

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Multithreading
Version 2018

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information or
software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or granted
by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of JADE Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright  2019 JADE Software Corporation Limited.

All rights reserved.

JADE is a trademark of JADE Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Contents

Multithreading 4
Introduction ... 4
Synchronous versus Asynchronous ... 4
Nodes and Processes ... 5
Initiating Asynchronous Processes ... 5

Exercise 1 – Synchronous versus Asynchronous .. 7
Shared Transient Objects ... 10
Notifications and Callbacks ... 11

Exercise 2 – Generating a Callback .. 13
Exercise 3 – Dealing with Shared Transient Leaks ... 16

Asynchronous Method Calls ... 18
Exercise 4 – Invoking a Method using JadeMethodContext .. 19
Exercise 5 – Waiting for Asynchronous Operations .. 23

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Multithreading

Introduction
In JADE applications, it is sometimes useful to initiate asynchronously executing applications, threads,
or processes. These tasks may need to run asynchronously for performance reasons, to separate the
execution of specific functions or to allow the processes to run on different machines.

Synchronous versus Asynchronous
Typically, when you call one method from another method, the calling method waits until the called
method completes before executing the next line of code, as shown in the following example.

However, sometimes the method to be called represents a background process and there is no reason
to wait for it to complete before proceeding. In this case, we would start that process in a new thread
(by multithreading, or having multiple threads) and have it run asynchronously so that it doesn’t wait for
it to complete before proceeding.

The most usual way to do this in JADE is to start a new application to run the method; for example:

In this example, Multithreading is the name of the schema and ExampleApp is an application. The
exampleMethod method starts the ExampleApp application, which will call the method2 method.
However, it will not wait for the method2 method to complete before proceeding to the next instruction.

Multithreading 5 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Nodes and Processes
In JADE, a database is broken down into multiple nodes, where each connection to the database
contains a database server, an application server, and clients.

The application server and client can be combined into a single standard client (often called a fat
client).

In a single user system, the database server, application server, and clients are all combined into a
single jade.exe program.

Note For more information, see “Module 15 - Nodes, Processes, and Caches” in the JADE
Developer’s course.

Each of the programs that contains an application server or a database server, or both an application
server and a database server, represents a JADE node. These can include any of the following
executing programs.

• A jade.exe program for a standard (fat) client.

• A jadapp.exe program for an application server.

• A jadrap.exe program for the database server.

• An external program that uses the JADE Object Manager; for example, a .NET application that
uses a JADE exposure.

Each node can have several processes running asynchronously at any time.

Initiating Asynchronous Processes
There are five RootSchema JADE methods that allow you to start a new application process from an
existing JADE process. Any application process that is started using one of these methods run
asynchronously to the process that starts it.

• Application::startApplication

• Application::startApplicationWithParameter

• Application::startApplicationWithString

• Application::startAppMethod

• Node::createExternalProcess (which runs an external application asynchronously)

Multithreading 6 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

The simplest way to start a new application process is with the Application class startApplication
method. The startApplication method takes two string parameters: the name of the schema
containing the application and the name of the application.

If the application to be started requires a parameter for its initialize method, you can use the
Application class startApplicationWithParameter method. This method takes one additional
parameter, which is a shared transient object. (Although it can be persistent, it is usually a shared
transient, because otherwise the other application could merely access it directly from the database.)

Note The parameter required by the initialize method must be an object; it cannot be a primitive
type such as an Integer. If you need to pass through a primitive type, you can set it as a property on
the object unless it is exactly a String, which is handled by the startApplicationWithString method.

The passed object is then available to the initialize method of the application. In this case, the
ExampleParamApp application has an initialize method called paramMethod.

Note The initialize method of an application is often called initialize, and initialize is the default
method that is called by an application if you do not set one. However, you can call your initialize
method whatever you like. This is especially useful if you have multiple applications with different
initialize methods defined on the same schema.

Multithreading 7 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Tip Make sure you delete shared transient objects and terminate applications when you have
finished with them.

A common use case of passing a parameter to an asynchronous application is to pass a single string.
If the parameter you want to pass is exactly one string, you can use the startApplicationWithString
method of the Application class to avoid having to wrap it in an object (as would be needed to use the
startApplicationWithParameter method).

The Application class startAppMethod method allows the application to be started with an
alternative initialize method. As this method provides the most flexibility of any methods that start an
application, it also has the most parameters, which are listed in the following table.

Parameter Type Description

schemaName String Specifies the name of the schema in which the application is
located.

appName String Specifies the name of the application to start.

methodName String Specifies the method that is to be invoked on the application; that
is, the method to be called as the initialize method of the
application.

methodParam Object A shared transient object to be passed to the initialize method of
the application.

checkSecurity Boolean If set to true, the getAndValidateUser method is called to validate
user codes and passwords. If false, the application inherits the
security profile from the invoking application.

Exercise 1 – Synchronous versus Asynchronous
In this exercise, you will create a form to explore the difference between running a method
synchronously versus asynchronously.

1. Create a schema called AsyncSchema.

2. In the Class Browser, navigate to the AsyncSchema subclass of the Application class.

Multithreading 8 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

3. Add a method called waitThenMsg to the AsyncSchema application subclass, and code it as
follows.

4. Open the Application Browser and create an application, as follows.

Multithreading 9 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

5. Open the JADE Painter and create a form called AsyncForm with two buttons: btnAsync and
btnSync, as follows.

6. Ensuring that you have first saved AsyncForm, navigate to AsyncForm in the Class Hierarchy

Browser.

7. Modify the click method of btnAsync, by coding it as follows.

Multithreading 10 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

8. Modify the click method of btnSync, by coding it as follows.

9. Create a JadeScript method called createAsyncForm, coding it as follows.

10. Run the createAsyncForm method and click on the two buttons.

How do they behave differently?

Shared Transient Objects
If you have completed the JADE Developer’s course, you are likely familiar with the difference between
transient and persistent objects. If not, see “Module 15 - Nodes, Processes, and Caches” and “Module
16 - Transactions and Locking” of the JADE Developer’s course.

Shared transient objects are half-way between transient and persistent objects.

• Persistent objects are stored in the database and are therefore accessible to all processes on
every node of the database.

• Transient objects are stored in the transient cache on a node and are accessible to one process
on one node.

• Shared transient objects are also stored in the transient cache on a node, but they are
accessible to all processes on that one node.

Multithreading 11 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

As multiple processes can access the same shared transient object at the same time, changes to
shared transient objects must be performed inside transactions, which is like persistent objects, but
using the beginTransientTransaction and commitTransientTransaction instructions.

Shared transient objects are an integral part of multithreading, as they allow for communication
between applications within a node.

Notifications and Callbacks
When running multiple threads asynchronously, it is often a requirement to communicate progress
from the asynchronous operation back to the caller, usually called a callback.

The callback strategy commonly used in JADE systems is to subscribe to user events on a shared
transient object, pass that shared transient to the asynchronous process, and then cause events from
the asynchronous process.

The shared transient object that is used does not need to be at all complex; in fact, no methods or
properties are required on it for it to perform its role in the callback process. Once created, the initiating
process should subscribe to notifications from it by using the beginNotification method of the Object
class.

In this example, CallbackHandler is an empty class with no properties or methods, and
Example_Event is a global constant of type Integer, with a value of 1234.

Multithreading 12 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Once the caller is subscribed to notifications by calling the beginNotification method, it still needs to
define a behavior to perform when it is notified of that event by that object. For a form, the easiest way
to do this is by adding behavior to the userNotify method on the Form Events folder of the Class
Browser.

The following is an example of the code required for the userNotify method.

To generate the event from the asynchronous process, first ensure that the process has access to the
shared transient object, which typically involves passing it in by using the
startApplicationWithParameter method when that process is first created.

Multithreading 13 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

In this example, the CallbackApp application has an initialize method called createEvent. To
generate an event on the shared transient object, the causeEvent method of the Object class is used.

When this event is caused by the asynchronous process on the shared transient CallbackHandler
object, the initiating process is notified of the event and the userNotify method is invoked.

Exercise 2 – Generating a Callback
In this exercise, you will use a shared transient object to report back as an asynchronous operation
begins and finishes.

As the BtnAsync method creates asynchronous applications, a counter will display how many
operations are pending, and that counter will decrement as they complete.

1. Modify the AsyncForm in the JADE Painter to add a label called lblCallback with an empty
caption.

2. Create a class called CallbackHandler. You do not yet need to add any methods or properties

to this class.

Multithreading 14 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

3. Add two global constants (CTRL+G): StartEvent as an Integer with a value 1234 and
EndEvent as an Integer with a value 1235.

4. Create a method called getHandler in the AsyncForm class, and code it as follows.

Multithreading 15 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

5. Modify the click method of the btnAsync button control as follows.

6. Modify the click method of the btnSync button control as follows.

7. Add an Integer attribute property called pendingOperations to AsyncForm.

8. Modify the userNotify method in the Form Events as follows.

Caution The various elements of the AsyncForm such as btnAsync and lblCallback also
have userNotify methods, but it is the userNotify method of the form itself that we want; that
is, the one found in the Form Events folder.

Multithreading 16 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

9. Modify the waitThenMsg method in the AsyncSchema subclass of the Application class as
follows.

10. Run the JadeScript createAsyncForm method.

As you click BtnAsync, the number of pending operations increases, and as the message
boxes appear, the number falls again.

Exercise 3 – Dealing with Shared Transient Leaks
Unlike standard transient objects. which are deleted at the termination of their application, shared
transient objects have a lifetime equal to that of their node so they can therefore build up if they are not
deleted after use.

In this exercise, you will identify, fix, and close a shared transient leak.

1. Select CallbackHandler in the Class Browser and press the Ctrl+J shortcut keys to invoke the
Schema Collection Inspector form.

2. You should see many shared transient instances of CallbackHandler, depending on how many
times you have created shared transient CallbackHandler instances since you last restarted
your application server.

Multithreading 17 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

3. To remove this build-up of instances of CallbackHandler, which is likely filling your transient
cache, we could restart the application server (whether a single user JADE system, a standard
client, or an application server plus presentation client). However, it is easier to create a
JadeScript method to simply remove the excess transient instances manually.

Create a JadeScript method called deleteTransients and code it as follows.

4. To prevent the shared transient instances from leaking in future, we should delete them when

we are finished with them. The last time we use the callback handler is in the handling of the
EndEvent. Modify the userNotify method as follows.

Note In the userNotify method, theObject parameter represents the object that notified the
method of the event. We cannot directly delete theObject, as it is a constant parameter;
however, we can assign it to a new variable and delete that.

5. Run the application again (using the JadeScript createAsyncForm method).

The CallbackHandler shared transient instances are now deleted automatically after use.

Multithreading 18 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Asynchronous Method Calls
The strategy with creating a new process for each asynchronous method and using a callback to
report progress, described so far in this module, is only one of two ways to implement asynchronicity in
JADE. The other strategy is the use of a dedicated asynchronous worker process and using the
invoke and waitForMethods methods of the JadeMethodContext class.

To use the JadeMethodContext class to call methods asynchronously, you will need to prepare the
following.

1. A worker process in which app.asyncInitialize has been called (usually in the initialize method
of the application; that is, the method that fulfils the initialize event, which is often, but not
always, called initialize).

2. The method to be called, which does not need anything special, as in JADE, the method does
not have to be marked as asynchronous; only the process that runs it. However, as it is going to
be called from another process, it must not be a method of a transient object.

3. A transient instance of the JadeMethodContext class for the asynchronous task.

4. A transient instance of the JadeMethodContext class to receive the results of the
asynchronous tasks.

When the JadeMethodContext instances have been instantiated and the worker process application
has been started, the workerAppName property of the contexts must be set to the name of the worker
process application. This allows the contexts to invoke methods on the worker processes
asynchronously, using the invoke method. As soon as the invoke method has been called, the
methods will run on the targeted process.

Note The invoke method takes an object, a method of that object, and optionally any parameters
that the method might have.

Multithreading 19 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

If you require a return value from these methods, you can wait for them to finish on the caller by using
process.waitForMethods. This method takes any number of JadeMethodContext instances as
parameters, which can be individual object references or collections of JadeMethodContext. It returns
the JadeMethodContext of the first context to finish its method, and you can then use the
getReturnValue method of that context to obtain the return value of the called method.

Note If there are no more methods executing, the waitForMethods method returns null.

Exercise 4 – Invoking a Method using JadeMethodContext
In this exercise, you will use the invoke method of JadeMethodContext class to call a method
asynchronously. You will perform the following actions to set up and use the invoke method.

1. Create a new class with a method that takes some time to execute.

2. Create a new worker application that can perform asynchronous tasks.

3. Modify the AsyncForm to start this worker on loading and terminate it on closing.

4. Modify the AsyncForm to allow for the creation of instances of the new class and the
asynchronous execution of its method.

Multithreading 20 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

To invoke a method using JadeMethodContext, perform the following steps.

1. In the Object class, add a subclass called Turtle with a method called moveSlowly, coded as
follows.

2. In the AsyncSchema subclass of the Application class, add the following methods.

3. Open the JADE Painter and create a new form called TurtleWorkerForm, as follows.

Note This form does not have any usable controls, as it is used only to give a visual indicator
of active workers and to provide a simple mechanism to terminate the worker (closing the
window). Normally, workers would always be non-GUI applications.

Multithreading 21 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

4. Open the Application Browser and create an application called TurtleWorker, as follows.

Multithreading 22 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

5. In the JADE Painter, modify the AsyncForm to add three new buttons, as follows.

6. Modify the click method of the btnCreateTurtle button control, as follows.

7. Modify the click method of the btnCreateWorker button control, as follows.

Multithreading 23 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

8. Create a method called sendTurtle on the AsyncForm class, coded as follows.

9. Modify the click method of the btnSendAllTurtles button control, as follows.

10. Run the form using the JadeScript createAsyncForm method. Try creating various numbers of

turtles and workers. How long does it take for the message boxes to be displayed?

Turtles Workers Time Taken

1 1

2 1

5 1

5 2

10 2

10 5

Exercise 5 – Waiting for Asynchronous Operations
Currently, whenever the btnSendAllTurtles button is clicked, the Turtle class will pop up a message
box but remain in the database. By using the waitForMethods method, you can have the click
method of the btnSendAllTurtles button control delete the Turtle class from the database when it has
finished its moveSlowly method.

Multithreading 24 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

In this exercise, you will use the Process class waitForMethods method to wait for the completion of
the asynchronous methods.

1. Modify the moveSlowly method of the Turtle class, as follows.

2. Modify the sendTurtle method on the AsyncForm class, as follows

Multithreading 25 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

3. Modify the click method of the BtnSendAllTurtles button control, as follows.

4. Run the form using the JadeScript createAsyncForm method.

Try creating a few turtles by clicking BtnCreateTurtle, using BtnSendAllTurtles, and then
inspecting the instances of Turtle in the Schema Collection Inspector.

You should see that the turtle objects are deleted only after you close the message boxes.

