

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Development Environment
Version 2018

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this information or
software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties extended or granted
by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of JADE Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

Copyright  2019 JADE Software Corporation Limited.

All rights reserved.

JADE is a trademark of JADE Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Contents

JADE Development Environment 4
Introduction ... 4
User Preferences .. 4
Macros and Regular Expressions ... 5
Sending Messages to other Developers ... 7

Exercise 1 – Customizing your JADE Development Environment 8
Exercise 2 – Creating a JADE Macro .. 9
Exercise 3 – Sending a Message in a Multiuser System .. 13

Show Symbol Command and Source Windows .. 14
References and Implementors .. 16
Renaming Identifiers .. 17

Exercise 4 – Finding and Fixing Bugs .. 19
Exercise 5 – Refactoring Names .. 25

Unused Variables .. 28
Unused Class Entities .. 30

Exercise 6 – Locating and Removing Unused Variables .. 33
Exercise 7 – Locating and Removing Unused Class Entities 35

Transient Leaks .. 36
Methods Status List ... 39
Schema Validation .. 40

Exercise 8 – Finding and Removing Transient Leaks ... 42
Exercise 9 – Finding Changed Methods ... 43
Exercise 10 – Validating the Schemas ... 48

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

JADE Development Environment

Introduction
The JADE development environment (or IDE) is full of features that are useful for navigating,
maintaining, and bug-fixing in large JADE systems.

In this module, you will use the various features of the development environment to locate and repair
defects in an intentionally-broken version of the Erewhon demonstration system. The Erewhon
system is a demonstration system that showcases some of the features of JADE, and as such, is large
enough for the development environment tools to be useful, while small enough to be reasonable to
navigate without requiring a great deal of familiarity with the system.

User Preferences
The Preferences dialog is accessed from the Preferences command from the Options menu. It allows
you to specify a variety of look-and-feel options for the JADE development environment.

Options set in the Preferences dialog persist between sessions. However, they impact the user who
set them; any other users of the same database are unaffected.

The Preferences dialog has the following tabs that access sheets containing the types of options you
can set.

Sheet Purpose

Accelerator Keys Maps accelerator keys that insert text into the JADE editor; for example,
Ctrl+Shift+A inserts abortTransaction;

Browser Customizes behavior related to how hierarchy browsers (including the
Schema Browser and Class Browser) function; for example, the Mdi group
box specifies whether they are floating MDI windows or tabs are displayed
above the MDI client window

Editor Customizes syntax highlighting colors; for example, JADE keywords are a
dark blue colour by default, but you can change them to a color of your
choice

Editor Options Customizes the way in which the editor pane is displayed; for example,
whether line numbers are displayed

Exit Customizes the behavior when exiting from the development environment;
for example, whether to confirm before closing

Lock Modifies the default lock exception handling

Miscellaneous Modifies settings that you are unlikely to want to change; default file suffixes
(although it is best not to change the schema file suffix of .scm), the base
locale, and interface and versioning options

JADE Development Environment 5 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Sheet Purpose

Relationship Customizes the display of the relationships, which are covered later in this
module

Schema Changes the default access to classes, references, and attributes in
schemas as well as the persistence and type of classes

Shortcut Keys Changes development environment and keyboard shortcuts, and swaps to
the default use of F11 and F12 keys and F5 and F9 keys; that is, JADE by
default has the F11 and F12 keys and the F5 and F9 keys swapped relative
to Visual Studio (or Visual Studio to JADE, depending on your perspective)

Source Management Customizes JADE version control functionality; for example, deltas and Git
integration

Status list Allows for the display of all methods and class constants, instead of the
default display of only methods and class constants that are in error or
have not been compiled (covered later in this module)

Text Templates Customizes the default text template; for example, so that you can add a
header to every method for documentation purposes

Window Customizes the colors of windows (for example, the background color of
the Class Browser) and the default font used in JADE windows

Macros and Regular Expressions
JADE macros enable you to record and replay keystrokes in the editor pane; for example, to comment
or uncomment a selection of text, or to delete all text on the current line.

The two ways to create a macro are as follows.

• Use the Start Macro Record command from the Macro submenu of the Edit menu to start
recording, perform a sequence of keystrokes, and then select the Stop Macro Record
command from the Macro submenu of the Edit menu.

• Select the Edit Temp Macro command from the Macro submenu of the Edit menu to access
the Keystroke Macro Editor dialog, select the required actions from the list box at the right (or
you can type them in the Macro Text text box at the left), and then click Save.

JADE Development Environment 6 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

When creating macros, you can use regular expressions. The Keystroke Macro Editor supports the
use of regular expressions (regex) with the Find, ReplaceFind, and ReplaceAll commands. For
example, you can use the Find command as follows.

In this example, regexpr causes the search string to be treated as a regular expression rather than a
string literal. As such, “b.*n” translates to a b, then any number of any characters, and then an n.

You can use the following regular expression characters.

Character Description

. Matches any character.

\(Marks the start of a region for tagging a match.

\) Marks the end of a tagged region.

\n The n parameter is a digit in the range 1 through 9, which refers to the first through
ninth tagged region when replacing; for example, if the search string was Fred\([1-
9]\)XXX and the replace string was Sam\1YYY, this would generate Sam2YYY when
applied to Fred2XXX.

\< Matches the start of a word. A word is defined to be a character string beginning or
ending, or both beginning and ending, with characters in the ranges A through Z, a
through z, 0 through 9, and an underscore. In addition, it must be preceded or
followed, or both preceded and followed, by any character outside those mentioned.

\> Matches the end of a word.

\x Enables you to use a character x that would otherwise have a special meaning; for
example, \[would be interpreted as [and not as the start of a character set.

[...] Indicates a set of characters; for example, [abc] means any of the characters a, b, or
c. You can also use ranges; for example, [a-z] for any lowercase character.

[^...] Complement of the characters in the set; for example, [^A-Za-z] means any character
except an alphabetic character.

JADE Development Environment 7 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Character Description

^ Matches the start of a line (unless it is used inside a set).

$ Matches the end of a line.

* Matches zero (0) or more times; for example, Sa*m matches Sm, Sam, Saam,
Saaam, and so on.

+ Matches one or more times; for example, Sa+m matches Sam, Saam, Saaam, and
so on.

When you have saved a macro, you can replay it by selecting the Play Temp Macro command from
the Macro submenu of the Edit menu. You can also make a temporary macro (whether generated from
recording keystrokes or from the Keystroke Macro Editor dialog) permanent, by clicking Save As on
the Keystroke Macro Editor dialog.

Sending Messages to other Developers
When using the JADE development environment in a multiuser system, it can sometimes be useful to
see who else is connected to the JADE server and to send them messages; for example, to let all
currently connected developers know when the database is going to be taken down or to check with a
developer before terminating their process with the JADE Monitor.

The Send Message command of the File menu accesses the Send Message dialog, which displays a
list of all users who are currently connected to the database.

JADE Development Environment 8 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

You can send messages to all users by selecting the All Users option button, or to a specific user or
users by selecting the The Following Users Only option button and then selecting the users to which
the message should be sent.

The sender’s name and the timestamp automatically generated for all messages are displayed above
the message.

When the Message Received dialog is closed, if you checked the Acknowledge Receipt check box
on the Send Message dialog, an acknowledgement message is sent back to you.

Exercise 1 – Customizing your JADE Development Environment
In this exercise, you will configure the look and feel of your JADE development environment. Although
the steps in this exercise suggest a configuration setting, you can select whatever values you prefer.

1. From the Options menu, select the Preferences command.

2. Click on the Accelerator Keys tab to display the Accelerator Keys sheet and then change the
E accelerator key from endforeach; to epilog. This will cause pressing Ctrl+Shift+E to insert
epilog into the editor, at the caret.

3. On the Browser sheet, check the Show Inherited check box and then select the Use Tabs
Only option button in the Mdi group box.

4. On the Editor sheet, change the Background from light yellow to white.

5. On the Editor Options sheet, check the Insert Parentheses for Method with no parameters
check box in the Auto Complete group box and the View Line Numbers check box in the
Display Options group box.

6. On the Exit sheet, uncheck the Exit Confirmation check box and check the Save Windows
check box.

7. On the Lock sheet, change the Number of times to Retry to 15.

8. On the Miscellaneous sheet, change the alternative Jade Skin in the Versioning Options group
box to JADE2018 Sumner.

JADE Development Environment 9 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

9. On the Relationship sheet, uncheck the Show Detail check box and set the Target
Class color to white.

10. On the Schema sheet, check the Use DDX style (xml format) as Default instead of DDB
check box.

11. On the Short Cut Keys sheet, select the MacroPlayTemp shortcut, click in the Key
Combination text box, and then press Shift+Space to add that as the shortcut key combination.

12. On the Source Management sheet, check the Reuse Same Method Source Window For All
check box.

13. On the Status List sheet, check the Compiled Methods check box and uncheck
the Uncompiled Methods check box.

14. On the Text Templates sheet, add the following to the Method folder.

15. On the Window sheet, check the Show Alternating Row BackColor check box and then

select Jade2018 New Brighton from the Select Jade Skin combo box

Exercise 2 – Creating a JADE Macro
In this exercise, you will create macros to comment on or remove a comment from the selected text by
generating or removing // at the beginning of each selected line.

1. From the Macro submenu of the Edit menu, select the Edit Temp Macro command.

JADE Development Environment 10 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

2. Code the macro as follows, and then click Save As.

This macro finds the beginning of each selected line with a regular expression and then adds //
to the start of each line.

Enter CommentOut as the name of the macro and then click OK.

JADE Development Environment 11 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

3. Reopen the Keystroke Macro Editor dialog and code a new macro as follows. Save it as
Uncomment.

This macro finds the beginning of each selected line that begins with // and replaces the // with
an empty string, which deletes the // from the line.

4. Open the Preferences window (from the Preferences command from the Options menu).

JADE Development Environment 12 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

5. Add a Ctrl+O shortcut to the OpenMacroLibrary command.

6. Create a new JadeScript method called m1 (in any schema, or create a new schema named

S1, if needed) and then select the begin and end; instructions, as follows.

7. Press Ctrl+O to open the Keystroke Macro Editor dialog, select the CommentOut command in

the list box at the right of the dialog, and then click Play.

JADE Development Environment 13 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

The begin and end; instructions should be commented out, along with the blank line between
them.

8. With the begin and end; instructions still highlighted, press Ctrl+O to reopen the Keystroke

Macro Editor dialog and then select the Uncomment command in the macro list at the right.
When you click Play, the highlighted text should no longer be commented out.

9. Delete the m1 method (and the S1 schema, if you created it).

Exercise 3 – Sending a Message in a Multiuser System
In this exercise, you will open JADE in multiuser mode and then send a message from one client to
another.

1. If your JADE system is open, close it.

2. Start the JADE database server for your database.

3. Start two JADE fat (standard) client nodes for your database, signing on to each with a different
name.

4. From one of the client nodes, select the Send Message command from the File menu.

5. Select the The Following Users Only option button and the user name that you selected for
the other client node.

JADE Development Environment 14 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

6. Enter a message in the Message text box and then click OK.

7. The message should appear on the other client node.

Show Symbol Command and Source Windows
When navigating around a larger system, it is often important to be able to see the implementation of
an identifier when encountering it in the code base. An identifier can be a method name, a local
variable, a property, a class, a constant, or an interface.

It is considered best practice to use descriptive names for these identifiers. However, when
maintaining another person’s code, you may need to peek at what an implementor describes.

JADE Development Environment 15 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

The Show Symbol command, accessed by the F11 key, shows the implementation of the identifier
under the caret. It will behave slightly differently, depending on the identifier that is under the caret and
the values of the Reuse Same Method Source Window check boxes on the Source Management
sheet of the Preferences dialog.

The behavior of the F11 key is as follows.

• For variables, properties, classes, constants, and interfaces, it creates a dialog with a
description of the identifier; for example, the following will be displayed for a property.

• For methods when the Reuse Same Method Source Window check boxes on the Source

Management sheet are unchecked, the method is opened in a new window.

JADE Development Environment 16 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

• For methods when the Reuse Same Method Source Window For All check box on the
Source Management sheet is checked, the method is added to a common method source
form, shared amongst all opened methods.

• If the Reuse Same Method Source Window For Each Origin check box on the Source

Management sheet is enabled, the method is added to a method source window that is
common to methods opened from the same Class Browser.

References and Implementors
The JADE development environment enables you to list all:

• References (the methods that call a specific method or that read or update a specific property)
for a method or property

• Implementors (other methods with the same name) for a method

Find references of a property by right-clicking a property or from the Properties menu while the
property is selected, and then selecting any of the following.

• References

Shows all references to the property, and whether they read the property or update it

• Read References

Shows only the references to the property that read the property

• Update References

Shows only the references to the property that update the property

To find the references to a method, you can search for all references or for local references only.

To search for all references across all classes both within the current schema and any subschemas,
right-click on the method and then select References or select the References command from the
Methods menu when the method is selected.

JADE Development Environment 17 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Alternatively, you can search for the local references only; that is, references to the method that are
within the method’s class or one of its subclasses, and in the current schema only. To search for local
references only, right-click on the method and select Local References or select the Local
References command from the Methods menu when the method is selected.

Implementors of a method are most commonly used for finding a method’s reimplementations. As
such, all reimplementations of the method within the class hierarchy, but including subschemas, can
be found using the Local Implementors command. Access this command by right-clicking on a
method and then selecting Local Implementors or by selecting the Local Implementors command
from the Methods menu when the method is selected.

Alternatively, you can locate all methods within the schema with the same name as a method; for
example, to see which classes have a toString method implemented. The Implementors command
finds all methods that share a name with a method across all classes of the schema, but it does not
search subschemas. To search for implementors of a selected method, right-click on the method and
then select Implementors or select the Implementors command from the Methods menu when the
method is selected.

Renaming Identifiers
When renaming an identifier, special care must be taken to ensure that the references to the identifier
refer to the new name after it changes.

The JADE development environment provides the ability to perform this task automatically, avoiding
the risk of human error creating compilation errors.

The steps required to safely rename an identifier vary, based on the type of identifier, as follows.

• For classes, properties, and references, right-click on the property and then select Change.

Modify the Name value as required, so that all references to the new name are updated
automatically when you click OK.

JADE Development Environment 18 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

• For method parameters and local variables, right-click on the parameter or variable and then
select the Rename / Change command from the Refactor submenu.

• For method names, right-click on the method and then select Rename, or select the Rename

command from the Methods menu while the method is selected.

• For interfaces, open the Interfaces Browser (Ctrl+N), right-click on the interface, and then select

Change. Modify the Name value as required, so that all references to the new name are
updated automatically when you click OK.

JADE Development Environment 19 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Caution Schemas cannot be renamed once they have been created, so pick the name carefully.

Exercise 4 – Finding and Fixing Bugs
In this exercise, you will locate and resolve several defects that have been intentionally introduced into
the Erewhon demonstration system, by using the Show Symbol, References, and Implementors
commands to navigate around the system and find the methods that are causing the provided unit
tests to fail.

1. Load the Erewhon system provided in the BrokenErewhon folder of the flash drive, by
selecting the Load command of the Schema menu, checking the Load Multiple Schemas
check box, and then selecting ErewhonInvestments.mul as the schema file name.

2. Open ErewhonInvestmentsModelSchema in the Class Browser by selecting it in the Schema
Browser and then using the Ctlr+B keyboard shortcut.

3. Select the JadeTestCase class and then press F9 to run the provided tests. You should see
that the following tests fail.

• TestTransactionAgent::testCreateCommRateOutsideTrx

• TestTransactionAgent::testCreateCommissionRate

• TestTransactionAgent::testUpdateCountry

• TestClient::testGetAllSales

• TestCountry::testInvalidName

• TestCountry::testUpdate

• TestSale::testGetDate

• TestRetailSale::testGetDate

• TestRetailSaleItem::testGetDebugString

• TestTenderSaleItem::testGetDebugString

• TestSaleItemCategory::testCreateCommissionRate

4. For each of these test failures, find the failing test in the Class Browser and use F11 key to
show the implementation of the method that is being tested by the unit test. Find the defect in
the tested method and re-run the tests, to check that it is now fixed.

To get you started, the fix for the first failing test is given as an example.

a. The failing test is TestTransactionAgent::testCreateCommRateOutsideTrx, and the
test failed with a 1090 error on the assert; that is, the created object was null when we
tried to read it. We can therefore deduce that the method completed without error but did
not create the object that it was supposed to.

JADE Development Environment 20 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

b. Find the TestTransactionAgent class in the Class Browser.

c. Use the Ctrl+7 key to display the method search text box at the top of the Methods List,

and search for testCreateCommRateOutsideTrx.

d. Click the testCreateCommRateOutsideTrx method and then select the Messages

command from the Methods menu. In this window, the two messages in red are calls to
methods of system classes, which are not going to be the subject of user-defined unit
tests.

JADE Development Environment 21 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

As such, we can see that the one user method, trxCreateCommissionRate, must be
the one being tested. Clicking on this method in the messages list will highlight it in the
method source.

JADE Development Environment 22 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

e. Clicking on the highlighted method and then pressing F11 will navigate to the
implementation of the method, which is as follows.

f. This method appears to be a wrapper method for another method,

createCommissionRate.

JADE Development Environment 23 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

To see the createCommissionRate method, select createCommissionRate and then
press F11.

g. In this method, we can see that the CommissionRate is being returned before it is

created.

To fix this, we simply reverse the order of the two statements and recompile (using the
F8 key).

h. If we re-run the tests, we see that the following tests are no longer failing.

- TestTransactionAgent::testCreateCommRateOutsideTrx

- TestTransactionAgent::testCreateCommissionRate

- TestSaleItemCategory::testCreateCommissionRate

JADE Development Environment 24 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

i. To see why these are no longer failing, we can view the references to the
createCommissionRate method. With focus on the createCommissionRate method,
select the References command from the Methods menu.

j. There are four test methods included in the references: the three that are no longer

failing and the TestTransactionAgent::testCreateCommissionRateNullCategory
method, which is an exception-flow test that verifies that the method rejects invalid
inputs.

5. The following failing tests remain. Identify and remove the errors so that all tests pass.

• TestTransactionAgent::testUpdateCountry

• TestClient::testGetAllSales

• TestCountry::testInvalidName

• TestCountry::testUpdate

• TestSale::testGetDate

• TestRetailSale::testGetDate

• TestRetailSaleItem::testGetDebugString

• TestTenderSaleItem::testGetDebugString

Tip Some fixes will solve multiple failing tests.

JADE Development Environment 25 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Exercise 5 – Refactoring Names
In this exercise, you will rename various entities and use the References and Implementors
commands to verify that the renaming has correctly modified the entities’ references and
implementors.

1. In the Class Browser for the ErewhonInvestmentsModelSchema, navigate to the Address
class, which is a subclass of ModelEntity, and find the zSetProps method.

Note The z prefix on private methods is an old naming convention that was used to
distinguish between public and private methods before the functionality to add a visual aid to
methods in the Class Browser was implemented.

2. With the zSetProps method highlighted, select the Implementors command from the Methods
menu to see all classes in the current schema that implement this method.

3. For each method found, perform the following actions.

a. With the method highlighted, select the References command from the Methods menu
to see which methods refer to that specific zSetProps method.

b. Select the Rename command from the Methods menu and rename the method to
setProperties.

c. Check the references list for the method to ensure that all references have been updated
to setProperties.

Note You will see that the method header comment at the top of the changed method still
includes Method: zSetProps. Comments are unaffected by the renaming of identifiers, which
is one disadvantage to the use of method headers, as they can become out of date with the
actual names and behaviors within the method.

JADE Development Environment 26 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

4. In the Class Browser for ErewhonInvestmentsModelSchema, navigate to the
InitialDataLoader class and then find the zGetNextToken method.

5. Rename the following parameters and variables by right-clicking on them and then selecting the
Rename / Change command from the Refactor submenu.

Old Name New Name Identifier Type

str targetString Parameter

pos currentPosition Parameter

len stringLength Variable

idx currentIndex Variable

Tip You can remove the end-of-line comments for the variables, as it is better practice to use
descriptive variable names rather than abbreviations with comments describing what they
represent.

6. Select SelfDocumentorSchema in the Schema Browser and then press Ctrl+N to open the
Interface Browser. You will see that this schema contains one interface: DocumentInterface.

JADE Development Environment 27 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

7. With the Interface Browser still open, select ErewhonInvestmentsModelSchema in the
Schema Browser and then press Ctrl+N to open another Interface Browser.

In this Interface Browser, you can see that all Erewhon interfaces begin with a capital I prefix
and are of the form Iverbable. This is one of the two common interface naming conventions,
along with the form responsibilityIF, which is used in the RootSchema interfaces.

However, DocumentInterface does not conform to either style, so we will rename it.

JADE Development Environment 28 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

8. From the SelfDocumentorSchema Interface Browser, right-click DocumentInterface and then
select the Change command.

9. Rename the interface to IDocumentable and then click OK, to save the change.

Unused Variables
In the JADE language, you must always declare a variable before you use it; that is, attempting to use
an undeclared variable results in compiler error 6027 (Unknown identifier).

Although no error is generated when declaring a variable and never using it in the method, it is
undesirable behavior because as unused variables make the code more cluttered and less-readable.

The JADE development environment includes the ability to find and optionally remove these unused
variables. To remove unused variables for a specific method, right-click on the method and then select
the Unused Local Variables command. The Find Unused Variables dialog is then displayed, advising
you that the specified local variable is unused. Buttons enable you to click:

• Find Next, to skip the current unused variable and go to the next one

• Remove, to remove the current unused variable

• Remove All, to remove all unused variables from the method, including those that were
previously skipped

• Cancel, to close the window as well as removing any previously removed unused variables

JADE Development Environment 29 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

After removing unused variables, the method will not automatically save or compile. If you want to
compile it, locking in the removal, press F8 or select the Compile command from the Methods menu.

Alternatively, if you navigate away from the method without saving or compiling it and then click No on
to the Save Method dialog, the unused variables are returned to the method.

You can also search entire for unused variables in classes, schemas, or even the whole database by
selecting the Find Unused Local Variables/Parameters command from the Schema menu when the
Schema Browser has focus.

In the Find Unused Local Variables and Parameters dialog, specify the scope of the search by
selecting one of the option buttons in the Search Criteria group box. To search:

• All schemas in the database, select Search all schemas

• Within a specific schema, select Search selected schema and then select the required
schema from the associated combo box

JADE Development Environment 30 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

• Within a specific schema and any subschemas of that schema, select Search selected
schema and all sub-schemas and then select the required schema from the associated
combo box

Note The Search selected schema, Search selected schema and all sub-schemas, and
Search selected class in selected schema options share the schema selection combo box
(that is, the first one in the Search Criteria group box).

• Within a specific class of a specific schema, select the Search selected class in selected
schema option and then select the schema from the first combo box and the class from the
second combo box

You can also specify the reporting options, by selecting options within the Reporting Options group box
as follows.

• To skip local variables and search only for method parameters, uncheck the Local variables
check box.

• To skip method parameters and search only for local variables, uncheck the Method
parameters check box.

Note You must select at least one of these check boxes.

• If the Method parameters check box is checked, you can select the All Methods or All except
Event Methods option button in the Parameters group box. Many event methods will have an
unused parameter, so typically the All except Event Methods default option button should be
selected. However, you can select the All Methods option button to include them.

In the Output Options group box, the default Methods List Browser option button causes the results
of the search to display in a methods list to make them easier to resolve. However, if you want to print
them instead, select the Print Preview option button.

Unused Class Entities
As a code base grows and is maintained, it is common for dead code to arise; that is, code that is
never called and therefore provides no value to the system but makes the code base larger and
therefore harder to maintain.

The JADE development environment provides the ability to locate and delete unused class entities to
combat the accumulation of dead code.

While the Find Unused Class Entities dialog is a fast and powerful way to find and remove dead code,
it will err on the side of avoiding the removal of possibly useful code so there may still be dead code
remaining after its use.

JADE Development Environment 31 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

To open the Find Unused Class Entities dialog, select the Find Unused Class Entities command
from the Schema menu in the Schema Browser.

In this dialog, you can specify the scope of the search by selecting one of the option buttons in the
Search Criteria group box. To search:

• All schemas in the database, select Search all schemas

• Within a specific schema, select Search selected schema and then select the required
schema from the associated combo box

• Within a specific schema and any subschemas of that schema, select Search selected
schema and all sub-schemas and then select the required schema from the associated
combo box

Note The Search selected schema, Search selected schema and all sub-schemas, and
Search selected class in selected schema options share the schema selection combo box
(that is, the first one in the Search Criteria group box).

• Within a specific class of a specific schema, select the Search selected class in selected
schema option and then select the schema from the first combo box and the class from the
second combo box

In the Reporting Options group box, check the check box of each type of class entity you want find.

JADE Development Environment 32 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

In the Output Options group box, the default List Browser option button causes the results of the
search to display in a methods list to make them easier to resolve. However, if you want to print them
instead, select the Print Preview option button.

After clicking Search, the Unused Class Entities dialog lists any unused entities that match your
selected criteria.

Select an unused entity in the table and then right-click to access a popup (context) menu with the
following commands.

• References to entity-name displays any references to the entity. While this will usually be
none, a class can have a method referencing itself while still being unused.

• Open Browser displays the entity in a new Class Browser.

• Remove From List removes the entity from the current Unused Class Entities dialog but it does
not remove it from its schema or prevent it from being located the next time an unused class
entities search is performed.

JADE Development Environment 33 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Exercise 6 – Locating and Removing Unused Variables
In this exercise, you will locate and remove unused variables, first in a specific method and then in an
entire schema.

1. In the ErewhonInvestmentsModelSchema, navigate to the InitialDataLoader class
zLoadAgents method. You will see that there are many declared variables in the method.

2. Find the three unused variables by selecting the Unused Local Variables command from the

Methods menu and then clicking Find Next until the following message box is displayed.

3. Reopen the Find Unused Variables dialog and then click Remove All. The three unused

variables are then removed from the method.

4. Press F8 to compile the method.

JADE Development Environment 34 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

5. Select ErewhonInvestmentsModelSchema in the Schema Browser and then select the Find
Unused Local Variables/Parameters command from the Schema menu.

6. Uncheck the Method parameters check box and then and click Search. This narrows the

search to unused local variables only.

7. For each unused variable that is found, double-click it in the Unused Local Variable and
Parameters dialog. The unused variable is then removed from the method, the method is
automatically compiled, and the entry is removed from the list.

Note You can use the double-click shortcut on unused variables only. If a method has an
unused parameter, more care must be taken as the removal of that parameter will change the
method signature, which may affect other methods.

JADE Development Environment 35 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Exercise 7 – Locating and Removing Unused Class Entities
In this exercise, you will locate and remove several unused classes, two unused properties, and an
unused constant by using the Find Unused Class Entities command.

1. Select ErewhonInvestmentsModelSchema in the Schema Browser and then select the Find
Unused Class Entities command from the Schema menu.

2. For each of the found entities, select the entity and then right-click it and select the Open

Browser command.

3. A new Class Browser is opened, with the selected entity highlighted. From this Class Browser,
right-click the entity and select the Remove command.

JADE Development Environment 36 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

4. In the Confirm Delete message box, click OK.

5. The entity is then automatically removed from the Unused Class Entities list. Repeat these

steps for each unused class entity until the list is empty.

Transient Leaks
A transient leak is when a transient object is created but not deleted after use. In large, long-running
applications, transient leaks can have a significant impact on performance as the transient cache has
finite capacity and once filled, transients must be saved to a transient database, which is much slower
than the transient cache.

The JADE development environment provides the ability to identify methods in which a transient is
created but not deleted and it is a useful tool to identify transient leaks; however, the identified
transients may not necessarily be leaks if they are deleted elsewhere in the code.

JADE Development Environment 37 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

When creating a transient object that you are confident will be deleted but that may generate a false
positive for a transient leak, you can add [ExcludeFromTransientLeakReport] into an end-of-line
comment after the create instruction, to ignore it. For example, the following JadeScript method will
leak the transient Company named leak.

However, by including [ExcludeFromTransientLeakReport], the method will not appear in a transient
leak search.

To open the Find Possible Transient Create Leaks dialog, select the Find Possible Transient Leaks
command from the Schema menu.

JADE Development Environment 38 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

From this dialog, you can specify the scope of the search by selecting one of the options in the Search
Criteria group box. To search:

• All schemas in the database, select Search all schemas.

• Within a specific schema, select Search selected schema and then select the required
schema from the associated combo box.

• Within a specific schema and any subschemas of that schema, select Search selected
schema and all sub-schemas and then select the required schema from the associated
combo box.

Note The Search selected schema, Search selected schema and all sub-schemas, and
Search selected class in selected schema options share the schema selection combo box
(that is, the first one in the Search Criteria group box).

• Within a specific class of all schemas, select Search selected class in all schemas and then
select the class from the second combo box. The selected class is then searched for across all
schemas in which it exists.

The Reporting Options group box is used to specify the possible leak conditions to be searched for, as
follows.

• The Report created objects not deleted check box finds transients that are created but not
deleted within the method, nor passed to another method, nor returned in a return instruction.
These objects will usually result in leaks.

• The Report created in loop but not deleted in loop check box finds transients that are
created in a loop but not deleted inside that loop, but may be deleted outside the loop.

• The Report objects not deleted but assigned check box finds transients that are created and
not deleted, but are assigned to another property or variable that may or may not be deleted
later.

• The Report objects not deleted but passed to other methods check box finds transients that
are created but not deleted within the method, but are passed to another method as a
parameter where they may or may not be deleted.

• The Report created objects returned from method check box finds transients that are
created but not deleted within the method, but are returned in the return instruction of the
method. These may or may not be leaks, depending on what the calling method does with the
object.

• The Report deletion not performed in epilog check box finds transients that are not deleted
in the epilog. Such objects may leak if an exception occurs in the method between when the
object is created and when it is deleted, returned, or passed to another method.

• The Ignore [ExcludeFromTransientLeakReport] tags check box finds transients that could
generate a leak according to the other options selected, even if they are marked with a
[ExcludeFromTransientLeakReport] tag.

In the Output Options group box, the default Methods List Browser option button causes the results
of the search to display in a methods list to make them easier to resolve. However, if you want to print
them instead, select the Print Preview option button.

JADE Development Environment 39 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Methods Status List
The JADE development environment provides the ability to quickly find all methods that are unsaved
or have errors in a specific schema or schemas. Open the Method Status List dialog by selecting the
Status List command from the Browse menu or with the Ctrl+Shift+C shortcut keys.

From this dialog, you can specify the scope of the search by selecting one of the options in the Search
Criteria group box. To search:

• All schemas in the database, select Search all schemas.

• Within a specific schema, select Search selected schema and then select the required
schema from the associated combo box.

• Within a specific schema and any subschemas of that schema, select Search selected
schema and all sub-schemas and then select the required schema from the associated
combo box.

• Within a specific schema and any superschemas of that schema, select Search selected
schema and all super-schemas and then select the required schema from the associated
combo box.

If you want to see only methods that were last changed by you, select the Last changed by current
user only check box in the Reporting Options group box.

JADE Development Environment 40 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Once you have selected your required options, click Search to perform the search. By default, the
Method Status List finds methods in error and uncompiled methods. However, this can be customized
if needed, by selecting options in the Show group box on the Status List sheet of the Preferences
dialog.

Schema Validation
The Validate Schema dialog provides validation for a variety of elements in the current schema.
Access it by selecting the Validate command from the Schema list of the Schema Browser.

From the Validate the following group box, check the check boxes of the elements to be validated, as
follows.

• The Object References option finds and lists any objects that are referenced but no longer
exist. This should normally never occur, so these errors suggest that the schema is corrupted.

• The Inverses option finds any invalid inverse reference definitions.

• The Application option finds any invalid application definitions.

• The Forms option finds any invalid form definitions; for example, a form that contains a control
with no corresponding property.

• The Dictionaries option lists any invalid dictionary definitions. This should normally never
occur, so these errors suggest that the schema is corrupted.

• The Methods option outputs the same list as that generated by the Method Status List dialog.

• The Properties option outputs a list of all properties in a class that have duplicate feature
numbers.

JADE Development Environment 41 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

• The Reorganisation option validates and reports on the following, both of which suggest
corruption of the schema.

- If a schema has been marked as versioned but there are no classes versioned.

- If there are classes versioned but the schema has not been marked as versioned.

The Validate Schema dialog provides the following output options that are selected from the Output to
group box.

• Window (the default), which displays the results of the validation to the Jade Interpreter Output
Viewer.

• Printer, which saves the results to a PDF file called Jade.pdf in your Documents directory of

your JADE installation.

• Log File, which saves the results to the valscm.log file in the bin directory of your JADE
installation.

JADE Development Environment 42 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Exercise 8 – Finding and Removing Transient Leaks
In this exercise, you will locate and remove transient leaks from ErewhonInvestmentsModelSchema,
using the Find Possible Transient Leaks command.

1. With ErewhonInvestmentsModelSchema selected in the Schema Browser, select the Find
Possible Transient Leaks command from the Schema menu.

JADE Development Environment 43 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

2. Click Search, to display the list of possible transient leaks.

You should see that the following methods have potential transient leaks.

• ErewhonInvestmentsModelApp::dataLoaderApp

• InitialDataLoader::zLoadRetailSaleItems

• TestRetailOrderProxy::testNullClient

• TestRetailSale::testAgentCommWithoutTrx

• TestRetailSale::testCreateWithoutTrx

• TestTenderOrderProxy::testNullClient

• TestTenderSale::testCreateOutsideTrx

3. For each method, delete the created transient in the epilog section of the method. For example,
for the ErewhonInvestmentsModelApp class dataLoaderApp method, the epilog section
should be as follows.

4. When you have added the delete instructions to the epilog, use the Find Possible Transient

Leaks command again, to verify that the transient leaks have been resolved.

Exercise 9 – Finding Changed Methods
In this exercise, you will explore the use of the Method Status List dialog.

You will first use the Method Status List dialog to find all methods that you have changed throughout
this module.

JADE Development Environment 44 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

You will then use the Method Status List Browser to find and resolve compiler errors by first
intentionally breaking some methods and then using the Method Status List Browser to repair the
changes.

1. In the first exercise in this module, you configured some user preferences. Open the
Preferences dialog and ensure that the Status List sheet has the following settings in the Show
group box.

2. Select ErewhonInvestmentsModelSchema in the Schema Browser and then open the Method

Status List dialog using the Ctrl+Shift+C shortcut keys.

3. In the Search Criteria group box, select Search selected schema and all sub-schemas option
button and in the Reporting Options group box, check the Last changed by current user only
check box.

4. Click Search.

JADE Development Environment 45 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

The Method Status List Browser then displays a list of all methods that you have changed.

Note Your list will show different methods to this example.

You should see that none of the methods are in error. You will now intentionally break some
methods so that the Method Status List has something to find.

5. Open the Preferences dialog and set the following preferences on the Status List sheet.

6. Navigate to the Address class getNameAndAddress method, which is a subclass of

ModelEntity.

7. Delete the end; instruction on line 12, as follows.

8. Compile the method (press F8). Compiler error 7107 - Expecting: end will be raised.

9. Navigate to the Tender class getDate method, which is also a subclass of ModelEntity.

JADE Development Environment 46 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

10. Comment out the return statement on line 8 by adding // to the beginning of the line, as follows.

11. Compile the method. Compiler error 6114 - Method does not return a value will be raised.

12. Navigate to the Company class create method.

13. Delete the blank line on line 11 (immediately after the begin instruction).

14. Press F2 to save the method without compiling it. You should see that it now has an X to the left
of the method name in the Class Browser.

15. Select ErewhonInvestmentsModelSchema in the Schema Browser and then press

Ctrl+Shift+C, to open the Method Status List dialog.

JADE Development Environment 47 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

16. Check the Last changed by current user only check box and then click Search.

Tip In a single user system, the Last changed by current user only has no effect, as there
is only one user changing methods. However, when working collaboratively, it can be useful to
see only those methods that you have changed.

The Method Status List Browser will then display the three methods you changed that have
errors or are unsaved.

17. For each method, fix the error and then compile the method.

You can do this directly from the Method Status List Browser, and each method will
automatically be removed from the list as it is completed.

JADE Development Environment 48 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

Exercise 10 – Validating the Schemas
In this exercise, you will use the schema validator to find inconsistencies in the
ErewhonInvestmentsModelSchema and then resolve these inconsistencies.

1. With ErewhonInvestmentsModelSchema selected in the Schema Browser, select the
Validate command from the Schema menu.

2. Click Set All to select all possible validations and then click OK to run the validator.

3. The following message box should be displayed. Click OK.

4. The results of the validation are written to the Jade Interpreter Output Viewer. The following

errors should be identified.

5. Select ErewhonInvestmentsModelSchema in the Schema Browser and then use the Ctrl+L

shortcut keys to open the Application Browser.

JADE Development Environment 49 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

6. Select the ErewhonInvestmentsModelSchema application in the Application Browser,
right-click on it, and then select the Remove command.

7. Click OK in the Confirm Delete message box.

Note The ErewhonInvestmentsModelSchema application is the default application that was
automatically generated when the ErewhonInvestmentsModelSchema schema was created.
As it is not used for anything, it can be deleted.

8. Open the ErewhonInvestmentsModelSchema schema in a Class Browser. (Press Ctrl+B from
the Schema Browser.)

9. Navigate to the OrderProxy class (which is a subclass of ModelTransient).

JADE Development Environment 50 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

10. Right-click on the mySaleItem reference and then select the Change command.

11. Click Define Inverse.

JADE Development Environment 51 __

Copyright 2019, JADE Software Corporation Ltd. All rights reserved

12. To the SaleItem class (in the Property group box at the right of the dialog), set the Name value
to myOrderProxy.

13. Click OK.

14. Re-run the Validate Schema command on ErewhonInvestmentsModelSchema.

You should see that there are no longer any errors.

