling purposes.

There is no enforcement of deletion semantics, as the instances do not reside in the JADE database. (For
details, see "Object Lifetimes", in Chapter 2.)

Note In an external database schema, child objects are not automatically deleted when a parent object is
deleted. (This differs from the JADE implementation.)

5. Click the OK button when you have defined your references. (Alternatively, click the Cancel button to
abandon your selections.)

When you click the OK button (and you confirm that you want to use an existing reference, if required), the Define
References sheet is then displayed, to enable you to define more references or to proceed to the next step of the
External Schema Wizard.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 92

ExtIntDevRef - 2018.0.01

Refining the Class Membership Query
When you have added references to your classes, the Class Query sheet of the External Schema Wizard, shown
in the following image, then enables you to inspect and tailor the class membership query, based on the member
tables and any columns used as attributes or references.

To inspect or tailor a generated class membership query

1. In the Classes list box, which displays all classes defined for the current external database schema, select
the class whose membership query you want to view. The SELECT and FROM clauses of the generated
SQL query for your selected class are then displayed in the display-only (gray) area in the upper center of
the sheet.

2. In the edit area (the white area) at the lower center of the sheet, specify an optional WHERE clause, if
required. If your class uses two or more tables, you must specify the JOIN condition for the tables in this edit
area. You can also use the WHERE clause to exclude rows of the selection (equivalent to object instances)
from the class membership.

3. In the edit area (the white area) at the lower center of the sheet, specify an optional ORDER BY clause, if
required. You can use the ORDER BY clause to determine the order in which rows of the selection
(equivalent to object instances) are iterated through when accessing the instances collection of the selected
class.

4. To save your specified SQL query clause for the class, click the Save button. The query is then validated by
the current driver (if you are currently connected to the external relational database) before your query is

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 93

ExtIntDevRef - 2018.0.01

saved.

5. To return to your original query for the selected class (that is, to refresh the screen), click the Default Query
button.

6. Repeat steps 1 through 4 for each class whose query you want to inspect or to tailor.

Note If you have made any changes to your class query that you have not yet saved, a warning is issued
before the next class (or sheet) is displayed.

7. Click the Next > button when you have inspected or tailored all required class membership queries.
Alternatively, click the Close button to close the wizard.

When you click the Next > button, the External Schema Wizard then enables you to inspect Collection class
queries.

Inspecting Collection Class Queries
When you have refined the class membership queries for your external database schema, the Collection Query
sheet of the External Schema Wizard is then displayed, to enable you to inspect your collection queries.

An SQL query based on the member tables and any columns that are used as attributes or references is
generated for each collection.

Note An ORDER BY clause is generated only for dictionary and array collection classes.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 94

ExtIntDevRef - 2018.0.01

An example of the Collection Query sheet is shown in the following image.

The Collections list box at the left of the sheet lists all collection classes defined for this external database
schema.

To inspect a generated collection class query

1. In the Collections list box, select the collection class whose query you want to view.

The SQL Query frame at the right of the sheet then displays the entire SQL query that was generated for the
selected collection class. You can view the SQL query only; you cannot tailor a collection query.

Tip To change your collection criteria, return to the Define Collections sheet.

2. Repeat step 1 for each collection class whose query you want to inspect.

3. Click the Next > button when you have inspected all required collection queries.

Alternatively, click the Close button to close the wizard.

When you click the Next > button, the External Schema Wizard then enables you to inspect your reference
queries.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 95

ExtIntDevRef - 2018.0.01

Inspecting Reference Queries
When you have inspected your collection class queries, the Reference Query sheet of the External Schema
Wizard, shown in the following image, then enables you to inspect your reference queries.

An SQL query is generated for each reference in your external database schema. An ORDER BY clause is
generated for dictionary and array collections only.

The Classes list box at the left of the sheet lists all classes (that is, From classes) defined for this external
database schema.

To inspect a generated reference query

1. In the Classes list box, select the class whose reference query you want to view.

The rows of the References Table are grouped into sections, with a separate section for each To class. Each
row of the table displays the name of the reference, the From Table(Columns), and the To Table(Columns)
of the external relational database. On the far right is a Details button.

2. In the Reference Name list in the References Table, select the reference to the class whose SQL query you
want to view. You can view the SQL query only; you cannot tailor a reference query.

The SQL Query frame at the upper right of the sheet then displays the entire SQL query that was generated
for the selected class reference. You can view the SQL query only; you cannot tailor a reference query.

3. To view the definition of the selected reference, click the Details button at the right of the sheet.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 96

ExtIntDevRef - 2018.0.01

The External Schema Wizard Relationship dialog is then displayed in read-only mode, to enable you to view
the definition of the selected reference. To edit the relationship, return to the Define References sheet.

For details, see "Using the External Schema Wizard Relationship Dialog" and "Adding References to a
Class", respectively, earlier in this chapter.

4. Repeat steps 1 through 3 for each reference whose query you want to inspect.

5. Click the Next > button when you have inspected all required reference queries.

Alternatively, click the Close button to close the wizard.

When you click the Next > button, the External Schema Wizard then enables you to confirm that you have finished
defining your external database schema.

Finishing Your External Database Schema Definition
When you have inspected your SQL queries for class references, you have finished specifying your external
database schema definition.

The Finished! sheet of the External Schema Wizard, shown in the following image, indicates that the
transformation process is complete and enables you to change the status of the external database schema so that
it can be used at run time.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 97

ExtIntDevRef - 2018.0.01

To confirm that you have finished specifying your external database schema

Click the Finished button.

Alternatively, click the < Back button to redisplay the previous sheet or the Close button to close the wizard
without marking the external database for runtime use.

When you click the Finished button, JADE performs the following actions.

1. Completes the transformation process.

2. Marks your external database schema so that it can be used by the Runtime Query Engine.

3. Closes the External Schema Wizard and then displays the External Databases Browser that contains your
new external database schema.

When you select the external database schema in the External Databases Browser, the status line displays
the creation timestamp and your user identifier.

You can now use your external database schema as you can any other part of JADE, by using the ODBC driver
and your SQL queries.

Deleting an External Database Schema
From the External Databases Browser, the Remove command in the Databases menu enables you to remove
(delete) the external database schema that is currently selected.

Notes You cannot remove an external database schema that is currently being accessed by an ODBC driver.

When a subclass of ExternalObject is deleted, all collections and references that use the class are deleted. A
message box displays a warning, prompting you to confirm that you want to delete the external object.

To remove an external database schema

1. In the External Databases Browser, select the external database schema that you want to remove.

2. Select the Remove command from the Databases menu.

3. A message box is then displayed, to enable you to confirm that you want to remove the selected external
database schema.

4. Click the OK button to confirm that the selected external database schema is to be removed.

Alternatively, click the Cancel button to abandon the deletion.

The External Databases Browser is then updated to reflect the removal of the selected external database schema.
There may be a momentary delay while this updating occurs.

When you delete an external database schema, JADE performs the following actions.

1. Deletes all ODBC catalog information that was held internally.

2. Removes all ExternalObject and ExternalCollection subclasses defined for this external database schema.

3. Deletes the singleton instance of the external database schema.

4. Removes its own ExternalDatabase subclass.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 98

ExtIntDevRef - 2018.0.01

Changing an External Database Schema
Use the External Schema Wizard to maintain an existing external database schema selected in the External
Databases Browser. If the definition of the external relational database changes, the transformed (external
database schema) definition that is stored in the JADE database may be incomplete or wrong.

To ensure that the external relational database and your external database schema retain concurrency, JADE
performs the following actions.

1. Stores a complete description of the parts of the original external schema that are transformed, to allow
comparison against any later version of the same schema.

2. Detects differences when establishing a connection to an external database and prevents access at a table
level when such differences are detected.

3. Enables you to update the transformed (external database schema) definition, including the removal of
obsolete elements. This process indicates new, out-of-date, or deleted elements.

To change an external database definition

1. Select the external database schema in the External Databases Browser.

2. Select the Change command from the Databases menu.

When you change an existing external database schema, the Name text box in the first sheet of the External
Schema Wizard displays the name of your external database schema. As you cannot change the name of an
existing external database schema, this text box is disabled.

The External Schema Wizard is then displayed. For details about using the External Schema Wizard, see "Adding
an External Database Schema", earlier in this chapter.

Viewing an External Database Definition in Read-Only
Mode

You can browse your external database definitions by using the External Schema Wizard in read-only mode.
When you browse an external database in read-only mode, the definition cannot be inadvertently modified.

To view a selected external database definition in read-only mode

1. Select the external database schema in the External Databases Browser.

2. Select the View command from the Databases menu.

The External Schema Wizard is then displayed in read-only mode to enable you to browse through your definition,
but not to change it.

For details about the External Schema Wizard, see "Adding an External Database Schema", earlier in this chapter.

Printing an External Database Schema
From the External Databases Browser, the Print command in the Databases menu enables you to output
information about the currently selected external database schema to your printer.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 99

ExtIntDevRef - 2018.0.01

To print your external database schema

1. In the External Databases Browser, select the external database schema that you want to print.

2. Select the Print command from the Databases menu.

3. The Printing progress dialog is then displayed. (You can click the Cancel button from the Printing progress
dialog to cancel your print request.)

Your print output contains a full description of the external database schema, including connection information,
class and table mappings, and property and column mappings.

Extracting an External Database Schema
You can extract an external database schema as part of the schema in which it is defined or you can extract only
the external database schema itself.

To extract an external database schema only

1. In the External Databases Browser, select the external database schema that you want to extract.

2. Select the Extract command from the Databases menu. The common File Save dialog is then displayed.

3. Change the default file path and names, if required, and then click the OK button.

By default, your external database schema is extracted as .scm and .ddb or .ddx files that are prefixed with
the name of your external database schema; for example, ExtDb.scm and ExtDb.ddb.

These files are extracted to your JADE working directory by default; for example:

s:\jade\test\bin

For details about extracting the external database schema as part of the schema in which it is defined, see
"Extracting Your Schema", in Chapter 10 of the JADE Development Environment User’s Guide.

Loading an External Database Schema
You can load an external database schema as part of the schema in which it is defined or you can load only an
extracted database schema itself.

To load an external database schema only

1. In the External Databases Browser, select the Load command from the Databases menu.

The Load Options dialog is then displayed.

2. In the Schema File Name text box, specify the name and location of the external database schema file (.scm
file) that you want to load. You must specify a value in this text box.

If you are unsure of your file name or location, click the Browse button. The common File dialog is then
displayed, to enable you to select the appropriate file.

3. In the Forms File Name text box, specify the name and location of the extracted form and data definition
(.ddb or .ddx) file that you want to load.

If you are unsure of your file name or location, click the Browse button. The common File dialog is then
displayed, to enable you to select the appropriate file.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 100

ExtIntDevRef - 2018.0.01

4. Click the OK button to confirm your selections.

Alternatively, click the Cancel button to abandon your selections.

The loading of your external database schema is then initiated.

For details about loading the external database schema as part of the schema in which it is defined, see "Loading
Your Schema", in Chapter 10 of the JADE Development Environment User’s Guide.

External Interface
Developer's Reference

Chapter 3 Transforming an External Relational Database 101

ExtIntDevRef - 2018.0.01

Chapter 4 Using External Component
Libraries

This chapter covers the following topics.

Overview

Using Generated ActiveX Classes

Using the Generated ActiveX Control Classes

Using the Generated ActiveX Automation Classes

Using Controls as Automation Objects

ActiveX Class Interfaces

Using Standard Classes

Editing ActiveX Methods That Return a StringArray

ActiveX Default Values and Considerations

Default Names

Data Types

Component Categories

Optional Parameters

.NET Assemblies

Location of .NET Assemblies

How JADE Imports .NET Object Definitions

.NET Default Values and Considerations

.NET-Related JADE Modules

Using .NET Components

Non-GUI .NET Components

.NET Helper Methods

.NET Controls

Overview
JADE enables you to interface to two types of external components in a similar way.

External ActiveX control and automation servers

NET components and controls

ExtIntDevRef - 2018.0.01

ActiveX automation enables you to control a Component Object Model (COM) application from within JADE. In
JADE, the ActiveXControl subclass of the Control class supports the use of all interfaces on the control whereas
the Ocx control that was available in JADE release 5.0 and earlier (which is retained for backward compatibility)
provides a limited interface to ActiveX.

A set of interface classes (which are subclasses of the IDispatch class) is generated, and these classes map to
each of the interfaces defined for an ActiveX object. You then access the functionality of the ActiveX objects
through these interface classes, using the methods and properties that have been generated during the ActiveX
import process.

In JADE thin client mode, ActiveX control and automation objects and .NET controls run only on the presentation
client.

A selective extract of an ActiveX object extracts only class, method, and property descriptions of the selected
ActiveX classes, and not the invisible user data that goes with these classes. To extract all ActiveX data so it is
usable in another schema that has not had the ActiveX objects loaded or imported, perform a full schema extract
or extract the specific ActiveX object (from the Components menu).

The Component Object Model (COM) Standard
COM is a standard that defines how objects and users of those objects interact. As this is a binary standard, many
different ActiveX objects can use objects defined within COM, regardless of the language used. An ActiveX
control, for example, can work with a Visual Basic or a C++ application.

COM objects are manipulated by an interface, which is simply a set of methods that can be called and properties
that you can set or get. Most objects have many different interfaces. The most important of these interfaces is the
IUnknown interface, which all COM objects implement and all other interfaces inherit. Although IUnknown is the
only interface that all objects must support, most objects also support the IDispatch interface. Objects that support
the IDispatch interface are called automation servers.

A type library is a special file (which usually has a .tlb extension but can also be imbedded in an executable or
dynamic link library file) that contains a description of an object and its interfaces. Some of the information that this
file contains includes method names, parameters, and parameter types.

ActiveX Automation
Automation is the ability of a client to drive or direct a COM object by calling methods or setting properties using
one or more interfaces of that object. For example, Microsoft Excel and Word are automation controllers; that is,
they are objects that can be controlled by automation.

Automation is simply the execution of a set of commands that set and get properties and call methods using the
properties and methods of the generated ActiveX interface classes. Each ActiveX automation library has a
corresponding class of the ActiveX automation type library name created as a subclass of the ActiveXAutomation
class. This ActiveX library class is the superclass that supports the automation classes within that library.

Each ActiveX automation class has a set of properties and methods created that correspond to the default
interfaces for that class.

Creating an instance of the ActiveX automation object in JADE creates the ActiveXAutomation object. An
example of an ActiveX automation type library is Microsoft Word 9.0 Object Library, which creates the
automation object classes for Word 97.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 103

ExtIntDevRef - 2018.0.01

When JADE initializes a COM object, the first thread in the application must be the last thread that finalizes (un-
initializes) the application. Although jade.exe and jadapp.exe do this, JADE applications such as jadrap.exe do
not do so. When you run automation objects on the database server and automation is to be performed on the
database server, you must ensure that the first thread to initialize COM is the last thread to finalize (un-initialize) it.
For example, if two server applications that use an ActiveXAutomation object are started, the first application
must run longer than the second application.

Note Using an automation object in server methods can cause problems, as there is no way to ensure that such
server methods are run on a specific thread and to control when those threads are closed down.

In such situations, you could start a server application that does nothing more than start the automation object and
that will not close until the database server is closed down. We therefore do not recommend that you run
automation objects on the database server, particularly in-process objects (that is, DLLs), as these can interfere
with the operation of JADE.

ActiveX Controls
An ActiveX control is a special sort of COM object, which is a user interface object that implements a number of
interfaces that support its use on forms. (This control was formerly known as the OCX control.)

An ActiveX control can optionally have a graphical user interface, and can fire events. This enables existing third-
party functions, such as highly specialized controls, to be used within your JADE applications.

Each ActiveX control library has a corresponding class of the ActiveX control type library name created as a
subclass of the ActiveXControl class. This ActiveX library class is the superclass that supports the control classes
within that library. Each control class can have a set of properties, methods, and events created that correspond to
the default interfaces.

Creating an instance of the ActiveX control in JADE does not create an instance of the ActiveXControl object.
This occurs only when the control is added to a form.

ActiveX controls have a default interface and can have a default event interface.

An imported ActiveX control is added to the Control palette of the JADE Painter, and then cannot be distinguished
from standard JADE-supplied controls.

Note If you have added a property to an imported ActiveXControl object and flagged that property as a design-
time property (for details, see "Selecting Your Design Time Properties", in Chapter 5 of the JADE Developer’s
Reference), any value assigned to that property by using JADE Painter Properties dialog will not be propagated
through to the runtime instance of that control when the form is created.

If the property value is required in the runtime instance, you can copy it from the persistent instance to the runtime
instance in the windowCreated method on the ActiveXControl subclass. (As the windowCreated method will be
a reimplementation of the Control::windowCreated method, you must include an inheritMethod instruction in your
windowCreated method.)

An example of an ActiveX control type library is Microsoft Windows Common Controls 6.0, which creates
classes for the common Microsoft Windows controls; for example, the ImageList, Slider, and TreeView controls.

ActiveX Interfaces
ActiveX objects are manipulated by their interfaces. An interface consists of a set of properties that you can set or
get, and a set of methods that can be called. The caller of an ActiveX object needs to know the property types and
method names and parameters to make use of these interfaces.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 104

ExtIntDevRef - 2018.0.01

A subclass of the IDispatch class is generated for each of the interfaces defined for an ActiveX automation or
control object (which have had subclasses of ActiveXAutomation and ActiveXControl generated). Each of these
interface classes has properties and methods generated that correspond to the properties and methods of the
interface.

Note You can create neither transient nor persistent instances of ActiveX interface classes. Instances of these
classes are created by JADE at run time when an ActiveX object supplies an interface pointer, and they are
deleted when the ActiveX object that is using them is deleted. However, you can delete an instance of an interface
if you want to release resources.

Use the getInterface method provided by instances of the ActiveXAutomation and ActiveXControl classes to
access any interface for an imported ActiveX object.

How JADE Imports ActiveX Object Definitions
When you import ActiveX object definitions into JADE, the actions that are taken are determined by the type of
object; that is, an ActiveX interface, control, or automation class. For details, see the following subsections.

ActiveX Interface Classes
A JADE class is created as a subclass of the IDispatch class for each dispInterface defined in the type library. A
class constant called GUID, which is a binary value corresponding to the Globally Unique Identifier (GUID) of the
interface, is added to each class. JADE properties and methods are added to the class that corresponds to the
properties and methods of the interface.

Some ActiveX type libraries do not expose any properties but define a get and a put method for each property.
During the import process, get and put pairs of methods on an interface are imported as a JADE property with a
mapping method.

The two cases in which get and put pairs of methods cannot be mapped to a JADE property are:

When the get method has a parameter or the put method has more than one parameter, as JADE does not
support mapping methods with more than one value parameter.

When the get and put methods operate on a VARIANT type property, as Variant properties are imported as a
JADE Any primitive type and mapping methods cannot be defined for a property of type Any.

If either of these is the case, JADE creates get and set method pairs.

Control Classes
A JADE class is created for each registered component object class (coclass) defined in the type library that is
flagged as a control in the operating system registry and where the library is imported as a control library. These
control object classes are created as a subclass of the class created to represent the library, which is in turn a
subclass of the ActiveXControl class.

A coclass in ActiveX corresponds to a class in JADE. An interface is a definition of properties and methods that
can be used to access an instance of a coclass.

The GUID class constant, which is a binary value containing the object class identifier (CLSID), is created for the
generated control type library class.

Methods and properties are created in the same way as interfaces. The methods and properties are based on the
default interface and the default event interface (if any) for the object. Calling a method on an object is the same
as calling the method of the default interface.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 105

ExtIntDevRef - 2018.0.01

Automation Classes
A JADE class is created for each registered coclass defined in the type library that is not flagged as a control in the
operating system registry. These automation object classes are created as a subclass of the class created to
represent the library, which is in turn a subclass of the ActiveXAutomation class.

The GUID class constant, which represents the object CLSID, is created for the generated automation type library
class. The generated properties and methods are based on the default interface of the object.

Using Generated ActiveX Classes
The following subsections describe the use of ActiveXControl classes and ActiveXAutomation classes
generated from the imported ActiveX type libraries.

Automation events are handled differently from controls. In automation, you must register your interest in a specific
set of events. For details, see "Using Automation Events", later in this chapter.

Using the Generated ActiveX Control Classes
Using ActiveX controls from within JADE is identical to the use of the Ocx control class.

The creation of an ActiveX control creates only the JADE object. The ActiveX object itself is not created until the
control is attached to the form. JADE creates a maximum of two transient instances of the interface classes
(subclasses of the IDispatch class): one that corresponds to the default interface and the other to the default event
interface. Reference properties on the JADE ActiveX control object hold reference to these interface instances.

If the ActiveX object returns a reference to another interface in response to a method call or a get action on a
property, JADE creates an instance of the corresponding JADE interface class and returns a reference to that
instance. (A mapping is maintained between JADE interface instances and the interface pointers of ActiveX
controls.)

Note As ActiveXControl class methods run only on the client node, all methods generated for imported ActiveX
controls include the clientExecution option in the method signature.

Using the Generated ActiveX Automation Classes
To use an automation object from within JADE, you simply create an instance of the JADE class (that is, a
subclass of the ActiveXAutomation class) that corresponds to the automation object. The ActiveXAutomation
class createAutomationObject method is then called to create the automation object and a transient instance of
the default interface (which is a subclass of the IDispatch class).

A reference is established between the automation class and its default interface. You can then call JADE
automation class methods as you can for any other JADE class. These method calls are passed by the default
interface to the actual automation object.

If the automation object returns a reference to another interface in response to a method call or the getting of a
property, JADE creates an instance of the corresponding JADE interface class and returns a reference to that
instance instead. (A mapping is maintained between JADE interface instances and automation server interface
instances.)

Note You can create only transient instances of ActiveXAutomation subclasses.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 106

ExtIntDevRef - 2018.0.01

The following example is a Workspace or JadeScript method that loads three Excel cells with data, draws a chart,
and prints the result.

chartExample();
vars

xl : ExcelApp; // ActiveX automation subclass
wrkSht : Worksheet; // interface subclass of the IDispatch class
sht : I_Worksheet; // interface subclass of the IDispatch class
rng : Range; // interface subclass of the IDispatch class
chrts : Sheets; // interface subclass of the IDispatch class
chrt : I_Chart; // interface subclass of the IDispatch class

begin
// Start Excel
create xl;
xl.createAutomationObject;
xl.visible := true; // See what’s going on
xl.workbooks.add(xl.XlWorksheet); // Add Workbook (with one sheet)
sht := xl.activeSheet.I_Worksheet; // Get top sheet and fill cells
sht.range("A1", null).putValue("One");
sht.range("B1", null).putValue("Two");
sht.range("C1", null).putValue("Three");
sht.range("A2", null).putValue(10);
sht.range("B2", null).putValue(5);
sht.range("C2", null).putValue(3);
rng := sht.range("A1", "C2"); // Select cells
chrts := xl.charts; // Add a chart
chrts.add(null, null, null, null);
chrt := xl.activeChart;
// Start chart wizard
chrt.chartWizard(rng, // source

xl.Xl3DPie, // gallery
7, // format
xl.XlRows, // plotBy
1, // categoryLabels
0, // seriesLabels
2, // hasLegend
"Jade Example", // title
null, // categoryTitle
null, // valueTitle
null); // xtraTitle

// Output chart
chrt.printOut(null, // first page

null, // last page
null, // copies
null, // preview
null, // printer
null, // print to file
null); // collate

epilog
if xl <> null then

xl.activeWorkbook.saved := true; // Don't ask to save!
xl.quit; // Close down Excel
delete xl;

endif;
end;

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 107

ExtIntDevRef - 2018.0.01

Using Automation Events
To register your interest in a specific set of automation events, you must first define a reference to the set of
automation events in which you are interested. When you have registered your interest, these event methods are
then triggered in the same way as event methods for JADE controls.

To set up an automation event handler

1. Select the Add Reference command from the Properties menu in the Class Browser to create a property that
is a reference to an event in the IDispatch class.

2. Use the Define Reference dialog that is then displayed to specify your event reference property, as you
would for any other reference property. (For details, see "Adding a Reference Property", in Chapter 4 of the
JADE Development Environment User’s Guide.)

To summarize:

a. In the Name text box, specify the name of the event reference that you want to define.

The maximum length of the property name varies and it cannot be greater than the length of the longest
method name of the event interface. The name cannot be the same as the name of any existing
property or non-mapping method in the class, its superclasses, or subclasses.

b. In the Type combo box, perform one of the following actions.

Select the required type in the Type list.

The types that are listed are the subclasses of the IDispatch class that correspond to each
ActiveX event dispInterface defined in the type library.

Specify the first character or the first few characters of the type in the text box and then select the
required type from the Type list.

The selected type is then displayed in the Type combo box.

c. Check the Subschema Hidden check box if you want to specify that the event reference is available
only in the local schema. This check box is unchecked by default; that is, the event reference is
available in subschemas.

Subschema-hidden event references that are not available for use in any subschemas cannot be
referenced by subschema code and they are not displayed in subschema Class Browsers. For details,
see "subschemaHidden Option" under "Controlling the Use of Elements in Other Schemas", in Chapter
1 of the JADE Development Environment User’s Guide.

When you have defined an event reference and you then select it in the Properties List of the Class Browser,
the Methods List is populated with disabled methods that correspond to the methods of the event interface.

3. To add an automation event method, from the Methods List select the disabled method name that
corresponds to the event in which you are interested.

The editor pane then displays the method template with a signature that matches that of the automation
event method. As it also marks your new method as having the same signature as the selected event and
checks it at compile time, you cannot change the signature of your event method.

4. Unlike control and form events, you must register interest in an event set. The events are not triggered until
the event set has been registered by calling the ActiveXAutomation class beginNotifyAutomationEvent
method, which has the following signature.

beginNotifyAutomationEvent(receiver: Object; eventClassRefName: String);

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 108

ExtIntDevRef - 2018.0.01

The receiver parameter specifies the object to which the event is sent (that is, that receives the message)
and the eventClassRefName parameter specifies the name of the event reference property that you defined
in the Define Event Reference dialog.

The methods defined by the event reference are then executed each time its corresponding automation event
occurs. This event notification continues until the JADE automation object is deleted or until the
endNotifyAutomationEvent method is called, which has the following signature.

endNotifyAutomationEvent(receiver: Object; eventClassRefName: String);

Caution There may be an impact on performance, particularly in JADE thin client mode or on a slow
communications link, if you register for large numbers of automation events or events that are triggered often; for
example, a cell change event in the Excel automation type library. (For details about achieving maximum
performance in the JADE thin client mode of operation, see "JADE Thin Client Performance Considerations", in
Appendix A of the JADE Thin Client Guide.)

Using Controls as Automation Objects
An ActiveX control is a standard automation object with interfaces to handle the Graphical User Interface (GUI)
requirements. As a control can be defined so that it does not require a form in which to live, some ActiveX controls
can be treated as standard automation objects. To use such a control outside a form, the makeAutomationObject
method is called to create the ActiveX object after an instance of the JADE control has been created but before
that control is added to a form. When this has occurred, the control can then be treated as any other automation
object.

The following example assumes that you have imported the Microsoft SysInfo control (that is, sysInfo.ocx) as an
ActiveX control. This example creates a JADE control instance and calls the makeAutomationObject method
instead of adding the control to a form.

createSysInfoAsAutoObject();
vars

x : SysInfo;
begin

create x transient;
x.makeAutomationObject;
write x.oSVersion;
write x.oSBuild;
delete x;

end;

ActiveX Class Interfaces
Instances of ActiveX interface classes are not created or deleted by user logic. Instances of the classes are
created by JADE at run time when an ActiveX object supplies an interface pointer and they are deleted when the
ActiveX object that uses them is deleted.

Using Standard Classes
As most ActiveX type libraries include the OLE Automation library, which contains standard interfaces, the
STDOLE2.TLB OLE Automation library is preloaded into the JADE RootSchema. You can create instances of the
OLE Automation object and then manipulate them in the same way you can any other imported ActiveX object.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 109

ExtIntDevRef - 2018.0.01

The preloaded OLE Automation type library created the standard font and picture JadeAutoFont and
JadeAutoPicture objects as subclasses of OLE_Automation in the ActiveXAutomation superclass and their
corresponding IJadeAutoFont, IJadeAutoFontEvents, and IJadeAutoPicture interface subclasses of the
IDispatch class.

The following example shows the creation of a font object and the setting of font properties.

createAFont();
vars

autoFont : JadeAutoFont;
begin

create autoFont;
write autoFont.bold;
autoFont.bold := true;
write autoFont.bold;

epilog
delete autoFont;

end;

The JADE methods that are provided for the JadeAutoPicture and IJadeAutoPicture classes preloaded into the
RootSchema with the OLE Automation object are summarized in the following table.

Method Description

loadPicture(fileName: String): IJadeAutoPicture; Creates a picture object from an external file

makePicture(binary: Binary): IJadeAutoPicture; Creates a picture object from a JADE binary

loadPicture(fileName: String); Saves the image of a picture to the specified external file

Editing ActiveX Methods That Return a StringArray
JADE ActiveX maps a COM string array into the JADE StringArray type. The maximum length of a string that can
be inserted into a StringArray is 62 characters. An exception (1035 - String too long) is raised if you attempt to
add a string with greater than 62 characters to the ActiveX array.

If you edit the methods generated by the ActiveX import, you can use the HugeStringArray type in place of the
StringArray type. This allows strings with a length up to 2047 characters before an exception is raised.

To make use of a HugeStringArray, you need to tell the ActiveX interface to use them. In the following example,
an ActiveX object implements a member method called ListOfThings that returns an array of strings. The JADE
method generated by the import for such a member is as follows.

listOfThings():StringArray updating, clientExecution;
begin

return _jadeActiveXInvoke("ListOfThings" 1,'0.8200').StringArray;
end;

To enable the method to handle a HugeStringArray:

Change method return type

Pass the HugeStringArray class number to the ActiveX interface in the parameter description argument to
the _ jadeActiveXInvoke method

After making the changes, the listOfThings method is as follows.

listOfThings():HugeStringArray updating, clientExecution;
begin

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 110

ExtIntDevRef - 2018.0.01

return _jadeActiveXInvoke("ListOfThings" 1,
'0.8200.'&HugeStringArray.number.String).HugeStringArray;

end;

As the class number of the HugeStringArray class is 429, the method can be simplified as follows.

listOfThings():HugeStringArray updating, clientExecution;
begin

return _jadeActiveXInvoke("ListOfThings" 1,'0.8200.429').HugeStringArray;
end;

Note You may need to make similar changes in two places; in the ActiveXControl or ActiveXAutomation
subclass, and also in the corresponding IDispatch interface subclass.

ActiveX Default Values and Considerations
When using ActiveX type libraries, you should be aware of the functionality and performance considerations
described in the following subsections.

Default Names
The ActiveX Import Wizard generates default names for all components that need to be named. You can override
these default names for classes (that is, for controls, automation objects, and interfaces), methods, and properties.

These default names are based on the name of the corresponding component in the imported type library.
However, as the COM naming and the JADE naming rules are not the same, name transformation takes place.
The rules for this transformation are as follows.

If the ActiveX name starts with an invalid JADE naming character (for example, the underscore character),
the name is prefixed by I for an interface class, O for an object class, m for a method, and p for a property and
method parameter. For example, the _WorkbookEvents interface name becomes I_WorkbookEvents.

The first letter of a class name is an uppercase character and the first letter of methods and properties is a
lowercase character.

If the ActiveX name contains any invalid JADE naming characters, they are converted to an underscore
character.

If the name is longer than 100 characters, it is truncated to 100 characters.

If the generated name is a duplicate name, a counter is appended to that name to make it unique. The
counter is an underscore character followed by an integer value, which is incremented until the name
becomes unique. For example, the method IsKindOf becomes isKindOf_1.

Data Types
The invoke method of the IDispatch class uses the VARIANT data type to pass properties and return values and
method parameters. These variant types are mapped to JADE equivalents for the properties and methods of the
generated ActiveX interface classes.

The following table lists the JADE primitive types that are used for each of the VARIANT types.

Variant Type Description C++ Type JADE Primitive Type

VT_I2 2 byte integer short Integer

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 111

ExtIntDevRef - 2018.0.01

Variant Type Description C++ Type JADE Primitive Type

VT_I4 4 byte integer long Integer

VT_UI1 Unsigned char unsigned char Character

VT_UI2 Unsigned 2 byte integer unsigned short Integer

VT_UI4 Unsigned 4 byte integer unsigned long Integer

VT_INT Machine integer int Integer

VT_UINT Machine unsigned integer unsigned int Integer

VT_R4 4 byte real float Real

VT_R8 8 byte real double Real

VT_CY Currency CY (__int64) Decimal

VT_18 8 byte integer _int64 Decimal

VT_U18 Unsigned 8 byte integer unsigned _int64 Decimal

VT_BOOL Boolean bool Boolean

VT_ERROR Error code long Integer

VT_DATE Date DATE TimeStamp

VT_BSTR Binary string BSTR String

VT_ARRAY Safearray pointer SAFEARRAY Array

VT_VARIANT Variant pointer VARIANT Any

VT_UNKNOWN IUnknown pointer IUnknown IUnknown

VT_DISPATCH IDispatch pointer IDispatch IDispatch

VT_Decimal Decimal No C++ equivalent Decimal

Caution Array types are not supported. An interface method defined with a parameter or return value that is an
array type is generated but an exception is raised when that method is executed.

Component Categories
An ActiveX control can specify a list of component categories. These component categories are used to specify
the type of environment in which this control is intended to work. Categories are a suggestion of the preferred
environment only, and are not a requirement.

The ActiveX control type library import process imports an ActiveX control regardless of any component category
specification.

Optional Parameters
ActiveX methods support optional parameters but the methods generated by the library import process do not
support optional parameters.

If, however, the ActiveX documentation states that a particular value is optional and you do not want to specify a
value for that parameter in the method call, you can set the parameter to the JADE null value. This is then passed
to the ActiveX object as an empty (undefined) optional parameter.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 112

ExtIntDevRef - 2018.0.01

.NET Assemblies
A .NET assembly is a library file (.dll) or executable file (.exe) with additional .NET header information (the
manifest) that describes the class methods and properties in the assembly.

Note In this release, JADE supports only in-process assemblies; that is, assemblies defined in Dynamic Link
Libraries (DLLs).

When a .NET assembly is imported into JADE, the classes along with their members (properties, methods, and
constants) can be selected or excluded and given appropriate names for the corresponding JADE entities. For
details, see "Maintaining .NET Objects", in Chapter 16 of the JADE Development Environment User’s Guide.

Location of .NET Assemblies
The location of .NET assemblies is managed by .NET run time and not by JADE. Assemblies that are shared with
many different applications are usually loaded into the Global Assembly Cache (GAC), which resides in the
Windows directory.

Assemblies are normally loaded into the GAC by the components installer and must meet certain requirements
(such as having a strong name). It is also possible to create a private cache for the assembly or to store it in a
specified directory.

The common location for an assembly is the GAC or the JADE bin directory (or a subdirectory). If you have
imported a strongly named assembly, the first location checked is the GAC. If the assembly is not found in the GAC
or it is a weakly named assembly, the directory of the executable (jade.exe) is checked.

You can use an XML configuration file in the same directory as the executable to specify an alternative location for
an assembly. The name of the configuration file must be the same as that of the executable file but with the .exe
extension replaced with .config (for example, jade.config).

The following example specifies that the .NET run time should check the controls directory, which is a
subdirectory of the directory in which jade.exe is found.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<probing privatePath="controls" />
</assemblyBinding>

</runtime>
</configuration>

How JADE Imports .NET Object Definitions
When you import .NET object definitions into JADE, the resulting classes depend on whether the object is a .NET
control or a non-GUI component. For details, see the following subsection.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 113

ExtIntDevRef - 2018.0.01

Abstract Grouping Classes
The following image shows the class structure that result from importing a .NET assembly.

In JADE, two abstract classes are created, which act as superclasses for the classes created to represent import
types. GUI objects must be subclasses of the Window class, so one of these abstract classes is a subclass of the
JadeDotNetVisualComponent class (a subclass of Control), the base class for all .NET GUI components.

All of the imported GUI components have a matching class defined for them under this abstract Control class.
Likewise, an abstract class is created as a subclass of the JadeDotNetType class, which acts as the superclass of
all imported non-GUI types.

For more details, see Chapter 16, "Importing ActiveX and .NET External Components", in the JADE Development
Environment User’s Guide.

.NET Default Values and Considerations
When using .NET assemblies, you should be aware of the functionality and performance considerations
described in the following subsections.

Importing Into an ANSI JADE System
If the assembly being imported uses only ANSI characters for class and member names, the conversion from
Unicode to ANSI is transparent. However, that is not the case if the names contain characters that cannot be
represented in the current code page. For example, if a .NET class member with a name '员工工号 ' is imported
into an ANSI JADE system with an English code page, the name displays as '????' and has a mapped JADE
name of '____'.

Note JADE names consist of the characters a through z, A through Z, 0 through 9, and the underscore
character. During default name creation, characters not in this set are replaced by the underscore character.

There is also a problem with the generated property mapping methods and the generated methods, as the first
parameter is the member name. For example, the generated mapping method for '员工工号 ' under Unicode or
ANSI when running under a Chinese locale is as follows.

begin
jadeDotNetProperty('员工工号', set_, value_);

end;

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 114

ExtIntDevRef - 2018.0.01

When running under ANSI with an English locale, the mapping method (which fails at run time) is as follows.

begin
jadeDotNetProperty('????', set_, value_);

end;

If the .NET assembly has Unicode characters in class and member names, the Unicode version of JADE is
recommended. The ANSI version of JADE can be used if the code page used for importing the assembly is the
same as that used at run time and the code page can represent all of the characters used. If the code pages used
for importing the assembly and at run time are different, exceptions regarding classes and or methods not found
are likely to be raised.

Default Names
The .NET Import wizard generates default names for all components that need to be named. You can override
these default names for classes (that is, for controls and non-GUI components), methods, and properties.

These default names are based on the name of the corresponding component in the imported assembly.

Data Types
Only .NET classes can be mapped to JADE objects. These classes can be a reference or value type (for example,
a C# ‘class’ or ‘struct’, or a C++ ‘ref class’ or ‘value class’). Nullable .NET primitive types are mapped to the
same JADE type as the non-nullable version of the type.

If a class is imported that does not have a definition in the assembly being imported, the class is mapped to the
JadeDotNetType class.

The following table lists .NET types and the corresponding JADE types.

.NET Type JADE Type Conversion Notes

Boolean Boolean

Byte, SByte Binary[1]

Char StringUtf8[1]

DateTime Timestamp

DateTimeOffset TimeStampOffset The .NET DateTimeOffset type DateTime value represents a local
time (UTC time + Offset) and the JADE TimeStampOffset type
TimeStamp value represents a UTC time. Because of this, when
converting from the JADE TimeStampOffset type to the .NET
DateTimeOffset type, the DateTimeOffset is derived by applying
the offset to the displayed TimeStampOffset type UTC time value;
for example:

TimeStampOffset: 09 October 2018, 21:00:00 +1300

DateTimeOffset: 10 October 2018, 10:00:00 +1300

Decimal Decimal A .NET decimal variable can hold larger and smaller values than a
JADE Decimal variable. An overflow exception is raised if a .NET
decimal value is too large or too small for a JADE Decimal
variable.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 115

ExtIntDevRef - 2018.0.01

.NET Type JADE Type Conversion Notes

Double, Single Real A JADE Real variable can hold larger and smaller values than a
.NET Single variable. An overflow exception is raised if a JADE
Real value is too large or too small for a .NET Single variable.

Int16, Int32, UInt16,
UInt32

Integer A JADE Integer variable corresponds to a .NET Int32 variable.
.NET Uint32 numbers are also mapped to JADE Integers, but if
such a UInt32 contains a large number (top bit is set), JADE
interprets this as a negative number. Similarly, a negative Integer
becomes a large positive UInt32 .NET value.

Int64,UInt64 Integer64 See Integer to UInt32 conversion notes, in the previous row of this
table.

Object Object .NET object types are represented in JADE as an ‘imported
assembly’ class. If JADE does not have a class to represent a
particular .NET object, an instance of JadeDotNetType is used.
Arrays of any type are also created as instances of
JadeDotNetType.

String StringUtf8

Updating .NET Properties on Value Types
Unlike JADE, .NET has reference and value types (a reference type is a C# ‘class’ or a C++/CLI ‘ref class’ type,
while a value type is a C# ‘struct’ or a C++/CLI ‘value class’ type). Both types, when imported from a .NET
assembly, become JADE classes that are equivalent to reference types.

At run time, .NET value types are therefore converted to JADE reference types. This introduces a potential trap for
the unwary. The problem is best explained by an example.

An imported .NET assembly generates the following JADE classes.

MyRectangle, which has properties x, y, width, height, and so on
(In .NET, MyRectangle is a value type)

MyClass, which has a property called 'rect' of type MyRectangle
(In .NET, MyClass is a reference type)

The following JADE logic updates the rect property of a MyClass instance in the expected way.

vars
c: MyClass;
r, r2: MyRectangle;

begin
// create object
create c;
c.createDotNetObject();
// set rectangle value
r := c.rect;
r.x := 10;
c.rect := r;
// refetch rect and output current value
r2 := c.rect;
write r2.x; // output '10' as expected

end;

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 116

ExtIntDevRef - 2018.0.01

The following similar JADE logic fails to update the rect property of a MyClass instance.

vars
c: MyClass;
r, r2: MyRectangle;

begin
// create object
create c;
c.createDotNetObject();
// set rectangle value
c.rect.x := 10; // does not update c
// refetch rect and output current value
r2 := c.rect;
write r2.x; // outputs '0'

end;

The reason the c.rect.x := 10; instruction fails to update c is that a temporary reference is created to represent the
c.rect value type. It is the temporary reference that is updated with the new value for the x property. Unlike the first
coding example, nothing is ever done with the temporary reference, so the original instance c remains
unchanged.

.NET-Related JADE Modules
The JADE modules that are loaded when .NET components are accessed are listed in the following table.

JADE Module Description

jadedotnetthin Communicates with the .NET run time.

Located where the .NET object is run. For a presentation client running a .NET
control, this is the presentation client. For a non-GUI .NET component, this is the
presentation client unless the value of the usePresentationClient property is
false when it must be on the application server.

In thin client mode, you could have jadedotnetthin.dll on the presentation client
supporting controls and jadedotnetthin.dll on the application server supporting
components run from the application server if the value of the
usePresentationClient property is false.

jadedotnet Communicates with jadedotnetthin.dll and calls into JADE logic for events,
exceptions, and so on. Located on application servers and standard clients.

jadedotnetdesignerloader Used by the JADE Painter to support .NET controls that have a designer (usually a
form that enables you to set the properties of the control). Located on standard
clients and presentation clients.

jadewpf Displays .NET controls in JADE Painter and on runtime forms using Windows
Presentation Foundation (WPF). Located on standard clients and presentation
clients.

Using .NET Components
Proxy classes are created in JADE to access the imported .NET components. The location of the proxy class
depends on whether the component is GUI or non-GUI; that is, whether the imported component is a .NET control
or not. See "Abstract Grouping Classes", earlier in this chapter.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 117

ExtIntDevRef - 2018.0.01

Non-GUI .NET Components
The classes created under the JadeDotNetType class are proxy classes for their corresponding .NET classes. By
using the proxy object, you gain access to the .NET object. Therefore, to access the actual .NET object you must
first create an instance of the JADE class. This JADE instance can then be used to create the .NET object, by
using the createDotNetObject method, which in turn causes the .NET run time to create the instance of the
corresponding .NET object. Generated methods on the JADE proxy class can then be used to access
corresponding members on the actual .NET object.

Before creating the .NET object, the usePresentationClient property can be set to specify where the component
should be run. (By default, all components run on the presentation client.)

The following method shows how the generated classes and methods are used.

vars
b, b2 : Basic; // Subclass of JadeDotNetType

begin
// Create a JADE instance of the class representing the .NET object
create b transient;
// Optionally, specify where the actual .NET object is created
b.usePresentationClient := false;
// Request the creation of the corresponding .NET object
b.createDotNetObject;
// Use methods and properties on the JADE instance
// to access members of the .NET object
write b.integer;
b2 := b.anotherOne;

epilog
delete b;
delete b2;

end;

Event handling on components is a little more complex. By default, component events are not passed onto JADE.
To start receiving such events, a call is made to the beginEventNotification method if the JadeDotNetType class,
which takes the following parameters.

The first parameter indicates to which object the event should be delivered.

The second parameter specifies a reference property on the receiver, of the type that contains the events.

Events are implemented in the Class Browser, by clicking on the reference property in the receiver class, which
displays all of the events available in the method pane. These events are shown grayed out until you add code to
that event. This is identical to how you code an event on a control in a form; that is, with the form selected, click the
control reference, select the methods to implement (paint or click), and then add your event logic.

.NET Helper Methods
When you import a .NET assembly, JADE generates classes for each class that is selected. However, an
assembly can also reference other assemblies (or use types defined in other assemblies). For example, a control
assembly (say myControls.dll) could refer to .NET Color, Font, and Image objects that are defined in the
System.Drawing.dll assembly. If these types have not been imported, JADE creates instances of the
JadeDotNetType class to represent them.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 118

ExtIntDevRef - 2018.0.01

To enable the use of Color, Font, and Image .NET objects without having to import the System.Drawing.dll
assembly, the helper methods listed in the following table are provided to access properties of Color, Font, and
Image objects from a JadeDotNetType instance.

JadeDotNetType Helper Method Returns …

getColor A 32-bit number, representing the ARGB color value

getFont The font properties of the Font object

getPicture A binary, representing the image

An exception is raised if these methods are called on objects that do not represent the appropriate type (for
example, the getColor can only be used on a .NET Color object).

The helper methods listed in the following table are provided as an alternative to the createDotNetObject method
to create Color, Font, and Image objects from a JadeDotNetType instance.

JadeDotNetType Helper Method Creates a .NET…

createColor Color object using the supplied ARGB color value

createFont Font object from the supplied font properties

createPicture Image object from the supplied binary value

An exception is raised if the .NET object cannot be created for any reason.

.NET Controls
An imported .NET control is a GUI .NET component and is added to the Control palette of the JADE Painter. It
cannot be distinguished from the standard JADE-supplied controls.

As with non-GUI components, creating an instance of the JADE control object does not create the corresponding
.NET object. The .NET object is created when the control is dropped onto a form in the JADE Painter, when the
form (with a .NET control) is loaded at run time, or when the addControl method of the Form class is used to add a
dynamically created control.

Some controls include designers, which are usually forms that enable properties of the control to be set. These
are particularly useful when the control is made up of a number of subcontrols or when properties have
dependencies on other properties. The first time a control with a designer is dropped onto a form in the JADE
Painter, the designer form is displayed. When the designer form is closed the control, modified by the designer, is
shown on the form being painted.

When a control with a designer has been displayed in the JADE Painter, the designer can usually be reactivated
using the context menu. The context menu in the JADE Painter, when activated over a .NET control, can include
up to 10 extra entries corresponding to the first 10 available designer verbs. These are options defined in the
designer that perform various designer functions, including re-activating the designer, or altering the control in
some way.

External Interface
Developer's Reference

Chapter 4 Using External Component Libraries 119

ExtIntDevRef - 2018.0.01

Chapter 5 XML Metadata Interchange (XMI)
Support

This chapter contains the following topics.

Overview

Supported Version of XMI Files

Generating Schema Files from an XMI File

Enterprise Architect 7 and JADE Mappings

Overview
JADE supports XML Metadata Interchange (XMI), specifically XMI 2.1 as generated by the Sparx Systems
Enterprise Architect (EA) tool.

XMI is an Object Management Group (OMG) standard for exchanging metadata information using Extensible
Markup Language (XML).

XMI support is provided by the XMI Import command in the JADE development environment File menu, which
accesses the Extract Schema dialog that enables you to select the name and location of the XMI file to extract and
the location of the output files. This generates schema files from an XMI file (XMI 2.1 from the EA tool).

Supported Version of XMI Files
The only version that is supported is an XMI 2.1/UML 2.1 file, which is exported from Enterprise Architect.

Generating Schema Files from an XMI File
To generate schema files from an XMI file

1. Select the XMI Import command from the File menu in the JADE development environment.

The XMI Import dialog, shown in the following image, is then displayed.

2. In the XMI File text box, specify the name of the XMI file extracted from Enterprise Architect.

ExtIntDevRef - 2018.0.01

If you are unsure of your file name or location, click the Browse button. The common File dialog is then
displayed, to enable you to select the appropriate file.

3. In the Output Directory text box, enter the name of the directory that will contain the scm and ddb or .ddx
files generated by the application. If you are unsure of the location, click the Browse button.

4. Click the OK button. Alternatively, click the Cancel button to abandon your selections.

You can then load the generated schema files in the target system.

Note Minimal validation is done during the import process. Errors are detected when the schema is loaded and
displayed to the user for correction.

Enterprise Architect 7 and JADE Mappings
The correspondence between JADE entities and their corresponding entities in Enterprise Architect 7 are
described in the following sections.

In each section, the focus is on a specific entity in JADE; for example, a class or a method. The JADE data relating
to that element is presented in the first column of a table with the Enterprise Architecture equivalent in the second
column.

JADE Schema Maps to Enterprise Architecture Package
A JADE schema maps to an Enterprise Architecture package with the stereotype JadeSchema, as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Superschema Dependency Connector Target = superschema RootSchema

Default Map File Tagged Value tag =JadeMapFile value = <file-name>

Forms Management Style Tagged Value tag = JadeFormsManagement 0

value = 0 Multi-multi

value = 1 Single-single

value = 2 Single-multi

Text Notes

JADE Class Maps to Enterprise Architecture Class
A JADE class maps to an Enterprise Architecture class, as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Superclass Generalization Connector Target = superclass Object

Map File Tagged Value tag = JadeMapFile value = <map-file-name> <none>

Access Scope public

Type Abstract (if class is abstract) real

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 121

ExtIntDevRef - 2018.0.01

JADE Enterprise Architecture 7 Default Value

Persistence Persistence persistent

SubschemaHidden Tagged Value tag = JadeSubschemaHidden value = true | false false

SubschemaFinal Tagged Value tag = JadeSubschemaFinal value = true | false false

Final Tagged Value tag = JadeFinal value = true | false false

Instance Volatility Tagged Value tag = JadeInstanceVolatility value = volatile | stable |
frozen

volatile

Class Lifetimes Constraint classLifetimes value = P | S | T | P/S|P/T|S/T|P/S/T P/S/T

Subclass Lifetimes Constraint subclassLifetimes value = P | S | T | P/S|P/T|S/T|P/S/T P/S/T

Text Notes

Additional Data for JADE Collection Classes
The properties of JADE collection classes are mapped as follows.

JADE Enterprise Architecture 7 Default Value

Membership defaultCollectionClass

Expected Population Tagged Value tag = JadeExpectedPopulation, value
is an integer

0

Entries Per Block Tagged Value tag = JadeEntriesPerBlock, value is an
integer

0

Exclusive Instances Map File Tagged Value tag = JadeExclusiveInstanceMapFile,
value is name of map file

Same file as collection
owner

Membership Length Required for Array subclasses of String, Binary, or
Decimal membership

Constraint = membershipLength, value is an integer

30 (String), 30
(Binary), 12 (Decimal)

Membership Scale Factor Required for Array subclasses of Decimal

Constraint = membershipScaleFactor, value is an
integer

0

Additional Data for JADE Dictionary Classes
The properties of JADE dictionary classes are mapped as follows.

JADE Enterprise Architecture 7 Default Value

Duplicates Allowed Constraint = duplicatesAllowed, value is true or false false

Load Pattern Tagged Value tag = JadeLoadPattern, value = random | sequential random

If the JadeLoadPattern tag value is random, the load factor is 66 percent; if the tag value is sequential, it is 98
percent.

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 122

ExtIntDevRef - 2018.0.01

Additional Data for JADE External Key Dictionary Classes
The properties of JADE external key dictionary classes are mapped as follows.

JADE Enterprise Architecture 7 Default Value

Key Name Attribute name = key name, stereotype = JadeExternalKey

Key Length Constraint = keyLength for String, Binary or Decimal key value is
an integer

Key Scale Factor Constraint = keyScaleFactor, value is an integer

Key Sequence Constraint = keySequence, value = ascending | descending ascending

Key Case Sensitive Constraint = keyCaseSensitive, value = true | false false

Key Sort Order Constraint = keySortOrder, value = Binary or Locale id Binary

Additional Data for JADE Member Key Dictionary Classes
The properties of JADE member key dictionary classes are mapped as follows.

JADE Enterprise Architecture 7 Default Value

Key Name Attribute name = attribute name, stereotype = JadeKey

Key Sequence Constraint = keySequence, value = ascending | descending ascending

Key Case Sensitive Constraint = keyCaseSensitive, value = true | false false

Key Sort Order Constraint = keySortOrder, value = Binary or locale id Binary

JADE Property Maps to Enterprise Architecture Attribute
A JADE property maps to an Enterprise Architecture attribute, as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Type Type (Must correspond to the JADE primitive types)

Access Scope Private = Read Only Read Only

Length Constraint = length, value is an integer

Scale Factor Constraint = scaleFactor, value is an integer

Virtual Derived

Subschema Hidden Tagged Value tag = JadeSubschemaHidden value = true |
false

false

Allow Transient to Persistent Tagged Value tag = JadeAllowTransToPersist value = true |
false

false

Inverse Not Required Tagged Value tag = JadeInverseNotRequired value = true |
false

false

Constraint Constraints

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 123

ExtIntDevRef - 2018.0.01

JADE Enterprise Architecture 7 Default Value

Text Notes

Relationship Use Aggregation Connection Peer-to-Peer Aggregation =
shared Parent-Child Aggregation = composite (on parent)

Update Mode Tagged Value tag = JadeUpdateMode, value = manual | auto

JADE Method Maps to Enterprise Architecture Operation
A JADE method maps to an Enterprise Architecture operation, as follows.

JADE Enterprise Architecture 7 Default
Value

Name Name

JADE Method No stereotype

Condition Stereotype = JadeCondition

Mapping Method Stereotype = JadeMappingMethod

External Method Stereotype = JadeExternalMethod

Alias specifies entry point and library: is entry-point in library-name

Updating Const checked = not updating false

Abstract Abstract false

Access Scope (only Public and Protected) public

Subschema Hidden Static checked = hidden false

Final Tagged Value tag = JadeFinal, value = final | ssfinal | sscopyfinal

Execution Location Tagged Value tag = JadeExecutionLocation, value = default | server |
client

Text Notes

JADE Constant Maps to Enterprise Architecture Constant Attribute
A JADE constant maps to an Enterprise Architecture constant attribute, as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Type Type

Definition Initial Value

Text Notes

The value for a constant of type String must be enclosed in double quotation marks ("").

If a constant is defined in terms of another constant, the definition of the other constant must occur earlier in the
XMI file.

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 124

ExtIntDevRef - 2018.0.01

JADE Exported Package Maps to Enterprise Architecture Package
A JADE exported package maps to an Enterprise Architecture package with the stereotype JadePackage as
follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Application Tagged Value tag = JadePackageApplication, value = application-name

Description Notes

JADE Exported Class Maps to Enterprise Architecture Class
A JADE exported class maps to an Enterprise Architecture class with the stereotype JadeExportedClass as
follows.

JADE Enterprise Architecture 7 Default Value

Reference Connector = Dependency to the related class with a stereotype
of import

Persistence Persistence Same as related class

Class Lifetimes Constraint classLifetimes value = P | S | T | P/S|P/T|S/T|P/S/T Same as related class

JADE Exported Property Maps to Enterprise Architecture Attribute
A JADE exported property maps to an Enterprise Architecture attribute with the stereotype JadeExportedProperty
as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Access Scope private = read only, public = public Same as related property

JADE Exported Method Maps to Enterprise Architecture Operation
A JADE exported method maps to an Enterprise Architecture operation with the stereotype JadeExportedMethod
as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

JADE Exported Constant Maps to Enterprise Architecture Attribute
A JADE exported constant maps to an Enterprise Architecture attribute with the stereotype
JadeExportedConstant, const as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 125

ExtIntDevRef - 2018.0.01

JADE Imported Package Maps to Enterprise Architecture Package
A JADE imported package maps to an Enterprise Architecture package with the stereotype
JadeImportedPackage as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Connector PackageImport, stereotype = import

Description Notes

JADE Interface Maps to Enterprise Architecture Interface
A JADE interface maps to an Enterprise Architecture interface with the stereotype Interface as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Extends Connector = Generalization

Text Notes

Implementors Connector = Realization

JADE Interface Method Maps to Enterprise Architecture Operation of
Interface

A method of a JADE interface maps to an Enterprise Architecture operation of an interface as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Text Notes

JADE Interface Constant Maps to Enterprise Architecture Operation of
Interface

A constant of a JADE interface maps to an Enterprise Architecture constant attribute of an interface as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Type Type

Definition Initial Value

Text Notes

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 126

ExtIntDevRef - 2018.0.01

JADE Constant Category Maps to Enterprise Architecture Class
A JADE global constants category maps to an Enterprise Architecture class with the stereotype
JadeGlobalConstantCategory as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Text Notes

JADE Global Constant Maps to Enterprise Architecture Attribute of the
Constant Category Class

A JADE global constant maps to an Enterprise Architecture constant attribute of the ConstantCategory class as
follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Type Type

Definition Initial Value

Text Notes

JADE Library Maps to Enterprise Architecture Class
A JADE library maps to an Enterprise Architecture class with the stereotype JadeLibrary as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

JADE External Function Maps to Enterprise Architecture Operation of the
Library Class

A JADE external function maps to an Enterprise Architecture operation of the Library class as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Entry point Alias

Text Notes

JADE Locales Map to Enterprise Architecture Class
JADE locales map to an Enterprise Architecture class called Locales with the stereotype JadeLocale.

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 127

ExtIntDevRef - 2018.0.01

Add attributes to this class for each locale defined for the schema as follows.

JADE Enterprise Architecture 7 Default Value

Locale Name Name (for example, 5129)

Locale Description Initial (for example, "English (United Kingdom)")

Default Const is checked

Clone Of Constraint name=cloneOf Constraint value=<locale name>

JADE Translatable String Maps to Enterprise Architecture Attribute of the
Locale Class

A JADE translatable string maps to an attribute in an Enterprise Architecture class with a name of the locale id and
a stereotype of JadeTranslatableString. Add attributes to this class for each translatable string defined for the
locale as follows.

JADE Enterprise Architecture 7 Default Value

TS Name Name

Value Initial Value

JADE Locale Format Maps to Enterprise Architecture Attribute of the Locale
Class

A JADE locale format maps to a constant attribute of an Enterprise Architecture class with a name of the locale
format and a stereotype of JadeLocaleFormat. Valid locale format names are DateFormat, NumberFormat,
CurrencyFormat, and TimeFormat.

Add attributes to the class for each locale format defined for this locale.

JADE Enterprise Architecture 7 Default Value

Format Name Name

Value Initial Value

JADE Application Maps to Enterprise Architecture Class
A JADE application maps to an Enterprise Architecture class with the stereotype JadeApplication as follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Connector Dependency to JadePackage

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 128

ExtIntDevRef - 2018.0.01

JADE Subschema Copy Class Maps to Enterprise Architecture Class
A JADE application maps to an Enterprise Architecture class with the stereotype JadeSubschemaCopy as
follows.

JADE Enterprise Architecture 7 Default Value

Name Name

Connector Dependency

External Interface
Developer's Reference

Chapter 5 XML Metadata Interchange (XMI) Support 129

ExtIntDevRef - 2018.0.01

Appendix A ODBC Reserved Words

This appendix covers the ODBC reserved words, listed in the following table.

ALL AND AS ASC

BY CREATE DELETE DESC

DISTINCT DROP FROM INNER

INSERT JOIN LEFT LIKE

NOT ON OR ORDER

OUTER RIGHT SELECT UNION

UPDATE WHERE

When you create a relational view of your JADE database by using the Relational Views Wizard, some words
should not be used as Table or Column names if the configuration setting for ODBC reserved words that the JADE
ODBC driver will use is Upper and Lower. (For details about minimizing ODBC reserved word conflicts by
converting the ODBC reserved words to an initial capital letter, see "Configuring a JADE ODBC Driver", in
Chapter 2.)

ExtIntDevRef - 2018.0.01

Appendix B External Functions

This appendix covers the JADE external functions declared in the RootSchema jomos external function library
that call Windows library functions as defined in the Microsoft Developer Network (MSDN). These external
functions are declared to avoid having to declare ANSI- and Unicode-specific definitions for some commonly
called Windows library functions; for example, josShellExecute calls ShellExecuteA in an ANSI environment and
ShellExecuteW in a Unicode environment.

The following table maps functions defined in the RootSchema jomos external function library to the
corresponding MSDN function.

JADE External Function Windows Function Description

josCreateDirectory CreateDirectory Creates a directory that inherits information from other
directories (security attributes default to null)

josDeleteDirectory RemoveDirectory Deletes an existing empty directory

josFileAccess GetFileAttributes Retrieves attributes for a specified file or directory (for
details, see the paragraph that follows this table)

josFileCopy CopyFile Copies an existing file to a new file

josFileDelete DeleteFile Deletes an existing file

josGetKeyState GetKeyState Retrieves the status of the specified key; that is, whether the
key is up, down, or toggled

josGetLastError GetLastError Retrieves the last error code value of the calling thread

josShellExecute ShellExecute Opens or prints the specified file; for example, to start
another program under Microsoft Windows

In addition to these functions, the josValidateDirectory external function is declared, which validates that the
specified name is a directory.

The josFileAccess function checks the specified file to determine if it exists and whether it can be read, written, or
executed. This pointer is a call for files only; if you call it with a directory name, F_FILE_NOT_FOUND is returned.
(Call the josValidateDirectory function to validate a directory.) The josFileAccess parameters are:

fileName, which is a string that specifies the name of the file.

aMode, which specifies a bit pattern constructed as follows.

06, which checks for read and write permission

04, which checks for read permission

02, which checks for write permission

01, which checks for execute permission

00, which checks for the existence of the specified file

log, which specifies if invalid path exceptions are logged to jommsg.log.

The josFileAccess and josValidateDirectory calls return zero (0) if successful or they return a JADE file-handling
error in the range 5000 through 5099.

For details about:

ExtIntDevRef - 2018.0.01

Adding an external function to a class, see "Defining External Functions", in Chapter 8 of the JADE
Development Environment User’s Guide

Browsing the RootSchema jomos external function library to obtain the JADE external function method
signature, see "Adding an External Function, in Chapter 8 of the JADE Development Environment User’s
Guide

External function calls, see "Using External Functions", in Chapter 1

External Interface
Developer's Reference

Appendix B External Functions 132

	Contents
	Before You Begin
	Who Should Read this Reference
	What’s Included in this Reference
	Conventions
	Related Documentation

	Chapter 1 Using External Methods and External Functions
	Using External Methods
	Writing External Methods
	Include Files
	Library Files
	Microsoft Compiler Name Decoration
	Supported Compiler Versions
	Object Method Interface
	Primitive Method Interface
	Passing Parameters Using the DskParam Structure
	Binary
	Boolean
	Byte
	Character
	Date
	Decimal
	Integer
	Integer64
	MemoryAddress
	Oid
	Point
	Real
	String
	StringUtf8
	Time
	TimeStamp
	TimeStampInterval
	TimeStampOffset
	Parameter List

	Initializing the DskParam Structure
	String and Binary Parameters and Return Types

	Using the C++ Proxy Classes

	Example of a C++ External Method

	Using External Functions
	Parameter Mapping to C Data Types
	Parameter Mapping to a Windows Data Type
	C++ Structure or Class Support
	Using Real Primitive Types in External Functions
	Parameter Passing Conventions
	Passing by Value or Reference
	Parameter Passing Rules
	Passing Null Pointer Values

	Unicode Awareness
	Calling External Functions from JADE Thin Clients

	Handling Faults

	Chapter 2 Using External Interfaces
	External Database Coexistence
	ODBC Requirements for External Database Coexistence
	External Database Coexistence ODBC Requirements under Windows

	Semantic Schema Enrichment
	Usage Example

	Object Identifier Mapping
	External Proxy Classes
	Mapping an SQL Data Type to a JADE Primitive Type
	SQL Server Restrictions
	MS Access 2007 Restrictions

	Using the External Schema Wizard
	Accessing an External Relational Database from JADE
	Accessing Objects in Your External Database
	Summary of the Properties and Methods Provided by External Database Classes

	Object Lifetimes
	Using External Collections
	ADHOC Query Extensions
	Sequential Access
	Exception Handling
	Schema Mismatch Exceptions

	Optimizing the where Clause
	Updating External Databases
	Security at Run Time

	Obtaining a Relational View of Your JADE Database
	Configuring a JADE ODBC Driver
	Adding a Data Source
	Configuring the JADE ODBC Standard Client Driver
	Configuring the JADE ODBC Thin Client Driver
	Specifying Additional Relational Views

	Using the Data Source in a Connection String
	JADE ODBC Thin Client Driver
	JADE ODBC Service Application
	User-Defined ODBC Service Application
	Configuring an ODBC Service
	Defining the Configuration in the JADE Initialization File
	Creating and Maintaining the Configuration File
	XML Configuration for an ODBC Server Application

	Installing the JADE ODBC Thin Client Driver
	User Authentication
	Starting and Ending an ODBC Thin Client Session
	Initialize and Finalize Query Callback
	User Impersonation
	Session State
	Server/Client Version Checking

	JADE ODBC Driver Soft Entities and Attributes
	JadeRelationalEntityIF Interface
	JadeRelationalAttributeIF Interface
	JadeRelationalQueryProviderIF Interface

	SQL Examples
	Accessing Classes and Subclasses Using SQL
	Accessing Relationship Views Using SQL
	One-to-One Relationship
	One-to-Many Relationship
	Many-to-Many Relationship
	Collections
	Collection Methods

	Mapping Your JADE Database to a Relational Database
	Interfacing to OLE 2.0
	Embedding and Linking Objects
	What the OleControl Shows
	Creating an OLE Control
	Activating the OLE Application at Run Time

	Connecting to Network Devices Using TCP/IP
	External Software Requirements
	Using the TcpIpConnection Class
	Properties Provided by the TcpIpConnection Class
	Properties Provided by the Connection Class
	Methods Provided by the TcpIpConnection Class

	Connection Authentication
	pChallenge or ppChallenge
	challengeSize or pChallengeSize
	pResponse or ppResponse
	responseSize or pResponseSize

	Data Encryption
	pDataIn
	dataInLength
	ppDataOut
	pDataOutLength

	TCP/IP Proxy Servers
	Constants Provided by the JadeTcpIpProxy Class
	Properties Provided by the JadeTcpIpProxy Class
	Method Provided by the JadeTcpIpProxy Class

	Multiple Worker TCP/IP Connections
	JadeMultiWorkerTcpConnection Class
	JadeMultiWorkerTcpConnection Class Constants
	JadeMultiWorkerTcpConnection Properties
	JadeMultiWorkerTcpConnection Methods

	JadeMultiWorkerTcpTransport Class
	JadeMultiWorkerTcpTransport Class Constants
	JadeMultiWorkerTcpTransport Properties
	JadeMultiWorkerTcpTransport Methods

	JadeMultiWorkerTcpTransportIF Interface
	JadeMultiWorkerTcpTransportIF Interface Constants
	JadeMultiWorkerTcpTransportIF Interface Callback Method Signatures

	Connecting to Network Devices Using a Secure Sockets Layer (SSL)
	Connecting to Network Devices Using a Named Pipe
	Using the NamedPipe Connection Class
	NamedPipe Class Property
	NamedPipe Class Methods

	InternetPipe Subclass
	InternetPipe Class Methods

	Interfacing to the Internet

	Chapter 3 Transforming an External Relational Database
	Overview
	Defining Your External Database Schema
	Using the Databases Menu

	Adding an External Database Schema
	Specifying a Name for Your External Database Schema
	Establishing the Connection to the External Database
	Selecting Tables for Exclusion from the Schema
	Specifying Class and Property Name Identifiers
	Creating Classes from Tables
	Defining Attributes for a Class
	Defining Collection Classes
	Adding References to a Class
	Using the External Schema Wizard Relationship Dialog

	Refining the Class Membership Query
	Inspecting Collection Class Queries
	Inspecting Reference Queries
	Finishing Your External Database Schema Definition

	Deleting an External Database Schema
	Changing an External Database Schema
	Viewing an External Database Definition in Read-Only Mode
	Printing an External Database Schema
	Extracting an External Database Schema
	Loading an External Database Schema

	Chapter 4 Using External Component Libraries
	Overview
	The Component Object Model (COM) Standard
	ActiveX Automation
	ActiveX Controls
	ActiveX Interfaces
	How JADE Imports ActiveX Object Definitions
	ActiveX Interface Classes
	Control Classes
	Automation Classes

	Using Generated ActiveX Classes
	Using the Generated ActiveX Control Classes
	Using the Generated ActiveX Automation Classes
	Using Automation Events

	Using Controls as Automation Objects
	ActiveX Class Interfaces
	Using Standard Classes
	Editing ActiveX Methods That Return a StringArray

	ActiveX Default Values and Considerations
	Default Names
	Data Types
	Component Categories
	Optional Parameters

	.NET Assemblies
	Location of .NET Assemblies
	How JADE Imports .NET Object Definitions
	Abstract Grouping Classes

	.NET Default Values and Considerations
	Importing Into an ANSI JADE System
	Default Names
	Data Types
	Updating .NET Properties on Value Types

	.NET-Related JADE Modules

	Using .NET Components
	Non-GUI .NET Components
	.NET Helper Methods

	.NET Controls

	Chapter 5 XML Metadata Interchange (XMI) Support
	Overview
	Supported Version of XMI Files
	Generating Schema Files from an XMI File
	Enterprise Architect 7 and JADE Mappings
	JADE Schema Maps to Enterprise Architecture Package
	JADE Class Maps to Enterprise Architecture Class
	Additional Data for JADE Collection Classes
	Additional Data for JADE Dictionary Classes
	Additional Data for JADE External Key Dictionary Classes
	Additional Data for JADE Member Key Dictionary Classes
	JADE Property Maps to Enterprise Architecture Attribute
	JADE Method Maps to Enterprise Architecture Operation
	JADE Constant Maps to Enterprise Architecture Constant Attribute
	JADE Exported Package Maps to Enterprise Architecture Package
	JADE Exported Class Maps to Enterprise Architecture Class
	JADE Exported Property Maps to Enterprise Architecture Attribute
	JADE Exported Method Maps to Enterprise Architecture Operation
	JADE Exported Constant Maps to Enterprise Architecture Attribute
	JADE Imported Package Maps to Enterprise Architecture Package
	JADE Interface Maps to Enterprise Architecture Interface
	JADE Interface Method Maps to Enterprise Architecture Operation of Interface
	JADE Interface Constant Maps to Enterprise Architecture Operation of Interface
	JADE Constant Category Maps to Enterprise Architecture Class
	JADE Global Constant Maps to Enterprise Architecture Attribute of the Constan...
	JADE Library Maps to Enterprise Architecture Class
	JADE External Function Maps to Enterprise Architecture Operation of the Libra...
	JADE Locales Map to Enterprise Architecture Class
	JADE Translatable String Maps to Enterprise Architecture Attribute of the Loc...
	JADE Locale Format Maps to Enterprise Architecture Attribute of the Locale Class
	JADE Application Maps to Enterprise Architecture Class
	JADE Subschema Copy Class Maps to Enterprise Architecture Class

	Appendix A ODBC Reserved Words
	Appendix B External Functions

