
Copyright©2018 Jade Software Corporation Limited. All rights reserved.

Automated Test Code Generator
(ATCG) Reference

 V E R S I O N 2018.0.01

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information
or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations
of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright © 2018 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the JADEReadMe.txt file.

ATCGRef - 2018.0.01

Contents

Contents iii

Before You Begin iv
Who Should Read this Reference iv
What’s Included in this Reference iv
Conventions iv
Related Documentation v

Chapter 1 Automated Test Code Generator (ATCG) 6
Overview 6
Structure 6

Applications 7
ATCG Variants 7

Chapter 2 Getting Started 8
Downloading the ATCG Schemas 8
Installing the Erewhon ATCG Variant 8
Installing the Generic Version of ATCG 11
Using ATCG at Run Time 13

Example of Typical ATCG Usage 14
Usage Considerations 15

Persistent Data State 15
Running Nodes and Other Applications 15
Profile Class Size 15
Result of Unnecessary Record Actions 16
Ex_Abort_Action not Replayable 16
Executing the AtcgReplayApp Application from the Command Line 16

Pausing on an AtcgReplayApp Error 16
Validation Warnings for Date and Time Fields 16
Validation Warnings for Text Boxes Associated with Tables 17
Overriding Validation Warnings 18

Chapter 3 Development Structure and Considerations 19
Overall Control 19
Recording Actions 19

Method Tracking 20
Logging Information 20
Parsing Tokens 21
Code Generation Methods at Recording Time 21
Parsing and Code Generation 22

Replaying Actions 23

Chapter 4 Design Guidelines and Directions 24
Accuracy of Replay 24
Awareness of State while Recording 25
Performance 25
Code Maintenance 26
Ease of Use for the End User 26

Finding References at Replay Time 27
Modal Forms 27
Common Dialogs 28
User Hook for Dynamic Text 28
Application Message Box 28
List Box and Combo Box Actions 28
Multiple Applications Support 29
Coexistence with Benchmark Driver Code 29

ATCGRef - 2018.0.01

Before You Begin

The JADE Automated Test Code Generator (ATCG) Reference is intended as a major source of information when
you are using the ATCG to record and replay Graphical User Interface (GUI) actions in JADE applications.

Who Should Read this Reference
The main audience for the JADE Automated Test Code Generator (ATCG) Reference is expected to be
developers or testers of JADE application software products.

What’s Included in this Reference
The JADE Automated Test Code Generator (ATCG) Reference has four chapters.

Chapter 1 Gives an overview of the Automated Test Code Generator

Chapter 2 Getting started

Chapter 3 ATCG development structure and considerations

Chapter 4 Design guidelines and directions

Conventions
The JADE Automated Test Code Generator Reference uses consistent typographic conventions throughout.

Convention Description

Arrow bullet () Step-by-step procedures. You can complete procedural instructions by using either
the mouse or the keyboard.

Bold Items that must be typed exactly as shown. For example, if instructed to type foreach,
type all the bold characters exactly as they are printed.

File, class, primitive type, method, and property names, menu commands, and dialog
controls are also shown in bold type, as well as literal values stored, tested for, and
sent by JADE instructions.

Italic Parameter values or placeholders for information that must be provided; for example,
if instructed to enter class-name, type the actual name of the class instead of the word
or words shown in italic type.

Italic type also signals a new term. An explanation accompanies the italicized type.

Document titles and status and error messages are also shown in italic type.

Blue text Enables you to click anywhere on the cross-reference text (the cursor symbol
changes from an open hand to a hand with the index finger extended) to take you
straight to that topic. For example, click on the "Persistent Data State" cross-reference
to display that topic.

Bracket symbols ([]) Indicate optional items.

Vertical bar (|) Separates alternative items.

ATCGRef - 2018.0.01

Convention Description

Monospaced font Syntax, code examples, and error and status message text.

ALL CAPITALS Directory names, commands, and acronyms.

SMALL CAPITALS Keyboard keys.

Key combinations and key sequences appear as follows.

Convention Description

KEY1+KEY2 Press and hold down the first key and then press the second key. For example, "press
Shift+F2" means to press and hold down the Shift key and press the F2 key. Then
release both keys.

KEY1,KEY2 Press and release the first key, then press and release the second key. For example,
"press Alt+F,X" means to hold down the Alt key, press the F key, and then release both
keys before pressing and releasing the X key.

Related Documentation
Other documents that are referred to in this reference, or that may be helpful, are listed in the following table, with
an indication of the JADE operation or tasks to which they relate.

Title Related to…

JADE Developer’s Reference Developing or maintaining JADE applications

JADE .NET Developer’s Reference Developing applications using .NET class libraries exposed in
JADE

JADE Database Administration Guide Administering JADE databases

JADE Development Environment
Administration Guide

Administering JADE development environments

JADE Development Environment User’s
Guide

Using the JADE development environment

JADE Encyclopaedia of Classes System classes (Volumes 1 and 2), Window classes
(Volume 3)

JADE Encyclopaedia of Primitive Types Primitive types and global constants

JADE Installation and Configuration Guide Installing and configuring JADE

JADE Initialization File Reference Maintaining JADE initialization file parameter values

JADE Object Manager Guide JADE Object Manager administration

JADE Report Writer User’s Guide Using the JADE Report Writer to develop and run reports

JADE Synchronized Database Service (SDS)
Administration Guide

Administering JADE Synchronized Database Services (SDS),
including Relational Population Services (RPS)

JADE Thin Client Guide Administering JADE thin client environments

JADE Web Application Guide Implementing, monitoring, and configuring Web applications

Automated Test Code Generator
(ATCG) Reference

Before You Begin v

ATCGRef - 2018.0.01

Chapter 1 Automated Test Code
Generator (ATCG)

This chapter covers the following topics.

Overview

Structure

Applications

ATCG Variants

Overview
The Automated Test Code Generator (ATCG) enables you to record and replay GUI actions in JADE applications,
by capturing the execution of GUI event methods and generating code to replay those actions.

JADE's method tracking enables you to identify a target method to be tracked and to intercept the execution of that
method. (For details about method tracking, see Chapter 18, "Tracking Methods", of the JADE Developer's
Reference.)

At recording time, code snippets are generated. When the recording session is finished, a .cls file is generated
and loaded into the database. When run with the standard functionality (that is, using the Replay Last or Replay
List button on the ATCG Control dialog), the original GUI actions are replayed.

ATCG is typically used to create regression tests or benchmark systems. Although it has many uses, its primary
purpose is to generate code that you can use in data-driven testing.

Although there are a number of tools on the market that claim to allow the recording and replay of GUI actions for
regression testing, they require the use of an additional language, and they are frequently complex and
expensive. In addition, it can be difficult to specify in these tools which differences in the tested application are
superficial and which are important.

The output from ATCG is JADE code, which you can modify to meet your requirements. For example, if a button on
a form is renamed between releases of a regression test, you can easily find and fix the affected code. When used
to create a benchmark system, you can record a business transaction once, and by modifying the generated JADE
code, replay it many times in a loop; for example, reading input data from a flat file, or looping through a table and
handling all rows.

Structure
ATCG requires the AtcgGeneratorSchema schema and the AtcgTestCodeSchema schema.

Load the:

1. AtcgGeneratorSchema under the schema in which the tested application runs, because the recording and
replay both must execute in the context of the original application

2. AtcgTestCodeSchema schema under the AtcgGeneratorSchema schema

Tip You can install multiple pairs of AtcgGeneratorSchema and AtcgTestCodeSchema schemas in the same
JADE database, as long as each pair has different names.

ATCGRef - 2018.0.01

Applications
The applications that form ATCG are listed in the following table.

Application This application...

AtcgRecordApp Is displayed like the main form of the application that is being tested, and is under your
control. GUI actions are recorded in a log file by this application.

This is essentially the tested application, but it is run from the context of the
AtcgTestCodeSchema schema rather than the context of the schema in which the
application is defined.

AtcgReplayApp Is displayed like the main form of the application that is being tested but it is under the
control of the replay infrastructure. GUI actions are replayed by executing the generated
JADE code.

AtcgControlApp Controls the whole record and replay process by:

1. Enabling you to begin recording

2. Deciding which methods to track

3. Generating and loading the recorded code snippets as a profile class

4. Handling simple replay scenarios

AtcgBtnClick Controls the buttons to click when replaying recorded actions to Windows common dialogs,
by calling Windows Application Programming Interfaces (APIs).

ATCG Variants
The variants of ATCG are:

Generic

As the generic version of ATCG contains no code specific to any application, it requires installation actions
before you can record test profiles.

Erewhon Sample

You can load and use this variant with the standard Erewhon schemas available from the JADE-Erewhon
link at https://github.com/jadesoftwarenz.

Automated Test Code Generator
(ATCG) Reference

Chapter 1 Automated Test Code Generator (ATCG) 7

https://github.com/jadesoftwarenz

ATCGRef - 2018.0.01

Chapter 2 Getting Started

This chapter covers the following topics.

Downloading the ATCG Schemas

Installing the Erewhon ATCG Variant

Installing the Generic Version of ATCG

Using ATCG at Run Time

Example of Typical ATCG Usage

Usage Considerations

Persistent Data State

Running Nodes and Other Applications

Profile Class Size

Result of Unnecessary Record Actions

Ex_Abort_Action not Replayable

Executing the AtcgReplayApp Application from the Command Line

Pausing on an AtcgReplayApp Error

Validation Warnings for Date and Time Fields

Validation Warnings for Text Boxes Associated with Tables

Overriding Validation Warnings

Downloading the ATCG Schemas
Download the ATCG schemas and associated forms definition files from the JADE-ATCG link at
https://github.com/jadesoftwarenz.

Installing the Erewhon ATCG Variant
Before you install the generic version of ATCG, install the Erewhon variant so that you can refer to the provided
examples.

To install the Erewhon variant

1. From the JADE-Erewhon link at https://github.com/jadesoftwarenz, load the Erewhon example schemas into
JADE and familiarize yourself with the applications.

2. Enable method tracking, by updating your JADE initialization file so that the value of the
MethodTrackingEnabled parameter in the [JadeSecurity] section is set to true.

3. Load the AtcgGeneratorSchema (that is, the AtcgGeneratorSchema_Generic.scm and
AtcgGeneratorSchema_Generic.ddb or AtcgGeneratorSchema_Generic.ddx files) as a subschema of

https://github.com/jadesoftwarenz
https://github.com/jadesoftwarenz

ATCGRef - 2018.0.01

ErewhonInvestmentsViewSchema, as follows.

a. Load the schema and forms definition files in the usual way, by specifying the schema and forms file
names on the File Selection sheet of the Load Options dialog, and then clicking the Advanced button.

b. On the Advanced Load Options dialog:

i. Change the Subschema of value from RootSchema to ErewhonInvestmentsViewSchema.

ii. In the text box portion of the Target Schema combo box, specify AtcgGeneratorSchema. (This
schema is not displayed in the drop-down list of the combo box.)

iii. Click the OK button.

4. Load the AtcgTestCodeSchema (that is, the AtcgTestCodeSchema_Generic.scm and
AtcgTestCodeSchema_Generic.ddb or AtcgGeneratorSchema_Generic.ddx files), by performing the
actions specified in the previous step of this instruction, but specifying AtcgGeneratorSchema in step b.i
and AtcgTestCodeSchema in step b.ii.

5. In AtcgTestCodeSchema, change the name of the XxxProfile class, a subclass of AtcgProfile, to EDProfile
(that is, it is the class for the Erewhon Demonstration profile).

Note This EDProfile class will be the superclass for all of your profile test classes.

6. Modify the Application class atcgGetControlOptions and atcgRecordAppInit methods (in
AtcgTestCodeSchema) with the new class name, by replacing instances of XxxProfile with EDProfile.

7. In the AtcgTestCodeSchemaApp class atcgGetControlOptions method, change the method so that the
ErewhonInvestmentsViewSchema is tracked; for example:

....
// list of schemas to be tracked during recording
targetSchemas.add("AtcgTestCodeSchema");
targetSchemas.add("ErewhonInvestmentsViewSchema");
....

8. Modify the global GErewhonInvestmentsViewSchema class getAndValidateUser method in the
ErewhonInvestmentsViewSchema so that all of the ATCG applications can run; for example:

if app.name <> AdminApp and
app.name <> "AtcgControlApp" and
app.name <> "AtcgReplayApp" and
app.name <> "AtcgRecordApp" and
....

return false;
endif;
....
if app.isWebShopApp or

app.name = "AtcgControlApp" or
app.name = "AtcgReplayApp" or
app.name = "AtcgRecordApp" or
....

then
return true;

endif;

9. Modify the GErewhonInvestmentsViewSchema class isUserValid method in the
ErewhonInvestmentsViewSchema so that all of the ATCG applications can run; for example:

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 9

ATCGRef - 2018.0.01

if app.isWebShopApp or
app.name = "AtcgControlApp" or
app.name = "AtcgReplayApp" or
app.name = "AtcgRecordApp" or
....

then
isValid := true;

endif;

10. Check that the AtcgControlApp application in AtcgTestCodeSchema runs; that is, the dialog like the
example in the following image is displayed.

11. To get the AtcgRecordApp working, modify the startup method in the EDProfile class (a subclass of
AtcgProfile in AtcgTestCodeSchema) to create the main form and log-on screen for the ErewhonShop
application.

vars
c : Client;
mf : FormShopSaleItems;

begin
app.atcgLogMessageTC("===========");
app.atcgLogMessageTC("Starting profile");
app.atcgLogMessageTC("===========");

// create and show main form and log-on screen
create mf;

// This is just a quick example by hard-coding to the first client.

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 10

ATCGRef - 2018.0.01

c := Client.firstInstance;
app.setClient(c);
mf.show;
app.atcgLogMessageTC(method.qualifiedName&" finished");

end;

12. Start the AtcgRecordApp application manually and then:

a. Check that the ErewhonShop application in the ErewhonInvestmentsViewSchema can be started.

b. Close the application.

Note AtcgRecordApp must be run as a standard (fat) client.

13. Load the provided BasicDemo.cls example profile class into AtcgTestCodeSchema.

14. Start the AtcgControlApp application.

a. Double-click on Basic Demo.

b. Click on the Replay List button, which should replay a basic sequence of events in the ErewhonShop
application.

If the setup is correct and the data matches the recorded profile, this recorded sequence should replay
correctly.

15. Click the Start Recording button, to start the AtcgRecordApp application automatically. When the Please
Wait form closes:

a. Perform a couple of actions within the application.

b. Once completed, click the Generate and Load button to terminate the AtcgRecordApp application and
generate and load a new profile class.

c. Click the Replay Last button. The main form of your ErewhonShop application should be displayed
and the actions that you performed then replayed.

Basic installation is now complete.

Note Further modifications may be required to automatically handle items such as modal forms. For details, see
Chapter 4, "Design Guidelines and Directions".

Installing the Generic Version of ATCG
Before you install the generic version of ATCG, install the Erewhon variant so that you can refer to the provided
examples (for details, see "Installing the Erewhon ATCG Variant", in the previous section).

You can have multiple instances of the Automated Test Code Generator in your JADE system, as long as each
instance has a different name.

Caution If you do not specify a unique profile and schema name for each schema in the JADE system into
which you load ATCG, when you record and replay GUI actions using the control application (that is, the
AtcgTestCodeSchemaApp class atcgControlAppInit method), ATCG freezes up and repeatedly generates
unhandled exceptions.

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 11

ATCGRef - 2018.0.01

If you load more than one instance, rename each one within the Application class atcgGetControlOptions
method in each schema into which you load it; for example:

/* the schema and its superschema into which to generate profile classes; for
example, DSProfile and DSAtcgGeneratorSchema when targeting DummySchema */
genSchema := "DSAtcgTestCodeSchema";
genSuperSchema := "DSAtcgGeneratorSchema";

To install the generic version of ATCG

1. Back up your database.

2. Enable method tracking, by updating your JADE initialization file so that the value of the
MethodTrackingEnabled parameter in the [JadeSecurity] section is set to true.

3. Load the AtcgGeneratorSchema (that is, the AtcgGeneratorSchema_Generic.scm and
AtcgGeneratorSchema_Generic.ddb or AtcgGeneratorSchema_Generic.ddx files) as a subschema of the
schema in which the target application runs.

4. Load the AtcgTestCodeSchema (that is, the AtcgTestCodeSchema_Generic.scm and
AtcgTestCodeSchema_Generic.ddb or AtcgGeneratorSchema_Generic.ddx files) into the
AtcgGeneratorSchema target schema.

5. In AtcgTestCodeSchema, change the name of the XxxProfile class, a subclass of AtcgProfile, to a prefix
suitable for your application. This will be the superclass for all of your profile test classes.

6. Modify the Application class atcgGetControlOptions and atcgRecordAppInit methods (in
AtcgTestCodeSchema) with the new class name, by replacing instances of XxxProfile with the profile class
name that you selected in the previous step of this instruction.

7. In the AtcgTestCodeSchemaApp class atcgGetControlOptions method, enter the list of target schemas to
be tracked; for example:

....
// list of schemas to be tracked during recording
targetSchemas.add("SecondDocExampleSchema");
targetSchemas.add("TrainingExampleSchema");
....

This array should include all schemas containing forms that are used by your application, including inherited
and peer schemas. If there is one schema only, replace XxxSchema with the name of that schema.

Note Many applications contain additional schemas such as CardSchema and BaseSchema, which
should not be listed unless your application uses form classes defined in those schemas.

8. In the AtcgTestCodeSchemaApp class atcgGetControlOptions method, there is a list of "noise" methods to
ignore. These are normally application methods that are called many times, and are not relevant to ATCG;
for example, app.convertStringToYesNo. You may not know what to list until you have used ATCG for a
while.

Tip Do not list any control or form event methods, as that may affect code generation.

9. Check that the AtcgControlApp application in AtcgTestCodeSchema runs.

This application should run without modification, unless there is something in your security code that
prevents it; for example, your global.getAndValidateUser method may validate schema names or
application names. While you are examining your security code, keep in mind that the AtcgRecordApp and
AtcgReplayApp applications will also need to run in AtcgTestCodeSchema.

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 12

ATCGRef - 2018.0.01

10. Get the AtcgRecordApp application working. This needs to run your target application, but it needs to run
from within AtcgTestCodeSchema with the application name AtcgRecordApp, as follows.

a. Reimplement the app.initialize method (which is called from the app.atcgRecordAppInit method) with
code similar to your application's initialize method.

b. Modify the method called startup in your profile superclass that you changed in step 3 of this
instruction. This should create the main form and log-on form of your application.

c. Change the method called stop, to log off and close the main form.

For examples of the start and stop methods, see the sample Erewhon test code schema.

When you can bring up the main form of your application and are logged in automatically, you can use the
application as normal and close it down again cleanly, you are finished with this step.

11. Get the AtcgReplayApp application working, as follows.

a. You will first need a sample profile class to run. Run the AtcgControlApp application, which needs to
be run as a standard (fat) client.

Note At this stage of installation, you should run the JADE development environment as a standard
client and run all of the ATCG applications from there. Alternatively, you could create the appropriate
shortcuts.

b. In the AtcgControlApp application, click the Start Recording button, which starts the AtcgRecordApp
application automatically.

c. When the Please Wait form is no longer displayed, click the Generate and Load button. The
AtcgRecordApp application will then terminate and a new profile class will be generated and loaded.

d. Click the Replay Last button. The main form of your application should be displayed briefly.

Basic installation is now complete.

Note Further modifications may be required to automatically handle items such as message boxes and modal
forms. For details, see Chapter 4, "Design Guidelines and Directions".

Using ATCG at Run Time
To be able to record properly, the AtcgRecordApp application must be run as a standard (fat) client. A
presentation (thin) client cannot be used because many of the required GUI event method calls are suppressed if
there is no explicit user code in them.

Single-user mode cannot be used because the load of the generated class file is done with an external batch
schema load (jadloadb) standard client.

The AtcgReplayApp and AtcgControlApp applications can be run as standard (fat) or presentation (thin) clients.
As the AtcgControlApp application starts the AtcgRecordApp application in its own node when using clean-start
mode, the AtcgControlApp application can be used only be used in thin client mode only when you set the value
of the CleanStartMode parameter in the [ATCG] section of the JADE initialization file to false. (This parameter is
true, by default.)

Typically, the JADE development environment is run as a fat client, the AtcgControlApp application is started
from the development environment, and the AtcgRecordApp and AtcgReplayApp applications are started from
the AtcgControlApp application. All applications are therefore run in the same fat client node. All three
applications run in the AtcgTestCodeSchema.

ATCG can be used with older releases of JADE, including JADE 2016 and JADE 7.1.

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 13

ATCGRef - 2018.0.01

Example of Typical ATCG Usage
When you have installed and configured ATCG, you can record and replay GUI actions.

1. Initiate the AtcgControlApp application.

The form similar to that shown in the following image is then displayed.

2. Click the Start Recording button, to start the AtcgRecordApp application.

3. Use the AtcgRecordApp application, which looks like the tested application normally does, to perform some
actions; for example, using a navigation list box to open forms, double-clicking on table rows to display
maintenance forms, using menu items, and other actions that you would normally perform in the application.

4. Click the Generate and Load button. (You can change the generated class name first, if required.)

5. When the load is complete, click Replay Last.

The tested application is started in the context of the AtcgReplayApp application, and it replays the actions just
recorded in the AtcgRecordApp application. When the replay is finished, the application terminates.

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 14

ATCGRef - 2018.0.01

Usage Considerations
This section covers the following topics.

Persistent Data Storage

Running Nodes and Other Applications

Profile Class Size

Result of Unnecessary Record Actions

Executing the AtcgReplayApp Application from the Command Line

Pausing on an AtcgReplayApp Error

Validation Warnings for Date and Time Fields

Validation Warnings for Text Boxes Associated with Tables

Overriding Validation Warnings

Persistent Data State
Because the same actions are being repeated in the record and replay phases, issues can arise because of the
state of the database. For example, if you added something with a unique identifier, the replay phase can fail with
a duplicates exception.

You could back out the database changes manually, using your application after each record or replay session.
For example, you could bring up a "vanilla" copy of your application and modify the data so that the replay action
will work, or you could record your GUI actions again.

For simple testing scenarios, you may be able to simply record the adding of the unique item and deleting it all in
one profile class. With this technique, you can record and replay any number of times without getting duplicates
exceptions.

Running Nodes and Other Applications
There is generally no problem running other applications while recording and replaying GUI actions; for example,
the tested application running in its normal schema context the usual way, the JADE Monitor, or the JADE
development environment.

Note There can be only one AtcgRecordApp application running at a time.

Profile Class Size
It may be advisable to break up large amounts of work into multiple profile classes. That way, if you make a
mistake, there is less that you have to re-record.

In addition, if you need to re-record parts of tests because of changes in the application, it is easier to do this if the
profile classes are smaller.

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 15

ATCGRef - 2018.0.01

Result of Unnecessary Record Actions
Some "nervous twitch" actions (for example, resizing or moving forms or unnecessary clicks) can cause additional
code to be generated, which can make the generated profile classes more difficult to work with. It is best to avoid
unnecessary actions while recording.

If the tested application makes a lot of calls to worker methods such as app.showResponseAsYesOrNo, these
will not increase the size of the generated code but they may cause a lot of extra logging while recording.

You can suppress this logging, by adding these methods to the noiseMethods array in the
atcgGetControlOptions method of the Application subclass. Some worker methods can be called many times
from a single button click.

Ex_Abort_Action not Replayable
Replay of an exception handler returning Ex_Abort_Action is not supported. If this occurs during recording, a
message box is displayed, stating that the replay action will stop when it gets to this point in the recorded profile.

Executing the AtcgReplayApp Application from the Command Line
To facilitate calling the AtcgReplayApp application from sources other than the AtcgControlApp application (for
example, from a batch file or benchmark framework), you can specify the test class from the jadclient command
line.

In the command line or shortcut to the application, specify the test class; for example, the following command line
executes the LogTransfers test.

c:\atcg\bin\jadclient path=c:\atcg\system ini=c:\atcg\system\jade.ini schema=Atcg
app=AtcgReplayApp endJade ;LogTransfers;

Note The exit code is set to 4 for successful test execution and 1 for a test failure. An exit code of zero (0) can
sometimes occur if the exit or terminate condition is unhandled.

Pausing on an AtcgReplayApp Error
The AtcgReplayApp application pauses the playback list if the pausing on error functionality is enabled and an
error occurs.

To enable pausing on error, specify the following parameter with a value of true in the [ATCG] section of the
JADE initialization file. (The default value is false.)

[ATCG]
PauseOnError=true

Note The PauseOnError parameter is ignored if the AtcgReplayApp application is executed from a source
other than the AtcgControlApp application.

Validation Warnings for Date and Time Fields
The AtcgReplayApp application can return a warning instead of an error if a control contains a date or time value;
for example, if a label caption contains "Status as at 12:23", where 12:23 is the current time, validation will
always fail.

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 16

ATCGRef - 2018.0.01

The string is considered as possibly containing a date or time if there is a number followed by a slash (/) or colon
(:) character followed by another number and there are no other intervening characters other than spaces. As this
must be true for the expected string and for the actual string, the following examples are candidates for warnings
rather than errors.

"Status as at 12:23"

"1/ 3/2009"

"Filed on 3/12"

The following examples are not candidates for warnings rather than error.

"01 Dec 2009"

"abc"

"1h23m14s"

"1.3.2009"

Enable the return of a warning instead of an error if a control contains a date or time value by specifying the
following parameter with a value of true in the [ATCG] section of the JADE initialization file. The default value is
true, but setting the value of the ValNoWarningsOverride parameter to true disables the date and time fields
validation warnings.

[ATCG]
ValDateTimeWarningOnly=true

Note The ValDateTimeWarningOnly parameter is ignored if the ValNoWarningsOverride parameter is not set
to false.

Validation Warnings for Text Boxes Associated with Tables
The AtcgReplayApp application can return a warning instead of an error if a control is a text box that has the
value of the automaticCellControl property set to true.

When a TextBox control has the automaticCellControl property set to true, the Table control with which it is
associated can update the text in the text box. This is done by the presentation client, and it is not always under
the control of ATCG. If the associated table does update the text in a text box, validation may fail.

Enable the return of a validation warning instead of an error if the automaticCellControl property of a TextBox
control is set to true, by specifying the following parameter with a value of true in the [ATCG] section of the
JADE initialization file. The default value is true, but setting the value of the ValNoWarningsOverride parameter
to true disables the warnings for text boxes associated with tables.

[ATCG]
ValAutoControlWarningOnly=true

Note The ValAutoControlWarningOnly parameter is ignored if the ValNoWarningsOverride parameter is not
set to false.

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 17

ATCGRef - 2018.0.01

Overriding Validation Warnings
The AtcgReplayApp application validation returns errors only, by default (that is, the default value of true
disables the validation warnings for date and time fields and for text boxes associated with tables).

Disable the overriding of validation warnings so that warning messages and errors are returned by specifying the
following parameter with a value of false in the [ATCG] section of the JADE initialization file.

[ATCG]
ValNoWarningsOverride=false

Automated Test Code Generator
(ATCG) Reference

Chapter 2 Getting Started 18

ATCGRef - 2018.0.01

Chapter 3 Development Structure and
Considerations

This chapter covers the following topics.

Overall Control

Recording Actions

Method Tracking

Logging Information

Parsing Tokens

Code Generation Methods at Recording Time

Parsing and Code Generation

Replaying Actions

Overall Control
Most overall control is actioned from the ATCG Control form (the AtcgControlForm Form subclass in the
AtcgGeneratorSchema schema).

The key methods in the AtcgControlForm class that are called from the button click event methods are listed in
the following table.

Method Description

doStart Starts a recording session. It checks whether a session is already in progress, starts method
tracking, notifies the record application, and so on.

doGen Generates and loads the profile class. It stops the recording session, validates the specified
class name, generates the .cls file from the rrmsg.log file, and loads it into the database.

doReplay Validates the profile class to be replayed and handles replay lists.

Recording Actions
While recording, the AtcgRecordApp application writes code fragments and diagnostic information to
rrmsg<nn>.log. This is a versioned JADE log file, which is rolled over each time it starts recording. All historical
rrmsg logs are archived in the logs folder in case they are needed later; for example, for problem resolution.

When recording is started, form references are generated for all loaded forms, in case you decide to use them.
Other form references are generated during capture of the preamble of the form's load method. In addition to the
form reference itself, an application getForm method call is generated, to retrieve the form object identifier (oid) at
replay time.

Note Most of the information written to the rrmsg log is written by the AtcgControl class capture method when
operating under the tested application and method tracking.

ATCGRef - 2018.0.01

Method Tracking
When a method such as the load method of an AppMainForm class is registered for tracking, JADE does a
callback to the capture method just before and just after the execution of the AppMainForm class load method.

The capture method is therefore executing within the context of the tested application and it is effectively executed
by the tested application but without it having to be changed to make the call. This means that:

The app system variable is the same one referenced by the application code

All transients are accessible

The form and other objects are exactly as the application sees them when the tracked method executes

If the Table control dblClick is tracked, therefore, the row, column, selected, text, itemObject, and other attribute
properties can all be accessed.

Logging Information
Some things are routinely logged, regardless of whether we plan to generate any code for them.

The following things are logged when entering a method (that is, the capture method is called as a preamble).

Method name

Class and oid of the receiver

Name of the class in which the method is defined (it could be a superclass of the receiver)

Any parameters of the method, including their type and value

The following things are logged when leaving a method (that is, the capture method is called as a postamble).

Method name

Name of the class in which the method is defined (it could be a superclass of the receiver)

Return value (type and value)

In addition, extra information is logged, based on the type of the receiver; for example:

For all controls, show the parent, index, and persistentObject

For tables, show the row, column, inputType, and so on

For folders, show the top sheet

For buttons, show the caption

Show bubble help, if it is not null

Nested method calls are shown with indentation.

This diagnostic information can help when trying to determine if something else needs replay code generated for
it. It can also help identify what happened and when, including in situations when you cannot remember what you
did while recording. The rrmsg.log is therefore invaluable when resolving problems.

Automated Test Code Generator
(ATCG) Reference

Chapter 3 Development Structure and Considerations 20

ATCGRef - 2018.0.01

Parsing Tokens
Code fragments (snippets) are in rrmsg.log lines prefixed with parsing tokens. The rest of the line is the
generated code fragment. Multiple-line fragments are punctuated with \n where line feeds should be.

Some of the more-common parsing tokens are listed in the following table.

Token Description

methodName= Contains the name stem of a new method, usually of the format form-name-acronym_
method-name; for example, methodName=CN_lstTest_dblClick. The final method
name also includes a prefix with an acronym of the generated class name, a sequence
number, and a variant indicating whether it is a validation or a modal method.

This causes a method break; any subsequent code goes into the next method. This is
usually generated for all click and dblClick event methods, as these actions are most
likely to cause transactions, which require the pause afterwards for the transaction to
take place.

methodSource= Source of the new method, matched one-for-one with the methodName= token. These
can be multiple line, using \n for line feeds.

This source forms the end of the method. Any saved source is inserted at the top of this
method.

methodSaveSource= Source to be included in the next method; that is, the code is needed, but a method
break is not required.

referenceName= Reference names to be included as class attributes.

methodVars= Method variables to be included at the top of the next method.

These are most commonly used with getPropertyValue or getControl methods, to hold
a reference to a control that was not painted on an inherited form.

startModal= A modal form was loaded.

Code Generation Methods at Recording Time
Some important methods that are called from the capture method are listed in the following table.

Method Description

genMethodLocalVars For peer schema access or dynamic controls, generates methodVars= for local
variables and methodSaveSource= containing getPropertyValue, getControl, and
so on.

getFullControlName Returns the control name as required in generated code, taking into account peer
schema access, generated form reference names, and so on.

Automated Test Code Generator
(ATCG) Reference

Chapter 3 Development Structure and Considerations 21

ATCGRef - 2018.0.01

Method Description

indentOk Facilitates suppression of code generation for tracked inheritMethod calls. It is
generally called with elseif … and indentOk(app.atcgIndentMax) then…

Note that there are other, older mechanisms for handling this, which are being
phased out. The checkIndent method lets you comment out lines if they are indented
too far. In parseInputFile, indentation can be directly checked and code generation
suppressed. The indentOk mechanism should be used where possible.

In some cases, isInheritMethod can be used to explicitly check for inheritMethod
calls, but we usually want to suppress code generation when application code calls
Button control click event methods, for example. These will show as indented but
not inherited, so the indentOk method is usually the correct one to call.

isPeerSchemaClass,
controlWasAdded, and
controlWasLoaded

These methods facilitate checking for special code generation requirements.

Parsing and Code Generation
At the end of a recording session, you click the Generate and Load button. The rrmsg.log is read in by the
parseInputFile method, extracting code fragments based on the parsing tokens described in "Parsing Tokens",
earlier in this chapter.

The code fragments are saved to a number of arrays and flat files. The arrays and files are then combined into a
.cls file by the genClassFile method . The .cls file is then loaded into the database using jadloadb, the batch
Schema Load utility. All of the files involved are in the logs folder for the database.

In general, it is best to avoid complexity in the parseInputFile method. Its processing is of necessity quite
convoluted, with some code fragments needing to be attached at the beginning of the prior method, or called from
the handleShowModal method instead of the runTest method, and so on. The complexity is much more easily
handled at capture time, when all of the original objects are easily accessible. If something extra needs to be
generated, take care to minimize changes to the parseInputFile method.

Note The fact that the .cls file contains jadeVersionNumber "6.2.15" indicates that it is not intended to be
replayed on a database with a JADE version older than 6.2.15. It is not an indication of the level at which it was
recorded.

Automated Test Code Generator
(ATCG) Reference

Chapter 3 Development Structure and Considerations 22

ATCGRef - 2018.0.01

Replaying Actions
After loading the profile class, click the Replay Last button. An instance of the newly-generated class is then
created and its startup and runTest methods are called.

If a list is being replayed, the startApplication method is called for each profile class in turn. Each profile class
must therefore assume that only the standard forms are open when recording starts. The required state of the
persistent database is under your control; for example, you can create an object in Test1 that is used in Test2.

The AtcgReplayApp application should work in standard client, presentation client, or single user mode. The
AtcgReplayApp application itself does not currently permit multiple copies running, but you can easily write a
harness that supports this. The essential code is as follows.

vars
tran: AtcgProfile;

begin
app.initialize;
create tran as name-of-your-transient-profile-class transient;
tran.startup;
tran.runTest;
tran.stop;

epilog
delete tran;

end;

The class names could be read in from a flat file, for example, and looked up with something like a
currentSchema.getClass(className) method.

The app.initialize method call can vary, according to the requirements of your tested application.

Automated Test Code Generator
(ATCG) Reference

Chapter 3 Development Structure and Considerations 23

ATCGRef - 2018.0.01

Chapter 4 Design Guidelines and Directions

This chapter covers the following topics.

Accuracy of Replay

Awareness of State while Recording

Performance

Code Maintenance

Ease of Use for the End User

Finding References at Replay Time

Modal Forms

Common Dialogs

User Hook for Dynamic Text

Application Message Box

List Box and Combo Box Actions

Multiple Applications Support

Coexistence with Benchmark Driver Code

Accuracy of Replay
At the highest level, the intention is to capture control event method executions (to determine what GUI actions
were taken) and generate replay code to repeat those actions.

The general approach is to track and log all control and form event methods and application (app) methods, and
generate replay code for them as it is determined that it is required. Normally, we just want to replay the
RootSchema method, not reimplementations; for example:

ListBox.click(CMUI_NavigatorListBox2/21014.1);
CMUI_Navigator.lstTest_click(CMUI_NavigatorListBox2/21014.1);
CMUI_Navigator.lstTest_click:null

ListBox.click:null

We want to replay the ListBox.click event method and not replay CMUI_Navigator.lstTest_click. As
ListBox.click will call CMUI_Navigator.lstTest_click at replay time, calling them both would double up the
action.

There are issues with simply replaying the event methods that are called, as follows.

Most of the event methods do nothing.

There is not a one-to-one correspondence between event methods and the original GUI actions.

There are GUI actions for which no events are generated.

In addition, the application can actively suppress any or all event method calls, making it difficult for the
recording process to determine what GUI actions have occurred.

ATCGRef - 2018.0.01

Calling an event method programmatically is not the same as performing the GUI action. For example,
calling the Table class click event method does not do the following things, while clicking in the table does.

Set focus to the table

Set the selected property value

Change row and column property values

In addition, a table can behave differently, depending on whether it has focus. For example, programmatically
calling the Table class click event method for a cell with the cellControl property set to table (that is, a table within
a table) does not expand the cell and show the table, but clicking in the cell does.

Another example is that calling the gotFocus event method does not accomplish the same thing as calling the
setFocus method, yet it is the gotFocus event method that is tracked and from which code is generated.

Awareness of State while Recording
Sometimes we need to be aware of various state information while recording. For example, with a table cell that
has the inputType property set to InputType_ComboBox, when you leave the cell, the text is copied from the
combo box text to the table cell text. This does not occur automatically just by replaying all of the control events, so
we need to set the text explicitly. The logical time to do that would be triggered by the queryRowColChg event
method, as the old cell row, column, and text are still available. However, if the application suppresses
queryRowColChg, we need to do it another way.

Another example is that it would be nice to rely on the TextBox class lostFocus event method to trigger the code
generation to set the text box text, but if there is a Label class click method after entering the text, the lostFocus
event method happens after the click method finishes. Since validation code is generated immediately following
click events, the text has not yet been set and validation fails. There are numerous other examples.

The general technique for solving problems of this kind is to save off various state information; for example:

If a cellInputReady event method occurs on a Table class, an AtcgCellMate is saved, recording the
correspondence between the cell and the associated control. If the associated control is a text box, when a
lostFocus event method occurs on the text box, all cell mates are checked to see if there is a table cell into
which the text needs to be set.

For each keyUp event method on a text box, the form, control, and text are saved. If a click event method
occurs before the lostFocus event method on the text box, the code to set the text can be generated.

The fact that we are called back for each method individually means that we have to be careful about saving state.
The receiver of the capture method (that is, global.atcgMyControl) is persistent, and we cannot begin or commit
transactions without knowing the state of the tested application (for example, the commit would release most
locks). This means we need to save everything off on app, or a transient referenced from app. At the moment, we
keep these items on app, but if there get to be too many of them, we could invent a new helper class and use a
single reference to it on app.

The AtcgCellMate class was originally implemented for controls associated with table cells (hence its name), but
has since been expanded for general-purpose state saving.

Performance
To support the replaying of GUI actions in thin client mode, especially for benchmark use but also for regression
testing, we don't want to make large numbers of unnecessary method calls that would require network traffic.

Automated Test Code Generator
(ATCG) Reference

Chapter 4 Design Guidelines and Directions 25

ATCGRef - 2018.0.01

The performance of the AtcgRecordApp application is important, as we do not want to significantly slow down the
recording process if we can possibly help it. In addition to making it more difficult to use, it could introduce timing
issues in the logic of the tested application. You should therefore eliminate voluminous logging of calls to methods
on app, by adding the method to the noiseMethods array in the atcgGetControlOptions method of the
Application subclass.

The two methods that write to the rrmsg.log are the Application subclass atcgLogMessage and
atcgLogInfoMessage methods. The atcgLogMessage method uses JadeLog.log, which waits for each write to
complete. The atcgLogInfoMessage method uses JadeLog.info, which buffers the writes.

Tip Because of the volume of writes, you should use the Application subclass atcgLogInfoMessage method
whenever possible.

To ensure that the buffer is flushed periodically, the capture method uses the atcgLogMessage method for the
postamble of methods when the value of the Application class atcgIndent property is set to zero (0).

Code Maintenance
In general, you should do all data manipulation for code generation at capture time; not at parsing time. At capture
time, all of the original objects are easily available. The alternative is to generate intermediate tokens and write
parsing code for them. It is easier just to generate the correct code to begin with, especially if attributes of several
objects need to be taken into consideration to make a decision (for example, peer schemas and dynamic
controls). It also makes the rrmsg.log much easier to deal with.

As the capture method is necessarily complex, take care to keep it clean and tidy. Where practical, you should
transfer larger chunks of code to additional methods, to keep the size of the capture method under control.
However, this needs to be balanced against creating a large number of methods in the class, which would also be
unwieldy.

To help avoid a naming conflict when ATCG schemas are loaded under an application schema, some naming
conventions need to be strictly adhered to.

In the AtcgGeneratorSchema schema, all class names other than those based on the schema name (that is,
app and global) must begin with Atcg.

All methods and properties on app, global, JadeScript, and RootSchema classes must begin with atcg.

This also applies to all primitive methods, external methods and external functions. It does not apply to
method reimplementations on app such as app.msgBox.

In the AtcgTestCodeSchema schema, the same rules as those for AtcgGeneratorSchema apply for
classes and methods that "belong" to ATCG.

For methods that are designed to be modified for use with different databases (for example,
app.atcgGetControlOptions), there is a second copy of the method with the suffix Sample; for example,
app.atcgGetControlOptionsSample.

Ease of Use for the End User
The generated code should be as easy as possible for your end-users to modify, which means that you should:

Use names that are meaningful

Apply indentation to make it easy to read

Define a structure that is easy to understand

Automated Test Code Generator
(ATCG) Reference

Chapter 4 Design Guidelines and Directions 26

ATCGRef - 2018.0.01

Finding References at Replay Time
One of the challenges in ATCG is finding the right references at replay time that correspond with the original
controls at record time. For example, while recording, we find out about a new form when the Form class load
event method is called. The reference to the form is the receiver of the method, so there is no mistake. However, at
replay time, there may be several forms available from app.getForm with the same name, so we need to get the
right one.

Dynamic controls is another example. The Control class loadControl method allows a control (usually a painted
control) to be cloned and added to the form. The Form class addControl method allows any number of
dynamically created controls to be added to the form. These new controls are created from scratch on the fly, and
they may bear no resemblance to any existing control. Toolbars and navigation panes are frequently made up of
these dynamic controls.

In the case of the form references, ATCG retrieves the references as the forms are opened, so they are kept
straight. The app.getForm method returns the most recently opened form.

For references to controls that are loaded from painted controls, those are retrieved at replay time using the
Control class getControl method. The correct index to use is captured at recording time.

There is no way to be certain about getting the correct references to controls that are added or those that are
loaded from added controls. The current technique is to match them based on the following criteria of the control.

bubbleHelp text

name property value

Class name

left property value

For left-aligned controls, the distance to the right edge of the parent

top property value

index property value

These criteria are all checked for the control, its parent control, the parent of its parent control, and so on, up to the
form.

To allow for right-aligned controls (for example, toolbars) where the form has been resized, it is considered a
match if the value of the left property or the distance to the right edge of the parent matches.

Modal Forms
The Form class showModal method blocks execution of code until the form is unloaded, so actions cannot be
replayed on a modal form.

To handle this, a handleShowModal method is generated in the profile class. It calls the Form class show method
rather than the Form class showModal method. Profile methods can then be replayed as normal. At the end of the
handleShowModal method, the value that was captured at recording time is returned.

To support this, you must reimplement the Form class showModal method to call the handleShowModal method.
If the application has reimplemented this in its common superclass, you can change that reimplementation.

Nested modal forms are supported.

Automated Test Code Generator
(ATCG) Reference

Chapter 4 Design Guidelines and Directions 27

ATCGRef - 2018.0.01

There are several parsing tokens specifically for modal forms. It is necessary to strictly separate the code that is
generated for action on the modal form versus that for the other forms; for example, a single reference to the
modal form after it is closed generates an exception.

Common Dialogs
Uses of selected CMDialog subclasses are supported. As these common dialogs are modal and cannot be
reimplemented, they need to be handled differently.

At replay time, the necessary CMDialog subclass methods are tracked, which call back the AtcgControl class
replay method to take the actions required. For example, if the CMDColor class is used, when the CMDColor
class open method calls back the AtcgControl class replay method, the AtcgBtnClick application is started
during the preamble, which is told which button to click. It does this by calling Windows APIs. During the
postamble, the recorded color is set in the CMDColor object. The recorded color was stored in a property in the
Application subclass, which was set before the dialog was brought up.

The CMDFont and CMDPrint classes are not currently supported.

User Hook for Dynamic Text
In some cases, dynamic text needs to be handled; for example, a Personal Identification Number (PIN) code is
displayed in a message box and needs to be entered into a text box later on. The PIN code that is displayed at
replay time is the one that needs to be entered into the text box at replay time; the PIN code that was displayed at
recording time will not work.

To handle this, a special click was defined for TextBox controls; that is, Ctrl+Shift+left-click. This identifies the text
box as dynamic. At replay time, this means that the text in the text box is set from the return string of
app.atcgDynamicContent rather than the string that was entered at recording time. You can then reimplement
app.msgBox to save off the required text, and modify app.atcgDynamicContent to return it at the correct time.

Application Message Box
When message boxes occur at replay time, the same action needs to be taken that was taken at recording time.
To handle this, the return code is captured at postamble time along with the message box title, message string,
and flags. When this combination of parameters is encountered at replay time, the recorded return code is
returned.

The runTest method in the profile class declares what message boxes are expected during execution of the class.
These declarations are checked at replay time in the reimplemented app.msgBox method. If unexpected
message boxes are displayed or expected message boxes are not displayed, the replay fails.

To allow for dynamic content (for example, "Are you sure you want to delete user John Smith?"), a match of the
flags is considered close enough, if the message box is displayed at the expected time. A message is logged,
showing the expected and actual parameters involved. You could make this algorithm more sophisticated; for
example, requiring that the beginning or end of the title or message, or both the title and the message, must also
match.

List Box and Combo Box Actions
To allow for changes in the tested application between releases, lines are found at replay time based on text
rather than index. This allows for a new release of the application inserting an additional item into a navigation list
box, for example.

For hierarchical list boxes, the text at each level is recorded and used.

Automated Test Code Generator
(ATCG) Reference

Chapter 4 Design Guidelines and Directions 28

ATCGRef - 2018.0.01

Multiple Applications Support
To support multiple applications with the same AtcgGeneratorSchema schema, some options are passed in
using app.atcgGetControlOptions method in the AtcgTestCodeSchema schema. This includes:

Generated schema name

Generated superschema name

Generated superclass name

Name of the logMessage method of the driver schema

List of schemas to be tracked

List of noise methods to exclude from method tracking

Note The global.atcgMyControl method in the GAtcgGeneratorSchema class can be accessed from the
atcgGetControlOptions method, so you can actually set other options that are not provided for with explicit
parameters.

Coexistence with Benchmark Driver Code
ATCG code and benchmark code can coexist in the AtcgTestCodeSchema schema.

The profile class structure, start-up infrastructure, and so on, are compatible. To help keep them straight at run
time, the following flags properties are provided in the AtcgGeneratorSchema subclass of the Application class
in the AtcgGeneratorSchema.

atcgRunningAtcg

atcgRunningAtcgReplay

runningBenchmark

Automated Test Code Generator
(ATCG) Reference

Chapter 4 Design Guidelines and Directions 29

	Contents
	Before You Begin
	Who Should Read this Reference
	What’s Included in this Reference
	Conventions
	Related Documentation

	Chapter 1 Automated Test Code Generator (ATCG)
	Overview
	Structure
	Applications
	ATCG Variants

	Chapter 2 Getting Started
	Downloading the ATCG Schemas
	Installing the Erewhon ATCG Variant
	Installing the Generic Version of ATCG
	Using ATCG at Run Time
	Example of Typical ATCG Usage

	Usage Considerations
	Persistent Data State
	Running Nodes and Other Applications
	Profile Class Size
	Result of Unnecessary Record Actions
	Ex_Abort_Action not Replayable
	Executing the AtcgReplayApp Application from the Command Line
	Pausing on an AtcgReplayApp Error
	Validation Warnings for Date and Time Fields
	Validation Warnings for Text Boxes Associated with Tables
	Overriding Validation Warnings

	Chapter 3 Development Structure and Considerations
	Overall Control
	Recording Actions
	Method Tracking
	Logging Information
	Parsing Tokens
	Code Generation Methods at Recording Time
	Parsing and Code Generation

	Replaying Actions

	Chapter 4 Design Guidelines and Directions
	Accuracy of Replay
	Awareness of State while Recording
	Performance
	Code Maintenance
	Ease of Use for the End User
	Finding References at Replay Time

	Modal Forms
	Common Dialogs
	User Hook for Dynamic Text
	Application Message Box
	List Box and Combo Box Actions
	Multiple Applications Support
	Coexistence with Benchmark Driver Code

