JADE Unit Testing

Version 2018

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information or
software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or granted
by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of JADE Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.
Copyright © 2019 JADE Software Corporation Limited.
All rights reserved.

JADE is a trademark of JADE Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Contents

JADE Unit Testing

Introductioncooviiiiiii e
JadeTestCase Classccvvviviiiiiiiiiiinnnn,
Writing a Test Casevvvvvvviiiii i s
Running a Test Casecvvvvvvviiiiiinninnnnnne,

Exercise 1 — Loading the UnitTestingCalculator Schema

Exercise 2 — Writing a Test Case
Exercise 3 — Test Case Failure.................

Exercise 4 — unitTestBefore and unitTestAfter Method Options

Code COVErage .vivvviiririnirinnrins i riaesineas

Exercise 5 — Viewing Code Coverage Results

Exercise 6 — Saving Code Coverage Results

Copyright 2019, JADE Software Corporation Ltd.

el
ONUVTWHONNODND D

All rights reserved

JADE Unit Testing

Introduction

Unit testing is an important tool that is used to identify defects in a system during development. The
key idea is to develop tests for a unit of code (which can be a fragment, a method, or a module) as the
code is being written.

The JADE unit testing framework enables unit tests to be executed automatically and for the results of
the tests to be captured. By doing so, the test provides a contract of the minimum functionality that a
unit of code must satisfy.

In addition to providing a contract of functionality, unit tests provide the following additional benefits.

. Enables refactoring without regression (that is, ensuring that the module still works correctly)
. Eliminates uncertainty in the units

. Enables a bottom-up testing style approach

. Documents the functionality provided by the unit and how to use it

JadeTestCase Class

Unit tests are added as subclasses of the JadeTestCase class in RootSchema.

The JadeTestCase class is an abstract class that provides common functionality for unit tests as well
as providing the JadeTestListenerlF interface that allows callback methods to report on the progress
of a set of test cases.

The following methods are defined in the JadeTestCase class. By using these methods in test cases,
you can define the expected behavior of your tested module.

Method Code Example

assert

assertEquals

assertEqualsMsg Compares the first parameter to the second,and fails the

assertEqualsMag {"one plus one was not two™, 2, {1 + 1});

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 5

Method Code Example

assertFalse S/ Asserts that a given boolean evaluates to false. If the

S/ condition evaluates to true, the test fails.
assertFalse(l = 2};

asse”FmseMSg S/ Asserts that a given boolean evaluates to falae. If the
S/ condition evaluates to true, the test fails, displaying
S/ the given message.

asgertFalaeMag ("Ine equals two was trus™, 1 = 2):»

assertNotNull // RAsserts that an object exists. If this is not the case,
f/ the tesat fails.
assertlotfull (my0bject) ;

assertNotNullMsg // Rsserts that an object exists. If this is not the case,
S/ the tesat fails, and the given message is displaved.
asgertNotNullMag ("Object doesn't exist.™, myObject):

assertNull // RAsserts that an object doesn't exist. If it does exist,

f/ the test fails.
assertfull (myObject) ;

assertNullMs . .))
9 S/ Asserts that an object doesn't exist. If it does exist,

Sf the test fails, and the given message is displayed.
assertNullMsg("Expectaed object to not exist™, mylbject):

assertTrue S/ Asserts that a condition is true. If the condition is
S/ falae, the test fails.
agsertIrue{l + 1 = 2):

assertTrueMs
9 f/ Bsserts that a condition is true. If the condition is
// false, the test fails, and the given message is displayed.
assertTrueMsg ("Ins plus one should =qual two", 1 + 1 = 2);
expectedException // Registers an exception that the test should produce.
Jf The test will fail if no exception is raised.
expectedException (1090} » // Null ckject reference
info

// Cutputs the given message without failing the test
info("The test is going fine so far.™);

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 6

Writing a Test Case

When writing a unit test, you must first create a subclass of the JadeTestCase class and add the unit
tests of methods in that subclass. Unit tests have the unitTest method option, shown in the following
example.

exampleTest () unitTest:

Vars
calc : Calculator;

begin
calc := create Calculator({) transient;

assertEquals(2, calc.add{l, 1)}:

epilog
delete calcy
end;

Note When using the unitTest method option, the method cannot have any parameters or a return
type.

In addition to the unitTest method option, you can use the following method options to establish pre-
and post-conditions of unit tests.

Method Option The method will be run...

unitTestBefore Before every method of the class that uses the unitTest method option. It
is used to enforce pre-conditions that may be impacted during test
execution. The unitTestBefore method option should be defined in one
method only in each class.

unitTestAfter After every method of the class that uses the unitTest method option. It is
used to enforce post-conditions that may be impacted during test
execution.

unitTestBeforeClass Once before the first unitTest method of a class is run. It is used to enforce

pre-conditions that are required specifically for the tests of a class and that
are unlikely to be impacted during test execution.

unitTestAfterClass Once after the last unitTest method of a class is run. It is used to enforce
post-conditions that are required at the end of the tests of a class but do not
need to be maintained between tests within the class.

unitTestBeforeAll Once before the first unitTest method of the first class is run. It is used to
enforce pre-conditions that are relevant to all test classes and that are
unlikely to be impacted during test execution. The method in which this
option is specified must be defined directly in the JadeTestCase class.

unitTestAfterAll Once after the last unitTest method of the last class is run. It is used to
enforce post-conditions that are required at the end of the entire set of tests
across all test classes and that do not need to be maintained between tests
or test classes. The method in which this option is specified must be
defined directly in the JadeTestCase class.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 7

Note Specify each of the unitTestBefore, unitTestAfter, unitTestBeforeClass, and
unitTestAfterClass method options in this table in one method only in each class.

The unitTestBefore and unitTestAfter method options are defined only on the base
JadeTestCase class, and there can be one instance only of these method options in a

schema.

Running a Test Case

You can run unit test methods from any of the following.
. The Class Browser, by selecting:
o A unit test class or method and then pressing F9.
o The Unit Test command from the Jade menu.

If you selected a single test method, the test runner runs only that test. If you selected a test
class, the test runner runs only the tests of that class.

. The Schema Browser, by selecting:
o A schema that contains at least one unit test class and then pressing F9.
o The Unit Test command from the Jade menu.

The Unit Test Runner form is then opened, displaying all of the tests of that schema. The tests
are not run until you select one or more tests and then click the Run button.

. Calling the JadeTestRunner class runTests method from your code, passing the collection of
test classes in to that method as a parameter.

Note As itis not common practice to run JADE tests from code, you should do so only if you
specifically need more control over how the results of the tests are presented.

Exercise 1 — Loading the UnitTestingCalculator Schema

In this exercise, you will load the UnitTestingCalculator schema and then locate the JadeTestCase
class.

1. Right-click on RootSchema in the Schema Browser and then select the Load command.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing

2. Click the Browse button at the right of the Schema File Name text box and then locate and
select the UnitTestingCalculator.scm file from the provided USB.

n Load Optionz

File Selection]

Load Multiple Schemas Load Multiple Files

Schema File Mame

\Course Material\UnitTestingModule {UnitTestingCaloulator. scm

Forms File Mame
E:YCourse Material\UnitTestingModule \UnitTestingCalculator.scm

Load Style
Add new schema, or load as latest schema version -

load @ new schema, or load into the latest version of an existing
schema (new version will be created if required)

[x |

Browse...

Advanced...

Clear Bestart
3. Open the UnitTestingCalculator schema in the Class Browser and then select the Calculator

class so that the properties and methods shown in the following image are displayed.

n UnitT estingCalculator Class Browser: Calcultor
Dloject References
Anplcabon
Al Attributes Congtants
& is0n
WebSession 2 assResult

Class: UnicTeacingCaleoulator: iCalculacer {Z15E)
Supsrclass: Objece

Access: public

Typs: real

Lifetime: all all-subclasses

Volacilicy: Volacile

Defaule: p-&r!:i!:tfht

Maps: unittestingcaloulator

(Meddfied by orta3 [99.0.00] 18 Saptember 2018, 16:28:47)

Copyright 2019, JADE Software Corporation Ltd.

=10 x

Al Instanoe Type Interface
&y add

S pe s sR et
&y start

&y stop

& subtract

All rights reserved

JADE Unit Testing

4. Press F4 to display the Find Type dialog and then search for JadeTestCase.

n Find Type ILI

Eind
JadeTestCase
Select Required Entry

JadeTestCase

— LI T et Browser Mew Browser Cancel

5. Click the Current Browser button, to display the JadeTestCase class in the Class Browser.

Exercise 2 — Writing a Test Case
In this exercise, you will write a unit test for the Calculator class add method.

1. Right-click on the JadeTestCase class and then select the Add command.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 10

In the Define Class dialog, specify TestCalculator as the class name and then click the OK
button.

n Define Class Iil

Class Lifetime Text Volatility
Mame TestCalculator|
Subclass of |JadeTestCase -
Map Eile unittestingcalculator -

ArCcess Type Persistence

@ Public @ Real @ Persistent

Protected Abstract Transient
Subschema Hidden Subschema Final

Final (Class cannot be subdassed) Add Map File

2. Add an attribute called calc of type Calculator to the class.
3. Add a new method called testAdd, and check the Updating and Unit Test check boxes.
4. Code the method, as follows.

teathdd({) unitTest, updating:

vars
actual : Strings
expected : Strings

begin
self.calc := greate Calculator() transient:

aelf.calc.start():

actual self.calc.add{l, 1):
expected = A"z

asgertEquals {expected, actual);
epilog
self.calc.atop():;

delete self.calc;
end:

5. Run the method, by pressing F9.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing

1
The Unit Test Runner form displays the results of the unit test, which should have passed.
l] Unit Test Runner [D:\daily\Debug_Unicode\oldver - UnitT exlingCalculator) [=lolx]
File View
Select Tests Progress

iii TestCaiculator | I 100% I

Unit Tests Skipped Failed Passed Failed Asserts Passed Asserts Unhandled Exception: Elapsed Time
1 2] a 1 a 1) 00000
Results
Status | Test
Unt Testing Calculator start
UnitTesting Calculator end

Exercise 3 — Test Case Failure
In this exercise, you will write a test case for the test case for the faulty subtract method of the

Calculator class.

1. Add a testSubtract method to your TestCalculator class.

2. Code the method, as follows.

Vars
actual : String;
expected : String;

bkegin

self.calc := create Calculator() transient;
self.calc.atart() -

actual := gelf.calc.subtract(3, 3);
expected = "a";

assertEquals (expected, actual);

epilog
self.calc.stop():

delete self.calc:
end;

3. Run the method, by pressing F9.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 12

The Unit Test Runner form then displays the results of the unit test, which should have failed.

n Unit Test Runnes (D:\daily\Debug_Unicode\oldver - UnitT estingCalculator) [=lolx]
File Yoew
Select Tests Progress
Unit Tests Skipped Failed Passed Failed Asserts Passed Asserts Unhandled Exceptions Elapsed Time
i] 1 L] |] a 00:00=00
Results
Status | Test
UnkTetingCaloulator start
U Tasting Cakouistor: TeRCakiulstor butSublract: mirtEous - Bpecied § but schusl= 0 @ ng 15
UraTaitngCakulster nd

4. Looking at the Results section, we see that the unit test expected a result of 5 but the
testSubtract method returned zero (0).

5. Use the F5 key to add a breakpoint to the testSubtract method, as follows.

testSubtract () updating, unitTest:

Vars
actual : String;
expected : String;

begin

self.calc 1= greate Calculator() transient:
self.calc.start{):r

actual
expected

= gelf.calc.subtract{2, 23);
= 1r51r:

assertEqual s (expected, actual):

epilog
gelf.calc.stop() s
delete self.caler
end;

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 13

6. Run the test again, but this time using Shift+F9 to run it in debug mode.
(Debirg: JadellnatTenl - Methed Jadal onllislog wieiM o] =]0)=
Rebug Ereskpents Vagables Yww Optons Wedow Help
> » @3 § o0oQ Heo= HE
Local Vasiable L-lolx]|)] Coll Stack L=lol« s
| Higein: | Wiglise | Typee | Usage | [< ince Tonsiuskog 759, 1 (1> > lade Tepukos: unnrhicshy
W Ty [t of Soope] m e Tes i T ' =
[1a Lpot st ool St]
[1a eeniTa] Fust ool St]
o iy [t ol Soope]
n Mt Jaide etk uder Notdy {;lij_
|esesBenatyieventType: Integer: thelibgect: eor! evencTag: Inceger: maeriafor Any] wpdacing:
a;m»«:wumm i siatun Ready
7. Click the Continue execution button at the far left of the toolbar (or press F9) to skip to the

breakpoint, and then step into the code using the F7 shortcut key until you have found the fault.

Exercise 4 — unitTestBefore and unitTestAfter Method Options

You may have noticed that there is a significant amount of redundant code in the testAdd and
testSubtract methods. In this exercise, you will refactor this code into unitTestBefore and
unitTestAfter methods that will automatically run for each unit test.

1. Add a setUp method to your TestCalculator class, and code it as follows.

setUp() updating, unitTestBefore;

begin
self.calc := create Calculator({) transient;
gself.calc.atart();
end;
2. Add a tearDown method to your TestCalculator class, and code it as follows.

tearDown () updating, unitTestAfter;

bkegin
gelf.calc.stop()r
delete self.calcs
end;

Note The unitTestBefore option in the method signature specifies that the method will
automatically run before each unit test. The unitTestAfter method option specifies that the
method will automatically run after each unit test.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 14

3. Change the testAdd and testSubtract code to remove the redundant code that has now been
factored out to your new setUp and tearDown methods, as shown in the following method
examples.

teathdd () unitTest, updating:

vars
actual = String;
expected = String;
bkegin
actual = gelf.calc.add({l, 1):
expected == "2";

assertEquals (expected, actual);
end:

testSubtract () updating, unitTest;

Vars
actual = String;
expected = String;
begin
actual = gelf.calec.subtract (2, 3):
expected =T il

assertEquals (expected, actual);
end;

4. Run all of the unit tests by selecting the JadeTestCase class in the Class Browser and then
pressing F9.

“ UnitT estingCalculator Class Browser: JadeTestCaze =10]|x

References Al Instance Type Interface
L] Attributes Congtants

Class: RootSchema::JadeTestCase (758) =,
Superclass: Object

hccess: public

Type: real

Liferims: transisnt all-subclasses -
q *

{Modified o 01 August 2017, 15:34:51[99.0.00,31016])

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 15

The Unit Test Runner form is then displayed.

n Unat Test Runner [0 \dadyiDebug_ Unicodeoldver - Unil TeztingCalculaton) —10]x
Eile Wiew
Select Tests Progress

9 temtAdd

& swirsubermct Unit Tests Skipped Failed Passed | Failed Asserts Passed Asserts Unbandled Excopticns Elapsed Time

2 [[2]] [00100100
Results
Status Test

UnETemtmgCakulaber start
UnETestingCalcubsbor end

Tip You can achieve a similar result by selecting the class in the Class Browser and then pressing
F9.

Code Coverage

Code coverage is a measure used in software engineering to describe the degree to which the
system's source code has been executed. It is a useful measure to assure the quality of a set of tests,
as opposed to directly reflecting the quality of the system under test.

To monitor code coverage during unit tests, select the Code Coverage command in File menu of the
Unit Test Runner form.

After running the unit tests for which you want to record code coverage, select the View Code
Coverage command in File menu of the Unit Test Runner form.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 16

The code coverage results are then displayed on a new form; that is, the Code Coverage Results

Browser.
Code Coverage Rasults: JadoUnitTest_20180820_161315, cod M=t
File Yiew
% of JADE Methods Total Bleds in Cowered Covered Pt Covered Piot Covered Executed
Ensty =3 Enecuted | tied = Bk Bocs% | Beds | Beds™ | oot
4 3 9543 % i 407 %
| x| »n | se% | 1| 4% [|
100,00 % 12 1 SLET % 1 L%
3 3 100.00 % o 0.00 % 1
3 2 E6.67 % 1 13 % 2
1 i 100,00 %] 0.00 % F
1 1 100.00 % o 0.00 % 2
4 4 106,00 % o 0.00 % 1
L0000 % 12 12 100.00 % o 0.00 %
1 F4 100.00 % 0 0.00 % F)
- | 2 100.00 % 0 0.00 % 2
4 4 100.00 % o 0.00 % 1
4 4 100.00 % o 0.00 % 1
Total Primicive Types in Schess with defined JADE mechoda: O
Frimicive Types included in the coverage: O (0%}
Frimivive Types Dot included in the coverage: O (100%)
Total Classes in Schema with defined JADE methods: 2
Classes incloded in che covesage: 2 (LO0W)
Classes ner inclieded in whe covezage: O (04)
rF] .

Ready

The Code Coverage Results Browser displays the number of JADE methods that were executed, and
within those methods, the percentage of code blocks that were executed.

When selecting a method, the Code Coverage Results Browser displays the method code with the
executed code highlighted in red.

Code Coverage Resulls: JadeUniTest_20180920_161315.ced =10 %
Fle Yiew
= % of JADE Methods Total Blodks in Covered Covered Pt Covered Piat Covered Exeruted
Ensly II!H!HEIII Enecubed ewetuted methods [Blwrics: | HEodst% | B] Blacks %] Courit
F B 583 % 1 117 %
™ 3 5.5 % 1 417 %
100,00 %% 12 11 L6 % 1 L%
1 3 10000 % 0 000 % 1
1 1 100.00 % 0 0.00 % 2
1 1 100.00 % 0 0.00 % 2
4 4 100,00 % 0 000 % i
100 %% 12 12 100,00 % o 000 %

varas

Eagin

elae
reTurn "CCDFFR"r
emdiy
ends

-

1
Resdy

By using the code coverage information, you can identify areas of code that have not been tested by a
specific tests suite. This enables you to focus new tests on code that has not yet been executed by
any test.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 17

Alternatively, if the code coverage is very high, it can provide evidence of how thoroughly the test suite
exercises the code, which is one measure of the quality of a set of tests.

Exercise 5 — Viewing Code Coverage Results

In this exercise, you will use the code coverage functionality to find untested code.

1. Select the UnitTestingCalculator class from the Schema Browser and then press F9.
n Unit Test Runner [D:AdailyADebug_Unicode\oldver - UnitTestingCalculator] —|[O]x
Eile View
Select Tests Progress

@ TestCalculstor |

Unit Te: Skipp Failed Passe Failed Asse Passed Assi Unhandled Exce Elapsed Timi
']] ']]]] '] 00: 0000

Results

Status | Test

Select the Code Coverage command from the File menu.
Click the Run button, to run the tests.

When the tests have completed, select the View Code Coverage command from the File

menu.
. — O b4
n Code Coverage Results: JadeUnitTest_20180925_155015.ccd
File View
) % of JADE Methods | Total Blocks in - | Covered | Covered | Not Covered | Mot Covered | Executed
Entity Executed executed methods | Blocks | Blocks %6 Blocks Blocks 3% Count
&} £ coverage 24 23 95.83 % 1 4,17 %%
EI UnitTestingCalculator 24 23 | 95.83 % 1 4,17 %
Loaded 100%:
5. You will see that 95.83 percent of blocks have been covered.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 18

Expand the Calculator class in the UnitTestingCalculator schema and then locate the
untested code block.

I] Code Coverage Results: JadeUnitTest_20180925_155015.ccd = |0 =
File View
Enti Find Next % of JADE Methods | Total Blocks in Covered | Covered | Mot Covered | Mot Covered | Executed
ity - Executed executed methods | Blocks | Blocks % Blodks Blocks % Count
B £ Coverage 24 23 95.83 % 1 4,17 %
EHEI UnitTestingCalculator 24 23 95.83 % 1 4,17 %
Calculator 100.00 % 12 11 91.67 % 1 8.33 %
- ¢ add 100,00 % 0 0.00 %
= getastmest ——-I .67 % -l
@ start 100.00 % [¥] 0.00 %
@ stop 1 1 100.00 % 0 0.00 % 2
@ subtract 4 4 100.00 %6 i] 0.00 % i
OI; TestCalculator 100.00 % 12 12 100,00 % 4] 0.00 %
getLastResult() : String;
vars
begin

if self.isln then
return lastResult.String;
else
return "<<0FF»:";
endif;
end;

[¥
Ready

Write a new unit test to cover the situation in which you try to use the calculator while it is off.

Note While 100 percent code coverage can be a good goal for smaller projects, it can often be
impractical in larger systems. It is only one of many measures of code quality.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Unit Testing 19

Exercise 6 — Saving Code Coverage Results

In this exercise, you will save code coverage results to a Comma-Separated Values (.csv) file.

1. Open the Code Coverage Results Browser as you did in the previous exercise.
. _ O *
n Code Coverage Results: JadeUnitTest_20180925_ 160405 ccd
File View
) _ % of JADE Methods Total Blocks in Covered | Cowered | NotCovered | Mot Covered | Executed
Entity Executed executed methods Blocks Blocks % Blocks Blocks % Count
e Corerate T T s s 0% o | oo |
[=HEE] UnitTestingCalculator 29 29 100.00 % 0 0,00 %
= % Calculator 100.00 % 12 12 100.00 % o] 0.00 %
§ add 3 3 100.00 % 4] 0.00 % 2
§ ogetlastResult 3 3 100.00 %% 0 0,00 % 3
@ start 1 1 100.00 % o] 0.00 % 3
@ stop 1 1 100.00 % o] 0.00 % 4
@ subtract 4 4 100.00 % o] 0.00 % 1
OI;'; TestCalculator 100.00 % 17 17 100.00 % o] 0.00 %
Ready
2. Select the Save As CSV command from the File menu. A common dialog is then displayed, to

enable you to select the folder to which to save the code coverage results. (The Desktop or the
Documents folder are good options.)

3. Open the CSYV file from the File Explorer, to view its contents.

1| coverage.csv - Notepad — O >

File Edit Format View Help

ECHEMﬂ,TYPE,METHDD,TDTﬂL BLOCKS,COVERED BLOCKS,COVERED BLOCKS
%,NOT COVERED BLOCKS,NOT COVERED BLOCKS %
UnitTestingCalculator,,,29,29,106,0,0
UnitTestingCalculator,Calculator,,12,12,16868,68,8
UnitTestingCalculator,Calculator,add,?,3,160,0,08
UnitTestingCalculator,Calculator,getlastResult,3,3,106,8,8
UnitTestingCalculator,Calculator,start,1,1,186,8,0
UnitTestingCalculator,Calculator,stop,1,1,1608,8,8
UnitTestingCalculator,Calculator,subtract,4,4,186,8,8
UnitTestingCalculator,TestCalculator,,17,17,160,08,08
UnitTestingCalculator,TestlCalculator,setlp,2,2,186,8,8
UnitTestingCalculator,TestCalculator,tearDown,2,2,106,08,8
UnitTestingCalculator,TestCalculator,testidd,4,4,188,8,8
UnitTestingCalculator,TestCalculator,testOff,5,5,1688,8,8
UnitTestingCalculator,TestCalculator,testSubtract,4,4,188,08,8

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

