
Copyright©2023 Jade Software Corporation Limited. All rights reserved.

Jade Platform
Developer’s Course
Version 2022

Jade Software Corporation Limited cannot accept any financial or other responsibilities that may be the result of your use of this
information or software material, including direct, indirect, special or consequential damages, or loss of profits. There are no warranties
extended or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Jade Software Corporation Limited.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

Copyright © 2023 Jade Software Corporation Limited.

All rights reserved.

JADE is a trademark of Jade Software Corporation Limited. All trade names referenced are the service mark, trademark, or registered
trademark of the respective manufacturer.

For details about other licensing agreements for third-party products, you must read the Jade ReadMe.txt file.

Contents

Contents iii

Overview ix

Module 1 Installing the Jade Platform 11
Introduction 11
Exercise 1.1 - Installing the Jade Platform 12
Jade Folders 13
Running the Jade Platform in Single User Mode 14
Running the Jade Platform in Multiuser Mode 16
Exercise 1.2 - Running the Jade Platform 18
Development and Run Time 18
Files for the Course 18

Module 2 Schemas 19
Introduction 19
Other Browser Windows 22
Exercise 2.1 - Adding a Schema 22
Exercise 2.2 - Opening a Class Browser 23

Module 3 JadeScripts 25
Introduction 25
Structure of a Method 26
Exercise 3.1 - Hello World 27
Exercise 3.2 - read and write Instructions 29
Exercise 3.3 - return and epilog Instructions 29
Exercise 3.4 - Exceptions 30
Exercise 3.5 - foreach Instruction 32
Exercise 3.6 - while Instruction 32
Debugging a JadeScript Method 33
Exercise 3.7 - Jade Debugger 35
Using the Jade User Interrupt 36
Parameter Usage Options 38

constant 38
input 39
output 39
io 39

Exercise 3.8 - break and continue Instructions 40
Exercise 3.9 - Jade User Interrupt 40
Exercise 3.10 - Parameters and Return Type 41
self Object 42
Exercise 3.11 - Parameter Usage Options 43

Module 4 Application Object 47
Introduction 47
Context-Sensitive Help 48
Exercise 4.1 - Context-Sensitive Help and the app Object 50
Global Constants 51
Another Use of the Application Object 51
Exercise 4.2 - Adding an Attribute 52
Exercise 4.3 - Using app to Store a Value 54

Module 5 Primitive Types 55
Introduction 55
Primitive Types 56
Working with Numbers 57
Adding Primitive Type Methods 58
Working with Strings 59

Developer's Course

iv Contents

Substring Operator 59
pos Method 59
trimBlanks Method 60

Working with Dates and Times 60
Type Casting 60
Other Primitive Types 61
Exercise 5.1 - Rounding 61
Exercise 5.2 - Adding a Primitive Type Method 61
Exercise 5.3 - Substrings 62
Exercise 5.4 - Date Arithmetic 63

Module 6 Classes 65
Introduction 65
Database Files 66
Exercise 6.1 - Adding a Schema 67
Exercise 6.2 - Adding Map Files 67
Exercise 6.3 - Adding a Class 67
Instances of a Class 68
Access to Properties 69
Exercise 6.4 - Adding Attributes 70
Exercise 6.5 - Adding a Method 71
Exercise 6.6 - Testing with a JadeScript Method 72
Inspecting Database Objects 73
Extracting and Loading Schemas 75
Exercise 6.7 - Inspecting Objects 77
Exercise 6.8 - Removing Test Objects 78
Exercise 6.9 - Extracting Multiple Schemas 78

Module 7 Root Object 81
Introduction 81
Initializing the Root Object 82
Constructor 82
Exercise 7.1 - Adding the Bank Class 82
Exercise 7.2 - Adding myBank and initialize Method 84
Exercise 7.3 - Modifying the Customer Constructor 86
Working with Files 87
Working with Common Dialogs 88
Exercise 7.4 - Reading from a File 88
Exercise 7.5 - Using the File Open Dialog 89

Module 8 Inheritance and Polymorphism 91
Introduction 91
Protected Methods 92
Real versus Abstract 92
Schema Versions 93
Exercise 8.1 - Adding an Abstract Class 94
Exercise 8.2 - Changing the Bank Class 97
Exercise 8.3 - Adding a BankAccount Constructor 99
Inheritance 99
Polymorphism 100
Validating a Schema 101
Exercise 8.4 - Adding a ChequeAccount Class 102
Exercise 8.5 - Adding a SavingsAccount Class 103
Exercise 8.6 - Creating Bank Accounts with a JadeScript 104
Exercise 8.7 - ATM Simulation 105

Module 9 Collections 107
Introduction 108
Types of Collection 108

Adding a Collection Class 109
Collection Methods 109
Dictionaries 110
Arrays 110
Exercise 9.1 - Adding a Customer Dictionary 111
Exercise 9.2 - Adding a Customer Array 113
Exercise 9.3 - Removing Test Objects 114
Exercise 9.4 - Populating a Collection 115
foreach with Collections 115
Iterators and Collections 116
Execution Location 117
Exercise 9.5 - Deleting the J Customers 118
Exercise 9.6 - Filtering a Collection 120

Module 10 Relationships 123
Introduction 123
myCustomer Reference 124
Exclusive Collections 125
Other Subobjects 126
Inverse References 127
Adding Both Inverse References 128

Advice on Defining Inverses 130
Automatic and Manual Updating 130
Peer-to-Peer and Parent-Child Relationships 130

Root Object Collections 131
Exercise 10.1 - Adding a BankAccount Dictionary 132
Exercise 10.2 - Adding an Exclusive Collection 135
Exercise 10.3 - Adding Inverse References 136
Exercise 10.4 - Adding Root Object Collections 138
Exercise 10.5 - Multiple Inverses 141

Challenge #1 141
Challenge #2 141

Conditions 142
Constraint on Collection Maintenance 142
Cardinality 142
Exercise 10.6 - Adding an allHighValueAccounts Collection 143

Module 11 Forms 147
Introduction 147
View Schema 149
Painter 150
Forms 152
Buttons 153
Text Boxes 154
Subforms 156
Exercise 11.1 - Adding the BankingViewSchema 157
Exercise 11.2 - Adding a CustomerDetails Form 157
Exercise 11.3 - Adding a JadeScript Method to Run a Form 158
Exercise 11.4 - Adding a CustomerAdd Form 159
Exercise 11.5 - Coding the CustomerDetails Form 160
Exercise 11.6 - Coding the CustomerAdd Form 161
Menus 163
Multiple Document Interface 165
List Boxes 167

Populating a List Box 168
Determining the Selected Object 169

Editing a Customer 170
Tables 171

Populating a Table 172
Determining the Selected Object 173

Exercise 11.7 - Adding a MainMenu Form 174
Exercise 11.8 - Adding a CustomerList Form 175
Exercise 11.9 - Adding a setPropsOnUpdate Method 177

Developer's Course

Contents v

Developer's Course

vi Contents

Exercise 11.10 - Adding a CustomerEdit Form 178
Exercise 11.11 - Changing the CustomerList Form 179

Module 12 Applications 183
Introduction 184
Defining a GUI Application 185

Web Services and REST Services 186
Logon Authentication 188
Application Security 189
Shortcut to Run an Application 189
Exercise 12.1 - Defining a Banking Application 190
Exercise 12.2 - Adding a Logon Form 190
Exercise 12.3 - Reimplementing getAndValidateUser 191

Challenge 191
Environmental Objects 192
startApplication Methods 192
JADEMonitor 193
createExternalProcess Method 193
Calling External Functions 194
Database Backup 195
Defining a Non-GUI Application 196
Exercise 12.4 - Multitasking 197
Exercise 12.5 - Adding a Non-GUI Application 198
Exercise 12.6 - Adding Backup to the MainMenu 199

Module 13 Exceptions 201
Introduction 201
Exception Classes 203
Default Exception Handler 204
Coding an Exception Handler 205
Arming an Exception Handler 206
Returning from an Exception 207
User Exceptions 208
Mapping Method 209
Exercise 13.1 - Causing an Exception 209
Exercise 13.2 - Adding a Global Exception Handler 210
Exercise 13.3 - Deliberately Causing Another Exception 211
Exercise 13.4 - Adding a Local Exception Handler 212
Exercise 13.5 - Raising an Exception 213

Module 14 Notifications and Timers 215
Introduction 215
Notifications and Events 216

System Events 216
User Events 217
Subscribing to Notifications 217
Unsubscribing from Notifications 218
Publishing a User Event 218
Responding to Notifications 219
Exercise 14.1 – Loading a Class 219
Exercise 14.2 – Using System Notifications 221
Exercise 14.3 – Defining a Global Constant 223
Exercise 14.4 – Using User Notifications 224

Timer Events 226
Beginning and Ending a Timer 226
Responding to a Timer 227
Exercise 14.5 – Using a Timer 227

Module 15 Nodes, Processes, and Caches 229
Introduction 229
Distributed Processing 229
Nodes and Processes 231
Persistent Cache 231
Transient Cache 232
Persistent, Transient, and Shared Transient Objects 232
Demonstration 233

Module 16 Transactions and Locking 235
Introduction 235
Update Transactions 236
Cache Coherency 236
Lock Types 237
Lock Durations 238
Locking Methods 238
Demonstration 240
Read Transactions 240
Lock and Deadlock Exceptions 241

Debugging Lock Exceptions 242
Lock Exception Object 243
Queued Locks 244
Monitoring Locks 245
Shared Locks on Collections 245
Shared Transient Objects 245
Exercise 16.1 - Using Locking to Check Editions 246

Module 17 Printing 249
Introduction 249
Designing a Report 250
Printer Object 251
Printer Methods 251
Exercise 17.1 - Adding a Customer Report 253
Exercise 17.2 - Coding a Customer Report 255

Evaluation Form 257

Developer's Course

Contents vii

Overview

The course is a five-day course aimed at people wanting to learn how to develop systems in the Jade Platform. There
are no prerequisites, although experience in developing in another language would help.

The schedule is as follows.

Monday

Module 1 - Installing the Jade Platform

Module 2 - Schemas

Module 3 - JadeScripts

Module 4 - Application Object

Module 5 - Primitive Types

Module 6 - Classes

Tuesday

Module 6 - Classes

Module 7 - Root Object

Module 8 - Inheritance and Polymorphism

Module 9 - Collections

Wednesday

Module 10 - Relationships

Module 11 - Forms

Thursday

Module 12 - Applications

Module 13 - Exceptions

Module 14 - Notifications and Timers

Friday

Module 14 - Notifications and Timers

Module 15 - Nodes, Processes, and Caches

Module 16 - Transactions and Locking

Module 17 - Printing

At the end of each module, there are a number of exercises for you to practice to build your skills. The exercises
enable you to build a simplified banking system, which despite its simplicity, demonstrates many of the important
features of the Jade Platform.

Module 1 Installing the Jade Platform

This module contains the following topics.

Introduction

Exercise 1.1 – Installing the Jade Platform

Jade Folders

Running the Jade Platform in Single User Mode

Running the Jade Platform in Multiuser Mode

Exercise 1.2 – Running the Jade Platform

Development and Run Time

Files for the Course

Introduction
You can download the Jade Platform software and obtain a free developer license from the Jade web site, at
https://www.jadeworld.com/jade-platform/developer-centre/download-jade/.

https://www.jadeworld.com/jade-platform/developer-centre/download-jade/

Developer's Course

12 Module 1 Installing the Jade Platform

You require the Jade 64-bit version for this course. You can determine your operating system from the System About
settings or the Control Panel, depending on your operating system, to check that you are running 64-bit Windows.

Note There is a separate download for the Jade Platform documentation in PDF (print) format.

Exercise 1.1 - Installing the Jade Platform
Follow these instructions to install the Jade Platform on your PC or laptop.

1. Request a free developer license by opening https://www.jadeworld.com/jade-platform/developer-
centre/pricing-licensing/free-development-license in your browser. A form is displayed for you to enter your
information and then request the free license.

https://www.jadeworld.com/jade-platform/developer-centre/pricing-licensing/free-development-license
https://www.jadeworld.com/jade-platform/developer-centre/pricing-licensing/free-development-license

Shortly you will be notified by a message to the e-mail address that you specified when requesting the license of
your license name (which is case-sensitive) and license key (not case-sensitive). You can now install the Jade
Platform.

2. On the https://www.jadeworld.com/jade-platform/developer-centre/download-jade/ web page, download the full
Jade 2022 for Windows 64-bit (ANSI); that is, the JADEwin64Ansi.exe file.

3. Optionally, download the 2022 Documentation Package (the JADE Docs.exe file) from
https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation/.

4. Run the JADEwin64Ansi.exe setup program and complete the steps of the installation with the actions
specified in the following table. (The steps in this instruction are based on the Windows 10 operating system.)

Step Action

Welcome Click the Next button.

License Agreement Click the Yes button, to agree to the terms of the license.

Installation Type Select the Fresh Copy option, and then click the Next button.

Setup Type Select the Development option, and then click the Next button.

User Information Enter the License Name and License Key from your license, and then
click the Next button.

Select Installation Folders Enter C:\JadeCourse in the Install Directory text box, and then click the
Next button.

Select Program Folder Enter Jade Course in the Program Folder text box, and then click the
Next button.

Setup Completed! Click the Finish button.

5. If you downloaded the 2022 Documentation Package, run the JADE Docs.exe setup program and specify
C:\JadeCourse as the Destination folder.

6. Check that files have been installed into the correct locations on your C: drive.

Jade Folders
The Jade Platform files are installed into a number of folders.

The bin folder contains the executable (.exe) and library (.dll) files.

The Documentation folder contains the help (.pdf) files in print format. (By default, context-sensitive help launches
the web (HTML5) format documentation, as covered in "Context-Sensitive Help", in Module 4 of this course.)

The logs folder contains the Jade message log file (jommsg.log) and error log files.

The system folder contains the database (.dat) files, the initialization file (jade.ini), and a folder for the database
journal files.

Developer's Course

Module 1 Installing the Jade Platform 13

https://www.jadeworld.com/jade-platform/developer-centre/download-jade/
https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation/

Developer's Course

14 Module 1 Installing the Jade Platform

Running the Jade Platform in Single User Mode
When you run the Jade Platform in single user mode, the database is automatically opened for your exclusive use.

The installation process creates a group of program shortcuts on the Windows Start menu. You can run the Jade
Platform in single user mode by selecting the JADE shortcut from the menu.

The first form that is displayed is the logon form.

Although you can add a security system to validate the user id and password, by default there is none. Enter your
name in the Username text box, select the Browse Classes option, and then click the Start button.

If this is your first time starting the Jade Platform, three popup dialogs are displayed to help you get started. The Jade
Release Notes dialog tells you about the new features in the 2022 release, the Tip of the Day dialog gives you handy
tips and tricks relating to the Jade Platform, and the Start dialog helps you create your first schema.

You can close all of these dialogs, as this course will guide you through your first usage of the Jade Platform
development environment.

You are now in the Jade Platform development environment, with the Schema Browser displayed.

The Jade Platform development environment is written in the Jade language. Jade provides you with a predefined set
of classes that comprise a class hierarchy, or framework.

The Jade Platform development environment enables you to define classes, Jade methods, properties, constants,
conditions, and form definitions. (For details, see Chapters 1 through 5 in the Development Environment User's
Guide; for example, the 2022 product information is available from
https://secure.jadeworld.com/JADETech/Jade2022/OnlineDocumentation/Default.htm.)

The integrated editor pane is displayed in the form specified by your editor options; that is, it is user-specific. Use the
editor pane to:

Define new methods or conditions in the selected class, primitive type, or interface

Maintain existing methods and conditions using the integrated editor pane in a browser

Compile methods and conditions

Execute methods in the JadeScript class of the Class Browser (if selected)

Change or rename an entity (for example, a property, local constant, variable, or method parameter) selected
within the body of a method in the editor pane

Developer's Course

Module 1 Installing the Jade Platform 15

https://secure.jadeworld.com/JADETech/JADE2022/OnlineDocumentation/Default.htm

Developer's Course

16 Module 1 Installing the Jade Platform

Jade provides hierarchy nodes, toolbar buttons, and menus, to enable you to navigate around the Jade Platform
development environment. The Jade Platform development environment contains browser windows that provide a
hierarchical structure of the browser elements. The Schema Browser is always opened on start-up.

You can access the browser windows from Browse menu commands or associated accelerator keys, or you can
access some browsers from toolbar buttons or by using shortcut keys. For details about specifying your browser
preferences, see "Maintaining Browser Options", in Chapter 2 of the Development Environment User's Guide.

To display smaller toolbar icons

1. Select the Options menu.

2. Select the Preferences command.

3. Click the Browser tab to display your browser options.

4. In the Toolbar Icon Size group box at right of the sheet, select the Small option button so that the background
form looks similar to the following image. (Conversely, you could select the Large option button.)

When you select the display of small toolbar icons, the editor clipboard toolbar is displayed at the right of the toolbar.
You can float this editor clipboard toolbar, which enhances the use of the internal Jade editor clipboards and the
Windows clipboard, and you can view the clipboard text in bubble help by moving the mouse over the clipboard buffer.

To hide the display of the editor clipboard toolbar or the floated Jade Clipboard Text Contents form, uncheck the Show
Clip Board Toolbar check box on theWindow sheet of the Preferences dialog or select the Show Clipboard
Toolbar command in the View menu. If the editor clipboard toolbar is docked in the toolbar of the main development
environment window, hiding the main development environment window toolbar also hides the editor clipboard
toolbar.

Tip You can also apply a light or dark color mode or change the skin, by selecting the Preferences command from
the Options menu, and then selecting the color mode and skin that you want to use in the Color Mode group box and
the Select JADE Skin combo box, respectively, at the lower right of theWindow sheet of the Preference dialog. If
you select <None> in the Select JADE Skin combo box, no skin is applied.

Running the Jade Platform in Multiuser Mode
When you run the Jade Platform in multiuser mode, the database server programmust be running before any clients
can connect. Many clients can connect to the database server at the same time, by using the TCP/IP network protocol.

The Jade folder (JadeCourse, in this example) contains shortcuts for running the Jade Platform in multiuser mode.

Although you will be running the client and server on the same computer, the programs could be run on separate
computers in a distributed way, as shown in the following diagram.

There is also a three-tier connection where a client connects to an application server, which connects to the database
server.

Note The JADE Database Server programmust always be started first.

Developer's Course

Module 1 Installing the Jade Platform 17

Developer's Course

18 Module 1 Installing the Jade Platform

By default, the JADE Database Server program is automatically minimized and an icon is placed in the system tray.
The following image is an example of the maximized database server.

When the database server program is running, you can run the JADE Client program from the Jade folder. The logon
procedure is identical to that for single user mode.

Exercise 1.2 - Running the Jade Platform
Run the Jade Platform in single user mode and multiuser mode by following the steps outlined in previous sections.

Development and Run Time
The multiuser architecture for Jade development (database server, application servers, and clients) is the same as for
running applications developed in the Jade Platform. This is hardly surprising, as the Jade Platform development
environment is a Jade application.

Files for the Course
Copy the Files folder to C:\JadeCourse\Files on your PC or laptop. If you are attending this course in person, this
folder will be provided to you on a USB drive. You can download the files from a USB drive; otherwise, you can
download the files from https://secure.jadeworld.com/JADETech/Education/DevCourse/JadeDevCourseFiles.zip.

https://secure.jadeworld.com/JADETech/Education/DevCourse/JadeDevCourseFiles.zip

Module 2 Schemas

This module contains the following topics.

Introduction

Other Browser Windows

Exercise 2.1 – Adding a Schema

Exercise 2.2 – Opening a Class Browser

Introduction
Schemas provide a mechanism to organize classes. When you install the Jade Platform, the system classes are
installed in the RootSchema. All other schemas inherit directly or indirectly from RootSchema; that is, the
functionality of all system classes is available.

In the following image, a BankingSchema and a StudentManagementSchema have been added.

The banking classes are not available to the StudentManagementSchema and the student management classes are
not available to the BankingSchema.

Note There is a package feature, which enables selected classes to be exported from one schema and imported
into another.

One schema could have been added as a subschema of the other, as shown in the following image.

Developer's Course

20 Module 2 Schemas

With this hierarchy, the StudentManagementSchema inherits all of the classes from the BankingSchema along with
the system classes from RootSchema. This probably does not make a lot of sense.

Note Inheritance works only in the downwards direction, so the BankingSchema would not inherit classes from the
StudentManagementSchema.

Jade Care is the group within Jade Software Corporation that develops tools to manage Jade systems (and other
technologies).

Jade applications that are managed with JadeCare must have the JadeCare Start class library (also known as
CardSchema) installed as a superschema of each application. It is available to all Jade users who can utilize the
classes and applications in the CardSchema.scm and CardSchema.ddx files in their own systems. The functionality
for exception handling, logging, FTP, LDAP, and so on, adds to that available from RootSchema. CardSchema can
be downloaded with a free license from the Jade web site. For more information, see https://www.jadeworld.com/jade-
platform/developer-centre/learn/jadecare.

https://www.jadeworld.com/jade-platform/developer-centre/learn/jadecare
https://www.jadeworld.com/jade-platform/developer-centre/learn/jadecare

In the following schema hierarchy, CardSchema functionality is made available to the StudentManagementSchema
and to the BankingSchema.

Alternatively, you could create a schema containing your own generically useful classes, as shown in the following
image.

Themodel (that is, database-related) classes can be separated from the view (that is, application-related classes) with
the following schema hierarchy.

Developer's Course

Module 2 Schemas 21

Developer's Course

22 Module 2 Schemas

Other Browser Windows
In the Schema Browser, when you select a schema to work with, you can then open other browser windows for that
schema; for example, a Class Browser, which you can use for adding classes to the schema.

To open a Class Browser, click the C button from the Jade Platform development environment toolbar.

Exercise 2.1 - Adding a Schema
In this exercise, you will add a schema to be used for the early part of the course.

1. Select the Schema Browser by clicking the S button from the Jade Platform development environment toolbar.

2. Select RootSchema in the Schema Browser.

3. Add a schema by selecting the Schema menu Add command.

4. Enter FirstSchema as the name of the schema, and then click theOK button.

Exercise 2.2 - Opening a Class Browser
In this exercise, you will look at the classes in the two schemas in your system.

1. Open a Class Browser for the FirstSchema.

2. Open a Class Browser for the RootSchema.

3. Estimate the number of classes in RootSchema.

Developer's Course

Module 2 Schemas 23

Module 3 JadeScripts

This module contains the following topics.

Introduction

Structure of a Method

Exercise 3.1 – Hello World

Exercise 3.2 – read and write Instructions

Exercise 3.3 – return and epilog Instructions

Exercise 3.4 – Exceptions

Exercise 3.5 – foreach Instruction

Exercise 3.6 – while Instruction

Debugging a JadeScript Method

Exercise 3.7 – Jade Debugger

Using the Jade User Interrupt

Parameter Usage Options

Exercise 3.8 – break and continue Instructions

Exercise 3.9 – Jade User Interrupt

Exercise 3.10 – Parameters and Return Type

selfObject

Exercise 3.11 – Parameter Usage Options

Introduction
This module has a number of exercises that introduce you to the syntax of programming in Jade. It introduces the
JadeScript class, which is defined in the RootSchema and used by developers to write and execute methods directly
from the Jade Platform development environment.

JadeScript methods are not designed to be part of a user application, but can be used to:

Create, delete, and fix data

Experiment, demonstrate, and test code

Developer's Course

26 Module 3 JadeScripts

By default, the JadeScript class is not displayed because it is inherited from a superschema. To display the class in
the Class Browser, press F4 or use the Classes menu Find command.

Structure of a Method
When you add a method to a class using the Methods menu New Jade Method command, a method skeleton is
displayed in the editor pane ready for you to enter your code.

The top line is the method signature.

In the following example, the canWithdrawmethod for a bank account object determines whether there are sufficient
funds to meet a proposed withdrawal.

canWithdraw(amount: Decimal): Boolean protected;

In this method signature:

canWithdraw is the method name. Method names begin with a lowercase letter and contain no spaces.

amount is the parameter, which is of type Decimal. It is the value of the proposed withdrawal.

Boolean is the type of the value that must be returned by the method. It will be true if there are sufficient funds;
otherwise false.

protected is the method option. It can be called only by methods in the same class.

The method body can contain an epilog section with instructions that you want to be executed even if the method is
aborted or exited from with an early return instruction. It is often used for tidy-up code; for example, deleting transient
objects and changing the mouse pointer back to its default shape.

begin
app.mousePointer := Window.MousePointer_HourGlass;
// other instructions

epilog
app.mousePointer := Window.MousePointer_Default;

end;

Exercise 3.1 - Hello World
In this exercise, you will write and execute a JadeScript method to display the traditional "Hello World" greeting. The
write instruction writes a message to the Jade Interpreter Output Viewer window.

1. Open a Class Browser for the FirstSchema.

2. Find the JadeScript class.

Developer's Course

Module 3 JadeScripts 27

Developer's Course

28 Module 3 JadeScripts

3. Add a method to the JadeScript class by selecting the Methods menu New Jade Method command. Enter
helloWorld as the name of the method, and then click theOK button.

4. Enter the following code.

helloWorld();

begin
write "Hello World";

end;

5. Compile the method by selecting the Methods menu Compile command or by pressing F8.

6. Execute the method by selecting the Jade menu Execute it command or by pressing F9.

The greeting is then displayed in the Jade Interpreter Output Viewer window.

Tip In the Jade Interpreter Output Viewer, select the Options menu Always on top command to prevent the
window from being hidden.

In this method:

Thewrite instruction is used to display information.

Each instruction is terminated with a semicolon (;) character.

Exercise 3.2 - read and write Instructions
In this exercise, you will use the read instruction to enable the user to enter information into a User Input dialog.

Create and execute a displayYourName JadeScript method, as follows.

displayYourName();

vars
name: String;

begin
read name;
write "Your name is " & name;

end;

In this method:

A variable of type String is declared in the vars section.

The read instruction prompts the user to enter information, which is stored in the name variable.

The concatenation operator, which is the ampersand (&) character, is used to join two strings in the output.

Exercise 3.3 - return and epilog Instructions
In this exercise, you will use the return instruction to exit from the method before all of the instructions have been
executed. However, the instructions in the epilog section should always be executed.

1. Create and execute a returnAndEpilog JadeScript method, as follows.

returnAndEpilog();

begin
write "this line is displayed";
return; // Exits from the method
write "return instruction prevents getting to this line";

epilog
write "epilog instructions are ALWAYS executed";

end;

Developer's Course

Module 3 JadeScripts 29

Developer's Course

30 Module 3 JadeScripts

2. Execute the method. Two lines are written to the Jade Interpreter Output Viewer window, as follows.

In this method:

The return instruction exits from the method before all of the instructions are executed.

The instruction in the epilog section is executed before the method returns.

Exercise 3.4 - Exceptions
In this exercise, you will code an instruction that Jade cannot execute so that it therefore raises an exception.

When the Abort button is clicked on the Unhandled Exception dialog, the instructions in the epilog section are always
executed before the method is removed from the stack.

1. Create and execute an epilogAndException JadeScript method, as follows.

epilogAndException();

begin
write "this line is displayed";
write 42/0; // Raises a divide-by-zero exception
write "Exception prevents getting to this line";

epilog
write "epilog instructions are ALWAYS executed";

end;

2. The Unhandled Exception dialog is displayed, because one of the instructions cannot be executed.

3. Click the Abort button. If the Clear Display command from the Jade Interpreter Output Viewer window was not
selected, another two lines are written to the Jade Interpreter Output Viewer window, as follows.

Developer's Course

Module 3 JadeScripts 31

Developer's Course

32 Module 3 JadeScripts

In this method:

The exception instruction occurs before all of the instructions are executed.

When you click the Abort button, the instruction in the epilog section is executed before the method is removed
from the stack.

Exercise 3.5 - foreach Instruction
In this exercise, you will use a foreach instruction loop to output your name ten times.

1. Create and execute a loopWithForeach JadeScript method, as follows.

loopWithForeach();

vars
name: String;
i: Integer;

begin
read name;
foreach i in 1 to 10 do

write i.String & " " & name;
endforeach;

end;

In this method:

A counter variable with the name i of type Integer is declared in the vars section.

The foreach instruction repeats the instructions between foreach and endforeach ten times.

The Integer variable must be cast as a string with the syntax i.String before it can be concatenated with a string.

Note Type casting is the process of changing a variable from one type to another.

Exercise 3.6 - while Instruction
In this exercise, you will use awhile instruction loop to output your name ten times.

1. Create and execute a loopWithWhile JadeScript method, as follows.

loopWithWhile();

vars
name: String;
i: Integer;

begin
read name;
while i < 10 do

i := i + 1;
write i.String & " " & name;

endwhile;
end;

In this method:

A counter variable of type Integer is declared in the vars section.

While the condition is true, thewhile instruction repeats the instructions betweenwhile and endwhile.

Debugging a JadeScript Method
You can run a JadeScript method through the debugger by selecting the Jade menu Debug command or by pressing
Shift+F9.

The debugger shows the method code with the next line of code to be executed highlighted with a blue background.

Hover the mouse over a toolbar icon to identify the functionality of that icon (for example, to continue without stopping
or to step over or step into the next statement).

You can execute the code one instruction at a time, by clicking the Step into next statement and Step over next
statement buttons in the toolbar. The difference between the two is that if the blue-highlighted statement calls another
method, Step over next statement executes the called method without debugging, whereas Step into next
statement debugs the called method.

Developer's Course

Module 3 JadeScripts 33

Developer's Course

34 Module 3 JadeScripts

When you click the Continue execution button in the toolbar, the debugger does not step through the code; it
executes instructions until it encounters a breakpoint instruction, stopping after executing the instruction immediately
before the breakpoint.

You can set a breakpoint in the editor or debugger by pressing the F5 key. The line containing the cursor is highlighted
with a yellow background, to indicate that it is a breakpoint.

For details about the debugger, see "Using the Jade Debugger", in Chapter 7 of the Development Environment User's
Guide (for example, at https://secure.jadeworld.com/JADETech/Jade2022/OnlineDocumentation/Default.htm).

https://secure.jadeworld.com/JADETech/Jade2020/OnlineDocumentation/Default.htm

Exercise 3.7 - Jade Debugger
In this exercise, you will write a JadeScript method and then debug it to see how it works.

1. Create and debug a diamond JadeScript method, as follows.

diamond();
vars

i : Integer;
j : Integer;
k : Integer;
s : String;

begin
foreach i in 1 to 5 do

s := " ";
foreach j in 1 to 5 - i do

s := s & " ";
endforeach;

s := s & "*";
foreach k in 2 to i do

s := s & "**";
endforeach;
write s;

endforeach;
foreach i in 4 to 1 step - 1 do

s := " ";
foreach j in 1 to 5 - i do

s := s & " ";
endforeach;

s := s & "*";
foreach k in 2 to i do

s := s & "**";
endforeach;
write s;

endforeach;
end;

2. Set a breakpoint on the following line in the JadeScript method (for example, by pressing F5 or Ctrl+Alt+B when
the caret is positioned on that line).

foreach i in 4 to 1 step - 1 do

The selected line of code is then highlighted in yellow (or the selected color of your choice).

3. Select the Jade menu Debug command or press Shift+F9.

4. Execute the code one instruction at a time, by clicking the Step into next statement and Step over next
statement buttons in the toolbar.

5. If you want to execute instructions until a breakpoint instruction is encountered and stop after executing the
instruction immediately before the breakpoint, click the Continue execution button in the toolbar so that the
debugger does not step through the code.

Developer's Course

Module 3 JadeScripts 35

Developer's Course

36 Module 3 JadeScripts

Using the Jade User Interrupt
When you run a user application or a JadeScript method, the Jade User Interrupt icon is displayed in the system tray.

Note For the user interrupt to be displayed, the database must not be opened in production mode and the
ShowUserInterrupt parameter in the [Jade] section of the Jade initialization file must be set to true.

The command options that are available are as follows.

Attach Debugger, which dynamically attaches the Jade debugger when the next method starts

Break Application, which interrupts a running application and displays an exception dialog

Code Coverage, which determines the degree to which the code in methods is executed

Profiler, which records actual and total times spent in methods

Trace Methods of Application, which outputs the method entry and method exit to the interpreter output viewer

Terminate Application, which terminates an application

Show an invisible form, which enables you to terminate an application that has no visible forms

If your code is caught in an infinite loop, the Terminate Applicationmessage is not received. However, you can use
the Break Application command.

Tips An alternative way to terminate an infinite loop is to use the Force Off User command in the JADEMonitor
program.

When you use the Break Application command, an exception dialog is displayed, enabling you to abort the action.

Developer's Course

Module 3 JadeScripts 37

Developer's Course

38 Module 3 JadeScripts

Parameter Usage Options
Compared with the preceding material in this module, this section is relatively advanced. You may need to return to it
at a later stage.

The following diagram shows the calledmethod being invoked with arguments str and cust.

The calledmethod is defined with parameters pString and pCust. Each of these parameters could be followed by a
constant, input, io, or outputmethod usage option, which affects:

How the parameter is initialized

Whether the parameter can be assigned a new value

Whether the parameter can be updated

If a parameter is assigned a new value or updated, the change is reflected in the argument when the method returns.

The following subsections describe what happens for each method parameter usage option.

constant
constant is the default parameter usage option. If nothing is specified, constant is assumed.

The value of a constant usage parameter cannot be changed by direct assignment or by calling an updatingmethod.

The following method shows the restrictions that apply to constant parameters.

called(pString: String constant; pCust: Customer constant);

begin
pString := "Hello World"; // NOT allowed
pString.replaceChar("a", "b"); // NOT allowed
pCust := Customer.firstInstance(); // NOT allowed
pCust.address := "Smallville"; // NOT allowed

end;

input
For primitive parameters, a usage of input is similar to constant in that the value cannot be changed by assignment.
However, it can be changed by calling an updatingmethod.

For object parameters, a usage of input specifies that the object the parameter references cannot be changed.
However, properties of the object can be updated.

The following method shows the restrictions that apply to input usage parameters.

called(pString: String input; pCust: Customer input);

begin
pString := "Hello World"; // NOT allowed
pString.replaceChar("a", "b"); // Allowed
pCust := Customer.firstInstance(); // NOT allowed
pCust.address := "Smallville"; // Allowed

end;

output
An output usage parameter is used to pass a value from the method being called back to the calling method.

Tip output parameters are useful when you need to return more than one value from a method.

The value of an output usage parameter is initialized to the appropriate null value at the start of the method being
called; for example, zero (0) for an Integer, "" for a String, and a null reference for an object parameter. Effectively,
this means that values are not passed in.

When the method returns, the values of output usage parameters are copied back into the caller’s arguments.

called(pString: String output; pCust: Customer output);

begin
pString := "Hello World"; // Allowed
pString.replaceChar("a", "b"); // Allowed
pCust := Customer.firstInstance(); // Allowed
pCust.address := "Smallville"; // Allowed

end;

io
An io usage parameter is used to pass a value into the calledmethod; that is, parameters are initialized from
arguments and are not set to null values.

In effect, io usage parameters enable arguments to be passed in, updated, and passed back.

Developer's Course

Module 3 JadeScripts 39

Developer's Course

40 Module 3 JadeScripts

Exercise 3.8 - break and continue Instructions
In this exercise, you will use an if instruction inside a loop to control the iteration. Without the if instruction, the loop
would print your name ten times.

However, the third printing of your name is skipped and the loop is exited before printing your name for the eighth time.

1. Create and execute a breakAndContinue JadeScript method through the debugger and step through each
instruction.

breakAndContinue();

vars
name: String;
i: Integer;

begin
read name;
while i < 10 do

i := i + 1;
if i = 3 then

continue;
elseif i = 8 then

break;
endif;
write i.String & " " & name;

endwhile;
end;

In this method:

The loop contains an if instruction.

The continue instruction skips to the next iteration of a foreach orwhile loop.

The break instruction exits from a foreach orwhile loop.

Exercise 3.9 - Jade User Interrupt
In this exercise, you will deliberately code an infinite loop.

1. Create and execute an infiniteLoop JadeScript method, as follows.

infiniteLoop();

begin
while true do
endwhile;

end;

2. Use the Jade User Interrupt to break out of the infinite loop.

Exercise 3.10 - Parameters and Return Type
In this exercise, you will add one JadeScript method that can call another JadeScript method, passing values as
parameters.

1. Add a JadeScript method called constructMessage, which is passed a String and an Integer parameter.

The parameters are used to construct a long string and then return this value to a calling method.

constructMessage(phrase: String; count: Integer): String;

vars
str: String;
i: Integer;

begin
foreach i in 1 to count do

str := str & phrase;
endforeach;
return str;

end;

2. What happens when you attempt to execute this JadeScript method?

Note Amethod with parameters must be called from another method so that values for the parameters can be
provided.

3. Add a JadeScript method called start, which calls the constructMessagemethod.

start();

vars
str: String;
i: Integer;

begin
read str;
read i;
write self.constructMessage(str, i);

end;

4. Execute the startmethod through the debugger.

Note The constructMessagemethod cannot be executed directly, because it has parameters. Execute the
startmethod, which calls the constructMessagemethod.

5. Use the Step into next statement toolbar button to step through all of the instructions.

In this method:

The assignment operator (:=) is used.

The variable self refers to the receiver; that is, the object for which the method is executing, which is a
JadeScript object.

Note You can omit the self. syntax; for example, constructMessage(str, i) is equivalent to
self.constructMessage(str, i).

However, we recommend that you include the self. system variable, to avoid any ambiguity.

Developer's Course

Module 3 JadeScripts 41

Developer's Course

42 Module 3 JadeScripts

self Object
In the previous exercise, the start JadeScript method called the constructMessage JadeScript method (that is, a
method in the same class), by sending a message to the self object.

In the following example, thewithdrawmethod in the BankAccount class refers to its balance property as
self.balance.

You can omit self from the syntax, as follows.

withdraw(amount: Decimal) updating;

begin
balance := balance - amount;

end;

Exercise 3.11 - Parameter Usage Options
In this exercise, you will add a JadeScript method called threeHellos, which calls another JadeScript method called
threeWorlds.

Developer's Course

Module 3 JadeScripts 43

Developer's Course

44 Module 3 JadeScripts

Three strings with a value of "Hello" are passed to threeWorlds, which attempts to concatenate " World". The value
of the resulting string depends on the whether the method parameter usage is input, output, or io.

1. Add a JadeScript method called threeWorlds, which is passed three String parameters.

The first parameter has the input usage, the second has the output usage, and the third has the io usage.
Instructions attempt to add the string " World" to each parameter.

threeWorlds(inputStr: String input; outputStr: String output; ioStr: String
io);

begin
// inputStr := inputStr & " World"; // Not allowed for constant or input
outputStr := outputStr & " World";
ioStr := ioStr & " World";

end;

2. Add a JadeScript method called threeHellos that calls threeWorlds.

threeHellos();

vars
str1, str2, str3: String;

begin
str1 := "Hello";
str2 := "Hello";
str3 := "Hello";
self.threeWorlds(str1, str2, str3);
write str1;
write str2;
write str3;

end;

3. Execute threeHellos through the debugger.

Use the Step into next statement toolbar button to step through all of the instructions. Observe how the string
values change.

4. Three lines are written to the Jade Interpreter Output Viewer window, as follows.

In this method:

The input parameter "Hello" in the threeWorldsmethod cannot be changed.

The output parameter "Hello" in the threeWorldsmethod is initialized to a null value before it is concatenated
with " World".

The io parameter "Hello" in the threeWorldsmethod is concatenated with " World".

Developer's Course

Module 3 JadeScripts 45

Module 4 Application Object

This module contains the following topics.

Introduction

Context-Sensitive Help

Exercise 4.1 – Context-Sensitive Help and the app Object

Global Constants

Another Use of the ApplicationObject

Exercise 4.2 – Adding an Attribute

Exercise 4.3 – Using app to Store a Value

Introduction
When you run a JadeScript method or an application, a transient instance of your Application subclass is created.
The object, like all transient objects, is automatically deleted when the JadeScript method or application finishes. This
object inherits a lot of useful functionality from the Application class.

You can refer to this transient Application object in your code by using the app system variable.

Developer's Course

48 Module 4 Application Object

The following JadeScript method demonstrates some useful methods provided by the app object.

appMethods();

// Copy some text to the clipboard before pressing F9
begin

app.clearWriteWindow();
write app.copyStringFromClipboard();
app.msgBox("Do you want to continue?", "Question", MsgBox_Yes_No);
write "The method will attend to other events for 10 seconds";
app.doWindowEvents(10000);
// Other useful methods
write app.clock();
write app.dbPath();
write app.random(100);
write app.userName();

end;

Context-Sensitive Help
Context-sensitive help is available in the editor pane for Jade instructions and for RootSchema types, properties, and
methods.

With the provision of the full product information library in both HTML5 (web) and PDF (print) format, by default,
context-sensitive help is obtained from .htm topics in the HTML5 web format of the product information.

Context-sensitive help to HTML5 topics is controlled by the UseJadeWebHelp parameter in the [JadeHelp] section of
the Jade initialization file. This parameter is true by default, in which case it reads the JadeHelpBaseUrl parameter in
that section. If a value is specified for the JadeHelpBaseUrl parameter, it uses that URL. If the value is <default> or it
is empty, the URL is determined by the internal hard-coded URL for the current release. For example, the [JadeHelp]
section of the Jade initialization file could contain the following parameter values.

Set the value of the UseJadeWebHelp to false if you want to use context-sensitive help to specific sections in the
approprihtmlSchemesate PDF files (for example, if you have slow or restricted web access, or if you want to print a
range of pages or all of a document).

To access context-sensitive help, position the cursor inside the word (for example, app) and then press F1 to open the
web help or the relevant section of a Portable Document Format (PDF) file in Adobe Reader, as shown in the following
diagram that accesses the topic in a web browser.

Developer's Course

Module 4 Application Object 49

Developer's Course

50 Module 4 Application Object

Exercise 4.1 - Context-Sensitive Help and the app Object
In this exercise, you will demonstrate and learn about the functionality of the app object, by using context-sensitive
help.

1. Add a JadeScript method called appMethods and code it as follows.

appMethods();

// Copy some text to the clipboard before pressing F9
begin

app.clearWriteWindow();
write app.copyStringFromClipboard();
app.msgBox("Do you want to continue?", "Question", MsgBox_Yes_No);
write "The method will attend to other events for 10 seconds";
app.doWindowEvents(10000);
// Other useful methods
write app.clock();
write app.dbPath();
write app.random(100);
write app.userName();

end;

2. Compile the method.

3. Copy some text to the clipboard from any application; for example, Word, Notepad, or a web browser.

4. Execute the method.

5. Position the cursor inside the word app, and then press F1 to open context-sensitive help.

6. Position the cursor inside the wordwrite, and then press F1.

7. Obtain context-sensitive help for the following method names in the appMethods JadeScript method.

clearWriteWindow

clock

copyStringFromClipboard

dbPath

doWindowEvents

msgBox

random

userName

In this appMethodsmethod:

Single-line comments begin with two forward slash characters (//). Multiple-line comments are enclosed between
/* and */.

Global Constants
Global constants are primitive values that can be accessed by any class or method in the current schema and
subschemas. Constants are grouped into categories.

Access the list of categories and the global constants they contain, by using the Browse menuGlobal Constants
command. The following image shows the global constants and categories in RootSchema.

Another Use of the Application Object
You can use the app object to remember important information for the duration of the application. This is extremely
useful for an application but not at all important for a JadeScript.

Developer's Course

Module 4 Application Object 51

Developer's Course

52 Module 4 Application Object

The following diagram shows the steps required for an application to store a number, and subsequently to recall that
number later in the session.

The number could have been stored in and retrieved from a persistent database object. However, that would require
communication across the network between the client application and the database server. The app object is a
transient object, which is accessed more quickly from memory.

Exercise 4.2 - Adding an Attribute
In this exercise, you will add a num attribute to your Application subclass.

1. Select your Application subclass in the Class Browser.

2. Add an attribute, by selecting the Properties menu Add Attribute command.

3. Enter num as the name of the attribute, select the Integer type, and then select the Public access option.

4. Click theOK button and the num property is then displayed in the Properties List of the Class Browser.

Developer's Course

Module 4 Application Object 53

Developer's Course

54 Module 4 Application Object

Exercise 4.3 - Using app to Store a Value
In this exercise, you will use the num attribute that you created in the previous exercise.

1. Add a JadeScript method called remembering, coded as follows.

remembering();

begin
// Storing a value in app
app.num := 42;
// Recalling that value
write app.num;

end;

2. Execute the JadeScript method.

Module 5 Primitive Types

This module contains the following topics.

Introduction

Primitive Types

Working with Numbers

Adding Primitive Type Methods

Working with Strings

Working with Dates and Times

Type Casting

Other Primitive Types

Exercise 5.1 – Rounding

Exercise 5.2 – Adding a Primitive Type Method

Exercise 5.3 – Substrings

Exercise 5.4 – Date Arithmetic

Introduction
Dates, times, strings, and so on, are values of a primitive type rather than instances of a class.

As primitive types are simply values, they do not have properties but they do have methods, which are defined in
RootSchema. You can extend this functionality by adding methods to the primitive types in your schema.

Developer's Course

56 Module 5 Primitive Types

The AutoComplete functionality in the editor pane displays methods that can be called for a primitive type.

Primitive Types
Simple values such as dates, times, and strings are handled using primitive types rather than objects. A variable or
attribute that is a primitive type contains a value as opposed to a reference to an object.

A primitive type, unlike a class type:

Does not have properties

Cannot have subtypes

The following diagram shows the available types.

A variable of type Any can represent an object or a primitive value, and provides the isKindOfmethod for type
checking.

isKindOf(type: Type): Boolean;

Working with Numbers
The numeric primitive types are:

Byte, which is an unsigned integer value in the range 0 through 255.

Decimal, which is a number with specified length and number of decimal places.

The Decimal type is the usual choice for currency values. For a Decimal, you must specify the number of digits
(precision) and the number of decimal places (scale factor).

vars
dec: Decimal[6, 2]; // 6 digits altogether

// 2 are after the decimal point (so 4 are in front)
// Maximum value would be 9999.99

Integer, which is a signed 32-bit whole number.

Integer64, which is a signed 64-bit whole number.

Real, which is a floating-point number.

A numeric local variable is initialized to zero (0).

Developer's Course

Module 5 Primitive Types 57

Developer's Course

58 Module 5 Primitive Types

Adding Primitive Type Methods
You can add methods to the primitive types to augment the class type methods supplied in RootSchema. As an
example, when working with prices, the price with tax included is often required. You could add awithTaxmethod, as
shown in the following image.

To open a Primitive Types Browser, click the P button from the Jade Platform development environment toolbar.

When you select the Decimal type in the left-hand window (that is, the Primitive Type List), you can display the
methods provided by RootSchema by selecting the View menu Superschemas command. You can add your own
method in the same way you previously added JadeScript methods, by selecting the Methods menu
New Jade Method command.

In a primitive type method, the self variable refers to the primitive value for which the method is being run; for example,
in thewithTaxmethod, self is the original price to which tax is being added.

The following methods are examples of ways to code awithTaxmethod. In the first implementation, self (the original
price) is not changed. A new decimal value is returned.

withTax(): Decimal;

begin
return self + self * 0.15;

end;

In the next implementation, which has the updating option in the signature, the value of self is changed, and then the
new value returned.

withTax(): updating;

begin
self := self + self * 0.15;

end;

In the second implementation, when you produce the price with tax, you effectively lose the original price.

Working with Strings
The string primitive types are:

Character, which is a single ANSI or Unicode character

String, which is a sequence of characters

StringUtf8, which is a string encoded in UTF8 format

A String or StringUtf8 local variable is initialized to an empty string ("").

A Character local variable is initialized to the null character (hexadecimal 00).

Substring Operator
You can parse a string using a square bracket substring operator, as shown in the following example.

vars
str: String;

begin
str := "Hello world";
write str[7]; // "w" - single character at specified position
write str[4:5]; // "lo wo" - substring with specified start and length
write str[4:end]; // "lo world" - substring from specified start to end

end;

Note The first character in a string is at position 1.

pos Method
The posmethod searches for a specified substring, starting the search from a specified position. It returns the
character position where the substring starts, or zero (0) if the substring is not found, as shown in the following
examples.

write "indefinite article".pos("abc", 1); // Outputs 0 - "abc" is not a substring
write "indefinite article".pos("def", 1); // Outputs 3 - "def" is at position 3
write "indefinite article".pos("def", 5); // Outputs 0 - "def" not found beyond 5

Developer's Course

Module 5 Primitive Types 59

Developer's Course

60 Module 5 Primitive Types

The posmethod is often used to test for a substring, as follows.

if str1.pos(str2, 1) > 0 then
// str2 is a substring of str1

else
// str2 is not a substring

endif;

trimBlanks Method
The trimBlanksmethod removes spaces from the start and the end of a string.

write " surrounded by spaces ".trimBlanks(); // Outputs "surrounded by spaces"

It is often used to clean data before it is stored in the database.

Working with Dates and Times
The date and time primitive types are:

Date, which is the number of days since the start of the Julian period (24 November -4713)

Time, which is the number of milliseconds since midnight

TimeStamp, which is the combined date and time value

TimeStampInterval, which is the difference between two timestamps

TimeStampOffset, which is the UTC date and time value with a local offset

A Date local variable is initialized with today's date. As a Date variable is essentially a 32-bit integer, you can use
simple arithmetic when working with dates, as shown in the following example.

vars
date: Date;

begin
write date; // Outputs today's date
write date + 7; // Outputs the date next week

end;

Type Casting
You can convert a value from one primitive type to another by type casting (if such a conversion makes sense). To
cast an expression, append a period and the destination type, as shown in the following examples.

write 65.Character; // Outputs "A"
write 65.Date; // Outputs "28 January -4712"
write "65".Integer + 35; // Outputs 100
write "65ABC".Integer; // Outputs 65

Thewrite instruction converts the expression that follows to a string.

Type-casting instructions can fail at compile time or at run time, as shown in the following examples.

write 5.TimeStamp; // Compile error - invalid type cast
write 500.Byte; // Runtime error - overflow exception

Other Primitive Types
The other primitive types are:

Binary, which is binary data (for example, graphics and multimedia)

Point, which is the x (horizontal) and y (vertical) coordinates of a point

MemoryAddress, which is the address of a C void* pointer

Exercise 5.1 - Rounding
Write a JadeScript method that:

1. Declares a variable of type Decimal with a length of 12 and a scale factor of 4.

2. Uses the read instruction to store a number that is entered by the user in the variable.

3. Rounds the number entered to two decimal places. (Hint: use the roundedTomethod.)

4. Uses thewrite instruction to display the answer.

Exercise 5.2 - Adding a Primitive Type Method
In this exercise, you will use the read instruction to enable the user to enter information.

1. Open a Primitive Types Browser for FirstSchema.

2. Select the Decimal type.

3. Add and code thewithTaxmethod, which returns a value that is 15 percent greater, rounded to two decimal
places.

4. Test thewithTaxmethod by adding a JadeScript method, as follows.

testTax();

vars
dec: Decimal[12,2];

begin
read dec;
write dec.withTax();

end;

Developer's Course

Module 5 Primitive Types 61

Developer's Course

62 Module 5 Primitive Types

Exercise 5.3 - Substrings
In this exercise, you will work with the first line of text from the customers.txt file.

1. Open the C:\JadeCourse\Files\customers.txt file with Notepad.

If you are using a monospaced font (for example, Courier New), it will look similar to the following image.

2. Each line of the file contains a person's first name, last name, and address; for example, the first line is Barbara
Baynton from Jerusalem. This file has a fixed-width format; that is, the fields are followed by differing numbers
of space characters to maintain the columnar alignment of the data.

a. At which position in the line does Barbara begin?

b. At which position in the line does Baynton begin?

c. At which position in the line does Jerusalem begin?

d. In this file, what is the maximum possible length of a first name?

e. What is the maximum possible length of a last name?

f. What is the maximum possible length of an address?

3. Add a JadeScript method called parsing that contains the following code.

parsing();

vars
str, first, last, address: String;

begin
// Copy of the first line from the customers.txt file
str := "Baynton Barbara Jerusalem ";
// Use the substring operator str[n:m] to complete this method
first := <to be completed>
last := <to be completed>
address := <to be completed>
write first & " " & last & " from " & address;

end;

Note This method will not compile, because the assignment instructions are incomplete.

Complete the assignment instructions and then execute the method.

Exercise 5.4 - Date Arithmetic
In this exercise, you will determine the number of days until Christmas.

1. Create a christmas JadeScript method and code it as follows.

2. Execute the method.

Developer's Course

Module 5 Primitive Types 63

Module 6 Classes

This module contains the following topics.

Introduction

Database Files

Exercise 6.1 – Adding a Schema

Exercise 6.2 – Adding Map Files

Exercise 6.3 – Adding a Class

Instances of a Class

Access to Properties

Exercise 6.4 – Adding Attributes

Exercise 6.5 – Adding a Method

Exercise 6.6 – Testing with a JadeScript Method

Inspecting Database Objects

Extracting and Loading Schemas

Exercise 6.7 – Inspecting Objects

Exercise 6.8 – Removing Test Objects

Exercise 6.9 – Extracting Multiple Schemas

Introduction
The model for the banking system, which you build during the course, is shown in the following diagram.

The Customer class is the first class that you create.

The BankAccount class is the abstract superclass for the hierarchy of bank account classes.

Note The name of an abstract class is italicized in a UML class diagram.

The BankAccount contains methods and properties to be inherited by the real subclasses. The ChequeAccount and
SavingsAccount classes are specialized with appropriate additional methods and properties.

Developer's Course

66 Module 6 Classes

The Bank class is the root object class for the system. (The purpose of a root object will be explained in a later
module.)

For simplicity, classes for depositing and withdrawing money from bank accounts have not been included.

Database Files
The persistent instances of a class are stored in database files, which are files in the system directory with a .dat
extension. Database files are also known asmap files, referring to the mapping that exists between classes and
database files. In the following diagram, the Customer class, ChequeAccount class, and SavingsAccount class are
mapped to the bankingmodelschema.dat file, the default map file that is created for the schema.

You can create additional database files and map each class to a separate file.

When classes are mapped to separate map files, the impact of a database reorganization can be limited, resulting in
saving time because only the affected files need to be reorganized.

Exercise 6.1 - Adding a Schema
In this exercise, you will add a schema that will contain the database classes for a banking system.

1. Select the Schema Browser by clicking the S button from the Jade Platform development environment toolbar.

2. Select RootSchema in the Schema Browser.

3. Add a schema by selecting the Schema menu Add command.

4. Enter BankingModelSchema as the name of the schema and then click theOK button.

Exercise 6.2 - Adding Map Files
In this exercise, you will add map files for the banking system.

1. Select the Maps Browser by clicking theM button from the Jade Platform development environment toolbar.

2. Add a map file by selecting the MapFiles menu Add command.

3. Enter customer as the file name and then click theOK button.

Note Do not specify the .dat extension. It is added automatically.

4. Add cheque.dat and savings.datmap files.

Exercise 6.3 - Adding a Class
In this exercise, you will add a Customer class in the BankingModelSchema.

1. Open a Class Browser for the BankingModelSchema by clicking the C button from the Jade Platform
development environment toolbar.

2. Select theObject class in the Class Browser.

Developer's Course

Module 6 Classes 67

Developer's Course

68 Module 6 Classes

3. Add a class by selecting the Classes menu Add command.

4. Enter Customer as the name of the class, select customer as the name of the map file, and then click theOK
button.

Tip Forgotten to add the map file from the Maps Browser? You can also add new map files directly from this
dialog, by clicking the Add Map File button.

Instances of a Class
The main component of any Jade application is an object. These objects represent real-world entities. When building
a Jade application, you merely mirror reality by creating the components that make up the real-world business system.

An object is an instance of a class. Classes are created by developers as the blueprints or templates that are used to
describe and build objects.

At run time, a Jade application works with objects that represent real-world entities; for example, branches, bank
accounts, and customers. These objects are instances of a class. They have values that can be changed; for
example, the address property of a customer.

Each instance has an object identifier (OID), which is assigned to the object when it is created. The OID is used by the
Jade Object Manager to keep track of the object. In the following diagram, the OID is 2054.157. The first part (2054) is
the class number, so all instances of the Customer class begin with 2054. The last part (157) is the instance number,
indicating that it is the 157th Customer object that was created.

Access to Properties
A property can have one of the following access mode options.

Public

Read-only

Protected

A property can be accessed without restriction by a method in the class in which it is defined (or a subclass). The
purpose of the access mode option is to specify what can be done with the property in methods in other classes. As an
example, consider the following lines of code involving the balance property of ba, a bank account object.

// Getting the value
write ba.balance;

// Setting the value
ba.balance := 100;

Whether the lines of code prevent the method from compiling depends on the access mode option, as shown in the
following table.

Access Getting the value is allowed Setting the value is allowed

 Public Yes Yes

 Read-only Yes No

 Protected No No

The two extremes are public access, where there are no restrictions on accessing the property, and protected access,
where the only way to access the property is through methods that have to be provided in the class. You have to
decide the access mode that is appropriate.

By making a property protected, it cannot be used directly by other classes. It is essentially hidden. However, the
motivation for hiding properties is not secrecy. The goal is to provide a simple interface to the class; that is, a simple
way of working with instances of the class.

Developer's Course

Module 6 Classes 69

Developer's Course

70 Module 6 Classes

In this course, the read-only option (a pragmatic compromise between public and protected) is used for most
properties.

Exercise 6.4 - Adding Attributes
In this exercise, you will add attributes to the Customer class.

1. Select the Customer class in the Class Browser.

2. Add an attribute by selecting the Properties menu Add Attribute command.

3. Perform the following actions on the Define Attribute dialog.

a. Enter firstNames as the name of the class.

b. Select String as the type.

c. Set the length to 25 characters.

d. Set the access mode to read-only.

e. Click theOK button.

4. Add the read-only attributes specified in the following UML class diagram.

Make sure that you set the lengths to the values specified in the previous diagram, because the lengths will be
relevant later in the course.

Exercise 6.5 - Adding a Method
In this exercise, you will add a createmethod with parameters (also known as a constructor with parameters) to the
Customer class.

1. Select the Customer class in the Class Browser.

2. Add a method by selecting the Methods menu New Jade Method command.

3. Enter create as the name of the method. The Updating check box will be checked automatically.

4. Click theOK button.

5. Code the method as follows.

create(addr, first, last: String) updating;

begin
self.address := addr.trimBlanks();
self.firstNames := first.trimBlanks();
self.lastName := last.trimBlanks();

end;

6. Compile the method by pressing F8.

In this method:

The number property is not being set. (In a later module, you will code a mechanism to generate a unique
value.)

The updatingmethod option is automatically included in the method signature, because the createmethod is
called whenever the class is instantiated.

The variable self refers to the receiver; that is, the object for which the method is executing, which is a Customer
object.

The trimBlanksmethod removes any trailing or leading spaces in the data supplied for the new customer.

Developer's Course

Module 6 Classes 71

Developer's Course

72 Module 6 Classes

Exercise 6.6 - Testing with a JadeScript Method
In this exercise, you will add a createCustomer JadeScript method to test the createmethod.

1. Select the JadeScript class in the Class Browser.

2. Add a method called createCustomer by selecting the Methods menu New Jade Method command.

3. Code the method as follows.

createCustomer();

vars
cust : Customer;

begin
beginTransaction;
cust := create Customer("Gotham City", "Bruce", "Wayne") persistent;
commitTransaction;

end;

4. Compile the method by pressing F8.

5. Execute the method through the debugger, using the Step into next statement toolbar button to see the
sequence in which code is executed.

6. Change the data in the createCustomer JadeScript method and then execute the method again.

There should be two customers in the database.

In this method:

The create instruction is used to create an object and to initialize the newly created object.

The instructions creating the customer (that is, an address, a first name, and a last name) are contained within
the beginTransaction and commitTransaction instructions.

Inspecting Database Objects
You can inspect persistent database objects using the Object Inspector. The following diagram shows the customer
objects that you created in the previous exercise.

If you double-click an object in the left-hand pane, a new Object Inspector window is opened to display the object in
detail.

If you single-click a property in the middle pane, the value of the property is displayed in the right-hand pane. Other
information about the object that is displayed is the:

edition, which is one (1) for the first transaction as it creates the object, and it is incremented for each
subsequent transaction that updates the object.

Developer's Course

Module 6 Classes 73

Developer's Course

74 Module 6 Classes

creationTime, which is the date and time at which the object was created, as shown in the following image.

To use the same form instead of a new Schema Collection Inspector form each time a new object is selected for
inspection, click the Use Same Window command in the Options menu. When the Use Same Window command is
checked, each double-click of an object in an Inspector form re-uses the same form to display the selected object,
replacing the previously displayed object. A pane at the left of the form contains a hierarchical list box displaying all of
the objects that have previously been inspected. The hierarchy indicates the history of how the objects were
inspected.

The entries display the value of the name property if it exists in the object, followed by the class name and the Jade
object identifier (oid). Clicking on an entry in the hierarchical history list at the left of the form displays the selected
object again.

The ways in which you can invoke the Object Inspector are as follows.

In the Class Browser, select the Customer class and then select the Classes menu Inspect Instances
command (or press Ctrl+I).

In a method, code one of the following instructions.

cust.inspect();
cust.inspectModal();

In the debugger, select a variable and then press Ctrl+I.

Extracting and Loading Schemas
You can extract a complete schema, parts of a schema, or multiple schemas; for example, as a backup before you
reorganize your database or you install a new release of the Jade Platform. You can load the extract files into another
Jade system. The deployment mechanism for a Jade system is shown in the following diagram.

The extract process creates two files.

The schema file contains class definitions, method code, and so on, from the Class Browser.

The forms definition file contains the forms that you designed in the JADE Painter.

Developer's Course

Module 6 Classes 75

Developer's Course

76 Module 6 Classes

To extract a schema selected in the Schema Browser, use the Schema menu Extract command. Check the
Forms/Mappings as XML (ddx file) check box to extract the form descriptions in the newer .ddx format, which is
more human-readable than the legacy .ddb format.

To load a schema, use the Schema menu Load command from the Schema Browser. Alternatively, if the Jade
Platform development environment is not available, you can use the JADE Schema Load utility.

Exercise 6.7 - Inspecting Objects
In this exercise, you will inspect the objects you created in the previous exercise.

1. Select the Customer class in the Class Browser.

2. Select the Classes menu Inspect Instances command or press Ctrl+I.

3. Inspect two customers.

4. Select the File menu Close All command to close the inspector window or all of the open inspector windows if
you are not using the same window (that is, the same form).

Developer's Course

Module 6 Classes 77

Developer's Course

78 Module 6 Classes

Exercise 6.8 - Removing Test Objects
In this exercise, you will remove the customers you created previously.

1. Select the JadeScript class in the Class Browser.

2. Add a method called removeTestData, which is coded as follows.

removeTestData();

begin
beginTransaction;
Customer.instances.purge();
commitTransaction;

end;

In this method:

The instances property for a class is a collection that is created dynamically from information in the
database files.

Note The instancesmethod bypasses the mechanisms in Jade that ensure information is current.

The purgemethod is a generic method for collections that removes the objects from the collection and then
deletes the objects.

Persistent objects can be deleted only within a transaction.

3. Execute the method.

4. Inspect instances of the Customer class. The following message box should be displayed.

Exercise 6.9 - Extracting Multiple Schemas
In this exercise, you will extract BankingModelSchema and FirstSchema with a multiple schema extract.

1. Select the Schema Browser.

2. Select the Schema menu Extract command.

3. Select theMultiple Schemas option.

4. Change the name in theMulti Extract File text box to Banking.mul and then click the Browse button to specify
where the extract files should be located.

5. Check the Forms/Mappings as XML (ddx file) check box.

6. Select the Schemas tab and then click the >> button to select both schemas.

7. Click theOK button.

8. Open the Banking.mul file in Notepad. It lists the schema and forms definition files that were extracted.

#MULTIPLE_SCHEMA_EXTRACT
BankingModelSchema.scm BankingModelSchema.ddx
FirstSchema.scm FirstSchema.ddx

Developer's Course

Module 6 Classes 79

Module 7 Root Object

This module contains the following topics.

Introduction

Initializing the Root Object

Constructor

Exercise 7.1 – Adding the Bank Class

Exercise 7.2 – Adding a myBank Reference and initialize Method

Exercise 7.3 – Modifying the Customer Constructor

Working with Files

Working with Common Dialogs

Exercise 7.4 – Reading from a File

Exercise 7.5 – Using the File Open Dialog

Introduction
A common design strategy is to have a class that has a single instance representing the business or organization that
the software serves. The single instance is called the root object.

In the banking system, the Bank class is the class that will have the root object.

One of the main uses of the root object is to own complete collections of instances of a class, which are needed by the
application. You will use collections in a later module to enable a customer to have a collection of his or her bank
accounts. However, the application requires a more-comprehensive collection of bank accounts belonging to all
customers. The root object is the usual place to store it.

A more immediate use of the root object will be to generate a sequential number for each new customer. The bank
root object will store the number used for the latest customer. When a new customer is created, the bank object will
increment the stored number and return that value.

Developer's Course

82 Module 7 Root Object

Initializing the Root Object
The root object, which is the single instance of the Bank class, must be easily accessible from code anywhere in an
application or JadeScript method. You could use the firstInstance or lastInstancemethod every time the root object
is needed, as follows.

Bank.firstInstance()

The firstInstance or lastInstancemethods are expensive because they retrieve the OID directly from the database
files. A better approach is to use the app object to store a reference to the root object.

If the reference to the root object is calledmyBank, using the naming convention of prefixing references to single
objects withmy, the root object can be accessed in code as follows.

app.myBank

In addition to setting up amyBank reference of type Bank in your Application subclass, you must ensure that:

An instance of the Bank class is created if one does not exist

ThemyBank reference is initialized to the singleton instance

This will be implemented in an initializemethod in your Application subclass.

Note Before the root object can be accessed with app.myBank, an application or JadeScript method must execute
app.initialize.

Constructor
A constructor is a method in a class that is automatically called when an instance of that class is created. The name of
the method must be create. A constructor is often used to set default values for properties.

When a Customer object is created, you will use a constructor to set the value of the number attribute to the value
returned by the nextCustNummethod of the root object.

Exercise 7.1 - Adding the Bank Class
In this exercise, you will add the Bank class in the BankingModelSchema. The class will have a custNum attribute
and a nextCustNummethod to increment this value and return the result.

1. Select theObject class in the Class Browser.

2. Add a class by selecting the Classes menu Add command.

3. Enter Bank as the name of the class, select bankingmodelschema as the map file, and then click theOK
button.

Note The default (bankingmodelschema) map file is fine, as we will only ever be instantiating one Bank
object.

4. Add an attribute called custNum, by selecting the Properties menu Add Attribute command.

Select Integer as the type, set the access mode to protected, and then click theOK button.

5. Add a method called nextCustNum, by selecting the Methods menu New Jade Method command.

Developer's Course

Module 7 Root Object 83

Developer's Course

84 Module 7 Root Object

Check the Updating option, because the method will increment the nextNum attribute.

6. Code the method as follows.

nextCustNum(): Integer updating;

begin
self.custNum := self.custNum + 1;
return self.custNum;

end;

Exercise 7.2 - Adding myBank and initialize Method
In this exercise, you will add a reference to the root object in your Application subclass.

1. Select your Application subclass in the Class Browser. This will have the same name as your schema, in this
case, BankingModelSchema.

2. Add a reference by selecting the Properties menu Add Reference command.

3. EntermyBank as the name, select Bank as the type, set the access mode to read-only, and then click theOK
button.

4. Add a method called initialize. A message box warns you that there is already a method of that name in the
Application hierarchy. Click the Yes button, to continue.

Developer's Course

Module 7 Root Object 85

Developer's Course

86 Module 7 Root Object

5. Complete the coding of the initializemethod, as shown in the following image.

Note Before the root object can be accessed with app.myBank, an application or JadeScript method must execute
app.initialize.

Exercise 7.3 - Modifying the Customer Constructor
In this exercise, you will modify the constructor of the Customer class to obtain a unique identifier (ID) number from
the Bank class.

1. Select the Customer class in the Class Browser.

2. Add the following to the createmethod.

create(addr, first, last: String) updating;

begin
self.number := app.myBank.nextCustNum();
self.address := addr.trimBlanks();
self.firstNames := first.trimBlanks();
self.lastName := last.trimBlanks();

end;

3. Test that the constructor works by adding app.initialize to the createCustomer JadeScript method, as follows.

createCustomer();

vars
cust : Customer;

begin
app.initialize;
beginTransaction;
cust := create Customer("Gotham City", "Bruce", "Wayne") persistent;
commitTransaction;

end;

4. Execute the JadeScript method twice, using the debugger.

5. Inspect the two new customers. The value of the number attribute should be 1 for the first customer and 2 for the
second customer.

Working with Files
A Customers.txt file has been provided to bulk-load hundreds of customers. In a later exercise, you will write a
JadeScript method to open this file, read each line, and then create a customer object from the text that has been
read. RootSchema has a hierarchy of classes for working with files and folders in your code.

To work with a file, you create a transient instance of the File class and set its fileName property to the full path name
of the file.

The following methods of the File class are used to read the information in a file.

Method Description

readLine Returns the text from the next line in the file

endOfFile Returns true when the end of the file is reached

Developer's Course

Module 7 Root Object 87

Developer's Course

88 Module 7 Root Object

Working with Common Dialogs
Rather than hard-coding the full path name of a file, you can ask the user to select the file by using the Microsoft Open
File dialog, which is one of the Microsoft common dialogs. To use one of these dialogs, create an instance of a
CMDialog subclass.

The CMDialog hierarchy of classes is defined in RootSchema.

The openmethod of the CMDFileOpen class returns zero (0), to indicate that the user has successfully opened a file,
in which case the fileName attribute contains the full path name of the file that was opened. If the user clicks the
Cancel button, the openmethod returns one (1).

Exercise 7.4 - Reading from a File
In this exercise, you will use the data in the Customers.txt file to create hundreds of customers.

1. Add a JadeScript method called createCustomersFromFile and then code it as follows.

createCustomersFromFile();

vars
file: File;
str: String;
cust: Customer;

begin
app.initialize();
create file transient;
file.fileName := "C:\JadeCourse\Files\Customers.txt";
while not file.endOfFile() do

str := file.readLine();
beginTransaction;
cust := create Customer(str[41:end], str[16:25], str[1:15]);
commitTransaction;

endwhile;
epilog

delete file;
end;

Although the createCustomersFromFilemethod executes as expected in an ANSI Jade system, exception
5011 (Record truncated to maxRecordSize characters) is raised in a Unicode Jade system, because ANSI text
files such as Customers.txt file differ from Unicode text files.

To tell Jade the file type of Customers.txt, add one of the following lines after the create file transient; line in
your JadeScript.

file.kind := File.ANSI; // works for ANSI text files

file.kind := File.Kind_Unknown_Text; // works for ANSI and Unicode text files

2. Execute the method and then inspect the customers that are created.

In this method:

app.initialize is executed as the first instruction, so that the method can access the root object.

The condition not file.endOfFile tests that there is still more information to be read.

The transient File object is deleted at the end of the method.

As there is no garbage collection in Jade, you should delete transient objects when they are no longer needed.

Note Deleting the File object also closes it, and avoids the file being left in use.

The epilog section contains instructions that should always be executed. If a return instruction is encountered
before the end of the method or an instruction raises an exception, epilog instructions are always executed
before the method returns.

Exercise 7.5 - Using the File Open Dialog
In this exercise, you will enhance the createCustomersFromFile JadeScript method by using the Microsoft Open File
dialog to select the Customers.txt file.

1. Execute the removeTestData JadeScript method.

2. Modify the createCustomersFromFile JadeScript method, as follows.

3. Execute the createCustomersFromFilemethod and then inspect the customers that are created.

Developer's Course

Module 7 Root Object 89

Developer's Course

90 Module 7 Root Object

In this method:

app.initialize is executed as the first instruction, so that the method can access the root object.

A transient CMDFileOpen object is created and it is deleted in the epilog section.

The method is exited from early if the user fails to open a file successfully.

Module 8 Inheritance and Polymorphism

This module contains the following topics.

Introduction

Protected Methods

Real versus Abstract

Schema Versions

Exercise 8.1 – Adding an Abstract Class

Exercise 8.2 – Changing the Bank Class

Exercise 8.3 – Adding a BankAccount Constructor

Inheritance

Polymorphism

Validating a Schema

Exercise 8.4 – Adding a ChequeAccount Class

Exercise 8.5 – Adding a SavingsAccount Class

Exercise 8.6 – Creating Bank Accounts with a JadeScript

Exercise 8.7 – ATM Simulation

Introduction
In this module, you will create a hierarchy of bank account classes.

In a similar pattern to the RootSchema hierarchies of FileNode classes and CMDialog classes, the bank account
classes have an abstract superclass with common properties and methods and real subclasses, which can be
instantiated.

Developer's Course

92 Module 8 Inheritance and Polymorphism

The properties and methods of the BankAccount class are shown in the following class diagram.

All of the properties are read-only, to limit updating to methods in the class; for example, the balance property will be
updated only by the deposit andwithdrawmethods.

Protected Methods
Methods are either public, which means they are part of the interface of the class, or they are protected. A protected
method (sometimes known as a helpermethod) can be called only by a method in the same class or a subclass.
Unlike public methods, it is not part of the interface of the class.

The purpose of the canWithdrawmethod in the BankAccount class is to check that there are sufficient funds in the
account for the withdrawal to proceed. It is called by thewithdrawmethod and if it returns true, the withdrawal is
allowed. If it returns false, a message box is displayed, advising the user that there are insufficient funds, and that
consequently the withdrawal is not possible.

The canWithdrawmethod is not called under any other circumstances. For that reason, it has been made protected
by adding the word protected to the method signature.

canWithdraw(amount: Decimal): Boolean protected;

Real versus Abstract
The terms real and abstract apply to classes and to methods.

The consequences of making the BankAccount class abstract are:

Instances of the BankAccount class itself are not allowed. (You can create instances of the ChequeAccount
and SavingsAccount subclasses.)

Methods can be abstract or real. (Real classes like the Customer class cannot have abstract methods.)

Real methods have an implementation; that is, a method body for instructions.

some_method();

vars
// Local variables

begin
// Your code here

end;

Abstract methods have only the signature line. The implementation is deferred to the subclasses.

some_method() abstract;

An abstract method specifies the parameters and return type that the implementation of the method
inherits.

The code for the canWithdrawmethod is different for ChequeAccount objects and SavingsAccount objects. For
ChequeAccount objects, a withdrawal will be allowed provided that the overdraft limit is not exceeded. For
SavingsAccount objects, there is no overdraft facility so the requirement is that the balance attribute should not be
allowed to become negative.

The canWithdrawmethod is abstract in the BankAccount class, to defer the implementation to the subclasses.

Schema Versions
From the schema browser, you can create another version of your schema.

The current version of a schema contains the current definitions of the classes. Applications and JadeScript methods
can be run only with the current version.

The latest version contains changed class definitions that have yet to be implemented; that is, brought into effect.

Developer's Course

Module 8 Inheritance and Polymorphism 93

Developer's Course

94 Module 8 Inheritance and Polymorphism

The browsers for the current and latest version are colored differently. The following image shows the current
definition of the Bank class and the changed definition in the latest version, which has an additional property and
method.

The changes in the latest version can be brought into effect by selecting Schema menu Reorg Schema command, or
by pressing the Schema Needs Reorg toolbar button.

The reorganization restructures the data to be consistent with the latest version. After the reorganization, there is a
single schema version; the latest version ceases to exist.

Alternatively, if you want to abandon the changes and not perform a reorganization, you can use the Schema menu
Unversion command to discard the latest version.

The advantages of making changes in the latest schema are:

Implementation of changes can be deferred until the most-convenient time.

The current version is available while the latest version is reorganized. Only the final transition step requires the
system to be offline.

Exercise 8.1 - Adding an Abstract Class
In this exercise, you will add an abstract BankAccount class in the BankingModelSchema. The properties and
methods will be those specified in the UML class diagram under "Introduction", earlier in this module.

1. Select theObject class in the Class Browser.

2. Add a class by selecting the Classes menu Add command.

3. Enter BankAccount as the name of the class, select bankingmodelschema as the map file, select the
Abstract option, and then click theOK button.

4. Add a read-only balance attribute of type Decimal with a length (precision) of 12 and a scale factor (number of
decimal places) of 2.

5. Add a read-only number attribute of type Integer.

6. Add a read-onlymyCustomer reference of type Customer.

Developer's Course

Module 8 Inheritance and Polymorphism 95

Developer's Course

96 Module 8 Inheritance and Polymorphism

7. Add a canWithdrawmethod that is abstract and protected.

8. Change the signature to include an amount parameter and to return a Boolean type.

canWithdraw(amount: Decimal): Boolean protected, abstract;

9. Add a depositmethod. Make the method updating, because it will change the balance attribute.

10. Code the method as follows.

deposit(amount: Decimal) updating;

begin
self.balance := self.balance + amount;

end;

11. Add awithdrawmethod. Make the method updating, because it will change the balance attribute.

12. Code the method as follows.

withdraw(amount: Decimal) updating;

begin
if self.canWithdraw(amount) then

self.balance := self.balance - amount;
endif;

end;

Exercise 8.2 - Changing the Bank Class
In this exercise, the Bank root object will be changed to store the number used for the most-recently created bank
account, in addition to storing the number used for the most-recently created customer. You will also add a method to
increment the account number and return the next number to be used.

1. Select the Bank class in the Class Browser.

2. Add an attribute called accountNum by selecting the Properties menu Add Attribute command.

Select Integer as the type, set the access mode to protected, and then click theOK button.

3. You are warned that a reorganization is required. Click the Yes button.

4. The schema is then automatically versioned. Click theOK button.

5. Start the reorganization by clicking the Schema Needs Reorg toolbar button.

Developer's Course

Module 8 Inheritance and Polymorphism 97

Developer's Course

98 Module 8 Inheritance and Polymorphism

6. Click the Reorg button in the Classes Needing Reorg dialog.

7. Add an updating method called nextAccountNum, by selecting the Methods menu New Jade Method
command.

8. Code the method as follows.

nextAccountNum(): Integer updating;

begin
self.accountNum := self.accountNum + 1;
return self.accountNum;

end;

9. Compile the method.

Note Possible improvement: the duplication of code in the nextAccountNum and nextCustNummethods
suggests the abstraction of a purpose-built SequenceNumber class.

Exercise 8.3 - Adding a BankAccount Constructor
In this exercise, you will add a constructor to the BankAccount class, which will assign a new value to the number
attribute.

1. Select the BankAccount class in the Class Browser.

2. Add a method called create.

3. Code the method as follows.

create() updating;
begin

self.number := app.myBank.nextAccountNum();
end;

Inheritance
Inheritance defines an is a kind of hierarchy between classes in which a subclass inherits properties and methods
defined in one or more superclasses; for example, in the hierarchy of bank account classes, a ChequeAccount object
is a kind of BankAccount. A superclass can be shared by one or more subclasses, but a subclass cannot have more
than one superclass.

A subclass inherits all properties and all methods defined in classes above it in the hierarchy. A subclass can
reimplement methods defined in a superclass to extend or replace superclass behavior.

Note When you reimplement a method, you can use inheritMethod to call the superclass implementation.

Developer's Course

Module 8 Inheritance and Polymorphism 99

Developer's Course

100 Module 8 Inheritance and Polymorphism

Polymorphism
Polymorphism meansmany forms. In the banking system, bank accounts come in many forms: cheque accounts,
savings accounts, credit card accounts, and so on. A bank account handles a withdrawal request by calling the
canWithdrawmethod, which also comes in many forms. Each canWithdraw implementation is specific to the type of
bank account.

Using polymorphism, you can code a withdrawal from an Automated Teller Machine (ATM) in a simple way.

At run time, the code that is executed is as follows.

// Polymorphic coding
ba.withdraw(amount);

The ba variable is of generic type BankAccount. At run time, the ATM user selects a cheque account, a savings
account, or some other type of bank account and then enters a value for the amount parameter.

The important point to notice is the absence of if instructions that check for a specific types of bank account. Without
polymorphism, the code would be as follows.

// Non-polymorphic coding
if ba.isKindOf(ChequeAccount) then

// Code for a cheque account
elseif ba.isKindOf(SavingsAccount) then

// Code for a savings account
endif;

Validating a Schema
You can validate many components of a schema, including checking for subclasses where an abstract method has
not been implemented, by using the Schema menu Validate command.

If you want only to check for methods that are uncompiled and in error, use the Browse menu Status List command.

Developer's Course

Module 8 Inheritance and Polymorphism 101

Developer's Course

102 Module 8 Inheritance and Polymorphism

Exercise 8.4 - Adding a ChequeAccount Class
In this exercise, you will add a real class called ChequeAccount class, which is a subclass of BankAccount. In
addition to the properties inherited from BankAccount, ChequeAccount has an additional overdraftLimit property.
You will implement a createmethod to initialize the read-only properties.

You will reimplement the canWithdrawmethod to allow withdrawals that would not cause the balance to exceed the
overdraft facility.

1. Select the BankAccount class in the Class Browser.

2. Add a class by selecting the Classes menu Add command.

3. Enter ChequeAccount as the name of the class, select the chequemap file, and then click theOK button.

4. Select the View menu Show Inherited command, to see the properties and methods that are inherited.

5. Add a read-only overdraftLimit attribute of type Decimal with a length (precision) of 12 and a scale factor
(number of decimal places) of 2.

6. Add an updating method called create, by selecting the Methods menu New Jade Method command.

7. Code the method as follows.

create(bal, od: Decimal; cust: Customer) updating;

begin
self.balance := bal;
self.overdraftLimit := od;
self.myCustomer := cust;

end;

8. Add a canWithdrawmethod. A dialog warns that there is already a method of that name in a superclass. Click
the Yes button, to continue.

9. Code the method as follows.

canWithdraw(amount: Decimal): Boolean protected;

begin
if amount > self.balance + self.overdraftLimit then

write "insufficient funds in cheque account";
return false;

else
return true;

endif;
end;

10. Compile the method.

Exercise 8.5 - Adding a SavingsAccount Class
In this exercise, you will add a real class called SavingsAccount, which is a subclass of BankAccount. In addition to
the properties inherited from BankAccount, SavingsAccount has an additional interestRate property.

You will reimplement the canWithdrawmethod to allow withdrawals that would not cause the balance to become
negative.

1. Select the BankAccount class in the Class Browser.

2. Add a class by selecting the Classes menu Add command.

3. Enter SavingsAccount as the name of the class, select the savingsmap file, and then click theOK button.

4. Add a read-only interestRate attribute of type Decimal with a length (precision) of 12 and a scale factor of 2.

Developer's Course

Module 8 Inheritance and Polymorphism 103

Developer's Course

104 Module 8 Inheritance and Polymorphism

5. Add an updating method called create, by selecting the Methods menu New Jade Method command.

6. Code the method as follows.

create(bal, rate: Decimal; cust: Customer) updating;

begin
self.balance := bal;
self.interestRate := rate;
self.myCustomer := cust;

end;

7. Add a canWithdrawmethod. A dialog warns that there is already a method of that name in a superclass. Click
the Yes button, to continue.

8. Code the method as follows.

canWithdraw(amount: Decimal): Boolean protected;

begin
if amount > self.balance then

write "insufficient funds in savings account";
return false;

else
return true;

endif;
end;

9. Compile the method.

Exercise 8.6 - Creating Bank Accounts with a JadeScript
In this exercise, you will add a createBankAccounts JadeScript method to create a cheque account and a savings
account.

1. Select the JadeScript class in the Class Browser.

2. Add a method called createBankAccounts, by selecting the Methods menu New Jade Method command.

3. Code the method as follows.

createBankAccounts();

vars
cheque : ChequeAccount;
savings : SavingsAccount;

begin
app.initialize();
beginTransaction;
cheque := create ChequeAccount(0, 500, null);
savings := create SavingsAccount(100, 4.5, null);
commitTransaction;

end;

4. Compile and execute the method.

5. Inspect the cheque account and savings account objects by selecting the BankAccount class, and then
selecting the Classes menu Inspect All Instances command.

Exercise 8.7 - ATM Simulation
In this exercise, you will simulate a withdrawal from an ATM.

1. Select the JadeScript class in the Class Browser.

2. Add a method called simulateATM.

3. Code the method as follows.

simulateATM();

vars
accountType: String;
ba: BankAccount;
amount: Decimal[12,2];

begin
// Select account
write 'Enter "cheque" or "savings"';
read accountType;
if accountType = "cheque" then

ba := ChequeAccount.firstInstance();
write "Balance of cheque account = " & ba.balance.String;

elseif accountType = "savings" then
ba := SavingsAccount.firstInstance();
write "Balance of savings account = " & ba.balance.String;

endif;
// Enter amount
write "Enter amount to withdraw";
read amount;
// Process withdrawal
beginTransaction;
ba.withdraw(amount);
commitTransaction;
write "New balance of account = " & ba.balance.String;

end;

4. Run the JadeScript method and then check that the withdrawal limits are being enforced.

Developer's Course

Module 8 Inheritance and Polymorphism 105

Module 9 Collections

This module contains the following topics.

Introduction

Types of Collection

Adding a Collection Class

Collection Methods

Dictionaries

Arrays

Exercise 9.1 – Adding a Customer Dictionary

Exercise 9.2 – Adding a Customer Array

Exercise 9.3 – Removing Test Objects

Exercise 9.4 – Populating a Collection

foreach with Collections

Iterators and Collections

Execution Location

Exercise 9.5 – Deleting the J Customers

Exercise 9.6 – Filtering a Collection

Developer's Course

108 Module 9 Collections

Introduction
A collection is an object that stores:

Primitive types (for example, an IntegerArray contains a series of integer values)

References to other objects

Note It does not contain the objects themselves; just references to them.

Types of Collection
The three types of collection are:

Array, which is a collection of objects or primitive values, ordered by index number. An array can hold the same
object or primitive value more than once.

Dictionary, which is a collection of objects ordered by keys that you specify.

The three types of dictionary are:

MemberKeyDictionary, whose keys are properties of the member objects

ExtKeyDictionary, whose keys are specified manually when objects are added

DynaDictionary, which is a dictionary defined at run time

Set, which is a collection of objects conceptually unordered (in practice, ordered by OID).

Adding a Collection Class
Collection classes are added as subclasses of collection classes in RootSchema.

The new subclass inherits the methods of the superclass.

In addition to naming the collection, you must specify the membership class (the class that supplies objects to the
collection), and for a dictionary, you must specify the keys.

Collection Methods
The following methods are defined for the abstract Collection class in RootSchema. Methods are reimplemented in
the different Collection subclasses.

Method Example

size // Number of entries in the collection
size := coll.size();

first // First entry in the collection
cust := coll.first();

last // Last entry in the collection
cust := coll.last();

copy // Entries from one collection (coll1) copied to another (coll2)
// Entries must meet membership criteria of target collection
coll1.copy(coll2);

clear // Objects are removed from collection, but objects not deleted
// An empty collection remains
coll.clear();

purge // Objects are removed from collection, and objects are deleted
// An empty collection remains
coll.purge();

Developer's Course

Module 9 Collections 109

Developer's Course

110 Module 9 Collections

Method Example

add // Object added to end array or correct place in set or dictionary
coll.add(cust);

tryAdd // Object added to end array or correct place in set or dictionary
// UNLESS that object already exists in the collection
coll.tryadd(cust);

remove // First reference to cust removed from collection
// Exception raised if cust not in collection
coll.remove(cust);

tryRemove // First reference to cust removed from collection
// Returns false if cust not in collection
coll.tryRemove(cust);

includes // Checks whether cust is already in collection
if not coll.includes(cust) then

coll.add(cust);
endif;

createIterator // Iterator created for collection
// Iterator can move forwards or backwards through collection
iter := coll.createIterator();

Dictionaries
Dictionaries store objects in the order specified by the keys; for example, the customers in a
CustomerByLastNameDict collection are ordered alphabetically by last name.

You can retrieve an object from a dictionary by using the getAtKeymethod. In the following example, dict is a
CustomerByLastNameDict collection containing the customers from the Customers.txt file.

cust := dict.getAtKey("Baynton"); // Retrieves customer with key value "Baynton"

You can use the equivalent square brackets notation.

cust := dict["Baynton"]; // Equivalent square bracket notation

Arrays
Arrays store objects in index order, and you can access an object using its index. In the following examples, array is a
CustomerArray collection containing the customers from the Customers.txt file.

cust := array[207];// Retrieves the 207th customer from the array

array[1000] := cust;// Puts cust into the array at position 1000

In the second example, if the array contained fewer than 1,000 entries before the instruction is executed, it is
expanded with null entries up to that size.

Methods are available for inserting and removing objects into an array. When these methods are executed, the other
entries in the array are moved up or down automatically.

You can use array index values to move through an array, but it is more efficient to use an iterator. Indexing on large
arrays is slow, and degrades with size.

Exercise 9.1 - Adding a Customer Dictionary
In this exercise, you will add a CustomerByLastNameDict dictionary.

1. Find theMemberKeyDictionary class.

Tip When you use the Find Type dialog, which is opened with the F4 keyboard shortcut, you can enter the
initials rather than the full name of a type; for example,MKD will find theMemberKeyDictionary class.

2. Add a class by selecting the Classes menu Add Class command.

3. On the Class sheet, enter CustomerByLastNameDict as the name of the class, and then select the
Membership sheet.

Developer's Course

Module 9 Collections 111

Developer's Course

112 Module 9 Collections

4. On theMembership sheet, select Customer as theMembership class, and then select the Keys sheet.

5. On the Keys sheet, select lastName as the key, select Latin1 as the sort order, check the Case Insensitive
check box, and then click the Add button.

Tips Latin1 is a standard ISO ordering sequence suitable for many alphabets.

Case-insensitive ordering enables customer searches without entering uppercase and lowercase exactly.

6. Check the Duplicates Allowed check box and then click theOK button.

Tip Check the Duplicates Allowed check box if the selected keys are likely not to be unique.

Exercise 9.2 - Adding a Customer Array
In this exercise, you will add a CustomerArray class.

1. Find theObjectArray class.

2. Add a class by selecting the Classes menu Add Class command.

Developer's Course

Module 9 Collections 113

Developer's Course

114 Module 9 Collections

3. On the Class sheet, enter CustomerArray as the name of the class, and then select theMembership sheet.

4. On theMembership sheet, select Customer as theMembership class, and then click theOK button.

Exercise 9.3 - Removing Test Objects
In this exercise, you will enhance the removeTestData to remove all of the test data that you have created.

1. Select the JadeScript class in the Class Browser.

2. Change the removeTestDatamethod, as follows.

removeTestData();

begin
beginTransaction;
Bank.instances.purge();
ChequeAccount.instances.purge();
Customer.instances.purge();
CustomerArray.instances.purge();
CustomerByLastNameDict.instances.purge();
SavingsAccount.instances.purge();
commitTransaction;

end;

3. Execute the method.

Exercise 9.4 - Populating a Collection
In this exercise, you will use the data in the Customers.txt to create hundreds of customers and add the customers to
a collection.

1. Change the createCustomersFromFile JadeScript method as follows.

createCustomersFromFile();

vars
dlg: CMDFileOpen;
file: File;
str: String;
cust: Customer;
dict: CustomerByLastNameDict;

begin
app.initialize();
create dlg transient;
if not dlg.open() = 0 then

return; // Exit as user did not select a file
endif;
beginTransaction;
create dict persistent;
commitTransaction;
create file transient;
file.fileName := dlg.fileName;
while not file.endOfFile() do

str := file.readLine();
beginTransaction;
cust := create Customer(str[41:end], str[16:25], str[1:15]);
dict.add(cust);
commitTransaction;

endwhile;
epilog

delete dlg;
delete file;

end;

2. Execute the method and then inspect the instance of CustomerByLastNameDict that is created.

In this method:

A persistent instance of CustomerByLastNameDict is created.

The addmethod is used to add each customer to the collection.

foreach with Collections
The foreach instruction provides a simple way to iterate any type of collection; that is, process all of the objects in the
collection.

foreach cust in coll do
write cust.lastName;

endforeach;

Developer's Course

Module 9 Collections 115

Developer's Course

116 Module 9 Collections

The objects are processed in the order in which they are encountered in the collection, unless you add the reversed
option to work through the objects backwards, starting at the end of the collection.

foreach cust in coll reversed do
write cust.lastName;

endforeach;

As you will learn in the module on locking later in this course, the foreach instruction places a shared lock on the
collection for the duration of the iteration. The shared lock prevents other processes from adding or removing objects
from the collection. The purpose of the lock is to iterate the latest edition of the collection without it being changed.
However, if you do not want the collection locked, you can use the discreteLock option.

foreach cust in coll discreteLock do
write cust.lastName;

endforeach;

Thewhere clause enables you to be selective about which objects in the collection are processed. In the following
example, only the customers from Richmond are displayed.

foreach cust in coll where cust.address = "Richmond" do
write cust.lastName;

endforeach;

The foreach instruction is optimized for dictionaries, with a single key if there is a simple condition based on that key.
In the following example, the iteration starts with the first customer with a last name of Jones, if there is one.

foreach cust in dict where cust.lastName >= "Jones" do
write cust.lastName;

endforeach;

Iterators and Collections
An iterator is an object that can retrieve the next or previous object in a collection. You create an instance of the
Iterator class and associate it with a collection before the iteration starts.

Note You should delete the iterator when it is no longer needed.

The createIteratormethod of a collection creates an iterator of the correct type and associates it with a collection.

The next or backmethods traverse the collection in a forwards or backwards direction. The methods return true if
they find the next (or previous) object in the collection, and place a reference to that object in the method’s output
parameter. When the iterator reaches the end (or the beginning) of the collection, the methods return false.

iter := coll.createIterator();
while iter.next(cust) do

write cust.lastName;
endwhile;
delete iter;

For a dictionary, you can set the start position for iteration by using one of the startKey family of methods.

iter := coll.createIterator();
coll.startKeyGeq("Jones", iter);
while iter.next(cust) do

write cust.lastName;
endwhile;
delete iter;

An iterator takes a snapshot of a collection; that is, it reads a batch of entries from the collection. When an iterator
performs its first next or back call, or when it has exhausted its current entries, it sends a message to the collection to
retrieve the next snapshot. At this point, a shared lock is acquired on the collection for the time it takes to fetch the next
set of entries.

Execution Location
The majority of application code is executed in the client nodes. However, there are situations where it makes sense to
switch the execution location of a method to the database server; for example, a method working with a large
collection of objects.

You can switch the execution location to the database server by adding the serverExecution option to the signature
of the method.

calledMethod01(parameters): returnType serverExecution;

If the serverExecutionmethod calls another method, that method will also execute on the database server unless it
has the clientExecutionmethod option.

calledMethod02(parameters): returnType clientExecution;

When a serverExecution or clientExecutionmethod returns (that is, it completes execution), the calling method
resumes executing in the node where it started.

Developer's Course

Module 9 Collections 117

Developer's Course

118 Module 9 Collections

A good case for using a serverExecutionmethod would be a method that needs to filter a large collection of objects
to produce a smaller collection of objects to be processed. The filtering could be done on the database server, with the
subsequent processing being done on the client.

Note When you execute methods in single user mode, the serverExecution and clientExection options have no
effect.

Exercise 9.5 - Deleting the J Customers
In this exercise, you will use a foreach instruction to delete the customers whose last name begins with the letter J
and report the number of customers deleted. You will use the collection you created in a previous exercise.

Notes Jade methods usually use a camel case naming convention, where each "word" in the name begins with a
capital letter except for the first. This is only a convention, and the following method gives an example of an alternative
naming convention, snake case, where each "word" in the name is separated by an underscore.

AutoComplete functionality works better with camel case names than with snake case names. For example, if you had
a method called theBestMethodEver, you could type tBME into an editor and it would AutoComplete to it. This is not
possible with snake case unless you also uppercase each word.

1. Create a JadeScriptmethod called delete_J_customers, and code it as follows.

delete_J_customers();

vars
dict: CustomerByLastNameDict;
cust: Customer;
i: Integer;

begin
dict := CustomerByLastNameDict.firstInstance();
beginTransaction;
foreach cust in dict where cust.lastName[1] >= "J" do

if cust.lastName[1] >= "K" then
break;

endif;
delete cust;
i := i + 1;

endforeach;
commitTransaction;
write i.String & " customers deleted";

end;

In this method:

The firstInstancemethod is used to identify the CustomerByLastNameDict collection to be iterated.

Thewhere clause is used to optimize the iteration by starting with the first J customer in the collection.

The break instruction is used to exit from the loop after processing the J customers.

A counter variable is incremented inside the foreach loop.

The delete instruction is used to delete an object.

2. Execute the method.

3. Inspect the CustomerByLastNameDict dictionary.

If you scroll down to the customers whose name should begin with the letter J, the inspector window shows a
number of invalid object references. Can you explain why this has happened?

Note In a later module, you will learn how to avoid having invalid object references in a collection.

Developer's Course

Module 9 Collections 119

Developer's Course

120 Module 9 Collections

Exercise 9.6 - Filtering a Collection
In this exercise, you will create a JadeScript method to filter the CustomerByLastNameDict collection. The method
executes on the database server and returns a much smaller transient instance of CustomerArray for use by the
client. The condition for inclusion in the array is that the customer exists and lives in Richmond.

1. Select the JadeScript class in the Class Browser.

2. Create a method called filter_Richmond_customers, as follows.

3. Create a method called getFilteredCustomers, as follows.

4. Execute the method.

In the filter_Richmond_customersmethod:

The firstInstancemethod is used to identify the CustomerByLastNameDict collection to be iterated.

Thewhere clause filters the collection by processing only customers who live in Richmond.

The isValidObjectmethod of the Application class is used to test whether the customer exists.
(Remember that there are a number of invalid object references in the collection.)

In the getFilteredCustomersmethod:

The transient CustomerArray object is created. This empty collection is passed to the filter_Richmond_
customersmethod for filling.

The sizemethod demonstrates the reduced subset of objects that are to be processed on the client.

The transient CustomerArray object is deleted in the epilog.

Tip It is important to delete transient objects when you have finished with them. To make this easy to remember, a
good rule of thumb is that any transient object should be deleted in the same method in which it is created. This is why
we pass it as an input parameter to filter_Richmond_customers rather than creating it in filter_Richmond_
customers and returning it as the return value.

Developer's Course

Module 9 Collections 121

Module 10 Relationships

This module contains the following topics.

Introduction

myCustomer Reference

Exclusive Collections

Other Subobjects

Inverse References

Adding Both Inverse References

Root Object Collections

Exercise 10.1 – Adding a BankAccount Dictionary

Exercise 10.2 – Adding an Exclusive Collection

Exercise 10.3 – Adding Inverse References

Exercise 10.4 – Adding Root Object Collections

Exercise 10.5 – Multiple Inverses

Conditions

Constraint on Collection Maintenance

Cardinality

Exercise 10.6 – Adding an allHighValueAccounts Root Object Collection

Introduction
Object -oriented analysis for the banking system uncovers a one-to-many relationship between the Customer and
BankAccount classes.

One customer has many bank accounts. The one-to-many relationship is the most common type.

The accounts can be cheque accounts, savings accounts, or other types that are added to the hierarchy later.

Developer's Course

124 Module 10 Relationships

Relationships between classes are implemented using references. References enable you to:

Navigate from one object to an associated object

Send a message to an associated object (that is, call a method on the object)

You have already used a reference to navigate from the app object to the Bank root object.

The one-to-many relationship enables navigation from a customer object to a bank account owned by the customer,
and in the other direction.

myCustomer Reference
In an earlier module, you added amyCustomer reference to the owner of the bank account in the BankAccount
class.

By convention, a reference name starting withmy is a reference to a single object. In this case, the BankAccount
object references the Customer object who owns the bank account. When a customer is created, themyCustomer
reference is null.

The createmethod is used to set the initial balance, the overdraft facility, and to associate the bank account with its
owner, as follows.

create(bal, od: Decimal; cust: Customer) updating;

begin
self.balance := bal;
self.overdraftLimit := od;
self.myCustomer := cust;

end;

The following diagram shows two bank account objects that have the samemyCustomer reference, and therefore
belong to the same customer.

ThemyCustomer reference enables you to navigate from a bank account to the customer who owns the bank
account.

In the following sections, you will add an inverse reference so that you can navigate from a customer to his or her bank
accounts. This will be implemented by a customer having a collection that can contain any number of bank accounts.
Consequently, the first step is to define a BankAccount collection class.

Exclusive Collections
An exclusive collection is one that belongs exclusively to a parent object. Conceptually, the exclusive collection is
created when the parent object is created, and deleted when the parent object is deleted. A customer can have any
number of bank accounts of different types. This can be implemented by a Customer object having an exclusive
BankAccountByNumberDict collection called allBankAccounts. The name allBankAccounts should be
interpreted as all of the bank accounts owned by the customer; not all of the bank accounts in the system.

The naming convention used in this course is as follows.

Start the name of a reference to a single object withmy

Start the name of a reference to a collection of objects with all

Developer's Course

Module 10 Relationships 125

Developer's Course

126 Module 10 Relationships

When you add the collection reference, the Exclusive check box is checked by default.

An exclusive collection is a subobject (that is, a separate object). No space is allocated in the parent Customer object.

Other Subobjects
When you define a string attribute with a length with fewer than 540 characters, the attribute is embedded in the
object; that is, space is allocated in the object to store the attribute value.

If the length is greater than this, the attribute is stored in a subobject, often referred to as a string large object (SLOB).
Similarly, a binary attribute with a length greater than 540 bytes is a binary large object (BLOB). For example, you
could add a string attribute calledmiscellaneous to the Customer class and specify that the length asmaximum
length, which means the largest integer value.

The following diagram shows a Customer object with its subobjects.

Although you can think of subobjects being created at the same time as the parent object, in reality they are not
created until the first time they are used. In addition, subobjects are not fetched from the database unless they are
being accessed in code.

Another type of subobject is the dynamic property cluster, which is used to store dynamic properties. When a dynamic
property is added at run time, a database reorganization can be avoided, because the property is stored in a subobject
rather than the parent object.

Inverse References
The one-to-many relationship between a customer and the bank accounts owned by the customer will be
implemented by themyCustomer reference in the BankAccount class and the allBankAccounts reference in the
Customer class.

If a bank account is created and itsmyCustomer reference is set to customer Mary Smith, the Customer object for
Mary Smithmust contain the bank account in its allBankAccounts collection. If this is not the case, something is
wrong. This consistency requirement is similar to the referential integrity requirement for tables in a relational
database.

You can enforce consistency in the relationship between Customer and BankAccount classes, by making the
references involved inverse references.

myCustomer is the inverse of allBankAccounts, and allBankAccounts is the inverse ofmyCustomer.

The benefits of inverse references are:

You write code for an object at one end of the relationship only.

Automatically the object (or objects) at the other end of the relationship are maintained in a consistent way. You

Developer's Course

Module 10 Relationships 127

Developer's Course

128 Module 10 Relationships

do not have to write this code.

Not only do you write less code, but you avoid errors.

The following examples show the single instruction that you would write and the set of instructions that are effectively
carried out as part of automatic inverse maintenance.

A cheque account object is created and associated with a customer.

// instruction coded (manually)
account.myCustomer := cust;

// code executed (automatic maintenance)
account.myCustomer := cust;
cust.allBankAccounts.add(account);

The cheque account object is associated with a new customer.

// instruction coded (manually)
account.myCustomer := newcust;

// code executed (automatic maintenance)
cust.allBankAccounts.remove(account);
account.myCustomer := newcust;
newcust.allBankAccounts.add(account);

The cheque account object is deleted.

// instruction coded (manually)
delete account;

// code executed (automatic maintenance)
newcust.allBankAccounts.remove(account);
delete account;

Note Deletions no longer result in collections with invalid object references, as they did before.

Adding Both Inverse References
The one-to-many relationship between the Customer and BankAccount classes has been defined in the following
three separate stages.

1. myCustomer reference is added to the BankAccount class.

2. allBankAccounts reference is added to the Customer class.

3. myCustomer and allBankAccounts references are set as inverse references.

The three stages are usually carried out at the same time, by clicking the Define Inverse button on the Define
Reference dialog when you define the first reference.

When the Define Inverse button is clicked, the dialog expands to show the related BankAccount class next to the
Customer class. This enables you to add both inverse references at the same time.

Developer's Course

Module 10 Relationships 129

Developer's Course

130 Module 10 Relationships

Advice on Defining Inverses
It is helpful to draw the UML class diagram for the relationship (for example, with pen and paper) before attempting to
enter information into the Define Reference dialog.

Automatic and Manual Updating
These options specify whether a reference is maintained manually (that is, in application code) or automatically as
part of inverse maintenance.

If the update mode ofmyCustomer isManual, allBankAccounts is Automatic.

account.myCustomer := cust; // Allowed
cust.allBankAccounts.add(cust); // Not allowed (does not compile)

If the update mode ofmyCustomer is Automatic, allBankAccounts isManual.

account.myCustomer := cust; // Not allowed (does not compile)
cust.allBankAccounts.add(cust); // Allowed

Alternatively, both update modes could beMan/Auto.

account.myCustomer := cust; // Allowed
cust.allBankAccounts.add(cust); // Allowed

Peer-to-Peer and Parent-Child Relationships
Peer-to-peer and parent-child relationships specify whether deleting one object causes related objects to be deleted.

Deleting a parent object causes the automatic deletion of the related child objects. However, the reverse is not the
case. There is no automatic deletion when a child or a peer object is deleted.

If the relationship type ofmyCustomer is set to:

Parent, allBankAccounts is Child

Child, allBankAccounts is Parent

Peer, allBankAccounts is Peer

Automatic deleting is useful for a whole-part aggregation relationship, where the part objects have meaning only as
part of the whole object. The following example involves Jade meta data.

The Customer class object is the parent of the address, firstNames, and lastName property objects. If you were to
remove the Customer class, the associated property and method objects would be deleted automatically.

Root Object Collections
One of the functions of the root object is to hold comprehensive collections (usually dictionaries) of instances of
important classes in the system; for example, all of the customers, all of the bank accounts, and so on. You can use
the root object collections in an application to display data in tables, and to navigate to any object in the system.

Inverse references are used to maintain the collections and to avoid invalid object references.

The first relationship to implement is one bank (the root object) that has many customers, as follows.

After defining the inverse references, a coding change is required to ensure that themyBank reference is set for a
new customer. This can be done in the createmethod in the Customer class, as follows.

create(addr, first, last: String) updating;

begin
self.number := app.myBank.nextCustNum();
self.address := addr.trimBlanks();
self.firstNames := first.trimBlanks();
self.lastName := last.trimBlanks();
self.myBank := app.myBank;

end;

Note There is a general rule to set references after setting attributes. In the createmethod, setting themyBank
reference at the start of the method would be inefficient, because it triggers inverse maintenance, which in this case
adds the customer to the Bank root object's allCustomers dictionary.

At the start of the method, the lastName property has not been set, so the customer would be added to the dictionary
with a null key. When the lastName property is subsequently set, additional dictionary maintenance is required.

The next relationship is one bank (the root object) that has many bank accounts, as follows.

After defining the inverse references, a coding change is required to ensure that themyBank reference is set for a
new bank account.

Developer's Course

Module 10 Relationships 131

Developer's Course

132 Module 10 Relationships

This can be done in the createmethods in the ChequeAccount and SavingsAccount classes, as follows.

create(bal, od: Decimal; cust: Customer) updating;

begin
self.balance := bal;
self.overdraftLimit := od;
self.myCustomer := cust;
self.myBank := app.myBank;

end;

create(bal, rate: Decimal; cust: Customer) updating;

begin
self.balance := bal;
self.interestRate := rate;
self.myCustomer := cust;
self.myBank := app.myBank;

end;

Exercise 10.1 - Adding a BankAccount Dictionary
In this exercise, you will add a BankAccountByNumberDict dictionary. The instructions are similar to those for
adding the CustomerByLastNameDict dictionary, except that the key property for BankAccountByNumberDict is
guaranteed to be unique, so there is no need to allow duplicates.

1. Find theMemberKeyDictionary class.

2. Add a class, by selecting the Classes menu Add Class command.

3. On the Class sheet, enter BankAccountByNumberDict as the name of the class, and then select the
Membership sheet.

4. On theMembership sheet, select BankAccount as theMembership class and then select the Keys sheet.

Developer's Course

Module 10 Relationships 133

Developer's Course

134 Module 10 Relationships

5. On the Keys sheet, select number as the key and then click the Add button.

6. Click theOK button.

Exercise 10.2 - Adding an Exclusive Collection
In this exercise, you will add an allBankAccounts reference.

1. Select the Customer class.

2. Add a reference by selecting the Properties menu Add Reference command.

3. Enter allBankAccounts as the name, make the reference read-only, and then click theOK button.

Developer's Course

Module 10 Relationships 135

Developer's Course

136 Module 10 Relationships

Exercise 10.3 - Adding Inverse References
In this exercise, you will associate the allBankAccounts reference in the Customer class and themyCustomer
reference in the BankAccount class as inverses.

1. Select the allBankAccounts reference in the Customer class.

2. Select the Properties menu Change command.

3. Click the Define Inverse button.

4. In the BankAccount class, select themyCustomer reference and then click theOK button.

5. This change will require a reorganization. Click the Schema Needs Reorg toolbar button and on the Classes
Needing Reorg dialog, click the Reorg button.

Developer's Course

Module 10 Relationships 137

Developer's Course

138 Module 10 Relationships

Exercise 10.4 - Adding Root Object Collections
In this exercise, you will add the root object collections of Customer and BankAccount objects. You will also change
the createmethods for these classes so that new instances are automatically added to these collections.

1. Select the Bank class.

2. Add a reference called allCustomers of type CustomerByLastNameDict class, and then click the Define
Inverse button.

3. In the Customer class, entermyBank as the reference name and then click theOK button.

4. You are then prompted that the schema has been versioned. Perform a reorganization now.

5. Select the createmethod in the Customer class. Add an instruction to set themyBank reference to the root
object, as follows.

create(addr, first, last: String) updating;

begin
self.number := app.myBank.nextCustNum();
self.address := addr.trimBlanks();
self.firstNames := first.trimBlanks();
self.lastName := last.trimBlanks();
self.myBank := app.myBank;

end;

6. Select the Bank class.

7. Add a reference called allBankAccounts of type BankAccountByNumberDict class and then click the Define
Inverse button.

Developer's Course

Module 10 Relationships 139

Developer's Course

140 Module 10 Relationships

8. In the BankAccount class, entermyBank as the reference name and then click theOK button.

9. You are then prompted that the schema has been versioned. Perform a reorganization now.

10. Select the createmethod in the ChequeAccount class. Add an instruction to set themyBank reference to the
root object, as follows.

create(bal, od: Decimal; cust: Customer) updating;

begin
self.balance := bal;
self.overdraftLimit := od;
self.myCustomer := cust;
self.myBank := app.myBank;

end;

11. Select the createmethod in the SavingsAccount class. Add an instruction to set themyBank reference to the
root object, as follows.

create(bal, rate: Decimal; cust: Customer) updating;

begin
self.balance := bal;
self.interestRate := rate;
self.myCustomer := cust;
self.myBank := app.myBank;

end;

12. Navigate to the JadeScript class and execute the removeTestDatamethod.

13. Execute the createCustomersFromFile and createBankAccountsmethods. This will reload the test data, this
time with themyBank reference set.

Extra Challenge: How might you establish this inverse relationship without deleting and reloading the test data?

Exercise 10.5 - Multiple Inverses
At this stage, the Bank root object has two collections, as follows.

A collection of bank accounts ordered by number

A collection of customers ordered by last name

In the following two challenges, you can add further collections to the root object that could prove useful in the banking
system applications.

Challenge #1
Add a reference called allCustsByAddress, containing customer references but ordered by address, which is the
inverse ofmyBank in the Customer class. You will need a new CustomerByAddressDictmember key dictionary.

When themyBank reference is set for a new customer, the customer is added to the allCustomers collection and the
allCustsByAddress collection.

Challenge #2
Add a reference called allChequeAccounts, containing references to cheque accounts ordered by number, which is
the inverse ofmyBank in the BankAccount class. You will need a new ChequeAccountByNumberDictmember
key dictionary.

Add a reference called allSavingsAccounts, containing references to savings accounts ordered by number, which is
the inverse ofmyBank in the BankAccount class. You will need a new SavingsAccountByNumberDictmember
key dictionary.

When themyBank reference is set for a new bank account, the bank account is added to the allBankAccounts
collection.

Developer's Course

Module 10 Relationships 141

Developer's Course

142 Module 10 Relationships

Depending on its type, the bank account is also added to the allChequeAccounts collection or the
allSavingsAccounts collection.

Conditions
You can define a condition on a class by selecting the Methods menu New Condition command.

A condition is a declarative method that returns a Boolean result. You cannot use local variables and you are
restricted to:

Properties of the self object

Other conditions on the class

if and return instructions

The following condition could be added to the BankAccount class.

highValue(): Boolean condition;

begin
return self.balance >= 100000;

end;

A condition method is indicated by the checkmark symbol (ü) displayed at the left of the method name in the Methods
List of the Class Browser.

Constraint on Collection Maintenance
For a collection that is the automatically maintained end of the relationship, you can specify a constraint that
determines whether an object should be added to or removed from the collection as part of the inverse maintenance.
For example, the Bank root object could have an allHighValueAccounts collection of accounts with balances greater
than $100,000.

This collection for bank accounts with no condition on the balance is in addition to the allBankAccounts collection.

When an account is created, depending on the initial balance, inverse maintenance adds it to the
allHighValueAccounts collection. Subsequently, as the balance changes through deposits and withdrawals, the
bank account will be removed automatically from or added to the collection, depending on whether the condition is
met.

Cardinality
Cardinality is the number of objects at the ends of a relationship. A one-to-many relationship, which is the type you
have defined in this module, has amy reference at one end and an all reference at the other. One collection is
required.

One customer has many bank accounts.

A one-to-one relationship hasmy references at both ends. No collections are required.

Note Restricting a customer to a single bank account is not realistic.

A many-to-many relationship has all references at both ends. Two collections are required.

Note A bank account owned by two or more customers is a joint account.

Exercise 10.6 - Adding an allHighValueAccounts
Collection

In this exercise, you will add a highValue condition to the BankAccount class, and then add an
allHighValueAccounts collection to the Bank class. To demonstrate that the inverse maintenance works as
expected, you will write a testHighValue JadeScript method.

1. Select the BankAcount class.

2. Add a condition called highValue, by selecting the Methods menu New Condition command.

3. Code the method as follows.

highValue(): Boolean condition;

begin
return self.balance >= 100000;

end;

Developer's Course

Module 10 Relationships 143

Developer's Course

144 Module 10 Relationships

4. Add a reference called allHighValueAccounts of type BankAccountByNumberDict to the Bank class and
then click the Define Inverse button.

5. Select highValue in the Constraint combo box andmyBank as the inverse reference, as shown in the following
image.

6. You are then prompted that the schema has been versioned. Perform a reorganization now.

7. Add a JadeScript method called testHighValue that creates a cheque account with a zero balance, uses the
depositmethod to put the bank account into the allHighValueAccounts collection, and then uses the
withdrawmethod to remove it from the collection.

8. Execute the JadeScript method.

Developer's Course

Module 10 Relationships 145

Module 11 Forms

This module contains the following topics.

Introduction

View Schema

Painter

Forms

Buttons

Text Boxes

Subforms

Exercise 11.1 – Adding the BankingViewSchema

Exercise 11.2 – Adding a CustomerDetails Form

Exercise 11.3 – Adding a JadeScript to Run a Form

Exercise 11.4 – Adding a CustomerAdd Form

Exercise 11.5 – Coding the CustomerDetails Form

Exercise 11.6 – Coding the CustomerAdd Form

Menus

Multiple Document Interface

List Boxes

Editing a Customer

Tables

Exercise 11.7 – Adding a MainMenu Form

Exercise 11.8 – Adding a CustomerList Form

Exercise 11.9 – Adding a setPropsOnUpdate Method

Exercise 11.10 – Adding a CustomerEdit Form

Exercise 11.11 – Changing the CustomerList Form

Introduction
The BankingModelSchema implements the model for the system. All classes for which persistent objects are
created are defined in this schema.

Developer's Course

148 Module 11 Forms

You can open the separate Painter application by selecting the File menu Painter command in the Jade Platform
development environment, or by clicking the paintbrush icon from the development environment toolbar. After creating
a form and adding controls in the BankingViewSchema, save the form by selecting the File menu Save Form
command.

The Class Browser displays a class corresponding to the form you designed in the Painter.

You add functionality to the form by writing code in this class.

You can select a runtime skin that is used to display any form that you are painting, by selecting the Select Skin
command from the File menu. The Select or Cancel a Skin form is then displayed, to enable you to select the runtime
skin in the Choose Skin combo box.

If you have not loaded any runtime skins into your Jade system, the default value of <None> is the only value available
in this combo box.

Tip The examples\skins subfolder of the Jade Platform install files contains runtime skins that you can load. For
details about loading the SampleSkins.ddx file, see the readme.txt file in that subfolder.

When you select a runtime skin, the Control Examples pane on the form displays an example of controls (and menu
and menu items, if selected for display) using that skin.

When you are happy with the controls and menu on the painted form displayed in that skin, click the Apply button.
That skin is then applied to any forms being painted. If a skin is selected, the JADE Painter caption reads Jade Painter
: schema-name::form-name - using skin 'skin-name' - [caption-of-form]; for example:

Jade Painter : DemoSchema::Company - using skin 'Windows Broadbean' - [Company]

In addition, any subsequent forms opened in the JADE Painter are displayed using the selected runtime skin. The
selected skin is saved in your user preferences when you close the JADE Painter and restored when you re-open the
Painter.

View Schema
The BankingViewSchema implements the views or applications that run over the model. The entire user interface
(forms) is implemented in this schema. Jade uses subschemas to separate the model from the views, allowing for a
cleaner, more well-defined design and implementation. It also means that separate development teams can more
easily work on separate parts of the system, but still within the same single Jade Platform environment.

Developer's Course

Module 11 Forms 149

Developer's Course

150 Module 11 Forms

Separating the views from the model by packaging them in their own schemas prevents the model schema from
becoming cluttered with user interface implementation, and means that the model schema can support many different
views. It also makes it easier to identify the services provided by the model.

Create forms in a subschema (the BankingViewSchema, in this course).

Painter
To add a control to a form, click on the control in the Tools palette and then click on the form. Alternatively, use the
Ctrl+Insert shortcut keys to display a text-based list of the controls that are available to be added.

To change the properties of a control, double-click on the control to open the Properties dialog, which groups
properties into the following categories.

Common

Specific

Font and Color

Size and Position

The name property is in the Common group of properties. The Common properties are those that every type of
control has; for example, every control has a name. You use the name property when referring to the control in your
code. You should change the default names button1, button2, and so on, to something more meaningful to a
developer.

Tips Click the Stay on top of Painter icon at the left of the Properties dialog toolbar, to keep the Properties dialog
positioned on top of the Painter. The icon then changes shape and is highlighted.

You can display a hierarchical list of all controls painted on the currently active form; for example, if you want to inspect
the controls painted on a complex form. Activate the form by selecting the Show Control Hierarchy Dialog
command from the Window menu of the JADE Painter or by pressing F5 when the Painter has focus. Click the Stay
on top of Painter icon at the top left of the dialog or select the Control Hierarchy on Top command from the Options
menu to keep the Hierarchy for Form dialog on top of the Painter. Conversely, repeating these actions toggles the
pinning of the dialog on top of the Painter and the check status of the menu command.

Developer's Course

Module 11 Forms 151

Developer's Course

152 Module 11 Forms

The caption property is in the Specific group of properties, because not all controls have captions. If all controls had
captions, it would be in the Common group. The caption is the text seen by application users. You should change it to
something more meaningful to an application user.

There is another toolbar with icons to help with alignment and sizing, displayed except when you select the Hide
Alignment/Size Palette command from the Options menu.

Forms
Your form is a subclass of the Form class from RootSchema, which has inbuilt Windows functionality. The inherited
showmethod loads and displays the form, and the unloadFormmethod closes it.

In the following JadeScript method, the CustomerDetails form is displayed for five seconds, and then closed.

vars
form: CustomerDetails;

begin
create form transient;
form.show();
// Wait five seconds
app.doWindowEvents(5000);
form.unloadForm();

end;

Note The unloadFormmethod deletes the transient form object and the associated control objects.

The event method associated with the showmethod is called load. It enables text to be entered into text boxes and
collections to be loaded into tables and list boxes. The event method associated with the unloadFormmethod is
called unload.

Note Event methods are invoked when the associated event happens; for example, a button is clicked or a form is
closed. They are not usually invoked directly with a method call from code.

To code one of these event methods, select <form> in the central window (that is, the Properties List) and then select
the appropriate event method fromMethods List on the right.

Buttons
In a GUI application, most of the functionality is triggered when the application user clicks buttons on forms. To code a
button click event method, select the button control in the central Properties List and then select the click event
method from the Methods List on the right.

Developer's Course

Module 11 Forms 153

Developer's Course

154 Module 11 Forms

Write code in the editor pane and then compile the method.

Text Boxes
Text boxes enable an application user to enter text, which is stored in the text box's text attribute. The following
diagram shows a form with txtLastName, txtFirstNames, and txtAddress text boxes.

You could add a clearTextBoxesmethod to the form to clear text from the text boxes and position the cursor in the
txtLastNames text box.

clearTextBoxes();

begin
self.txtLastName.text := "";
self.txtFirstNames.text := "";
self.txtAddress.text := "";
self.txtLastName.setFocus();

end;

You could add an isDataValidmethod to the form to return true if data has been entered in all of the text boxes. If one
of the text boxes is empty, a message is displayed in the status line and the method returns false.

isDataValid(): Boolean protected;

begin
if self.txtLastName.text = "" then

self.txtLastName.setFocus();
self.statusLine.caption := "Please enter a last name";
return false;

elseif self.txtFirstNames.text = "" then
self.txtFirstNames.setFocus();
self.statusLine.caption := "Please enter first names";
return false;

elseif self.txtAddress.text = "" then
self.txtAddress.setFocus();
self.statusLine.caption := "Please enter an address";
return false;

endif;
return true;

end;

Developer's Course

Module 11 Forms 155

Developer's Course

156 Module 11 Forms

You could add a createCustomermethod to the form to create a Customer object from the data entered in the text
boxes.

Subforms
The CustomerDetails form has text boxes for displaying the attributes of a Customer object. Two situations in which
you would use a form like this are when:

Adding a new customer

Editing an existing customer (possibly selected from a list box or table)

Instead of using the same form in both situations, which would inevitably involve more-complex code with if
instructions, create two subforms.

The CustomerAdd and CustomerEdit forms inherit controls, properties, and methods from CustomerDetails. In
addition, the CustomerEdit class will have amyCustomer reference that is set to the Customer object to be edited.

Note Although you cannot make a form class abstract, the CustomerDetails form will be treated as an abstract
class; that is, it will not be instantiated.

Exercise 11.1 - Adding the BankingViewSchema
In this exercise, you will create the BankingViewSchema, in which you will create forms and applications for the
banking system.

1. Select the BankingModelSchema in the Schema Browser.

2. Select the Schema menu Add command.

3. Enter BankingViewSchema as the name and then click theOK button.

Exercise 11.2 - Adding a CustomerDetails Form
In this exercise, you will create a new form called CustomerDetails in the BankingViewSchema.

1. Open the Painter.

2. Select the File menu New Form command. Enter CustomerDetails as the name of the form.

Developer's Course

Module 11 Forms 157

Developer's Course

158 Module 11 Forms

3. Paint the form, as shown in the following diagram. To set themdiChild property of the form, double-click on an
empty part of the form (that is, an area that does not contain an element). ThemdiChild property is located on
the Specific sheet of the Properties dialog.

4. Save the form.

Exercise 11.3 - Adding a JadeScript Method to Run a
Form

In this exercise, you will add a JadeScript method to display the CustomerDetails form.

Note You can run a form from within Painter by selecting the File menu Run Form command. However, by using a
JadeScript method, you can run the initializemethod from the Application class to set a reference to the root object.

1. Add a JadeScript method called runForm in the BankingViewSchema.

2. Code the method as follows.

runForm();

vars
form: CustomerDetails;

begin
app.initialize();
create form transient;
form.show();
// Wait five seconds then close
app.doWindowEvents(5000);
form.unloadForm();

end;

3. Execute the JadeScript method.

Exercise 11.4 - Adding a CustomerAdd Form
In this exercise, you will create a new subform of CustomerDetails called CustomerAdd.

1. Open the Painter.

2. Select the File menu New Form command. Enter CustomerAdd as the name of the form and then select
CustomerDetails from the Sub-Form of combo box.

3. Change the form caption property to Adding a Customer.

4. Save the form.

Developer's Course

Module 11 Forms 159

Developer's Course

160 Module 11 Forms

5. Return to the Class Browser and then select the View menu Show Inherited command, so that inherited
controls from CustomerDetails are displayed when you view the CustomerAdd form.

Exercise 11.5 - Coding the CustomerDetails Form
In this exercise, you will code the following methods in the CustomerDetails form that will apply to all subforms.

An event method to close the form when the btnCancel button is clicked

A protected method called isDataValid to check that the user has entered data in all of the text boxes

A protected method called clearTextBoxes to empty text boxes and to position the cursor in the first text box

In subforms (for example, CustomerAdd), you will call the protected methods from event methods.

1. In the CustomerDetails form, select the btnCancel button and then select the click event.

2. Code the clickmethod as follows.

btnCancel_click(btn: Button input) updating;

begin
self.unloadForm();

end;

3. In the CustomerDetails form, select the Methods menu New Jade Method command, enter clearTextBoxes
as the name, select the Protected option, and then click theOK button.

4. Code the method as follows.

clearTextBoxes();

beginself.txtLastName.text := "";
self.txtFirstNames.text := "";
self.txtAddress.text := "";
self.txtLastName.setFocus();

end;

5. Add another protected method called isDataValid, and code it as follows.

isDataValid(): Boolean protected;

begin
if self.txtLastName.text = "" then

self.txtLastName.setFocus();
self.statusLine.caption := "Please enter a last name";
return false;

elseif self.txtFirstNames.text = "" then
self.txtFirstNames.setFocus();
self.statusLine.caption := "Please enter first names";
return false;

elseif self.txtAddress.text = "" then
self.txtAddress.setFocus();
self.statusLine.caption := "Please enter an address";
return false;

endif;
return true;

end;

Exercise 11.6 - Coding the CustomerAdd Form
In this exercise, you will code the following methods in the CustomerAdd form that apply to that form.

A protected method called createCustomer, to create a new customer and to set its properties from the text
entered into the text boxes

An event method, to create a new customer when the btnOK button is clicked

To add methods to the CustomerAdd form:

1. In the CustomerAdd form, select the Methods menu New Jade Method command, enter createCustomer as
the name, select the Protected option, and then click theOK button.

Developer's Course

Module 11 Forms 161

Developer's Course

162 Module 11 Forms

2. Code the method as follows.

3. Select the btnOK button, and then select the click event. Code the method as follows.

btnOK_click(btn: Button input) updating;

begin
if self.isDataValid() then
self.createCustomer();
self.clearTextBoxes();
self.statusLine.caption := "Customer successfully added";
endif;

end;

4. Change the JadeScript runFormmethod to open CustomerAdd instead of CustomerDetails, and comment
out the instructions for automatically closing the form.

5. Execute the JadeScript runFormmethod and test that you can add a customer.

Menus
The menu designer in Painter is accessed by selecting the File menuMenu Design command.

Note An ampersand character (&) in the caption causes the character that follows to be underlined. The underlined
character becomes an accelerator key when the form is run.

Select a menu item in the designer and then enter values for the Caption and Name.

Developer's Course

Module 11 Forms 163

Developer's Course

164 Module 11 Forms

When you save the form and return to the Class Browser, the menu items are displayed in the central Properties List.
Select a menu item and then code its click event method, as follows.

Multiple Document Interface
When you ran the CustomerAdd form in the previous exercise, it ran as amultiple document application (MDI), as
shown in the following image.

In a multiple document application, forms are created as child windows that are confined within the boundaries of a
parent window. When you painted the CustomerDetails form, you set themdiChild property to make it an MDI child
form.

Developer's Course

Module 11 Forms 165

Developer's Course

166 Module 11 Forms

The parent window in an MDI application is called theMDI frame. It is a form that is typically painted without any
controls but with a menu, as shown in the following image.

To make a form into an MDI frame, set themdiFrame property to true and then add the following instruction when the
form is loaded.

app.mdiFrame := MainMenu;

List Boxes
List boxes are used to display collections of objects in an application; for example, the root object's collection of
customers.

The ListBox class provides methods and properties for populating a list box and for determining the customer that the
user has selected.

Developer's Course

Module 11 Forms 167

Developer's Course

168 Module 11 Forms

Populating a List Box
A simple and efficient way to populate a list box from a collection is as follows.

1. Associate the collection with the list box by using its displayCollectionmethod.

This is usually done when the form loads.

The parameters for the displayCollectionmethod are:

Collection to be used.

true (the list box automatically refreshes if the collection changes) or false (no automatic refreshing).

0 (normal collection order) or 1 (reversed collection order). There are constants on the ListBox class with
the values ListBox.DisplayCollection_Forward and ListBox.DisplayCollection_Reversed.
(DisplayCollection_Forward is not the value but the name, the value is 0.)

Starting object (the list box is scrolled so that this object is at the top).

Extra text that is displayed as the first entry in the list box.

2. Specify the text that is displayed for each object. This is coded in the displayRow event method of the list box,
which is called for each object in the visible part of the list box.

Note If the list box displays 15 objects at a time, the displayRowmethod is called 15 times only when the form
is loaded. Subsequent scrolling results in the method being called for the next 15 customers.

Alternatively, you can add objects to a list box one at a time, by using the addItemmethod and the itemObject array,
as shown in the following example.

foreach cust in app.myBank.allCustomers do
self.lstCustomers.addItem(cust.firstNames & " " & cust.lastName);
self.lstCustomers.itemObject[self.lstCustomers.listCount] := cust;

endforeach;

Determining the Selected Object
When a user selects an entry in a list box, the listIndex property is set to that row number. If the first entry is selected,
the value of listIndex is 1, and if no entry is selected, the value of listIndex is -1.

The customer selected in a list box can be obtained from the itemObject array, as follows.

cust := self.lstCustomers.itemObject[self.lstCustomers.listIndex].Customer;

You can achieve the same result by using the listObject property, as follows.

cust := self.lstCustomers.listObject.Customer;

Developer's Course

Module 11 Forms 169

Developer's Course

170 Module 11 Forms

Editing a Customer
In the application, a customer to be edited is selected in the list box and stored in the listObject property. When the
Edit button is clicked, a CustomerEdit form is created. The CustomerEdit form has amyCustomer reference, which
identifies the Customer object whose details are loaded into the text boxes.

When the customer details are changed, a setPropsOnUpdatemethod will be used to update the properties of the
Customer object.

setPropsOnUpdate(addr, first, last: String) updating;

begin
self.address := addr.trimBlanks();
self.firstNames := first.trimBlanks();
if not self.lastName = last.trimBlanks() then

self.lastName := last.trimBlanks();
endif;

end;

The important differences from the createmethod are:

The lastName property, which is a dictionary key, is updated only if it has changed. Avoid setting a property that
is a dictionary key when the value has not changed, because it avoids the dictionary maintenance that always
takes place when a key is set.

ThemyBank reference is not set because a reference to the root object never changes.

Tables
A table can display objects in a collection, using a number of columns.

The Table class provides similar methods and properties to the ListBox class for populating a table and for
determining the customer that the user has selected.

Developer's Course

Module 11 Forms 171

Developer's Course

172 Module 11 Forms

Populating a Table
A simple and efficient way to populate a table from a collection is:

1. Associate the collection with the table using its displayCollectionmethod.

This is usually done when the form loads.

The parameters for the displayCollectionmethod are:

Collection to be used.

true (table automatically refreshes if the collection changes) or false (no automatic refreshing).

0 (normal collection order) or 1 (reversed collection order). There are constants on the Table class to use
for this parameter, Table.DisplayCollection_Forward has the value 0 and Table.DisplayCollection_
Reversed has the value 1.

Starting object (table is scrolled so that this object is at the top).

2. Specify the text that is displayed for each object. This is coded in the displayRow event method of the table,
which is called for each object in the visible part of the table.

Alternatively, you can add objects to a table one at a time, by using the addItemmethod and the itemObject of an
associated JadeTableRow object, as shown in the following example.

foreach cust in app.myBank.allCustomers do
self.tblCustomers.addItem(cust.firstNames & Tab &

cust.lastName & Tab & cust.address);
self.tblCustomers.accessRow(self.tblCustomers.rows).itemObject := cust;

endforeach;

Determining the Selected Object
When a user selects an entry in a table, the row property is set to that row number. If the first entry is selected, the
value of row is 1, which often contains column headings.

The customer selected in a table can be obtained from the itemObject property of the JadeTableRow object for the
selected row, as follows.

cust := self.tblCustomers.accessRow(self.tblCustomers.row).itemObject.Customer;

Developer's Course

Module 11 Forms 173

Developer's Course

174 Module 11 Forms

Exercise 11.7 - Adding a MainMenu Form
In this exercise, you will add a form with a menu and make the form the MDI frame.

1. Open the Painter.

2. Select the File menu New Form command. EnterMainMenu as the name of the form.

3. In the specific group of the Properties dialog, set themdiFrame property of the form to True.

4. Set the caption property for the form to Banking System.

5. Save the form.

6. Return to the Class Browser.

7. Select the loadmethod for theMainMenu form. To show the loadmethod in the Methods List, select the Form
Events sheet from the pane at the right.

8. Code the method as follows.

load() updating;

begin
app.mdiFrame := MainMenu;

end;

9. Return to the Painter and then open the menu designer by selecting the File menuMenu Design command.

10. For the first menu, enter &Customer in the Caption field andmenuCustomer in the Name field.

11. Select the first menu item under the Customermenu and then enter &Add in the Caption field and
menuCustomerAdd in the Name field.

12. Click theOK button to close the menu designer, and then save the form.

13. In the Class Browser, select themenuCustomerAddmenu item and then select the click event method.

14. Code the method as follows.

menuCustomerAdd_click(menuItem: MenuItem input) updating;

vars
form: CustomerAdd;

begin
create form transient;
form.show();

end;

15. Change the JadeScript runFormmethod to openMainMenu instead of CustomerAdd.

16. Execute the JadeScript runFormmethod and test the MDI parent-child functionality.

Exercise 11.8 - Adding a CustomerList Form
In this exercise, you will add a CustomerList form that will display the root object's collection of customers. You will
then add an option to the Customermenu on theMainMenu form to open the CustomerList form.

1. Open the Painter.

2. Select the File menu New Form command. Enter CustomerList as the name of the form.

3. Paint the form with a list box and a button, as shown in the following diagram.

4. Save the form and then return to the Class Browser.

5. Select the loadmethod for the CustomerList form by selecting Form Events in the central Properties List, and
then load from the event methods in the Methods List.

6. Code the method as follows.

7. Select the lstCustomers list box, and then select the displayRow event.

Developer's Course

Module 11 Forms 175

Developer's Course

176 Module 11 Forms

8. Code the displayRowmethod as follows.

lstCustomers_displayRow(listbox: ListBox input; cust: Customer;
lstIndex: Integer; bcontinue: Boolean io):String

updating;
begin

return cust.firstNames & " " & cust.lastName;
end;

9. Select the btnEdit button, and then select the click event.

10. Code the click event method to write the last name of the selected customer. (You will change this method in a
later exercise.)

btnEdit_click(btn: Button input) updating;

vars
cust: Customer;

begin
cust := self.lstCustomers.listObject.Customer;
if cust = null then

app.msgBox("Select a customer first", "Error", MsgBox_OK_Only);
else

write cust.lastName;
endif;

end;

11. Open theMainMenu form in Painter.

12. Open the menu designer by selecting the File menuMenu Design command.

Tip When you already have a visible menu, you can click on that menu in Painter to quickly open the menu
designer.

13. Select the cell below the Addmenu, and then enter &List in the Caption field andmenuCustomerList in the
Name field.

14. Click theOK button to close the menu designer, and then save the form.

15. In the Class Browser, select themenuCustomerListmenu item and then select the click event method.

16. Code the method as follows.

menuCustomerList_click(menuItem: MenuItem input) updating;

vars
form: CustomerList;

begin
create form transient;
form.show();

end;

17. Execute the runForm JadeScript method and open the CustomerList form.

Test that the btnEdit button writes the correct message.

Exercise 11.9 - Adding a setPropsOnUpdate Method
In this exercise, you will return to the Customer class in the BankingModelSchema and add a setPropsOnUpdate
method.

1. Select BankingModelSchema in the Schema Browser.

2. Open a Class Browser and then select the Customer class.

3. Select the Methods menu New Jade Method command, enter setPropsOnUpdate as the name, and then click
theOK button.

Developer's Course

Module 11 Forms 177

Developer's Course

178 Module 11 Forms

4. Code the method as follows.

setPropsOnUpdate(addr, first, last: String) updating;

begin
self.address := addr.trimBlanks();
self.firstNames := first.trimBlanks();
self.lastName := last.trimBlanks();

end;

Exercise 11.10 - Adding a CustomerEdit Form
In this exercise, you will create a new subform of CustomerDetails called CustomerEdit.

1. Open the Painter.

2. Select the File menu New Form command. Enter CustomerEdit as the name of the form and then select
CustomerDetails from the Sub-Form combo box.

3. Change the form caption property to Editing a Customer.

4. Save the form.

5. Return to the Class Browser and then select the View menu Show Inherited command, so that inherited
controls from CustomerDetails are displayed when you view the CustomerEdit form.

6. In the CustomerEdit form, add a public reference calledmyCustomer of type Customer.

This reference will be set by the user selecting a customer in the CustomerList form and then clicking the Edit
button.

7. Select the loadmethod for the CustomerEdit form, by selecting the Form Events sheet in the right-most panel
and then load from the event methods in the Methods List.

8. Code the method to load information for themyCustomer object into the text boxes, as follows.

load() updating;

begin
self.txtAddress.text := myCustomer.address;
self.txtFirstNames.text := myCustomer.firstNames;
self.txtLastName.text := myCustomer.lastName;

end;

9. In the CustomerEdit form, add a protected method called editCustomer and code it as follows.

editCustomer() protected;

begin
beginTransaction;
self.myCustomer.setPropsOnUpdate(self.txtAddress.text,

self.txtFirstNames.text,
self.txtLastName.text);

commitTransaction;
end;

10. Select the btnOK button, and then select the click event. Code the method as follows.

btnOK_click(btn: Button input) updating;

begin
if self.isDataValid() then

self.editCustomer();
self.unloadForm();

endif;
end;

11. Finally, in the CustomerList form, change the clickmethod of the Edit button to open CustomerEdit form and
set themyCustomer reference, as follows.

btnEdit_click(btn: Button input) updating;

vars
cust: Customer;
form: CustomerEdit;

begin
cust := self.lstCustomers.listObject.Customer;
if cust = null then

app.msgBox("Select a customer", "Error", MsgBox_OK_Only);
else

// write cust.lastName;
create form transient;
form.myCustomer := cust;
form.show();

endif;
end;

12. Execute the JadeScript runFormmethod and then open the CustomerList form.

13. Select the customer Barbara Baynton and change the name to Barbara Jackson, by clicking the Edit button.

Does the list box on the CustomerList form update? Why?

14. On the CustomerList form, select the customer Barbara Jackson and change the name to Alice Jackson, by
clicking the Edit button.

Does the list box on the CustomerList form update? Why?

Exercise 11.11 - Changing the CustomerList Form
In this exercise, you will change the CustomerList form to use a table instead of a list box.

1. Open the JADE Painter.

2. Select the File menu Edit Form command, select CustomerList, and then click theOK button.

Developer's Course

Module 11 Forms 179

Developer's Course

180 Module 11 Forms

3. Replace the list box with a table, as shown in the following diagram.

4. Save the form and then return to the Class Browser.

5. Select the loadmethod for the CustomerList form.

6. Replace the code, as follows.

7. Select the tblCustomers table, and then select the displayRow event.

8. Code the displayRowmethod as follows.

tblCustomers_displayRow(table: Table input; theSheet: Integer; cust: Customer;
theRow: Integer; bcontinue: Boolean io): String updating;

begin
return cust.firstNames & Tab & cust.lastName & Tab & cust.address;

end;

Note Make sure to change the obj: Object parameter to cust: Customer.

9. Select the btnEdit button, and then select the click event.

10. Replace the code in the clickmethod, as follows.

btnEdit_click(btn: Button input) updating;

vars
cust: Customer;
form: CustomerEdit;

begin
// cust := lstCustomers.listObject.Customer;
cust := tblCustomers.accessRow(tblCustomers.row).itemObject.Customer;
if cust = null then

app.msgBox("Select a customer", "Error", MsgBox_OK_Only);
else

// write cust.lastName;
create form transient;
form.myCustomer := cust;
form.show();

endif;
end;

11. Test that the CustomerList form works correctly.

Developer's Course

Module 11 Forms 181

Module 12 Applications

This module contains the following topics.

Introduction

Defining a GUI Application

Web Services and REST Services

Logon Authentication

Application Security

Shortcut to Run an Application

Exercise 12.1 – Defining a Banking Application

Exercise 12.2 – Adding a Logon Form

Exercise 12.3 – Reimplementing the getAndValidateUser Method

Environmental Objects

startApplication Method

JADEMonitor

createExternalProcess Method

Calling External Functions

Database Backup

Defining a Non-GUI Application

Exercise 12.4 – Multitasking

Exercise 12.5 – Adding a Non-GUI Application

Exercise 12.6 – Adding Backup to the MainMenu

Developer's Course

184 Module 12 Applications

Introduction
Applications are defined from the Application Browser, which is opened by clicking the A button (Browse Applications)
from the Jade Platform development environment toolbar.

In the banking system, there are many types of users: customers using online banking, customers using ATMs, tellers
working in a branch of the bank, the bank manager, and so on. There would be applications appropriate for different
types of users, as well as utility and background applications, as shown in the following image.

You can select an application in the Application Browser and set it as the default application, by using the Application
menu Set command.

You can start the default application by right-clicking the arrow button (Run Application) in the Jade Platform
development environment toolbar.

Defining a GUI Application
In the Application Browser, you can select the Application menu Add or Change command to display the Define
Application dialog, as shown in the following image.

After specifying a name for the application, select an application type.

TheGUI application type is a standard desktop application, which displays forms that were designed in the JADE
Painter. The other application types are:

GUI, No Forms – an application that does not display forms on screen, but can print forms; for example, a print
server that prints reports in the background.

Non-GUI – an application that does not create screen or print forms; for example, a program that runs a
scheduled backup.

Rest Services – an application that provides REST-based web services, and displays requests from clients in a
monitor window. A Rest Services, Non-Gui application does not display a monitor window.

Developer's Course

Module 12 Applications 185

Developer's Course

186 Module 12 Applications

Web-Enabled – services browser clients running an application or requesting SOAP-based web services. A
monitor window displays client requests.

Jade Forms – an application accessed from a browser. It uses forms designed in the JADE Painter. At run
time, HTML generated by the application is sent from a Microsoft IIS or Apache web server.

HTML Documents – an application accessed from a browser. It uses forms designed outside the Jade
Platform, which are then imported.

Web Services – an application that provides SOAP-based web services.

AWeb-Enabled, Non-GUI application does not display a monitor window.

The Startup Form is the form in the current schema (or a superschema) that is displayed when the application starts.

The Initialize Method is executed when the application starts before the startup form is displayed. The Finalize
Method is executed when the application terminates. These methods must be defined in the Application subclass in
the current schema (or a superschema).

Note Methods called initialize and finalize are used as the Initialize Method and Finalize Method if they exist and
if no other method is specified.

Web Services and REST Services
Any computing device that can run a web browser can connect to a Jade web application. The application creates a
session object with a unique session id for the web browser client, and includes the session id on every form that is
sent to, and every reply that is received from, a web browser.

Web services can be exported from the providing system and imported into the consuming system using Web
Services Description Language (WSDL). Many languages, including Jade and .NET, support web services. When a
request arrives from a web browser, the Microsoft Internet Information Server (IIS) passes the request to the Jade web
application using jadehttp.dll and the Transmission Control Protocol (TCP) connection information in the jadehttp.ini
file.

The query string contains the name of the Jade web-enabled application, in the following format.

http://localhost/jade/jadehttp.dll?WebShop
<-URL path to jadehttp on server->?<-app->

The Jade web application processes this request and generates an HTML page in response. Because all
communications are asynchronous, the Jade client can monitor and display system processing status when idle.

Windows provides security; standard IIS security for data access and Secure Sockets Layer for data transmission.

If an unhandled Jade exception occurs, it is logged on the web server machine and the operation is aborted.

The same architecture applies to all types of Jade web-enabled application.

Jade forms, where the forms are designed in the Jade Painter

HTML forms, where the forms are designed in an external HTML editor; for example, Dreamweaver

Web services

REST services

A web service usually uses HTTP to exchange data. Unlike a web application, which is typically HTML over HTTP, a
web service is Extensible Markup Language (XML) over HTTP. A client sends a request in XML, and the server
responds with an XML response. This XML can be Plain Old XML (POX), which is typically a non-standard XML that
only the client and server can make sense of, or it is standard Simple Object Access Protocol (SOAP).

A Representational State Transfer (REST) Application Programming Interface (API) is a web service. A REST API
differs from SOAP-based web services in the manner in which it is intended to be used. By using REST, the API tends
to be lightweight and embraces HTTP. For example, a REST API leverages HTTP methods to present the actions a
user would like to perform and the application entities would become resources on which these HTTP methods can
act. Although SOAP is not used, messages (requests and responses) are either in XML or JavaScript Object Notation
(JSON).

The JadeJson class, which is a transient-onlyObject subclass, provides standalone JSON functionality that is
independent of the Representational State Transfer (REST) Application Programming Interface (API). The JadeJson
class enables you to create, load, unload, and parse JSON in the same way you can with XML

Although web services and REST services are not covered in depth in this course, the Jade Platform product
information library provides you with resources that enable you to develop web service and REST service
applications.

The following image shows the Jade Platform 2022 HTML5 contents pane in a browser with the "Building Web
Services Applications" chapter of the Developer's Reference expanded in the Contents pane at the left.

For details about the location in HTML5 format of this web services application chapter that covers using both SOAP
and REST-based web services, the web services white papers, and the REST services white paper in the Jade
Platform product information library, see:

https://secure.jadeworld.com/JADETech/JADE2022/OnlineDocumentation/Default.htm

In addition, you can download the:

PDF (print) format of the Developer's Reference from the Development Environment section of the Jade
Platform 2022 Documents at https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation

Web services white papers, which include SOAPWeb Services and REST Services, in print (PDF) format from
White Papers in the Resource Library section of Developer-Center at https://www.jadeworld.com/developer-
center/resource-library/white-papers

Developer's Course

Module 12 Applications 187

https://secure.jadeworld.com/JADETech/JADE2022/OnlineDocumentation/Default.htm
https://www.jadeworld.com/jade-platform/developer-centre/learn/documentation
https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers
https://www.jadeworld.com/jade-platform/developer-centre/documentation/white-papers

Developer's Course

188 Module 12 Applications

Tip As the HTML5 format of the Jade Platform 2022 product information library contains not only the product
information but the white papers and the Erewhon Demonstration System Reference, you can search the complete
product information library. See the "Search and Print Tips for HTML5 Help" topic in the Contents pane at the left of
your browser, for more details.

Logon Authentication
When you add a schema, a number of classes are created. One of these is a subclass ofGlobal. The name of the
subclass is the schema name prefixed with the letterG. A single persistent instance of this class is created. It can be
referred to in your code by using the system variable global.

The global object inherits a lot of useful functionality, including logon validation methods, from theGlobal class.

When an application starts, the getAndValidateUsermethod from theGlobal class is executed before anything else
in the application happens, including the display of the startup form.

getAndValidateUser(usercode: String output; password: String output): Boolean;

The getAndValidateUsermethod is a Booleanmethod that returns true in the implementation in theGlobal class. If
the method returns true, the application is allowed to continue. If the method returns false, the application is
terminated.

You can reimplement the getAndValidateUsermethod in yourGlobal subclass to return true only if the user
authenticates himself or herself by entering the correct password on a logon form.

There is another method on theGlobal class, which is called isUserValid. This method is called immediately after the
getAndValidateUsermethod, to provide secondary validation on the database server. The usercode and password
parameters are set in the getAndValidateUsermethod. The default implementation returns true.

isUserValid(usercode: String; password: String): Boolean;

Application Security
You can implement basic security by setting the userSecurityLevel attribute on the app object. This is usually done
when the user logs on.

app.userSecurityLevel := 4;

Every form, control, and menu item has a securityLevelVisible attribute and a securityLevelEnabled attribute,
which by default are set to zero (0). These attributes are usually set in the JADE Painter but they can be set at run
time.

For a user to see or use a control or menu item, the value of app.userSecurityLevelmust be at least as high as the
security level attribute of the control or menu item.

Shortcut to Run an Application
You can set up a shortcut on the desktop to run the Banking application.

Developer's Course

Module 12 Applications 189

Developer's Course

190 Module 12 Applications

The shortcut is as follows.

C:\JadeCourse\bin\jade.exe path=C:\JadeCourse\system
ini=C:\JadeCourse\system\jade.ini
server=multiuser
app=Banking
schema=BankingViewSchema

Exercise 12.1 - Defining a Banking Application
In this exercise, you will change the application that was automatically added when the schema was created, which
has the same name as the schema.

1. Open the Application Browser and then select the BankingViewSchema application.

2. Select the Application menu Change command.

3. Change the name of the application to Banking.

4. SelectMainMenu as the Startup Form.

5. Select initialize as the Initialize Method, and then click theOK button.

6. Run the application, by right-clicking the green arrow in the Jade Platform development environment toolbar.

Exercise 12.2 - Adding a Logon Form
In this exercise, you will create a new form called Logon.

1. Open the Painter.

2. Select the File menu New Form command. Enter Logon as the name of the form.

3. Paint the form as shown in the following diagram.

4. Save the form and then return to the Class Browser.

5. In the Logon form, select the btnOK button and then select the click event.

6. Code the clickmethod as follows.

btnOK_click(btn: Button input) updating;

begin
self.unloadForm();

end;

Exercise 12.3 - Reimplementing getAndValidateUser
In this exercise, you will reimplement the getAndValidateUsermethod to test whether the correct password, which is
secret, is entered on the Logon form.

1. Select theGBankingViewSchema class.

2. Add a getAndValidateUsermethod. A message box warns that there is already a method of that name in a
superclass. Click the Yes button, to continue.

3. Code the method as follows.

getAndValidateUser(usercode: String output; password: String output): Boolean;

vars
form: Logon;

begin
// Skip authentication if application not Windows desktop-type
if not app.applicationType = Application.ApplicationType_GUI then

return true;
endif;
create form transient;
form.showModal();
if form.txtPassword.text.toLower() = "secret" then

return true;
else

app.msgBox("Incorrect password", "Logon Error", MsgBox_OK_Only);
return false;

endif;
end;

4. Run the Banking application and test the logon authentication.

Challenge
Change the code to give the user three chances to enter the password correctly.

Developer's Course

Module 12 Applications 191

Developer's Course

192 Module 12 Applications

Environmental Objects
The architecture of a Jade Platform multiuser system was explained in an earlier module.

The components of the architecture correspond to instances of the System, Node, and Process classes in
RootSchema.

The system variable represents the collection of all nodes, the node variable represents the current node, and the
process variable represents the current process.

startApplication Methods
The startApplication, startApplicationWithParameter, startApplicationWithString, and startAppMethod
methods of the Application class start a new application or thread from the currently running application.

app.startApplication("BankingViewSchema", "Banking");

The new application runs in parallel with the application that launched it.

You can use persistent objects or shared transient objects to share information between the applications.

A shared transient object (or a persistent object) can be passed as a parameter with the
startApplicationWithParameter and startAppMethodmethods.

Note If the method is used in a serverExecutionmethod, the new application runs on the server node. In this case,
the parameter passed to the new application must be a persistent object and the new application must not display
forms or messages.

JADE Monitor
The JADEMonitor, which can be started by selecting the File menuMonitor command, uses functionality from the
System, Node, and Process classes.

createExternalProcess Method
The createExternalProcessmethod of the Node class starts a newWindows application; for example, you could
start Notepad as follows.

node.createExternalProcess("", "Notepad", null, "", false, false, exit);

The signature of the createExternalProcessmethod is:

createExternalProcess(directory: String;
command: String;
args: StringArray;
alias: String;
thinClient: Boolean;
modal: Boolean;
result: Integer output): Integer;

If the program is not in the current directory or a directory included in the path, the program name must be fully
qualified.

As Notepad is a default Windows application, you can leave the path specified in the directory parameter blank (that
is, "").

The command parameter is the name of the process to open, which is Notepad in this topic.

The args parameter is for applications that require command line arguments to be able to run.

Developer's Course

Module 12 Applications 193

Developer's Course

194 Module 12 Applications

As the alias parameter is ignored, we can just pass in an empty string (that is, "").

The thinClient parameter is relevant only when running Jade from a thin (presentation) client. When set to true, the
external application runs on the presentation client workstation. When it is false, it runs on the application server. This
parameter in ignored in single-user mode.

Setting themodal parameter to true suspends the Jade application until the external application terminates.

Note The result parameter is the exit value from the external process. This has meaning only when themodal
parameter is set to true.

Calling External Functions
An external function is a function implemented in a Windows library (DLL). External functions are called directly, by
using the call instruction. The library that contains the external function could be written by you, by a third party, or
provided by the operating system.

You can add libraries and external functions by using the Library Browser and the External Function Browser,
respectively.

An external function signature has the following syntax.

<function-name>([parameters]) [: <return-type>] is <entry point> in <library>
[presentationClientExecution | applicationServerExecution];

The following examples use the josShellExecute function in the Jade jomos library to open your default Internet
browser and e-mail client.

// Open default Internet browser
call josShellExecute(null, "open", "http://www.jadeworld.com", "", "", 0);

// Open default e-mail client
call josShellExecute(null, "open", "mailto:wilbur@jadeworld.com?" &
"subject=Hello World&body=A traditional greeting.", "", "", 0);

Database Backup
The JadeBackupDatabaseDialog form is provided in RootSchema to enable you to backup database files. Open
the form in the standard way, as follows.

vars
dlg: JadeBackupDatabaseDialog;

begin
create dlg transient;
dlg.showModal();

end;

The form is opened as a modal dialog.

The JadeDatabaseAdmin class provides backup and database-related operations. The backupAllDbFilesmethod
requires the same kind of information as the JadeBackupDatabaseDialog form but it enables the backup to be
carried out as a non-GUI operation.

vars
dba: JadeDatabaseAdmin;

begin
create dba transient;
dba.backupAllDbFiles("C:\backup", true, false, false, true, false, null);
terminate;

epilog
delete dba;

end;

Note The terminate instruction is used to terminate a non-GUI application. This instruction is not necessary for a
GUI application, which is automatically terminated when the last form is closed.

Developer's Course

Module 12 Applications 195

Developer's Course

196 Module 12 Applications

Defining a Non-GUI Application
Non-GUI applications are used to perform tasks that do not require user input, so you do not specify a Startup Form
but you do specify an Initialize Method value.

Non-GUI applications can be started from:

The Jade Platform development environment

An application using the startApplicationmethod

A shortcut using the jadclient program (jadclient.exe is the non-GUI equivalent of jade.exe); for example:

C:\JadeCourse\bin\jadclient.exe path=C:\JadeCourse\system
ini=C:\JadeCourse\system\jade.ini
server=multiuser
app=Backup
schema=BankingViewSchema

An entry in the Jade initialization file

[JadeServer]
#The following entry runs a backup on the server at 2300 hours
ServerApplication1 = BankingViewSchema, Backup, 2300

Exercise 12.4 - Multitasking
In this exercise, you will write a JadeScript method that uses the startApplicationmethod to run a number of
applications in parallel.

1. Find the JadeScript class.

2. Add a method calledmultitasking, with the following code.

multitasking();

begin
app.startApplication("BankingViewSchema", "Banking");
app.startApplication("JadeSchema", "Jade");
app.startApplication("JadeMonitorSchema", "JadeMonitor");
app.startApplication("RootSchema", "SchemaInspector");

end;

3. Execute the method.

Developer's Course

Module 12 Applications 197

Developer's Course

198 Module 12 Applications

4. Add the serverExecution option to the signature line and then execute the method again. If you are working in
multiuser mode, the following dialog will be displayed.

Why does this exception occur?

Exercise 12.5 - Adding a Non-GUI Application
In this exercise, you will write the code for the backup in a method in your Application subclass. You will then add a
non-GUI application that executes the method.

1. Select the BankingViewSchema (your Application subclass) in the Class Browser.

2. Add a method called backup, by selecting the Methods menu New Jade Method command.

3. Code the method as follows.

backup();

vars
dba: JadeDatabaseAdmin;
dir: FileFolder;

begin
create dba transient;
create dir transient;
dir.fileName := "C:\backup";
dir.make();
dba.backupAllDbFiles("C:\backup", true, false, false, true, false, null);
terminate;

epilog
delete dba;
delete dir;

end;

4. Open the Application Browser.

5. Select the Application menu Add command.

6. Enter Backup as the name of the application.

7. Select Non-GUI as the application type.

8. Select backup as the Initialize Method, and then click theOK button.

9. Run the application, by clicking the green arrow in the Jade Platform development environment toolbar and then
selecting Backup from the combo box.

Exercise 12.6 - Adding Backup to the MainMenu
In this exercise, you will add a menu item to perform a backup from your banking system.

1. Open theMainMenu form in Painter.

2. Open the menu designer by selecting the File menuMenu Design command.

3. Select the menu item to the right of the Customermenu, and then enter &System in the Caption field and
menuSystem in the Name field.

Developer's Course

Module 12 Applications 199

Developer's Course

200 Module 12 Applications

4. Select the menu item under the Systemmenu, and then enter &Backup in the Caption field and
menuSystemBackup in the Name field.

5. Click theOK button to close the menu designer, and then save the form.

6. In the Class Browser, select themenuSystemBackupmenu item and then select the clickmethod.

7. Code the method as follows.

menuSystemBackup_click(menuItem: MenuItem input) updating;

begin
app.startApplication("BankingViewSchema", "Backup");

end;

8. Run your application and then test the backup function.

Module 13 Exceptions

This module contains the following topics.

Introduction

Exception Classes

Default Exception Handler

Coding an Exception Handler

Arming an Exception Handler

Returning from an Exception

User Exceptions

Mapping Method

Exercise 13.1 – Causing an Exception

Exercise 13.2 – Adding a Global Exception Handler

Exercise 13.3 – Deliberately Causing Another Exception

Exercise 13.4 – Adding a Local Exception Handler

Exercise 13.5 – Raising an Exception

Introduction
When an application is running, methods execute without error most of the time. Exceptions are error conditions that
occur relatively rarely. A pessimistic approach to errors is to check constantly for things that could possibly go wrong,
thereby attempting to prevent exceptions from ever occurring. However, there is a performance cost involved in
constantly checking. In addition, code involving checks (if instructions) is more complicated and difficult to read.

The alternative optimistic approach is to regard exceptions as relatively rare error situations and to deal with them
when they happen. Code to handle exceptions is written in separate exception handlermethods.

The way that an exception is handled depends on the type of application; for example, by displaying a message box in
a GUI application and by creating an error log file in a non-GUI application.

When an error occurs in an application, an instance of Exception or one of its subclasses is created by Jade or by
your application code. This object contains information about the condition that resulted in the exception being raised;
for example, a FileException object contains a reference to the file object in use at the time, and a
ConnectionException contains a reference to the connection object that encountered the error. Control is
automatically passed, together with the exception object, to an exception handler method.

Developer's Course

202 Module 13 Exceptions

Exception handling code is written in separate methods from the methods involved in normal execution flow. At an
appropriate place in your code when you judge an exception could occur, you add an instruction to arm an exception
handler. This instruction adds the exception handler at the top of a stack of armed exception handlers.

There are two exception handler stacks: a stack for locally armed handlers that are automatically disarmed at the end
of the method, and a stack for globally armed handlers that are usually armed when an application starts and that are
not disarmed until the application terminates. You can arm up to 128 local exception handlers and up to 128 global
exception handlers for each process.

When an exception occurs, normal program flow is interrupted and control passes to the exception handler at the top
of the local exception handler stack, and if there are no local handlers, to a global handler.

Exception Classes
There is a hierarchy of Exception classes defined in RootSchema.

Each class has information and behavior specific to that type of exception. An exception handler is passed the
exception object, so that it can use make use of this information and behavior.

The Exception class includes an errorCode integer attribute and a textmethod that looks up a brief description of the
exception in a file called jadmsgs.eng. For example, an exception with errorCode 1090 has a text description
Attempted access via null object reference.

There are a number of methods for logging exception details.

Developer's Course

Module 13 Exceptions 203

Developer's Course

204 Module 13 Exceptions

Default Exception Handler
The Jade Platform provides a default exception handler, which displays the Unhandled Exception dialog and logs
exception information. The dialog is displayed if you do not code and arm your own exception handler.

The dialog provides useful information for developers in debugging an exception. However, it is not appropriate for
application users.

The error object reported by the default exception handler includes the type name before the object identifier (OID) if
the class number is valid; for example:

...
Error item: setFontProperties
Error object: TextBox/509.21 (transient)
Caused By:

Receiver: MainForm/1004290.1 (transient)
Method: MainForm::setupClipText(1037) -- tb.setFontProperties
(tblClipBoard.fontName, tblClipBoard.fontSize, tblClipBoard.fontBold);

Reported By:
Receiver: TextBox/509.21 (transient)
Method: Control::setFontProperties -- 'JadeControlSetFont' in 'jadpmap'

...

If there is no class in the current system that has the specified class number, only the OID is displayed.

Coding an Exception Handler
An exception handler method contains the exception object as its first parameter. It can contain additional parameters
to provide more information about the context of the exception.

The method returns an integer to specify what is to happen next. There are four possible return values, which are
described in the following section. What you do next depends on how successful you are in resolving the exception.

The following examples show exception handler method signatures.

exHandlerA(ex: Exception): Integer;

exHandlerB(ex: Exception; cust: Customer): Integer;

exHandlerC(ex: FileException): Integer;

The following method handles unanticipated exceptions in an application and would effectively replace the default
exception handler.

genericExceptionHandler(exObj: Exception): Integer;

begin
// Abort database transaction to release locks
abortTransaction;
exObj.logSelf("errors.log");
app.msgBox("An unexpected error has arisen", "Application Error", MsgBox_OK_

Only);
// Cut back the execution stack
return Ex_Abort_Action;

end;

Developer's Course

Module 13 Exceptions 205

Developer's Course

206 Module 13 Exceptions

The following method handles a string too long exception, which could arise when too much text is entered in a text
box on the CustomerAdd form or too much text is read from a file.

stringTooLongHandler(exObj: Exception): Integer;

begin
if exObj.errorCode = 1035 then

// Abort database transaction to release locks
abortTransaction;
exObj.logSelf("errors.log");
app.msgBox("Reduce the amount of text", "Application Error", MsgBox_OK_

Only);
// Cut back the execution stack
return Ex_Abort_Action;

else
// Pass exception to next armed handler
return Ex_Pass_Back;

endif;
end;

Arming an Exception Handler
An exception handler can be armed:

Locally, when it remains armed until the method in which it was armed has returned (unless explicitly disarmed).

Local exception handlers are typically armed at the start of a method where the exception could occur.

Globally, when it remains armed until the process terminates (unless explicitly disarmed).

Global exception handlers are typically armed in the initializemethod for the application.

There are two exception handler stacks: one for up to 128 locally armed exception handlers, and one for the default
Jade exception handler and up to 127 globally armed exception handlers.

Handlers from the local exception handler stack are executed before handlers from the global exception handler
stack, regardless of the order in which they are armed.

The syntax for locally arming an exception handler is as follows.

on Exception-class do exception-handler-method(exception[, parameters]);

The first parameter of an exception handler is the system variable exception, which is a reference to the exception
object.

The following examples show the arming of local exception handlers.

exHandlerA is called for any type of exception and is coded in the same class as the method causing the
exception.

on Exception do self.exHandlerA(exception);

exHandlerB is passed additional information through the cust parameter, which is evaluated when the handler
is invoked.

on Exception do self.exHandlerB(exception, cust);

exHandlerC is a method in an Application class that is invoked only for file exceptions.

on FileException do app.exHandlerC(exception);

The syntax for globally arming an exception handler is the same as for local arming, with the keyword global
appended.

on Exception-class do exception-handler-method(exception[, parameters]) global;

The following examples show the arming of global exception handlers.

genericExceptionHandler is called for any type of exception and is coded in one of the Application classes.
This should be the first handler to be armed.

on Exception do self.genericExceptionHandler(exception) global;

lockExceptionHandler is called only for lock exceptions. This should be the armed after
genericExceptionHandler.

on LockException do self.lockExceptionHandler(exception) global;

Returning from an Exception
The integer that is returned from an exception handler, for which you can use a global constant, determines what
happens next.

Global Constant Description

Ex_Pass_Back Control is given to any previously-armed local exception handler for this type of exception,
or if a local exception handler is not found, a global exception handler. If no exception
handler is found, the Jade default exception handler is invoked.

Ex_Abort_Action Currently-executing methods are removed from the execution stack. The application reverts
to an idle state in which it is waiting for user input or some other event.

Returning Ex_Abort_Action does not abort a database transaction, so remember to
include an abortTransaction instruction.

Ex_Continue Execution resumes from the next expression following the expression that caused the
exception. In order to use Ex_Continue as the return value, the exception must be
continuable.

Continuable exceptions assume that the cause of the problem has been fixed and the
operation retried. This approach can be used for lock exceptions and user exceptions.

Ex_Resume_Next Control is given to the method that armed the exception handler. Execution resumes at the
next statement after the method call expression in which the exception occurred.

Ex_Resume_Next is generally useful only for local exception handlers when the method
that armed the exception handler is still executing.

Developer's Course

Module 13 Exceptions 207

Developer's Course

208 Module 13 Exceptions

User Exceptions
As a Jade application developer, you can create an exception object and set its properties in your code. When the
raise instruction is executed, control passes to an armed exception handler.

The following JadeScript method creates and raises an exception.

userException();

vars
ex: Exception;

begin
create ex;
ex.errorCode := 12345;
raise ex;

end;

You can add an exception class, as shown in the following image.

User exceptions are often used to enforce business rules; for example, you could protect against an invalid balance
being set for a bank account by raising exceptions in the create and setPropsOnUpdatemethods of a bank account
class.

create(bal, od: Decimal; cust: Customer) updating;

vars
ex: BalanceException;

begin
if bal < 0 then

create ex;
raise ex;

endif;
self.balance := bal;
self.overdraftLimit := od;
self.myCustomer := cust;
self.myBank := app.myBank;

end;

Mapping Method
Amapping method has the same name as a property and is automatically invoked when the property is read or
modified in a method. It is used to reimplement the default get and set behavior for a property.

A mapping method always has the following signature.

<property-name>(set: Boolean; _value: <property-type> io) mapping;

The set parameter is true if the property is being assigned, and false if it is being read.

If set is true, _value is the proposed new value of the property that is assigned.

If set is false, _value is the value of the property returned to the calling method.

Exercise 13.1 - Causing an Exception
In this exercise, you will add code that deliberately causes an exception.

1. Open a Class Browser for the BankingViewSchema.

2. Select the CustomerDetails form.

3. Change the click event method for btnCancel, as follows.

btnCancel_click(btn: Button input) updating;

begin
write 42/0;
self.unloadForm();

end;

4. Run the Banking application and open the CustomerAdd form.

Developer's Course

Module 13 Exceptions 209

Developer's Course

210 Module 13 Exceptions

5. Click the Cancel button, to display the unhandled exception dialog shown in the following image.

Exercise 13.2 - Adding a Global Exception Handler
In this exercise, you will add a generic exception handler in your Application class to be invoked if an unforeseen
application error occurs. You will arm the handler globally in the initializemethod. Finally, you will run the application
and test the handler.

1. Open a Class Browser for the BankingModelSchema.

2. Add a method called genericExceptionHandler in the BankingModelSchema class (your Application
subclass).

3. Code the method as follows.

genericExceptionHandler(exObj: Exception): Integer;

begin
abortTransaction;
exObj.logSelf("errors.log");
app.msgBox("Unexpected error occurred", "Application Error", MsgBox_OK_

Only);
return Ex_Abort_Action;

end;

4. Arm the exception handler globally at the start of the initializemethod, as follows.

initialize() updating;

begin
on Exception do self.genericExceptionHandler(exception) global;
self.myBank := Bank.firstInstance();
if self.myBank = null then

beginTransaction;
create self.myBank persistent;
commitTransaction;

endif;
end;

5. Run the Banking application in the BankingViewSchema.

6. Open the CustomerAdd form and then click the Cancel button to display the message box.

Exercise 13.3 - Deliberately Causing Another Exception
In this exercise, you will add code that deliberately causes an exception if too much text is entered into a text box.

1. Open a Class Browser for the BankingViewSchema.

2. Select the CustomerAdd form.

3. Code the load event method for the form as follows.

load() updating;

begin
self.txtLastName.maxLength := 0;

end;

Developer's Course

Module 13 Exceptions 211

Developer's Course

212 Module 13 Exceptions

Note When you painted the form, you set themaxLength attribute of the txtLastName text box to 15
characters. This restriction is removed by setting it to zero (0).

4. Run the Banking application and then open the CustomerAdd form.

5. Enter information for a new customer who has a last name with more than 15 characters.

When you click theOK button, the unexpected errormessage should be displayed, as shown in the following
image.

Exercise 13.4 - Adding a Local Exception Handler
In this exercise, you will add a local exception handler in your CustomerAdd form to be invoked if too much text is
entered for a customer's last name. You will arm the handler locally at the start of the btnOK_clickmethod. Finally,
you will run the application and test the handler.

1. Select the CustomerAdd class.

2. Add a method called stringTooLongHandler and code the method as follows.

stringTooLongHandler(exObj: Exception): Integer;

begin
if exObj.errorCode = 1035 then

// Abort database transaction to release locks
abortTransaction;
exObj.logSelf("errors.log");
app.msgBox("Reduce amount of text", "Application Error", MsgBox_OK_

Only);
// Cut back the execution stack
return Ex_Abort_Action;

else
// Pass exception to next armed handler
return Ex_Pass_Back;

endif;
end;

3. Arm the exception handler locally at the start of the btnOK_clickmethod, as follows.

btnOK_click(btn: Button input) updating;

begin
on Exception do self.stringTooLongHandler(exception);
if self.isDataValid() then

self.createCustomer();
self.clearTextBoxes();
self.statusLine.caption := "Customer successfully added";

endif;
end;

4. Run the Banking application and then open the CustomerAdd form.

5. Enter information for a new customer who has a last name with more than 15 characters. When you click theOK
button, a message box related to the error should be displayed.

Exercise 13.5 - Raising an Exception
In this exercise, you will raise a user exception to enforce the business rule that the address of a customer should not
be Tax Haven, by raising an exception when an attempt is made to assign that value. You will implement this rule by
adding a mapping method for the address property, and then test it by running the Banking application.

1. Open a Class Browser for the BankingModelSchema.

2. Select the Customer class.

3. Add a method called address and code the method as follows.

address(set: Boolean; _value: String io) mapping;

vars
ex: Exception;

begin
if set and _value = "Tax Haven" then

create ex;
ex.errorCode := 12345;
raise ex;

endif;
end;

4. Run the Banking application and then open the CustomerAdd form.

Developer's Course

Module 13 Exceptions 213

Developer's Course

214 Module 13 Exceptions

5. Enter information for a new customer with an address of Tax Haven. When you click theOK button, an
exception should be raised.

Module 14 Notifications and Timers

This module contains the following topics.

Introduction

Notifications and Events

System Events

User Events

Subscribing to Notifications

Unsubscribing from Notifications

Publishing a User Event

Responding to a Notification

Exercise 14.1 – Loading a Class

Exercise 14.2 – Using System Notifications

Exercise 14.3 – Defining a Global Constant

Exercise 14.4 – Using User Notifications

Timer Events

Beginning and Ending a Timer

Responding to a Timer

Exercise 14.5 – Using a Timer

Introduction
A notification is a message sent by the Jade Object Manager to an object (for example, a form), to inform it that an
event has happened to an object of interest.

The process begins with the subscriber to the notifications executing the beginNotificationmethod specifying the
object in which the subscriber is interested. When the event happens, the object of interest uses the causeEvent
method to inform the Jade Object Manager, which then notifies the event to those who subscribed to it. Subscribers,
on being notified of the event, execute the sysNotification or userNotification event method, if one has been coded.

Developer's Course

216 Module 14 Notifications and Timers

A timer is a mechanism whereby an object triggers an event for itself at regular intervals. The process begins with the
object executing the beginTimermethod, to specify the interval between events. When the event occurs, the object
executes the timerEventmethod. The timer can be stopped by the object executing the endTimermethod.

All of the methods involved in notifications and timers are defined in theObject class.

Notifications and Events
This section covers notification messages sent by the Jade Object Manager to an object, informing it that an event has
happened to an object of interest.

For details, see the following subsections. See also "Timer Events", later in this module.

System Events
System events are the standard operations of creating, updating, and deleting a persistent object.

The following global constants are associated with system events. When a system event occurs, the Jade Object
Manager sends notifications to any object that has subscribed to the event.

Object_Create_Event (4)

Object_Update_Event (3)

Object_Delete_Event (6)

Any_System_Event (0)

Notes System notifications are invoked for persistent objects only.

As the Jade Object Manager does not have to be informed about creating, updating, or deleting a persistent object,
when the event occurs, the object involved does not have to execute the causeEventmethod.

System notifications are often used to keep the display of information on a form current. The following image shows a
form with a graphical display of the number of Customer, ChequeAccount, and SavingsAccount objects that are
updated automatically when objects are added or deleted.

User Events
User events enable you to define your own events for which the Jade Object Manager will send notifications, in the
same way as for system events. The object involved in the user event causes the event to be published by executing
the causeEventmethod. The Jade Object Manager then sends notifications to any object that has subscribed to the
event.

Each user event is associated with an integer value that is greater than 15. (Integers in the range 0 through 15 are
reserved for system events.)

Tip Define an integer global constant for a user event, to make your code more readable.

User notifications can be used to generate an alert when an unusual event occurs. The following image shows a
message box that displays when a million dollars or more is withdrawn from a bank account.

Subscribing to Notifications
The beginNotificationmethod requests notification of events that occur to a specified object.

beginNotification(theObject: Object;
eventType: Integer;
responseType: Integer;
eventTag: Integer);

Developer's Course

Module 14 Notifications and Timers 217

Developer's Course

218 Module 14 Notifications and Timers

The beginClassNotificationmethod requests notification of events that occurs to any instance of a specified class or
its subclasses.

beginClassNotification(theClass: Class;
transients: Boolean;
eventType: Integer;
responseType: Integer;
eventTag: Integer);

The parameters for these methods are described in the following table.

Parameter Description

theObject Object of interest.

theClass Class (including subclasses) of objects of interest.

transients Whether the objects of interest are transient or persistent.

eventType Number identifying the type of event.

responseType Whether notifications are automatically canceled after the first event. Possible values are:

Response_Continuous – continue to send notifications

Response_Cancel – cancel notifications after the first event

eventTag Value that is returned as part of the notification – can be used to tag subscriptions.

Unsubscribing from Notifications
The endNotificationmethod cancels notification of events that occur to a specified object.

endNotification(theObject: Object;
eventType: Integer);

The endClassNotificationmethod cancels notification of events that occur to any instance of a specified class, or its
subclasses.

endClassNotification(theClass: Class;
transients: Boolean;
eventType: Integer);

Note You should cancel notifications for a subscriber (for example, a form) before it is deleted. An exception is
raised for a notification that cannot be delivered.

Publishing a User Event
The causeEventmethod, defined on theObject class, informs the Jade Object Manager that a user event has
occurred so that user notifications can be sent.

causeEvent(eventType: Integer; // Number identifying the type of event
immediate: Boolean; // Whether notifications are sent immediately

or
// at the next commitTransaction instruction

userInfo: Any); // Value passed to userNotification method

An example of a user event is a bank account withdrawal that exceeds a threshold value (for example, a million
dollars). The causeEvent could be coded in thewithdrawmethod (or in the mapping method for the balance
property), as follows.

withdraw(amount: Decimal) updating;

begin
if self.canWithdraw(amount) = true then

self.balance := self.balance - amount;
if amount > 1000000 then

self.causeEvent(LargeWithdrawal, false, amount);
endif;

endif;
end;

Responding to Notifications
The sysNotificationmethod is invoked when a system event (creating, updating, or deleting an object) occurs for a
persistent object.

sysNotification(eventType: Integer; // Number identifying the type of event
theObject: Object; // Object that caused the event
eventTag: Integer); // Value passed from beginNotification

method

Note If the event is the deletion of a persistent object, the theObject parameter references an object that no longer
exists. Attempting to access this object raises an exception.

The userNotificationmethod is invoked when a user event occurs.

userNotification(eventType: Integer; // Number identifying the type of event
theObject: Object; // Object that caused the event
eventTag: Integer; // Value passed from beginNotification

method
userInfo: Any); // Value passed from the causeEvent method

For controls and forms, you can code the sysNotify and userNotify event methods instead of the corresponding
sysNotification and userNotificationmethods.

Exercise 14.1 – Loading a Class
In this exercise, you will load a class for drawing bar graphs (which was created in another Jade schema) into the
BankingViewSchema. You will use this control in the next exercise.

1. Select the Schema Browser.

2. Select the Schema menu Load command.

3. In the Schema File Name text box, browse for the C:\JadeCourse\Files\ThreeDeeGraph.cls file.

4. In the Forms File Name text box, browse for the C:\JadeCourse\Files\ThreeDeeGraph.ddx file.

Developer's Course

Module 14 Notifications and Timers 219

Developer's Course

220 Module 14 Notifications and Timers

5. Click the Advanced button, to open the Advanced Load Options dialog shown in the following image.

6. Select BankingViewSchema as the Target Schema and then click theOK button of the Advanced Load
Options dialog

7. Click theOK button on the Load Options dialog, to load the class.

In the BankingViewSchema, a subclass of Picture has been loaded.

Exercise 14.2 – Using System Notifications
In this exercise, you will add a Statistics form and paint a ThreeDeeGraph control on it. You will add a method called
draw to the Statistics form, which sets the values of the colours, descriptions, and numbers arrays.

The arrays control the appearance of the bars when the control's drawBarGraphmethod is executed. The numbers
[1] value is the height of the first bar, which is the number of customers. The value is obtained from the size of the
app.myBankAllCustomers collection. The colours[1] value is an integer that determines the color of the bar. The
descriptions[1] value is the string that is displayed below the bar.

The bar graph is drawn by calling the drawmethod from the loadmethod.

Finally, you will add notifications to automatically redraw the bar graph when a new Customer object is added.

1. Open the Painter.

2. Select the File menu New Form command. Enter Statistics as the name of the form.

Developer's Course

Module 14 Notifications and Timers 221

Developer's Course

222 Module 14 Notifications and Timers

3. Paint a ThreeDeeGraph control on the form and then save the form.

4. Add a drawmethod to the Statistics form and code it as follows.

draw();

begin
self.threeDeeGraph.descriptions[1] := "Customers";
self.threeDeeGraph.descriptions[2] := "Accounts";
self.threeDeeGraph.colours[1] := Red;
self.threeDeeGraph.colours[2] := Blue;
self.threeDeeGraph.numbers[1] := app.myBank.allCustomers.size();
self.threeDeeGraph.numbers[2] := app.myBank.allBankAccounts.size();
self.threeDeeGraph.drawBarGraph();

end;

5. Add code to the loadmethod for the Statistics form to call the drawmethod and subscribe to create and delete
notifications on the Customer and BankAccount classes, as follows.

load() updating;

begin
self.beginClassNotification(Customer, false, Object_Create_Event,

Response_Continuous, 0);
self.beginClassNotification(Customer, false, Object_Delete_Event,

Response_Continuous, 0);
self.beginClassNotification(BankAccount, false, Object_Create_Event,

Response_Continuous, 0);
self.beginClassNotification(BankAccount, false, Object_Delete_Event,

Response_Continuous, 0);
self.draw();

end;

6. Add code to the unloadmethod for the Statistics form, to unsubscribe from the notifications.

7. Add code to the sysNotifymethod for the Statistics form, to redraw the graph by calling the drawmethod.

8. Add a menu item calledmenuSystemStatistics to theMainMenu form, as shown in the following image.

9. Add code to themenuSystemStatistics_clickmethod, to display the Statistics form.

10. Test your notifications, by leaving the Statistics form open while you add customers.

Exercise 14.3 – Defining a Global Constant
In this exercise, you will return to the BankingModelSchema and add a global constant category called
UserNotifications, to which you will add a constant called LargeWithdrawal that has a value of 20.

In the next exercise, you will use the LargeWithdrawal constant for a user notification.

1. Select BankingModelSchema in the Schema Browser.

2. Open the Global Constants Browser by selecting the Browse menuGlobal Constants command.

Developer's Course

Module 14 Notifications and Timers 223

Developer's Course

224 Module 14 Notifications and Timers

3. From the Global Constants menu, select Add Category from the Category submenu, and then enter
UserNotifications as the name.

4. From the Global Constants menu, select Add from the Constant submenu, and then enter a constant called
LargeWithdrawal of type Integer and with a value of 20.

Exercise 14.4 – Using User Notifications
In this exercise, you will demonstrate user notifications in action by making the following changes.

In the BankingModelSchema, thewithdrawmethod of the BankAccount class will cause a LargeWithdrawal
user event if more than $1,000,000 is withdrawn.

In the BankingViewSchema, theMainMenu form will subscribe to notifications of the LargeWithdrawal event.
The form will respond to the notifications by displaying a message box.

To test the notifications, you will code a JadeScript method that creates a bank account with a balance of
$2,000,000 and which uses thewithdrawmethod to withdraw $1,500,000.

This should trigger the display of the message box for any user running the Banking application.

To demonstrate user notifications in action, perform the following actions.

1. Open a Class Browser for the BankingModelSchema schema.

2. Select the BankAccount class.

3. Change thewithdrawmethod, as follows.

withdraw(amount: Decimal) updating;

begin
if self.canWithdraw(amount) = true then

self.balance := self.balance - amount;
if amount > 1000000 then

self.causeEvent(LargeWithdrawal, false, amount);
endif;

endif;
end;

4. Open a Class Browser for the BankingViewSchema schema.

5. Select theMainMenu form.

6. In the load event method, subscribe to notifications of the LargeWithdrawal event, as follows.

load() updating;

begin
app.mdiFrame := MainMenu;
self.beginClassNotification(BankAccount,false,LargeWithdrawal,

Response_Continuous,0);
end;

7. Add code to the unload event method to unsubscribe from notifications of the LargeWithdrawal event.

Tip Call the endClassNotificationmethod.

8. Code the userNotifymethod, as follows.

Note Make sure to change the theObject: Object parameter to account: BankAccount.

Developer's Course

Module 14 Notifications and Timers 225

Developer's Course

226 Module 14 Notifications and Timers

9. Add a JadeScript method calledmakeLargeWithdrawal, and code it as follows.

10. Run the Banking application.

11. Execute themakeLargeWithdrawal JadeScript method. The Banking application should display the following
message box.

Timer Events
Timer events are events that occur after a specified delay. The event can happen on a one-off basis or it can repeat at
regular intervals.

Timer events can be used for scheduling purposes; for example, to schedule a nightly backup.

Beginning and Ending a Timer
The beginTimermethod starts a timer for the self object.

beginTimer(delay: Integer; option: Integer; eventTag: Integer);

The parameters are described in the following table.

Parameter Description

delay Time in milliseconds until the timer event occurs.

option Whether timer notifications are automatically canceled after the first event. Possible values are:

Timer_Continuous – continue to send timer notifications

Timer_OneShot – cancel notifications after the first event

eventTag Value that is returned as part of the timer notification and identifies the timer.

The endTimermethod stops a timer.

endTimer(eventTag: Integer);

Responding to a Timer
The timerEventmethod is invoked when a timer notification is received.

timerEvent(eventTag: Integer) updating;

Exercise 14.5 – Using a Timer
In this exercise, you will use a timer in theMainMenu form to change its background color every second. The timer will
be started in the load event method and stopped in the unload event method. You will implement the timerEvent
method for the form.

1. Open a Class Browser for the BankingViewSchema.

2. Select theMainMenu form.

3. Add an instruction to the load event method to start the timer, as follows.

load() updating;

begin
app.mdiFrame := MainMenu;
self.beginClassNotification(BankAccount,false,LargeWithdrawal,

Response_Continuous,0);
self.beginTimer(1000, Timer_Continuous, 0);

end;

4. Stop the timer in the unload event method, as follows.

unload() updating;

begin
self.endClassNotification(BankAccount, false, LargeWithdrawal);
self.endTimer(0);

end;

5. Add a method called timerEvent. A dialog warns you that there is already a method of that name in the
Application hierarchy. Click the Yes button, to continue.

Developer's Course

Module 14 Notifications and Timers 227

Developer's Course

228 Module 14 Notifications and Timers

6. Code the timerEventmethod, as follows.

timerEvent(eventTag: Integer) updating;

begin
self.backColor := app.random(#FFFFFF);

end;

7. Run the Banking application and test that the background color of theMainMenu form changes randomly.

Module 15 Nodes, Processes, and Caches

This module contains the following topics.

Introduction

Distributed Processing

Nodes and Processes

Persistent Cache

Transient Cache

Persistent, Transient, and Shared Transient Objects

Demonstration

Introduction
This module contains an overview of the architecture of a Jade system, which is based on the concept of a node.

Distributed Processing
The Jade Platform has a distributed processing architecture in which application processing is shared between a
single database server and its clients.

The database server:

Contains the persistent database

Can execute application code and process objects (that is usually done by clients)

Accepts connections from standard clients and application servers

Manages system-wide services such as locking, cache coherency, and notifications

Developer's Course

230 Module 15 Nodes, Processes, and Caches

A standard client:

Connects to the database server

Displays forms

Executes application code and processes objects

Requires a high-bandwidth (LAN) connection to the database server

An application server:

Connects to the database server

Accepts connections from thin (presentation) clients

Does not display forms

Executes application code and processes objects for connected presentation clients

Requires a high-bandwidth (LAN) connection to the database server

A presentation client (also known as a thin client):

Connects to an application server

Does not execute application code or process objects (that is done by the application server)

Does not require a high-bandwidth (LAN) connection to the application server

In single user mode, there is no separate database server node. You can run a single standard client or a single
application server.

Nodes and Processes
A node is a component of a Jade system where application code is executed and where objects are processed. The
following diagram shows the structure of a node.

A number of applications can be executed in the same node, each with its own thread of execution, the Jade term for
which is process. A node has a background process and a number of other processes; one for each application.

The following parts of the architecture of a Jade system are nodes.

Standard client, because it executes application code and processes objects.

Database server, because it can execute methods with the serverExecution option in the method signature,
and server applications that are specified in the Jade initialization file.

Note Code executed by the database server must not attempt to display forms and message boxes.

Application server, because it executes application code and processes objects for connected presentation
clients. There is a process for each connected presentation client.

A presentation client is not a node, because it does not execute application code or process objects; those functions
are carried out by the application server.

Persistent Cache
A node has a persistent cache for persistent objects, which are fetched from the database server. The single
persistent cache is shared by all processes in the node. When a process needs a persistent object, it is automatically
fetched from the database server into persistent cache, unless it is already present.

When an update transaction is committed, modified objects are copied back to the database server. However, the
object remains in persistent cache and is available for subsequent accesses by any process in the node, thereby
avoiding fetching the object from the database server again.

Objects that have been updated by another node are discarded from cache using a cache coherency mechanism
managed by the database server.

When persistent cache becomes full, the least-recently used objects are discarded. If they are modified and not yet
committed, they are sent to the server.

Developer's Course

Module 15 Nodes, Processes, and Caches 231

Developer's Course

232 Module 15 Nodes, Processes, and Caches

Transient Cache
A node has a single transient cache for process transient objects and shared transient objects, which are created
locally in the node. The single transient cache is shared by all processes in the node.

Process transient objects can be accessed only by the process in which they were created. They are removed when
the process that created them terminates, or when the process deletes it.

Shared transient objects can be accessed by all processes in the node, but not by a process in a different node. They
are removed when the node terminates, or when a process deletes it.

When transient cache is full, it overflows to a transient database on disk. For this reason, you should delete transient
objects that are no longer required, because accessing transient objects from disk is much slower than accessing
them frommemory.

Persistent, Transient, and Shared Transient Objects
A persistent object is stored in the database. It can be accessed by all nodes. You must be in transaction state to
create, update, or delete a persistent object.

beginTransaction;
// Create, update, and delete persistent objects
commitTransaction;

A transient object is stored locally in transient cache. It can be accessed only by the process that created it, and
becomes unavailable when that process terminates or when it is explicitly deleted.

A shared transient object is a special type of transient object, which can be accessed by other processes in a node in
addition to the process that created it. It becomes unavailable when the node terminates or if it is explicitly deleted.
Shared transient objects can be used to safely share information in a multi-threaded application. You must be in
transient transaction state to create, update, or delete a shared transient object.

beginTransientTransaction;
// Create, update, and delete shared transient objects
commitTransientTransaction;

Demonstration
Your instructor will use an example schema to demonstrate the architecture of a Jade system.

Developer's Course

Module 15 Nodes, Processes, and Caches 233

Module 16 Transactions and Locking

This module contains the following topics.

Introduction

Update Transactions

Cache Coherency

Lock Types

Lock Durations

Locking Methods

Demonstration

Read Transactions

Lock and Deadlock Exceptions

Debugging Lock Exceptions

Lock Exception Object

Queued Locks

Monitoring Locks

Shared Locks on Collections

Shared Transient Objects

Exercise 16.1 – Locking to Check Editions

Introduction
In a multiuser system, persistent objects are fetched from the database and held in caches on the different nodes.
Locking is an important mechanism in controlling whether an object can be updated.

Note Locking an object does not prevent other processes accessing it, but it does prevent them updating it.

Lock a persistent object when you want to:

Update it

When more than one process attempts to update the same object, locking determines which process can
proceed, because a process must obtain an exclusive lock on an object before it can update it.

Prevent it from being updated

An application may require objects to remain unmodified while an operation is carried out; for example, a trial
balance in which account objects are locked before reading the balance, to guarantee that the latest edition of
each account is used. The locks are held until the trial balance calculation is complete.

Developer's Course

236 Module 16 Transactions and Locking

You do not need to write a lot of code to explicitly lock objects, because of the implicit locking that occurs with
transactions and collections.

Update Transactions
In an updating transaction, a number of persistent object creates, updates, and deletes are performed as a single unit
of work. The ACID requirements for a transaction are:

Atomicity – operations that make up a transaction must all complete or all fail.

Consistency – database moves from one consistent state to another.

Isolation – intermediate data from one transaction is not visible to a concurrent transaction or query.

Durability – committed transactions survive application software, operating system, and hardware failure.

An updating transaction starts with the beginTransaction instruction. If the transaction is successful, the
commitTransaction instruction releases all transaction duration locks and causes the new, updated, and deleted
objects to be committed to the database.

If the transaction is not successful, the abortTransaction instruction releases all transaction duration locks and
discards modified objects from persistent cache. The next time the object is required, it is fetched from the database.

Cache Coherency
Cache coherency is a service provided by the database server to assist nodes to discard stale objects from caches. A
stale object is one that has been updated by another node.

The database server maintains a list of objects that are present in the persistent cache of each node and sends
messages to the nodes when transactions are committed to the database.

Note Cache coherency messages cannot be sent instantaneously, so you can be sure you have the latest edition of
an object only if you lock it.

Lock Types
The type of lock you choose to acquire for an object will determine the type of locks other processes can apply to the
object while you have it locked. As such, the type of lock determines the type of access one process can have to an
object locked by another process.

When you lock an object with any type of lock, the latest edition of the object is fetched from the database server.

The lock types are:

Exclusive lock, which is required before an object can be updated.

An attempt to acquire an exclusive lock is made automatically when a property of an object is updated. Other
processes cannot apply any type of lock to the object.

Shared lock, which prevents other processes from updating the object while it is locked.

Other processes can share lock the same object and one process can reserve lock the object.

Shared locks are automatically acquired on a collection that is being iterated using a foreach instruction, unless
the discreteLock clause is specified. The shared lock is acquired for the duration of the iteration.

Reserve lock, which is similar to a shared lock, but with the intention to upgrade to an exclusive lock at some
stage.

Shared locks can co-exist with a reserve lock; however, there can be one reserve lock only on the object.

Developer's Course

Module 16 Transactions and Locking 237

Developer's Course

238 Module 16 Transactions and Locking

Update lock, which is an alternative to an exclusive lock, but allows other processes to have shared locks on the
object.

The exclusive lock is still required when the updates are committed. If the exclusive lock cannot be obtained, the
updates will be discarded.

Lock Durations
The duration of a lock determines when it is released. There are two lock durations, as follows.

Transaction duration, which is released at the end of a transaction

All transaction duration locks held for persistent objects are released automatically when the transaction ends
(commitTransaction, abortTransaction, endLoad, or endLock instruction), even if they were acquired before
the transaction began.

Attempts to manually unlock a persistent object, using the unlockmethod, are ignored in transaction state (after
a beginTransaction, beginLoad, or beginLock instruction).

Transaction duration locks are acquired automatically before a persistent object is updated or deleted.

Session duration

Session duration locks are automatically released at the end of a session, when the process that owns the lock
terminates. Session locks can also be released earlier, by using the unlockmethod.

Session duration locks are useful when you need to hold a lock on an object across transaction boundaries. For
example, the JADE Painter applies a session lock to a form object when you edit the form. This session lock
prevents two users editing a form at the same time and it is held across any transactions that may occur as a
result of saving the form.

Locking Methods
The lockmethod, defined in theObject class, has the following signature:

lock(lockTarget: Object; lockType, lockDuration, lockTimeout: Integer);

The lockmethod parameters are as follows.

lockTarget is the object to be locked.

lockType is the type of lock. Possible values are Exclusive_Lock, Reserve_Lock or Share_Lock.

lockDuration is the duration of the lock. Possible values are Transaction_Duration and Session_Duration.

lockTimeout is the maximum time to acquire the lock before an exception is raised. Possible values are
LockTimeout_Server_Defined, LockTimeout_Immediate, and LockTimeout_Infinite, or a number of
milliseconds.

The following code fragments apply a specific lock type. The equivalent lock syntax is shown.

self.sharedLock(object);
self.lock(object, Share_Lock, Transaction_Duration, LockTimeout_Server_Defined);

self.exclusiveLock(object);
self.lock(object, Exclusive_Lock, Transaction_Duration, LockTimeout_Server_
Defined);

self.reserveLock(object);
self.lock(object, Reserve_Lock, Transaction_Duration, LockTimeout_Server_Defined);

self.updateLock(object);
self.lock(object, Update_Lock, Transaction_Duration, LockTimeout_Server_Defined);

The tryLockmethod is an alternative to the lockmethod. It returns false instead of raising an exception when a lock
request times out. The tryLockmethod has the following signature.

tryLock(lockTarget: Object; lockType, lockDuration, lockTimeout: Integer): Boolean;

Tip In a lock exception handler, to avoid raising further exceptions use the tryLockmethod instead of the lock
method.

The unlockmethod is defined in theObject class and has the following signature.

unlock(unlockTarget: Object);

Attempts to unlock objects inside a transaction are ignored.

Tip Use abortTransaction instruction, which can be used even when not in transaction state, to unlock all
persistent objects for a process.

Developer's Course

Module 16 Transactions and Locking 239

Developer's Course

240 Module 16 Transactions and Locking

Demonstration
Your instructor will demonstrate transactions and locking using a TransactionsAndLocking example schema.

Read Transactions
Locking an object brings the latest edition into persistent cache and prevents other users from updating it.

A trial balance provides a good example of a read transaction, where locks are used to prevent objects from being
updated. In a trial balance, the total of the balances of all accounts is calculated. Each account object should be locked
before its balance is read, and the locks released only after the trial balance calculation is complete.

A simple implementation could use the sharedLock and unlockmethods.

vars
total: Decimal;
account: Account;

begin
foreach account in accounts do

self.sharedLock(account); // Account explicitly locked
total := total + account.balance;

endforeach;
foreach account in accounts do

self.unlock(account); // Account explicitly unlocked
endforeach;
write total;

end;

Amore-efficient implementation uses the beginLock and endLock instructions. After the beginLock instruction,
accessing the value of a property (or executing a method) of an object automatically acquires a transaction duration
shared lock on the object. The endLock instruction releases all locks in a single operation.

vars
total: Decimal;
account: Account;

begin
beginLock;
foreach account in accounts do

total := total + account.balance; // Account implicitly locked
endforeach;
endLock; // All accounts implicitly unlocked
write total;

end;

The beginLoad and endLoad instructions are similar to the beginLock and endLock instructions, but enable you to
selectively lock objects.

vars
total: Decimal;
account: Account;

begin
beginLoad;
foreach account in accounts do

self.sharedLock(account); // Account explicitly locked
total := total + account.balance;

endforeach;
endLoad; // All accounts implicitly unlocked
write total;

end;

Lock and Deadlock Exceptions
When a lock cannot be obtained (because another process already has the object locked with an incompatible lock),
an exception is raised. The following analogies explain the difference between lock exceptions and deadlock
exceptions, and the different ways they are handled.

Developer's Course

Module 16 Transactions and Locking 241

Developer's Course

242 Module 16 Transactions and Locking

The analogy for a lock exception is two people wanting to add salt to their food at the start of a meal when only one salt
shaker available.

One person (Process #1) is first to grab hold of the salt shaker. The other person (Process #2) is unsuccessful. The
failed attempt to grab the salt shaker corresponds to the lock exception. The situation is easily handled by Process #2
waiting until the salt shaker becomes available. Typical coding of a lock exception handler involves periodically
retrying the lock.

The analogy for a deadlock exception is two people wanting to cut a slice of bread for which you need both the loaf and
the knife.

If one person (Process #2) has the knife and the other person (Process #1) has the bread, the strategy of waiting for
the other object to become available (which worked for an ordinary lock) leads to an indefinitely long wait and gets you
nowhere. The first process to detect the deadlock should give way and release the lock. Alternatively, you can set the
DoubleDeadlockException=true parameter in the [JadeServer] section of the Jade initialization file and allow the
priorities of the processes to determine which process should give way.

Note A deadlock can also arise with a single object, typically a collection where two processes have shared locks on
the collection that they attempt to upgrade to exclusive.

Debugging Lock Exceptions
The Jade Platform supports the optional recording of the current call stack when a process locks an object. Any
process can retrieve this information while the lock is held; for example, you can use it to help find and resolve locking
problems during application development, by tracking down where in the code any long-lived lock was obtained.

This information, which is passed to the lock manager and stored in the lock entry, can be retrieved by any process
while the lock is held. When a lock is obtained, the saved information includes each method in the current call stack
and the call position (source code offset) within each method. You can use this information to produce a call stack
summary similar to that shown when you click the Debug button on the Unhandled Exception dialog.

Notes The values of local variables are not available, as the code is no longer executing.

This feature is intended for you to use when developing and testing applications. Because of the overhead involved in
capturing and saving the extra information, we do not expect that this feature is permanently enabled in a production
system.

Automatically enable the debugging of lock exceptions for all client processes on startup, by specifying the
DefaultProcessSaveLockCallStack parameter with a value of true in the [JadeClient] section of the
Jade initialization file. To enable the automatic debugging of exceptions for server applications on the database
server, specify this parameter and value in the [JadeServer] section of the Jade initialization file. (The default value is
false on both client and server nodes.)

In addition, the Jade:

Object and Process classes provide methods that enable you to dynamically enable and manage the
debugging of lock exceptions for a process.

Monitor Users view provides the Enable Save Lock Call Stack and Disable Save Lock Call Stack commands
in the popup menu when you right-click on a user, and the Locks view provides the Show Lock Call Stack
command in the popup menu when you right-click on a locked option.

Lock Exception Object
When a lock attempt fails, a lock exception is raised and a lock exception object is created. The lock exception object
is an instance of the LockException class and is passed as a parameter to any lock exception handler you may have
armed.

The lock exception object provides information about the nature of the lock exception that has occurred, and it
contains the information listed in the following table.

Property or Method Description

lockDuration property Duration of failed lock attempt

lockTimeout property Timeout value of failed lock attempt

lockType property Type of the failed lock attempt

retryCount property Number of times the lock has been retried

targetLockedBy property Process that has locked the object

lockTarget method Object that is the target of the failed lock attempt

retryLock method Retries lock operation and increments retryCount

Developer's Course

Module 16 Transactions and Locking 243

Developer's Course

244 Module 16 Transactions and Locking

You can write a lock exception handler, but there is one called globalLockException provided in the Application
class. It displays the Lock Error dialog and continues to retry the lock until the user clicks the Cancel button.

You would arm a lock exception handler globally when the application starts, as follows.

initialize() updating;

begin
on LockException do app.globalLockException(exception) global;

end;

Queued Locks
When a process attempts to lock an object, the lock is acquired immediately unless there are incompatible locks, in
which case the lock request enters the lock queue.

The lock queue is checked when an object is unlocked. It is also checked periodically, at an interval specified by the
value of the LockQueueCheckInterval parameter in the [JadeServer] section of the Jade initialization file.

If the lock is not acquired by the end of the timeout period, the lock request is removed from the queue and a lock
exception is raised (or false is returned for the tryLockmethod).

Monitoring Locks
The JADEMonitor utility enables you to view locks already acquired and locks pending in the lock queue.

Shared Locks on Collections
A lock on a collection prevents objects being added to or removed from the collection. (A lock on a dictionary prevents
changes to key values of member objects). However, a lock on a collection does not prevent updates to member
objects.

When a collection executes a non-updating method (for example, the sizemethod), a shared lock is automatically
acquired on the collection, to ensure that the latest edition of the collection is used. The lock is released after
executing the method, unless the process is in transaction state, load, or lock state.

By default, the foreach instruction acquires a shared lock on the collection being read, to prevent the collection being
changed during the iteration. The lock is released after the endforeach instruction, unless the process is in
transaction, load, or lock state.

Shared Transient Objects
Persistent objects are shared by all processes across all nodes in the system.

Transient objects are not shared at all. They are local to the process that created them and they are deleted when the
process terminates.

Shared transient objects are shared by all processes within the node that created them and they exist for the lifetime of
the node. Concurrency control is enforced by the node in which they live.

Developer's Course

Module 16 Transactions and Locking 245

Developer's Course

246 Module 16 Transactions and Locking

Updates to shared transients must be done within a transient transaction, which is similar to a persistent transaction,
as shown in the following code fragment example.

beginTransientTransaction;
create object sharedTransient;

commitTransientTransaction;

Shared transient objects are locked using the same methods as for persistent objects, and the same implicit locking
occurs for transactions and collections.

A significant difference between transient and persistent transactions is that transient transactions cannot be rolled
back. If a transient transaction is aborted, any transaction locks are released but the state of the updated objects
remains as it was at the point the transaction was aborted.

Exercise 16.1 - Using Locking to Check Editions
In this exercise, you will modify the CustomerEdit form to store the edition of the customer when the form is loaded.
The edition will be checked when theOK button is clicked.

The update will be allowed to proceed only if the edition is unchanged, which ensures that the customer has not been
updated in the interim. If the edition has changed, a message box will be displayed and the form reloaded with the
latest edition of the customer.

Finally, you will test the edition, checking by opening two CustomerEdit forms for the same customer and then
updating the customer on each.

1. Select the CustomerEdit form.

2. Add a protected attribute of type Integer called custEdition.

3. Change the loadmethod to store the edition of themyCustomer object, as follows.

load() updating;

begin
self.sharedLock(myCustomer);
self.custEdition := myCustomer.edition();
self.unlock(myCustomer);
txtAddress.text := myCustomer.address;
txtFirstNames.text := myCustomer.firstNames;
txtLastName.text := myCustomer.lastName;

end;

4. Change the btnOK_clickmethod to check the edition of themyCustomer object before proceeding with the
update.

5. Run the Banking application and then open the CustomerList form.

6. Select Charles Piggott and then click the Edit button twice.

7. On the first CustomerEdit form, change the name to Charles Smith and then click theOK button.

8. On the second CustomerEdit form, change the name to Charles Jones and then click theOK button.

The following message box should then be displayed.

Developer's Course

Module 16 Transactions and Locking 247

Module 17 Printing

This module contains the following topics.

Introduction

Designing a Report

Printer Object

Printer Methods

Exercise 17.1 – Adding a Customer Report

Exercise 17.2 – Coding a Customer Report

Introduction
Design reports in the JADE Painter in a similar way to designing forms for a GUI desktop application. A report form has
a number of frame controls, which are the basic unit to be printed.

The frames specified in code as the header and footer frames are automatically printed at the top and bottom,
respectively, of every page. Other frames (for example, a detail frame and summary frames) are printed in the
sequence specified in the code. For a customer listing report, a detail frame would have labels with captions that are
set before printing to the data from a Customer object.

Developer's Course

250 Module 17 Printing

The following image shows the print preview output from a customer report. The space between the header frame at
the top of the page and the footer frame at the bottom of the page contains several detail frames, which display
information for a single customer.

The Printer class from the RootSchema contains properties and methods that enable you to print a report that you
designed in the JADE Painter.

Designing a Report
The controls in the JADE Painter that are typically used in report design are as follows.

Frame

Label

Picture

The Frame control, which is the basic unit for printing, contains the other controls.

The following diagram shows a header frame containing three labels for text and a picture control for the company
logo.

Printer Object
You can create a transient instance of the Printer class, which you should delete when the printing is finished.

Alternatively, you can use the instance that is automatically created along with the application object and that is
referred to in your code as app.printer.

Printer Methods
The following methods and properties are defined for the Printer class in RootSchema.

Method or Property Example

setMargins method Specifies the paper orientation followed by the top, bottom, left, and right margins in
millimeters.

app.printer.setMargins(Print_Portrait, 10, 10, 10, 10);

setHeader method Specifies the report frame to be printed at the top of the page.

app.printer.setHeader(fraHeader);

setFooter method Specifies the report frame to be printed at the bottom of the page.

app.printer.setFooter(fraFooter);

Developer's Course

Module 17 Printing 251

Developer's Course

252 Module 17 Printing

Method or Property Example

print, abort, and close
methods

The printmethod prints the specified frame and returns an integer value, which shows
whether the user has clicked the Cancel or Stop button.

If the Cancel button is clicked, the abortmethod discards the print buffer, so a print
file is not created.

If the Stop button is clicked, the closemethod closes the print buffer and sends it to
the printer.

result := app.printer.print(fraDetail);
if result = Print_Cancelled then

app.printer.abort();
break;

elseif result = Print_Stopped then
app.printer.close();
break;

endif;

frameFits and
newPage methods

Returns true if the specified report frame fits on the current page. The newPagemethod
causes printing to skip to the next page.

if not app.printer.frameFits(fraDetail) then
app.printer.newPage();

endif;

printActive method Prints the currently active form. This is effectively a screen snapshot.

app.printer.printActive(self);

pageNumber
property

The page number, which is automatically incremented unless app.printer.autopaging is
set to false.

app.printer.pageNumber := 6;

pageBorderWidth
property

Sets the width of the border in points.

app.printer.pageBorderWidth := 1;

printPreview property Specifies if printed output is first displayed on screen or sent directly to the printer.

app.printer.printPreview := true;

Exercise 17.1 - Adding a Customer Report
In this exercise, you will add a CustomerReport form in the JADE Painter.

1. Open the JADE Painter.

2. Select the File menu New Form command.

3. Enter CustomerReport as the name of the form and then select the Printer option as the Form Style.

Developer's Course

Module 17 Printing 253

Developer's Course

254 Module 17 Printing

4. Paint the report with Frame controls, Label controls, and a Picture control, as shown in the following diagram.

Exercise 17.2 - Coding a Customer Report
In this exercise, you will add a method called print to the CustomerReport class. This method will print a report using
the root object's collection of all customers.

You will then add an option to the Customermenu on theMainMenu form to print the CustomerReport.

1. In the CustomerReport class, add a method called print.

2. Code the printmethod as follows.

print();

vars
cust: Customer;
result: Integer;

begin
app.printer.printPreview := true;
app.printer.setMargins(Print_Portrait, 10, 10, 10, 10);
app.printer.setHeader(self.fraHeader);
app.printer.setFooter(self.fraFooter);

foreach cust in app.myBank.allCustomers do
self.lblName.caption := cust.firstNames & " " & cust.lastName;
self.lblAddress.caption := cust.address;
result := app.printer.print(fraDetail);

if result = Print_Cancelled then
app.printer.abort();
break;

elseif result = Print_Stopped then
app.printer.close();
break;

endif;
endforeach;

epilog
app.printer.close();

end;

3. Open theMainMenu form in Painter.

4. Open the menu designer by selecting the File menuMenu Design command.

Developer's Course

Module 17 Printing 255

Developer's Course

256 Module 17 Printing

5. Select the empty menu item cell under the Customermenu and then enter &Report in the Caption field and
menuCustomerReport in the Name field.

6. Click theOK button to close the menu designer, and then save the form.

7. In the Class Browser, select themenuCustomerReportmenu item and then select the clickmethod.

8. Code the method as follows.

menuCustomerReport_click(menuItem: MenuItem input) updating;

vars
rpt: CustomerReport;

begin
create rpt transient;
rpt.print();

epilog
delete rpt;

end;

9. Run the Banking application and then view the report.

Evaluation Form

	Contents
	Overview
	Module 1 Installing the Jade Platform
	Introduction
	Exercise 1.1 - Installing the Jade Platform
	Jade Folders
	Running the Jade Platform in Single User Mode
	Running the Jade Platform in Multiuser Mode
	Exercise 1.2 - Running the Jade Platform
	Development and Run Time
	Files for the Course

	Module 2 Schemas
	Introduction
	Other Browser Windows
	Exercise 2.1 - Adding a Schema
	Exercise 2.2 - Opening a Class Browser

	Module 3 JadeScripts
	Introduction
	Structure of a Method
	Exercise 3.1 - Hello World
	Exercise 3.2 - read and write Instructions
	Exercise 3.3 - return and epilog Instructions
	Exercise 3.4 - Exceptions
	Exercise 3.5 - foreach Instruction
	Exercise 3.6 - while Instruction
	Debugging a JadeScript Method
	Exercise 3.7 - Jade Debugger
	Using the Jade User Interrupt
	Parameter Usage Options
	constant
	input
	output
	io

	Exercise 3.8 - break and continue Instructions
	Exercise 3.9 - Jade User Interrupt
	Exercise 3.10 - Parameters and Return Type
	self Object
	Exercise 3.11 - Parameter Usage Options

	Module 4 Application Object
	Introduction
	Context-Sensitive Help
	Exercise 4.1 - Context‑Sensitive Help and the app Object
	Global Constants
	Another Use of the Application Object
	Exercise 4.2 - Adding an Attribute
	Exercise 4.3 - Using app to Store a Value

	Module 5 Primitive Types
	Introduction
	Primitive Types
	Working with Numbers
	Adding Primitive Type Methods
	Working with Strings
	Substring Operator
	pos Method
	trimBlanks Method

	Working with Dates and Times
	Type Casting
	Other Primitive Types
	Exercise 5.1 - Rounding
	Exercise 5.2 - Adding a Primitive Type Method
	Exercise 5.3 - Substrings
	Exercise 5.4 - Date Arithmetic

	Module 6 Classes
	Introduction
	Database Files
	Exercise 6.1 - Adding a Schema
	Exercise 6.2 - Adding Map Files
	Exercise 6.3 - Adding a Class
	Instances of a Class
	Access to Properties
	Exercise 6.4 - Adding Attributes
	Exercise 6.5 - Adding a Method
	Exercise 6.6 - Testing with a JadeScript Method
	Inspecting Database Objects
	Extracting and Loading Schemas
	Exercise 6.7 - Inspecting Objects
	Exercise 6.8 - Removing Test Objects
	Exercise 6.9 - Extracting Multiple Schemas

	Module 7 Root Object
	Introduction
	Initializing the Root Object
	Constructor
	Exercise 7.1 - Adding the Bank Class
	Exercise 7.2 - Adding myBank and initialize Method
	Exercise 7.3 - Modifying the Customer Constructor
	Working with Files
	Working with Common Dialogs
	Exercise 7.4 - Reading from a File
	Exercise 7.5 - Using the File Open Dialog

	Module 8 Inheritance and Polymorphism
	Introduction
	Protected Methods
	Real versus Abstract
	Schema Versions
	Exercise 8.1 - Adding an Abstract Class
	Exercise 8.2 - Changing the Bank Class
	Exercise 8.3 - Adding a BankAccount Constructor
	Inheritance
	Polymorphism
	Validating a Schema
	Exercise 8.4 - Adding a ChequeAccount Class
	Exercise 8.5 - Adding a SavingsAccount Class
	Exercise 8.6 - Creating Bank Accounts with a JadeScript
	Exercise 8.7 - ATM Simulation

	Module 9 Collections
	Introduction
	Types of Collection
	Adding a Collection Class
	Collection Methods
	Dictionaries
	Arrays
	Exercise 9.1 - Adding a Customer Dictionary
	Exercise 9.2 - Adding a Customer Array
	Exercise 9.3 - Removing Test Objects
	Exercise 9.4 - Populating a Collection
	foreach with Collections
	Iterators and Collections
	Execution Location
	Exercise 9.5 - Deleting the J Customers
	Exercise 9.6 - Filtering a Collection

	Module 10 Relationships
	Introduction
	myCustomer Reference
	Exclusive Collections
	Other Subobjects
	Inverse References
	Adding Both Inverse References
	Advice on Defining Inverses
	Automatic and Manual Updating
	Peer‑to‑Peer and Parent‑Child Relationships

	Root Object Collections
	Exercise 10.1 - Adding a BankAccount Dictionary
	Exercise 10.2 - Adding an Exclusive Collection
	Exercise 10.3 - Adding Inverse References
	Exercise 10.4 - Adding Root Object Collections
	Exercise 10.5 - Multiple Inverses
	Challenge #1
	Challenge #2

	Conditions
	Constraint on Collection Maintenance
	Cardinality
	Exercise 10.6 - Adding an allHighValueAccounts Collection

	Module 11 Forms
	Introduction
	View Schema
	Painter
	Forms
	Buttons
	Text Boxes
	Subforms
	Exercise 11.1 - Adding the BankingViewSchema
	Exercise 11.2 - Adding a CustomerDetails Form
	Exercise 11.3 - Adding a JadeScript Method to Run a Form
	Exercise 11.4 - Adding a CustomerAdd Form
	Exercise 11.5 - Coding the CustomerDetails Form
	Exercise 11.6 - Coding the CustomerAdd Form
	Menus
	Multiple Document Interface
	List Boxes
	Populating a List Box
	Determining the Selected Object

	Editing a Customer
	Tables
	Populating a Table
	Determining the Selected Object

	Exercise 11.7 - Adding a MainMenu Form
	Exercise 11.8 - Adding a CustomerList Form
	Exercise 11.9 - Adding a setPropsOnUpdate Method
	Exercise 11.10 - Adding a CustomerEdit Form
	Exercise 11.11 - Changing the CustomerList Form

	Module 12 Applications
	Introduction
	Defining a GUI Application
	Web Services and REST Services

	Logon Authentication
	Application Security
	Shortcut to Run an Application
	Exercise 12.1 - Defining a Banking Application
	Exercise 12.2 - Adding a Logon Form
	Exercise 12.3 - Reimplementing getAndValidateUser
	Challenge

	Environmental Objects
	startApplication Methods
	JADE Monitor
	createExternalProcess Method
	Calling External Functions
	Database Backup
	Defining a Non-GUI Application
	Exercise 12.4 - Multitasking
	Exercise 12.5 - Adding a Non-GUI Application
	Exercise 12.6 - Adding Backup to the MainMenu

	Module 13 Exceptions
	Introduction
	Exception Classes
	Default Exception Handler
	Coding an Exception Handler
	Arming an Exception Handler
	Returning from an Exception
	User Exceptions
	Mapping Method
	Exercise 13.1 - Causing an Exception
	Exercise 13.2 - Adding a Global Exception Handler
	Exercise 13.3 - Deliberately Causing Another Exception
	Exercise 13.4 - Adding a Local Exception Handler
	Exercise 13.5 - Raising an Exception

	Module 14 Notifications and Timers
	Introduction
	Notifications and Events
	System Events
	User Events
	Subscribing to Notifications
	Unsubscribing from Notifications
	Publishing a User Event
	Responding to Notifications
	Exercise 14.1 – Loading a Class
	Exercise 14.2 – Using System Notifications
	Exercise 14.3 – Defining a Global Constant
	Exercise 14.4 – Using User Notifications

	Timer Events
	Beginning and Ending a Timer
	Responding to a Timer
	Exercise 14.5 – Using a Timer

	Module 15 Nodes, Processes, and Caches
	Introduction
	Distributed Processing
	Nodes and Processes
	Persistent Cache
	Transient Cache
	Persistent, Transient, and Shared Transient Objects
	Demonstration

	Module 16 Transactions and Locking
	Introduction
	Update Transactions
	Cache Coherency
	Lock Types
	Lock Durations
	Locking Methods
	Demonstration
	Read Transactions
	Lock and Deadlock Exceptions
	Debugging Lock Exceptions

	Lock Exception Object
	Queued Locks
	Monitoring Locks
	Shared Locks on Collections
	Shared Transient Objects
	Exercise 16.1 - Using Locking to Check Editions

	Module 17 Printing
	Introduction
	Designing a Report
	Printer Object
	Printer Methods
	Exercise 17.1 - Adding a Customer Report
	Exercise 17.2 - Coding a Customer Report

	Evaluation Form

