
Copyright©2018 Jade Software Corporation Limited. All rights reserved.

Packages
White Paper

  VERSION 2016



Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2018 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.



WP_Packages - 2016

Contents

Contents iii

Packages 4
A Simple Diary Package 4
Scope Rules for Method Calls 13
Switching app on Exported Method Call 16
Exporting GUI Subclasses 19
Combined Appointment Book Example 22
How do Packages Call User Methods? 24
Summary 27



WP_Packages - 2016

Packages

This document discusses the use of packages in a JADE system. Since the introduction of subschemas, JADE has
allowed a class, along with the properties and methods of a class, to be used through the single inheritance of
schemas. Packages are an adjunct to the existing schema structure that allows similar access but in a more
controlled manner and without the need for the schema defining the class to be a superschema of the schema
using it.

The developer of a package decides what functionality needs to be implemented in an exporting schema and
then decides which classes, properties, and methods should be exported in one or more packages. Usually only a
small subset of the classes, properties, and methods are exported in the package; only those necessary to expose
the functionality required.

Users of the package can then load the exporting schema into their system, usually into an unrelated schema
branch, and then import the package into their schema. They then have access to the functionality provided by the
package via the classes, properties, and methods exported by the package.

This document covers some of the issues you should consider when both developing and using packages in your
JADE applications. For more details, see the following subsections.

A Simple Diary Package
In order to explain how a package is written and used, let us develop a small example package and work our way
through the issues involved in design, implementation, and use. The running example will be a simple diary
system that allows the storage of appointments, their retrieval, and display.

We begin by creating a schema that defines the basic classes with their corresponding properties and methods.
Note that there is nothing special about a schema that exports a package and it can be tested as a standalone
schema before we convert it to a package. The schema we define will be called DiarySchema and will be a
subschema of the RootSchema.



WP_Packages - 2016

The two major classes will be a DiaryEntry class that will represent an appointment and a Diary class that will
hold a collection of these. Any system can have a number of instances of Diary, one for each user for example.
The simple system is shown in the following image.

The DiaryEntry class has attributes startTime and endTime (both of type TimeStamp) for the appointment, along
with an attribute what (of type String) that holds the description of the appointment. The attribute index (of type
Integer) provides a unique number for each appointment within the diary. The manual reference myDiary (of type
Diary) has an inverse allDiaryEntries of type DiaryEntryDict, a member key dictionary with keys startTime,
endTime, and index.

The durationmethod returns a String (for example, "30mins") showing the timespan of an appointment that is
used by the display method, which provides further details such as the index, day, time, duration, and description
as in:

0 Thu 24 Jul 2003 12:30 30mins Dentist

The Diary class has a single attribute nextIndex (of type Integer) that tracks the next-highest unique index for a
DiaryEntry and two methods. The getAllEntries method returns a String containing all appointments formatted
one for each line in the above format.

The makeAppointment method has the following signature.

makeAppointment(startTime : TimeStamp;
durationInMinutes : Integer;
what : String) updating;

This method creates a new DiaryEntry object, sets all of the attributes of the object, and finally sets the myDiary
reference to self to add the new entry to the diary’s allDiaryEntries collection.

Writing JadeScript methods to create a new diary, make new appointments, and write them all out could then test
this simple schema.

Having tested our schema thoroughly, we now decide to make it available to other users. Without packages, users
would need either to load the classes directly into their schema or include DiarySchema somewhere in their
schema hierarchy. If they included the complete schema, they would then be able to use these classes in any
subschemas below the DiarySchema schema.

However, inserting a schema into an existing schema hierarchy, especially one not designed with this in mind,
can be problematical. Firstly, it is not trivial to insert a new schema, and the class names used in the schema may
already exist in the schema hierarchy below the level at which you want to insert it. This would preclude the
schema from being inserted, as class names must be unique in a schema branch.

A better solution is to create and export a package from DiarySchema and then import it into the schema or
schemas where we want to use it. The first step is to decide which classes, properties, and methods we want to
export and which should remain hidden. In general, it is good practice to export only those parts of the system that
are essential for the package to be useful and to hide all non-essential details.

Packages
White Paper

Packages 5



WP_Packages - 2016

In our example, we have decided to hide the manner in which the collection of DiaryEntry objects are stored. The
user of the package does not need this information, so we do not need to export the DiaryEntryDict class, the
allDiaryEntries collection property, or its inverse myDiary. An advantage of not exporting this information is that if
we decide at a later date to change the manner in which these are stored, we can do so without any changes to
any code that imports the package. Such a change may require a reorganization of any persistent instances of
these classes that the user has created. Another property that we do not need to export is the nextIndex property
on Diary. In our case, we decide to export all of the methods shown in the previous image but we would not export
any helper methods that these might use.

Having decided on what classes, properties, and methods to export, we can now use the package export wizard
to define the package. This wizard is available from the Browse menu via the Packages and Export Browser
menu items. This brings up the DiarySchema Export Packages Browser form, which enables you to select Add
from the Packages menu to display a series of wizard forms, shown in the following images. The wizard proceeds
through the following steps.

1. The package is named DiaryPackage and an application from the schema is selected.

Packages
White Paper

Packages 6



WP_Packages - 2016

2. The classes to be exported, Diary and DiaryEntry, are selected. Note that we have not selected
DiaryEntryDict, and the system classes (for example, Collection), are greyed out, indicating they cannot be
exported. Classes that have been selected to be exported are shown in green.

Packages
White Paper

Packages 7



WP_Packages - 2016

3. The properties and methods to be exported are selected. Note that the protected members (for example,
properties nextIndex, allDiaryEntries, and myDiary) are not available for export. In addition, we have
chosen not to export the method setMyDiary, which we want to be purely internal to DiarySchema. (The
method setMyDiary could not be made protected, as it must be visible to the method makeAppointment on
Diary.)

4. When you have selected the features for inclusion in the exported package working set and clicked the Next
> button, the Select Interfaces for Package sheet of the Export Package Definition Wizard is then
displayed.

This fourth sheet enables you to select the interfaces that you want to include in the exported package, if
required.

Packages
White Paper

Packages 8



WP_Packages - 2016

5. Choose lifetimes and default persistence for the exported classes and access modes for their properties. By
default, these are the same as those declared in the exporting schema and can be made only "more
restrictive" than their declaration.

An alternative to using the export wizard when the DiarySchema Export Packages Browser is displayed and a
package has been defined is to use the Export Package Class Browser. This can be opened by double-clicking
on the package in the DiarySchema Export Packages Browser or by selecting Browse from the Packages menu
(when the DiarySchema Export Packages Browser is displayed).

Packages
White Paper

Packages 9



WP_Packages - 2016

The Export Package Class Browser, shown in the following image, is then displayed.

This export packages view is similar to a standard Class Browser but limited to the classes, properties, and
methods exported in the package. Properties and methods can be added to the package by dragging and
dropping them between the normal schema class and package class browsers.

Having defined our exporting package, we can now import it into another schema and use it to create and
manipulate diaries. The importing schema need not be a subschema of the exporting schema and would normally
have only the RootSchema as a common ancestor in our example schema DiaryTester. We can now import the
DiaryPackage into this schema using the Browse menu from the Packages and Import Browser menu items.
This displays the DiaryTester Import Packages Browser.

Select the Addmenu item from the Packages menu, and then select which exported packages to import.

The Rename Package To text box in the Import Package form enables you to rename the package if the name of
the package conflicts with another package that has already been imported.

Packages
White Paper

Packages 10



WP_Packages - 2016

As we will see, it is not a problem if the names of any of the imported classes conflict with classes already defined
in the schema or imported from other packages.

If you want to allow a circular dependency between packages in the schema hierarchy, check the Include
Circular Packages check box. This permits the loading of an incomplete package (for example, Schema1
exports Package1 and imports Package2, while Schema2 exports Package2 and imports Package1). When you
subsequently create a package that would result in circularities, you are prompted to confirm that you want to
continue and allow a circular dependency between packages in the schema hierarchy.

Check the Show Details check box to display the package contents.

Packages
White Paper

Packages 11



WP_Packages - 2016

Having imported the DiaryPackage, opening a normal Class Browser for the schema DiaryTester displays the
imported classes along with their properties and methods in green, as shown in the following image. These
imported entities cannot be modified. If the package schema has been encrypted when it was extracted, the
source of any exported methods would not be shown in the browser.

The imported classes and methods can now be used as in the following JadeScript method example.

createDiary();
vars

diary: DiaryPackage::Diary;
today: TimeStamp;

begin
beginTransaction;
if app.diary = null then

create app.diary;
endif;
today.setTime('12:30'.Time);
app.diary.makeAppointment(today, 30, 'Dentist');
today.setTime('18:00'.Time);
app.diary.makeAppointment(today, 60, 'Squash');
write app.diary.getAllEntries;
commitTransaction;

end;

The reference to the imported class Diary uses the double colon (::) scope operator as in DiaryPackage::Diary. If
there is no ambiguity as to which class Diary represents, as in our schema where there is no local Diary class
and no other imported Diary class, Diary can be used without the prefix.

Packages
White Paper

Packages 12



WP_Packages - 2016

When the method call app.diary.getAllEntries is made in this script, a switch is made from the DiaryTester
schema into the exporting DiarySchema. Along with this switch is a change in the environmental context of the
process. In particular, there is a switch in the meaning of environmental variables such as app, global, and
currentSession to those of the schema that exported the package. This enables the package developer to use
references to these in their code. A common use of this is to access the properties and methods of app in the
package, to save context information.

To illustrate this switch of context, suppose we add the following method to class Diary and export it in
DiaryPackage.

printAppGlobal();
begin

write 'App and Global in Diary::printAppGlobal';
write ' app=' & app.getName & ' global=' & global.getName;

end;

We then run the following JadeScript method in the DiaryTester schema.

showSwitch();
vars

diary: DiaryPackage::Diary;
begin

diary := DiaryPackage::Diary.firstInstance;
write 'App and Global in showSwitch before call';
write ' app=' & app.getName & ' global=' & global.getName;
diary.printAppGlobal;
write 'App and Global in showSwitch after call';
write ' app=' & app.getName & ' global=' & global.getName;

end;

The output of this JadeScript method is:

App and Global in showSwitch before call
app=DiaryTester global=GDiaryTester

App and Global in Diary::printAppGlobal
app=DiarySchema global=GDiarySchema

App and Global in showSwitch after call
app=DiaryTester global=GdiaryTesterer

Notice that both app and global have switched from those that apply in the importing schema DiaryTester to
those that apply in the exporting schema DiarySchema while executing the exported method printAppGlobal,
and then have switched back.

Scope Rules for Method Calls
Having imported the class DiaryEntry along with its associated imported properties and methods, we are able to
add local methods to the class. These methods can be called from the importing schema and any subschemas,
just like normal methods without any schema switch. For example, we could add the following method to the class.

weekendEvent(): Boolean;
begin

// write app.getName();
if startTime.date.dayOfWeek = 6 or startTime.date.dayOfWeek = 7 then

return true;
else

return false;

Packages
White Paper

Packages 13



WP_Packages - 2016

endif;
end;

This weekendEvent method can be called from a JadeScript method, as follows.

testWeekendEvent();
vars

de: DiaryEntry;
begin

createDiary;
de := DiaryEntry.firstInstance;
write de.weekendEvent;

end;

If the commented outwrite statement in the weekendEvent method was uncommented, it would yield
DiaryTester, showing that the app had not been switched from the schema in which the JadeScript was
executed.

However, what if we add a local method to an imported class that has the same name as a method that already
exists on the class in the exporting schema? Note that the importer of the package may not even know this has
happened, as the method with the same name may not have been exported. Adding a local method with the same
name is allowed, and the local method does not even have to have the same signature as the method in the
exporting schema. For example, although a display method is exported on DiaryEntry, we could also add a local
display method with a different implementation, as follows.

Exported display method:

display(): String;
begin

return index.String &
startTime.date.format(" ddd d MMM yyy ") &
startTime.time.format("hh:mm") &
Tab & duration() &
Tab & what & CrLf;

end;

This exported method produces the following output.

0 Wed 6 Aug 2003 12:30 30mins Dentist

Local display method:

display(): String;
begin

return what &
Tab & duration() & " at " & startTime.time.format("hh:mm") & CrLf;

end;

This local method produces the following output.

Dentist 30mins at 12:30

Packages
White Paper

Packages 14



WP_Packages - 2016

After this, two display methods show in the method frame of the Class Browser for the DiaryEntry class: one
green for the imported method and one black for the local method. So which display method gets called? More
precisely, the question should be which display method gets invoked in which context?

The resolution of this is that the most-local definition of the method is called. In particular, this means that when the
method is called from within the DiaryTester schema (from a JadeScript method, for example), the local version
is invoked. However, when execution has switched to the exporting schema (for example, as a result of invoking
the exported method getAllEntries on class Diary, which invokes display to produce the String of all
appointments), the display method defined within and exported from DiarySchema is used.

Note It is useful to understand why the scope rules are defined in this manner.

The rule that the local definition (which may or not be exported) is used within the exporting package schema
protects the developer of the package. The developer knows that the functionality of the package will not be
changed and potentially compromised by any user of the package adding local methods to the exported class.

The rule that the local definition is used within the importing schema allows the developer of the importing schema
to control how that imported class behaves. For example, it may be that within their schema, all classes must have
a method display that behaves in a specific way so that code such as that shown in the following method will
behave correctly.

displayAllObjectsInSet(oSet: ObjectSet);
vars

o: Object;
begin

foreach o in oSet do
write o.display;

endforeach;
end;

Suppose we now removed the local display method on the imported DiaryEntry call and executed the call
de.display on a DiaryEntry object de. What output would be expected? It might be surprising that the output
would be something like the following.

---Diary/2683.7---

Packages
White Paper

Packages 15



WP_Packages - 2016

This is because the display method defined on class Object in the DiaryTester schema has been called. This is
regarded as the "most-local definition", because it is defined on a superclass of DiaryEntry. Only if no definition
was found in the local schema or inherited from a superschema would the imported display method be called.

However, what if we really wanted to call the imported display method rather than the method on Object? How
can this be done? We can achieve this by defining a local display method on DiaryEntry, as follows.

callImportedDisplayMethod(): String;
begin

return importMethod display();
end;

The keyword importMethod tells the compiler that we want the imported display method of the current class to be
invoked, rather than any local display method.

Switching app on Exported Method Call
As noted in a previous section, when a method in another package is called, a switch is made from the current
schema into the package's exporting schema along with a change in the environmental context of the process. In
this section, we will see how the resulting switch of app enables us to store context information.

In our running Diary example, we made a decision to hide the manner in which DiaryEntry objects were stored.
Although a method getAllEntries was supplied to return all appointments as a formatted list, this would be
inconvenient for users of the package. To extract appointments for a specific day or the details of a specified
appointment, the user of the package would need to parse this string.

We decide we want to provide methods on Diary that will allow the user of the package to specify which
appointments he or she wants to see, and then return them one at a time as DiaryEntry objects. To do this, we will
add two properties to the DiaryPackage class that is the type of the Application object exported as part of the
package. These properties are savedDiaryEntries of type DiaryEntryArray (a subclass of Array with
membership DiaryEntry) and iterator of type Iterator. Neither of these properties or the DiaryEntryArray class
will be exported, but are available within the package code and can be accessed via app.

We can now export methods on Diary like those in the following examples.

getDayEntriesBegin(day: Date);
// initialize iterator over all diary entries occurring on day
vars

de: DiaryEntry;
begin

app.savedDiaryEntries.clear;
foreach de in allDiaryEntries where de.spansDay(day) do

app.savedDiaryEntries.add(de);
endforeach;
app.iterator.reset;

end;

getNextDiaryEntry(de: DiaryEntry output): Boolean;
// Return the next DiaryEntry object, if any, from the iterator
begin

if app.iterator.next(de) then
return true;

else
return false;

endif;
end;

Packages
White Paper

Packages 16



WP_Packages - 2016

These two properties on app will need to be initialized before any importer of the package calls them. After a
package is imported into a schema (for example, the DiaryPackage into the DiaryTester schema), when any app
is run from the importing schema, all packages are initialized. This initialization consists of calling the initialize
method for the application, which by default is the method initialize. Similarly, the finalize method of the
application, which by default is the method finalize, is called when the application finishes execution. This gives
the package designer the opportunity to perform any initialization and finalization required for the package to
function correctly. Note that the application might have different initialization and finalization methods defined for
when it is run in its own schema. For our package, we will add the following methods to the DiaryPackage class
and use the Define Application form shown in the following image to set them as the initial and final methods.

initializeDiaryPackage() updating;
// Initialize the Diary package properties on app
begin

savedDiaryEntries.clear;
iterator := savedDiaryEntries.createIterator;

end;

finalizeDiaryPackage() updating;
// Finalize the Diary package properties on app
begin

delete iterator;
end;

These can be used in the importing schema such as in the following JadeScript testing method.

printAllForDay();
vars

de: DiaryEntry;
today: Date;

begin
process.initializePackages;
app.initialize;
if app.diary <> null then

app.diary.getDayEntriesBegin(today);
while app.diary.getNextDiaryEntry(de) do

write de.display;
endwhile;

endif;
process.finalizePackages;

end;

Packages
White Paper

Packages 17



WP_Packages - 2016

The initialization and finalization of packages does not occur for JadeScript or Workspace methods, just as the
default app is not initialized. This ensures that these are lightweight operations and also because the default app
may not be the appropriate application to initialize. The calls to process.initializePackages and app.initialize at
the start, and process.finalizePackages at the end, of the above JadeScript method force this initialization and
finalization to occur. JADE does not initialize any packages for RootSchema applications running in user
schemas, including unit tests run using the JADE Unit Test framework and the default RPS Datapump application
in the RootSchema. If you require this initialization, you must initialize packages in your application code (using
the Process class initializePackages and finalizePackages methods).

An observant reader will have noted that our design is somewhat limiting, as it allows only a single Diary to be
iterated at a time, and a schema importing our DiaryPackage may want to iterate multiple Diary objects
simultaneously. This could be accommodated by having a collection of transient DiaryContext objects on app,
each of which holds a Diary reference along with any context information such as the iterator and
savedDiaryEntries collections. Such a collection could be keyed on a name or id property added to Diary.

When a new Diary instance is created, the constructor method create, defined on the exported Diary class, is
called. (Note that it is not allowed to add a local constructor or destructor method in the importing schema and all
of the constructor and destructor methods for the class and superclasses are called in the exporting package
schema when an exported class instance is created or deleted.) This would mean the package could create a
new transient instance of the DiaryContext class when a new Diary object was constructed, initialize it, and then
add it to the collection of those held on the app.

A similar creation and initialization would occur the first time a new Diary instance was seen inside the package;
for example, instances that came from Diary.firstInstance calls.

Packages
White Paper

Packages 18



WP_Packages - 2016

Exporting GUI Subclasses
In the examples earlier in this document, the classes exported by our packages are all subclasses ofObject. In
this section, we will develop a DateSelector schema that defines a DateSelectorPackage, which exports a
DateTableSelector control that can be added to forms to allow a date to be selected. Having done this, we will
import it into our DiaryTester schema. This will expose a number of further issues relevant to the use of packages.

The DateTable class is a control that is a subclass of Table, and builds a control that has the form of a table
without tabs.

The control class has a protected property startOfMonth of type Date, which specifies which month is being
displayed and is used to determine on which day of the week the month starts and the number of days in the
month. The windowCreatedmethod, which is called when the control is placed on a form or when a form
containing the control is painted, sets the startOfMonth property based on the current date. It then calls fillTable to
fill in the details of the table, as shown in the following example.

windowCreated(cntrl: Control input; persistCntrl: Control) updating,
clientExecution;
begin

setStartOfMonth(app.actualTime.date);
fillTable;
inheritMethod(cntrl, persistCntrl);

end;

The DateTableSelector class is a subclass of the DateTable class, with its own windowCreated and fillTable
methods.

The windowCreatedmethod has the same code as the previous method example but the fillTable method has
code to add the month tabs to the table. In addition, the class has a property dateSelected of type Date. A click
method is also defined, which moves the table to show the next or previous month if the appropriate tab of the
table is clicked, or sets the dateSelected property to the date selected if one of the days in the month is selected.

Packages
White Paper

Packages 19



WP_Packages - 2016

The Class Browser for the DateSelector schema is shown in the following image.

The following example is the generic click method for the DateTableSelector control.

click(table: DateTableSelector input) updating, clientExecution;
vars

startDay, endDay: Integer;
begin

dateSelected := null;
if sheet=1 then

self.setStartOfMonth(prevMonth(self.startOfMonth));
fillTable;
return;

elseif sheet=3 then
self.setStartOfMonth(nextMonth(self.startOfMonth));
fillTable;
return;

elseif sheet=2 then
accessCell(row, column);
if accessedCell.foreColor = Gray or not accessedCell.selected then

return;
endif;
dateSelected.setDate(accessedCell.text.Integer,

self.startOfMonth.month, self.startOfMonth.year);
endif;
inheritMethod(table);

end;

We can test whether this control works correctly within the DateSelector schema by creating a form containing the
control. We can then check that the table is painted correctly, that it moves to the correct month when the previous
and next month tabs are clicked, and that the dateSelected property of the control is correctly set when a date is
clicked.

Packages
White Paper

Packages 20



WP_Packages - 2016

We now want to export this control as part of a package DateSelectorPackage, so we must decide which classes
and features to expose. Clearly, we want to export the DateTableSelector class, but there seems to be no
compelling reason to export its DateTable superclass. As to what features to export, we decide that only the
dateSelected property needs to be exported, to allow users of the control to determine which date of the control
has been clicked.

To test this package, we create a DateSelectorTester schema, import DateSelectorPackage, and then use the
JADE Painter to create a DateTableSeclectorTestForm on which we paint an instance of the imported control.

Opening a Class Browser for this schema shows that the imported DateTableSelector control class appears with
a superclass of Table. The superclass of an imported class is defined to be the superclass of the class in the
exporting schema if that superclass is also exported in the same package. If that superclass is not exported, as in
our current case, the superclass of the imported class is the first system class in the superclass hierarchy; in this
case, the Table system class. Note that if we had also exported the DateTable class in the DateSelectorPackage,
it would have been the superclass of DateTableSelector. If instead we had exported the DateTable class in a
completely different package and then imported that into our DateSelectorTester schema, both the DateTable
and DateTableSelector classes would have the same superclass; that is, Table.

The consequence of these rules means that when a method is searched for locally on an object of the imported
class DateTableSelector, it will be searched for locally on the chain of classes DateTableSelector, Table,
Control,Window,Object. If no method of that name is found on that chain, a switch will be made into the exporting
schema and the method will be searched for on the chain DateTableSelector, DateTable, Table, Control,
Window,Object.

Packages
White Paper

Packages 21



WP_Packages - 2016

For example, if the statementwrite dts.display; is executed in the DateSelectorTester schema, where the
variable dts is of type DateTableSelector, a display method would be found within the local hierarchy (by default,
the one on class Object). The following image is an example of the DateSelectorTester schema Class Browser.

However, there are a number of additional rules that need to be kept in mind when importing classes.

Implementing locally any constructor (create), destructor (delete), or mapping method is not permitted. When
the statement create dts; is therefore executed, the context is switched to the exporting schema, and all
create methods on the chain DateTableSelector, DateTable, Table, Control,Window,Object are executed.

Event messages cannot be implemented locally. This includes methods such as click and paint on GUI
classes, and timer and notification handlers such as timerEvent, userNotification, and sysNotification.

One reason for this is that such methods would always be found locally, as they are defined on system
classes, and the wrong method would invariably be found. For example, if the timerEvent method were
searched for locally, a method would always be found locally as there is an abstract method by that name on
the class Object. Another reason for looking only for the method in the exporting schema is to avoid
compromising the behavior defined by the package implementation.

Although we cannot override the generic click method defined on the exported DateTableSelector class, we can
define a dateTableSelect1_click method to the local instance of the control dateTableSelect1 that appeared as a
result of painting an instance of the control on the form. As can be seen from the definition of this method in the
previous image, this method writes the date held in the property dateSelected if the user clicked on a date in the
table. This method would be called when the generic click method calls inheritMethod(table) near the end of the
method.

Combined Appointment Book Example
Having written both a DateSelectorPackage and a DiaryPackage, we can use both of these to implement a
simple appointment book by extending our DiaryTester schema.

Packages
White Paper

Packages 22



WP_Packages - 2016

After importing both, the DiaryTester schema Class Browser shown in the following image displays all three
imported classes.

We now add a MakeAppointment form, as shown in the following image.

Packages
White Paper

Packages 23



WP_Packages - 2016

The form includes a date selector control that has a dateTableSelect2_click method. This method is called when
the user selects a day on the calendar. This calls a local method fillTableForDay, which uses imported methods
getDayEntriesBegin and getNextDiaryEntry on Diary to obtain the DiaryEntry instances from the Diary and fill
the table on the right of the form with the appointments. Appointments can be added to the Diary by filling in the
details and then using the imported method makeAppointment on Diary.

Although this is a rather rudimentary appointment book, it would be straightforward to extend it to provide
additional facilities such as multiple diaries, importing or exporting appointments, and the other features that are
normally provided by appointment books.

By using packages to develop the basic facilities rather than building them all into a single schema, we can clearly
separate the implementation of the basic facilities from their use, and they can easily be imported into other
schemas that require diary or date-selecting facilities. Note that it would be easy to package up the final schema to
produce an AppointmentBookPackage, which could also be imported into schemas to provide a complete
appointment book facility.

How do Packages Call User Methods?
Finally, we address the question of how a package can cause actions to occur back in the schema that imported
them. This topic, which covers issues that are more advanced than those covered earlier in this document, can be
skipped on an initial reading.

A feature common to many appointment book systems is the ability to associate an alarm with an appointment so
that it is activated when the starting time is reached. This alarm may send an e-mail message, bring up an alert
form, or perform some other action to alert the user of the impending appointment. How might this feature be
added to our example system?

We will create a new CronSchema schema that exports a CronPackage with classes Scheduler and
ScheduledEvent. The method scheduleEventAt on the root transient class Scheduler will be used to add new
events.

scheduleEventAt(when: Time; action: Object) updating;
vars

se: ScheduledEvent;
begin

create se transient;
se.whenToStart := when;
se.eventAction := action;
se.myScheduler := self;
updateTimer;

end;

The when parameter specifies the time at which we want the event to occur and the action specifies what is to
occur. The scheduleEventAt method creates a new ScheduledEvent transient object, initializes the whenToStart
and eventAction attributes, and then sets the reference myScheduler. This adds it to the allScheduledEvents
collection, (which is a queue sorted in ascending time order), before calling updateTimer.

Packages
White Paper

Packages 24



WP_Packages - 2016

The following image shows the ScheduledEvent and Scheduler classes defined in the CronSchema schema.

The updateTimer method shown in the following example begins by calling causeDueEvents to start any events
that are due to run. It then checks if a timer is set to fire when the first event in the queue is scheduled and if there
is none, calls setTimer to arm a timer by calling beginTimer.

updateTimer();
// Check that the timer will fire for the first event in the
// queue and if not, cancel existing timer and start another
vars

se: ScheduledEvent;
option: Integer;
timeLeft: Integer;

begin
causeDueEvents;
se := allScheduledEvents.first;
if se = null then

return;
endif;
if getTimerStatus(0, option, timeLeft) then

// already a timer, check it corresponds to time of se
if se.whenToStart - app.actualTime.time > timeLeft then

return;
endif;

endif;
// cancel current timer and start again
endTimer(0);
setTimer;

end;

When the timer fires, it calls the timerEvent method, which in turn calls causeDueEvents to start any due events
and then setTimer to re-arm the timer.

How can the causeDueEvents method cause events to happen in the schema that called the package? It cannot
call a method in that schema, as it will have no knowledge of such methods. It does have access to the
eventAction object that was passed and saved when the event was initially scheduled, but does not know what
type it is.

The approach we will take will be to use notifications. This approach will allow the actions to take place in the
importing schema with the correct context and also allow CronPackage to be imported into multiple schemas,
because it does not need to know anything about the type of the eventAction object. As the designer of the
package, we must decide on a receiver for the notifications. In this design, we will choose the user app for this
object. The notification, shown in the following example, will be registered in the constructor of the Scheduler.

create() updating;
begin

Packages
White Paper

Packages 25



WP_Packages - 2016

process.getProcessApp.beginNotification(process, Cron_Event_Type, 0, 0);
end;

This registers the notification on the object process.getProcessApp, which is the main process Application
object, (that is, the app in the importing schema) with process being the notification target object on which the
notification is invoked. The destructor terminates the notification, by calling endNotification. As can be seen in the
following causeDueEvents method, the notification is caused by the call to process.causeEvent, which will
cause the method userNotification on the importing schemas application class to be invoked, passing it the
saved eventAction object.

causeDueEvents();
// Called when timer fires. Inspect all of the events at
// the start of the queue and call all those due.
vars

se : ScheduledEvent;
begin

foreach se in allScheduledEvents do
if se.whenToStart > app.actualTime.time then

return;
endif;
// cause event passing eventAction as action to perform
if se.eventAction <> null then

process.causeEvent(Cron_Event_Type, true, se.eventAction);
se.myScheduler := null;
delete se;

endif;
endforeach;

end;

The CronPackage will export only the Scheduler class and expose the scheduleEventAt method, hiding all of
the complications of how events are queued, the setting of timers, and the way events are caused to occur.

A schema CronTester that imports CronPackage can use it by adding a userNotificationmethod like that shown
in the following example to the application CronTester class.

userNotification(eventType: Integer; theObject: Object;
eventTag: Integer; userInfo: Any) updating;

begin
if not userInfo.isKindOf(Method) then

write 'Error...method expected';
return;

endif;
sendMsg(userInfo.Method.name);

end;

It can then create a transient instance of CronPackage::Scheduler and schedule an event at a specific time by
code like that shown in the following fragment.

scheduler.scheduleEventAt(app.actualTime.time + 5000, CronTester::eventOne);

This will result in the userNotificationmethod being called in five seconds, which will in turn call the method
eventOne defined on the application class CronTester.

Packages
White Paper

Packages 26



WP_Packages - 2016

Summary
In this document, we have seen how packages extend the existing schema structure to allow access to the
functionality provided, without the need for the schema to be among the superschemas. The package developer
can decide which classes, and which features of those classes, should be exposed by exporting just those
classes and features. This allows access to the functionality of the package in a controlled manner.

The user of the package can then import the package and need only be concerned with the exposed interfaces in
a type-safe manner, without being exposed to irrelevant implementation detail.

This document gives examples of how packages can be developed and used, by developing a simple
appointment book system. Some of the design decisions were made to expose new and pertinent features of
packages, possibly at the expense of efficiency or simplicity. However, the developed system could be extended
to form the basis of a realistic appointment book system.

Packages
White Paper

Packages 27


	Contents
	Packages
	A Simple Diary Package
	Scope Rules for Method Calls
	Switching app on Exported Method Call
	Exporting GUI Subclasses
	Combined Appointment Book Example
	How do Packages Call User Methods?
	Summary


