
Copyright©2018 Jade Software Corporation Limited. All rights reserved.

Audit Access
White Paper

  VERSION 2016



Jade Software Corporation Limited cannot accept any financial or other responsibilities that maybe the result of your use of this information
or softwarematerial, including direct, indirect, special or consequential damages, or lossof profits. There are no warranties extended or
granted by this document or softwarematerial.

You should be very careful to ensure that the use of this softwarematerial and/or information complieswith the laws, rules, and regulations
of the jurisdictionswith respect to which it is used. No part of this document maybe reproduced or transmitted in any form or byanymeans,
electronic or mechanical, for anypurpose, without the expresswritten permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisionsmaybe issued to advise of such changesand/or additions.

Copyright © 2018 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademarkof Jade Software Corporation Limited. All trade names referenced are the servicemark, trademark, or registered
trademarkof the respectivemanufacturer.

For details about other licensing agreements for third-party products, youmust read the JADEReadMe.txt file.



WP_AuditAccess - 2016

Contents

Contents iii

JADE Audit Access 4
Looking Back 4

Why Would You Do This? 5
JadeAuditAccess Class 6

Setting Up in Advance 7
Reading Journals 8
Filtering 10

Classes and Collections 10
Date/Time Range 11
Blobs and Slobs 11

Accessing Description Information 11
Reading the Journal 12
Processing a Journal Record 13
Miscellaneous 16

Accessing Property Attributes 16
Description File Did Not Load 16
Warning 17
Why Do I Get 3125 Exceptions Following a 3036 Exception? 17
Is It Safe to Access the Current Write Journal? 17
How Does DB_FILE_EOF Differ From an AuditSwitchRecord? 18

Putting Things Together 18
JADE Objects 18
Transactions 18

Journal Files 19
Journal 19
Description 21

Journal File Structure 21
Glossary 23



WP_AuditAccess - 2016

JADE Audit Access

JADE maintains details of all changes made to the database, and all significant events that occur to the database,
in a journal. This journal is used to:

Recover the database to a consistent state after a crash (crash or restart recovery)

Undo the effects of failed or incomplete transactions (abort recovery)

For practical purposes, the journal is written as a sequence of files. The set of files containing any information
about current database activity is known as the current journal set, and the others as the archive journal set.

The archive journal set can be moved to another location for backup, security, or just to conserve disk space;
however, the files may still be required by JADE to:

Roll the database forward from a backup image (copy) to recover subsequent changes (roll-forward
recovery)

Pass change information to a remote location to maintain a duplicate copy of the database (Synchronized
Database Service and Relational Population Service)

Information about what has changed in the database may also provide valuable data relating to:

Security – who changed the data

Audit – what data was changed and what it was changed to

Extracting change information

Performance – analysis of session and transaction times

Data life times – identification of static and dynamic data

The JadeAuditAccess class is a tool to extract information from the JADE journal. This paper discusses some
aspects of developing an application to realize this potential.

Looking Back
The JADE journal is written in an optimized format to provide an efficient balance between conservation of disk
usage and processing requirements. The result of this is that you are not able to just open any of the journal files
and read them as you would a text file. This is because the journal uses numbers almost exclusively to identify
anything of significance, such as classes, objects, transactions, and record types. These numbers, along with
dates, times, and most other items, are stored in a binary format with an implicit length. There are no visible
separators to show where one number ends and another starts, and there is no index to show what a number may
actually mean.

To understand what is in the journal, you need to know two collections of information:

The journal and journal record structure

The JADE object specification



WP_AuditAccess - 2016

The JADE Database utility can read and understand the structure of a journal and of the journal record. The Dump
Journal command of the Operation menu analyzes a journal file and produces a disk file displaying the journal
record control information. The object data is not displayed.

An examination of the different records and the relationships between them provides useful background
knowledge for when you start accessing the journal to retrieve user information.

A user-developed Change Tracker module (in the JADE 5.2.8 release) retrieved very basic information about
changes to the database. As the journal was read, records were extracted to build a list of:

Transaction state changes: Begin/Commit/Abort-Transaction

Object/collection changes: OID, timestamp, transaction-id, and so on, of creates, updates, and deletes

With the OID, you could access the database to retrieve the current database object – not the value of the object at
the time of the audit entry. There was no indication of what properties were changed, or how they changed.

In JADE 6.0.19, the JadeAuditAccess class was provided to enable direct JADE access to the journal. In addition
to control and state information, the before-image and after-image of objects were retrieved for you to process as
required. A dynamic object was constructed, containing only the properties that had changed between the
before-image and after-image. This provided an improved view of the journal, but it was still not ideal. Blob and
Slob properties were not populated, and it was difficult to match the actual format (the old version) of the object
audited with a description of the class in the current database specification as changes were made.

Beginning with the JADE 6.1 release, the JadeAuditAccess class enables you to extract information from a
selected range of the JADE journal and to correlate it with the JADE object specification at the time the journal
was written.

Why Would You Do This?
JADE maintains details of all changes made and significant events that occur to the database in a journal.

Audit Access
White Paper

JADE Audit Access 5



WP_AuditAccess - 2016

The original purpose for which the JADE journal was created is to enable JADE to:

Recover the database to a consistent state after an abnormal termination (a crash or restart recovery)

Undo the effects of failed or incomplete transactions (abort recovery)

The purpose of the journal was then extended to enable JADE to:

Roll the database forward from a backup image (copy) to recover changes made after the backup copy was
captured (archival or roll-forward recovery)

Pass change information to a remote location to maintain a duplicate copy of the database (Synchronized
Database Service and Relational Population Service)

Users have been discovering that the information in the JADE journal is useful for more than the purposes for
which it was originally intended. Indeed, the journal is a valuable information source in several different ways, as
follows:

Feature Enables you to…

Audit Discover which properties of which objects have been changed, what they changed from,
and what they changed to

Data life times Determine which properties of a class are static, and which are modified more frequently
than a specified threshold rate

Diagnostics Look at what data has been changed, to determine exactly what a transaction did

Extraction Identify which objects have been modified, to assist in populating or updating an external
database

Independence Find out what is changing in your database without relying upon the application code

Performance Analyze what is included in a session, measure how long a transaction takes to process, and
calculate the transaction-processing rate

Security Find who initiated a transaction that changed a specific property of a selected object

Understanding Examine how the data is used, to provide insights into data relationships and business
procedures

If you have found another use for the journal information, drop us a note and tell us about it. You can e-mail us at
jadesupport@jadeworld.com.

JadeAuditAccess Class
The JadeAuditAccess class provides methods to open and read JADE journal files. As a file is read, the relevant
database description required to interpret the version of the class objects in the journal file is loaded
automatically.

A filtering mechanism is provided to reduce the number of records that need to be processed by the user logic.
The data from user class objects is fetched only when it is needed, and it is returned to user logic using a set of
tailored methods.

For more details, see the following subsections.

Audit Access
White Paper

JADE Audit Access 6

mailto:jadesupport@jadeworld.com


WP_AuditAccess - 2016

Setting Up in Advance
The format of the JADE journal has changed and been enhanced over time with the release of new capabilities.
The JadeAuditAccess class requires the most-recent journal format, which uses what is known as delta logging.
An object update is represented using a BI-delta comprised of a before image, and delta information for the parts
of the object that have changed. When an after-image is required, it is computed by applying the change
information to a copy of the before-image. This differs from what may be regarded as the more traditional
approach in which the before-images and after-images are written to the journal.

Note Delta logging has been enabled by default since JADE release 7.0.

A description file of the JADE data structure is required to interpret the structure of the user data. Whenever the
format of a persistent object being audited differs from a previous format, a new description file is required.
Generally, the format change causes a reorganization of part of the database, and the required description file is
created automatically at the completion of a reorganization.

Note The description files can be automatically created at the completion of each reorganization. This is
selected in your JADE initialization file, as follows.

[PersistentDb]
UseJournalDescriptions = true

When a new class is created or when an existing class with no persistent objects is modified, the change is
accepted without a reorganization. A new description file is required before instances of the class are created if
the journal is to be fully interpreted. In this case, the description file must be created manually, using the
JadeAuditAccess class method, generateDescription; for example:

myJadeAuditAccess.generateDescription();

When you first want to start accessing your journal files, you may not have any description file.

Note If you have not completed a reorganization, you will need to use the above manual process to create your
initial description file.

The description file is written into the journal’s root directory with the name:

descriptionyyyymmddhhmmss.txt

The yyyymmdd value is the date and the hhmmss value is the time. The creation event is audited with the
description file identification timestamp. This timestamp is also saved in the database control file. When a new
journal file is first used, the most-recent description file timestamp is written in the journal file header record. The
result of this procedure is that each journal file contains references to any description files required to interpret the
object data audited in that journal file.

The JadeAuditAccess class instance recognizes the description file timestamp in an audit file header record and
in any subsequent record announcing the creation of a new description file, and it automatically loads (or reloads)
the identified description file if it is available.

Audit Access
White Paper

JADE Audit Access 7



WP_AuditAccess - 2016

Reading Journals
Journals are read using an instance of the JadeAuditAccess class.

The first journal is opened using the getJournalmethod. Subsequent journals are opened using the
getNextJournalmethod. A JERR_DbFileNotFound (3036) exception is raised when a journal open fails.

The following example processing loop illustrates this method of processing journals.

getJournalExceptionHandler(e: Exception;
gotJournal: Boolean io;
gotJournalMsg: String io): Integer;

vars
begin

if e.errorCode = JErr_DbFileNotFound then
gotJournal:= false;
gotJournalMsg:= 'no next journal';
return Ex_Resume_Next;

else
return Ex_Pass_Back;

endif;
end;

dump_journals();
vars

jaa : JadeAuditAccess;
offset : Integer;
journalNumber : Integer;
startTime : TimeStamp;
endTime : TimeStamp;
recordType : Integer;
recordObjectType : Integer;
utcRecordTimestamp : TimeStamp;
utcBias : Integer;
recordTimestamp : TimeStamp;
recordSerialNumber : Decimal[12,0];
recordTranId : Decimal[12,0];
recordOid : String;
recordClassNumber : Integer;
recordEdition : Integer;
journalsPath : String;
descriptionsPath : String;
propertyNames : JadeIdentifierArray;
valueBefore : String;
valueAfter : String;
property : String;
beforeLen : Integer;
beforeBuff : Binary;
afterLen : Integer;
afterBuff : Binary;
gotJournal : Boolean;
gotJournalMsg : String;
log : File;
jda : JadeDatabaseAdmin;
s : String;
rslt : Integer;

Audit Access
White Paper

JADE Audit Access 8



WP_AuditAccess - 2016

begin
create jda transient;
journalsPath:= jda.getCurrentJournalDirectory();

create log transient;
log.usePresentationFileSystem:= false;
log.fileName:= "E:\temp\jaa_log.txt";
log.allowReplace := true;
log.kind := File.Kind_ANSI;
log.mode := File.Mode_Output;
log.open;

s:= "journal file path is " & journalsPath;
log.writeLine(s);
create jaa transient;
create changedPropertyNames transient;

// starting with this journal
journalNumber:= 30;

gotJournalMsg:= "got next journal";
gotJournal:= true;
on Exception do getJournalExceptionHandler(exception, gotJournal,

gotJournalMsg);
jaa.getJournal(journalsPath, journalNumber, offset);
if not gotJournal then

gotJournalMsg:= "no journal file " & journalNumber.String;
write gotJournalMsg;
log.writeLine(gotJournalMsg);

endif;

while gotJournal do
log.writeLine("Processing journal " & jaa.getJournalNumber().String);
if jaa.descriptionTS.isValid then

s:= "description file = " & jaa.descriptionPath &
jaa.descriptionFilename;

else
s:= "description file is invalid";

endif;
log.writeLine(s);

while jaa.getNextRecordUTC(recordType, recordObjectType, offset,
utcRecordTimestamp, utcBias,
recordTimestamp, recordSerialNumber,
recordTranId, recordOid,
recordClassNumber, recordEdition)

do
// something

endwhile; // getNextRecord

jaa.getNextJournal();
log.writeLine(" ");
log.writeLine(gotJournalMsg);

endwhile; // gotJournal

Audit Access
White Paper

JADE Audit Access 9



WP_AuditAccess - 2016

log.close;

epilog
delete log;
delete jaa;
delete changedPropertyNames;
delete jda;

end;

Filtering
It is fairly common to want to access only some of the information in the journal file. A set of methods allows you to
specify some common filtering conditions. More-detailed conditions must by coded in your logic to be tested after
journal records have been retrieved.

Note Any filtering condition (except for the start of time-range) can be changed at any time while the journal is
being accessed. The changed conditions are used during subsequent journal reading.

For more details about filtering, see the following subsections.

Classes and Collections
The JadeAuditAccess class provides methods that register a set of classes that can be either allowed or
disallowed as the journal is read.

The registerFilterClass or registerFilterClassName method can be used to register a class. The
registerFilterCollection or registerFilterCollectionName method can be used to register a collection.

By default, only objects in the journal of the registered classes or collections are returned, but you can reverse this
condition with the setFilterExcludes method.

The registerFilterClass and registerFilterCollectionmethods use class numbers to specify the classes. These
can be used before or after the journal file is opened.

// clear any previously registered filters
jaa.clearRegisteredFilters();

// register classes and collections
rslt := jaa.registerFilterClass(2093);
rslt := jaa.registerFilterClass(2087);
rslt := jaa.registerFilterCollection(2813, 0);

// exclude the registered classes and collections
rslt := jaa.setFilterExcludes(true);

Note Classes and collections identified by class number can be registered either before or after the journal file
is opened.

The registerFilterClassName and registerFilterCollectionName methods provide similar functions to the
registerFilterClass and registerFilterCollectionmethods respectively, but accept more meaningful class names
rather than class numbers. These methods interrogate the description file to find the actual class numbers
associated with the names specified, and so can be used only after the description file has been loaded.

// register classes and collections by names
rslt := jaa.registerFilterClassName('ModelSchema', 'ItemLine');
rslt := jaa.registerFilterCollectionName('ModelSchema', 'Invoice', 'items');

Audit Access
White Paper

JADE Audit Access 10



WP_AuditAccess - 2016

Note The schema, class, and property names can be used only after the journal file is opened and the
description file has been loaded.

Date/Time Range
You can specify an inclusive date/time range as a filter condition, by specifying a start and end timestamp. If either
timestamp is null, the date/time range is unbounded at the corresponding end of the range.

The start timestamp is used while the journal file is being opened, so this must be specified prior to the getJournal
method opening the journal. The end timestamp can be specified at the same time, or at some later time after the
journal is open.

// if accessing a particular time range
startTime.setDate('27 August 2016'.Date);
startTime.setTime('16:05:00'.Time);
endTime.setDate('27 August 2016'.Date);
endTime.setTime('16:15:00'.Time);
rslt := jaa.registerFilterTimeRange(startTime, endTime);

Note The registerFilterTimeRange method registers the range as local time. A UTC date and time range can
be registered by using the registerFilterTimeRangeUTC method.

Blobs and Slobs
Many applications that read the journal just want to access some of the information stored in the record of an
object (for example, a unique identifier), so the contents of blobs or slobs are not required.

The JadeAuditAccess class ignores any blob or slob records unless you specify that you want this data retrieved,
using the setAccessMode method.

// to ignore blob and slob information (default)
jaa.setAccessMode(jaa.Jaa_AccessMode_Standard);

// to retrieve blob and slob information
jaa.setAccessMode(jaa.Jaa_AccessMode_Long);

Accessing Description Information
Once the description file is loaded, you can use the methods listed in the following table to interrogate information
from the JADE system that created the journal and description files.

Method Returns…

getBlobProperty A description of the Blob or Slob property from its OID value

getClassName The schema and class name of a class from its class number

getClassProperty The attributes of the property from its class number and property name

getClassPropertyNames A list of the names of all the properties of the specified class

getProperty The attributes of the property from its property name and the class of the
currently accessed journal record

Audit Access
White Paper

JADE Audit Access 11



WP_AuditAccess - 2016

The JadeAuditAccess properties listed in the following table provide information about the description file itself.
These are updated each time a new description file is read.

Property Description

descriptionFilename The file name of the description file

descriptionPath The description directory path

descriptionTS The creation timestamp of the description file

Reading the Journal
The objective of the JadeAuditAccess class interface is to return any journal information concerning the user
classes, objects, and transactions that are permitted by the registered filter conditions. The approach taken is that
you request that the next record be read. You get a result that tells you what type of record has been read and
some journal and object identification information. You can then use other methods to retrieve particular
information from this record, depending upon its type.

The JadeAuditAccess class getNextRecordmethod is used where only the local timestamp values are required,
as shown in the following code fragment.

while jaa.getNextRecord(recordType, recordObjectType, offset, recordTimestamp,
recordSerialNumber, recordTranId, recordOid,
recordClassNumber, recordEdition) do

// process Journal record
// ...

endwhile;

When UTC timestamp values are required, the getNextRecordUTC method is used, as shown in the following
code fragment.

while jaa.getNextRecordUTC(recordType, recordObjectType, offset,
utcRecordTimestamp, utcBias, recordTimestamp,
recordSerialNumber, recordTranId, recordOid,
recordClassNumber, recordEdition) do

// process Journal record
// ...

endwhile;

The JadeAuditAccess class getNextRecord and getNextRecordUTC method read the journal file and find the
next record that satisfies the filtering conditions. While locating this record, the read routine may notice a control
record recording the creation of a new description file. If this occurs, the new description file is loaded.

The possible journal record types available are listed in the following table.

JadeAuditAccess Class Constant Description

Jaa_Type_DatabaseOpen Database open

Jaa_Type_DatabaseClose Database close

Jaa_Type_NoAuditDiscontinuity NoAudit discontinuity

Jaa_Type_ReorgDiscontinuity Reorganization discontinuity

Jaa_Type_UserSignOn User sign-on

Jaa_Type_UserSignOff User sign-off

Audit Access
White Paper

JADE Audit Access 12



WP_AuditAccess - 2016

JadeAuditAccess Class Constant Description

Jaa_Type_BeginTransaction Transaction begin

Jaa_Type_CommitTransaction Transaction commit

Jaa_Type_AbortTransaction Transaction abort

Jaa_Type_Create Object create

Jaa_Type_Update Object update

Jaa_Type_AuditSwitch Audit switch

Jaa_Type_Delete Object delete

The Database and Discontinuity record types provide a little state information of what is happening to the
database as a whole.

The User sign-on and User sign-off records provide user identification if you want to track changes by user. Use
the getUserData method to retrieve the data associated with these records.

The Transaction records provide information that enables individual object changes to be grouped into logical
units. You do need to be aware of transactions as you retrieve information from the journal, as some changes you
retrieve may later be reversed if the transaction is aborted. All of the records associated with a specific transaction
will have the same transaction-id (tranId) value.

The Object records provide details of changes to the contents of the database. The object may be a Class
instance, Collection instance, or a blob/slob instance. You will get information only about objects of user classes;
objects of JADE system classes are automatically suppressed.

Processing a Journal Record
There are two data values returned from the getNextRecord and getNextRecordUTCmethods that will help you
structure the processing of the records retrieved; the record type (recType) and the object type (objType).

The record type tells you what record has just been encountered in the journal. You can use this to select the
records you want to process further, or you can use it to decide how a specific record is to be processed.

The object type tells you what sort of data is documented by the journal record. If you are interested (or not
interested) in objects, collections, or blobs/slobs, you can use the object type to quickly separate the wanted from
the unwanted, as shown in the following example.

// process Journal record
if recordObjectType = jaa.Jaa_Object_Object then

write 'Class ' & jaa.getClassName(recordClassNumber) & '
(' & recordClassNumber.String & ') object: ' & recordOid;

if recordType = jaa.Jaa_Type_Delete or recordType = jaa.Jaa_Type_Update then
// process before-image
// ...

elseif recordType = jaa.Jaa_Type_Create then
// process after-image
// ...

elseif recordType = jaa.Jaa_Type_Update then
// process Changes
// ...

endif;
elseif recordObjectType = jaa.Jaa_Object_Blob then

// process a blob or slob

Audit Access
White Paper

JADE Audit Access 13



WP_AuditAccess - 2016

// ...
endif;

All of the journal records contain a timestamp to document when a change was made. The timestamp is recorded
in Universal Time rather than the local time on the computer creating the journal. The journal records also contain
the UTC bias, measured in minutes, at the time the record was created. The getUTCBias method returns the UTC
bias value from the journal header; that is, the bias when the journal was created.

The getNextRecordmethod returns the local timestamp. The getNextRecordUTC method returns the local
timestamp, the UTC timestamp, and the UTC bias value.

Each Object record has (logically) a before-image, an after-image, and a record of changes (delta-image).
Similarly, blob (or slob) records logically contain a before-value and an after-value. A create record has a null
before-image/value, and a delete record has a null after-image/value.

Retrieving most information is dependent upon having the description file loaded to provide the knowledge of the
structure of the objects, and the names of classes and properties.

If the description file was not able to be loaded for any reason, you can continue to read the journal, but any
attempt to access anything except before-images and after-images, and the blob/slob values will not succeed.

The JadeAuditAccess methods that retrieve journal record information are listed in the following table.

Method Description

getAfterImage Retrieves a raw Binary copy of the after-image of the object, which can be
accessed even when no description file is available. It may be difficult to identify
individual object properties.

getAfterPropertyValue Retrieves the value of a property from the after-image.

getBeforeImage Retrieves a raw Binary copy of the before-image of the object, which can be
accessed even when no description file is available. It may be difficult to identify
individual object properties.

getBeforePropertyValue Retrieves the value of a property from the before-image.

getBlobValue When the object is a Jaa_Object_Blob, this retrieves the entire blob or slob
value from both the before-value and after-value.

getChangedPropertyNames Retrieves a list of the names of properties whose values differ between the
before-image and after-images of the object.

Note Use methods to retrieve information from the Object records. The value of the Object is not returned as a
JADE object because the JADE application reading the journal file is unlikely to have a Class with properties that
match the Object being retrieved. Even if the JADE application is reading its own journal, the classes could have
been modified and reorganized since the journal was created, and so would no longer match the (old) object
being retrieved.

The value of a Reference property is the oid of the object referenced. This oid is really only meaningful in the
JADE database in which the object resides. When the value of the property is requested, a string representation of
the oid value will be generated and returned.

Audit Access
White Paper

JADE Audit Access 14



WP_AuditAccess - 2016

In an object record, the value of a blob or slob property is just the current length and the edition value. When the
value of a slob property is requested, a String containing the length of the slob and its edition will be generated
and returned. When the value of a blob property is requested, a similar string is generated but it is returned as a
Binary value.

// get properties
jaa.getClassPropertyNames(recordClassNumber, propertyNames);
// process before-image
beforeBuff := jaa.getBeforeImage;
write 'Before Image, length: ' & beforeBuff.length.String;
write beforeBuff.String.hexDump;
// all properties
foreach property in propertyNames do

write property & Tab & jaa.getBeforePropertyValue(property).String;
endforeach;
// process after-image
afterBuff := jaa.getAfterImage;
write 'After Image, length: ' & afterBuff.length.String;
write afterBuff.String.hexDump;
// all properties
foreach property in propertyNames do

write property & Tab & jaa.getAfterPropertyValue(property).String;
endforeach;
// process changes
write 'Changes to ' & recordOid;
// get changed properties
jaa.getChangedPropertyNames(propertyNames);
foreach property in propertyNames do

write property & Tab & jaa.getAfterPropertyValue(property).String;
endforeach;

While you are examining a property of the current object, you may require some knowledge about the property
itself. This is available from the getProperty method of JadeAuditAccess, which interrogates the description file
for the information.

// get the property's attributes
jaa.getProperty(property, propertyType, propertyLength, propertyPrecision,

propertyScale, referenceToClassNum);

This method does not require any class specification, as the class associated with the currently retrieved audit
record is assumed.

When processing a blob or slob record, both the before-image and the after-image are retrieved from a single call
to the getBlobValue method. The earlier boolean output parameter is always false (since the JADE 7.0 release).

While you are processing a blob or slob record, you may want to identify the parent class or actual parent object,
and you may need to identify which property of the parent class the blob/slob is. This information is available from
the getBlobProperty method, as shown in the following example.

// get the property's attributes
if jaa.getBlobProperty(jaa.currentOid, parentClassNum, parentOID,

propertyName, BlobSlobType) then
// ... (Blob-type = 11; Slob-type = 1)

else
// description file is not available, or jaa.currentOid is not a blob or slob

endif;

Audit Access
White Paper

JADE Audit Access 15



WP_AuditAccess - 2016

Miscellaneous
This section contains the following miscellaneous information about accessing audit records.

Accessing Property Attributes

Description File Did Not Load

Warning

Why Do I Get 3125 Exceptions Following a 3036 Exception

Is It Safe to Access the Current Write Journal

How Does DB_FILE_EOF Differ From an AuditSwitchRecord

Accessing Property Attributes
If you want to be able to make decisions in your logic based upon some attributes of an object's property (for
example, formatting its value in particular ways depending upon its type), you can request the property's attributes
if the description file is loaded.

// for a property of a particular class number
jaa.getClassProperty(classNum, propName, propType, propLength,

propPrecision, propScale, propRefClassNum);
// for a property of the current journal record's object
jaa.getProperty(propName, propType, propLength,

propPrecision, propScale, propRefClassNum);

The propType parameter returns a Type object that specifies what type of property you are examining.

The propPrecision and propScale parameters are used if the property is a Decimal type.

The propRefClassNum property is the class number associated with a Reference property.

These methods can be used in conjunction with the getClassPropertyNames and getChangedPropertyNames
methods, which return a list of property names associated with a specified class number or of the current journal
record's object.

Description File Did Not Load
The description file may change any time you open a journal file or get another record from the file. If the specified
file is not able to be automatically loaded, the descriptionTS timestamp is set to null. You may want to check this
and attempt to recover in some way, or just terminate your logic. (If you continue processing, most methods that
attempt to access data return unexpected results.)

One way to attempt to recover is to attempt to manually load a description file.

if jaa.descriptionTS = null then
jaa.loadDescription();

endif;

The loadDescriptionmethod presents a file-open dialog for you to specify a file to be used as the description file,
or to cancel the file load operation. This method has a side-effect of also re-setting the autoDescription property
of JadeAuditAccess, which will disable subsequent automatic loading of a new description file. Instead, when a
subsequent description file is specified in the journal, you are presented with a file-open dialog, pre-filled with the
file name of the specified file. You can choose to accept that file to be loaded, select some other file, or cancel the
file load operation.

Audit Access
White Paper

JADE Audit Access 16



WP_AuditAccess - 2016

Warning
The internal representations used to store journal information and to maintain class descriptions for accessing a
JADE journal are not documented. The actual formats will be modified as required within the JADE product. You
should not write any code that makes any assumptions about any format that is not documented.

Why Do I Get 3125 Exceptions Following a 3036 Exception?
Methods such as getNextJournal and getNextRecord rely on there being an open journal. The journal number
reflects the currently open journal and is in an initial state (0) when no journal is open. When the journal number is
zero (0), any attempt to call a method that relies on there being an open journal will raise a 3125 exception (A
required transaction journal was not found). If a getNextJournalmethod call fails because of a 3036 exception
(The database file being opened is required but not found), the journal number will be set to zero (0) and therefore
subsequent method calls may raise a 3125 exception. In this situation, a successful getJournalmethod call is
necessary to open a journal.

Is It Safe to Access the Current Write Journal?
Care must be taken when accessing the current write journal. The database journals exist primarily for database
recovery. As such, the mechanisms for their generation and access are optimized for performance. A journal file is
pre-initialized before it is switched to, with the file length established at JournalMaxSize and unused file space set
to zeros. The current write journal is a carefully crafted set of records, with the most-recent records being buffered
by the database in memory. It is a fluid data stream that is being written to disk, with the most currently written
sector possibly being rewritten multiple times. The database engine, as the generator of the data stream, is
intimately aware of all of the intricacies that this involves and behaves appropriately. The journal is written to disk
in sector-aligned blocks without the involvement of file system cache and the end of the journal (as accessible
from disk at the last-written sector) is most often a partial or "torn" audit record. Applications cannot rely on the
integrity of records read from the "hot" area being written at the end of the file. Therefore applications reading the
current write journal cannot reasonably "chase the tail" of the audit as it is being streamed to disk.

In addition to the closeCurrentJournalmethod, the JadeDatabaseAdmin class also provides the
getCurrentJournalNumber method so that an application can always know the number of the current write
journal. An application can also subscribe to the JournalTransferEvent event, which is notified every time a
journal switch occurs and contains the number of that journal (which is no longer the current write journal).

In-band applications processing the database audit stream should avoid attempting to process the current journal
by using these mechanisms. For example, when processing the audit switch at the end of a journal (or end of file),
if that journal number is the database current journal number less 1, an application should delay the
getNextJournal call until it receives the appropriate journal transfer event. Alternatively, an application might
maintain a "maximum allowable journal to process" number (that is initialized from the database current journal
number and then maintained from journal transfer events) to manage getNextJournalmethod calls appropriately.

The switching behavior of journals can be tailored using the JournalMaxSize, JournalMinSize, and
JournalSwitchInterval JADE initialization file parameters in the [PersistentDb] section. The JournalMaxSize
parameter caters for switching when reaching a size based on transaction activity. The JournalMinSize and
JournalSwitchInterval parameters allow interval-based switching. When a journal switch interval is specified, the
database checks the current journal size at the expiration of each interval. If it is larger than JournalMinSize, an
"interval" switch is forced.

If an application needs up-to-date access to stable journals within a specific amount of time (for example,
half-hourly), it can make the journal switch every half hour using a timer and the closeCurrentJournalmethod of
the JadeDatabaseAdmin class. It can then process up to the end of that known journal. Alternatively, it can wake
up half-hourly and process all available journals (using getNextJournal) while the open journal number is not
equal to currentJournalNumber, after which it would go back to sleep.

Audit Access
White Paper

JADE Audit Access 17



WP_AuditAccess - 2016

How Does DB_FILE_EOF Differ From an AuditSwitchRecord?
DB_FILE_EOFmeans you have reached the end of the journal file and no record values are returned in the call.
However, an AuditSwitchRecord is a true record, so the call returns with valid values. This is useful for
terminating a date/time application read loop, for example. An AuditSwitchRecord can also be processed by the
application as the equivalent of end of file, as it is always the last valid record in a stable (that is, switched from)
journal.

Putting Things Together
When reading the JADE journal, you can access the details of one journal record at a time. This does not
accurately reflect how your data exists or is processed, and you may need to accumulate information from multiple
records to be able to process the journal information in a way that satisfies your requirements.

For more details, see the following subsections.

JADE Objects
A JADE object comprises an instance of each property defined in the associated JADE class. In general, the
following two groups of properties may be required.

Any simple properties, such as Integer, Boolean, and references to other objects. This includes Binary and
String properties with a specified length.

Any maximum-length Binary and String properties (Blobs and Slobs, respectively).

In the JADE journal, all simple primitive type properties are grouped into the record known as the object's journal
record, identified by the OID. To uniquely identify the actual version of the object, the OID is supplemented by an
edition number that is incremented each time the object is modified.

The 'parent' object record contains the length and edition of the Blob/Slob. You can retrieve this Blob/Slob
information while you are accessing the parent object journal record. You can determine whether any Blob/Slob
value has changed by comparing the edition number from the before-image with the edition number from the
after-image. The Blob/Slob property value is not written to the journal if it has not changed.

Each of the Blob or Slob property values is written separately to the journal. The Blob/Slob OID contains sufficient
information to identify the parent object OID, and the actual property within that object.

When the Blob/Slob record is encountered in the journal, a Blob- or Slob-type journal record is returned from the
getNextRecord or the getNextRecordUTCmethod call. (This record can be encountered either before or after the
parent object record.) This record provides the OID of the Blob/Slob. You can use the getBlobProperty method to
obtain the OID of the parent object to which the Blob/Slob belongs, and the name of the Blob/Slob property.

Note Remember the following points.

Blob/Slob records can be either before or after the parent object record.

Blob/Slob records are written to the journal only if they are changed.

Parent object records are written to the journal if a Blob or Slob has changed.

Transactions
In your JADE application, your changes to objects are grouped into transactions. At the end of each transaction,
you explicitly commit the changes, causing them to become permanent changes to the objects stored in the JADE
database.

Audit Access
White Paper

JADE Audit Access 18



WP_AuditAccess - 2016

To save memory usage and time at the end of a transaction, JADE starts writing changes to the journal in
anticipation of an eventual commit-transaction occurring. The transaction is completed when the
commit-transaction (or an abort-transaction) is processed.

As we probably well know, there are times when no final commit-transaction or abort-transaction occurs, as a
result of a premature termination of the application (or computer). The recovery process recognizes the
incomplete transactions, and writes any required abort-transaction records to the journal to preserve the integrity
of the information. These appear before the database-open audit record.

When you are reading through the JADE journal, you see records of changes but you will not know whether those
changes have become permanent database changes until you find the commit-transaction record for the
transaction containing those changes.

Each journal record containing a change also contains a transaction-id number. If your application requires you to
process records of changes to the database only, you will need to keep track of all the records for each transaction
(there may be multiple transactions interleaved in the journal at any time) and only process the records when you
access the commit-transaction record.

If you encounter an abort-transaction record, you discard all the journal records you are keeping track of - for that
transaction.

Journal Files
This section contains the following information about JADE journal files.

Journal

Description

Journal
The JADE journal is also known as the JADE:

Transaction journal or log

Audit, audit log, or audit trail

Recovery log

Note The internal representations used to store journal information and to maintain class descriptions for
accessing a JADE journal are not documented. The actual formats will be modified as required within the JADE
product. You should not write any code that makes any assumptions about any format that is not documented.

Audit Access
White Paper

JADE Audit Access 19



WP_AuditAccess - 2016

The following image is an example of JADE journal files.

For practical purposes, the journal is written as a sequence of files. The set of files containing any information
about current database activity (that is, the information required for restart or abort recovery) is known as the
current journal set. The other journal files are known as the archived journal set.

The JADE journal is written to disk as a sequence of journal files named:

dbnnnnnnnnnn.log

The nnnnnnnnnn value is a 10-digit number in the range 1 through 9999999999.

Note You can use parameters in the [PersistentDb] section of your JADE initialization file to specify the location
and size of the individual journal files.

The current journal set (of files) is located in the \current subdirectory of the root journal directory.

The archive journal set (of files) is located in the JournalArchiveDirectory directory (if specified in your JADE
initialization file) or in the \archive subdirectory of the root journal directory. These archived files can be moved to
another location for backup, security or to conserve disk space, but they may later need to be restored.

For more details about the journal, see the JADE Database Administration Guide.

Audit Access
White Paper

JADE Audit Access 20



WP_AuditAccess - 2016

Description
A set of description files is also located in the root journal directory. These files (shown in the image under
"Journal", earlier in this document) contain the information required to interpret the information in the journal files.
Each of these files contains a snapshot of the definitions of the persistent classes of the JADE system as at a
start-time recorded in the file name:

descriptionyyyymmddhhmmss.txt

The yyyymmdd value is the date and the hhmmss value is the time.

Note These files are created if the UseJournalDescriptions parameter in the [PersistentDb] section of your
JADE initialization file is specified.

When the JADE initialization file parameter is specified (the default), the termination process of each database
reorganization creates a new description file. You can modify the structure of the database without involving a
reorganization, by adding or modifying a class with no persistent objects. In this situation, or to initially create a
description file, you can manually create a description file, using the generateDescriptionmethod of the
JadeAuditAccess class.

Note Although the description file contains readable text, you should not modify it, as the data it contains is
relied upon without any verification.

Journal File Structure
Note The internal representations used to store journal information and to maintain class descriptions for
accessing a JADE journal are not documented. The actual formats will be modified as required within the JADE
product. You should not write any code that makes any assumptions about any format that is not documented.

The first record in any JADE journal file is the header record. This record is used to maintain the integrity of the
sequence of journal files and to identify this journal file within the sequence. The header record contains:

Audit structure version

File number of this file

Creation and update timestamps of this file

File number of the previous file

Creation timestamp of the previous file

File number of the next file

Creation timestamp of the next file

Universal time bias from audit time to local time

Block size when the file was written

Logical end-of-file

Creation timestamp of the most-recent description file

Audit Access
White Paper

JADE Audit Access 21



WP_AuditAccess - 2016

Following the header record, other records are written as required by events that occur within the JADE system.
These records include:

Record Contains…

Update Allocate, create, delete, undelete, and update of objects, collections, and files

Control Database-open, database-close, begin-transaction, commit-transaction,
abort-transaction, and audit-switch

Discontinuity No-audit and reorganization

Compensation Inverse operations written during recovery, undo, and transaction abort

Reorganization Start reorganization, add maps, reorganization files, install files, and end
reorganization

Event User sign-on, user sign-off, and cause events

SDS Change primary and custom records for upgrade

Transaction information Intermediate transaction table entry snapshot

Custom Function call and description file creation

The format, structure, and content of these records is designed to suit the primary functions of the journal:

Low cost to create the journal

Suitability to support restart recovery

Suitability to support roll-forward recovery

Suitability to support Synchronized Database Service (SDS)

Each record begins with standardized control information to assist with navigating around the journal. This
heading control information includes:

Audit record type

Record length

Record timestamp and UTC bias

Journal serial number (or audit serial number)

Audit flags

Log Sequence Number (LSN) of this record

LSN of the next record

LSN of the prior record of this transaction

LSN of the next record to be processed during rollback

Transaction-id

Tip If you want to explore the journal in a little more detail, have a look at a journal dump file. You can create this
file from the Dump Journalmenu item in the JADE Database utility. The dump file is written in the same directory
as the journal file you select, and it has a file name suffix of .dmp.

Audit Access
White Paper

JADE Audit Access 22



WP_AuditAccess - 2016

Records are written to the journal in the sequence that the associated events occur within the entire JADE system.
(Changes made to persistent objects are cached in the database buffers and written to the journal in a sequence
determined by the database manager; not in the order that changes were made.)

The JADE system generally has multiple process threads running simultaneously, each doing some activity that
contributes audit records to the journal. As a result, the audit records of each thread are written sequentially to the
journal, but they are interspersed with the records originating from other threads. Whilst this simplifies writing the
journal, it does mean that it is more difficult to read the journal when you want to follow the records of a single
activity or thread.

Note All of those details make the JADE journal look very complicated, and in reality, it is. The good news,
however, is that you do not need to know all of those details to be able to access some useful information.

Glossary
The terms associated with the JADE audit access are listed in the following table.

Term Definition

After-image Contents of an object after a change.

Archive journal set Set of journal files that are not currently in use. Also known as offline or
archived journal set.

Before-image Contents of an object before a change.

Blob Binary long object property. When the maximum length of a Binary property is
not specified, the property value is separated from the parent object in the
database, to simplify space allocation.

Current journal set Set of journal files that are currently in use. Also known as online or active
journal set.

Delta-image Differences between the before-images and after-images.

Journal (1) The complete set of audit records that capture details of changes to the
database or to the database state. Also known as audit trail, audit log, recovery
log, transaction journal, and transaction log.

Journal (2) A file comprising part of the journal.

Journal file number Number, sequentially incrementing by 1 for each journal file.

Journal serial number Number, sequentially incrementing by 1 for each audit record within the entire
journal. Also known as audit serial number (ASN).

Log Sequence Number (LSN) Actual location of a journal record, comprising the file number and the byte
offset within the file.

OID - Blob/Slob Unique identifier of Blob or Slob, comprising:
0.parent-instance-number.parent-class-number.
subclass-level.property-ordinal-number:edition; for example,
0.6985.2557.2.1:3.

OID - Object Unique object identifier, comprising: class-number.instance-number:edition;
for example, 2557.6985:3.

Slob String long object property. When the maximum length of a String property is
not specified, the property value is separated from the parent object in the
database, to simplify space allocation.

Transaction-id Number, sequentially incrementing by 1 for each beginTransaction.

Audit Access
White Paper

JADE Audit Access 23


	Contents
	JADE Audit Access
	Looking Back
	Why Would You Do This?

	JadeAuditAccess Class
	Setting Up in Advance
	Reading Journals
	Filtering
	Classes and Collections
	Date/Time Range
	Blobs and Slobs

	Accessing Description Information
	Reading the Journal
	Processing a Journal Record
	Miscellaneous
	Accessing Property Attributes
	Description File Did Not Load
	Warning
	Why Do I Get 3125 Exceptions Following a 3036 Exception?
	Is It Safe to Access the Current Write Journal?
	How Does DB_FILE_EOF Differ From an AuditSwitchRecord?


	Putting Things Together
	JADE Objects
	Transactions

	Journal Files
	Journal
	Description

	Journal File Structure
	Glossary


