

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing
Version 2018

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information or
software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or granted
by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of JADE Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright  2019 JADE Software Corporation Limited.

All rights reserved.

JADE is a trademark of JADE Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Contents

JADE Unit Testing 4
Introduction ... 4
JadeTestCase Class .. 4
Writing a Test Case .. 6
Running a Test Case ... 7

Exercise 1 – Loading the UnitTestingCalculator Schema ... 7
Exercise 2 – Writing a Test Case ... 9
Exercise 3 – Test Case Failure .. 11
Exercise 4 – unitTestBefore and unitTestAfter Method Options 13

Code Coverage .. 15
Exercise 5 – Viewing Code Coverage Results ... 17
Exercise 6 – Saving Code Coverage Results ... 19

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing

Introduction
Unit testing is an important tool that is used to identify defects in a system during development. The
key idea is to develop tests for a unit of code (which can be a fragment, a method, or a module) as the
code is being written.

The JADE unit testing framework enables unit tests to be executed automatically and for the results of
the tests to be captured. By doing so, the test provides a contract of the minimum functionality that a
unit of code must satisfy.

In addition to providing a contract of functionality, unit tests provide the following additional benefits.

• Enables refactoring without regression (that is, ensuring that the module still works correctly)

• Eliminates uncertainty in the units

• Enables a bottom‑up testing style approach

• Documents the functionality provided by the unit and how to use it

JadeTestCase Class
Unit tests are added as subclasses of the JadeTestCase class in RootSchema.

The JadeTestCase class is an abstract class that provides common functionality for unit tests as well
as providing the JadeTestListenerIF interface that allows callback methods to report on the progress
of a set of test cases.

The following methods are defined in the JadeTestCase class. By using these methods in test cases,
you can define the expected behavior of your tested module.

Method Code Example

assert

assertEquals

assertEqualsMsg

JADE Unit Testing 5 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Method Code Example

assertFalse

assertFalseMsg

assertNotNull

assertNotNullMsg

assertNull

assertNullMsg

assertTrue

assertTrueMsg

expectedException

info

JADE Unit Testing 6 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Writing a Test Case
When writing a unit test, you must first create a subclass of the JadeTestCase class and add the unit
tests of methods in that subclass. Unit tests have the unitTest method option, shown in the following
example.

Note When using the unitTest method option, the method cannot have any parameters or a return
type.

In addition to the unitTest method option, you can use the following method options to establish pre‑
and post‑conditions of unit tests.

Method Option The method will be run…

unitTestBefore Before every method of the class that uses the unitTest method option. It
is used to enforce pre‑conditions that may be impacted during test
execution. The unitTestBefore method option should be defined in one
method only in each class.

unitTestAfter After every method of the class that uses the unitTest method option. It is
used to enforce post‑conditions that may be impacted during test
execution.

unitTestBeforeClass Once before the first unitTest method of a class is run. It is used to enforce
pre‑conditions that are required specifically for the tests of a class and that
are unlikely to be impacted during test execution.

unitTestAfterClass Once after the last unitTest method of a class is run. It is used to enforce
post‑conditions that are required at the end of the tests of a class but do not
need to be maintained between tests within the class.

unitTestBeforeAll Once before the first unitTest method of the first class is run. It is used to
enforce pre‑conditions that are relevant to all test classes and that are
unlikely to be impacted during test execution. The method in which this
option is specified must be defined directly in the JadeTestCase class.

unitTestAfterAll Once after the last unitTest method of the last class is run. It is used to
enforce post‑conditions that are required at the end of the entire set of tests
across all test classes and that do not need to be maintained between tests
or test classes. The method in which this option is specified must be
defined directly in the JadeTestCase class.

JADE Unit Testing 7 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Note Specify each of the unitTestBefore, unitTestAfter, unitTestBeforeClass, and
unitTestAfterClass method options in this table in one method only in each class.

The unitTestBefore and unitTestAfter method options are defined only on the base
JadeTestCase class, and there can be one instance only of these method options in a
schema.

Running a Test Case
You can run unit test methods from any of the following.

• The Class Browser, by selecting:

o A unit test class or method and then pressing F9.

o The Unit Test command from the Jade menu.

If you selected a single test method, the test runner runs only that test. If you selected a test
class, the test runner runs only the tests of that class.

• The Schema Browser, by selecting:

o A schema that contains at least one unit test class and then pressing F9.

o The Unit Test command from the Jade menu.

The Unit Test Runner form is then opened, displaying all of the tests of that schema. The tests
are not run until you select one or more tests and then click the Run button.

• Calling the JadeTestRunner class runTests method from your code, passing the collection of
test classes in to that method as a parameter.

Note As it is not common practice to run JADE tests from code, you should do so only if you
specifically need more control over how the results of the tests are presented.

Exercise 1 – Loading the UnitTestingCalculator Schema
In this exercise, you will load the UnitTestingCalculator schema and then locate the JadeTestCase
class.

1. Right‑click on RootSchema in the Schema Browser and then select the Load command.

JADE Unit Testing 8 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

2. Click the Browse button at the right of the Schema File Name text box and then locate and
select the UnitTestingCalculator.scm file from the provided USB.

3. Open the UnitTestingCalculator schema in the Class Browser and then select the Calculator

class so that the properties and methods shown in the following image are displayed.

JADE Unit Testing 9 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

4. Press F4 to display the Find Type dialog and then search for JadeTestCase.

5. Click the Current Browser button, to display the JadeTestCase class in the Class Browser.

Exercise 2 – Writing a Test Case
In this exercise, you will write a unit test for the Calculator class add method.

1. Right‑click on the JadeTestCase class and then select the Add command.

JADE Unit Testing 10 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

In the Define Class dialog, specify TestCalculator as the class name and then click the OK
button.

2. Add an attribute called calc of type Calculator to the class.

3. Add a new method called testAdd, and check the Updating and Unit Test check boxes.

4. Code the method, as follows.

5. Run the method, by pressing F9.

JADE Unit Testing 11 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

The Unit Test Runner form displays the results of the unit test, which should have passed.

Exercise 3 – Test Case Failure
In this exercise, you will write a test case for the test case for the faulty subtract method of the
Calculator class.

1. Add a testSubtract method to your TestCalculator class.

2. Code the method, as follows.

3. Run the method, by pressing F9.

JADE Unit Testing 12 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

The Unit Test Runner form then displays the results of the unit test, which should have failed.

4. Looking at the Results section, we see that the unit test expected a result of 5 but the

testSubtract method returned zero (0).

5. Use the F5 key to add a breakpoint to the testSubtract method, as follows.

JADE Unit Testing 13 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

6. Run the test again, but this time using Shift+F9 to run it in debug mode.

7. Click the Continue execution button at the far left of the toolbar (or press F9) to skip to the

breakpoint, and then step into the code using the F7 shortcut key until you have found the fault.

Exercise 4 – unitTestBefore and unitTestAfter Method Options
You may have noticed that there is a significant amount of redundant code in the testAdd and
testSubtract methods. In this exercise, you will refactor this code into unitTestBefore and
unitTestAfter methods that will automatically run for each unit test.

1. Add a setUp method to your TestCalculator class, and code it as follows.

2. Add a tearDown method to your TestCalculator class, and code it as follows.

Note The unitTestBefore option in the method signature specifies that the method will
automatically run before each unit test. The unitTestAfter method option specifies that the
method will automatically run after each unit test.

JADE Unit Testing 14 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

3. Change the testAdd and testSubtract code to remove the redundant code that has now been
factored out to your new setUp and tearDown methods, as shown in the following method
examples.

4. Run all of the unit tests by selecting the JadeTestCase class in the Class Browser and then

pressing F9.

JADE Unit Testing 15 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

The Unit Test Runner form is then displayed.

Tip You can achieve a similar result by selecting the class in the Class Browser and then pressing
F9.

Code Coverage
Code coverage is a measure used in software engineering to describe the degree to which the
system's source code has been executed. It is a useful measure to assure the quality of a set of tests,
as opposed to directly reflecting the quality of the system under test.

To monitor code coverage during unit tests, select the Code Coverage command in File menu of the
Unit Test Runner form.

After running the unit tests for which you want to record code coverage, select the View Code
Coverage command in File menu of the Unit Test Runner form.

JADE Unit Testing 16 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

The code coverage results are then displayed on a new form; that is, the Code Coverage Results
Browser.

The Code Coverage Results Browser displays the number of JADE methods that were executed, and
within those methods, the percentage of code blocks that were executed.

When selecting a method, the Code Coverage Results Browser displays the method code with the
executed code highlighted in red.

By using the code coverage information, you can identify areas of code that have not been tested by a
specific tests suite. This enables you to focus new tests on code that has not yet been executed by
any test.

JADE Unit Testing 17 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Alternatively, if the code coverage is very high, it can provide evidence of how thoroughly the test suite
exercises the code, which is one measure of the quality of a set of tests.

Exercise 5 – Viewing Code Coverage Results
In this exercise, you will use the code coverage functionality to find untested code.

1. Select the UnitTestingCalculator class from the Schema Browser and then press F9.

2. Select the Code Coverage command from the File menu.

3. Click the Run button, to run the tests.

4. When the tests have completed, select the View Code Coverage command from the File
menu.

5. You will see that 95.83 percent of blocks have been covered.

JADE Unit Testing 18 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Expand the Calculator class in the UnitTestingCalculator schema and then locate the
untested code block.

6. Write a new unit test to cover the situation in which you try to use the calculator while it is off.

Note While 100 percent code coverage can be a good goal for smaller projects, it can often be
impractical in larger systems. It is only one of many measures of code quality.

JADE Unit Testing 19 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Exercise 6 – Saving Code Coverage Results
In this exercise, you will save code coverage results to a Comma-Separated Values (.csv) file.

1. Open the Code Coverage Results Browser as you did in the previous exercise.

2. Select the Save As CSV command from the File menu. A common dialog is then displayed, to

enable you to select the folder to which to save the code coverage results. (The Desktop or the
Documents folder are good options.)

3. Open the CSV file from the File Explorer, to view its contents.

