

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Security Course
Version 2020

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

JADE Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information or
software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or granted
by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of JADE Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright 2021 JADE Software Corporation Limited.

All rights reserved.

JADE is a trademark of JADE Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Contents

Security 4
Introduction .. 4
Security Threats ... 4

Spoofing .. 5
Tampering ... 5
Repudiation ... 5
Information Disclosure .. 5
Denial of Service ... 5
Elevation of Privilege .. 5

Discussion Questions .. 6
The Three ‘A’s of Access ... 6

Authentication ... 7
Authorization ... 7
Accounting .. 8

Applying the Three ‘A’s .. 9
Desktop Applications .. 9
REST Web Service Security ... 10

What is a JSON Web Token? ... 11
Symmetrical vs Asymmetrical Tokens .. 12
Generating a JSON Web Token from JADE ... 12
Enforcing Authorization Rules with JSON Web Tokens ... 13
Mitigation of Potential Vulnerabilities .. 15

Exception Handling and Deny by Default .. 16
Exercise 1 – Applying Deny by Default ... 19

Transient Methods and Code Injection .. 20
Mitigating Code Injection Attacks .. 22
Exercise 2 – Code Injection .. 23

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Security

Introduction
JADE database systems contain valuable data and intellectual property, and can perform
business-critical operations. As such, it is important to consider how that data and intellectual property
is kept safe, and how those operations are kept running with high-availability and integrity.

When considering how best to implement and enforce security in JADE, you should start by asking the
following three questions.

1. What specific assets do I need to protect?

2. What threats are possible that could compromise those assets?

3. What tools and best practices can I use to protect those assets from those threats?

For example, consider the JADE database system for a business that gives small business loans.
What assets does this JADE system need to protect?

Asset Example Threat How will I protect it?

Availability of core
system

Tampering could bring down a
Remote Access Program (RAP) or
application server, preventing users
from accessing the system

Control who has access to the
system

Integrity of core system An unauthorized user could approve
loans he or she shouldn’t be able to;
for example, his or her own

Authenticate users to ensure
they are who they say they are

Source code A competitor could steal source code
and copy the proprietary algorithm for
determining whether to accept a loan

Encrypt the source code

User data privacy A malicious actor could steal the
customers’ contact details and spam
them

Encrypt data at rest and in
transit

Data integrity If I can make the system “forget” my
loan, I could create an infinite money
glitch

Control interfaces to the data to
restrict what changes can be
made

Security Threats
In this module, we will cover the common types of security threats, which can be remembered with the
STRIDE acronym, as follows.

• Spoofing

• Tampering

• Repudiation

Security 5 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

• Information disclosure

• Denial of service

• Elevation of privilege

Spoofing
Spoofing is when a malicious actor impersonates another identity to gain access to which he or she is
not authorized.

Note A malicious actor, also known as a threat actor, is a person or entity who is responsible for a
negative security impact. This actor can be external or internal.

Example

A loan applicant logging in as a loan manager to approve his or her own loan.

Tampering
Tampering is when a malicious actor modifies data in a way that causes harm.

Example

An insider connects to the JADE database server with an application server running the
JadeLogicalCertifier application and deploys a malicious “fix” that corrupts data.

Repudiation
Repudiation is when the authenticity or origin of a service or action cannot be proven.

Example

A developer logs onto the production environment and loads a schema, but it cannot be
determined which developer it was because all developers share the same admin account.

Information Disclosure
Information disclosure is when private or confidential information is leaked to anyone who does not
have authority to view that information.

Example

A hacker gains access to the unencrypted data (.dat) files of the database and opens them in
WinHex to get a list of emails and plain-text passwords.

Denial of Service
Denial of service is when a malicious actor overloads a service with so many requests that it cannot
keep up, preventing legitimate users from accessing the service.

Example

A botnet makes thousands of mal-formed web requests per second to the REST service,
overloading the web servers and causing customers to be unable to access it.

Elevation of Privilege
Elevation of privilege is when an application gains elevated access because of a bug or exploit.

Example

A JADE application compiles and runs a transient method that includes user input without
proper sanitization. The user code does an injection attack to gain access to the Schema
Inspector, which causes Information Disclosure.

Security 6 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Note In security, sanitization is the process of stripping or replacing special characters from user
input, to avoid injection attacks.

Discussion Questions
If you are going through this course self-paced, think about and write down your answers to the
following questions. If you are going through the course instructor-led, your instructor will pose these
questions for a class discussion.

Consider the following situations and determine which of the STRIDE security threats have occurred.

• While John is working on fixing a bug in a method called filterLoansByCreditRating, he
notices a rather odd snippet of code.

This code doesn’t make any sense to John, and it seems inappropriate in the context of filtering
loans by credit rating. When he tried to find out who added the code and why, nobody in his
team knew anything about it.

• After an unexpected reorganization is initiated at 2:38am, Jane is looking through the access
logs to see who was online at that time. To her great surprise, the logs show that it was her! But
she wasn’t online at that time; she was fast asleep.

• Leigh is browsing Reddit late one Friday afternoon. Er, I mean, he’s hard at work. Yup. But
anyway, on Reddit he sees a link to a list of all his company’s customers and their outstanding
loan amounts.

The Three ‘A’s of Access
The three ‘A’s is a set of key security concepts that govern the best practices for controlling access to
sensitive data. They are:

1. Authentication – determining the identity of the user.

2. Authorization – determining whether the user is allowed to access the data.

3. Accounting (or Auditing) – tracking and logging what data a user accessed and any changes
he or she made to the data.

You will often hear the terms authentication and authorization used interchangeably. There is a subtle
difference between them, and we need to do both when deciding whether to allow a request to be
executed on the server. The first thing we need to do is authenticate the security principle.

Security 7 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Authentication
When we perform an authentication, we check the identity of the security principle; that is, we are
verifying that they “are who they say they are”.

Authorization
After we know who it is who is attempting access, we then need to authorize them. This is when we
check a set of rules to determine whether the (now-identified) security principle is allowed to access
the resource.

Security 8 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Accounting
After the user’s identity has been authenticated and he or she has been authorized to access the data,
we still have one more step: Accounting. This involves tracking and logging all data the user accessed
and any actions the user takes. When accounting is done correctly, all changes to data should be able
to be traced back to the source of that change, and there should be a record of what data each user
has accessed.

This is important for a few reasons.

When planning an accounting process, it is helpful to first consider the goals of the accounting, as well
as how to meet these goals, as shown in the example in the following table.

Goal To meet this goal, the…
Detect suspicious activity
that may indicate an
attack

Accounting process should not only monitor activity but also apply some
rules to determine when that activity is suspicious and to generate a
report. For example, a user who is authorized for a restricted set of
activities attempts to perform every activity for which he or she is not
authorized. This can indicate that the user is attempting to find a
vulnerability and should automatically be reported to an administrator

Determine the impact of
a security breach if it
does occur

Process should keep a record of all data with which the user interacted
(whether modified or only viewed). These records should not be stored
in the database itself, as otherwise a malicious actor can delete them.

Provide evidence of
criminal proceedings
against a malicious actor

Detail and reliability of the records must be sufficient.

Security 9 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Applying the Three ‘A’s
This section covers applying the three ‘A’s to desktop applications and JADE REST services.

Desktop Applications
You can use the getAndValidateUser and isUserValid methods of your schema’s Global class to
authenticate and authorize the users of your JADE desktop applications.

Whenever a JADE application is started, the following authentication process occurs.

1. The getAndValidateUser method is called first.
getAndValidateUser(usercode: String output; password: String
output): Boolean;

This method should typically be clientExecution, and is intended to obtain credentials from the
user.

The default implementation sets usercode to your workstation name suffixed with your
operating system process ID, the password to null, and returns true. You can re-implement the
method to replace this behavior with an implementation that obtains credentials from the user.
Set the usercode and password output parameters based on this, then when you return from
the method, these credentials are used to authenticate that user in the isUserValid method.
You can also optionally perform some preliminary authentication in this method; for example, if
you wanted to give the user multiple attempts before verifying on the server.

2. The isUserValid method is then called.
isUserValid(usercode: String; password: String): Boolean;

This method should typically be serverExecution, and is intended for authenticating the
credentials.

The default implementation simply returns true, but you can re-implement the method to
replace this behavior with your authentication process. When you do, the usercode and
password set in the getAndValidateUser method are passed as parameters.

3. If either method in step 1 or 2 returns false, the user is disallowed and the application will not
start.

Security 10 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

While you could implement the authentication process in JADE code, we want to avoid storing the user
credentials in the JADE database. If user credentials are stored in the JADE database, it becomes
your responsibility to ensure that they are encrypted with a strong and trustworthy encryption
algorithm. It is easier and safer to delegate this responsibility to a trusted, re-usable solution from a
reliable third-party vendor such as Microsoft Active Directory.

One way to do this is with the Application Programming Interface (API) provided by CardSchema,
available free from the JADE Developer Center web site (https://www.jadeworld.com/jade-
platform/developer-centre/download-jade).

CardSchema provides the CnExternalMethods class, which includes a cnUserCheck method. This
method takes a username and password as input parameters, and an output parameter for the result.
This method calls a Microsoft library that validates the username and password against the domain log
ins, then sets the result to zero for successful validation or a non-zero error code for unsuccessful
validation. Using this technique, we can authenticate the user without having to store user credentials
in the JADE database.

Note Microsoft Windows login credentials will authenticate only the user (that is, verify who he or she
is); the credentials will not be sufficient to authorize the user (that is, verify that the user is allowed to
log on to the system).

REST Web Service Security
You can secure your JADE REST services by requiring consumers to include JSON Web Tokens to
authenticate their requests and associating required claims with your REST service methods to
enforce authorization rules.

When dealing with the web, there are a lot of acronyms and terms with specific definitions. You can
use the following as a reference for the terms we will use in this section.

Term Meaning

REST (Representational State Transfer) An architectural style for web services where the server is
stateless – the server forgets the client as soon as a
request is fulfilled.

REST Service An application that responds to REST requests over the
web.

Security Principle A person or program that requires access to a secured
service.

Resource The data or operation of the REST service that the security
principle is attempting to access.

Consumer The client of a REST service. Makes requests to the
service and gets responses back.

JSON (JavaScript Object Notation) A standard format for describing objects.
JWT (JSON Web Token) A set of claims about a security principle plus a signature

that proves that the token came from a trusted source.

When a JADE REST service has not been secured, anyone who knows the correct Uniform Resource
Locators (URLs) can access anything in your REST API. The traditional way of restricting access is by
having a security principle log in, providing some secret or password to authenticate them, then
authorizing them for the appropriate actions based on their identity.

As REST services are stateless, there is an additional complication.

The server does not store any session information and therefore cannot determine whether the client
is logged in. In lieu of this, we can provide the client with a security token after authentication. He or
she can then include this token in future requests, removing the need to re-authenticate.

https://www.jadeworld.com/jade-platform/developer-centre/download-jade
https://www.jadeworld.com/jade-platform/developer-centre/download-jade

Security 11 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

What is a JSON Web Token?
A JSON Web Token is a string made up of the following segments.

• Header, with meta-information about the token itself; for example:

• Payload, with a set of claims about the identity of the bearer; for example:

• Signature, which proves that the token came from a trusted source; for example:

Each segment is then base64-encoded and delimited by a period, resulting in the following token.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZ
SI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36P
Ok6yJV_adQssw5c

In this token we have five claims. Two are in the header:

1. "alg": "HS256" – the token was signed using the HS256 signing algorithm.

2. "typ": "jwt" – the token is a JSON Web Token.

The header claims are meta-information; that is, claims about the token itself.

Security 12 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

There are also three claims in the payload:

1. "sub": "1234567890" – describes a unique identifier for the subject of the token; that is, who
the token is about.

2. "name": "John Doe" – the name of the subject of the token.

3. "iat": "1516239022" – the time at which the token was issued in the JSON NumericDate
format, which is the number of seconds since midnight on the first of January 1970.

These payload claims are information about the subject of the token; that is, the security principle to be
authenticated. There are many more claims you can put in the payload, such as the issuer of the
token, the time at which the token should expire, and the audience of the token (by whom the token is
intended to be validated). You can also make up your own claims to describe the security principle
however you like, which can be useful when applying authorization rules.

Finally, the signature is generated by base64-encoding the header and payload, then encrypting the
result with a secret, in this case using the HS256 algorithm and the secret your-256-bit-secret. When
the server validates the signature, it can perform the same process on the header and payload, and if
it was signed with a different secret or if anything in the header/payload has been modified, the
signatures will not match and the token will be rejected.

Symmetrical vs Asymmetrical Tokens
The symmetry of a token refers to the linked concepts of signing algorithm choice and whether it is the
same entity that generates as validates the token.

In a symmetrically signed token, the token is generated and issued by the server itself and it will use a
single secret that can encrypt and validate the token. This is the example we saw above. These tokens
will use an HS encryption algorithm (HS256, HS384, HS512).

In an asymmetrically signed token, the token is generated by a trusted third-party and will be signed
with a public/private key pair. This will allow the server to use the public key to verify the token while
only the trusted third-party has the private key used to sign it. These tokens usually use an RS
encryption algorithm (RS256, RS384, RS512) but there are other algorithms that are less common; for
example, Elliptical-curve encryption.

Generating a JSON Web Token from JADE
You can generate symmetrically signed JSON Web Tokens from JADE using the
JadeJsonWebToken class.

Security 13 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Enforcing Authorization Rules with JSON Web Tokens
As mentioned previously, the purpose of a JSON Web Token is to allow the user to authenticate once
only and obtain a token that can then be used to authorize multiple REST requests. This works by
having a set of required claims associated with the REST resource and then comparing them with the
claims included in a JSON Web Token that has been included in a REST request.

In this example, all of the authorization rules, also known as required claims, are present in the
provided token. If the token’s signature is valid and the token hasn’t expired, the request will be
allowed. Notice that the token also has a claim "userType", which isn’t required by the rules. That’s
allowed, as the token may have superfluous claims, as long as all of the required claims are present.

Security 14 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

To associate a set of authorization rules with a REST resource method in JADE, we use the Add
JSON Web Token Claims dialog.

• Select the REST Security Options command of the method’s context menu, shown in the
following image.

Security 15 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

The Add JSON Web Token Claims dialog, shown in the following image, is then displayed.

If any claims are associated with a method, all incoming requests must be authorized. If a request fails
authorization, an HTTP response code 403 (Forbidden) will be returned.

To pass authorization, the following conditions must be met.

• A JSON Web Token must be present in the header of the request.

• The token’s signature must be valid. How this occurs will depend on whether it is a
symmetrically or asymmetrically signed token.

• All required claims must be present in the token.

• Default claims must be valid. For example, the expiry ("exp") claim must be a time in the
future.

Mitigation of Potential Vulnerabilities
When using JSON Web Tokens, there are two main security vulnerabilities to know about, and both
are mitigated for you by JADE.

• "alg": "none" vulnerability

One of the options for the signing algorithm is "none", where no signature is provided. The
intent of this option is for testing purposes only, as any malicious actor could just send in such a
token with whatever arbitrary claims he or she chooses. In JADE, the "none" algorithm is not
supported and all tokens with "alg": "none" will be rejected. In fact, JADE uses a whitelist and
only HS256, HS384, HS512, and RS256 algorithms are allowed. As such, you do not need to
do anything to mitigate this vulnerability, as JADE does it for you.

Security 16 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

• RSA vs HMAC vulnerability

If a malicious actor sends a token he or she has created and set the "alg" claim to HS256 but
actually pass in your auth provider’s RS256 public key (which anyone can get, as it’s public),
some security libraries may treat the RS256 key as an HS256 key and erroneously accept it. By
implementation, JADE is not vulnerable to this attack, so setting your "alg" as a required claim
is entirely optional.

Exception Handling and Deny by Default
When considering how to enforce authorization rules, it is not sufficient to consider only code paths
that resolve as expected. It is also important to consider what will happen if an unexpected exception
occurs.

The core principle for all authorization code is Deny by Default; that is, if the authorization code is
unable to complete successfully, the default behavior should be to deny access rather than to allow it.

To illustrate this idea, we will consider some authorization methods, which will each call the following
validation method.

The important thing to notice about this method is that if the credentialStore reference is null, we will
get a 1090 exception.

Consider this first method, in which we perform a simple authorization that should be allowed.

Security 17 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Everything is good so far, but let’s see what happens if the passwords do not match.

Note As with all of the examples and exercises in this module, we will be looking at simple situations
to illustrate one point at a time. You will notice that it is not doing anything when the user is
authenticated; we are merely writing to the console log. In addition, we are faking the credentials by
just using a transient object. The idea is to focus on the key concept of each example so that you can
apply it to a wide variety of situations.

As we would expect, the validateUser method will return false and the user is forbidden.

Security 18 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

For simple cases, this implementation will therefore work but it fails the Deny by Default rule. Let’s see
what happens if we have an exception.

Here, when the validateUser method gets an exception, the exception handler’s resume next
bypasses the if instruction and we end up in the default code path. Since we did not Deny by Default,
the user is erroneously authorized.

Security 19 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Exercise 1 – Applying Deny by Default
In this exercise, you will rewrite the authenticationExample method to deny access when an
exception occurs.

1. Using the Schema Loader, load the ExceptionSchema.scm and ExceptionSchema.ddx files.

2. Add a new JadeScript method called authenticate and code it as follows.

3. Execute the method. You should see that the user is authenticated.

4. Modify the authenticate method so that the password no longer matches.

Security 20 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

5. Execute the method. You should see that the user is not authenticated. This is as expected,
because the password does not match.

6. Now we will generate an exception to make sure we are not vulnerable to erroneous
authorization when an exception occurs.

7. Navigate to the Validator class and modify the validateUser method.

The method will now generate an exception when it is run.

8. Execute the authenticate method (which should still have the invalid password). You should see
that the user is still forbidden.

By having the default behavior being to deny access and then executing the code relating to a
successful authorization only if the validation passes, we have made our code resilient to unauthorized
access when things go wrong.

Transient Methods and Code Injection
Transient methods are a powerful tool for dynamically creating JADE code at run time.

However, it is critical to ensure that the transient method is going to perform as you expect it to before
execution, as it can be vulnerable to code injection attacks.

Consider the following method that creates and executes a transient method. It is a simple example,
as the use of a transient method is superfluous but it serves to illustrate an important idea.

Security 21 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

This method has a template for the source code of its transient method with two placeholders:
{CustomerName} and {CustomerBalance}.
We are replacing these placeholders with values from a customer object, then creating a transient
method with the source and executing it.

The {CustomerBalance} placeholder is set to the balance property of the customer. That’s not an
issue, because it is of type Decimal and decimals have a specific format that is not vulnerable to
injection.

The {CustomerName}, however, is set to the name of the customer, which is a String. Strings can
get up to all sorts of mischief.

If we call the method with a customer who has a name John Smith, the method will behave as
expected and the transient method will generate a String.

So far so good. But what if the customer has the name:

"; currentSchema.inspectModal(); //

A bit of a funny name, but if we just let users type whatever they want for their name, nothing stops
them from choosing such a name. Let’s look at the source code for the transient method if we have
that name.

The initial quote will escape the string that is supposed to be assigned to the statement variable, then
the semicolon finishes that statement. It then executes the currentSchema.inspectModal();
command, which will allow the user to see all information about all classes and objects in the entire
schema. Alternatively, this could be any malicious code. Finally, it ends with // to comment out the rest
of the line of code.

Using this method, the malicious actor can execute whatever code he or she wants to against the
database.

Security 22 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

Mitigating Code Injection Attacks
There are two main ways to avoid code injection attacks to JADE transient methods. You can:

1. Keep user data away from transient methods.

2. Sanitize user data.

The first way is the safest and often the most elegant solution. For example, consider the following
modified generateStatement method.

This is again a fairly simple solution but illustrates the safety of not having any user data in the
transient method source. Notice that we are now using the user data by referring to it with the self
keyword. We can do this because the second parameter to Process::executeTransientMethod is the
receiver for the method; in our case the customer object. The transient method will have access to the
properties of that object, so we do not have to insert the values into the transient method source as
string literals in the first place. With this change, we get the following output from our malicious input.

Security 23 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

The other way we can secure against this sort of attack is by sanitizing user data. To sanitize it, we
strip any characters from user input that have a special meaning in JADE. For example, consider the
following modified generateStatement method.

In this method, we have used a regular expression (Regex) to replace all characters other than
alphanumeric (\w) and whitespace (\s) with nulls. This prevents any injected code from escaping the
string and executing.

Exercise 2 – Code Injection
In this exercise, you will use code injection to attack a poorly implemented system.

1. Close JADE if it is running, then restart it in multiuser mode; that is, start a database server and
a fat client.

2. Use the Schema Loader to load the TransientInjection.scm and TransientInjection.ddx files.

3. From the TransientInjection schema, run the TransientInjection application.

Security 24 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

The Customer List dialog, shown in the following image, is then displayed.

This simple application displays the names of some customers in a list box. In the text box at
the bottom of the dialog, you can enter the name of a new customer, which is added to the list
after you click the Add button.

4. Enter Bob the Builder into the text box and then click the Add button.

Security 25 __

Copyright 2021, JADE Software Corporation Ltd. All rights reserved

The list box in the Customer List dialog is populated in an unusual way. It uses a transient
method to update itself whenever a new customer is added. I wonder what mischief can we get
up to?

5. Try to do as much damage as possible to the database by entering malicious input for the
customer’s name.

Use the following goals to get you started:

o Try to bring down the fat client.

o Can you access or delete data from another schema?

	Introduction
	Security Threats
	Spoofing
	Tampering
	Repudiation
	Information Disclosure
	Denial of Service
	Elevation of Privilege

	Discussion Questions
	The Three ‘A’s of Access
	Authentication
	Authorization
	Accounting

	Applying the Three ‘A’s
	Desktop Applications
	REST Web Service Security
	What is a JSON Web Token?
	Symmetrical vs Asymmetrical Tokens
	Generating a JSON Web Token from JADE
	Enforcing Authorization Rules with JSON Web Tokens
	Mitigation of Potential Vulnerabilities

	Exception Handling and Deny by Default
	Exercise 1 – Applying Deny by Default

	Transient Methods and Code Injection
	Mitigating Code Injection Attacks
	Exercise 2 – Code Injection

